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Cancer cells display dramatic alterations in cellular metabolism to meet 

their needs of increased growth and proliferation. In the last decade, cancer 

research has brought these pathways into focus, and one emerging issue that 

has come to attention is that many oncogenes and tumor-suppressors are 

intimately linked to metabolic regulation (Jones and Thompson, 2009). One of 

the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). 

LKB1 is the major upstream kinase of the evolutionarily conserved metabolic 

sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK 

pathway provides a survival advantage for cells under energy stress. 

LKB1 forms a heterotrimeric complex and is activated through binding of 

the two regulatory proteins, STRAD and MO25. LKB1 has been shown to be a 

tumor-suppressor in various mouse models; however, recent studies suggest 

that LKB1 has pro-oncogenic functions. How the LKB1 activity and the 

LKB1-STRAD-MO25 complex are maintained and regulated and how LKB1 

regulates cancer development are largely unclear. Here we show that 

K63-linked LKB1 polyubiquitination by the Skp1-Cul1-F-box-protein/Skp2 

(Skp2-SCF) ubiquitin ligase complex is critical for LKB1 activation by a 

mechanism of maintaining the LKB1-STRAD-MO25 complex integrity. We 

further demonstrate that oncogenic Ras acts upstream of Skp2 to promote 
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LKB1 polyubiquitination by activating the Skp2-SCF ubiquitin ligase complex. 

Moreover, Skp2-mediated LKB1 polyubiquitination is required for energy 

stress-induced cell survival. We also detected upregulation and positive 

correlation of Skp2 and LKB1 expression in late-stage hepatocellular 

carcinoma (HCC), and their overexpression predicts poor survival outcome of 

HCC patients. Finally, we show that Skp2-mediated LKB1 polyubiquitination is 

important for HCC tumor growth in a mouse subcutaneous xenograft tumor 

model. Our study provides new insights into the upstream regulation of LKB1 

activation and suggests a potential target, the Ras/Skp2/LKB1 axis, for cancer 

therapy. 
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1.1. LKB1 as a Tumor-suppressor in Human 

LKB1 (liver kinase B1) (also known as STK11; serine/threonine kinase 11) was first 

identified as a tumor-suppressor gene, because its germline mutations have been 

linked to the cancer-prone Peutz-Jeghers syndrome (PJS), an autosomal dominant 

inherited disorder (Hemminki et al., 1998; Jenne et al., 1998). The main characteristic 

of this syndrome is the development of benign hamartomatous polyps in the 

gastrointestinal tract and hyperpigmented patches in the mouth. PJS patients have an 

increased risk of developing cancers in various organs, particularly gastrointestinal 

tumors (Giardiello et al., 2000; Sanchez-Cespedes, 2007), and about 80% of them 

were found to carry a LKB1 mutation (Volikos et al., 2006). Later on, somatic 

alterations of LKB1 were identified in sporadic cancers; however, the overall incidence 

is typically rare (Sanchez-Cespedes, 2007). Exceptionally, LKB1 gene inactivation is 

common in lung and cervical cancers. LKB1 is frequently mutated in ~20% of cervical 

cancer (Wingo et al., 2009). On the other hand, the frequency of LKB1 mutations is 

~30% (ranging from 10 to 50%) in non-small cell lung cancer, and it is most prevalent 

in lung adenocarcinoma (Sanchez-Cespedes, 2007; Sanchez-Cespedes, 2011). 

Noteworthily, LKB1 mutations were found frequently accompanied by alterations in 

other genes, such as TP53, P16, and especially KRAS in smoking non-Asian patients, 

but rarely concomitant with mutations in EGFR (Sanchez-Cespedes, 2011), which are 

highly associated with non-smoker Asian patient population (El-Telbany and Ma, 2012; 

Kadara et al., 2012). Loss of LKB1 protein expression was observed in high-grade 

atypical adenomatous hyperplasia, a preneoplastic lesion for lung adenocarcinoma 

(Ghaffar et al., 2003), suggesting a role of LKB1 inactivation in the early development 

of this type of cancer. Nonetheless, the initiating event has been suggested to be the 

activating mutations of KRAS (Westra, 2000). In Kras lung cancer mouse model, loss 

of Lkb1 promotes lung cancer initiation and metastasis (Ji et al., 2007). 
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1.2. Lkb1 Genetic Mouse Models 

Lkb1 knockout (KO) mice die before embryonic day (E) 11 (at about E8.5-11), which 

are embryonic lethal, with developmental defects in neural tube closure and 

vascularization (Ylikorkala et al., 2001). Lkb1 heterozygous KO mice were shown to 

develop gastrointestinal polyps which resemble PJS polyps (93% in stomach and 

31% in small intestines at >20 and >50 weeks of age, respectively) (Miyoshi et al., 

2002), and also develop different types of tumors with a relatively long latency 

reported in different studies, such as benign osteogenic tumor at ~43 weeks of age 

(Robinson et al., 2008), invasive endometrial adenocarcinoma by 55 weeks of age 

(Contreras et al., 2008), and hepatocellular carcinoma (HCC) at >50 weeks of age 

(Nakau et al., 2002), concurrent with or without loss of wild-type (WT) Lkb1 allele (loss 

of heterozygosity; LOH) (Table 1-1). Mice with conditional inactivation of Lkb1 in 

various types of cells or tissues through homologous recombination by cell- or 

tissue-specific expression of Cre recombinase showed either tumorigenic or 

non-tumorigenic phenotypes, suggesting the context- or tissue-specific functions of 

Lkb1 in tumor suppression and the critical roles of Lkb1 in development of specific 

tissues or organs (Ollila and Makela, 2011; Shorning and Clarke, 2011) (Tables 1-1 

and 1-2). The important roles of Lkb1 in embryogenesis, angiogenesis, and 

development of nervous system, hematopoietic system, pancreas, muscle and liver 

have been demonstrated in the mouse models (Table 1-2). Loss of Lkb1 in 

combination with other tumorigenic mutations (i.e., activated oncogenes and 

inactivated tumor-suppressor genes) results in promoting tumorigenesis and 

accelerating tumor development in multiple tissues (Ollila and Makela, 2011) (Table 

1-1). This suggests the existence of genetic interactions between Lkb1 and other 

genes important for tumorigenesis, which adds complexity to deciphering the role of 

Lkb1 in tumor development. 
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Table 1-1. Lkb1 mouse models with tumorigenic phenotypes 

Genotype Targeting Phenotypes 
Latency 

(wks)* 

LOH 

or H 
References 

Lkb1+/- All tissues Gastric hamartomas 21-30 

(67%) 

H (Miyoshi et al., 

2002) 

Lkb1+/- All tissues Gastric hamartomas >24 

(100%) 

H (Rossi et al., 

2002) 

Lkb1+/- All tissues Gastric hamartomas 40-56 

(100%) 

H (Jishage et al., 

2002) 

Lkb1+/- All tissues Gastrointestinal 

hamartomas 

<43 

(68%) 

LOH (Bardeesy et al., 

2002) 

Lkb1+/- All tissues Osteogenic tumor ~43 H (Robinson et al., 

2008) 

Lkb1+/- All tissues Hepatocellular 

carcinoma 

>50 

(71%) 

LOH (Nakau et al., 

2002) 

Lkb1+/- All tissues Endometrial 

adenocarcinoma 

<55 

(53%) 

H (Contreras et al., 

2008) 

Lkb1flox/flox; 

Adeno-Cre (i.u.) 

Uterine cells Endometrial 

adenocarcinoma 

<36 

(65%) 

n/d (Contreras et al., 

2008) 

Lkb1+/- All tissues Carcinogen-induced 

squamous cell 

carcinoma 

15 LOH (Gurumurthy et 

al., 2008) 

Lkb1flox/flox; 

Keratin-14-Cre 

Epidermal cells Carcinogen-induced 

squamous cell 

carcinoma 

8 (100%) n/d (Gurumurthy et 

al., 2008) 

Lkb1+/flox; 

Tagln-CreERT2 

(i.p., 4-OHT) 

Gastrointestinal 

smooth muscle 

cells 

Gastrointestinal 

hamartomas 

45 (61%) 

(75% for 

flox/flox) 

H (Katajisto et al., 

2008) 

Lkb1flox/flox; 

BLG-Cre 

Mammary 

epithelial cells 

Ductal carcinomas 

or solid papillary 

carcinomas 

46-85 

(19%) 

n/d (McCarthy et al., 

2009) 

Lkb1flox/flox; 

Pdx1-Cre 

Pancreatic 

epithelial cells 

Pancreatic serous 

cystadenomas 

10-30 

(100%) 

n/d (Hezel et al., 

2008) 

Lkb1flox/flox; 

Ah-Cre 

Prostate 

epithelial cells 

Prostate 

intraepithelial 

neoplasia 

8 (83%) n/d (Pearson et al., 

2008) 

Lkb1flox/flox; 

Sprr2f-Cre 

Uterine 

epithelial cells 

Invasive endometrial 

cancer 

12 n/d (Contreras et al., 

2010) 

Lkb1+/- All tissues Gastric hamartomas 26 (75%) n/a (Wei et al., 2005) 

Lkb1+/-; Tp53-/- All tissues Accelerated gastric 

hamartomas 

~16 

(88%) 

n/a (Wei et al., 2005) 

Lkb1+/- All tissues Gastric hamartomas >20 

(33%) 

n/d (Takeda et al., 

2006) 

Lkb1+/-; Tp53-/- All tissues Accelerated gastric 

hamartomas 

12 

(100%) 

No 

LOH 

(Takeda et al., 

2006) 

Lkb1+/-; Tp53-/- All tissues Accelerated 

hepatocellular 

carcinoma 

25 (8%) LOH (Takeda et al., 

2006) 

Lkb1+/hypo; 

Pten+/- 

All tissues Large B-cell follicular 

lymphomas 

24-32 

(80%) 

n/d (Garcia-Martinez 

et al., 2011; 

Huang et al., 

2008) 

Lkb1+/-; 

Catnb+/lox(ex3); 

Adeno-Cre (i.v.) 

All tissues Accelerated 

hepatocellular 

carcinoma 

n/a LOH (Miyoshi et al., 

2009) 
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Table 1-1. Lkb1 mouse models with tumorigenic phenotypes (continued) 

Genotype Targeting Phenotypes 
Latency 

(wks)* 

LOH 

or H 
References 

Lkb1flox/flox; 

Ptenflox/flox; 

Ah-CreERTM  

(i.p., β-NF, tam) 

Bladder 

epithelial 

cells 

Papillary bladder 

tumors 

<18 n/d (Shorning et al., 

2011) 

Lkb1flox/flox; 

Ptenflox/flox; 

Adeno-Cre (i.u.) 

Uterine cells Endometrial tumors 8-28 

(100%) 

n/d (Cheng et al., 

2014) 

Lkb1flox/flox; 

MMTV-Erbb2-Cre 

Mammary 

epithelial 

cells 

Mammary gland 

tumors 

17-18 n/d (Dupuy et al., 

2013) 

Lkb1flox/flox; 

Misr2-Cre 

Gynecologic 

stromal cells 

Endometrial 

adenocarcinoma 

24 n/d (Tanwar et al., 

2012) 

Lkb1flox/flox; 

Ptenflox/flox; 

Misr2-Cre 

Gynecologic 

stromal cells 

Endometrial 

adenocarcinoma 

9 

(100%) 

n/d (Tanwar et al., 

2012) 

Lkb1+/flox; 

LSL-KrasG12D; 

Pdx1-Cre 

Pancreatic 

epithelial 

cells 

Pancreatic ductal 

adenocarcinoma 

~20 H (Morton et al., 

2010) 

Lkb1flox/flox; 

Pdx1-Cre 

Pancreatic 

epithelial 

cells 

Pancreatic tumors ~10 

(100%) 

n/d (Morton et al., 

2010) 

Lkb1flox/flox; 

LSL-KrasG12D; 

Adeno-Cre (i.n.) 

Pulmonary 

cells 

Metastatic 

adeno-squamous 

carcinoma 

9 

(56%) 

n/d (Ji et al., 2007) 

Lkb1flox/flox; 

Lenti-Sox2-Cre 

(i.n.) 

Pulmonary 

cells 

Squamous cell 

carcinoma 

24-41 

(41%) 

n/d (Mukhopadhyay et 

al., 2014) 

Lkb1flox/flox; 

Ptenflox/flox; 

Adeno-Cre (i.n.) 

Pulmonary 

cells 

Squamous cell 

carcinoma 

40-50 

(100%) 

n/d (Xu et al., 2014) 

Lkb1flox/flox; 

Ptenflox/flox; 

Tp53flox/flox; 

Adeno-Cre (i.n.) 

Pulmonary 

cells 

Adeno-squamous 

carcinoma 

n/a n/d (Xu et al., 2014) 

Lkb1flox/flox; 

LSL-KrasG12D; 

Adeno-Cre (i.n.) 

Pulmonary 

cells 

Adenocarcinoma n/a n/d (Xu et al., 2014) 

Lkb1flox/flox; 

LSL-KrasG12D; 

Tp53flox/flox; 

Adeno-Cre (i.n.) 

Pulmonary 

cells 

Adenocarcinoma n/a n/d (Xu et al., 2014) 

*Latency is shown in weeks, and incidence is indicated in percentage in parentheses. LOH, loss of 

heterozygosity; H, haploinsufficiency; n/d, not determined; n/a, not available; flox, flanked by loxP 

sites; hypo, hypomorphic; i.p., intraperitoneal injection; i.u.,intrauterine injection; i.v., intravenous 

injection; i.n., intranasal inhalation; β-NF, β-naphthoflavone; tam, tamoxifen; 4-OHT, 4OH-tamoxifen. 

