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Abstract 

STRUCTURAL INVESTIGATIONS OF LIGAND GATED ION CHANNELS 

 

 
Swarna Ramaswamy, B.S  

Advisor: Vasanthi Jayaraman, Ph.D.  

 Ion channels form an integral part of membrane proteins. In the nervous 

system including the central and the peripheral nervous system, ligand gated ion 

channels form a very important part of intercellular communications. They receive 

chemical signals and convert them to electrical signal, mainly by allowing ion 

passage across the cell membrane. Ion passage also translates into downstream 

signaling events. Faithful translation of these signals and transmittance is crucial for 

several physiological functions, implying that irregular ion channel function could 

lead to serious consequences.  

This thesis aims at gaining a better understanding of working of some of the 

excitatory neuro transmitter receptors. Signal transmission depends on the ability of 

the extracellular receptor segment and ion channel segment coordinating their 

movement to produce the one singular effect. My thesis work focuses on using 

various spectroscopic and molecular strategies to understand this process of how 

the extracellular segment controls the gating at the ion channel. I investigated these 

processes in two different classes of ligand gated ion channels. 

My work on Acid Sensing Ion Channel (ASIC), a proton sensitive ion channel 

found in central and peripheral nervous system aims to understand the proton 



vii 

sensors and structural changes. The resting state of the ion channel was still poorly 

understood, as well as the proton sensors. I used a combination of electrostatic 

simulations, mutational and spectroscopic investigations to identify the key proton 

sensing residues of the ion channel. The study also identifies the key conformational 

change that allows the extracellular membrane to communicate within the trimeric 

complex and allow ions to pass through.  

The next part of the study focuses on glutamate class of receptors, 

specifically the α-amino-5-methyl-3-hydroxy-4-isoxazolepropionate (AMPA) 

receptors. The modular nature of the ion channel allowed us to study specific 

domains of the protein, the ligand binding domain (LBD) for example. Using isolated 

LBD of AMPA receptors, we were able to study the dynamics of the protein using 

single molecule fluorescence experiments. The findings indicate that not only the 

average conformational change, but the dynamics of the protein also play a very 

important role in the ion channel gating. 
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Chapter 1- Ligand gated ion channels  
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Ligand gated ion channels form an important part of membrane proteins. 

They are usually composed of three key segments, an extracellular segment that 

binds the ligand and leads to activation, and a transmembrane domain that responds 

to ligand binding and opens the channel pore allowing ion influx, and a C terminal 

segment that mediates further downstream events. Thus, ligand gated ion channels 

form an important part of intercellular communications(1). Channel related 

dysfunctions are implicated in many disease conditions and due to that, ligand gated 

ion channels are the target of several drug molecules. (2,3) 

Overall, ligand gated ion channels are divided into three major classes, cys 

loop receptors, tetrameric glutamate receptors and ATP gated receptors. My thesis 

will focus on two types of the ligand gated ion channels, trimeric ion channels- Acid 

sensing ion channels, which are very similar in structure to ATP gated P2X receptors 

and ENaC sodium channels; and tetrameric glutamate receptors(4). With the recent 

advancements and understanding of Acid sensing ion channels (ASICs), it became 

evident that they have both physiological and pathological implications, making it 

important to study the gating mechanism of ASICs. We used structural and 

functional approaches to do so. Work on glutamate receptors involves studies of 

dynamics on the soluble isolated domains of the ion channel. The modular nature of 

glutamate receptors allows study on isolated domains, proving to be a great model 

system. (5-7) 

 Thus the overall goal is to combine the structural studies from ASICs 

and the model system from glutamate receptors, to come up with more detailed and 
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systematic investigation to understand the gating of ligand gated ion channels on a 

full length receptor. 

I. Introduction- Acid Sensing Ion Channels 

Acid sensing ion channels are members of the epithelial sodium channels/ 

degenerin family of channels. They are different from other sodium channels in the 

context of their involvement in the nervous system. Acid sensing ion channels are 

found both in central as well as the peripheral nervous system(8). Based on their 

expression pattern as well as the subtype, their functions vary (9-12). Overall, acid 

sensing ion channels are involved in pH mediated synaptic transmission. The 

receptors are located in the post synaptic membrane. When the pre synaptic 

membrane releases neurotransmitters via vesicles, part of the contents includes 

protons as neuro transmitters. The role of protons as neuro transmitters was 

undecided until recently. A study from Michael Welsh’s group has established that a 

portion of synaptic transmission is mediated via acid sensing ion channels (ASIC) 

through the protons present in the synaptic vesicles. This explains that ASICs are 

involved in synaptic transmission. (13) 

Apart from synaptic transmission, ASICs are also involved in numerous other 

physiological functions including sensory perception, mechanosensation, 

nociception and memory(2,3,14-18). ASICs respond to acidification in the 

extracellular region. The protons in postsynaptic space bind to ASIC and activate the 

ion channel. The downstream response includes opening of the ion channel, leading 

to influx of cations into the cell. The influx of ions depolarizes the membrane, and 

also leads to downstream signaling events. ASICs rapidly desensitize after 
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activation, leading to a sharp response that lasts in the range of milli seconds. 

(19,20) 

Since the time ASIC was cloned and characterized, several attempts have 

been made to gain more understanding into the working of the ion channel. It was 

also later identified that apart from physiological processes, ASICs are also involved 

in pathological conditions like stroke, ischemia, inflammation and hypoxia. 

(21,22)The abovementioned conditions often involve prolonged acidosis. Acidosis 

continues to hyper activate ASICs and hence leads to increased cation influx into the 

cells. Thus ASICs have been gaining increased importance in the area of 

neurotransmitter receptors.(11,13,23-25) 

A. Subtypes of ASIC 

ASIC is encoded by four genes- ACCN1-4. These four genes encode at least 

6 variants of ASIC proteins. ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. 

ASIC assembles as a trimer in physiology. The properties and activation behavior of 

all the subtypes are considerably different. They also vary in terms of the expression 

patterns.  

ASICs can form homo or hetero-trimers in physiology. While ASIC1a, 

ASIC1b, ASIC2a, ASIC3 can form functional homo or hetero trimers, ASIC2b and 

ASIC4 cannot form functional homomers. They associate with other ASIC subtypes 

to form heteromeric assemblies. (16,26-32) 
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B.  Expression pattern and activation of ASIC subtypes 

The expression pattern of ASIC varies based on subtype. ASIC1a is primarily 

found in central nervous system. ASIC3 is predominantly found in the peripheral 

nervous system, and scarce in the central nervous system. Few other subunits are 

found in both peripheral and central nervous system. In the case of ASIC1a knock 

out models, disruption of ASIC1a in neurons from central nervous system attenuated 

most of the acid evoked currents(8,20). This leads us to believe that ASIC1a is the 

major contributor to acid induced currents in the central nervous system. 

Additionally, ASIC1a knock out mice had reduced long term potentiation, reduced 

fear conditioning, slight reduction in learning abilities as well as reduced number of 

dendritic spines.(18)  While ASIC1a is primarily found in central nervous system and 

shown to be involved in synaptic transmission and fear transduction, learning and 

memory, ASIC1b and ASIC3 are vastly expressed in peripheral nervous system and 

shown to be involved in pain relate stimuli.  

Apart from the differences in expression patterns, the activation is also 

different based on different subtypes. Hence, the subtype constituents of the 

heteromer would influence the activation properties of a heteromer. 

In physiology, heteromers of ASIC exist based on the location as well as the 

expression distribution. Several studies have been done focusing on the heteromers 

of ASIC. These studies provide valuable comparative information of the kinetics of 

heteromers alongside homomers of ASIC. Stefan Grunder and colleagues studied 

the altered effect of neuropeptide RFamide effect on ASIC1b-3 heteromers(33).  



  

6 

Table 1 : pH required for half maximal activation of ASIC subtypes 

Adapted from Wemmie JA et al., Nat Rev Neuro 2013 and Benarroch EE et al., 

Neurology 2014 (21,27) 
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ASIC Subtype Expression pattern pH for half maximal activation 

ASIC1a CNS, PNS 5.8-6.8 

ASIC1b PNS 6.1-6.2 

ASIC2a CNS, PNS 4.5-4.9 

ASIC2b CNS, PNS Does not form pH sensitive 
homomer 

ASIC3 Primarily PNS 6.4-6.6 

ASIC4 CNS Does not form pH sensitive 
homomer 
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Previous results have shown that when ASIC1a-2a heteromers have a mixed 

stoichiometry without specific preferences(26). Thus, there hasn’t been a specific 

consensus for formation of heteromers established yet for ASIC in physiology. Since 

ASIC subtypes present with varied functions and pathophysiologies, it is important to 

focus on specific subtypes and their functional aspects when focusing on a rational 

drug screening methodology. 

C.  Information from crystal structure of desensitized ASIC1a 

There are three structures of ASIC1a solved till date (19,34-36). Gouaux and 

colleagues solved the first crystal structure in 2007(19). This was the structure of the 

ion channel at low pH, thus thought to be in its proton bound desensitized state. This 

structure provided very useful information about the overall architecture of the ion 

channel. While there were speculations about ASIC being a tetramer, the crystal 

structure demonstrated that ASIC was a trimer, much like the ENaC channels. At the 

level of amino acid sequence, ASIC shares high level of sequence similarity with 

ENaC sodium channels. 

The structure also demonstrated the overall architecture of the ion channel. 

ASIC consists of a huge extracellular domain, which consists of the receptor part of 

the protein. The extracellular domain leads into the transmembrane segments, which 

form the ion channel part of the protein. ASIC has the N and C termini of the protein 

in the intracellular part of the cell membrane.  

The crystal structure revealed that the extracellular part of the ion channel 

resembles a clenched hand. The domains in the extracellular region shape arrange 
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Figure 1: Crystal structure of ASIC  

The figure shows the trimer with each subunit in a separate color. Adapted from 

PDB ID: 2QTS (19) 
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themselves to resemble the finger domain, thumb, knuckle and palm domains. The 

wrist like region leads into the transmembrane segment forming the ion channel 

domain. The ASIC has seven disulfide bonds, most of them conserved across 

related proteins. It is possible that the structural stability is provided by the disulfide  

bonds as well as they allow the conformational changes to get faithfully transferred 

to other parts of the protein. The thumb domain specifically contains four disulfide 

bonds, which provides the rigid structure to the thumb domain. 

D.  Extracellular region of ASIC 

There has been an overwhelming wealth of information on the extracellular 

region of ASIC. Mutational studies suggest that this region binds protons and leads 

to activation of ion channel, based on mutational studies(19,37). It was also 

suggested that ASIC, unlike other ligand gated ion channels, undergo multiple ligand 

binding events at every subunit that lead to activation. Previous studies from various 

research groups were able to identify critical residues that are involved in the pH 

response. Mutation of critical residues in the extracellular region led to a shift in the 

pH response towards a lower pH. These residues were primarily found in the pocket 

between finger and thumb domain as well as in the wrist region.(37-41) 

The above mentioned regions are concentrated with negatively charged 

residues, and hence it is possible that their charges facilitate proton binding. When 

these residues are mutated, it disrupts proton binding, hence shifting pH dose 

response curve to a lower pH. Of particular interest was the pocket between the 

finger and the thumb domains. The crystal structure study from Gouaux’s lab  
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Figure 2: Structure of extracellular domain of a single subunit of ASIC;  

Finger and palm domains shown in cyan and thumb domain shown in orange. 

Shown in sticks are the residues D238, E239, D350 and D 346. Adapted from PDB 

ID: 2QTS(19). 
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identified two carboxylate residue pairs (D238: D350, E239: D346) lining that pocket. 

It was suggested that they could be primary proton sensors. Although, mutation of 

the residues in these two pairs only shifted the dose response to lower pH values, 

but failed to make the ion channel non responsive to protons. Two different research 

groups made this observation, ultimately suggesting the involvement of additional 

residues, which constitute the primary proton sensor of ASIC. This is possible due to 

the fact that the carboxylate-mediated electrostatic effects have the ability to work 

over a longer range in the microenvironment of the protein. (19,37) 

E.  Studies on the extracellular region of ASIC 

The changes in extracellular domain of ASIC propagate towards the 

transmembrane segments, leading to opening of the ion channel. Hence, a rational 

drug design would require a clear understanding of the conformational changes in 

the extracellular domain of the acid sensing ion channel.  

Several studies have been performed targeting the extracellular domain of 

ASIC. These studies have helped us determine the critical residues involved in the 

functions of ASIC as well as the mechanism of activation and desensitization of the 

ion channel. Independent studies from Gouaux lab and Canessa lab suggested 

possible proton sensors in the extracellular domains based on mutational 

studies.(19,37) Previous studies suggest that there are two strongly electronegative 

residue rich regions in the extracellular region, one in the pocket enclosed by the 

finger and thumb domains and another in the wrist region, which includes the 

segment that links the extracellular domain to the transmembrane segments. (42-44) 
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Mutations near the linker region affect the activation kinetics of the ion channel. 

