The Texas Medical Center Library DigitalCommons@TMC

Dissertations and Theses (Open Access)

MD Anderson UTHealth Houston Graduate School

12-2014

Functions Of The Homeobox Gene Dlx4 In Controlling Inflammatory Signaling And Metastasis Of Epithelial Ovarian Cancer

Dhwani Haria

Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

Recommended Citation

Haria, Dhwani, "Functions Of The Homeobox Gene Dlx4 In Controlling Inflammatory Signaling And Metastasis Of Epithelial Ovarian Cancer" (2014). *Dissertations and Theses (Open Access)*. 535. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/535

This Thesis (MS) is brought to you for free and open access by the MD Anderson UTHealth Houston Graduate School at DigitalCommons@TMC. It has been accepted for inclusion in Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact digcommons@library.tmc.edu.

FUNCTIONS OF THE HOMEOBOX GENE *DLX4* IN CONTROLLING INFLAMMATORY SIGNALING AND METASTASIS OF EPITHELIAL OVARIAN CANCER

by

Dhwani Haria, B.S.

APPROVED:

Honami Naora, Ph.D., Advisory Professor

Gary Gallick, Ph.D.

Hui-Kuan Lin, Ph.D.

Peng Huang, M.D., Ph.D.

Zahid Siddik, Ph.D.

APPROVED:

Dean, The University of Texas Graduate School of Biomedical Sciences at Houston

FUNCTIONS OF THE HOMEOBOX GENE *DLX4* IN CONTROLLING INFLAMMATORY SIGNALING AND METASTASIS OF EPITHELIAL OVARIAN CANCER

A

THESIS

Presented to the Faculty of

The University of Texas

Health Science Center at Houston

and

The University of Texas

MD Anderson Cancer Center

Graduate School of Biomedical Sciences

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

by

Dhwani Haria, B.S. Houston, TX

December, 2014

DEDICATION

I would like to dedicate this thesis to my family for their unconditional love, support and

encouragement.

ACKNOWLEDGEMENTS

I would like to take this opportunity to first thank my advisor, Dr. Honami Naora, for her amazing support, encouragement and guidance throughout this journey. She has been a wonderful mentor through many ups and downs and a constant source of inspiration to me. Pursuing a career in science has been my dream and I am sincerely grateful to her for giving me this opportunity. I would like to thank my committee members, Dr. Zahid Siddik, Dr. Gary Gallick, Dr. Peng Huang, Dr. Hui-Kuan Lin and Dr. Kwong-Kwok Wong for providing me with valuable feedback, suggestions and encouragement that has helped me in improving my knowledge and advancing to this stage of my career. I would like to express deep gratitude to all the lab members, Bon Trinh, Song Yi Ko and Nicolas Barengo, for my scientific and bench training and helpful and stimulating discussions that has helped me to develop my project.

I would also like to thank my family for their unconditional love, support and best wishes. I would specially like to thank my parents for believing in me, always being there for me and inspiring me through many years. Last but not the least, I would like to thank all my friends for their continuous support and help.

Finally, I would like to sincerely thank GSBS for giving me this wonderful opportunity to work at this amazing institution and learn from some of the very best in the field.

FUNCTIONS OF THE HOMEOBOX GENE *DLX4* IN CONTROLLING INFLAMMATORY SIGNALING AND METASTASIS OF EPITHELIAL OVARIAN CANCER

Dhwani Haria, B.S.

Advisory Professor: Honami Naora, Ph.D.

Epithelial ovarian cancer (EOC) accounts for the most number of deaths among women with gynecological malignancies in the United States. Approximately 80% of EOC patients are diagnosed with disease that has disseminated beyond the confines of the ovaries. The five year survival rate for patients with advanced stage EOC is less than 30% and the recurrence of chemoresistant disease is high. Identifying the mechanisms that control peritoneal metastasis of EOC is therefore critical for improving treatment of advanced stage disease. The homeobox gene DLX4 encodes a transcription factor that is absent from most normal adult tissues. Previous studies from our laboratory have identified that DLX4 is highly expressed in advanced stage EOC and is strongly associated with reduced survival. The underlying hypothesis of my study is that DLX4 promotes peritoneal dissemination of EOC. The overall goal of my study is to determine the role and mechanisms of DLX4 in controlling peritoneal metastasis of EOC. My specific aims are: 1) to determine whether DLX4 promotes peritoneal dissemination of EOC, and 2) to identify the mechanisms by which DLX4 controls tumor-peritoneum interactions. Firstly, my studies have identified that DLX4 promotes EOC dissemination by inducing expression of the cell adhesion molecule CD44 which is a major receptor for hyaluronan, a glycosaminoglycan that is expressed on mesothelial cells lining the peritoneal cavity and abdominal organs. Secondly, my studies have identified that DLX4 induces CD44 expression by activating the pro-inflammatory cytokine interleukin 1-beta (IL- 1β) which in turn stimulates the nuclear factor kappa B (NF- κ B) signaling pathway. This study provides insights into the mechanisms of peritoneal metastasis of EOC and raises the possibility that targeting inflammatory signaling could be a strategy for treatment of advanced stage EOC.