The table is established on the basis of the review article (Ollila and Makela, 2011) and expanded 

with information from the listed references. 
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Table 1-2. Lkb1 mouse models with non-tumorigenic phenotypes 

Genotype Targeting Phenotypes References 

Lkb1-/- All tissues Embryonic death, vascular and 

neural defects 

(Ylikorkala et al., 2001) 

Lkb1M129G/M129G 

(1NMPP1)* 
All tissues Defective organogenesis in lung 

and pancreas 

(Lo et al., 2012) 

Lkb1flox/-; Tie1-Cre Endothelial 

cells 

Embryonic death, vascular 

defects 

(Londesborough et al., 

2008) 

Lkb1+/flox; Tie2-Cre Endothelial 

cells 

Defective revascularization of 

hind-limb ischemia 

(Ohashi et al., 2010) 

Lkb1flox/flox; 

VE-CAD-Cre 
Endothelial 

cells 

Hypertension, cardiac 

hypertrophy, impaired 

endothelium-dependent 

relaxation 

(Zhang et al., 2014) 

Lkb1flox/flox; Emx-Cre Cortical 

neurons 

Defective axon specification (Barnes et al., 2007) 

Lkb1+/flox; AIFflox/flox; 

CamKIIα-Cre 

Postmitotic 

neurons 

Increased neuronal cell death 

following mitochondrial 

dysfunction 

(Germain et al., 2013) 

Lkb1flox/flox; Mx1-Cre; 

(i.p., pIpC) 
Hematopoietic 

stem cells 

Hematopoietic cell death (Gurumurthy et al., 

2010; Nakada et al., 

2010) 

Lkb1flox/flox; 

Rosa26-CreERT2 

(i.p., tam) 

Hematopoietic 

stem cells 

Hematopoietic cell death (Gan et al., 2010) 

Lkb1flox/flox; MCK-Cre Cardiac 

myocytes 

Cardiac dysfunction, especially 

after ischemia 

(Jessen et al., 2010; 

Sakamoto et al., 2006) 

Lkb1flox/flox; 

α-MHC-Cre 
Cardiac 

myocytes 

Cardiac dysfunction, atrial 

fibrillation, reduced capillaries 

(Ikeda et al., 2009) 

Lkb1flox/flox; MCK-Cre Skeletal 

myocytes 

Impaired contraction-induced 

glucose uptake 

(Sakamoto et al., 2005) 

Lkb1flox/flox; MCK-Cre Skeletal 

myocytes 

Enhanced glucose tolerance, 

lower fasting glucose and insulin 

(Koh et al., 2006) 

Lkb1flox/flox; 

MRF4-Cre 
Skeletal 

myocytes 

Decreased exercise capacity 

before training, impaired 

mitochondrial protein expression 

after training 

(Tanner et al., 2013) 

Lkb1flox/flox; 

Pdx1-CreER 

(i.p., tam) 

Pancreatic 

β-cells 

Increased β-cell size and insulin 

secretion, cell polarity defects 

(Fu et al., 2009; Granot 

et al., 2009) 

Lkb1flox/flox; Rip2-Cre Pancreatic 

β-cells 

Enhanced insulin secretion and 

glucose tolerance 

(Sun et al., 2010) 

Lkb1flox/flox; Rip2-Cre Thoracic 

nerves 

Axon degeneration, hind-limb 

paralysis 

(Sun et al., 2011) 

Lkb1flox/flox; 

Adeno-Cre (i.v.) 
Hepatocytes Hyperglycemia, increased 

gluconeogenesis and lipogenesis 

(Shaw et al., 2005) 

Lkb1flox/flox; Alb-Cre Hepatocytes Defective bile and cholesterol 

metabolism 

(Woods et al., 2011) 

Lkb1flox/flox; Ah-Cre 

(i.p., β-NF) 
Intestinal 

epithelial cells 

Defective secretory cell 

differentiation 

(Shorning et al., 2009) 

Lkb1flox/flox; Lck-Cre T cell 

progenitors 

Defective thymocyte survival and 

differentiation 

(Cao et al., 2010; 

Tamas et al., 2010) 

Lkb1flox/flox;  

Fabp4 -Cre 

Adipose tissue Defective white adipose tissue 

growth and differentiation 

(Zhang et al., 2013) 

*M129G, mutation in the ATP-binding pocket, which makes the Lkb1 kinase sensitive to derivatives of 

the general kinase inhibitor PP1 (e.g., 1NMPP1); flox, flanked by loxP sites; i.p., intraperitoneal 

injection; i.v., intravenous injection; pIpC, polyinosinic-polycytidylic acid; tam, tamoxifen; β-NF, 

β-naphthoflavone. The table is established on the basis of the review article (Ollila and Makela, 2011) 

and expanded with information from the listed references. 
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1.3. LKB1 Functions and Its Substrates 

LKB1 gene encodes a serine/threonine kinase, which functions as a master upstream 

kinase, directly phosphorylating and activating AMP-activated protein kinase (AMPK) 

and 12 AMPK-related kinases (ARKs) (Lizcano et al., 2004) (Figure 1-1 and Table 

1-3). By regulating a variety of substrates, LKB1 plays diverse roles in multiple cellular 

processes, including energy metabolism, proliferation, apoptosis and cell polarity 

(Alessi et al., 2006; Bright et al., 2009; Vaahtomeri and Makela, 2011) (Figure 1-1 and 

Table 1-3). Among those known substrates, AMPK was the first-identified substrate of 

LKB1 (Hong et al., 2003; Woods et al., 2003), and it is, by far, the best-characterized 

one (Mihaylova and Shaw, 2011). Many functions of AMPK account for LKB1’s role in 

tumor suppression (Shackelford and Shaw, 2009). 

AMPK is an evolutionarily conserved sensor of intracellular energy levels among 

species, from yeast to humans (Hardie, 2007). It was originally discovered as a 

mammalian protein kinase that was able to regulate enzymes of lipid metabolism in 

an AMP-dependent manner (Hardie et al., 1989). In budding yeast, the AMPK 

orthologue SNF1 (sucrose non-fermenting 1) gene was initially identified from a 

screening for mutations that caused defects in metabolism of sucrose (Carlson et al., 

1981), and later was functionally related to mammalian AMPK due to sequence 

homology (Mitchelhill et al., 1994; Woods et al., 1994). AMPK/Snf1 exists in a 

heterotrimeric complex with the catalytic α-subunit and regulatory β- and γ-subunits. 

When intracellular AMP/ADP levels are rising, binding of AMP to the γ-subunit 

promotes Thr172 phosphorylation at the activation loop of the α-subunit by LKB1 and 

subsequent allosteric activation of AMPK (Gowans et al., 2013). Under low-energy 

conditions, activated AMPK restores intracellular ATP levels by stimulating catabolic 

pathways such as glycolysis and fatty acid oxidation, while inhibiting anabolic 

pathways such as lipid and protein synthesis (Hardie, 2007). To maintain energy 
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homeostasis, it rapidly phosphorylates multiple downstream targets, including 

metabolic enzymes that cause acute metabolic changes, and transcription factors and 

co-activators that result in adaptive metabolic reprogramming (Figure 1-2) (Hardie, 

2007; Mihaylova and Shaw, 2011; Shackelford and Shaw, 2009). Activation of AMPK 

by LKB1 also suppresses mTOR (mammalian target of rapamycin) complex 1 

(mTORC1) by directly phosphorylating TSC2 (tuberous sclerosis 2) and Raptor 

(regulatory associated protein of mTOR) (Gwinn et al., 2008; Inoki et al., 2003; Shaw 

et al., 2004a), thereby inhibiting protein translation and cell growth following energy 

stress. In addition to coordinating cell growth with intracellular energy status via 

regulation of the mTORC1 pathway, AMPK positively regulates the autophagy 

cascade by direct phosphorylation of the autophagy initiating kinase ULK1 

(Unc-51-like kinase 1) under nutrient restriction (Egan et al., 2011; Kim et al., 2011). 

Autophagy is an evolutionarily conserved process that degrades and recycles 

damaged intracellular proteins and organelles in order to provide a source of energy 

and molecular building blocks (e.g., amino acids) for cell survival in response to 

various stress, such as limited energy and nutrient supply. In contrast to AMPK, under 

nutrient-rich conditions, mTORC1 inhibits autophagy by negatively regulating ULK1 

and Atg13 (autophagy related 13), two components of the complex that is essential for 

autophagosome formation (Dunlop and Tee, 2013). Therefore, the coordinated 

signaling interplay among AMPK, mTORC1 and ULK1 finely orchestrates energy and 

nutrient homeostasis in cells (Dunlop and Tee, 2013). Therefore, taken together, 

activation of the LKB1/AMPK pathway provides a survival advantage under energy 

stress, and inactivation of the LKB1/AMPK pathway renders cells more susceptible to 

energy stress-induced cell death (Narbonne and Roy, 2009; Shaw et al., 2004b; van 

der Velden et al., 2011). 
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Figure 1-1. A simplified scheme of the LKB1-dependent signaling.  

LKB1, existing in a complex with two regulatory proteins, STRAD (Ste20-related 

adaptor) and MO25 (mouse protein 25), directly phosphorylates and activates a family 

of AMPK-related kinases that regulate various biological processes (summarized in 

Table 1-3). 
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Table 1-3. LKB1 substrates—AMPK-related kinases 

Kinase Description Functions Refs* 

AMPKα1/2 AMP-activated protein 

kinase 

Cell metabolism, cell polarity, cell 

growth, cell survival and autophagy 

1 

BRSK1 (SAD-B) Brain-specific kinase 1 Neuronal polarization, centrosome 

duplication 

2 

BRSK2 (SAD-A) Brain-specific kinase 2 Neuronal polarization 3 

NUAK1 (ARK5) Novel (nua) kinase 1 Cancer cell survival and migration, 

metastasis, terminal axon branching 

4 

NUAK2 

(SNARK) 

Novel (nua) kinase 2 Cancer cell survival and migration, 

metastasis 

5 

SIK1 Salt-inducible kinase 1 p53-dependent anoikis, 

steroidogenesis, myogenesis, 

TLR4-mediated signaling, TGF-β 

signaling 

6 

SIK2 (QIK) Salt-inducible kinase 2 Adipogenesis, insulin secretion, 

cardiac hypertrophy, neuronal 

survival, bipolar mitotic spindle 

formation 

7 

SIK3 (QSK) Salt-inducible kinase 3 Chondrocyte hypertrophy, cholesterol 

and bile acid metabolism, cell division, 

TLR4-mediated signaling 

8 

MARK1–4 Microtubule affinity- 

regulating kinases 

Cell polarity, neuronal migration, 

neuronal differentiation, transport, 

cell-cycle control, Hippo-Yap signaling 

9 

SNRK Sucrose 

non-fermenting protein 

(SNF1)-related kinase 

Adipocyte inflammation, vascular 

development, colon cancer cell 

proliferation, β-catenin signaling 

10 

*References: 1. (Hardie, 2007), (Mihaylova and Shaw, 2011); 2. (Kishi et al., 2005), (Barnes et al., 

2007), (Alvarado-Kristensson et al., 2009); 3. (Kishi et al., 2005), (Barnes et al., 2007); 4. (Sun et al., 

2013), (Courchet et al., 2013); 5. (Sun et al., 2013); 6. (Katoh et al., 2004), (Kowanetz et al., 2008), 

(Cheng et al., 2009), (Stewart et al., 2013), (Yong Kim et al., 2013); 7. (Katoh et al., 2004), (Ahmed et 

al., 2010), (Sasaki et al., 2011), (Sakamaki et al., 2014), (Popov et al., 2014), (Park et al., 2014); 8. 

(Sasagawa et al., 2012) , (Uebi et al., 2012), (Yong Kim et al., 2013), (Chen et al., 2014); 9. (Matenia 

and Mandelkow, 2009), (Mohseni et al., 2014); 10. (Chun et al., 2009), (Pramanik et al., 2009), (Rines 

et al., 2012), (Li et al., 2013). 
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Figure 1-2. The AMPK signaling pathway.  

LKB1 and CaMKKβ (calmodulin-dependent protein kinase kinase β) are the upstream 

kinases activating AMPK in response to increase in intracellular levels of AMP (or 

ADP) and calcium, respectively. Activated AMPK directly phosphorylates a multiplicity 

of downstream substrates involved in metabolism, cell growth, autophagy, 

transcription and cell polarity. The well-established substrates are shown, and those 

that require further in vivo validation are shown with a question mark. 
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1.4. LKB1 Complex 

Unlike AMPK and most other kinases that are activated by phosphorylation of their 

activation loop (close to their catalytic loop), LKB1 is predominantly activated through 

complex assembly (Boudeau et al., 2004). LKB1 forms a heterotrimeric complex with 

two accessory proteins, the pseudokinase STRAD (Ste20-related adaptor) and the 

scaffolding protein MO25 (mouse protein 25) (Baas et al., 2003; Boudeau et al., 2003). 

The crystal structure study of the heterotrimeric complex by Zeqiraj et al. reveals that 

binding of STRAD and MO25 to LKB1 promotes and stabilizes the activated 

conformation of LKB1 through a phosphorylation-independent allosteric mechanism 

(Zeqiraj et al., 2009a), resolving the previous observation of the functional importance 

of STRAD and MO25 in LKB1 activation (Boudeau et al., 2004; Hawley et al., 2003). 

Within the LKB1-STRAD-MO25 heterotrimer, there exist considerable interactions 

among all of the three proteins (Zeqiraj et al., 2009a). STRAD, displaying an active 

kinase conformation stabilized by association with MO25 (and ATP) (Zeqiraj et al., 

2009b), binds LKB1 as a pseudo-substrate (Zeqiraj et al., 2009a). On the other hand, 

binding of MO25 to LKB1, stabilized by the presence of STRAD, properly positions 

the LKB1 activation loop in an optimal active conformation competent for 

phosphorylation of substrates (Zeqiraj et al., 2009a). Accordingly, both STRAD and 

MO25 are critical for LKB1 kinase activity. Additionally, STRAD, but not MO25, has 

been demonstrated to facilitate cytoplasmic translocation of LKB1 by serving as an 

adaptor (Dorfman and Macara, 2008). Nevertheless, to date, how the 

LKB1-STRAD-MO25 complex is maintained and regulated remains largely unclear. 
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1.5. Regulation of LKB1 

Besides the inherent assembly of the complex as aforementioned, other regulatory 

mechanisms of LKB1 activation are poorly understood. Thus far, phosphorylation and 

subcellular localization of LKB1 are thought to be two main regulatory mechanisms of 

LKB1 signaling. Although several studies have demonstrated that phosphorylation of 

LKB1 regulates its function in cell-cycle arrest, tumor suppression and cell polarity, 

such posttranslational modification does not directly impact LKB1 kinase activity 

(Sebbagh et al., 2011). Several phosphorylation sites on LKB1 have been identified 

with known or unknown upstream kinases (Figure 1-3). Thr336 of LKB1 is thought to 

be an autophosphorylation site, and Ser31 of LKB1 can be phosphorylated by an 

unknown kinase (Sapkota et al., 2002a). However, both phosphorylation sites do not 

appear to regulate LKB1 activity or localization (Sapkota et al., 2002a). A further study 

showed that autophosphorylation of LKB1 at Thr336 induces negative feedback 

control of LKB1 via recruitment of 14-3-3 to LKB1 and subsequent suppression of 

LKB1 kinase function from binding to its substrates (Bai et al., 2012). It has been 

reported that LKB1 is phosphorylated by ATM (ataxia telangiectasia mutated) at 

Thr366 after DNA damage (Sapkota et al., 2002b) and this phosphorylation does not 

affect LKB1 activity or localization (Sapkota et al., 2002a; Sapkota et al., 2002b). 

However, this ATM/LKB1 signaling is required for B cell differentiation within germinal 

centers in response to genotoxic stress (Sherman et al., 2010), and is involved in 

H2O2-induced mTORC1 suppression (Alexander et al., 2010). In B-RafV600E melanoma 

cells, phosphorylation of Ser325 and Ser428 of LKB1 by two B-Raf downstream 

kinases, Erk (extracellular signal-regulated kinase) and p90Rsk (90-kDa ribosomal S6 

kinase), respectively, does not affect LKB1 complex integrity but suppresses the 

ability of LKB1 to bind and activate AMPK, in turn promoting cell proliferation and 

anchorage-independent growth (Zheng et al., 2009). Nevertheless, it has been 
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suggested that Ser428 (equivalent to Ser431 in mouse Lkb1) phosphorylation of 

LKB1 does not appear to directly influence LKB1 kinase activity (Sapkota et al., 2001; 

Xie et al., 2009), and a recent study demonstrated that both Lkb1 kinase activity and 

the downstream AMPK activation are not altered in Lkb1S431A/S431A knockin mice 

(Houde et al., 2014). Phosphorylation of LKB1 at Thr307 by PKC-ζ (protein kinase C ζ) 

regulates nuclear export of LKB1 but not LKB1 kinase activity, consequently directing 

AMPK activation and suppression of endothelial cell angiogenesis (Xie et al., 2009). 

Another phosphorylation-mediated spatial regulation of LKB1 has been reported, by 

which Akt-mediated Ser334 phosphorylation of LKB1 induces the association of LKB1 

with 14-3-3 and subsequent nuclear retention of LKB1, in turn inhibiting the 

tumor-suppressive function of LKB1 (Liu et al., 2012a). LKB1 also undergoes 

farnesylation at the very C-terminal Cys residue (Cys433 in mouse Lkb1). This 

modification does not affect LKB1 kinase activity (Houde et al., 2014; Sapkota et al., 

2001) but is critical for membrane localization of LKB1 (Houde et al., 2014; Sebbagh 

et al., 2009). Interestingly, impairment of AMPK activation was observed in 

Lkb1C433A/C433A knockin mice, and a potential mechanism was proposed, whereby 

Lkb1 farnesylation may promote the co-localization of Lkb1 with the 

membrane-localized AMPK (as a result of myristoylation of the β-subunit of AMPK 

(Mitchelhill et al., 1997; Oakhill et al., 2010)) on the membrane surface and the 

subsequent AMPK activation (Houde et al., 2014). Another type of LKB1 

posttranslational modification—acetylation—has been found. It was shown that 

acetylation of LKB1 at Lys48 negatively regulates its assembly with STRAD and 

kinase activity and the deacetylase appears to be SIRT1 (Lan et al., 2008). It is of 

great interest to address whether other types of posttranslational modification on 

LKB1 can modulate its activity directly. 
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Figure 1-3. The posttranslational modification of LKB1.  