Published material also shows the key residues involved in the desensitization 

properties of the ion channel, with the lower palm domain residues undergoing 

dramatic changes during desensitization(45-48). This is later supported by the 

observation in the open state crystal structures, which along with the desensitized 

state structure, indicate that the vestibule formed by the lower palm changes the 

most between channel opening and desensitization.(34,35,44) 

Voltage clamp fluorometry investigations on the extracellular domains have 

revealed the segments in the extracellular domain that undergo larger scale 

conformational changes compared to other segments. That particular study 

emphasizes that the finger domains and the residues that are farther from the trimer 

interface undergo larger conformational changes while the residues closer to the 

interface in the extracellular domain undergo minimum conformational changed 

during the gating process. (49,50) 

II. Significance of the study 

My thesis work focuses on investigating the conformational changes in ASIC 

between the high pH resting state and the low pH desensitized state. These studies 

will be on ASIC expressed in mammalian and hence represents the near 

physiological state of the protein. For these measurements I use fluorescence 

spectroscopy, which will allow me to probe the states that are not amenable to other 

techniques.  
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Information on this ion channel is crucial because of the pathological 

implications of ASIC in various conditions like stroke and ischemia. Apart from the 

physiological functions, ASIC also gets hyper activated in conditions like hypoxia 

and stroke. This leads to increased calcium influx and hence neuronal death. 

Current compounds that act on ASIC are not effective enough to modulate the 

function without causing off target effects. Compounds like amiloride and TEA often 

cause off target side effects(51). Thus it becomes important to gain a complete 

understanding of the working mechanism of the ion channel before devising a drug 

screening methodology.  

I used mutational, computational as well as fluorescence spectroscopy to 

investigate ASIC. The advantage of this approach is that these experiments are 

carried out in whole mammalian cells and membrane fractions, which represent the 

most physiologically relevant sample. It allows us to study the protein while it is 

carrying out its functions. Additionally, Luminescence Resonance Energy Transfer 

(LRET) allows us to changes in the protein, with minimum structural alterations to 

the protein with the ability to directly investigate the function of the construct being 

investigated. 
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Chapter 2- Methodologies -Fluorescence Resonance Energy Transfer 
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I. Introduction 

 Fluorescence Resonance Energy Transfer (FRET) is a phenomenon that 

involves energy transfer between two fluorophores, one being the donor fluorophore 

and other being the acceptor fluorophore. Energy transfer occurs when the 

fluorophores are in proximity to each other and the emission spectrum of the donor 

fluorophore overlaps with the absorption spectrum of the acceptor fluorophore.  

FRET involves non-radiative energy transfer and the efficiency of energy transfer is 

proportional to the inverse sixth power of the distance between the fluorophores. 

This relationship between efficiency and distance makes FRET very sensitive to 

changes in distance between the fluorophores.(52,53) 

𝑅 = 𝑅0 �
1
𝐸
− 1�

1/6

 

 

 The above equation explains the distance dependence of efficiency of energy 

transfer(54). E represents the efficiency of energy transfer, R is the distance 

between the fluorophores, and R0 is the Forster distance, which is the distance at 

which the energy transfer between the fluorophores is 50%. Thus, the distance 

between the fluorophores can be calculated based on the efficiency of energy 

transfer. R0 is a constant for a given set of fluorophores. R0 is calculated based on 

the following equation.(55,56) 

𝑅0 = �
8.785 × 105 × κ2 × ϕ𝐷 × 𝐽

𝑛4
�
1/6
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 In the above equation, κ2 is the orientation factor between the two dyes, J 

being the spectral overlap integral between the donor's emission spectrum and the 

acceptor's absorbance spectrum, ϕD being the quantum yield of the donor, and n is 

the refractive index of the medium.  

II. Use of FRET as a ruler 

 The fluorophores contain reactive chemical groups that allow us to specifically 

tag the protein of interest at specific sites. For example, maleimide derived 

fluorophores allow tagging non-disulfide bonded, exposed cysteine residues in the 

protein. Thus, by introducing cysteine residues at sites of interest, we were able to 

tag them with maleimide derived fluorophores and conduct FRET studies targeting 

specific domains of the protein. Based on the efficiency of energy transfer, the 

distances between the fluorophores can be calculated. This method allows us to use 

this technique as a molecular ruler.  

 The same technique can be extended to measure conformational changes in 

proteins in different conditions. This technique also has an added advantage where 

it can be carried out in solution as well as on whole cells, allowing measurements in 

dynamic states of the protein, in a more physiological state. This approach is often 

not possible in other methods such as x-ray crystallography, which uses chemical 

conditions that aren’t optimal to study the dynamics of the protein. The fluorophores 

being small chemical molecules has an advantage over the bulky fluorescent 

components such as GFP. 
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III. Luminescence Resonance Energy Transfer and its uses to conduct 

structural investigations 

 Luminescence Resonance Energy Transfer (LRET) is a technique that uses 

the same principle as FRET, except it uses the lanthanide series cation such as 

terbium or europium in the donor fluorophore. Typically the donor fluorophore is a 

chelated lanthanide, such as terbium chelate. The chelate molecule in contains a 

chromophore group as well as a functional group that allows site specific tagging of 

the fluorophore. Lanthanide donors offer several advantages over traditional organic 

dye molecules in many ways. (54,57-60) They are versatile in the fact that they have 

multiple sharp emission peaks. This allows usage of the donor with multiple acceptor 

fluorophores. The sensitized emission of the acceptor can be measured without 

interfering bleed through from the direct donor emission. They also exhibit long 

lifetimes that allow sensitized lifetime measurements across a vast range in 

macromolecules. LRET offers us a way of measuring the distances between 

fluorophores based on the sensitized emission. The efficiency calculation is done as 

follows, based on the lifetimes. (55,56,61) 

𝐸 =
τ𝐷 − τ𝐷𝐴

τ𝐷
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Figure 3: Spectral overlap between terbium chelate as donor and Alexa 488 as 

acceptor  

Terbium Chelate in black, Alexa 488 in red Absorbance spectra in dashed lines. 

Emission spectra in solid lines. Note the multiple, sharp emission peaks for terbium 

chelate. 

Adapted from Dolino D et al., Luminescence Resonance Energy Transfer to study 

conformational changes in membrane proteins expressed in mammalian cells., 

Journal of Visual Experimentation (In press) 
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In the above equation, E represents the efficiency of energy transfer, τ𝐷 

represents the lifetime of the donor alone tagged to the sample, and τ𝐷𝐴 represents 

the sensitized emission of the acceptor in the presence of the donor fluorophore, 

when the sample is tagged with both donor and acceptor molecules. 

 These lifetimes can also be used to directly calculate the distance between 

fluorophores using the following formula.(55,56) 

𝑅 = 𝑅0 �
𝜏𝐷𝐴

𝜏𝐷 − 𝜏𝐷𝐴
�
1/6

 

IV. Choice of sites and fluorophores 
 

 Using an x-ray structure or a related structure/ model as a template, the sites 

are chosen based on (1) their ability to best reflect the conformational change that is 

being studied, (2) The site being exposed to tagging with fluorophores, (3) the site 

not in a position that is critical to the function of the protein, (4) site not being at a 

region where it would interfere with the protein’s folding and stability and (5) 

preferably in a position such that they would provide a single LRET lifetime, i.e. for 

instance in measuring distances within a subunit it is preferable that the distances 

across the subunits are large enough such that there is no intersubunit LRET. 

Typically, cysteines are introduced at the chosen sites and maleimide derived 

fluorophores are used to tag the sites.   

 The fluorophores are chosen based on the distance range. The fluorophores 

are selected so that the distance range is slightly lower than the R0 of the 
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fluorophore pair. The further the distance range is, from the R0, the less sensitive is 

the measurement to distance changes. It should be noted that LRET gives us a 

good estimate of distance changes between different conditions, but it is not a 

reliable method for measuring absolute distances. 

V. LRET in samples without purification 

 LRET experiments allow us to measure conformational changes in 

physiological state of ion channels, such as on the surface of HEK293T cells or 

Xenopus laevis oocyte membranes. These experimental designs require a method 

to subtract background. To do so, we introduced factor Xa cleavage sites flanking 

one of the fluorophores. LRET from whole cells/ membranes are measured, and 

then adding the protease and incubating for appropriate amount of time cleave one 

of the fluorophores off. LRET measurements after that represent the background 

signal, since the specific LRET from the protein of interest is eliminated. If the 

measurement was intended from only one set of fluorophores, the resulting LRET 

lifetime would be fit into a single exponential decay. Similar methods have been 

used in previous studies to study structure function relationships in glutamate 

receptors.(55,56,62) 

VI. Single molecule Fluorescence Resonance Energy Transfer 

 Single molecule Fluorescence Resonance Energy Transfer (smFRET) is a 

derivative of FRET technique that allows us to measure dynamics of protein at a 

single molecule level. The technique involves tethering the protein at very low  
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Figure 4: Protease cleavage strategy to measure LRET from whole cell samples 

Adapted from Ramaswamy S et al., Journal of Biol Chem, 2013.  

The figure to the left shows the raw data acquired, showing the sensitized acceptor 

emission before and after factor Xa cleavage in black and dark yellow respectively. 

The figure to the right shows the data after subtraction of background, showing a 

single exponential decay arising from one set of sites. 
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concentration on a glass slide and measuring the FRET efficiency from single 

isolated protein molecules. 

While LRET measurements give us an average measure of conformational 

change, smFRET allows us to look at the protein at a single molecule level. smFRET 

experiments look at the spread of efficiencies, and thus of conformations, under 

different ligated specific conditions, using a custom built confocal microscope. The 

results are represented as a histogram, showing occurrences of molecules at each 

efficiency states. This method has efficiently been employed in studying the 

dynamics of the protein and their role in the functions of the protein. (63) 

  



  

24 

Chapter 3: Proton sensors and proton mediated conformational changes in 

ASIC 

This research was originally published in Journal of Biological Chemistry. 

Ramaswamy, S. S., MacLean, D. M., Gorfe, A. A., and Jayaraman, V. (2013) 

Proton-mediated conformational changes in an acid-sensing ion channel. The 

Journal of biological chemistry 288, 35896-35903. Copyright the American Society 

for Biochemistry and Molecular Biology. 
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I. Hypothesis involving primary proton sensors  

 Our primary aim was to dissect the constituents of the primary proton sensors 

of the ion channel ASIC. As outlined in the introduction, multiple mutational studies 

point towards the extracellular domain and the pocket between finger and thumb 

domains. This section contains negatively charged residues forming an 

electronegative patch in the protein. It is possible that these residues could play an 

important role in proton binding and activation, given the fact that the ion channel 

binds and responds to protons.  

 Initial crystallographic information revealed two pairs of negatively charged 

residues, D238: D350, E239: D346 in this extracellular pocket as primary proton 

sensors. If that were to be the case, mutation of these residues should render the 

ion channel non responsive to protons. Instead, mutation of these residues only 

shifted the pH response curve to a lower pH value. This tells us that while these 

residues are important for proton binding and activation, they don’t represent the 

complete proton sensors of the ion channel. We thus decided to decipher the 

complete constitution of the proton sensor. Further analysis of the crystal structure 

revealed another carboxylate pair, D260: E354. This pair is situated further deep in 

the pocket relative to the other two pairs. While they may be too far for hydrogen 

bonding, it is possible that they still might play a role in proton binding. This is due to 

the fact that electronegativity could have long range effects as well as in the dynamic 

state of the protein, these residues could still be in a physical position to cause an 

effect on the proton binding capacities(64). We thus set out to determine the role of 

these residues in proton binding and function of the ion channel. 
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Figure 5: Closer view of the extracellular domain of a single subunit of ASIC, 

showing the relative positions of the three carboxylate pairs. 

Finger and palm domains shown in cyan and thumb domain shown in orange. 

Shown in sticks are the residues D238, E239, D260, D350, D 346 and E354. 

Adapted from PDB ID: 2QTS (19) 
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 Further extension of the hypothesis involves conformational changes at the 

extracellular site upon proton binding that may lead to ion channel opening. The 

hypothesis is based on behavior of carboxylate residues at high and low pH, which 

correspond to resting and desensitized state of the ion channel. It is possible that at 

high pH, the carboxylate residues could be negatively charged. When both residues 

in each pair are negatively charged, it is possible that they tend to repel each other 

due to their electrostatics. Upon reduction of pH, as the carboxylate residues get 

protonated, they may lead to hydrogen bonding between the pairs, leading to 

attraction between the carboxylate pairs. This could in turn allow the finger and 

thumb domain to come closer to each other. Thus conformational change could be 

then propagated downward allowing the ion channel to open.  

 Although carboxylate pairs typically have a pKa at much lower pH values, it is 

possible for them to still mediate proton binding at a near physiological pH in which 

ASIC activates. This is due to the fact that effective pKa of carboxylate residues in 

particular protein also depends on the micro environment and the presence of 

multiple negative charges surrounding the residue shifts the pKa of the above-

mentioned carboxylate residues to a higher pH value. This could then allow the 

carboxylate pairs to cause proton binding and subsequent changes at the range at 

which ASIC gates. This leads us to the ultimate structural hypothesis that upon 

reduction of pH, the protons bind carboxylate residues that line the finger and thumb 

domains and cause a conformational change that brings the two domains closer 

together, which then allows the ion channel to open. 
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II. Experimental strategy 

 Our experimental strategy to study proton sensors in ASIC involves a 

combination of simulation studies, mutational studies and structural studies. 

Simulations were done using APBS calculations, which allowed us to find out the 

role of specific amino acids in the electronegativity stretches of ASIC. Calculations 

done in the presence and absence of specific carboxylate pairs helped us gain an 

initial understanding of the putative proton sensing regions.  

 The residues thought to be involved in proton sensing were later tested for 

their role in ion channel function using electrophysiological measurements as well as 

mutational studies. These experiments helped us with the functional aspect of the 

ion channel and proton binding sites. 

 Our next experimental setup involved structural investigation of 

conformational changes that are mediated by proton binding. According to the 

hypothesis, if the finger and thumb domains were to come closer upon proton 

binding, it would mean that the distance between the thumb and finger domain 

would reduce upon proton binding. Thus we decided to utilize LRET technique as a 

molecular ruler to measure the distance between the finger and the thumb domain. 