|--|

APPROVAL i
TITLE PAGE ii
DEDICATIONiii
ACKNOWLEDGEMENTS iv
ABSTRACTv
TABLE OF CONTENTS vii
LIST OF ILLUSTRATIONS xi
LIST OF TABLES xiii
ABBREVIATIONS xiv
CHAPTER 1: INTRODUCTION1
A. BIOLOGY OF OVARIAN CANCER1
1. Classification and clinical staging of ovarian cancer1
2. Biology of dissemination of EOC
2.1. Implantation of EOC cells on to the peritoneum9
2.2. Inflammatory signaling in EOC 11
2.3. NF-κB signaling in EOC12
B. HOMEOBOX GENES15
1. General overview of homeobox genes 15
2. Genomic organization of homeobox genes

3. Deregulation of homeobox genes in tumors 19
4. Role of the homeobox gene <i>DLX4</i> in tumors
C. HYPOTHESIS AND SPECIFIC AIMS
CHAPTER 2: MATERIALS AND METHODS
1. Antibodies
2. Plasmids
3. Cell culture
3.1. EOC cell lines
3.2. Primary human mesothelial cells
4. Transfection and generation of stable lines
5. In vitro cell attachment assays
6. Flow cytometry
7. ELISA
8. Quantitative RT-PCR (qRT-PCR)
9. Chromatin Immunoprecipitation (IP)
10. Luciferase reporter assays
11. Statistical analysis
CHAPTER 3: ROLE OF DLX4 IN PERITONEAL DISSEMINATION OF EOC
A. RATIONALE
B. RESULTS

1. DLX4 promotes implantation of EOC cells onto peritoneal surfaces in i.p. mouse
xenograft models
2. DLX4 promotes in vitro attachment of EOC cells to mesothelial cells
3. DLX4 induces expression of CD44 in EOC cells
4. DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells via CD44 46
C. CONCLUSION
CHAPTER 4: MECHANISMS OF DLX4 IN PERITONEAL DISSEMINATION AND
INFLAMMATORY SIGNALING IN EOC 50
A. RATIONALE
B. RESULTS
1. DLX4 induces expression of IL-1β
2. <i>IL1B</i> is a direct transcriptional target of DLX4
3. DLX4 induces NF-кB transcriptional activity in EOC cells
4. Induction of NF- κ B signaling by DLX4 in EOC cells is mediated by IL-1 β
5. DLX4 induces CD44 in EOC cells in an IL-1βand NF-κB-dependent manner 60
6. Reconstitution of IL-1 β in DLX4-knockdown EOC cells rescues the expression of
CD44
7. DLX4 promotes EOC cell attachment to mesothelial cells via induction of IL-1 β and
NF-κB transcriptional activity
8. Reconstitution of IL-1β in DLX4-knockdown EOC cells rescues the effect of DLX4 68
C.CONCLUSION

CHAPTER 5: DISCUSSION
A. DLX4 PROMOTES ATTACHMENT OF EOC CELLS TO THE MESOTHELIUM
LINING THE PERITONEAL CAVITY71
B. DLX4 PROMOTES CD44 EXPRESSION AND EOC-MESOTHELIAL CELL
INTERACTIONS BY INDUCING IL-1β EXPRESSION AND ACTIVATING NF-κB
SIGNALING72
C. MULTIPLE ROLES OF DLX4 IN TUMOR PATHOGENESIS
D. THERAPEUTIC IMPLICATIONS
E. CONCLUSION
BIBLIOGRAPHY 79
VITA

LIST OF ILLUSTRATIONS

Figure 1. Relative frequencies of subtypes of EOC
Figure 2. Stage distribution of EOC and five-year survival rate by stage
Figure 3. Pattern of spread of EOC7
Figure 4. Model of peritoneal seeding of EOC
Figure 5. NF-κB signaling pathway14
Figure 6. Structure of the homeodomain
Figure 7. Clusters of <i>HOX</i> and <i>DLX</i> gene families
Figure 8. Trends in the aberrant expression of homeobox genes in tumors
Figure 9. DLX4 increases the number of peritoneal tumor implants in i.p. mouse xenograft
models
Figure 10. Overexpression of DLX4 in A2780 cells and knockdown of DLX4 in 2008 cells 39
Figure 11. In vitro cell attachment assays
Figure 12. DLX4 promotes <i>in vitro</i> attachment of EOC cells to peritoneal mesothelial cells 41
Figure 13. DLX4 does not mediate attachment of EOC cells to components of the ECM 42
Figure 14. DLX4 induces expression of CD44 but not P-cadherin or β1 integrin
Figure 15. DLX4 induces expression of CD44
Figure 16. Mechanism of CD44-mediated attachment of EOC cells to mesothelial cells
Figure 17. Neutralization of CD44 blocks the ability of DLX4-expressing EOC cells to
attach to mesothelial cells

Figure 18. DLX4 induces expression of IL-1 β
Figure 19. DLX4 directly binds to <i>IL1B</i> promoter
Figure 20. DLX4 induces NF-κB signaling in EOC cells
Figure 21. DLX4 induces levels of phosphorylated p65 in EOC cells
Figure 22. DLX4 induces NF- κ B transcriptional activity in tumors via its induction of IL-1 β 59
Figure 23. Mechanism of I κ B- α DN in abrogating NF- κ B signaling
Figure 24. DLX4 induces expression of CD44 in EOC cells via IL-1 β and NF- κ B signaling 63
Figure 25. Reconstitution of IL-1 β in DLX4-knockdown EOC cells rescues the expression of
CD44
Figure 26. DLX4 promotes EOC cell attachment to mesothelial cells via induction of IL-1 β
and NF-ĸB
Figure 27. Reconstitution of IL-1 β in DLX4-knockdown EOC cells rescues the effect of
DLX4
Figure 28. Model of the mechanism by which DLX4 promotes intraperitoneal dissemination
of EOC