The kinase domain of human LKB1 protein is shown and the two residues critical for 

the kinase activity are indicated by red triangles. The residues where posttranslational 

modifications take place are indicated with known or unknown upstream regulators. P 

(in purple or blue circle), phosphorylation; Ac (in square), acetylation. Blue circle, 

auto-phosphorylation. 
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1.6. Potential Pro-oncogenic Role of LKB1 

Although, as mentioned above, genetic evidence supports the tumor-suppressive role 

of LKB1, other evidence has revealed that LKB1 may also exhibit previously 

unrecognized pro-oncogenic functions. Bardeesy et al. demonstrated that 

Lkb1-deficient mouse embryonic fibroblasts (MEFs) are resistant to oncogenic 

transformation (Bardeesy et al., 2002), which may account for the lack of malignant 

tumors in PJS patients and in many mouse models with LKB1 deficiency (Bardeesy et 

al., 2002; Jeon et al., 2012). In UVB-induced murine basal-cell skin carcinoma, 

upregulated LKB1 expression and AMPK signaling were found concomitant with 

increased phosphorylation of Akt and GSK3β (Byekova et al., 2011). In lung and 

colon cancer cell lines with constitutive Akt activation, LKB1 was shown to be required 

for Akt-mediated phosphorylation of pro-apoptotic proteins, such as FoxO3a, FoxO1, 

Bad and GSK3β, to suppress apoptosis (Zhong et al., 2008). It was demonstrated that 

LKB1 regulates Akt-mediated cell survival in cells isolated from murine metabolic 

disorder-derived HCC (Martinez-Lopez et al., 2010). Also, elevated LKB1 expression 

was observed in murine and human HCC (Martinez-Lopez et al., 2012; 

Martinez-Lopez et al., 2010), and LKB1 silencing attenuates the in vivo growth of 

mouse hepatoma cells (Martinez-Lopez et al., 2012). Moreover, Jeon et al. 

demonstrated that knockdown of LKB1 or AMPK in breast cancer cells attenuates 

xenograft tumor growth due to failure in inhibition of acetyl Co-A carboxylase (ACC) 

and maintenance of intracellular NADPH levels (Jeon et al., 2012). The discrepancy 

among studies showing a tumor-suppressive or a pro-oncogenic role for LKB1 

suggests that LKB1 appears to be a “double-edged sword” in terms of tumor 

suppression and promotion, and which role LKB1 plays may be determined by distinct 

cell contexts, tissue types, and nutrient availability within tumor microenvironments. 

Because tumors mostly reside in a metabolic stress environment, it is possible that 
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cancer cells could use LKB1/AMPK signaling for their survival. Whether LKB1 has a 

stage-specific function in cancer progression remains to be determined. 

 

1.7. Ubiquitination and Its Function 

Ubiquitination is a type of posttranslational modification by which a highly conserved 

small regulatory protein ubiquitin (a 76-amino acid polypeptide of ~8.5 kDa) is 

covalently attached to one or multiple lysine residues of a target protein, termed 

monoubiquitination or multi-monoubiquitination, respectively. Ubiquitin contains seven 

lysine residues (K6, K11, K27, K29, K33, K48 and K63), and any of them can be 

utilized for ubiquitin chain formation, for example, K63-linked polyubiquitin chains 

(Figure 1-4). In other words, ubiquitination has varied layouts or forms (Adhikari and 

Chen, 2009; Komander, 2009). It is therefore conceivable that, compared with other 

types of posttranslational modification, ubiquitination plays a more complicated role in 

determining the fate of target proteins and thereby functions in a great diversity of 

cellular processes. So far, K48-linked and K63-linked ubiquitin chains are best 

characterized. Classically, K48-linked polyubiquitin chains are the major targeting 

signal for 26S proteasome- dependent proteolysis, whereas K63-linked ubiquitination 

has non-proteolytic functions in numerous cellular events, such as DNA damage 

repair and intracellular signaling (Adhikari and Chen, 2009; Komander, 2009). The 

ubiquitination reaction involves three classes of enzymes for a three-step enzymatic 

cascade, namely ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes 

(UBCs) (E2s) and ubiquitin ligases (E3s) (Figure 1-5). Basically, ubiquitin is activated 

by the E1 and transferred to the E2, and then the E3 bridges the substrate to the 

‘charged’ E2 for ubiquitin transfer. E2 enzymes are also capable of catalyzing 

ubiquitin chain formation and determining the linkage types of ubiquitin chains (Ye and 

Rape, 2009). E3 ligases are responsible for substrate specificity, and can be 
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categorized into three major classes based on their structural domains and 

mechanistic function in ubiquitin transfer: RING (really interesting new gene) E3s, 

HECT (homologous to E6-associated protein C-terminus) E3s and RBR 

(RING-between-RING) E3s (Berndsen and Wolberger, 2014). On the other hand, 

ubiquitin addition can be removed from the target proteins by a family of 

deubiquitinating enzymes (DUBs). Hence, the ubiquitination/deubiquitination cycle 

can orchestrate a number of non-proteolytic processes in cells, like transcription, 

signaling transduction and vesicle trafficking. There are two E1s, at least 38 E2s, 

600-1000 E3s, and approximately 79 putative DUBs encoded in the human genome 

(Nijman et al., 2005; Ye and Rape, 2009).  

 

 

 

Figure 1-4. A simplified scheme of ubiquitin and its lysine residues. 

A ubiquitin molecule is attached to a lysine (K) residue of a substrate through its last 

residue (Gly76). The seven lysine residues of ubiquitin, all of which can be subjected 

to polyubiquitination, are indicated and the most characterized two are in red. The 

schematic structures of K48-linked and K63-likned polyubiquitin chains are shown 

and their biological functions are indicated. 
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Figure 1-5. A simplified scheme of a ubiquitination reaction. 

Basically, a ubiquitin molecule is activated by a ubiquitin-activating enzyme (E1) and 

transferred to a ubiquitin-conjugating enzyme (E2). Then a ubiquitin ligase (E3) 

bridges the substrate to the ‘charged’ E2 for ubiquitin transfer. 
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1.8. Skp2 and Skp2-SCF Ubiquitin Ligase Complex 

A subset of multi-subunit RING E3 ligases are known as the cullin-RING ligases 

(CRLs). Basically, they consist of a scaffold protein cullin (CUL), a RING-containing 

enzyme Rbx1/2 (RING-box 1 or 2; also known as Roc1/2 (regulator of cullin 1 or 2)) 

and an adaptor protein, called F-box protein (Berndsen and Wolberger, 2014). There 

are 7 cullins (Cul1, 2, 3, 4a, 4b, 5, and 7) and 69 F-box proteins identified in humans 

(Lee and Diehl, 2014). The best characterized CRLs are the Skp1-Cul1-F-box (SCF) 

ubiquitin ligases (Lee and Diehl, 2014). Within SCFs, Cul1 provide the scaffold for 

docking the adaptor Skp1 (S-phase kinase-associated protein 1) and Rbx1, which 

drags E2s carrying activated ubiquitin. Skp1 further links an F-box protein, which 

functions as the substrate recognition component, to the ligase complex. Through 

their F-box domain (approximately 40 amino acids) in the N-terminal region, F-box 

proteins bind to Skp1, and on the basis of their substrate-interacting domains in the 

C-terminal region, F-box proteins are classified into three subtypes: FBXWs (F-box 

proteins with WD40 domains), FBXLs (F-box proteins with leucine-rich repeats (LRR)) 

and FBXOs (F-box proteins with other diverse domains) (Frescas and Pagano, 2008). 

So far, only a small number of F-box proteins have been well characterized with 

known substrates, including β-TrCP (β-transducin repeat-containing protein 1 and 2; 

also known as FBXW1 and FBXW11, respectively), Fbxw7 and Skp2 (also known as 

FBXL1) (Figure 1-6A) (Chan et al., 2010b). Likewise, another multi-subunit ubiquitin 

ligase complex—the anaphase promoting complex/cyclosome (APC/C)—requires its 

activator proteins, Cdc20 (cell division cycle 20 homolog) and Cdh1 (cadherin 1) for 

substrate recognition and full function (Frescas and Pagano, 2008).   

The Skp2-SCF ubiquitin ligase complex is composed of Skp2, Skp1, Cul1 and 

Rbx1 (Figure 1-6B), and capable of targeting its substrates for ubiquitination and 

subsequent proteasome-dependent degradation. In this regard, many Skp2 
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substrates have been demonstrated (Table 1-4); however, the physiological relevance 

of most of them in Skp2-mediated functions remains to be determined. By contrast, 

the cyclin-dependent kinase inhibitor p27 (also known as Kip1) is identified to be the 

major physiological and pathological substrate of Skp2 (Chan et al., 2010b). The 

defects of Skp2 deficiency, including reduced cell proliferation in MEFs, and reduced 

tissue mass, organ size and body weight in mice, can be rescued by double 

deficiency of p27 and Skp2 (Cooke et al., 2007; Nakayama et al., 2004). Moreover, 

overexpression of Skp2 has been observed in association with the inverse expression 

of p27 in multiple human cancers for poor prognosis of patients (Chan et al., 2010b; 

Frescas and Pagano, 2008).  

Besides its well-characterized proteolytic function, the Skp2-SCF has been 

demonstrated to exhibit non-proteolytic function in regulating its substrates (Table 1-4). 

Our group showed that Skp2-SCF-mediated K63-linked ubiquitination of Nbs1 

(Nijmegen breakage syndrome 1; also known as nibrin) is critical for Nbs1-mediated 

ATM activation during DNA double-strand breaks, which may account for Skp2’s role 

in homologous recombination repair (Wu et al., 2012). Our group also reported that 

the Skp2-SCF is a critical ubiquitin ligase specific for EGF-induced ubiquitination and 

activation of Akt and regulates glycolysis, Herceptin sensitivity and breast cancer 

progression (Chan et al., 2012), in contrast to the role of Traf6 (tumor necrosis factor 

(TNF) receptor-associated Factor 6) ubiquitin ligase in IGF-induced Akt ubiquitination 

and activation (Yang et al., 2009). In addition, Skp2 functions independently of SCF 

(Figure 1-6C). Kitagawa et al. showed that Skp2 suppresses apoptosis by 

sequestering p300 from p53, by which acetylation of p53 and subsequent activation of 

p53 transcriptional activity are repressed (Kitagawa et al., 2008). Also, our group 

demonstrated that Skp2, acting as a co-activator along with Myc, p300 and Miz1 

(Myc-interacting zinc finger protein 1) for RhoA (Ras homolog gene family, member A) 
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transcription, regulates cell migration, invasion and cancer metastasis (Chan et al., 

2010a). In mice, Skp2 deficiency results in several metabolically-related defects, such 

as reduced subcutaneous and visceral fat pad mass and adipocyte number (Cooke et 

al., 2007). Additionally, loss of Skp2 causes hypoinsulinemia, glucose intolerance, and 

resistance to high fat diet-induced or lethal yellow agouti (Ay) mutation-induced 

obesity (Sakai et al., 2007; Zhong et al., 2007). These reports suggest a role of Skp2 

in establishing adipose and pancreatic β-cell mass. Although those authors attributed 

the phenotypes to accumulation of p27, one study inconsistently showed that Skp2 

controls adipogenesis via a p27-independent mechanism in primary MEFs (Okada et 

al., 2009). Accordingly, further research is required for elucidating the underlying 

mechanisms by which Skp2 is associated with those metabolic alterations. Taken 

together, these findings implicate that future investigations may be needed to identify 

‘other’ unrecognized substrates or functions of Skp2 dependent or independent of 

SCF. 
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Figure 1-6. Schematic diagrams of Skp2 domain structure and functions. 

(A) Functional domains of human Skp2 are shown. Destruction box (D-box) (amino 

acids 3–6) is required for Skp2 degradation mediated by Cdh1-APC ubiquitin ligase. A 

putative nuclear localization sequence (NLS) is located from amino acids 66–72.  

(B) The Skp2-SCF ubiquitin ligase complex is shown. Ubiquitin (Ub) is transferred 

from the E2 to the substrate. 

(C) A simple scheme of SCF-independent functions of Skp2. 
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Table 1-4. The known Skp2-SCF substrates 

 

 

 

 

 

 

  

Reported substrate(s) Substrate function(s) 

Through proteolytic regulation* 

p27, p21, p57, E2F-1, MEF, p130, Tob1, Cyclin D1, 

Cyclin E, Smad4, Myc, Myb, RASSF1A 

Cell cycle control 

E2F-1, Myc, FoxO1 Apoptosis 

Orc1, Cdt1 DNA replication  

Rag2 DNA recombination 

Brca2 DNA repair 

Cdk9 Transcriptional elongation 

MKP1 Erk signaling 

UBP43 Type 1 interferon signaling 

Through non-proteolytic regulation 

Nbs1† ATM activation, DNA repair 

Akt‡ Glycolysis, Herceptin sensitivity, tumorigenesis 

*The information about the Skp2-SCF substrates undergoing proteolysis is adopted from the reference 

(Chan, 2010). †The reference (Wu, 2012). ‡ The reference (Chan, 2012). 
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1.9. Rationale and Hypothesis 

Many essential, basic cellular processes (e.g., cell division, DNA repair, and gene 

expression control) are conserved across different species, even between yeast and 

humans. The SCF ubiquitin ligase complex is evolutionally conserved from yeast to 

humans. In yeast, it is composed of Skp1, Cdc53 (cullin) and one of the three F-box 

proteins, Cdc4 (cell division control protein 4), Grr1 (glucose repression-resistant 1) or 

Met30 (methionine-requiring protein 30) (Patton et al., 1998). Yeast Grr1, which 

contains LRR (Flick and Johnston, 1991), appears to be organized similarly to human 

Skp2. It regulates cell cycle progression and cellular metabolism through 

ubiquitin-mediated protein degradation (Benanti et al., 2007; Li and Johnston, 1997), 

and plays a role in morphogenesis as Elm1p (Blacketer et al., 1995), the Snf1 (yeast 

AMPK counterpart) kinase closely related to LKB1 (Sutherland et al., 2003). It is found 

that in mammals, Skp2-deficient MEFs and LKB1-deficient MEFs both exhibit 

resistance to oncogenic transformation (Bardeesy et al., 2002; Lin et al., 2010), and 

both proteins were shown to regulate maintenance of hematopoietic stem cells (Gan 

et al., 2010; Gurumurthy et al., 2010; Nakada et al., 2010; Wang et al., 2011). 

Moreover, Skp2 deficiency caused hyperglycemia in mice (Zhong et al., 2007), which 

was also observed in mice with LKB1 deletion in the liver (Shaw et al., 2005). All these 

imply that Skp2 may be linked to the LKB1/AMPK pathway. Therefore, in this 

dissertation study, we aimed to explore the potential relationship between Skp2 and 

the LKB1-AMPK pathway and to decipher the mechanism by which LKB1 kinase 

activity is maintained. 
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Chapter 2 

Materials and Methods 
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2.1. Cell Culture and Reagents 

Wild-type (WT) and Skp2-knockout (Skp2-KO) mouse embryonic fibroblasts (MEFs) 

were prepared from mice as previously described (Lin et al., 2010). All manipulations 

were performed under Institutional Animal Care and Use Committee approval protocol. 

LKB1-knockout (LKB1-KO) MEFs were a kind gift from Dr. Nabeel Bardeesy (Harvard 

Medical School) (Bardeesy et al., 2002). BT-474, MCF-7, Hep3B, HEK293, HEK293T, 

HeLa and A549 cells were obtained from American Type Culture Collection. BT-474 

cells were cultured in RPMI medium supplemented with 10% fetal bovine serum 

(FBS), and all the other cells were cultured in DMEM supplemented with 10% FBS. 