This was performed in wild type ASIC protein to test if proton binding event allows 

the said conformational change. This was also later tested on mutant proteins that 

fail to gate at the experimental pH conditions used. This part of the experiment tells 

us if the conformational change is indeed crucial for gating or not. 
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III. Results and Discussion 

A.  Simulation studies on the putative proton sensors in cASIC1a 

Based on the X-ray structures, the carboxylate pairs D238:D350 and 

E239:D346 have been hypothesized to be proton sensors and the driving force for 

the movement of the thumb and finger domains toward each other, ultimately 

gating/activating the channel. Our hypothesis is that along with these pairs, an 

additional third pair, D260:E354 is also involved in proton sensing. To understand 

the contribution of these carboxyl/carboxylate pairs, we performed electrostatic 

calculations using the APBS plugin in VMD. The results revealed that neutralizing 

the residues in pairs D238:D350 and E239:D346 significantly reduced the 

electrostatic potential at these positions. However, there was still a substantial 

negative electrostatic field deep in the pocket, which could be from the two additional 

carboxylate side chains from D260 and E354 at this location on the finger and thumb 

domains, respectively. They are 7 Å apart in the crystal structure and have not been 

suggested as a carboxyl/carboxylate pair in previous studies. However, it is possible 

that these residues could be closer in the dynamic state of the protein. Additionally, 

because the electrostatic interactions are expected to be in effect at this distance, 

they could contribute to proton sensing. We thus performed additional calculations 

after eliminating this third pair of carboxylate residues (D260 and E354) in addition to 

the initial two pairs. This resulted in a near loss of negative electrostatic potential, as  
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Figure 6: Electrostatics of cASIC1a, wild type as well as the mutants, as seen from 

VMD calculations 

The figures show electrostatics of wildtype and the carboxylate -> alanine mutants in 

cASIC1a. Blue represents positive electrostatics, red represents negative 

electrostatics, and the lines represent the field lines. 
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indicated by the disappearance of the electric field lines. These studies show that in 

addition to D238, and E239, D260 may also play a role in pH-mediated gating in 

ASICs. 

B.  Functional role of the carboxylate pairs in ASIC gating 

 The electrophysiological studies with the D260A single mutation showed a 

slight but significant shift in the EC50 by 0.2 pH units relative to the wild-type protein 

(pH50 for the wild-type protein of 6.42 ± 0.01 (n ≥ 4) and pH50 for D260A of 6.21 ± 

0.02 (n ≥ 4); p < 0.0001). This shift in EC50 showed that the electrostatics at this 

carboxylate site contributed to the proton sensing, consistent with the electrostatic 

calculations. Analysis of the D238A:E239A ASIC double mutant was complicated by 

the fact that D238A:E239A showed very small currents and that extreme proton 

concentrations (beyond pH 4) compromised our solution delivery system and were 

inaccessible to LRET measurements. Nonetheless, we did find that the 

D238A/E239A double mutation substantially shifted the dose-response curves to 

lower pH (pH50 for D238A/E239A of 3.92 ± 0.04 (n = 3)). These studies are 

consistent with previous work showing that the single mutants at sites 346 (which 

pairs with site 239) and 350 (which pairs with site 238) in cASIC1a result in a shift in 

EC50 and that mutating pairs 237:350 and 238:346 in rat ASICs also results in a shift 

in EC50. The triple mutant D238A/E239A/D260A yielded no electrophysiological 

responses in 10 patches tested in the pH range of 7 to 4. A null response from the 

triple mutant could mean that the ion channel is no more responsive to protons, or 

that the protein is misfolded and trapped in the organelles, never allowing the ion 

channel to express in the plasma membrane. Thus it was necessary to test this  
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Figure 7: Electrophysiological response of wild type and carboxylate mutants  

This figure shows the functional responses of the various mutants used in the study, 

to changes in pH. 
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Figure 8: Western blot after surface biotinylation and pull down showing surface 

expression of wild type and triple mutant in ASIC 
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using further experiments. To ensure that the protein was expressed on the surface 

of the cell, we performed surface biotinylation and NeutrAvidin pull down, followed 

by Western blotting to probe for FLAG-tagged ASIC subunits. The Western blot 

shows a band corresponding to a molecular mass of 60 kDa, as expected for the 

single subunit of ASICs, indicating surface expression of the D238A/E239A/D260A 

ASIC triple mutant. 

C. Measurement of conformational changes in whole cells and membrane 
fractions 

 Our intention was to be able to measure conformational changes in the 

protein while it is in physiologically relevant state. We used two systems to do so, 

whole HEK293T cells expressing cASIC1a, and to use membrane fractions from 

Xenopus laevis oocytes. To measure changes in the functional cASIC1a receptors 

without purifying the proteins, we introduced the recognition sequence for the 

protease Factor Xa (IDGR) on either side of one fluorophore-binding site. Measuring 

the LRET signal before and after digestion with Factor Xa allows for the quantitative 

subtraction of the background signal. Cysteines were introduced at residues 130 and 

139 for tagging with fluorophores in the finger domain alongside the residue 340 t 

thumb domain. These residues were chosen based on their ability to reflect 

conformational changes and also incorporation of Factor Xa sequence with minimum 

perturbation. Electrophysiological measurements from excised patches of HEK293T 

cells expressing the wild-type and mutant proteins used for the LRET measurements 

revealed that these constructs were functional and had similar gating kinetics as the 

wild-type receptor as seen from the rate and extent of desensitization. 
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Figure 9: Functional characterization of proteins used in LRET measurements 

This figure shows the functional characterization of cASIC1a constructs used for 

LRET measurements. We can see that they show similar gating characteristics to 

wildtype channel. 
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D. Conformational changes between finger and thumb domain at different 
pH conditions 

 To map the distance changes between the thumb and finger domains within a 

subunit, LRET measurements were performed using the ASIC constructs with 

cysteines at sites 139 and 340 and with cysteines at sites 130 and 340. 

The LRET lifetimes for the 139/340 construct at pH 8 and 6 expressed in HEK293T 

cells and oocytes (membrane preparations) are shown in the figure 10 below in 

panels a and b, and the corresponding lifetimes from donor only-labeled receptors 

are also shown in panels c and d. The black and red lines represent pH 8 and 6, 

respectively, unless indicated otherwise. The LRET lifetimes could be well 

represented by a single exponential, indicating that the primary energy transfer is 

within the subunit. This is consistent with the fact that <15% efficiency of LRET is 

expected for intersubunit LRET at this site based on the x-ray structures. Based on 

the LRET and donor lifetimes at pH 8, the intrasubunit distance between sites 139 

and 340 was calculated to be 28 Å in HEK293T cells and 29 Å in oocytes. Reducing 

the pH from 8 to 6 resulted in a decrease in distance of 2 Å, with the distances being 

26 and 27 Å in HEK293T cells and oocytes, respectively. This distance is similar to 

the distance of 24 Å between the backbone Cα of sites 139 and 340 and the 

distance of 25 Å between Cδ of the site 139 side chain leucine and Oϵ of the site 

340 side chain glutamine observed in the low pH crystal structure of cASIC1a. The 

pH-dependent decrease in distance between the donor and acceptor fluorophores 

suggests a conformational change that brings the two fluorophores tagged at the 

finger and thumb domains closer upon binding protons. 
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Figure 10: LRET experiments to measure conformational changes between sites 

L139C and Q340C  

The figures show the sensitized lifetime emission of the acceptor fluorophore, 

ATTO465 in high pH (black) and low pH (red). Panels a and b show the acceptor 

lifetimes in the presence of the donor (HEK293T cells and oocytes respectively). 

Panels c and d show corresponding donor-only lifetime measurements. 
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To further test the pH-dependent motion of the thumb and finger domains, we 

repeated the experiments using the 130/340 construct. Similar LRET lifetimes were 

obtained for the 130/340 construct at pH 8 and 6 expressed in HEK293T cells and 

oocytes as shown in the following figure, panels a and b respectively. The 

corresponding lifetimes from donor only-labeled receptors are shown in the figure, 

panels c and d. The LRET lifetime was fit to two exponentials decays. Based on the 

shorter lifetimes and the donor-only lifetimes, the distances were calculated to be 28 

and 27 Å between sites 130 and 340 in HEK293T cells and oocytes, respectively, at 

pH 8. Reducing the pH from 8 to 6 resulted in a decrease in the distance of 2 Å 

between sites 130 and 340 in both HEK293T cells and oocytes. As with the 130/340 

mutant, these distances are similar to the distance of 27 Å between the backbone 

Cα of sites 130 and 340 and the distance of 28 Å between Oγ of the site 130 side 

chain leucine and Oϵ of the site 340 side chain glutamine observed in the low pH 

crystal structure of cASIC1a. The longer decays were 560 and 630 μs for pH 8 and 

6, respectively. These lifetimes correspond to 32 and 33 Å, respectively. The 

distance of 33 Å at pH 6 is similar to the intersubunit distance of 33 Å at position 

130, thus indicating that this component is arising from a small fraction of 

intersubunit LRET at this site. 

Because the distance changes upon reduction in pH are similar between 

residues 130 and 340 and between residues 139 and 340, we can conclude that the 

change is arising due to a movement of the fluorophore at site 340 toward the 

fluorophore at sites 139 and 130. Such a motion is consistent with the thumb and  
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Figure 11: LRET experiments to measure conformational changes between sites 

T130C and Q340C  

The figures show the sensitized lifetime emission of the acceptor fluorophore, ATTO 

465 in high pH (black) and low pH (red). Panels a and b show the acceptor lifetimes 

in the presence of the donor (HEK293T cells and oocytes respectively). Panels c 

and d show corresponding donor-only lifetime measurements. 
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finger domains being held together through carboxyl/carboxylate hydrogen bonds as 

seen in the low pH crystal structure. At high pH, these residues are expected to 

deprotonate and repel each other, leading to the moving apart of the finger and 

thumb domains. 

E.  Functional consequence of structural change in extracellular domain 

To test the effect of the loss of pH-mediated activation on the conformational 

changes between the thumb and finger domains, we performed LRET investigations 

on the D238A/E239A double and D238A/E239A/D260A triple mutants. The LRET 

lifetimes at pH 8 and 6 (after subtraction of the background signal using Factor Xa 

cleavage) for the D238A/E239A double mutant in the 139/340 fluorescence 

construct expressed in HEK293T cells tagged with terbium chelate and ATTO 465 

are shown in the following figure. The LRET lifetimes could be well represented with 

a single exponential decay at both pH 8 and 6. The LRET lifetimes for the 

D238A/E239A double mutant showed no changes upon reduction of the pH from 8 

to 6, suggesting no changes between the thumb and finger domains. Additionally, 

the distances at both pH values for the D238A/E239A double mutant are similar to 

those for the wild-type 139/340 fluorescence construct at pH 8, suggesting that the 

distance in the D238A/E239A double mutant is similar to that in the high pH resting 

state of the corresponding wild-type protein. Because the double mutant protein did 

not gate at pH 6, the loss in movement in the double mutant confirms that the 

thumb-to-finger movement is essential for protein-mediated gating. We could not 

perform experiments at pH <6, as the terbium chelate showed a decrease in 

intensity possibly due to loss of the terbium from the chelate. These results were  
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Figure 12: LRET measurements from double and triple carboxylate mutants in ASIC. 

The figure shows sensitized lifetime emission from acceptor fluorophore, ATTO 465, 

measured in HEK293T; a- double mutant D238A/E239 at high and low pH (black 

and red respectively) and triple mutant D238A/E239A/D260A at high and low pH 

(violet and olive respectively), and b- the corresponding donor lifetime 

measurements in HEK293T cells. 
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further confirmed by the LRET data for the D238A/E239A/D260A triple mutant. The 

triple mutant in the 139/340 fluorescence construct background expressed in 

HEK293T cells was also tagged with terbium chelate and ATTO 465 and studied 

using LRET. The LRET lifetimes at pH 8 and 6 (after subtraction of the background 

signal using Factor Xa cleavage) are shown in the figure. The LRET intensities 

observed for the D238A/E239A/D260A triple mutant were similar to those observed 

for the wild-type LRET construct, showing surface expression, consistent with the 

biotinylation studies. The LRET lifetimes could be well represented with a single 

exponential decay at both pH 8 and 6. No significant changes were observed in the 

lifetimes between pH 8 and 6. Furthermore, the distances based on the LRET 

lifetimes for the mutant protein are the same as those observed for the wild-type 

139/340 LRET construct at pH 8. This shows that the D238A/E239A/D260A triple 

mutant is similar to the high pH state of the wild-type ASIC protein, with the thumb 

and finger domains not being able to be held close to each other through the 

hydrogen bond interactions between the carboxyl/carboxylate pairs. 

 These results help us draw a correlation between the conformational change 

observed in the wild type protein and the primary proton sensor residues observed 

from mutational changes. It is evident that while the wild type shows gating as well 

as a conformational change that brings the finger and thumb domains closer 

together, the mutants that do not gate also lack the conformational change. Thus the 

conformational change does have a connection to the gating of the ion channel. It is 

possible that the conformational change is crucial for the transmembrane segments 

to open move apart and open the ion channel. 