LIST OF TABLES

Table 1. Common mutations identified in the histologic subtypes of EOC	2
Table 2. International Federation of Gynecology and Obstetrics (FIGO) staging of EOC	4
Table 3. Examples of significance of aberrant homeobox gene expression in tumors	. 22
Table 4. Examples of aberrant expression and functional significance of DLX4 in tumors	. 24
Table 5. Primers for qRT-PCR	. 30
Table 6. Primers for chromatin IP assays	. 32

LIST OF ABBREVIATIONS

Ab	Antibody
BAFF	B-cell activating factor
bFGF	Basic fibroblast growth factor
BSA	Bovine serum albumin
CA-125	Cancer Antigen-125
CD40L	CD40 ligand
ECM	Extracellular matrix
EGFR	Epidermal growth factor receptor
EMT	Epithelial-mesenchymal transition
EOC	Epithelial ovarian cancer
FBS	Fetal bovine serum
FGF-2	Fibroblast growth factor-2
FIGO	International Federation of Gynecology and Obstetrics
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GFP	Green fluorescent protein
НА	Hyaluronic acid
HDAC1	Histone deacetylase 1
HE	Hematoxylin eosin
HGF	Hepatocyte growth factor
HIF-1	Hypoxia inducible factor-1
hMLH1	Human MutL homolog 1
IBC	Inflammatory breast cancer

IFN-γ	Interferon-γ
ΙκΒ	Inhibitor of NF-ĸB
ΙκΒα-DN	I κ B α -dominant negative
IKK	IκB kinase
IL-1β	Interleukin-1β
IL-6	Interleukin-6
IL-8	Interleukin-8
IL-10	Interleukin-10
iNOS	Inducible nitric oxide synthase
i.p.	intraperitoneal
IP	Immunoprecipitation
MMP-1	Matrix metalloproteinase-1
NF-ĸB	Nuclear factor of kappa B
NHEJ	Non-homologous end joining
PBS	Phosphate-buffered saline
PerCP	Peridinin-chlorophyll-protein complex
PIN	Prostatic intraepithelial neoplasia
PRC2	Polycomb Repressive Complex 2
RANKL	Receptor activator of NF-KB ligand
SDS	Sodium dodecyl sulfate
TNF-α	Tumor necrosis factor-α
VEGF-A	Vascular endothelial growth factor-A

CHAPTER 1: INTRODUCTION

A. BIOLOGY OF OVARIAN CANCER

1. Classification and Clinical Staging of Ovarian Cancer

Ovarian cancer accounts for the highest lethality among women with gynecologic malignancies in the United States¹. Ovarian cancers are classified as 1) epithelial tumors, 2) sex cord stromal tumors and 3) germ cell tumors. Epithelial ovarian cancers (EOC) constitute about 60% of all ovarian tumors and 90% of malignant tumors². It has been traditionally thought that EOC originates from the ovarian surface epithelium. However, recently, the fallopian tube and some other epithelial tissues have been reported as origins for EOC $^{3, 4}$. EOC is a heterogeneous disease and is categorized into different subtypes based on their histologic features². These histologic subtypes exhibit different types of mutations (Table 1). The serous subtype is the most common form of EOC (Figure 1)^{5, 6}. The stage of the disease, i.e. its spread within the ovaries or to other parts of the body is evaluated during surgery (Table 2)⁷. Due to a lack of distinctive symptoms and specific diagnostic biomarkers, more than 60% of EOC patients are diagnosed with disease that has already spread throughout the peritoneal cavity (Figure 2)⁸. In contrast, only 15% of EOC patients present with ovarianconfined disease at the time of initial diagnosis (Figure 2) 8 . The five-year survival rate for women with advanced-stage EOC is less than 30% as compared to over 90% for women with localized disease (Figure 2)⁸. The majority of patients with advanced-stage EOC who undergo tumor-debulking surgery and conventional platinum-taxane chemotherapy relapse within 18 months ⁹.

 Table 1: Common mutations identified in the histologic subtypes of EOC

Histologic subtype	Mutations	References
Serous	High grade serous: TP53 CDKN2A BRCA1/2 Low grade serous: BRAF KRAS ERBB2	10-12
Endometrioid	CTNNB1 PIK3CA PTEN ARID1A	5, 13
Mucinous	KRAS	5, 14
Clear cell	HNF1B PTEN ARID1A PIK3CA	5, 15-17

Figure 1. Relative frequencies of subtypes of EOC

Relative frequencies of subtypes of EOCs as reported by two independent studies ^{5, 6}.

Table 2: International Federation of Gynecology and Obstetrics (FIGO) staging ofEOC7

FIGO Stage	Characteristics of the tumor
Ι	Tumor is confined to the ovaries
Π	Tumor involves one of both ovaries with extension and/or implantation on pelvic organs e.g. uterus and/or fallopian tubes
III	Tumor involves one or both ovaries with disease that has spread to the peritoneum outside the pelvis and/or to retroperitoneal lymph nodes
IV	Distant metastases to liver, spleen and extra-abdominal organs with development of pleural effusions

A

Figure 2. Stage distribution of EOC and five-year survival rate by stage ⁸.

(A) Percentage of EOC cases by tumor stage as reported by SEER, where localized disease corresponds to FIGO Stage I, regional disease corresponds to FIGO stage II and distant disease corresponds to FIGO Stages III and IV. (B) Five-year survival rate by tumor stage.