For glucose deprivation, cells were washed with PBS once and then incubated in 

glucose-free DMEM (Invitrogen) supplemented with 10% dialyzed FBS (Sigma) for 

the indicated times. 2-deoxyglucose (2-DG), 5-aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) and phenformin were purchased from Sigma. 

 

2.2. Plasmids 

His6-ubiquitin (His-Ub), His6-ubiquitin-K48R (His-Ub-K48R), His6-ubiquitin-K63R 

(His-Ub-K63R), pcDNA4-Xpress-Skp2 (Xp-Skp2), pcDNA4-Xpress-Skp2-NES 

(Xp-Skp2-NES), pcDNA3-Flag-Skp2, pBabe-Skp2 and pBabe-H-RasG12V constructs 

were described previously (Chan et al., 2012; Lin et al., 2010; Lin et al., 2009). 

pcDNA3-Flag-LKB1, pcDNA3-Flag-LKB1-KD (kinase-dead; K78I), pBabe-Flag-LKB1, 

pBabe-Flag-LKB1-KD and pcDNA4-Xpress-STRAD (Xp-STRAD) constructs were 

purchased from Addgene. pET30a-AMPKα1-312 (His-AMPKα1-312) construct was a kind 

gift from Dr. Gary Lopaschuk (University of Alberta, Canada) (Altarejos et al., 2005). 

pSG-Flag-LKB1 constructs expressing various LKB1 fragments were kindly provided 

by Dr. Christelle Forcet (Institut de Génomique Fonctionnelle de Lyon, France) (Nony 

et al., 2003). pcDNA3-HA-AMPKα1 and pcDNA3-HA-AMPKα2 constructs were a kind 

http://www.google.com.tw/url?sa=t&rct=j&q=%22Christelle%20Forcet%22&source=web&cd=1&ved=0CCwQFjAA&url=http%3A%2F%2Figfl.ens-lyon.fr%2Fannuaire%2Fforcet-christelle&ei=56QNUo_WDIWZ2QWHqoHgBw&usg=AFQjCNEgPG4Z_7DbItLwZGqAHBAwIRzA8g&bvm=bv.50768961,d.eWU
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gift from Dr. Kun-Liang Guan (University of California, San Diego) (Inoki et al., 2003). 

The LKB1 constructs including pCMV-myc-LKB1, pcDNA4-Xpress-LKB1 (Xp-LKB1 

with various LKB1 fragments), pWZL-myc-LKB1 and pGEX-5X-1-LKB1 (GST-LKB1) 

were cloned from pcDNA3-Flag-LKB1 (Tables 2-1 and 2-2). All LKB1-K-to-R mutant 

constructs were generated from the WT LKB1 constructs by using the PCR-based 

site-directed mutagenesis method. To re-express LKB1 that cannot be targeted by 

LKB1 shRNA in cells with stable LKB1 knockdown, silent mutations were generated 

on LKB1 constructs by using the PCR-based site-directed mutagenesis method 

(Table 2-2; sm, silent mutation). 

 

Table 2-1. Cloning information of the LKB1 constructs 

Construct Name Primer pairs Cloning Sites 

pCMV-myc-LKB1 LKB1+1-HindIII-F & LKB1-XhoI-R HindIII/HindIII- 

XhoI/XhoI 

pGEX-5X-1-LKB1 EcoRI-LKB1-F & XhoI-LKB1-R EcoRI/EcoRI- 

XhoI/XhoI 

pWZL-myc-LKB1 Myc-LKB1-F & LKB1-EcoRI-R EcoRI/EcoRI- 

EcoRI/EcoRI 

pcDNA4-Xp-LKB1 aa1-87 LKB1-FL-F & LKB1-87-R T/A cloning 

pcDNA4-Xp-LKB1 aa243-433 LKB1-243-F & LKB1-FL-R T/A cloning 

pcDNA4-Xp-LKB1 aa317-433 LKB1-317-F & LKB1-FL-R T/A cloning 

 

Table 2-2. Primer sequences 

Primer Name Primer sequence (5’ to 3’) 

LKB1+1-HindIII-F ATTAAAGCTTATGGAGGTGGTGGACCCGCAG 

LKB1-XhoI-R ATTACTCGAGTCACTGCTGCTTGCAGGCCGACAG 

EcoRI-LKB1-F CCGAATTCATGGAGGTGGTGGACCCGCAGCAGC 

XhoI-LKB1-R CTCTCGAGTCACTGCTGCTTGCAGGCCGACAG 

Myc-LKB1-F CGCGAATTCATGGAACAAAAACTTATTTCTGAAGAAGATCTGGAG 

GTGGTGGACCCGCAGCAGCTGGGCATGTTC 

LKB1-EcoRI-R ATATGAATTCTCACTGCTGCTTGCAGGCCGACAG 

LKB1-FL-F ATGGAGGTGGTGGACCCG 

LKB1-FL-R  TCACTGCTGCTTGCAGGCC 

LKB1-87-R CTACCTTCGCAACTTCTTCTTCTTG 

LKB1-243-F GTCACCCTCTACAACATCACC 

LKB1-317-F GAAGCACCAGTGCCCATCCC 

smLKB1-5-F GGATGACATCATCTACACACAAGATTTCACGGTGCCCGGACAGG 

smLKB1-5-R CCTGTCCGGGCACCGTGAAATCTTGTGTGTAGATGATGTCATCC 
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2.3. Transfection and Viral Infection 

For transfection of HEK293 or HEK293T cells with exogenous plasmids, the calcium 

phosphate transfection method was used. For control, Skp2, LKB1, Ubc13, or Ubc5C 

knockdown, the indicated cell lines were infected with lentiviruses packaged from 

HEK293T cells transfected with pLKO.1-puro-shRNA constructs (Sigma) and 

packaging plasmids (Chan et al., 2012). The lentiviral shRNAs used are listed in 

Table 2-3. For transduction of vector, LKB1, LKB1-KD, LKB1-5KR, Skp2 or 

H-RasG12V, the indicated cell lines were infected with retroviruses packaged from 

HEK293T cells transfected with pBabe-puro constructs and packaging plasmids 

(Chen et al., 2011). The stably infected cells were selected by 1, 1.5 or 2 μg/ml 

puromycin for 4-7 days. For transduction of LKB1-shRNA non-targeting myc-LKB1, 

control- or LKB1-knockdown Hep3B cell lines were infected with retroviruses 

packaged from HEK293T cells transfected with pWZL-myc-smLKB1 constructs and 

packaging plasmids (Chen et al., 2011). The stably infected cells were selected by 

100 μg/ml hygromycin for 7 days. 

 

Table 2-3. Lentiviral shRNAs used in the study 

shRNA Sequence (5’ to 3’) 

Luciferase shRNA control CGCTGAGTACTTCGAAATGTC 

Skp2 shRNA-1 GATAGTGTCATGCTAAAGAAT 

Skp2 shRNA-2 GCCTAAGCTAAATCGAGAGAA 

LKB1 shRNA CATCTACACTCAGGACTTCAC 

UbcH5c shRNA CCTGCATTATAGCTGGAATAA 

Ubc13 shRNA CCTTCCAGAAGAATACCCAAT 

 

2.4. Immunoblotting, Immunoprecipitation and Antibodies 

For immunoblotting analysis, cells were lysed by direct resuspension in RIPA buffer 

(50mM Tris-HCl [pH 8.0], 150mM NaCl, 5mM EDTA, 0.5% sodium deoxycholate, 

0.1% SDS, 1% (v/v) NP-40, 50mM NaF, 10mM sodium pyrophosphate, 10mM 



30 
 

disodium glycerophosphate, protease inhibitor cocktail), and then clarified cell lysates 

were subjected to SDS-PAGE followed by immunoblotting. For protein quantification, 

the Bradford protein assay was applied using Bio-Rad protein assay dye reagent 

(Bio-Rad). For immunoprecipitation, cells were lysed in RIPA directly, or E1A buffer 

(50mM HEPES [pH 7.5], 250mM NaCl, 5mM EDTA, 0.1% (v/v) NP-40, protease 

inhibitor cocktail) followed by sonication. Clarified cell lysates were incubated with the 

indicated antibodies overnight, and then protein A/G beads (Santa Cruz 

Biotechnology) were added for 3-5 hours. Beads were washed four times with RIPA 

or E1A buffer. Proteins were eluted in 2X SDS-sample buffer and subjected to 

immunoblotting analysis. Antibodies used are listed in Table 2-4. 

Table 2-4. Antibodies used in the study 

Antibody Company IB (v/v)† IP (w/w)‡ 

anti-ACC Cell Signaling 1:1000  

anti-p-ACC (Ser79) Cell Signaling 1:5000  

anti-AMPKα Cell Signaling 1:2000  

anti-p-AMPKα (Thr172) Cell Signaling 1:1000  

anti-Cul1 Invitrogen 1:1000  

anti-Erk1/2 Cell Signaling 1:2000  

anti-p-Erk1/2 (Thr202/Tyr204) Cell Signaling 1:2000  

anti-Flag Sigma 1:5000 1:1000 

anti-Grp78 BD Transduction Laboratories 1:5000  

anti-HA Covance 1:10000  

anti-Lamin B1 Abcam 1:5000  

anti-LKB1 Santa Cruz Biotechnology 1:2000 1:500 

anti-MO25 Cell Signaling 1:5000  

anti-Myc Santa Cruz Biotechnology 1:1000  

anti-Raptor Cell Signaling 1:1000  

anti-p-Raptor (Ser792) Cell Signaling 1:1000  

anti-pan-Ras Calbiochem 1:2000  

anti-Skp1 BD Transduction Laboratories 1:1000  

anti-Skp2 Invitrogen 1:2000 1:1000 

anti-Ubc5C Cell Signaling 1:2000  

anti-Ubc13 Invitrogen 1:2000  

anti-ubiquitin Santa Cruz Biotechnology 1:1000  

anti-Xpress Invitrogen 1:5000  

anti-α-tubulin Sigma 1:10000  

anti-β-actin Sigma 1:20000  

†IB, immunoblotting; antibody dilution at the volume-to-volume (v/v) ratio. 

‡IP, immunoprecipitation; antibody dilution at the weight-to-weight (w/w) ratio. 
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2.5. Recombinant Protein Purification 

Recombinant His-AMPKα1-312 or GST-LKB1 (WT or 5KR) protein was expressed in 

transformed BL21 bacteria by induction at 25oC for 18 hours with 250 μM 

isopropyl-β-D-thiogalactopyranoside. The bacteria were lysed by freeze-thawing and 

sonication, and the bacterial lysates were subjected to protein purification. 

His-AMPKα1-312 was purified by using a nickel-agarose column (Invitrogen) followed 

by elution with a step gradient of imidazole, and GST-LKB1 (WT or 5KR) was purified 

by using glutathione-S-agarose beads (Invitrogen) followed by elution with reduced 

glutathione (Fisher Scientific). The eluted proteins were concentrated and desalted by 

centrifugation using 10-kDa-cutoff Centricon (Millipore). 

 

2.6. In Vitro LKB1 Kinase Assay 

Purified recombinant His-AMPKα1-312 protein was used as the LKB1 substrate. 

Endogenous LKB1 or exogenous Flag-LKB1 immunoprecipitated from cells by 

antibodies against LKB1 or Flag and protein A/G beads, or recombinant GST-LKB1 

(WT or 5KR) purified from bacteria was incubated with recombinant His-AMPKα1-312 at 

30oC for 20 or 30 minutes in 20 μl of reaction buffer (25mM Tris-HCl [pH 7.5], 5mM 

β-glycerophosphate, 2mM DTT, 0.1mM Na3VO4, 10mM MgCl2, 0.5mM ATP). After 

incubation, proteins were eluted in SDS-sample buffer and subjected to 

immunoblotting analysis. LKB1 kinase activity was directly determined by measuring 

Thr172 phosphorylation of the recombinant AMPKα1-312 by using anti-phospho- 

AMPKα (Thr172) antibody. 

 

2.7. In Vivo and In Vitro Ubiquitination Assays 

In vivo and in vitro ubiquitination assays were performed as described previously 

(Chan et al., 2012; Yang et al., 2009). For the in vivo ubiquitination assay, HEK293T 
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or HEK293 cells were transfected with His-Ub and the indicated plasmids for 48 hours 

and lysed by using high-stringency denaturing buffer (6M guanidine-HCl, 0.1M 

Na2HPO4/NaH2PO4, and 10mM imidazole at pH 8.0). The cell extracts were then 

incubated with nickel beads (Invitrogen) for 3 hours, washed, and subjected to 

immunoblotting analysis. For the in vitro ubiquitination assay, the SCF/Flag-Skp2 

complex was expressed in HEK293T cells, immunoprecipitated by using anti-Flag 

antibody, and eluted from protein A/G beads by using Flag peptides according to the 

manufacturer’s standard procedures (Sigma). The purified SCF/Flag-Skp2 and 

recombinant GST-LKB1 were incubated at 37oC for 3 hours in 20 μl of reaction buffer 

(20mM HEPES [pH 7.4], 10mM MgCl2, 1mM DTT, 59mM ubiquitin, 50nM E1, 850nM 

Ubc13/Uev1a, and 1mM ATP). After incubation, the protein mixtures were diluted in 

RIPA buffer and subjected to immunoprecipitation using anti-Flag antibody overnight 

and protein A/G beads for an additional 3 hours. Then beads were washed four times 

with RIPA buffer, and proteins were eluted in SDS-sample buffer and subjected to 

immunoblotting analysis. 

 

2.8. Preparation of Cytosolic and Nuclear Fractions 

Cells were harvested and resuspended in hypotonic buffer (10mM Tris-HCl [pH 7.6], 

10mM MgCl2, 0.1% (v/v) NP-40, protease inhibitor cocktail) followed by Dounce 

homogenization. The suspensions were centrifuged at 1,300 x g for 5 minutes at 4oC, 

and then the resulting supernatants and nuclear pellets were further processed for 

cytosolic and nuclear fractions, respectively. For cytosolic fractions, the supernatants 

were clarified by centrifugation at 13,500 rpm for 15 minutes at 4oC. For further 

immunoprecipitation, the concentration of NP-40 in the cytosolic fractions was 

adjusted from 0.1% to 1%. For nuclear fractions, the nuclear pellets were washed 

once with hypotonic buffer and then resuspended in RIPA buffer followed by 
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sonication and centrifugation. 

 

2.9. Cell Viability Assay 

For Skp2-KO and LKB1-KO MEFs, viable and dead cells were counted directly under 

the microscope using the trypan blue exclusion assay. For glucose-starved A549 and 

Ras-overexpressing Hep3B cells, cell death was measured using DAPI staining as 

previously described (Jeon et al., 2012). Briefly, cells were seeded at a low density in 

12-well plates in triplicates overnight and then subjected to glucose deprivation. The 

treated cells were fixed by directly adding formaldehyde (final concentration 12%) to 

the culture medium. After overnight fixation at 4oC, the cells were stained with DAPI (1 

μg/ml) for 5 minutes, and then washed and left in PBS. Under the fluorescence 

microscope, compared with the untreated cells, the treated cells with condensed or 

fragmented nuclei were counted as dead cells. For administration of phenformin 

or/and Skp2 inhibitor (compound #25), 1.2-1.5x104 of cell were seeded in 12-well 

plates in triplicates for 24 hours and then treated with the indicated drug(s) at the 

indicated concentrations for 3 days. Drugs were refreshed once after treatment for 2 

days. Viable cells were counted under the microscope using the trypan blue exclusion 

assay. 

 

2.10. Detection of Damaged Mitochondria 

Mitochondria were analyzed by MitoTracker staining followed by flow cytometry 

analysis as described previously (Tal et al., 2009). Cells were co-stained with 

MitoTracker Green (for total mitochondria) and MitoTracker Red (for live or respiring 

mitochondria) at 100 nM in the culture medium for 20-30 minutes at 37oC. After 

staining, the cells were washed, harvested and then resuspended in PBS for flow 

cytometry analysis. The FITC-positive and PE-negative/low populations were gated 
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as defective mitochondria. 