  

43 

Table 2: LRET lifetimes obtained from various wild type and mutant constructs used 

in this study 

 

Construct Expression 
system 

pH τD 

in µs 

τDA 

in µs 

R 

in Å 

L139C; 
Q340C 

Oocytes  8 1648±1.2 350±5.4 29±0.07  

6 1672±2.4 268±4.3 27±0.07  

HEK293T  8 1555±1.2 293±3.0 28±0.04  

6 1575±1.7 225±1.3 26±0.02  

T130C; 
Q340C 

Oocytes  8 1575±1.1  257±2.0; 
560±8 

27±0.03; 
32±0.4 

6 1588±1.3  173±1.7; 
630±10 

25±0.06; 
33±0.5 

HEK293T  8 1511±1.2  252±8; 520±7 28±0.1; 
32±0.4 

6 1589±1.4  183±3; 650±9 26±0.07; 
33±0.5 

L139C; 
Q340C; 

D238A; 
E239A; 
D260A 

HEK293T 8 1666±0.6 293±1.1 28±0.01 

6 1752±0.6 293±1.3 28±0.02 

L139C; 
Q340C; 

D238A; 
E239A 

HEK293T 8 1672±0.6 304±1.8 28±0.02 

6 1745±0.6 312±2.1 28±0.03 
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III.        Conclusions 

The x-ray structure of ASIC shows a trimeric structure with a large 

extracellular domain. Each subunit has the shape of an upright arm, with the 

extracellular domain having a structure similar to that of a hand. A large negatively 

charged electrostatic patch is seen in the extracellular domain of each subunit, 

which has been suggested as the primary proton sensor. Specifically, within this 

acidic patch, two pairs of unusually close (<3 Å) carboxyl/carboxylate interactions 

(D238:D350 and E239:D346) are observed. Based on the proximity of these 

negatively charged residues, it has been suggested that these residues would have 

a higher pKa and could get protonated in the range of the gating pH, thus acting as 

the “proton sensor.” Electrophysiological measurements of receptors with mutations 

at these two sites showed that the EC50 was shifted for the proton response curves 

to a more acidic pH but did not result in a complete loss of proton gating. This 

suggests that additional residues are involved in the proton-sensing process. Using 

electrostatic maps, we identified a third pair of carboxylates deeper in the pocket 

(D260:E354), which may contribute to proton sensing. Consistent with this 

hypothesis, eliminating only this carboxylate pair (D260A) resulted in a small but 

consistent right shift in the pH-response curve. Moreover, the residual proton 

sensitivity in the D238A:E239A double mutant was completely eliminated with the 

addition of the D260A mutation.  

Despite surface expression, this triple mutation was insensitive to acidic 

solutions as low as pH 4. Our findings suggest that all three carboxylate pairs help 

initiate the gating process by acting as proton sensors. The close proximity of the 
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carboxylate pairs in the thumb and finger domains also suggests that the two 

domains are likely to be farther apart at higher pH, and upon protonation of one of 

the carboxylate side chains in each pair, the thumb and finger domains are expected 

to be locked at a shorter distance, which in turn could be the trigger for activation. 

Using LRET, we showed that proton binding resulted in the moving closer of 

fluorophores attached to the thumb and finger domains. In further support of this 

hypothesis, this movement was lost under the same pH conditions in the 

D238A/E239A double and D238A/E239A/D260A triple mutants. 

The mutational and LRET studies established that there is a conformational 

change between the thumb and finger domains, and this is essential for channel 

gating and probably represents the initial step in this process, which, when 

propagated to other segments such as the palm domain and ultimately to the 

channel, leads to activation of the receptor.(65)  
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Chapter 4- Intersubunit investigations in ASIC 
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I. Introduction 

 This chapter focuses on the conformational changes between the subunits in 

ASIC. We learned from results outlined in the previous chapter, that the pocket 

between the thumb and finger domain play an important role in proton binding, a 

process that is mediated through the three pairs of carboxylate residues that are 

placed along the finger and thumb domains. These domains come closer upon 

proton binding, a conformational change that is a result of ligand binding, as well as 

it is a key conformational change that mediates gating. The question remains as to 

how these conformational changes within the subunit translate into differences in 

interactions between the subunits. 

 The low pH structures of cASIC1a crystallized in complex with 

Psalmotoxin(PcTx1) is thought to represent the Na+ selective open channel structure 

of the protein.(34,35) These structures show no significant changes in the knuckle 

and upper palm domain between the open and desensitized state structures, 

suggesting that they act as a scaffold for changes in the thumb and lower palm 

domain. This in the context of our previous data showing a motion of finger and 

thumb domain towards each other implies that there should be changes between the 

subunit at the top of the receptor. To investigate these changes we used LRET 

based measuremetns to determine the intersubunit distance in the high pH resting 

state and low pH desensitized state.  
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II. Experimental strategy 

Sites were chosen at the finger domain of cASIC1a and a single cysteine was 

introduced in the chosen site, allowing measurements across the subunits. LRET 

technique was used to measure these distances, similar to the intra subunit 

measurements. These measurements were done in whole HEK293T cells as well as 

in oocytes to keep the experimental conditions more physiologically relevant. 

Using different expression systems allows us to confirm our findings across 

different systems. The results are consistent between the different systems, 

confirming out findings. 

III. Results 

A. Conformational change at site 130 

 In order to investigate the conformational changes between the subunits, 

LRET lifetimes were obtained with single cysteine constructs labeled with terbium 

chelate and Fluorescein or Alexa 555 as donor and acceptor fluorophores. The 

LRET lifetimes were obtained by investigating the sensitized emission of the 

acceptor. The LRET lifetimes for the single cysteine construct labeled at site 130 

expressed in HEK293T cells and Xenopus oocytes (membrane preparations) are 

shown in the figure, panels a and b respectively. The donor acceptor pair used in 

this case was Terbium chelate and Fluorescein. Corresponding donor fluorophore 

labeled lifetimes are shown in the figure, panels c and d. At both pH 8 and 6, the 

LRET lifetimes could be well represented by a single exponential, indicating a single 

intersubunit distance between the donor and acceptor site. This is consistent with a 
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receptor having threefold symmetry as observed in the cASIC1a crystal structure. At 

pH 6, the inter subunit distance calculated from the lifetimes is 33Å in both HEK293T 

cells and oocyte membranes, which is in good agreement with the distance of 36Å 

observed in the low pH crystal structures. Under the low pH conditions, the receptor 

desensitizes nearly completely, with less than four percent of channels populating 

the open state, hence these distances correspond to the intersubunit distance in the 

desensitized state of the receptor. At pH 8, the receptors are primarily in the resting 

state with little steady-state desensitization, and under these conditions the 

intersubunit distance at site 130 as determined from the LRET and donor only 

lifetimes correspond to 32Å in HEK293T cells and oocytes. These results 

correspond to a small increase in distance of 1.0Å at site 130 upon decreasing pH 

from 8 to 6.   

This indicates a slight movement of the finger domains away from each other. 

We could not confirm this movement due to the fact that the distance change was 

small. So we repeated these experiments with a different site at the finger domain. 
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Figure 13: LRET measurements from single cysteine mutant, T130C to measure 

distances across subunits 

The figures show the sensitized lifetime emission of the acceptor fluorophore, 

Fluorescein, in high pH (black) and low pH (red). Panels a and b show the acceptor 

lifetimes in the presence of the donor (HEK293T cells and oocytes respectively). 

Panels c and d show corresponding donor-only lifetime measurements. 
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Figure 14: LRET measurements from single cysteine mutant, L139C to measure 

distances across subunits 

The figures show the sensitized lifetime emission of the acceptor fluorophore, Alexa 

555, in high pH (black) and low pH (red). Panels a and b show the acceptor lifetimes 

in the presence of the donor (HEK293T cells and oocytes respectively). Panels c 

and d show corresponding donor-only lifetime measurements. 
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B. Conformational changes at site 139 

LRET lifetimes were also obtained for the single cysteine construct labeled at 

site 139, with terbium chelate and Alexa 555 as donor and acceptor fluorophores 

with the receptors expressed in HEK293T cells and oocytes. The LRET 

measurements are shown in the figure, panels a and b showing HEK293T and 

oocyte measurements respectively. Corresponding donor lifetimes are shown in 

panels c and d. The LRET lifetimes could be well represented by a single 

exponential, consistent with a single distance for a trimeric receptor. The LRET 

lifetimes along with the donor lifetimes at pH 6 provide an intersubunit distance of 

48Å at site 139 in both HEK293T cells and in oocytes membrane. These distances 

are in excellent agreement with the 48Å observed in the low pH crystal structures. 

Increasing the pH from 6 to 8results in a decrease in the intersubunit distance 

between sites 139 by 3 Å, with the high pH intersubunit distance being 45 Å. 

IV. Conclusion 

 When placed in the context of the existing structures, the LRET data provide 

insight into the movements and conformational changes accompanying activation 

and desensitization of the receptor. While earlier experiments indicate that the 

extracellular domain plays a role in desensitization, there is no direct evidence for 

this mechanism. The LRET data show that between the resting and desensitized 

states the movement of the thumb and finger domains upon lowering pH is 

accompanied by a movement that brings the upper part of the finger domains away 

from each other with smaller changes at the interface between the subunits.  
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Table 3: LRET lifetimes and corresponding distances from inter subunit 

measurements in cASIC1a 

 

 

 

Construct Expression 
system 

pH τD 

in µs 

τDA 

in µs 

R 

in Å 

T130C Oocytes 8 1589±1.1  181±0.8  32±0.02  

6 1656±1.1  220±1.8  33±0.05  

HEK293T 8 1513±1.1  185±1.8 32±0.05  

6 1573±1.2  229±2.3 33±0.06 

L139C Oocytes 8 1630±1.4  164±1.4  45±0.06 

6 1677±2.1  232±3.1  48±0.1  

HEK293T 8 1550±1.2  162±0.7  45±0.06  

6 1616±1.2  227±0.9  48±0.03  
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These changes were not resolved at the open channel state of crystal 

structures. Since these structures were obtained in the presence of toxins to an 

induced open state, they might not be an exact representation of a proton induced 

conformational change. Thus it is possible that activation involves a transient upward 

movement of the thumb domain towards the finger domain, which in turn could pull 

the transmembrane segments apart leading to transient opening of a cation selective 

channel. In the continued presence of the protons the finger and thumb domain 

would continue to be close together, however the upper finger domain undergoes a 

downward lateral movement within the subunit leading to desensitization. Such a 

mechanism would account for the channel closure in the desensitized state. 
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Chapter 5- Glutamate receptors 
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I. Glutamate receptors and subtypes 

Glutamate receptors are the primary mediators of excitatory synaptic 

transmission in the central nervous system. They play an important role in learning 

and memory, neuronal communication. They are one of the primary postsynaptic 

excitatory receptors in the human brain. They bind to glutamate, the prominent 

neurotransmitter in the central nervous system. They respond to glutamate binding 

by opening the ion channel part of the receptor, allowing cations to pass through and 

enter the cell. This leads to ion channel desensitization, wherein the ion channel 

closes quickly. Upon cations entering the cell, the membrane depolarizes, leading to 

further downstream signaling events as well as communication to other cells. 

(66,67). Ionotropic glutamate receptors are divided into three major classes based 

on their pharmacology. The classes include the AMPA receptor (α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid receptor); the NMDA receptor (N-Methyl-D-

Aspartic acid receptor) and the Kainate receptor. The receptors were originally 

isolated based on their ability to bind to the respective agonists, AMPA, NMDA and 

kainate. In physiology, these receptors bind to glutamate and activate the ion 

channel. The different subtypes of glutamate receptors have different activation and 

desensitization kinetics. AMPA receptors respond with an immediate response, 

which desensitizes quickly. Cation entry into the cells relieves the magnesium block 

that is associated with NMDA receptor and allows the ion channel to open, leading 

to calcium entry via NMDA receptor ion channel. Thus AMPA receptors have faster 

gating kinetics while NMDA and kainate receptors have slower activation kinetics. 

(68-70) 
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Figure 15: Classification of ionotropic glutamate receptors found in mammalian 

systems 
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II. AMPA receptors 

A. Subtypes of AMPA receptor 

AMPA receptors are divided in four different subtypes, GluA1-4. AMPA 

receptors are tetramers in physiology. They can form both homo and hetero 

tetramers. There are four genes in the human genome that encode AMPA receptor, 

encoding each subtype of AMPA receptor accounting to four different subtypes of 

AMPA receptors. In the nervous system, GluA2 is often found as heteromers with 

other subunits. (71-74) 

Apart from the different subtypes, alternative splicing and gene editing also 

leads to smaller variations in the AMPA receptor. Alternative splicing in the 

extracellular region of AMPA receptor leads to the flip and flop variants in AMPA 

receptor. Based on the subtype of AMPA, the flip and flop variants might show 

different rates of desensitization.(75) Gene editing plays an important role in the 

cation permeability of the ion channel. The calcium permeability of an AMPA 

receptor depends on the GluA2 subunit present in the tetramer. At posttranslational 

level, GluA2 mRNA undergoes RNA editing, leading to A->I change. This allows Q/R 

editing, wherein a glutamine codon is converted to arginine codon. The positively 

charged arginine renders the ion channel unfavorable to allow calcium to pass 

through. Thus, if a tetramer contains edited GluA2 subunit, it is only permeable to 

sodium and potassium. This is a major differentiating factor between AMPA and 

NMDA. While NMDA is calcium permeable, AMPA receptors are most often not 

permeable to calcium.(76-80) 
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B. Expression pattern 

AMPA receptors mediate a significant portion of the rapid excitatory synaptic 

transmission in the brain. Overall, AMPA receptors are widely expressed in the 

brain. GluA4 shows slightly lower expression in the brain compared to GluA1-3. 