Currently, the most commonly used biomarker for EOC is the glycoprotein cancer antigen-125 (CA-125) ¹⁸. Serum levels of CA-125 are found to be elevated in approximately 80% of advanced-stage EOC cases and is used for post-operative monitoring ^{18, 19}. However, measurement of CA-125 is not highly sensitive for detection of early stage EOC. CA-125 levels are also elevated in other conditions such as pregnancy, endometriosis, menstruation and other malignancies like pancreatic, breast, lung, and gastric cancers ²⁰. There is, therefore, a critical need for the identification of novel diagnostic biomarkers for early detection of EOC and new molecular targets for effective treatment against highly metastatic and chemoresistant EOC.

2. Biology of dissemination of EOC

Unlike most other types of solid tumors, EOC does not typically metastasize via lymphatic or hematogenous routes 21 . In the initial stage, the tumor is confined to one or both the ovaries. As the disease progresses, the ovarian capsule is disrupted and the tumor first spreads by directly extending to adjacent organs, for example, uterus and fallopian tubes (Figure 3) 22 . Distal dissemination of EOC occurs primarily via intraperitoneal seeding (Figure 4). Exfoliated tumor cells are transported by the circulating peritoneal fluid and undergo implantation on the mesothelial linings of the peritoneal cavity wall and abdominal organs (Figures 3,4) 22 . This peritoneal carcinomatosis is commonly associated with formation of ascites 22 .

Figure 3. Pattern of spread of EOC

In the early stage, the tumor (shown as red masses) is confined to one or both the ovaries. Once the ovarian capsule is disrupted, the tumor spreads by direct extension to adjacent organs. Exfoliated tumor cells are then transported by the circulating peritoneal fluid and implant on the mesothelial linings of the pelvic cavity wall and abdominal organs. The omentum is the most common implantation site 22 .

Figure 4. Model of peritoneal seeding of EOC

Distal spread of EOC cells (shown in red) occurs via 'seeding' of the peritoneal cavity. EOC cells are exfoliated into the peritoneal fluid and form multicellular aggregates to escape anoikis. Surviving EOC cells are transported by the circulating peritoneal fluid and then implant on the mesothelial linings of the peritoneal cavity ²².

2.1. Implantation of EOC cells on to the peritoneum

The ability of EOC cells to 'seed' the peritoneal cavity is a hallmark of this disease. The attachment of EOC cells to the peritoneal surfaces is a key rate-limiting step. It is thought that attachment of EOC cells to the peritoneum is mediated via two primary mechanisms: 1) attachment to the mesothelial cells lining the peritoneal cavity and 2) attachment to the submesothelial extracellular matrix (ECM) 23-26. Mesothelial cells, that are derived from the mesoderm, form a monolayer that lines the surface of body's three serosal cavities: pleural, pericardial and peritoneal ²⁷. The mesothelial cell lining functions as a protective layer and a non-adhesive surface that facilitates movement of other tissues and plays an essential role in immune and inflammatory responses²⁷. Attachment of EOC cells to mesothelial cells is mediated by a repertoire of ligands and receptors. The EOC biomarker CA-125 can mediate tumor cell implantation by binding the glycosylphosphatidyl inositol (GPI)-linked protein mesothelin that is expressed on mesothelial cells ^{28, 29}. Integrins are cell surface protein complexes composed of α and β subunits that have been reported to facilitate attachment of EOC cells to mesothelial cells and also to the sub-mesothelial ECM ³⁰. Several groups have demonstrated that β 1 integrin mediates binding of EOC cells to peritoneal mesothelial cells ³¹⁻³³. On the other hand, several studies have reported that integrins such as $\beta 1$ and $\alpha \nu \beta 3$ promote EOC metastasis by binding to components of the ECM such as collagen type I, fibronectin, laminin and vitronectin³⁴⁻³⁷. A study by Iwanicki and colleagues demonstrated that spheroids of EOC cells can gain access to the sub-mesothelial ECM by displacing mesothelial cells that line the peritoneal organs by utilizing myosin-generated traction force that is dependent on activation of $\alpha 5\beta 1$ integrin and talin I³⁸.

Cadherins constitute a gene super-family of membrane glycoproteins that facilitate cellcell adhesion via homophilic interactions. Substantial evidence indicates that alteration in cadherin expression, often termed 'cadherin switching' drives tumor progression ^{39, 40}. The most well-characterized form of cadherin-switching involves upregulation of N-cadherin and P-cadherin and downregulation of E-cadherin ^{39, 40}. Loss of E-cadherin expression and increase in expression of N-cadherin in advanced stage EOC correlates with poor prognosis in patients ⁴¹. High expression of P-cadherin has also been found to correlate with reduced overall survival of EOC patients ⁴¹. P-cadherin facilitates formation of multi-cellular aggregates of EOC cells, inhibits anoikis and also promotes attachment of EOC cells to peritoneal mesothelial cells ⁴².