 

2.11. In Vivo Tumorigenesis Assay 

3x106 of stable Hep3B cells with LKB1 overexpression were subcutaneously injected 

into the flanks of nude mice. The tumor size was measured by the caliper, and the 

tumor volume (in mm3) was calculated by the equation: volume = (width)2 x length/2. 

All animal experiments were performed under Institutional Animal Care and Use 

Committee approval protocol. For further immunohistochemistry, isolated xenograft 

tissues were fixed in 10% formalin and embedded in paraffin in accordance with 

standard procedures. 

 

2.12. Patients, Tissue Specimens and Immunohistochemistry 

This retrospective study had been approved by the Institutional Review Board of the 

Chi-Mei Medical Center. Immunoexpression was assessed on 120 consecutively 

treated primary hepatocellular carcinoma underwent surgical resection with curative 

intent between 1997 and 2002. The clinicopathologic variables evaluated from the 

120 patients are listed in Table 3-1. The procedures of immunohistochemistry were 

identical to previously described (Chan et al., 2012). The slides were incubated with 

primary antibodies against Skp2 (1:100; Zymed) and LKB1/STK11 (1:50; Epitomics), 

respectively. Primary antibodies were detected using the ChemMate DAKO EnVision 

kit (DAKO, K5001). The slides were incubated with the secondary antibody for 30 

minutes and developed with 3,3-diaminobenzidine for 5 minutes. Immunostaining was 

scored by two pathologists (Drs. Chien-Feng Li and Hsuan-Ying Huang) by using a 

multiheaded microscope to reach a consensus for each case on the H-score as 

previously described (Chan et al., 2012). 
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2.13. Statistical Analysis 

All data are shown as means ± s.d. for at least three independent experiments, unless 

otherwise indicated. Statistical significance was determined by unpaired two tailed 

Student’s t-tests, and P-values less than 0.05 were considered statistically significant. 
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3.1. Skp2 Regulates the LKB1/AMPK Pathway 

To determine whether Skp2 is involved in the LKB1/AMPK pathway, we first examined 

activation of the LKB1/AMPK signaling induced by energy stress in Skp2-deficient 

cells. Phosphorylation of ACC at Ser79, a well-established readout of AMPK activity, 

was analyzed in Skp2-KO primary MEFs and various cell lines with Skp2 knockdown 

under glucose deprivation condition or treatment with glycolysis inhibitor 

2-deoxyglucose (2-DG) where intracellular AMP levels were increased. As expected, 

phosphorylation of ACC as well as AMPKα was induced by glucose deprivation in 

wild-type (WT) primary MEFs; however, in Skp2-KO MEFs, glucose deprivation 

induced much lower levels of ACC and AMPKα phosphorylation (Figure 3-1A). 

Moreover, Skp2 knockdown in multiple cancer cell lines (Hep3B, BT-474, and MCF-7) 

impaired glucose deprivation-induced phosphorylation of ACC (Figures 3-1B–D). 

Similarly, ACC phosphorylation induced by 2-DG was compromised by Skp2 

knockdown (Figure 3-1E). These results indicate that Skp2 is critical for activating the 

LKB1/AMPK signaling. 

We next examined whether Skp2 is critical for maintaining LKB1 kinase activity 

by measuring LKB1 kinase activity toward AMPKα in vitro. Strikingly, LKB1 proteins 

isolated from cells with Skp2 knockdown displayed a decreased ability to 

phosphorylate AMPKα, compared with LKB1 derived from cells with control 

knockdown (Figure 3-2). This indicates that Skp2 deficiency impairs the ability of 

LKB1 to activate AMPK, thereby downregulating the LKB1/AMPK signaling. Our 

results suggest that Skp2 is a novel LKB1 regulator that is required for maintaining 

LKB1 activity. 
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                       A 

 

           B 

 

 

Figure 3-1. The LKB1-AMPK signaling is downregulated under Skp2 deficiency. 

(A) WT (Skp2+/+) and Skp2-KO (Skp2-/-) MEFs cultured in the presence (+) or absence 

(-) of glucose were subjected to immunoblotting. 

(B) Hep3B cells with control (shLuc), Skp2 or LKB1 knockdown cultured in the 

absence of glucose for the indicated time points were subjected to immunoblotting. 

 

  



39 
 

                   C 

 

                    D 

 

 

Figure 3-1. The LKB1/AMPK signaling is downregulated under Skp2 deficiency 

(continued). 

(C) BT-474 cells with control (shLuc), Skp2 or LKB1 knockdown cultured in the 

presence (+) or absence (-) of glucose were subjected to immunoblotting. 

(D) MCF-7 cells with control (shLuc) or Skp2 knockdown cultured in the absence of 

glucose for the indicated time points were subjected to immunoblotting. 
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            E 

 

 

 

Figure 3-1. The LKB1/AMPK signaling is downregulated under Skp2 deficiency 

(continued). 

(E) HEK293 cells with control (shLuc), Skp2 or LKB1 knockdown after treatment with 

2-DG at the indicated concentrations for 15 minutes were subjected to 

immunoblotting. 
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Figure 3-2. Skp2 knockdown attenuates the LKB1 kinase activity. 

Immunoprecipitates (IP) by anti-LKB1 antibody from HEK293 cells with control 

(shLuc), LKB1 or Skp2 knockdown were subjected to in vitro LKB1 kinase assay 

followed by immunoblotting. 
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3.2. Skp2 Induces K63-linked Polyubiquitination of LKB1 

To gain a further insight into how Skp2 regulates LKB1 activity, we examined the 

interaction between endogenous Skp2 and LKB1 using reciprocal 

co-immunoprecipitation (co-IP) experiments. We found that Skp2 and LKB1 were 

co-immunoprecipitated by each other (Figures 3-3A,B). The specificity of their 

interaction was verified in LKB1 or Skp2 knockdown cells, and both LKB1 knockdown 

and Skp2 knockdown compromised the Skp2-LKB1 co-IP efficiency (Figures 3-3A,B). 

Because Skp2 is a substrate recognition component of the SCF ubiquitin ligase 

complex, our finding that Skp2 interacts with LKB1 raises the question of whether 

Skp2 can promote LKB1 ubiquitination. Using the in vivo ubiquitination assay, we 

found that overexpression of WT Skp2 promoted LKB1 polyubiquitination in the 

absence of the proteasome inhibitor MG132 (Figure 3-4A). In contrast, the ubiquitin 

ligase-defective mutant of Skp2 (Skp2-NES), which does not form the Skp2-SCF 

complex (Lin et al., 2009), failed to promote LKB1 polyubiquitination, although 

Skp2-NES still bound to LKB1 as efficiently as WT Skp2 (Figures 3-4A,B). 

Consistently, administration of a specific Skp2 inhibitor, which impairs the ubiquitin 

ligase activity of the Skp2-SCF complex by preventing Skp2-Skp1 binding (Chan et al., 

2013), diminished Skp2-mediated LKB1 polyubiquitination (Figure 3-5). Moreover, 

Skp2 knockdown reduced LKB1 polyubiquitination (Figure 3-6). To verify whether 

Skp2-SCF is a bona fide ubiquitin ligase toward LKB1, we performed the in vitro 

ubiquitination assay by incubating recombinant GST-LKB1 with the purified 

SCF/Flag-Skp2 complex, along with recombinant ubiquitin, E1 and E2 enzymes. The 

Skp2-SCF was capable of ubiquitinating LKB1 directly in vitro (Figure 3-7), confirming 

that the Skp2-SCF is a direct ubiquitin ligase for LKB1. Similar to genetic inhibition of 

Skp2, pharmacological inactivation of Skp2 by administration of the Skp2 inhibitor 

downregulated the LKB1/AMPK signaling as determined by decreased 
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phosphorylation of ACC in a dose-dependent manner (Figure 3-8). Thus, our data 

indicate that Skp2 orchestrates LKB1 activity through maintaining polyubiquitination of 

LKB1. 

A recent study demonstrated that the ubiquitin ligase CHIP is involved in LKB1 

degradation (Gaude et al., 2012). However, we did not observe significant changes in 

LKB1 protein levels upon Skp2 knockdown or overexpression in our experiments, so 

we speculated that Skp2 mediates non-degradative polyubiquitination of LKB1. 

K48-linked ubiquitin chains are known as a major targeting signal for proteasomal 

degradation, whereas K63-linked ubiquitin chains have non-proteolytic functions in 

many cellular processes, such as kinase activation, DNA repair, and protein trafficking 

(Yang et al., 2010). Accordingly, to confirm that Skp2-mediated polyubiquitination of 

LKB1 is non-proteolytic, we applied two mutant forms of ubiquitin to our in vivo 

ubiquitination assay: ubiquitin-K48R (His-Ub-K48R) and ubiquitin-K63R 

(His-Ub-K63R), which exclusively eliminate K48-linked and K63-linked 

polyubiquitination, respectively. Strikingly, we found that Ub-K63R, but not Ub-K48R, 

blocked Skp2-mediated LKB1 polyubiquitination (Figure 3-9). Because the linkage 

specificity of ubiquitin chains is determined by E2 ubiquitin-conjugating enzymes, we 

also investigated the effect of K63-Ub-specific E2 enzymes Ubc13 and Ubc5C on 

Skp2-mediated LKB1 polyubiquitination. Knockdown of either Ubc13 or Ubc5C 

decreased Skp2-mediated LKB1 polyubiquitination (Figure 3-10). Hence, 

Skp2-mediated LKB1 polyubiquitination primarily occurs through non-degradative 

K63-linked ubiquitination for non-proteolytic regulation, such as kinase activation, 

which is consistent with our aforementioned finding that Skp2 affects LKB1 activity 

rather than stability. 
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Figure 3-3. Skp2 interacts endogenously with LKB1. 

(A) (B) Immunoprecipitates by anti-LKB1 (A) or anti-Skp2 (B) antibody from HEK293 

cells with control (shLuc), LKB1 or Skp2 knockdown were subjected to 

immunoblotting. The asterisks indicate heavy chains of the antibodies and the 

arrowheads indicate the bands corresponding to Skp2 (A) or LKB1 (B). 
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Figure 3-4. Skp2 promotes polyubiquitination of LKB1. 

(A) In vivo ubiquitination assay in HEK293T cells transfected with the indicated 

plasmids was followed by immunoblotting. 

(B) Immunoprecipitates (IP) by anti-LKB1 antibody from HEK293T cells transfected 

with the indicated plasmids were subjected to immunoblotting. 
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Figure 3-5. Skp2-SCF ubiquitin ligase activity is required for Skp2-mediated 

polyubiquitination of LKB1. 

In vivo ubiquitination assay in HEK293T cells transfected with the indicated plasmids 

and treated with the Skp2 inhibitor (compound #25) at the indicated concentrations 

was followed by immunoblotting. 
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Figure 3-6. Skp2 knockdown attenuates polyubiquitination of LKB1. 

In vivo ubiquitination assay in HEK293 cells with control (shLuc) or Skp2 knockdown 

transfected with the indicated plasmids was followed by immunoblotting. 
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Figure 3-7. Skp2-SCF is capable of ubiquitinating LKB1 in vitro. 

In vitro ubiquitination assay, in which recombinant GST-LKB1 was incubated with 

purified Flag-Skp2/SCF, along with recombinant ubiquitin (Ub), E1 and E2 enzymes 

for reaction, was followed by immunoprecipitation and immunoblotting. 
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Figure 3-8. Skp2-SCF ubiquitin ligase activity is required for activation of the 

LKB1/AMPK signaling. 

Hep3B cells pretreated with the Skp2 inhibitor (compound #25) at the indicated 

concentrations for 24 hours were subjected to AICAR treatment at the indicated 

concentrations for 2 hours, followed by immunoblotting. 
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Figure 3-9. Skp2-mediated polyubiquitination of LKB1 primarily occurs via 

K63-linkage. 

In vivo ubiquitination assay in HEK293T cells transfected with the indicated plasmids 

were followed by immunoblotting. 
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Figure 3-10. K63-specific E2 enzymes are involved in Skp2-mediated 

polyubiquitination of LKB1. 

In vivo ubiquitination assay in HEK293 cells with control (shLuc), Ubc5C or Ubc13 

knockdown transfected with the indicated plasmids was followed by immunoblotting. 
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3.3. LKB1 Polyubiquitination Is Critical for LKB1 Activation 

To further characterize the role of Skp2-mediated LKB1 polyubiquitination in LKB1 

activation, we attempted to identify lysine residue(s) on LKB1 where Skp2-mediated 

polyubiquitination takes place. Human LKB1 contains 32 lysine residues, and 26 of 

them are highly conserved among species. We first screened various fragments of 

LKB1 using in vivo ubiquitination assays to locate Skp2-mediated LKB1 

polyubiquitination. By comparing polyubiquitination among the LKB1 fragments, we 

concluded that Skp2-mediated polyubiquitination occurred most intensively within the 

N-terminus of LKB1 (amino acids 1-243 and 1-87; Figures 3-11A,B and 3-12). 

Through a series of screening experiments in which mutagenesis of the conserved 

lysine to arginine (K-to-R) within the region of LKB1 was performed, we found that 

none of the LKB1 mutants containing a single K-to-R substitution significantly affected 

LKB1 polyubiquitination (Figures 3-13A,B). By screening LKB1 mutants containing 

multiple K-to-R substitutions, we identified that the 5KR mutant of LKB1 (LKB1-5KR), 

which carries 5 K-to-R substitutions at the position 41, 44, 48, 62 and 64, displayed 

much less Skp2-mediated polyubiquitination as well as basal polyubiquitination than 

WT LKB1 (Figures 3-13C,D), although LKB1-5KR bound to Skp2 comparably to WT 

LKB1 (Figure 3-13E). Thus, LKB1-5KR is an ubiquitination-deficient mutant of LKB1. 

To understand whether Skp2-mediated K63-linked ubiquitination of LKB1 is 

important for LKB1 kinase activity, we examined the ability of the 

ubiquitination-deficient mutant LKB1-5KR to activate the downstream AMPK signaling 

by ectopic expression of vector, WT LKB1 or LKB1-5KR in LKB1-deficient cells or 

LKB1-proficient cells with LKB1 knockdown. When stably expressed in LKB1-deficient 

HeLa cells, WT LKB1, but not kinase-dead (KD) LKB1, strongly activated the 

downstream AMPK signaling, showing robust induction of ACC phosphorylation 

compared with the vector control (Figure 3-14A). However, the 5KR mutant 



53 
 

significantly reduced LKB1’s ability to induce AMPK signaling, as determined by less 

phosphorylation of ACC compared with WT LKB1 (Figure 3-14A). Also, under the 

low-energy conditions—glucose deprivation or 2-DG treatment, LKB1-5KR exhibited 

a compromised ability to induce ACC phosphorylation in LKB1-deficient A549 cells 

and LKB1-KO MEFs in comparison with WT LKB1 (Figures 3-14B,C). Similarly, 

LKB1-5KR failed to rescue the defect of LKB1 knockdown in glucose 

deprivation-induced phosphorylation of ACC in Hep3B cells (Figure 3-14D). To 

confirm the impact of Skp2-mediated polyubiquitination on LKB1 kinase activity, we 

determined the kinase activity of LKB1-5KR directly using the in vitro kinase assay. 

Consistently, LKB1-5KR isolated from cells showed decreased kinase activity toward 

AMPKα compared with WT LKB1 (Figure 3-15). Hence, our data suggest that 

Skp2-mediated K63-linked ubiquitination of LKB1 serves as a novel regulatory 

mechanism for LKB1 activation. 
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Figure 3-11. Skp2-mediated polyubiquitination primarily occurs within the 

N-terminus of LKB1. 

(A) (B) In vivo ubiquitination assays in HEK293T cells transfected with the constructs 

expressing the indicated fragments of tagged-LKB1 and the other indicated plasmids 

were followed by immunoblotting. 
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Figure 3-12. A diagram summary of interaction between Skp2 and different 

fragments of LKB1.  