AMPA receptors are expressed in neuronal as well as glial cells. Studies have 

indicated that the receptors show several fold higher expression levels in neuronal 

cells in comparison with glial cells.  

AMPA receptors are almost always present along with auxiliary proteins in 

physiology. Some of the most prominent auxiliary proteins include TARPs 

(Transmembrane AMPA Regulatory Protein) and Cornichons. These auxiliary 

proteins are divided into further types and they modulate both the expression as well 

as the gating kinetics of AMPA receptors.  

C.  Structural arrangement of AMPA receptor 

 AMPA receptors are tetramers arranged as a dimer of dimers. Single subunits 

of AMPA receptor presents with a very modular structure. Each subunit of AMPA 

receptor contains four domains; the ATD (amino terminal domain), the LBD (Ligand 

binding domain), the transmembrane domain and the C terminal domain. The 

symmetry of the domains are different between each other. The ATD and the LBD 

show a two-fold symmetry while the transmembrane domains show four-fold 

symmetry. The full length crystal structure of AMPA receptor provided us with a 

wealth of information. 
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Figure 16: Crystal structure of full length AMPA receptor showing the different 

domains in each subunit. Each monomer is represented in a different color. 
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D. Structure and function of AMPA receptors 

 Initial crystallographic information on AMPA receptors involve isolated 

domains of the receptor. These structures along with functional investigations 

provided with information on the structure and their functional implications of AMPA 

receptors. Eric Gouaux and colleagues later crystallized the full length AMPA 

receptor, GluA2 in complex with the antagonist ZK200775. This structure provided 

more valuable information on the ion channel, including the tetramer organization 

and possible gating and desensitization mechanism. (81) 

 The ATD of AMPA receptors have been shown to play a very important role in 

the assembly and trafficking of the receptor to the cell surface. Deletion of the ATD 

in AMPA receptors has an effect in the tetramer assembly, but they are not essential 

to the assembly and functioning of the tetrameric receptor. N terminal deletions of 

AMPA receptors also exhibit wild type like gating properties. While there are no 

known modulators that bind to the ATD of AMPA receptors that may have an effect 

on the function, studies indicate ATD undergoing structural dynamics in the receptor. 

Thus, it is possible that the ATD might have regulatory role in the receptor, a 

direction that needs further studies.  

 The ligand binding domain (LBD) is one of the most extensively studies 

domains of the ion channel protein. The LBD was the one of the earliest crystallized 

domains in the receptor. The role of the domain is to bind the ligand and propagate 

the change to the transmembrane segment through conformational changes leading 

to ion channel opening. The LBD presents as a clamshell like bilobed structure. The 

two lobes that form the clamshell like structure enclose the ligand binding pocket of 
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the protein. This bilobed structure undergoes key conformational changes that allow 

ion channel opening. 

 The LBD was earlier crystallized in the presence of multiple ligands ranging 

from agonists, partial agonists and antagonists. Based on these structures, it was 

proposed that the cleft that is formed between the two lobes, close upon ligand 

binding and this closure could be different between agonists. The extent of this cleft 

closure could be a driving factor for activation as well as could decide the extent of 

activation.  

 Studies using Luminescence Resonance energy Transfer (LRET) on AMPA 

receptor later confirmed that the extent of cleft closure does dictate activation, and 

that cleft closure can be directly quantified by measuring the distance between the 

two lobes on the LBD. These studies clearly outline the correlation between cleft 

closure and efficacy of the ligand. (82) 

 It is evident from the crystal structure that the LBD assemble as dimer of 

dimers in the full length crystal structure. Thus, it was also proposed that the 

interface between the LBD could play an important role in the desensitization of the 

ion channel. This was also confirmed using LRET studies, explaining how the 

conformational change across the LBD, which decouples the interface, promotes 

desensitization(62). Thus it is critical to further investigate the LBD to gain a 

complete understanding of the activation of the ion channel.  
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Figure 16: Cartoon explaining the ligand binding leading to activation of the receptor, 

mediated by the bilobed LBD structure. 
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II.  Significance of study 

 AMPA receptors are involved in various pathophysiological conditions. Many 

disease conditions involve defective neural circuitry and AMPA receptors play a role 

in several of these conditions. Some of these conditions include glutamergic 

excitotoxicity, epilepsy, schizophrenia and Alzheimer’s disease. Thus, modulation of 

AMPA receptors is very important in these conditions.  

 Current therapeutic options call for a more streamlined drug screening 

methodology leading to more efficient as well as targeted drugs. In order to be able 

to control AMPA receptor activation to increase or decrease based on the condition, 

a complete understanding of the ion channel function becomes necessary. Thus, 

this study focuses mainly on the LBD of AMPA receptors, which is shown to have a 

very important role in the activation of the ion channel as well as desensitization 

processes. (83-89) 

Here I have investigated the ligand binding domain in terms of its dynamics. 

Studies so far have looked at average conformational changes as well as 

crystallographic snapshots, however there is not much known in terms of the 

dynamics of the protein and its role in activation, although theoretical calculations 

predict a possible role of dynamics in the protein(90). This study hence uses single 

molecule techniques to further investigate the dynamics of AMPA receptor LBD, and 

hence draws a correlation between dynamics and activation, hence the additional 

factors involved.  
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Chapter 6- Structural Dynamics in AMPA Receptors 

This research was originally published in Journal of Biological Chemistry. 

Ramaswamy, S., Cooper, D., Poddar, N., MacLean, D. M., Rambhadran, A., Taylor, 

J. N., Uhm, H., Landes, C. F., and Jayaraman, V. (2012) Role of conformational 

dynamics in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) 

receptor partial agonism. The Journal of biological chemistry 287, 43557-43564. 

Copyright the American Society for Biochemistry and Molecular Biology. 
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I. Introduction 

 Glutamate receptors mediate excitatory neurotransmission by forming cation 

selective transmembrane channels upon binding to the neurotransmitter glutamate. 

They are involved in learning and memory and are implicated in neurodegenerative 

disorders such as Huntington, Parkinson, and Alzheimer diseases and in 

neurodegeneration associated with stroke and amyotrophic lateral sclerosis. The 

full-length structure of the antagonist-bound form of the AMPA receptor shows that 

the receptor is a dimer of dimers, with each subunit being made up of modular 

segments of the ATD, LBD, transmembrane segments, and intracellular C-terminal 

domain. This structure, along with FRET investigations of the full-length receptor, 

establishes that the isolated agonist-binding domain is a good model of the domain 

in the full-length receptor, thus validating its use in detailed structure and dynamics 

investigations. 

There are currently numerous structures available for the agonist-binding 

domain of the AMPA receptor determined in complex with antagonists, as well as 

agonists of varying efficacy. Based on the x-ray structures, it was initially thought 

that the extent of cleft closure is the primary mechanism by which agonists mediate 

receptor activation, i.e., increased cleft closure leads to increased activation. 

However, there were several structures such as those of the glutamate-bound form 

of the T686A mutant and the structures of the AMPA bound form of the L650T 

mutant that do not follow this trend. Ensemble FRET investigations with the wild type 

and L650T mutant were consistent with the x-ray structures, further validating these 

deviations from the cleft closure hypothesis. (82,91,92) 
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Figure 17: Crystal structures of AMPA LBD in the apo and glutamate bound state, 

with the glutamate bound state showing cleft closure compared to apo state 
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II. Hypothesis and proposed experiments 

Recent single-molecule FRET (smFRET) investigations of wild type and 

T686S mutant receptors provide additional insight into the complete structural 

landscape in terms of cleft closure. These studies showed that both the most 

probable state and the average state probed by the T686S mutant showed a closed 

cleft conformation consistent with the x-ray structures. However, the T686S mutant 

protein also probed a wider range of cleft closure states that covered more open 

states than the glutamate bound wild type receptor. Thus, the probability that the 

T686S mutant was in the closed state was lower than that of the wild type protein 

when bound to glutamate, and this decrease in probability could lead to lower 

activation. These smFRET investigations emphasized the role of dynamics of the 

agonist-binding domain in the cleft closure mechanism. 

The smFRET results are also consistent with NMR investigations that show 

wide variation in the dynamics of the agonist-binding domain upon binding different 

agonists(91). In particular, NMR studies indicate that willardiines, which are partial 

agonists of the AMPA receptor, exhibit the largest flexibility in the LBD relative to full 

agonists and antagonists(93). We decided to perform smFRET investigations with 

substituted willardiines bound to the agonist-binding domain. This would tell us if 

there is a role of dynamics in the activation of the receptor as well as the overall 

efficacy of a given ligand.  We also proposed to compare the spectrum of states that 

the protein probes and additionally correlated these results with activation of the 

receptor. 
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Figure 18: smFRET results from wild type and T686S mutant in complex with 

glutamate, with the mutant protein showing wider range of conformational 

landscape, explaining the lower activation in the mutant.  

This figure shows the ability of smFRET technique to be able to differentiate the 

dynamics in AMPA LBD 
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III. Experimental setup 

 Proteins were attached to a glass slide as described in materials and 

methods section. In brief, the LBD was attached to the slide through an antibody 

towards Histidine tag that is conjugated to biotin. The glass slide was coated with 

PEG and contains biotin and streptavidin attached to it. This allows attaching the 

protein to the slide using biotin tagged antibody. The experimental setup is shown in 

the figure. The flow system allows the buffer containing the ligand as well as oxygen 

scavenging solution to flow through the chamber containing the protein. The 

chamber was flown with the protein solution and the protein was then allowed to 

conjugate to the slide. It was then washed with three times the volume of the 

chamber to remove loosely bound material.  

 After the flow system was setup with the oxygen scavenging solution and the 

appropriate ligands, the system was allowed to equilibrate for 20 minutes. Data 

acquisition was initiated after equilibration step. Individual spots were then excited at 

the donor wavelength and donor as well as the acceptor counts was monitored until 

the dyes photo bleach and background counts can be measured. It was noted 

whether or not the donor counts go up when the acceptor photo bleaches, which is 

an important criteria to look for in smFRET traces. Around 300 traces were 

measured from each sample and the data was analyzed after elimination of traces 

that did not fall within the criteria, which are explained in the methods section. The 

experimental setup and sample trace is shown in the figures below. 
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Figure 19: smFRET experimental setup 

The figure on the left shows the instrumentation of the experiment and explains how 

the protein is tethered onto the surface for acquisition. The figure on the right shows 

how single molecules look on the screen during acquisition. 
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Figure 20: Representative smFRET trace 

The top left panel shows the donor and acceptor counts during a single acquisition, 

in blue and red respectively. Note the tandem between the acceptor and the donor. 

The bottom left panel shows the efficiency calculated along the FRET trace shown 

above. The right panel shows the distribution of FRET efficiencies probed by that 

particular molecule. 
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Figure 21: Ligands used in study 
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IV. Results 

A.  Functional characterization of willardiines on AMPA receptor function 

 Whole cell currents were obtained using saturating concentrations of 

glutamate (10 mM) and chlorowillardiine (1 mM), nitrowillardiine (1 mM), 

iodowillardiine (1 mM), and (2 mM) UBP-282, on GluA2-flip receptors under non-

desensitizing conditions in the presence of 100 μM cyclothiazide. To compare our 

results directly with the smFRET experiments, agonist-evoked responses were 

recorded from the same agonist-binding domain mutations, i.e., T394C/S652C 

GluA2. The currents evoked by the willardiines were normalized to 10 mM glutamate 

responses and are shown in the figure. The data shown in the bar graph are 

consistent with the numerous previous more detailed investigations and show that 

the willardiines are partial agonists with iodowillardiine have a lower response 

relative to chloro- and nitro-willardiines. A two-tailed repeated measures t test was 

performed for statistical analysis of differences in the measured currents, and a p 

value of ≤0.05 was considered significant in our experiments. The p values for 

chlorowillardiine, nitrowillardiine, and iodowillardiine were calculated to be less than 

0.0005, 0.0025, and 0.0005, respectively, in comparison with mean currents with 

glutamate. As expected, the antagonist UBP-282 produced no response beyond the 

base-line noise. These willardiines, along with glutamate, thus provide a spectrum of 

ligands that allow us to draw correlations between the smFRET-based states and 

receptor activation. 
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Figure 22: Electrophysiological characterization of willardiines and their action on 

AMPA receptors 
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B. Conformational changes in ligand binding domain as seen from 
smFRET histograms 

 The sites used for tagged with donor and acceptor fluorophores are T394C 

and S652C, similar to those used in previous smFRET investigations from our 

laboratory focusing on wild type and T686S mutant. The smFRET data from a 

number of such traces (170–210 traces) for each willardiine were then processed for 

background and cross-talk correction and denoised using wavelet decomposition. 

The data were then plotted as histograms of fraction of occurrence versus the FRET 

efficiency to determine the spread of states that the protein explores. The denoised 

histograms for the chlorowillardiine, nitrowillardiine, iodowillardiine, and the 

antagonist UBP-282-bound forms are shown in the figure. The average distances 

calculated from average efficiency of energy transfer follow the rank order  

Glutamate < nitrowillardiine < chlorowilladiine < iodowillardiine < UBP-282. Although 

the correlation of cleft closure with activation is present for the extreme cases, this 

does not hold true for nitrowillardiine and chlorowillardiine. Nitrowillardiine and 

chlorowillardiine have similar electrophysiological responses; however, the average 

smFRET distances indicate that the nitrowillardiine-bound state is on average 

slightly more closed relative to chlorowillardiine bound state. A similar breakdown 

was observed in the crystal structures where no significant changes were observed 

in the distances at the positions labeled for the FRET measurements between these 

willardiines. The smFRET studies provide insight into possible reasons for this 

discrepancy because they are able to provide the spread of closed cleft states that 

the protein occupies. Because the time resolution of the smFRET  
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Figure 23: Histograms showing the conformational landscape of LBD in complex 

with willardiines used in the study 
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measurements is in milliseconds, the breadth of the histograms reflects the 

dynamics in the millisecond time scale. The histograms show that the 

chlorowillardiine-bound form probes a narrower range of cleft closures relative to the 

nitrowillardiine, whereas the iodowillardiine-bound form exhibits a wider range of 

cleft closure states. The willardiine-based antagonist, UBP-282, showed the 

broadest distribution of closed cleft conformations. These data suggest that the cleft 

is more stabilized when bound to chlorowillardiine relative to nitrowillardiine, with the 

iodowillardiine- and UBP-282-bound forms being the most destabilized, exploring a 

wide range of cleft closures and consequently spending little time in conformations 

able to activate the receptor. 