The most-studied cell adhesion molecule that promotes attachment of EOC cells to the mesothelial lining is the cell-surface glycoprotein CD44. CD44 proteins are encoded by a highly conserved gene and are present in different isoforms ⁴³. This heterogeneity among the different isoforms is due to differential glycosylation and alternative splicing of exons ⁴³. The smallest isoform CD44s is the most common isoform and is present on the membrane of most vertebrate cells. However, unlike CD44s, variant isoforms of CD44 are only expressed on some epithelial cells during embryogenesis, lymphocytes and in certain cancers ^{44, 45}. CD44v7 has been reported to promote metastasis of pancreatic adenocarcinomas ⁴⁶. Another study reported that CD44v6 interacts with vascular endothelial growth factor-A (VEGF-A) and hepatocyte growth factor (HGF) to promote tumor angiogenesis ⁴⁷. Standard and variant isoforms of CD44 have been detected in EOCs ⁴⁸. Expression of CD44s in EOC is an independent predictor of survival and its expression correlates with poor outcomes and decreased overall survival ⁴⁹⁻⁵¹. CD44 is a major receptor for the glycosaminoglycan,

hyaluronic acid (HA) that is synthesized by mesothelial cells lining the peritoneal cavity ^{52, 53}. CD44 facilitates attachment of EOC cells to peritoneal mesothelial cells by binding to HA ^{24, 53, 54}. A study by Strobel and colleagues demonstrated that a CD44 neutralizing antibody (Ab) significantly inhibited EOC cell implantation on peritoneal mesothelial linings in intraperitoneal (i.p.) xenograft models ⁵⁵. However, the mechanisms that induce expression of CD44 in EOC cells are poorly understood and require further investigation.

2.2. Inflammatory signaling in EOC

A second hallmark of EOC is the formation of ascites ⁵⁶. Accumulation of fluid in the peritoneal cavity stems from increased vessel permeability 57, 58. VEGF-A is widely recognized as the causative factor of ascites formation. High levels of VEGF-A have been demonstrated to induce vascular permeability and stimulate formation of ascites in EOC ⁵⁹⁻⁶². Ascitic fluid contains a wide range of growth factors, inflammatory cytokines and chemokines that function via autocrine and paracrine mechanisms and promote tumor progression ⁶³. Pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and interleukin-1B (IL-1B) are present in ascites of EOC patients and are associated with poor outcomes in patients ⁶⁴. IL-6 promotes EOC cell growth and also stimulates chemoresistance and tumor angiogenesis ⁶⁵⁻⁶⁸. Elevated levels of IL-8 also promote angiogenesis in EOC 69 . Elevated levels of IL-1 β in ascites of EOC patients significantly correlate with poor histopathological grade and reduced progression-free survival ⁷⁰. Normal and malignant EOC cells as well as activated stromal immune cells are the major sources of IL-1 β^{71} . Constitutive secretion of IL-1 β by EOC cells promotes tumor invasion by inducing expression of matrix metalloproteinase-1 (MMP-1) and tumor angiogenesis by stimulating production of VEGF ^{72, 73}. IL-1ß promotes inflammatory

signaling in tumors via activation of nuclear factor kappa B (NF- κ B) signaling pathway ⁷⁴. Secretion of IL-1 β by EOC cells downregulates expression of p53 in stromal fibroblasts and stimulates NF- κ B signaling which in turn leads to an increase in the expression of other molecules such as IL-8, IL-6 and VEGF ⁷⁵. However, the mechanisms by which IL-1 β promotes peritoneal metastasis of EOC are not clear.

2.3. NF-κB signaling in EOC

The NF- κ B signaling pathway is activated in many types of tumors. A central component of the pathway comprises a family of five transcription factors: p50, p52, p65 (RelA), c-Rel and RelB⁷⁶. There are two different pathways for activation of NF-κB signaling: canonical and non-canonical. The canonical signaling pathway is triggered by microbial products and pro-inflammatory cytokines such as tumor necrosis factor- α (TNF- α) and IL-1 leading to activation of RelA or c-Rel, which form dimers with p50⁷⁷. The dimers interact with inhibitors of NF- κ B family of proteins (I κ B α , I κ B β , and I κ B ϵ) in the cytoplasm and are in an inactive state. When the canonical pathway is triggered, the IkB proteins get phosphorylated by the IkB kinases (IKKs) on conserved serine residues and in turn IkB proteins undergo degradation by the ubiquitin-proteasome pathway and release the NF-κB dimers. The dimers then translocate to the nucleus and function as transcription factors to activate target genes (Figure 5)⁷⁷. The non-canonical signaling pathway is activated by TNFfamily cytokines like B-cell activating factor (BAFF), lymphotoxin B, CD40 ligand (CD40L) and receptor activator of NF-KB ligand (RANKL), which results in the activation of RelB/p52 complexes. Whereas the canonical pathway is typically regulated by the IKK β and IKK γ subunits, the non-canonical pathway is regulated by IKK α which phosphorylates and processes p100, the precursor form of p52 (Figure 5)^{77, 78}. Although NF-κB signaling is

widely activated in solid tumors, there are no known oncogenic mutations in members of the NF- κ B family. The activation of this pathway, therefore, has largely been attributed to inflammatory signals in the tumor microenvironment ⁷⁹.