Interaction between the indicated LKB1 fragments and Skp2 was examined by 

co-immunoprecipitation assays, and the result is presented by a diagram. 
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Figure 3-13. The 5KR mutant of LKB1 is an ubiquitination-deficient mutant. 

(A) LKB1 protein sequences among species (from Ensembl) were aligned through 

T-Coffee website (http://www.ebi.ac.uk/Tools/msa/tcoffee/). The conserved Lys (K) 

residues within the N-terminus of LKB1 (1-93 amino acids) are highlighted and the 

ones corresponding to the 5KR mutation are highlighted in yellow. Lys78 (shown in 

red) is located in the ATP-binding site of the LKB1 kinase domain. 

(B) (C) In vivo ubiquitination assays in HEK293T cells transfected with the constructs 

expressing the indicated mutant forms of Flag-LKB1 and the other indicated plasmids 

were followed by immunoblotting. 
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Figure 3-13. The 5KR mutant of LKB1 is an ubiquitination-deficient mutant 

(continued). 

(D) In vivo ubiquitination assay in HEK293T cells transfected with the indicated 

plasmids were followed by immunoblotting. 

(E) Immunoprecipitates (IP) by anti-Skp2 antibody from HEK293T cells transfected 

with the indicated plasmids were subjected to immunoblotting. 
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Figure 3-14. Skp2-mediated polyubiquitination of LKB1 is important for 

activation of the LKB1/AMPK signaling. 

(A) LKB1-deficient HeLa cells with stable restoration of the indicated Flag-LKB1 were 

subjected to immunoblotting. 

(B) LKB1-deficient A549 cells with stable reconstitution of the indicated Flag-LKB1 

cultured with (G) or without (-) glucose, or treated with 5mM 2-DG (D) for 2 hours were 

subjected to immunoblotting. 

(C) LKB1-KO MEFs with stable reconstitution of the indicated Flag-LKB1 cultured in 

the presence (+) or absence (-) of glucose for 2 hours were subjected to 

immunoblotting. 
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Figure 3-14. Skp2-mediated polyubiquitination of LKB1 is important for 

activation of the LKB1/AMPK signaling (continued). 

(D) Control- or LKB1-knockdown Hep3B cells with stable transduction of the indicated 

shRNA non-targeting myc-LKB1 cultured in the absence of glucose for the indicated 

time points were subjected to immunoblotting. S.E., short exposure; L.E., long 

exposure. 
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Figure 3-15. Skp2-mediated polyubiquitination of LKB1 is critical for LKB1 

kinase activity. 

Immunoprecipitates of exogenous Flag-LKB1 from HEK293T cells transfected with 

the indicated Flag-LKB1 were subjected to in vitro LKB1 kinase assay followed by 

immunoblotting. 
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3.4. LKB1 Polyubiquitination Is Crucial for Maintaining LKB1 Complex Integrity 

Next, we sought to determine the molecular mechanism of how Skp2-mediated 

K63-linked ubiquitination of LKB1 regulates LKB1 activity. First, we examined the 

ability of LKB1 to bind to its substrate AMPKα. Binding of LKB1 to AMPKα1/2 was not 

affected by either LKB1-5KR mutant or Skp2 knockdown in the co-IP experiments 

(Figures 3-16A,B). Considering that LKB1 is mainly activated through the formation of 

the LKB1-STRAD-MO25 complex, we then investigated the integrity of the LKB1 

heterotrimeric complex using co-IP experiments. In the co-IP experiment, there was 

no significant difference in the LKB1-STRAD interaction between WT LKB1 and 

LKB1-5KR; however, the ubiquitination-deficient mutant LKB1-5KR displayed 

impaired ability to bind to the other subunit MO25 (Figure 3-17A). Attenuated 

interaction between LKB1 and MO25 was also observed in multiple LKB1-deficient 

cell lines (HeLa, A549, and LKB1-KO MEFs) reconstituted with LKB1-5KR (Figures 

3-17B–D). Furthermore, Skp2 knockdown, which attenuated LKB1 polyubiquitination, 

impaired the LKB1-MO25 interaction (Figure 3-17E). Since STRAD, but not MO25, 

has been demonstrated to facilitate nucleocytoplasmic shuttling of LKB1 (Dorfman 

and Macara, 2008), our result that LKB1 ubiquitination does not influence the 

LKB1-STRAD binding could explain our own observation that Skp2-mediated 

polyubiquitination of LKB1 does not affect the nucleocytoplasmic localization of LKB1 

(Figures 3-18A–C). Taken together, Skp2-mediated K63-linked polyubiquitination of 

LKB1 modulates LKB1 kinase activity by maintaining the integrity of the LKB1 

complex. 
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Figure 3-16. Skp2-mediated polyubiquitination of LKB1 does not affect LKB1 

binding to AMPKα. 

(A) HEK293T cells transfected with the indicated Flag-LKB1 and HA-AMPKα 

constructs were subjected to immunoprecipitation (IP) followed by immunoblotting. 

(B) HEK293 cells with control (shLuc) or Skp2 knockdown transfected with Flag-LKB1 

and the indicated HA-AMPKα constructs were subjected to immunoprecipitation 

followed by immunoblotting. 
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Figure 3-17. Skp2-mediated polyubiquitination of LKB1 regulates the integrity 

of the LKB1 complex. 

(A) Immunoprecipitates by anti-Flag antibody from cytosolic fractions of HEK293T 

cells transfected with Xp-STRAD and the indicated Flag-LKB1 were subjected to 

immunoblotting. 

(B) Immunoprecipitates by anti-LKB1 antibody from cytosolic fractions of 

LKB1-deficient HeLa cells with stable reconstitution of the indicated Flag-LKB1 were 

subjected to immunoblotting. 
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Figure 3-17. Skp2-mediated polyubiquitination of LKB1 regulates the integrity 

of the LKB1 complex (continued). 

(C) (D) Immunoprecipitates by anti-LKB1 antibody from cytosolic fractions of 

LKB1-deficient A549 cells (C) or LKB1-KO MEFs (D) with stable reconstitution of the 

indicated Flag-LKB1 were subjected to immunoblotting. 
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Figure 3-17. Skp2-mediated polyubiquitination of LKB1 regulates the integrity 

of the LKB1 complex (continued). 

(E) Immunoprecipitates by anti-LKB1 antibody from cytosolic fractions of BT-474 cells 

with control (shLuc), Skp2 or LKB1 knockdown were subjected immunoblotting. 
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Figure 3-18. Skp2-mediated polyubiquitination of LKB1 does not affect LKB1 

subcellular localization. 

(A) (B) HEK293 cells transfected with the indicated Flag-LKB1 (A) and LKB1-KO 

MEFs with stable reconstitution of the indicated Flag-LKB1 (B) were subjected to 

nuclear/cytoplasmic fractionation followed by immunoblotting. Lamin B1 serves as a 

nuclear marker, and α-tubulin serves as a cytoplasmic marker. WCE, whole cell 

extracts. 
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Figure 3-18. Skp2-mediated polyubiquitination of LKB1 does not affect LKB1 

subcellular localization (continued). 

(C) HEK293 cells with control (shLuc), LKB1 or Skp2 knockdown were subjected to 

nuclear/cytoplasmic fractionation followed by immunoblotting. Lamin B1 serves as a 

nuclear marker, and α-tubulin serves as a cytoplasmic marker. WCE, whole cell 

extracts. 
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3.5. Ras Activates the Skp2-SCF to Induce LKB1 Polyubiquitination and 

Activation 

We further attempted to identify the upstream regulator(s) that can induce 

Skp2-mediated polyubiquitination and activation of LKB1. Surprisingly, we found that 

hyperactivation of Ras by overexpression of constitutively active Ras (H-RasV12) 

promoted polyubiquitination of exogenous and endogenous LKB1 (Figures 3-19A,B), 

which occurred mainly via K63-linked polyubiquitination (Figure 3-20). Here, 

phosphorylation of Erk1/2 at Thr202/Tyr204 was examined as an indicator of Ras 

activation. To further assess whether Ras-induced LKB1 polyubiquitination is 

dependent on Skp2, the Skp2 inhibitor and the ubiquitination-deficient mutant of LKB1 

(LKB1-5KR) were used in the in vivo ubiquitination assays. In the presence of the 

Skp2 inhibitor, where Skp2-SCF E3 ligase activity is inhibited (Chan et al., 2013), Ras 

no longer promoted LKB1 polyubiquitination efficiently (Figure 3-21A). A similar defect 

in Ras-mediated LKB1 polyubiquitination was also observed on the LKB1-5KR mutant 

(Figure 3-21B). In contrast, when co-overexpressed with Skp2, Ras displayed a 

robust synergistic effect on polyubiquitination of endogenous LKB1 (Figure 3-22A). 

Notably, overexpression of constitutively active Ras promoted the assembly of the 

Skp2-SCF ubiquitin ligase complex (Figure 3-22B; the Skp2-Skp1-Cul1 interaction), 

indicating that Ras can induce Skp2-SCF E3 ligase activity. 

We next investigated whether hyperactivation of Ras has effect on LKB1 

activation. We found that overexpression of constitutively active Ras upregulated the 

LKB1/AMPK signaling as indicated by increased phosphorylation of ACC and Raptor 

(at Ser792), two well-established AMPK substrates (Figure 3-23A). We then 

determined whether Ras-mediated activation of the LKB1/AMPK signaling involves 

Skp2-dependent LKB1 ubiquitination. Skp2 knockdown as well as LKB1 knockdown 

diminished Ras-mediated activation of the LKB1/AMPK signaling, showing reduced 
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induction of ACC and Raptor phosphorylation in comparison with control knockdown 

(Figure 3-23B), and Ras co-overexpressed with WT LKB1, but not LKB1-5KR or 

LKB1-KD, further induced the LKB1/AMPK signaling (Figures 3-23C,D). Thus, our 

results suggest that oncogenic Ras induces K63-linked polyubiquitination of LKB1 

and activation of the LKB1/AMPK signaling via activation of the Skp2-SCF ubiquitin 

ligase complex. 
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Figure 3-19. Overexpression of oncogenic Ras promotes polyubiquitination of 

LKB1. 

(A) (B) In vivo ubiquitination assays in HEK293T cells transfected with the indicated 

plasmids were followed by immunoblotting. 

 

  



71 
 

 

 

 

 

Figure 3-20. Ras-mediated polyubiquitination of LKB1 is mainly through 

K63-linkage. 

In vivo ubiquitination assay in HEK293T cells transfected with the indicated plasmids 

was followed by immunoblotting. 
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Figure 3-21. Oncogenic Ras induces polyubiquitination of LKB1 in a 

Skp2-SCF-dependent manner. 

(A) In vivo ubiquitination assay in HEK293T cells transfected with the indicated 

plasmids and treated with vehicle or the Skp2 inhibitor (compound #25) was followed 

by immunoblotting. 

(B) In vivo ubiquitination assay in HEK293T cells transfected with the indicated 

plasmids was followed by immunoblotting. 
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Figure 3-22. Oncogenic Ras activates Skp2-SCF to synergistically promote 

polyubiquitination of LKB1. 

(A) In vivo ubiquitination assay in HEK293T cells transfected with the indicated 

plasmids was followed by immunoblotting. The asterisk indicates non-specific bands 

(serving as loading controls), and the arrowhead indicates the bands corresponding to 

LKB1. 

(B) Immunoprecipitates (IP) by control or anti-Skp2 antibody from HEK293T cells 

transfected with vector (Vec) or Ras were subjected to immunoblotting. 
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Figure 3-23. Oncogenic Ras induces activation of the LKB1/AMPK signaling via 

Skp2. 

(A) WT MEFs with stable transduction of vector (Vec) or Ras cultured in the absence 

of glucose for the indicated time points were subjected to immunoblotting. 

(B) Hep3B cells with stable transduction of vector (Vec) or Ras along with the 

indicated stable knockdown were subjected to treatment of 1mM AICAR for 2 hours, 

followed by immunoblotting. 
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Figure 3-23. Oncogenic Ras induces activation of the LKB1/AMPK signaling via 

Skp2 (continued). 

(C) Hep3B cells with stable transduction of vector (Vec) or Ras along with the 

indicated Flag-LKB1 were subjected to immunoblotting. 

(D) Hep3B cells as in (C) cultured in the presence (+) or absence (-) of glucose were 

subjected to immunoblotting. 
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3.6. LKB1 Polyubiquitination Regulates LKB1’s Function in Cell Survival 

As kinase activity has been shown to be critical for LKB1 to execute its biological 

function via the LKB1/AMPK axis during energy stress, we therefore investigated 

whether Skp2-mediated K63-linked polyubiquitination of LKB1 regulates LKB1 

function in energy stress responses. Activation of the LKB1/AMPK pathway plays an 

important role in protecting cells from apoptosis under metabolic stress. Accordingly, 

the effect of LKB1-5KR on energy stress-induced cell survival was examined. As 

demonstrated in previous studies (Shaw et al., 2004b), compared with the vector 

control, WT LKB1 exhibited a protective effect on cell viability in LKB1-deficient cells 

under metabolic stress induced by glucose deprivation (Figure 3-24A) or treatment of 

AMP analogue AICAR (Figure 3-24B). In contrast, LKB1-5KR, which had a 

compromised kinase activity, failed to protect LKB1-deficient cells from metabolic 

stress-induced cell death compared to WT LKB1 (Figures 3-24A,B). 

Several evidence has suggested that autophagy, a process that degrades 

damaged proteins and organelles in response to low nutrient availability to maintain 

energy homeostasis, is activated by AMPK through activation of ULK1 and inhibition 

of mTORC1 to serve as a survival/adaptation mechanism under nutrient deprivation 

(Egan et al., 2011; Kim et al., 2011). Moreover, recent studies demonstrated that the 

AMPK/ULK1 signaling and LKB1 have function in mitophagy, a selective form of 

autophagy that degrades damaged mitochondria, under metabolic stress (Egan et al., 

2011; Shackelford et al., 2013). We then assessed the role of LKB1 polyubiquitination 

in mitochondrial homeostasis. Glucose deprivation caused increases in dysfunctional 

mitochondria, as assayed by flow cytometry following co-staining of cells with 

MitoTracker Green and MitoTracker Red (Figures 3-25A,B). Notably, ectopic 

expression of WT LKB1, but not LKB1-5KR, led to a reduced number of defective 

mitochondria under glucose deprivation (Figures 3-25A,B). Similar results were 
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obtained in Skp2-KO MEFs, showing that Skp2 deficiency, which lacks a functional 

LKB1/AMPK signaling, resulted in elevated cell death (Figure 3-26A) and 

accumulation of defective mitochondria (Figure 3-26B) under metabolic stress. These 

results show that Skp2-mediated K63-linked polyubiquitination of LKB1 is critical for 

LKB1 function in cell survival during energy stress. 

Given our above finding that Ras hyperactivation induces Skp2-depedent 

polyubiquitination and activation of LKB1, we reasoned that Ras may activate the 

LKB1/AMPK pathway to protect cancer cells against metabolic stress-induced cell 

death. In line with this notion, we observed that Ras hyperactivation reduced glucose 

deprivation-induced cell death (Figure 3-27). However, either LKB1 knockdown or 

Skp2 knockdown abolished Ras-mediated protective effect on cell survival under 

glucose starvation (Figure 3-27). Our results underscore the critical role of the 

Ras/Skp2/LKB1 axis in regulating cell survival during energy stress. 
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Figure 3-24. Skp2-mediated polyubiquitination of LKB1 is important for cancer 

cell survival under energy stress.  

(A) LKB1-deficient A549 cells stably restored with the indicated Flag-LKB1 were 

subjected to glucose starvation for 48 hours, and then cell death was determined by 

DAPI staining. The result is shown as means ± s.d. (n≥3). Whole cell extracts of the 

untreated cells were subjected to immunoblotting (upper panel). **P<0.01. 