C. Displacement experiments to test functionality of tethered LBD 

 To confirm that tethered and tagged ligand-binding domains retained their 

function during imaging, we performed a displacement experiment. A collection of 

single ligand-binding domains were imaged in the presence of 1 mM glutamate 

alone for ∼20 min. Subsequently, the perfusing buffer was switched to a glutamate 

and iodowillardiine containing solution for 20 min and finally 1 mM iodowillardiine 

alone for the final 20 min. As seen in the figure, the average FRET intensity from this 

experiment progressively decreases from 0.81 in glutamate alone to 0.76 in 

iodowillardiine. This demonstrates that the labeled and tethered single ligand-binding 

domains retain their ability to bind and unbind ligands. Single-molecule histograms 

from this experiment also exhibit a progressive shift from a narrow, focused  
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Figure 24: Flow switch experiment using glutamate and iodowillardiine to test the 

tethered ligand binding domain 

The top panel shows the average FRET efficiency distribution with time as the 

ligands were switched from glutamate to iodowillardiine on the tethered protein. The 

bottom panel shows the shift in the single molecule histogram during the process.

 



  

80 

distribution in glutamate to a broader distribution in iodowillardiine similar to the 

trends seen in the detailed histograms. 

D. Correlation between closed cleft conformation and activation 

 Based on the histograms, the fraction of the protein exhibiting efficiencies 

higher than 0.76 was determined for each of the willardiine bound state. The fraction 

for the glutamate-bound forms of GluA2 and T686S mutant protein, as well as the 

apo state of the protein, was also determined from the previous report. The FRET 

efficiency of 0.76 was chosen because it corresponds to a FRET distance of 42 Å, 

which is less than the most probable (46 Å), as well as the average state (43 Å) of 

the apo state, and thus is expected to be the least distance at which the cleft closure 

could trigger channel opening. This fraction of the protein exhibiting efficiencies 

higher than 0.76 shows a strong correlation with the currents mediated by the 

agonist, as shown in the figure. The activation shown for the glutamate-bound form 

of T686S mutant is relative to that obtained with quisqualate on the same mutant. 

Quisqualate and glutamate mediate similar currents in wild type receptors. 

 The linear dependence both for the willardiines and the T686S mutant 

indicates that the fraction of agonist-binding domains in the closed cleft 

conformation, which takes into account the ability of the agonist to induce cleft 

closure, as well as the range of states that the protein probes, is a good determinant 

of the ability of an agonist drive activation rather than the most probable state or the 

average state that the protein-agonist complex occupies. 
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Figure 25: Graph showing correlation between fraction of closed cleft landscape and 

efficacy of the agonist 
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V. Conclusion 

The modular nature of the AMPA receptors has allowed for the study of the 

isolated agonist-binding domain by crystallography, NMR, FRET, and FTIR 

spectroscopy. The initial crystal structures indicated a correlation between cleft 

closure and activation. However, later investigations showed a number of partial 

agonists and mutant proteins that did not follow this trend. 

NMR and more recently smFRET experiments, along with functional studies, 

showed that the stability of closed cleft states and the spread of conformations that 

the protein explores play a key role in translating cleft closure to activation, thus 

accounting for some of these discrepancies.(91,94,95) Indeed, the smFRET data 

allow us to explicitly determine the fraction of agonist-binding domains that exist in a 

“productive” closed cleft conformation, which correlates with the extent of activation 

even in previously “discrepant” cases such as the T686S mutation. The willardiines 

were initially thought to be classical examples for showing a graded cleft closure 

consistent with their activation. However, further studies using crystal structures and 

NMR showed that the correlation is not as straightforward as first thought. NMR 

studies investigating the exchange at the side chain methyl groups showed 

differences among the various willardiines and indicated that the dynamics must also 

play a role in the activation. Specifically, these studies show that the number of 

residues exhibiting exchange was higher for chlorowillardiine relative to 

iodowillardiine. The smFRET investigations reported here are consistent with this 

observation, with the chlorowillardiine-bound form exhibiting a narrower range of 

states than the protein probes relative to iodowillardiine-bound form and add to 
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these studies by showing the whole range of conformations probed. Additionally, the 

crystal structures of GluA2 and GluA3 agonist-binding domain in complex with 

chlorowillardiine show that despite the small size of the chloro substituent, the 

chlorowillardiine-bound form is on average more open than the glutamate-bound 

form. The nitrowillardiine-bound form, despite nitro being a larger substituent, is 

more closed in six of the nine structures studied relative to the fluorowillardiine-

bound form. The larger nitro group was accommodated by the change in the rotamer 

state of the β-carbon of M712 as well as elimination of a water group. Furthermore, 

the structures showed that the nitrowillardiine-bound form exhibited a wider range of 

lobe openings relative to the glutamate-bound form of the protein. The smFRET data 

presented here are in agreement with these structures and show that the 

chlorowillardiine-bound form is on average slightly more closed than the 

nitrowillardiine-bound form and that the nitrowillardiine-bound form has a broader 

range of cleft closure states relative to the chlorowillardiine-bound form. 

The smFRET data are also consistent with recent crystal structure “lobe-

locking” experiments, which found that ligand-binding domains could be trapped in 

closed conformations when bound by partial agonists or even antagonists. Taken 

together, these data provide strong support for recent proposals that agonist efficacy 

at AMPA receptors, and perhaps kainate receptors, is governed not by the extent of 

closure in a single state of the binding domain but by the relative stability of a range 

of variously productive closed cleft conformations.(96) 
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Chapter 7: Overall Conclusions 
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 Neurotransmitter receptors form an important basis of day-to-day physiology. 

Ion channels, like glutamate receptors and acid sensing ion channels form an 

important part of excitatory synaptic transmission. Together, these ion channels 

encompass a vast variety of functions such as synaptic transmission, learning and 

memory, taste perception, mechano-sensation and nociception. Under normal 

circumstances, these ion channels allow cations to pass through leading to normal 

physiological functions. While these ion channel activities are tightly controlled, they 

lead to adverse conditions during disease states. For example, ASICs are involved 

in the pathophysiology of stroke causing irreversible cell death. During stroke, there 

is prolonged acidosis in the extra cellular microenvironment. Since low pH activates 

ASIC, acidosis hyper activates ASIC, leading to increased calcium influx into the 

cells. This causes cell death associated with stroke and acidosis. Thus stroke 

medications must include a combination that also takes into consideration, the cell 

death caused by ASIC. This underlines the importance of drugs that can modulate 

ASIC activity(97). Existing drugs are not specific enough to target ASIC, such as 

amiloride which also acts on epithelial sodium channels. Drugs such as TEA also 

have off target effects. Part of devising a good drug screening strategy also involves 

a good understanding of the working of the ion channel.  

 Given the importance to understand ASIC working, we used spectroscopy 

and molecular biology techniques to study the conformational changes that ASIC 

undergoes during gating and desensitization. The results indicate that there are 

three pairs of carboxylate residues that mediate proton binding and gating, and not 

two pairs as it was believed earlier. (19) The results also indicate that the gating is 
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lost when the three carboxylate pairs are mutated to alanines. ASICs undergo 

domain closure between the finger and thumb domains, as explained by the 

distance measurements from LRET experiments. The experiments also tell us that 

this conformational change is important for gating of the ion channel, since the non 

proton-sensitive mutant also lacks this conformational change. These experiments 

tell us about the constitution as well as the physical consequence of the primary 

proton sensor in ASIC. The gating phenomenon in ASIC involves a combination of 

the electrostatics from the carboxylate residues as well as the physical effect of 

proton binding the ion channel.  

 Intersubunit measurements in ASIC using LRET technique also shed light on 

the possible desensitization mechanism of ASIC. These experiments demonstrate 

the ability of these techniques to be able to study ion channels on whole cell 

systems, in the most physiologically relevant state. We were also able to probe the 

resting state of the protein, which is not amenable to crystallographic studies yet.  

 The next direction for this study would be to be able to study the dynamics of 

the ion channel along side average conformational changes. Previous studies on 

mutants in glutamate receptor isolated domains demonstrate that apart from overall 

conformational changes, the ion channels also rely on dynamics that control gating. 

So we decided to study dynamics in glutamate receptors ligand binding domains 

using a series of partial agonists. AMPA class of glutamate receptors has a modular 

architecture, with specific domains of the protein. The ligand binding can be studied 

using an isolated ligand binding domain, which serves as a good model system for 

the ligand binding domain in the full length receptor. 
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 We know from previous studies that AMPA receptors undergo graded cleft 

closure that correlates with gating. We intended to use this model system to 

investigate possible involvement of dynamics during ligand binding events. smFRET 

investigations on the isolated LBD of AMPA receptors show that there is a spread of 

conformations of the LBD even when it is bound to full agonists. The spread differs 

based on the agonist. The results tell us that the weaker agonists occupy the lower 

efficiency states more than the full agonists and stronger partial agonists. We also 

were able to quantify these spreads by calculating the proportion of molecules above 

the efficiency required for minimum activation. The value has a linear relationship 

with the activation of the ion channel by the corresponding ligand. We can thus 

conclude that apart from average conformational changes, the dynamics also play a 

role. The activation by a ligand is dependent upon the ability of the ligand to induce 

cleft closure as well as the proportion of molecules occupying the high efficiency 

state in response to the ligand.  

 The combined knowledge of these ion channels as well as developing new 

techniques will help us get closer to the understanding of thee ion channels as well 

as developing new screening strategies for ion channel modulation.  

I. Advances made in understanding Ligand-gated Ion Channels using this 

study 

 The study presented here presents us with understanding about new 

directions in the working of ligand gated ion channels. The LRET investigations 

allowed us to probe ASIC in the resting as well as desensitized states. Using this 
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technique, we were able to add to the knowledge that was obtained originally from 

X-ray crystallography observations. Using crystallography, researchers were able to 

gain understanding about the static structure of the protein. It gave an idea about the 

overall architecture and the probable structure of the desensitized state of the ion 

channel. It is to be observed with caution since X-ray crystallography doesn’t take 

into consideration the dynamic nature of proteins. It also doesn’t probe the protein in 

their physiologically similar state. Furthermore, lack of crystal structure for a resting 

state as well as a proton bound open state of the protein leaves a considerable gap 

in the understanding of the ion channel.  

That is when LRET seemed to be a feasible technique to use in order to get 

an idea about the dynamic movements of the protein. This technique allowed us to 

use whole cells expressing the ion channel of interest, thus allowing us to study the 

protein in a more physiologically relevant state. This circumvents the problems often 

associated with the harsh chemical conditions in other techniques. The major 

advantage in using LRET was the ability to study the resting state of the ion channel. 

Thus we were able to probe the resting state of the ion channel which was not 

earlier explored due to the lack of a crystal structure.  

Thus using various spectroscopic, molecular and functional studies, were 

able to probe the functional end states of the ion channel, while also studying the ion 

channel on whole cells expressing the receptor. This allowed us to watch the protein 

as it transitions between states. This added understanding using presented results 

help us well understand the resting state which is not much studied, thus completing 
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the gaps in understanding of ligand binding and gating since we were able to cover 

both the end states of the spectrum.  

An extension of the LRET was to do Fluorescence Energy Transfer studies at 

single molecule level, to understand the dynamics of the protein. While earlier 

studies had pointed toward probable involvement of dynamics using in silico 

calculations, we present the first evidence of the involvement of dynamics in the 

ligand-binding core of AMPA receptors. We not only present how dynamic the 

protein can be, but also have devised a method to correlate the efficacy of the ligand 

and the dynamics. We were able to quantify the extent of dynamics and the efficacy 

of the ligand, using the fraction of the molecules that occupy the “high efficiency, 

more productive, closed cleft” state. The results indicate that the dynamics of the 

isolated ligand-binding domain are a very good representation of the efficacy that is 

observed from the full length ion channel in response to the respective ligand. In 

addition to all the ensemble studies as well as the functional investigations done on 

AMPA receptor, these studies add to our understanding about the finer motions the 

proteins undergo, in order to faithfully translate the efficacy dictated by the 

respective ligand.  

II. Translational significance of presented results 

 These results provide us with very valuable information that are useful during 

the early stages of a clinical drug design that would eventually benefit the treatment 

regimen. For example, treatments for stroke involve blood thinners while they often 

neglect the prolonged acidosis that is caused during conditions like stroke or a clot-
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induced hypoxia in the brain tissue. This accounts for the brain damage that occurs 

in spite of the timely administration of drugs. Thus apart from the traditional 

medications, it has been suggested that there is a need for a combination therapy. 

Such a treatment regimen would include the usual medications combined with 

modulators that would inhibit ASIC activation.  