The ovarian tumor microenvironment contains a wide variety of pro-inflammatory cytokines that are secreted by tumor cells and stromal cells. High levels of TNF- α , IL-1 α , IL-1β and IL-6 have been detected in EOC tissues as compared to levels in normal ovarian tissues ⁸⁰⁻⁸². Several studies have demonstrated that high levels of cytokines such as TNF- α and IL-1 β in EOC promote tumor progression by activation of NF- κ B signaling ^{75, 83}. For example, a study by Kulbe and colleagues identified that TNF- α , through its activation of NF- κ B, upregulates expression of the chemokine receptor CXCR4 which in turn interacts with its ligand CXCL12, and promotes increased tumor growth and migration ⁸³. Activation of the NF-kB pathway in turn induces downstream target genes that encode ligands that activate the pathway such as TNF- α and IL-1 β , and also other target genes encoding IL-6, IL-8, VEGF and MMPs ⁷⁴. This NF- κ B signaling loop leads to activation of chronic signaling in tumors. A number of independent studies have demonstrated a strong association between activation of NF-kB transcription factors in EOC and poor outcomes in patients^{84, 85}. Higher expression of NF-kB transcription factors such as p50 and p65 has been detected in advanced-stage EOCs as compared to borderline and benign tumors or normal ovaries ⁸⁵. Levels of phosphorylated p65 in EOC strongly correlate with advanced disease stage and high tumor grade $^{86, 87}$. However, the mechanisms by which chronic NF- κ B signaling promotes peritoneal dissemination of EOC are poorly understood.

Figure 5: NF-KB signaling pathway

The canonical NF- κ B signaling pathway is triggered by proinflammatory cytokines such as TNF- α and IL-1 β whereas the non-canonical NF- κ B signaling pathway is triggered by cytokines such as lymphotoxin B, CD40L, BAFF and RANKL. These signals lead to activation of the IKK complex (shown in blue). In the canonical pathway, the IKK complex phosphorylates I κ B (shown in green) at two serine residues, which signals it for degradation and release of the phosphorylated NF- κ B dimers (shown in orange). The NF- κ B dimers then translocate to the nucleus and induce transcription of target genes ⁸⁸. Activation of the IKK complex in the non-canonical pathway leads to phosphorylation and degradation of p100, releasing p52-RelB heterodimers (shown in yellow). The heterodimers then translocate to the nucleus and activate transcription of target genes ⁸⁹.

B. HOMEOBOX GENES

1. General overview of homeobox genes

Homeobox genes consist of a large super-family of approximately 200 vertebrate genes that play essential roles in body plan specification and development of virtually all organ systems during embryogenesis ^{90, 91}. In adults, homeobox genes regulate tissue homeostasis and regeneration, differentiation of hematopoietic progenitors and vascular remodeling ^{92, 93}. Homeobox genes were first identified due to their mutations in *Drosophila* that caused formation of body segments in the wrong context. For example, loss-of-function mutations in the *Antennapedia* gene in *Drosophila* results in development of ectopic antennae instead of legs ⁹⁴. Similarly, in humans, aberrant expression of homeobox genes can cause developmental defects like malformation of limbs or other sensory defects ^{95, 96}. Homeobox genes encode proteins termed 'homeoproteins' that primarily function as transcription factors ^{97, 98}. Homeoproteins consist of a highly conserved DNA binding domain that is known as the 'homeodomain'. This homeodomain forms three alpha-helices which binds DNA elements having TAAT core motifs (Figure 6) ⁹⁹.

Figure 6. Structure of the homeodomain

Transcription factors encoded by homeobox genes consist of a highly conserved 61 amino acid DNA binding domain termed the 'homeodomain'. The homeodomain forms three α -helices (colored boxes) that bind DNA elements containing TAAT core motifs⁹⁹.

2. Genomic organization of homeobox genes

In mammals, homeobox genes are classified into different families based on the similarities in their homeodomains and functional motifs ¹⁰⁰. Mammalian homeobox gene families are named after their homologs in *Drosophila*. For example, members of the mammalian gene families *DLX*, *CDX*, and *OTX* are named after homologous *Drosophila* gene families *distal-less*, *caudal*, and *orthodenticle* respectively ¹⁰¹. Eventhough many homeobox genes in mammals are dispersed throughout the genome, members of *HOX* and *DLX* gene families are arranged in clusters ^{102, 103}. The 39 members of the mammalian *HOX* gene family are grouped in clusters on four different chromosomes (Figure 7) ^{104, 105}. Likewise, the six members of the mammalian *DLX* gene family are arranged in bigene clusters and are located upstream of the *HOX* gene clusters (Figure 7) ^{105, 106}. It has been postulated that clusters of *HOX* and *DLX* gene families derived from gene duplication during evolution ^{103, 107}.

Figure 7. Clusters of HOX and DLX gene families

The 39 members of the mammalian HOX gene family are organized in clusters on 4 different chromosomes. The 6 members of the DLX gene family are arranged in bigene clusters, located upstream of the HOX loci ^{105, 106}.

3. Deregulation of homeobox genes in tumors

Substantial evidence indicates that expression of several homeobox genes is deregulated in a wide variety of tumors ⁹⁷. Deregulation of homeobox genes in cancer falls into two broad categories. The first category of homeobox genes are those that are usually expressed only in normal, differentiated adult tissues but are often downregulated in tumors and have tumor suppressive functions (Figure 8) ^{97, 99, 101}. Loss of expression of these homeobox genes has been attributed to epigenetic mechanisms, long non-coding RNAs and chromosomal aberrations like loss of heterozygosity ¹⁰¹. For example, loss of HOXA5 in breast cancers occurs due to promoter hypermethylation ¹⁰⁸. Loss of HOXA5 results in a down-regulation of p53 expression and tumor progression in breast cancers ¹⁰⁸. The long non-coding RNA HOTAIR which is located in the HOXC locus binds to and re-targets Polycomb Repressive Complex 2 (PRC2), a large multi-protein complex that mediates transcriptional silencing ^{109,} ¹¹⁰. HOTAIR re-targets the PRC2 complex to the HOXD locus ¹⁰⁹. In breast cancers, increased expression of HOTAIR in primary tumors is considered to be highly predictive of metastatic disease and poor outcomes ¹⁰⁹. The homeobox gene NKX3.1, which maps to chromosomal region 8p21, is expressed in fetal and adult prostate tissues and controls normal differentiation of prostatic epithelium ^{111, 112}. Loss of heterozygosity of NKX3.1 occurs in approximately 60%-80% of prostate cancers ¹¹³. Loss of NKX3.1 induces development of prostatic intraepithelial neoplasia (PIN)¹¹⁴. Furthermore, loss of *NKX3.1* coupled with loss of the tumor suppressor gene PTEN and overexpression of oncogene *c-myc* promotes prostate cancer progression ¹¹⁵⁻¹¹⁸.