(B) LKB1-KO MEFs stably restored with the indicated Flag-LKB1 were subjected to 

treatment with 2mM AICAR for 24 hours. Cell viability was determined by trypan blue 

exclusion assay, and is expressed as a percentage of the vehicle-treated controls. 

The result is shown as means ± s.d. (n=3). Whole cell extracts of the untreated MEFs 

were subjected to immunoblotting (upper panel). *P<0.05; **P<0.01. 
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Figure 3-25. Skp2-mediated polyubiquitination of LKB1 is critical for LKB1’s 

function in mitochondrial homeostasis. 

(A) Mitochondria of Hep3B cells with stable transduction of the indicated Flag-LKB1 

cultured in the presence (NT, non-treated) or absence of glucose for 10 hours were 

analyzed by flow cytometry with MitoTracker staining. The result is shown as means ± 

s.d. (n=2). Whole cell extracts of the untreated cells were subjected to immunoblotting 

(upper panel). *P<0.05. 
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Figure 3-25. Skp2-mediated polyubiquitination of LKB1 is critical for LKB1’s 

function in mitochondrial homeostasis (continued). 

(B) Representative flow cytometric dot plots from (A). Mitochondria were co-stained 

with MitoTracker Green (FITC) and MitoTracker Red (PE) followed by flow cytometric 

analysis. The damaged mitochondria (FITC-positive and PE-negative or low; P2 

fraction) were quantitated, and the percentages are shown. NT, non-treated. 
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Figure 3-26. Skp2 is involved in energy stress-induced cell survival. 

(A) WT and Skp2-KO (Skp2-/-) MEFs were subjected to treatment with 2mM AICAR 

for 24 hours. Cell viability was determined by trypan blue exclusion assay, and cell 

death is expressed as a percentage of the untreated controls. The result is shown as 

means ± s.d. (n=3). *P<0.05. 

(B) Mitochondria of WT and Skp2-KO (Skp2-/-) MEFs cultured in the presence (NT) or 

absence of glucose for 15 hours were analyzed by flow cytometry following 

MitoTracker staining. The result is shown as means ± s.d. (n=2). *P<0.05. 
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Figure 3-27. The Ras/Skp2/LKB1 axis is important for cancer cell survival under 

energy stress. 

Hep3B cells with stable transduction of vector (Vec) or Ras along with the indicated 

stable knockdown were subjected to glucose starvation for 8 hours, and then cell 

death was determined by DAPI staining. The result is shown as means ± s.d. (n=4). 

Whole cell extracts of the untreated cells were subjected to immunoblotting (upper 

panel). ***P<0.005. 
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3.7. LKB1 Is Overexpressed and Oncogenic in HCC 

Skp2 displays oncogenic activity in vitro and in vivo, and overexpression of Skp2 has 

been reported in a variety of human cancers (Chan et al., 2010b), including HCC 

(Calvisi et al., 2009; Lu et al., 2009). Our findings that Skp2 triggers K63-linked 

polyubiquitination and activation of LKB1 raise the possibility that LKB1 may also 

exhibit oncogenic activity in certain tissues like the liver. To test this idea, we therefore 

assessed the expression of Skp2 and LKB1 and their correlation in human HCC 

patients. First, we analyzed the expression-profiling dataset of HCC tissues versus 

normal liver tissues from Gene Expression Omnibus, and found that both LKB1 

(STK11) and Skp2 transcripts were upregulated and correlated in HCC (Figure 3-28A). 

Consistently, in our HCC patient cohorts, we detected that both Skp2 and LKB1 were 

overexpressed in late-stage HCC (Figure 3-28B). Our result is in agreement with the 

previous report showing that LKB1 is overexpressed in human HCC (Martinez-Lopez 

et al., 2012). In our patient cohorts, the increased expression of both Skp2 and LKB1 

was significantly associated with numerous adverse clinical features, including a 

worse Pugh-Child’s classification, the presence of tumor multiplicity, and higher 

American Joint Committee on Cancer TNM system stage (Table 3-1). Notably, Skp2 

expression was also significantly related to advance Cancer of the Liver Italian 

Program score and Okuda stage (Figure 3-28B and Table 3-1) and positively 

correlated with LKB1 expression (Figure 3-28C). Moreover, univariate survival 

analysis results reveal that high expression of Skp2 or LKB1 was remarkably 

correlated with both overall and local recurrence-free survival (Figures 3-29A–D and 

Table 3-2). In multivariate survival analysis, Skp2 or LKB1 overexpression was 

independently predictive for worse overall survival (RR=7.059, P<0.001 and 

RR=2.115, P=0.035, respectively; Table 3-3), and only LKB1 expression level was 

prognostically significant for local recurrence-free survival (RR=3.027, P <0.001; 
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Table 3-3). Thus, our data show that both Skp2 and LKB1 are overexpressed in HCC 

patients and their overexpression serves as prognostic markers for poor survival 

outcome. 

To further determine whether overexpression of LKB1 is oncogenic in HCC, we 

stably overexpressed LKB1 in the human HCC cell line Hep3B and then investigated 

tumorigenicity of the LKB1-overexpressing Hep3B cells in vivo by xenograft assay. 

Overexpression of WT LKB1 promoted HCC tumor growth in vivo in a mouse 

subcutaneous xenograft tumor model, whereas overexpression of KD LKB1 or 

LKB1-5KR failed to do so (Figure 3-30). Hence, our data suggest that LKB1 displays 

oncogenic activity in HCC in a manner dependent on its polyubiquitination and kinase 

activity. 
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Figure 3-28. Both LKB1 and Skp2 expression are upregulated and correlated in 

HCC. 

(A) The expression-profiling dataset of HCC tissues (n=47) versus normal liver tissue 

(n=19) from GSE14323 deposited in the Gene Expression Omnibus was analyzed. 

Both LKB1 (STK11) and Skp2 transcripts were significantly upregulated in HCC. The 

analysis was performed by Dr. Chien-Feng Li. 

  



86 
 

 

B                                

C  

 

 

 

 

 

 

Figure 3-28. Both LKB1 and Skp2 expression are upregulated and correlated in 

HCC (continued). 

(B) Representative images of histological analysis of Skp2 and LKB1 staining in early 

(left panel) and late-stage HCC (right panel). Scale bar, 100 μm. 

(C) Scatter plot of Skp2 expression versus LKB1 expression in HCC samples. 

The results (B, C) were carried out by two pathologists, Drs. Chien-Feng Li and 

Hsuan-Ying Huang. 
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Figure 3-29. Overexpression of Skp2 or LKB1 predicts poor survival outcome of 

HCC patients. 

(A) (B) Kaplan-Meier plots show that high expression of Skp2 (A) or LKB1 (B) is 

significantly predictive for inferior overall survival. 

(C) (D) Kaplan-Meier plots show that high expression of Skp2 (C) or LKB1 (D) 

significantly predicts local recurrence-free survival. 

The results (A–D) were carried out by two pathologists, Drs. Chien-Feng Li and 

Hsuan-Ying Huang.  
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Table 3-1. Correlations between Skp2 and LKB1 expressions to various 

clinicopathologic parameters 

 No. Skp2 H-score P-value LKB1 H-score P-value 

Sex   0.063  0.725 

Male 93 169.18+/-56.94  172.03+/-51.59  

Female 27 200.74+/-74.70  183.41+/-66.55  

Age (years)   0.914  0.882 

<60 53 172.06+/-49.43  170.68+/-46.54  

≧60 67 179.63+/-71.29  177.69+/-61.39  

Hepatitis   0.286  0.619 

HBV 57 167.28+/-53.11  173.75+/-53.70  

HCV 47 181.15+/-69.95  175.89+/-60.63  

Both 6 230.00+/-82.219  200.00+/-48.89  

None 10 172.50+/-51.87  158.00+/-38.74  

Pugh-Child’s 

Classification 
  <0.001*  0.005* 

A 109 167.28+/-56.75  169.28+/-51.68  

B 8 290.00+/-186.51  250.00+/-55.36  

C 3 200.00+/-0.00  166.67+/-45.37  

AFP   0.028*  0.144 

<400 83 163.59+/-57.30  165.34+/-50.78  

≧400 31 186.32+/-53.75  181.87+/-52.13  

Tumor Multiplicity   <0.001*  <0.001* 

Solitary 68 153.26+/-43.43  156.38+/-42.64  

Multiple 52 206.38+/-70.67  198.40+/-60.86  

Differentiation   0.003*  0.031* 

Well/Moderately 

differentiated 
93 166.94+/-58.22  168.41+/-53.66  

Poorly differentiated 27 208.48+/-66.85  195.89+/-56.18  

Primary Tumor (pT)   0.003*  0.083 

pT1 46 156.59+/-54.73  163.52+/-55.99  

pT2 39 174.05+/-59.92  174.00+/-53.17  

pT3-4 35 204.66+/-65.70  189.80+/-54.37  

AJCC Stage   <0.001*  0.012* 

Stage I 44 150.07+/-46.20  156.41+/-45.72  

Stage II 39 174.05+/-59.92  174.00+/-53.17  

Stage III–V 37 209.81+/-67.49  196.84+/-60.69  

CLIP score   0.005*  0.097 

0–1 85 166.27+/-59.25  169.73+/-56.27  

2–3 35 200.60+/-64.20  186.40+/-51.41  

Okuda stage   0.004*  0.076 

I 85 163.80+/-53.43  167.38+/-49.95  

II–III 35 206.60+/-72.56  192.11+/-63.72  

Skp2 Expression  –  r=0.675 <0.001* 

*, statistically significant. The results were carried out by two pathologists, Drs. Chien-Feng 

Li and Hsuan-Ying Huang. 
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Table 3-2. Univariate survival analyses of HCC patients 

  OS LRFS 

Parameter 
No. of 

Case 

No. of 

Event 
P-value 

No. of 

Event 
P-value 

Sex      

Male 93 29 0.5670 53 0.3622 

Female 27 11  14  

Age (years)       

<60 53 16 0.4994 25 0.1622 

≧60 67 24  42  

Pugh-Child’s Classification      

A 109 29 <0.0001* 56 <0.0001* 

B 8 8  8  

C 3 3  3  

AFP      

<400 83 20 0.0148* 41 0.0820* 

≧400 31 14  20  

Tumor Multiplicity      

Solitary 68 9 <0.0001* 26 <0.0001* 

Multiple 52 31  41  

Differentiation      

Well/Moderately differentiated 93 25 0.0010* 47 0.0003* 

Poorly differentiated 27 15  20  

Primary Tumor (pT)      

pT1 46 7 0.0001* 18 0.0003* 

pT2 39 14  24  

pT3-4 35 19  25  

AJCC Stage      

Stage I 44 5 <0.0001* 16 0.0001* 

Stage II 39 14  24  

Stage III–V 37 21  27  

CLIP score      

0–1 85 21 0.0001* 41 <0.0001* 

2–3 35 19  26  

Okuda stage      

I 85 21 0.0002* 44 0.0356* 

II–III 35 19  23  

Skp2 Expression      

Low expression (<median) 60 8 <0.0001* 26 0.0030* 

High expression (>=median) 60 32  41  

LKB1 Expression      

Low expression (<median) 60 13 0.0040* 22 <0.0001* 

High expression (>=median) 60 27  45  

OS, overall survival; LRFS, local recurrence-free survival; *, statistically significant. The 

results were carried out by two pathologists, Drs. Chien-Feng Li and Hsuan-Ying Huang. 
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Table 3-3. Multivariate survival analyses of HCC patients 

Parameter Category 
OS LRFS 

RR 95% CI P-value RR 95% CI P-value 

Skp2 
Low expression 

(<median) 
1 – <0.001* 1 – 0.120 

 
High expression 

(>=median) 
7.059 

3.044– 

16.367 
 1.523 

0.896– 

2.590 
 

LKB1 
Low expression 

(<median) 
1 – 0.035* 1 – <0.001* 

 
High expression 

(>=median) 
2.115 

1.052– 

4.253 
 3.027 

1.774– 

5.164 
 

CLIP score 0–1 1 – 0.131 1 – 0.019* 

 2–3 2.134 
0.798– 

5.708 
 2.463 

1.161– 

5.223 
 

Okuda stage I 1 – 0.565 1 – 0.189 

 II–III 1.288 
0.544– 

3.049 
 1.669 

0.776– 

3.597 
 

AJCC Stage Stage I 1 – 0.002* 1 – 0.002* 

 Stage II 4.614 
1.636– 

13.012 
 2.500 

1.297– 

4.820 
 

 Stage III–V 5.405 
1.867– 

15.649 
 2.971 

1.427– 

6.184 
 

Differentiation 
Well/Moderately 

differentiated 
1 – 0.689 1 – 0.243 

 
Poorly 

differentiated 
1.178 

0.528– 

2.626 
 1.243 

0.776– 

2.728 
 

OS, overall survival; LRFS, local recurrence-free survival; *, statistically significant. The results 

were carried out by two pathologists, Drs. Chien-Feng Li and Hsuan-Ying Huang. 
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Figure 3-30. Overexpression of WT LKB1 promotes HCC tumor growth in vivo. 

Hep3B cells with stable transduction of the indicated Flag-LKB1 were subcutaneously 

injected into nude mice. Tumor size was measured by the caliper, and the result is 

shown as means ± s.d. (n=3). *P<0.05. 
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LKB1 has been suggested to be constitutively active (Sebbagh et al., 2011), and 

its activation is mediated by an allosteric mechanism dependent on complex 

assembly with STRAD and MO25 but is independent of the phosphorylation of the 

activation loop. All studies undertaken thus far have underlined the intrinsic interaction 

between each component within the complex for LKB1 activation (Boudeau et al., 

2004; Milburn et al., 2004; Zeqiraj et al., 2009a; Zeqiraj et al., 2009b). However, how 

the LKB1 activity is maintained and whether the complex is regulated by other 

extrinsic proteins (e.g., other unidentified LKB1 regulators) remain unclear. In this 

study, we uncover that Skp2 is a novel regulator of LKB1 activation by promoting 

K63-linked polyubiquitination of LKB1. This posttranslational modification is important 

for LKB1 to bind to one of its subunits, MO25, but not the other, STRAD. 

Co-overexpression of LKB1 and STRAD enhances LKB1 activity by about 3-5 times, 

whereas the coexistence of MO25 in the LKB1-STRAD complex further boosts LKB1 

activity by about additional 5-10 times (Boudeau et al., 2003; Zeqiraj et al., 2009b). 

Because the ubiquitination-deficient mutant of LKB1 identified in this study only 

compromises the LKB1-MO25 interaction but not the LKB1-STRAD interaction, the 

LKB1-5KR mutant still retains some kinase activity compared with the kinase-dead 

mutant of LKB1. To our knowledge, there have been no studies to date demonstrating 

LKB1 complex activation under any stimulating conditions (Sebbagh et al., 2011). 

Likewise, we did not observe that the physiologically relevant stimuli tested (e.g., 

glucose deprivation or growth factor treatment) could markedly induce more LKB1 

polyubiquitination compared with the untreated controls (data not shown), and the 

defects of Skp2 loss and the LKB1-5KR mutant on LKB1 ubiquitination, complex 

integrity and activity could all be observed under the normal condition. These 

implicate that Skp2-mediated K63-linked polyubiquitination of LKB1 modulates the 

integrity and the activity of the LKB1 complex in a ‘steady-state’ manner regardless of 
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physiological stimuli. 