 The major requirement for ASIC modulation would be to get an understanding 

of the gating and activation mechanism of ASIC. This is where the current work is 

involved. Due to earlier lack of information on the complete understanding of the 

proton sensors as well as the resting state, the gating mechanism was unknown. 

Thus, using present studies, we were able to look at the dynamics of the ion channel 

from the resting state to the desensitized state of the ion channel. We were able to 

identify the primary proton sensing domain of the ion channel, and also the 

conformational change induced by proton binding. Our studies indicate that these 

residues are vital for proton binding as well as the conformational changes, both 

being necessary for the activation of the ion channel. Thus, the results from ASIC 

provide us with two key pieces of information needed during the initial part of any 

drug screen- the complete composition of critical residues needed for activation, the 

physical motion that the ion channel undergoes in order to activate. 

 These details are extremely important since they give us a starting point for a 

drug screen. Most drug hunting processes begin with a virtual chemical screen done 

in silico. These studies mainly rely on our ability to specify which region to target, as 

well as the region that the drug needs to dock in order to produce a certain effect. It 

can be compared to deciding on a point of interest in a protein for the drugs to bind. 
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This process becomes a lot more beneficial and less time consuming once we know 

which region needs to be targeted. For example, in ASICs, this would be the region 

in the extracellular part that contains all the carboxylate residues, since we know 

they are involved in proton sensing leading to activation. We also know that in 

ASICs, a physical movement between the finger and thumb domains in the 

extracellular domain causes gating. We also know that mutants that lack this 

movement also lack the ability to conduct currents. Thus, a rational drug screen 

would screen for molecules that can target this segment of the ion channel, and also 

dock exactly between the finger and thumb domains, thereby preventing the 

movement.  

A successful chemical molecule would be something that can perfectly dock 

between the finger and thumb domains and prevent them from moving closer to 

each other. This would make sure the ion channel doesn’t gate. The results from 

such a screen can later be translated to further stages in clinical trials, allowing 

development of modulators for ASICs.  

 The studies presented here not only look at overall conformational changes, 

but also the dynamics of the protein. Thus, it covers major aspects of the proteins, 

which should be taken into consideration while thinking about a drug molecule 

screen that would modulate these ion channels. For example, studies on the NMDA 

as well as the AMPA receptor domains would help us devise strategies to fine-tune 

the receptors by designing molecules that can inhibit the channels just enough to 

prevent pathological damage while still allowing physiological level activities from the 

ion channel.  
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III. Limitations of the presented studies and methods 

 The results presented here do come with a few bottlenecks, which should be 

kept in mind before  the results are being translated to a clinical setup. Although 

these experiments are done in a more physiologically relevant state compared to a 

crystallographic study, they are still not a complete representation of physiological 

state. The cells used here are either HEK293T cells or oocyte preparations. 

HEK293T cells although are a good model cell type to use for studying ion channels, 

they are not the same as neuronal cells. The expression pattern as well as the 

atmosphere both inside and outside of a neuronal cell could be much different from 

a derived cell line such as HEK293T. Another important aspect in neuronal cells 

would be the associated proteins that are often present in neuronal cells. Ion 

channel associated proteins often cause a significant change in the gating kinetics of 

the ion channels. The absence of these ion channel associated proteins in our 

experiments is something that should be kept in mind. 

 Oocytes are a sub-optimal model system for ion channels in terms of 

timescales of activations. While they are good systems to ectopically express ion 

channels, owing to their larger size, they have much different gating kinetics than 

what would be observed in neuronal cells. Thus while we are still able to get a good 

estimate of the average conformational changes from oocytes, they have their 

limitations in terms of gating kinetics. Thus, researchers would benefit from 

conducting the experiments also in in vivo conditions as well as neuronal cells, in 

order to get an idea about the abovementioned facts. 
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IV. Future directions 

 The future directions that stem from his dissertation would involve combining 

the existing findings and developing new methodologies that would allow us to 

expand studies to full length ion channel proteins. Such studies on full length 

proteins have been limited to isolated domains for several reasons. Purification of 

full length ion channels without modifications have been challenging. Often 

spectroscopic investigations involve traditional cysteine mediated labeling strategies. 

The pre requisite to cysteine mediated investigations include mutation of inherent 

exposed non disulfide bonded cysteines to serines. This is not often possible due to 

the fact that sites that can reflect conformational changes might not be amenable to 

introduction of a cysteine residue, as well as the mutations can not change the 

inherent properties of the ion channel. These limitations led us to look for alternative 

strategies that would allow us to study properties of the ion channel.  

 We then came across the unnatural amino acid strategy. Using this 

technique, we can introduce unnatural amino acids at specific sites of the protein, 

which can later be used for labeling as well as direct investigations using the 

properties of the amino acids. They are amino acids that are not part of the 20 amino 

acid repertoire. To encode for an amino acid that is not present in nature, one of the 

stop codons is used. Specifically, the amber stop codon- TAG is used at the site at 

which we want the unnatural amino acid. Research groups have previously evolved 

orthogonal tRNA that recognize TAG stop codon, called the suppressor tRNA and 

also corresponding amino acyl synthetase for the specific amino acids. Multiple 
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rounds of selection as well as orthogonal origin ensures the specific incorporation of 

unnatural amino acids without cross reactivity.  

 Few examples of these unnatural amino acids include Acp (p- acetyl-l-

phenylalanine); Bzp (p-benzoyl-l phenylalanine); Azp (p-azido-l-phenylalanine). 

These amino acids are unique in the sense that they contain side chain groups that 

are not found in other proteins which contain natural amino acids. Hence, these 

functional groups provide us with new unique methods to carry out structural 

investigations. These unnatural amino acids also circumvent the bottlenecks 

associated with cysteine mediated studies. (98-101) 

 As a proof of concept, distances were measured across the GluN1, GluN2 

subunit interface in the NMDA receptor, in the presence and absence of different 

agonists and antagonists. This LRET measurement was done using a cysteine-

unnatural amino acid pair. The result indicate that the unnatural amino acids provide 

us with enhanced labeling efficiencies as well as with minimal structural changes.  
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Figure 26: LRET measurement between the interface across GluN1 LBD and 

GluN2A ATD.  

Shown in black is the receptor in complex with Tricine, antagonists for GluN1 and 

GluN2 sites, and shows in magenta is the receptor in complex with zinc, glutamate 

and glycine. 
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Appendix 

This research was originally published in Journal of Biological Chemistry. 

Ramaswamy, S. S., MacLean, D. M., Gorfe, A. A., and Jayaraman, V. (2013) 

Proton-mediated conformational changes in an acid-sensing ion channel. The 

Journal of biological chemistry 288, 35896-35903. Copyright the American Society 

for Biochemistry and Molecular Biology. 

This research was originally published in Journal of Biological Chemistry. 

Ramaswamy, S., Cooper, D., Poddar, N., MacLean, D. M., Rambhadran, A., Taylor, 

J. N., Uhm, H., Landes, C. F., and Jayaraman, V. (2012) Role of conformational 

dynamics in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) 

receptor partial agonism. The Journal of biological chemistry 287, 43557-43564. 

Copyright the American Society for Biochemistry and Molecular Biology. 
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I. Constructs used in cASIC1a 

cASIC1a cloned in a pcDNA vector was used to express the protein in 

HEK293T cells, and the same was used for in vitro RNA transcription reaction to 

obtain RNA for injection into oocytes. The receptor was modified appropriately to 

enable introduction of cysteines by replacement of residues according to the 

distances being measured. Cysteine residues allow for specific labeling with 

maleimide-derived fluorophores. Double cysteine mutants with one cysteine in the 

finger domain (residue 130 or 139) and one in the thumb domain (residue 340) were 

used for measuring intrasubunit distances with maleimide-derived terbium chelate 

(Invitrogen) and ATTO 465 (Sigma-Aldrich) as the donor and acceptor fluorophores, 

respectively. A 1:1 ratio of donor and acceptor fluorophores was used for the 

labeling. Factor Xa (New England Biolabs) protease cleavage sites (IDGR) were 

introduced by replacement of residues on either side of one of the cysteines to 

enable cleavage of the cysteine, after which background LRET was measured. A 

similar procedure using thrombin as the protease has been used for glutamate 

receptors, and the detailed procedure has been described previously. 

Single cysteine mutants with cysteines flanked by factor Xa sites, in the finger 

domain were used for inter subunit measurements. The cysteine was positioned at 

either residue 130 or 139. Maleimide derived Terbium chelate was used as donor in 

both cases, while Fluorescein was used as acceptor for measurement at residue 

130 and Alexa 555 was used as acceptor for measurement at residue 139. 

 

 

http://www.jbc.org.ezproxyhost.library.tmc.edu/cgi/redirect-inline?ad=Invitrogen
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II. Site-directed Mutagenesis 

Mutants were made using PfuTurbo DNA polymerase (Agilent Technologies). 

Primers with the mutations incorporated were synthesized by Sigma-Aldrich. PCR 

was performed using PfuTurbo DNA polymerase. The amplified product was 

digested with DpnI restriction enzyme (Roche Applied Science) to eliminate template 

DNA. The resulting amplified plasmid was transformed in Escherichia coli DH5α 

cells, and plasmid preparations from transformants were sequenced to confirm 

mutations. 

III. Transfection in HEK293T Cells 

HEK293T cells were transfected with pcDNA plasmids expressing the protein 

of interest. Cells were transfected with Lipofectamine 2000 (Invitrogen) and allowed 

to express the protein for 24–36 h before being harvested for LRET investigations. 

IV. RNA Synthesis and Injections 

In addition to HEK293T cells, Xenopus laevis oocytes were used as an 

expression system. Receptor expression on oocyte membranes was done as 

described previously. Approximately 50 ng of RNA was injected into each oocyte 

and allowed to recover for 36–48 h at 12 °C. RNA was synthesized in vitro using the 

Ambion T7 mMESSAGE mMACHINE kit with linearized DNA as the template. 

Oocytes were then preblocked for exposed cysteines using N-maleoyl-β-alanine 

(Sigma-Aldrich) for 1 h at 18 °C, washed, and incubated at 18 °C for 24–36 h to 

allow for expression of the receptor before performing experiments. 

http://www.jbc.org.ezproxyhost.library.tmc.edu/cgi/redirect-inline?ad=Invitrogen
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V. LRET 

Membrane fractions prepared from oocytes and whole HEK293T cells were 

used for LRET measurements. A 1:1 ratio of donor (terbium chelate) to appropriate 

acceptor was used for all experiments. Three to four 10-cm dishes of HEK293T cells 

were labeled with the two fluorophores (200 nM each) at room temperature. Cells 

were washed three to four times with extracellular buffer prior to the LRET 

measurements. For oocytes, 100–200 oocytes were labeled with the two 

fluorophores (1 μM each) prior to membrane preparation. All measurements were 

done at pH 8 and 6. A cuvette-based QuantaMaster model QM3-SS fluorescence 

spectrometer (Photon Technology International) was used to measure the lifetimes 

of the fluorophores. A high power pulsed xenon lamp was used for excitation, and 

the emitted light was passed through a monochromator and passed onto the 

detector. The temperature was set at 15 °C during the experiments. Fluorescan 

software (Photon Technology International) was used for acquisition of data, and 

Origin 4.0 software (OriginLab Corp.) was used for data analysis. The donor-only 

lifetime measurements were obtained at 545 nm, whereas the sensitized acceptor 

lifetimes for ATTO 465 were obtained at 508 nm. The LRET measurements were 

obtained from at least three preparations of protein for each mutant. For each 

sample, LRET lifetimes were obtained before and after digestion with Factor Xa, and 

the background LRET after digestion with the protease was subtracted from the 

initial LRET data to obtain the LRET specific to the ASIC protein. The subtracted 

data were fit to the minimum number of exponentials that best fit the data. The data 

shown are an average of three samples, with three runs per sample, with each run 
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being an average of 99 scans. 

VI. Distance Measurements 

Distances between the donor and acceptor fluorophores were calculated 

using the LRET lifetime (τDA) and donor-only lifetime (τD) using the Förster equation. 

The R0 value was calculated as described previously and was 36 Å for the terbium 

chelate/ATTO 465 pair. The largest error in the distances determined by LRET is 

thought to arise from the orientation factor (κ) included in calculation of R0, although 

dos Remedios and Moens have argued, using several FRET measurements, that 

the assumption of 2/3 provides reliable results. For lanthanides that are isotropic, 

this error is reduced to ±10% at most. Additionally, in this study, we were 

investigating relative changes and not absolute distances; thus, it was expected that 

the error would be further reduced as the same donor and acceptors were studied 

under the two pH conditions. Hence, the errors reported were calculated based on 

the error propagation in the fitting of the averaged lifetime data in the Förster 

equation. The absolute error in the measurements would be ±10% of the distances 

at most. 