The second category of homeobox genes are those that are usually expressed in embryonic tissues but not in adult tissues. These homeobox genes are often upregulated in tumors and have tumor promoting functions (Figure 8) 97, 99, 101. Gain of function of homeobox genes in tumors can be caused by chromosomal aberrations like gene amplification ¹⁰¹. For example, the *HOXB* gene cluster and the homeobox gene *DLX4* map to the 17q21.3-q22 region, a chromosomal hotspot amplified in about 10% of breast cancers and EOC ¹¹⁹⁻¹²¹. HOXB7 is also overexpressed in various other types of tumors such as pancreatic cancer, colorectal cancer and melanomas ¹²²⁻¹²⁴. High expression of HOXB7 in breast cancers, EOC and melanomas drives tumor progression in part by activating transcription of the gene that encodes basic fibroblast growth factor (bFGF) ^{122, 125-127}. HOXB7 also promotes resistance to tamoxifen in breast cancers by inducing expression of epidermal growth factor receptor (EGFR) and its ligands, thereby activating EGFR signaling ¹²⁸. HOXB7 and DLX4 are over-expressed in more than 50% of breast cancers and EOC though only 10% of cases exhibit a loss of the chromosomal region containing the gene cluster ^{129, 130}. This highlights the need to identify more mechanisms of homeobox gene deregulation as well as downstream transcriptional targets that will aid in developing better targeted therapies.

Tumor-suppressive homeobox genes

Figure 8. Trends in the aberrant expression of homeobox genes in tumors

Homeobox genes that are normally expressed only in embryonic tissues are often activated in tumors and generally have tumor-promoting functions (shown in orange). Homeobox genes that are normally expressed in normal differentiated adult tissues are down-regulated in tumors and generally have tumor-suppressive functions (shown in yellow)¹⁰¹.

Homeobox gene	Type of cancer	Expression pattern in tumors	Functional significance of deregulation in tumors	References
HOXB7	melanoma, breast, pancreatic, colorectal, ovarian	1	 Induces expression of EGFR and FGF2 Promotes tumor growth and angiogenesis Promotes EMT and chemoresistance 	122-128
HSIX1	breast, pancreatic, rhabdomyosarcomas	1	 Promotes tumor growth by inducing cyclin A1 Promotes lymphangiogenesis and metastasis by inducing VEGF-C and ezrin expression 	131-135
HOXA9	ovarian, glioblastomas	1	 Promotes EOC growth by stimulating cancer-associated fibroblasts and macrophages with immunosuppressive properties Promotes EOC dissemination via induction of P-cadherin 	136-139
NKX3.1	prostate	Ļ	 Loss of NKX3.1 causes PIN- like lesions in mice Co-operates with loss of PTEN to induce prostate cancer progression 	114, 116-118
HOXA5	breast	Ļ	 Loss of HOXA5 promotes cell cycle deregulation and metastasis by inducing loss of p53 and promoting expression of Twist Loss of HOXA5 induces genomic instability by down-regulating expression of human MutL homolog 1 (hMLH1) 	108, 140, 141
CDX2	colorectal	Ţ	 Loss of CDX2 promotes genomic instability by inducing DNA repair via non- homologous end joining (NHEJ) pathway Loss of CDX2 deregulates cell cycle progression by down- regulating expression of cyclin dependent kinase inhibitors p27Kip1 and p21/waf1/cip1 	142-144

Table 3: Examples of significance of aberrant homeobox gene expression in tumors

4. Role of the homeobox gene *DLX4* in tumors

DLX4, a member of the *DLX* family of homeobox genes, is also reported as *BP1*, *DLX7* and *DLX8*^{91, 145}. *DLX4* is generally expressed in endometrium, placenta, trophoblast and normal bone marrow cells but not in other normal adult tissues ¹⁴⁶⁻¹⁴⁸. Increasing evidence indicates that *DLX4* is expressed in hematological malignancies and also solid tumors such as EOC, breast, prostate, and lung cancers (Table 4). Previous studies in our laboratory have demonstrated that high expression of DLX4 in tumors confers resistance to anti-proliferative signals mediated by TGF-β, promotes genomic instability and chemoresistance in various tumors ^{149, 150}. DLX4 has been reported to promote invasiveness of breast cancer by inducing expression of TWIST and inhibiting expression of E-cadherin ^{151, 152}. Other studies from our laboratory have found that DLX4 is absent from normal ovary and ovarian cystadenomas ¹²⁹. On the other hand, expression of DLX4 in EOC strongly correlates with advanced disease stage, high tumor grade and reduced overall survival of patients ¹²⁹. The ability of DLX4 to promote EOC growth has been attributed in part to its stimulation of tumor angiogenesis ¹²⁹. However, the mechanisms by which DLX4 promotes EOC metastasis are poorly understood.