The 5 K-to-R substitutions of the ubiquitination-deficient LKB1-5KR mutant are 

clustered at the N-terminus of LKB1 (Figure 3-13A). On the basis of the reported 

crystal structure of the LKB1-STRAD-MO25 complex (Zeqiraj et al., 2009a), these 5 

Lys residues of LKB1 are not located within the key catalytic motifs. Therefore, the 

5KR mutation supposedly would not affect the LKB1 kinase activity owing to amino 

acid substitution. In addition, the possibility that the 5KR mutation causes 

unanticipated structural alterations in LKB1 could be largely ruled out by the fact that 

the LKB1-5KR mutant binds to AMPKα, STRAD and Skp2 comparably to WT LKB1, 

exhibits the nucleocytoplasmic distribution similar to WT LKB1, and has the ‘basal’ 

kinase activity toward AMPK comparable to WT LKB1 when purified alone for the in 

vitro kinase assay (Figure 4-1). However, because the recombinant LKB1 protein 

Zeqiraj et al. used for crystallization is N- and C-terminus-truncated LKB1 protein, the 

importance of the 5 Lys residues of LKB1 in the intrinsic protein-protein interaction 

within the complex cannot be revisited by the reported crystal structure. Our results 

showing that polyubiquitination of LKB1 is not totally abolished on the 5KR mutant 

and upon Skp2 deficiency indicate that other LKB1 Lys residue(s) and other ubiquitin 

ligase(s) may be responsible for LKB1 ubiquitination. Because human LKB1 contains 

up to 26 highly conserved Lys residues, it is possible that ubiquitination of other Lys 

residue(s) on LKB1 by other ubiquitin ligase(s) contributes to regulation of LKB1 for 

activating different downstream signaling pathways. To test the assumption, screening 

for other potential ubiquitin ligase(s) toward LKB1 and mass spectrometric 

determination of LKB1 ubiquitination site(s) can be performed in the future. 

K63-linked ubiquitination can regulate kinase activation, protein trafficking and 

protein-protein interaction mostly, if not all, without affecting protein degradation. 

K63-linked ubiquitin chains have been thought to adopt an extended open 
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conformation for interaction between ubiquitinated proteins and proteins containing 

ubiquitin-binding domains (UBDs) (Dikic et al., 2009). Our finding that K63-linked 

ubiquitination of LKB1 is critical for the LKB1-MO25 interaction highly suggests that 

MO25 might be an ubiquitin-binding protein that binds to the K63-linked ubiquitin 

chains of LKB1. MO25 is made up of 6 α-helical repeats with 3 helices and one with 2 

helices (Milburn et al., 2004), forming a horseshoe shape binding both LKB1 and 

STRAD through its concave face (Milburn et al., 2004; Zeqiraj et al., 2009a). As most 

UBDs, if not all, bind to a hydrophobic patch of ubiquitin using α-helical structures 

(Dikic et al., 2009), the amphipathic nature of the MO25 helices with conserved 

hydrophobic patches within the helical repeats (Milburn et al., 2004) implicates the 

potential existence of unidentified UBD(s) in MO25. Hence, future investigations are 

needed to address the assumption and to determine how (i.e., the molecular 

mechanism) Skp2-mediated K63-linked polyubiquitination of LKB1 modulates the 

LKB1-MO25 interaction. To this end, the in vitro binding assays by which the 

interaction between recombinant GST-MO25 and K63-linked tetra-ubiquitin will be 

assessed. Furthermore, the minimal binding region of MO25 to polyubiquitin chains 

will be mapped by using various truncated and/or deleted mutants of MO25 in the in 

vitro binding assays. 

In this study, we show that oncogenic Ras is an upstream regulator of Skp2 and 

LKB1, which activates the Skp2/LKB1/AMPK axis to maintain cancer cell survival 

under metabolic stress by promoting Skp2-dependent LKB1 polyubiquitination (Figure 

4-2). However, the molecular mechanism of how the Ras signaling cascade promotes 

the Skp2-SCF activity toward LKB1 remains to be defined. The Ras-mediated effect 

may work on either LKB1 or Skp2, or both. Previously, the Ras/Raf/MEK/Erk signaling 

has been shown to impact LKB1 function via Erk-mediated Ser325 and 

p90Rsk-mediated Ser428 phosphorylation of LKB1 (Esteve-Puig et al., 2009; 
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Martinez-Lopez et al., 2012; Zheng et al., 2009) (Introduction 1.5). In our case, 

phosphorylation of LKB1 at either site or both did not consistently affect 

Skp2-mediated LKB1 ubiquitination (data not shown). It has been thought that the 

F-box protein subunit of SCFs specifically recognizes and binds their substrates that 

undergo phosphorylation (Frescas and Pagano, 2008). One study demonstrated that 

active Erk-directed phosphorylation of the Skp2 substrate MKP1 (MAPK phosphatase 

1; also known as DUSP1) (Table 1-4) promotes MKP1 binding to the Skp2-SCF and 

subsequent MKP1 ubiquitination (Lin and Yang, 2006). Therefore, it is likely that other 

LKB1 phosphorylation site(s) that can be modified by Ras downstream kinase(s) have 

not been identified, which is suggested by the computational prediction of LKB1 

phosphorylation sites. The phospho-site prediction of human Skp2 indicates that there 

are three potential phosphorylation sites for Raf kinase, some for MEK (also known as 

MAPKK), and one or two for MAP kinases (Erk, Jnk and p38). Future experiments will 

be needed to address whether or not the predicted LKB1 or Skp2 phosphorylation 

occurs and affects the Ras/Skp2/LKB1 axis.  

Deregulated activation of Ras signaling is frequently found in human HCC. Given 

that Ras-driven tumors are highly aggressive and likely experiencing severe 

metabolic stress inside the tumors, it is therefore conceivable that in order for 

Ras-driven tumors to develop into a full-blown disease, the cancer cells must activate 

a survival program (e.g., the Skp2/LKB1/AMPK axis shown here) to counteract 

metabolic stress-induced cell death. A recent study has underscored the significance 

of a functional LKB1/AMPK pathway in cancer cell survival in response to metabolic 

stress (Shackelford et al., 2013). Shackelford et al. showed that in a mouse model, 

non-small cell lung cancers which lack a functional LKB1/AMPK pathway are more 

sensitive to the treatment with the metabolic drug phenformin, which inhibits the 

mitochondrial complex I in the electron transport chain and results in the elevation of 
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intracellular AMP levels. In support of their notion, we found that LKB1 knockdown 

sensitized Hep3B HCC cells to phenformin (Figure 4-3A). Moreover, inactivation of 

Skp2 either genetically by Skp2 knockdown or pharmacologically by the Skp2 inhibitor, 

which both downregulated the LKB1/AMPK signaling, enhanced the sensitivity of 

Hep3B HCC cells to phenformin treatment (Figures 4-3B,C). Therefore, we reasoned 

that a combination therapy with phenformin and the Skp2 inhibitor may be an effective 

strategy for treating certain types of cancers, e.g., HCC. 

Treating Ras-driven cancers is a challenging task due to the extreme complexity 

of the Ras signaling networks, which thereby leads to unwanted therapeutic outcomes, 

such as drug resistance, and off-target effects (Stephen et al., 2014). Our findings that 

Ras activates the Skp2/LKB1 pathway to promote cancer cell survival under energy 

stress may shed light on potential therapeutic implications for targeting a new branch 

of the Ras signaling networks (i.e., the Ras/Skp2/LKB1 axis). To further test this 

notion, we treated Ras-overexpressing cancer cells with the Skp2 inhibitor, which 

interrupts the Ras/Skp2/LKB1 cascade similar to the knockdown of Skp2 or LKB1 and 

the LKB1-5KR mutant. We found that Ras-overexpressing Hep3B cells were very 

sensitive to Skp2 inhibitor treatment in a dose-dependent manner (Figure 4-4A). 

Moreover, administration of the Skp2 inhibitor further sensitized the Ras- 

overexpressing cells to metabolic drug phenformin (Figure 4-4B). Our data therefore 

provide a proof-of-principle that the combination treatment with the Skp2 inhibitor and 

metabolic drugs may be effective for treating Ras-driven cancers. 

Our findings that LKB1 is oncogenic in HCC appear paradoxical because Lkb1 

has been shown to display the tumor-suppressive activity in various genetic mouse 

models (Ollila and Makela, 2011; Shorning and Clarke, 2011) (Table 1-1). In this study, 

we propose that during tumor development, activation of the Ras/Skp2/LKB1 axis is 

required for cancer cell survival during energy stress. Therefore, our results are in line 
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with the currently accepted understanding of LKB1 function in stress-induced cell 

survival (Shaw et al., 2004b). Most Lkb1 genetic mouse models reported to date used 

tissue-specific knockout strategies (Tables 1-1 and 1-2); however, knockouts with 

chronic inactivation of Lkb1 could not address the temporal requirement of Lkb1 

throughout the course of cancer development, especially at the later stage where 

severe metabolic stress takes place within the tumor microenvironment. Thus, the 

role of LKB1 in cancer progression and maintenance is still largely undefined at 

present. Our result showing the enhanced expression of LKB1 and Skp2 in late-stage 

HCC implicates the oncogenic function of LKB1 in liver cancer progression rather than 

initiation. By contrast, we observed the tumor-suppressive activity of LKB1 in 

subcutaneously injected A549 lung tumor xenografts in agreement with other reports 

(Figure 4-5). Accordingly, generation of appropriate mouse models with conditionally 

manipulatable (i.e., temporally and spatially inducible) knockout or knockin of Lkb1 

will be absolutely required to answer the paradoxical, complex roles (i.e., the 

oncogenic, tumor-suppressive, context- and tissue-specific roles) of LKB1 in 

tumorigenesis. A simple alternative can be applied using the Tet-On shRNA system 

and the Tet-On/Off inducible vector in different types of cancer cells for temporally 

inducible knockdown and expression of LKB1 in mouse orthotopic xenograft (or 

allograft) tumor models.   

In addition to AMPK, LKB1 is capable of phosphorylating and activating 12 

AMPK-related kinases (ARKs), thereby directing multiple cellular processes (Bright et 

al., 2009; Lizcano et al., 2004) (Figure 1-1 and Table 1-3). Given that our data show 

that LKB1 ubiquitination modulates LKB1 complex integrity and activity, it is 

speculated that Skp2-mediated K63-linked ubiquitination of LKB1 may also affect 

other LKB1 downstream effectors besides AMPK for regulation of energy stress 

responses or other functions. Generally, microtubule affinity-regulating kinases 
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(MARK1–4) are primarily involved in cell polarization, and brain-specific kinases 

(BRSK1 and BRSK2), expressed almost exclusively in the brain, mainly regulate 

neuronal polarity and axon specification. Salt-inducible kinases (SIK1, SIK2 and SIK3) 

have different functions from one another (Table 1-3) likely due to their different 

tissue-specific expression, and SIK1 has been shown to regulate p53-dependent 

anoikis (Cheng et al., 2009). Among those LKB1 downstream substrates, the novel 

(nua) kinase family (NUAK) NUAK1 (also known as ARK5; AMPK-related kinase 5) 

and NUAK2 (also known as SNARK; Snf1/AMPK-related kinase) are of our interest 

because they have been suggested to be involved in cancer cell survival, migration 

and metastasis, and pro-oncogenic (Sun et al., 2013) (Table 1-3). Liu et al. showed 

that NUAK1 is required for Myc-driven cancer cell survival in vitro by maintaining 

cellular energy homeostasis and for tumorigenesis in a orthotopic mouse model of 

HCC (Liu et al., 2012b), and elevated NUAK1 expression was observed in several 

types of human cancers, including HCC (Cui et al., 2013; Liu et al., 2012b). Also, 

NUAK1 has been reported to mediate Akt-dependent cancer cell survival and 

migration (Suzuki et al., 2004) and suppress cell apoptosis under energy stress 

(Suzuki et al., 2003a). SNARK appears to be activated in response to AMP (Lefebvre 

and Rosen, 2005) and plays a role in cancer cell motility (Suzuki et al., 2003b). As we 

observed that LKB1 promoted both the in vivo HCC tumor growth in a mouse 

subcutaneous xenograft tumor model (Figure 3-30) and the in vitro HCC cell migration 

(Figures 4-6A,B) in a kinase activity- and ubiquitination-dependent manner, we reason 

that LKB1 may execute its pro-oncogenic, ubiquitination-dependent function in HCC 

via its pro-oncogenic downstream substrate(s), i.e., NUAK1 and/or NUAK2. Therefore, 

the effect of Skp2-mediated LKB1 polyubiquitination on the LKB1/NUAK axis will be 

investigated, and the expression correlation of LKB1 with NUAK1 and NUAK2 will 

also be assessed in our clinical HCC samples. Because different LKB1 binding affinity 
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to its different ARK substrates has been observed (Lizcano et al., 2004), we will 

further determine whether Skp2-mediated K63-linked ubiquitination of LKB1 

contributes to LKB1 substrate-binding specificity. 

In summary, our study shows that Skp2-mediated K63-linked polyubiquitination of 

LKB1 is critical for maintaining the integrity of the LKB1-STRAD-MO25 complex, 

thereby modulating LKB1 activity and cellular function in stress-induced cell survival 

responses, and that Ras acts upstream of this Skp2/LKB1 pathway (Figure 4-2). 

Identification of the Ras/Skp2/LKB1 axis in this study not only provides great insight 

into how LKB1 kinase activity is maintained, but also offers new therapeutic strategies 

for targeting Ras-driven cancers. 
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Figure 4-1. The 5KR mutation does not impact the kinase activity of 

recombinant GST-LKB1.  

The indicated recombinant GST-LKB1 proteins were purified from bacteria and 

subjected to in vitro LKB1 kinase assay followed by immunoblotting. Recombinant 

His-AMPKα1-312 protein was purified from bacteria and used as the substrate. 
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Figure 4-2. Schematic representation of the working model of this study. 

The Ras/Skp2/LKB1 pathway promotes cancer cell survival during energy stress and 

may play a role in tumor maintenance. However, future investigation is needed to 

prove the role of the Ras/Skp2/LKB1 axis in tumor development, which is indicated by 

a question mark. Ub, ubiquitination; P, phosphorylation. 
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Figure 4-3. Targeting LKB1 or Skp2 sensitizes HCC cells to phenformin 

treatment. 

(A) (B) Cell viability of Hep3B cells with control (shLuc), LKB1 (A) or Skp2 knockdown 

(B) after treatment with phenformin at the indicated concentrations for 3 days was 

determined by trypan blue exclusion assay, and is expressed as a percentage of the 

untreated controls. 

(C) Cell viability of Hep3B cells after combined treatment with Skp2 inhibitor 

(compound #25) and phenformin for 3 days was determined by trypan blue exclusion 

assay, and is expressed as a percentage of the vehicle-treated controls. 

All results are shown as means ± s.d. (n=3). *P<0.05; **P<0.01; ***P<0.005. 
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B 

 

Figure 4-4. The Skp2 inhibitor displays a potent inhibitory effect on HCC cells 

with Ras hyperactivation. 

(A) Cell viability of Hep3B cells with stable transduction of Ras after treatment with the 

Skp2 inhibitor (compound #25) at the indicated concentrations for 3 days was 

determined by trypan blue exclusion assay, and is expressed as a percentage of the 

vehicle-treated control.  

(B) Cell viability of Hep3B cells with stable transduction of Ras after combined 

treatment with Skp2 inhibitor (compound #25) and phenformin for 3 days was 

determined by trypan blue exclusion assay, and is expressed as a percentage of the 

vehicle-treated controls. 

Both results are shown as means ± s.d. (n=3). **P<0.01; ***P<0.005. 
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Figure 4-5. Overexpression of WT LKB1 attenuates lung cancer cell growth in 

vivo. 

1.5x106 A549 lung cancer cells with stable transduction of vector (Vec) or Flag-LKB1 

were subcutaneously injected into nude mice. Tumor size was measured by the 

caliper, and the result is shown as means ± s.d. (n=4). *P<0.05. 
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           A 

 

  B 

 

 

Figure 4-6. Overexpression of WT LKB1 promotes HCC cell migration. 

(A) (B) Transwell migration assay in which Hep3B cells with stable transduction of 

vector (Vec) or the indicated Flag-LKB1 were inoculated in serum-free medium into 

the upper chamber of the well. After 24 hours, migrated cells were fixed, stained with 

crystal violet and observed under the microscope. Representative images (A) and the 

quantitative result (B) are shown. The result is shown as means ± s.d. (n=3). **P<0.01. 

Scale bar, 200 μm. 
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