VII. Electrophysiology 

Outside-out patch recordings were performed on HEK293T cells transfected 

with the indicated ASIC construct and enhanced GFP (7.5:1 μg of ASIC:enhanced 

GFP cDNA/10 ml of medium) using Lipofectamine 2000. 24–48 h post-transfection, 

outside-out patches were pulled from enhanced GFP-expressing cells using thick-

walled borosilicate glass pipettes of 3–5 megaohms, coated with beeswax, fire-
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polished, and filled with a solution containing 135 mM CsF, 33 mM CsOH, 11 mM 

EGTA, 10 mM HEPES, 2 mM MgCl2, and 1 mM CaCl2 (pH 7.4). External solutions 

were composed of 150 mM NaCl, 10 mM HEPES, 1 mM MgCl2, and 1 mM CaCl2 

and adjusted to the indicated pH with 5 N NaOH or 10 N HCl. All recordings were 

performed with a holding potential of −60 mV using an Axopatch 200B amplifier 

(Molecular Devices, Sunnyvale, CA), acquired at 30–40 kHz, and filtered at 10 kHz 

(8-pole Bessel) under the control of pCLAMP 10 software. Series resistances (3–12 

megohms) were routinely compensated by >95% where the amplitude exceeded 

100 pA. Rapid application was performed using home-built theta (Warner 

Instruments, Hamden, CT) or multibarrel (VitroCom, Mountain Lakes, NJ) glass 

application pipettes, pulled to 100–150 μm, and translated using a piezoelectric 

microstage (Burleigh Instruments). Solution exchange as estimated from open tip 

potentials was 100–300 μs (10–90% rise time). The extent of apparent 

desensitization was taken as the percent of the steady-state response during a low 

pH application compared with the peak response. For dose-response curves, 

various pH values were bracketed by control pH 5.0 responses to assess rundown. 

Data were normalized to the adjacent control response, averaged across patches, 

and fit with the standard dose-response logistic equation. Statistical significance was 

evaluated using Student's two-tailed t test. 

VIII. Surface Biotinylation and NeutrAvidin Pulldown Assay, followed by 

Western Blotting 
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Surface expression of the D238A/E239A/D260A triple mutant of cASIC1a was 

determined using surface biotinylation and NeutrAvidin pulldown, followed by 

Western blotting as described by Zha et al(102). The triple mutant with a FLAG tag 

introduced at the N terminus expressed in HEK293T cells was used for these 

experiments. Biotinylation was performed 48 h after transfection. Cells were washed 

with cold PBS solution, and 3 ml of 0.5 mg/ml NHS-biotin (Pierce) in cold PBS was 

used to tag the surface-expressed proteins with biotin. The reaction was quenched 

using 0.1 M glycine in ice-cold PBS with calcium chloride and magnesium chloride. 

The cells were then lysed with lysis buffer containing 30 mM N-ethylmaleimide 

(Sigma), 1% Nonidet P-40 (Roche Applied Science), 0.5% deoxycholate, and 0.5% 

SDS in ice-cold PBS+/+, along with protease inhibitor mixture (Roche Applied 

Science). Cells were then sonicated, and the lysate was spun down. To 300 μl of 

cleared cell lysate 60 μl of NeutrAvidin slurry was added, followed by overnight 

incubation at 4 °C. The NeutrAvidin beads were then washed with wash buffer 

containing 50 mM Tris (pH 7.4) and 1% Triton X-100. After the washes, beads were 

directly boiled in SDS sample buffer and loaded onto SDS-polyacrylamide gel for 

Western blot analysis. Western blotting was done following standard procedures, 

and the blot was probed with anti-FLAG monoclonal antibody (Sigma-Aldrich), 

followed by secondary antibody (HRP-conjugated anti-mouse antibody, Sigma-

Aldrich). 

IX. Purification and Labeling of the Agonist-binding Domain of GluA2 

Subunit of the AMPA Receptor 
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The plasmid expressing the agonist-binding domain of the GluA2 subunit of 

AMPA receptors was provided by Dr. Eric Gouaux (Oregon Health and Science 

University). Mutations T394C and S652C were made by standard mutation reactions 

using Pfu Turbo DNA polymerase (Agilent Technologies). Plasmid expressing this 

double mutant was transformed, and the protein was expressed in Escherichia coli 

origami DE3 cells (EMD Chemicals) in LB broth, Miller (Fisher Scientific) containing 

ampicillin (Sigma Aldrich), kanamycin (Fisher Scientific), and tetracycline (Shelton 

Scientific) at concentrations of 50, 15, and 12.5 μg/ml, respectively. The protein 

expression was induced using isopropyl β-D-1-thiogalactopyranoside (Fisher 

Scientific) when cells reached an optical density of 0.8–0.9. After isopropyl β-D-1-

thiogalactopyranoside addition, cells were grown at 20 °C for 24 h. The cells were 

harvested and lysed in 20 mM Tris buffer containing 150 mM NaCl, 1 mM glutamate, 

5 mM MgSO4, 0.5 mM PMSF, 50 μg/ml lysozyme, 125 μg/ml sodium deoxycholate, 

25 μg/ml DNaseI. The lysed cells were centrifuged at 35,000 rpm, 4 °C for 45 min. 

The supernatant was then purified using a HiTrap nickel column (GE Healthcare). 

The purified protein was dialyzed in phosphate-buffered saline containing 1 mM 

glutamate. The protein was labeled with a 1:3 ratio of maleimide derivatives of Alexa 

555 (donor) and Alexa 647 (acceptor) (Invitrogen), respectively. The ratio was 

confirmed using absorbance measurements. Protein was allowed to conjugate with 

the fluorophores by incubating overnight at 4 °C in dark. The protein sample was 

dialyzed to remove the excess unbound fluorophores in phosphate-buffered saline 

without glutamate, and the appropriate willardiine derivative (Abcam Biochemicals) 

was added to the protein. This sample was then treated with sulfolink resin for 30 

http://www.jbc.org.ezproxyhost.library.tmc.edu/cgi/redirect-inline?ad=Invitrogen
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min. The resin was removed by centrifugation, and supernatant was conjugated with 

biotin-conjugated anti-His antibody (Rockland Immunochemicals) and used for 

smFRET investigations. 

X. Sample Preparation for smFRET 

Standard 22 × 22-mm glass microscope slides were plasma cleaned to 

remove the organic residues and other impurities from the surface. The surface was 

then functionalized with aminosilane groups through the Vectabond procedure. In 

this procedure, the slides were first treated with Vectabond-acetone 1% (w/v) 

solution (Vector Laboratories) for 5 min, rinsed with molecular biology grade water 

(HyClone) for 30 s, and dried with an N2 gas stream. The functionalized area was 

then exposed with 100:1 mixture of 5-kDa, methoxy-terminated, N-succinimidyl 

polyethylene glycol (Fluka; 33% w/w PEG in molecular biology grade water) and 5-

kDa biotin-terminated PEG (NOF Corporation, 2.5% w/w in molecular biology grade 

water) in sodium bicarbonate (1% v/v, pH 8.0) buffer for ∼3 h. A sample chamber 

was assembled by placing a custom hybriwell chamber (Grace Bio-labs) with the 

help of two silicon ports (press fit tubing connectors; Grace Bio-labs) on top of the 

biotin-PEG glass slide. The silicon ports provided the inlet and outlet for the flow 

system. The biotin-PEG chamber was filled with 40 μl of 20% w/w streptavidin 

(Invitrogen) in PBS buffer (pH 7.4) and incubated in the dark for 10 min. The 

streptavidin acts as linker between the biotin-PEG slide and the biotin-conjugated 

anti-histidine antibody bound to GluA2 subunit. A PBS solution containing ∼250 nM 

protein tagged with biotin-conjugated anti-histidine monoclonal antibody was then 

added in ten 17-μl increments into the chamber and incubated for 20 min. The 

http://www.jbc.org.ezproxyhost.library.tmc.edu/cgi/redirect-inline?ad=Rockland
http://www.jbc.org.ezproxyhost.library.tmc.edu/cgi/redirect-inline?ad=Invitrogen
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excess protein was then rinsed with PBS buffer. 

XI. Oxygen Scavenging System 

To minimize the photobleaching and blinking of fluorophores, all of the 

experiments were performed in the presence of an oxygen scavenger system, 

consisting of 33% w/w β-D-(+)-glucose (Sigma-Aldrich), 1% w/w glucose oxidase, 

0.1% v/v catalase (Sigma Aldrich), 1 mM methyl viologen (Sigma Aldrich), and 1 mM 

ascorbic acid (Sigma Aldrich) in molecular biology grade water saturated with 

phosphate buffer. In addition, 1 mM of the substituted willardiine was also added to 

the oxygen scavenging system, depending on the experimental conditions. 

XIII. Experimental Setup for smFRET 

All single-molecule fluorescence measurements were performed using a 

custom built confocal microscope. A 532-nm diode-pumped solid state laser 

(Coherent, Compass 315M-100 SL) was used for sample excitation. The light was 

expanded to overfill the back aperture of a Fluar 100× 1.3 NA oil immersion 

microscope objective lens (Carl Zeiss), which resulted in the expansion of the laser 

light in a 1/e2 beam radius of ∼ 250 nm and height of ∼ 1 μm, respectively. The 

sample chamber with the flow system for oxygen scavenger was placed on top of a 

closed-loop x-y-z piezo stage (P-517.3CL; Physik Instrumente) with 100 × 100 × 20-

μm travel range and 1-nm specificity (SPM 1000; RHK Technology, Maryville, TN). 

The power of the laser was controlled as necessary using neutral density filters. 

Fluorescence was collected and refocused by the same objective and was 

separated from the excited light by using a dichroic mirror (z532rdc; Chroma 
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Technology). Fluorescence was collected and refocused by the same objective and 

the excited light was filtered via a notch filter (zet532nf, Chroma Technology). The 

refocused signal was further passed though a dichroic mirror (640dcxr, Chroma 

Technology) to split donor emission and acceptor emission by wavelength, and 

these fluorescence signals were collected by two avalanche photodiodes (SPCM-

AQR-15; PerkinElmer Life Sciences). The signal to noise ratio was improved by the 

use of additional emission filters (NHPF-532.0, Kaiser Optical; and ET585, Chroma 

Technology) placed in front of the photodiode detectors. 

XIV. Data Collection and Analysis 

To obtain the smFRET trajectories for the individual protein molecules, a 10 × 10-μm 

area of the sample was scanned to spatially locate 20–25 molecules. The 

fluorescence signals of the donor and the acceptor were collected until the 

fluorophores were photobleached. The emission intensity trajectories were collected 

at 1-ms resolution and later binned up to 10-ms time steps to improve the signal to 

noise ratio. All of the data were analyzed with programs written in-house using 

MATLAB (R2009b; Mathworks). The corrected fluorescence signal trajectories were 

used directly to calculate the apparent FRET efficiency (EA) using the following 

equation, 

 

where IA and ID correspond to background corrected acceptor and donor 

fluorescence intensities, respectively. The distance between the two fluorophores 

was calculated with the following equation, 
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where: r = is the inter-dye distance, and R0 = is the Förster radius, which, for the 

Alexa 555-Alexa 647 pair, is ∼5.1 nm (Molecular Probes). 

All the raw trajectories were analyzed by the above mentioned processing 

algorithm, and traces were automatically characterized into single step bleaching, 

multistep bleaching and high acceptor background. Traces were excluded if they 

met with the conditions of multistep bleaching and higher acceptor background. 

Details of the wavelet denoising technique have been described previously. 

For experiments requiring multiple solution conditions on the same proteins, a 

secondary method of data collection and analysis was used. Single-molecule 

samples were prepared as described above along with two buffer solutions following 

the stated procedure for oxygen scavenging solutions and using glutamate (1 mM) 

and iodowillardiine (1 mM) as agonists. A dual syringe pump system initially 

delivered glutamate containing buffer with a flow rate of 0.001 ml/min followed by 

both the glutamate and iodowillardiine buffers and then finally iodowillardiine alone. 

A 30 × 30-μm area was repeatedly raster scanned using the same confocal setup as 

above, with a 30-s repetition rate between images. The images were analyzed using 

a custom-designed program that locates and tracks single molecules to correct for 

possible stage drift. Molecules were selected from the final frame of the acceptor 

channel images to avoid skewing of intensities by photobleaching and to ensure 

FRET occurred in all molecules during the imaging period. 

http://www.jbc.org.ezproxyhost.library.tmc.edu/cgi/redirect-inline?ad=Molecular%20Probes
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XV. Electrophysiology 

The GluA2-flip plasmid was donated by Dr. Seeburg (Max Planck Institute, 

Heidelberg, Germany). Endogenous accessible cysteine residues were removed, 

and the T394C and S652C mutations were introduced into wild type GluA2 as 

described above. This construct was co-transfected with enhanced GFP into human 

embryonic kidney 293 tSA201 (HEK 293T) cells (ATCC CRL 11268) using the 

calcium phosphate technique with 1–2 μg of GluA2/ml for 10–12 h. 

Electrophysiological experiments were performed 48–72 h later. Alexa 555 (100 nM) 

was added to the recording dish 10–20 min prior to recording. Whole cell recordings 

were obtained using thick walled borosilicate pipettes with resistances of 2–4 MΩ 

and filled with solution containing 135 mM CsF, 33 mM CsOH, 2 mM MgCl2, 1 mM 

CaCl2, 11 mM EGTA, and 10 mM HEPES (pH 7.4). The extracellular bath solution 

consisted of (in mM) 150 NaCl, 2.8 KCl, 1.8 CaCl2, 1 MgCl2, 5 mM glucose, and 10 

mM HEPES (pH 7.4). All of the ligand solutions were prepared in extracellular buffer 

and kept at pH 7.4. Cyclothiazide at a concentration of 100 μM was used for all 

experiments. Cells expressing mutant GluA2 were voltage-clamped at −60 mV, and 

solutions were locally applied using computer controlled valve switcher (VC-6; 

Warner Instruments) and homemade application pipette. All of the recordings were 

performed using an Axon 200B amplifier (Molecular Devices), with data acquired at 

10 kHz, low pass filtered at 3 kHz (8-pole Bessel, −3 dB) and under the control of 

pCLAMP 10.1 software (Molecular Devices). Two-tailed repeated measures t test 

was performed for statistical analysis of differences in the responses evoked by the 

different ligands. 
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