Type of cancer	Pattern of DLX4 expression in cancers	Functional significance of deregulation of DLX4 in cancers	References
Breast	Overexpressed in 80% of breast cancers	 Represses BRCA1 expression Upregulates Twist and promotes tumor metastasis Promotes tumor cell survival by inducing Bcl-2 and inhibiting apoptosis 	130, 151-157
Ovarian	Overexpressed in ~50% of EOC and correlates with advanced disease stage and high tumor grade	• Promotes tumor angiogenesis by inducing expression of VEGF and bFGF	129
Prostate	Overexpressed in 70% of prostatic adenocarcinomas		158
Choriocarcinoma	Expressed in normal placenta and human choriocarcinoma cell lines	Promotes tumor cell survival	159, 160
Leukemias	Overexpressed in bone marrow of 63% of acute myeloid leukemia (AML) cases	 Increases clonogenicity of leukemic cells Induces expression of c-myc 	148, 161, 162

Table 4: Examples of aberrant expression and functional significance of DLX4 in tumors

C. HYPOTHESIS AND SPECIFIC AIMS

The high morbidity and mortality caused by EOC stems from its propensity to disseminate throughout the peritoneal cavity and the inability to detect the disease at an early, organ-confined stage. Cancer-associated ascites is enriched in growth factors and inflammatory cytokines that promote inflammatory signaling and peritoneal metastasis. However, the mechanisms by which EOC cells activate chronic inflammatory signaling and by which inflammatory cytokines promote metastasis are poorly understood. The overall goal of my study is to identify the molecular mechanisms that promote rapid metastasis of EOC.

Expression of the homeobox gene DLX4 in EOC has been found to be strongly associated with advanced disease stage and poor survival of patients. However, the significance of DLX4 in promoting metastasis of EOC is not known. <u>My broad hypothesis is that DLX4 promotes peritoneal dissemination of EOC</u>. Specifically, I hypothesize that DLX4 promotes peritoneal dissemination of EOC by controlling inflammatory signaling.

The specific aims of my study are:

- 1) To determine whether DLX4 promotes peritoneal dissemination of EOC
- 2) To identify the mechanisms by which DLX4 controls tumor-peritoneum interactions

CHAPTER 2: MATERIALS AND METHODS

1. Antibodies

Sources of antibodies (Abs) were as follows: DLX4 Ab (for flow cytometry, Abcam, Cambridge, MA), DLX4 Ab (for chromatin immunoprecipitation, Abnova, Taipei, Taiwan), CD44 Ab (for flow cytometry, BD Biosciences, San Jose, CA), CD44 Ab (for neutralization, Abcam), phosphorylated NF-κB p65 (Ser 536) Ab (for flow cytometry, Cell Signaling Technology, Danvers, MA). Secondary Abs were purchased from Pierce Biotechnology, Rockford, IL and BD Biosciences.

2. Plasmids

A human *DLX4* cDNA plasmid was provided by Dr. Patricia Berg (George Washington University) ¹⁶². Flag-tagged *DLX4* was subcloned into pIRES-EGFP2 vector (Clontech, Palo Alto, CA) ¹⁴⁹. Flag-tagged *DLX4* was also subcloned into the retroviral vector, pRetroQ (Clontech). pGFP-VRS plasmids containing non-targeting shRNA and *DLX4* shRNAs were purchased from OriGene Technologies (Rockville, MD). *IL1B* cDNA was purchased from Origene Technologies. pGipZ lentiviral vectors containing *IL1B* shRNA and non-targeting shRNA were purchased from shRNA and the ORFeome Core Facility (University of Texas MD Anderson Cancer Center, Houston, TX). The NF-kB-luciferase reporter construct containing tandem repeats of NF-kB transcriptional response element (TRE) was purchased from SABiosciences (Frederick, MD). pBabe-GFP-IkBa dominant negative (IkBa-DN) construct was provided by Dr. William Hahn (Broad Institute of Harvard and MIT, Cambridge, MA; Addgene plasmid 15264) ¹⁶³.

3. Cell culture

3.1. EOC cell lines

The EOC cell line A2780 was provided by Dr. Gordon Mills (University of Texas MD Anderson Cancer Center). The EOC cell line 2008 was provided by Dr. Zahid Siddik (University of Texas MD Anderson Cancer Center). Both cell lines were cultured in RPMI 1640 medium supplemented with 10% Fetal Bovine Serum (FBS), 2mM glutamine and penicillin-streptomycin.

3.2. Primary human mesothelial cells

Cultures of primary normal human mesothelial cells were provided by Dr. Ernst Lengyel (University of Chicago). Mesothelial cells were obtained from normal omental tissues of women undergoing surgery for benign conditions ¹⁶⁴. Cultures were maintained in RPMI 1640 medium supplemented with 20% FBS, 2mM glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin.

4. Transfection and generation of stable lines

For generating A2780 stable lines, the retroviral constructs containing empty vector and Flag-tagged *DLX4* were used to transfect Ampho293 cells using Lipofectamine 2000 (Life Technologies, Carlsbad, CA). Viral supernatants were harvested after 48 hours and used to infect A2780 cells. Stable lines were selected with puromycin $(0.5\mu g/ml)$. Lipofectamine 2000 was used for transient transfections of A2780 and 2008 cells.

5. In vitro cell attachment assays

In vitro cell attachment assays were performed as described in Ko *et al* ³⁰. Mesothelial cells (30,000 per well) were seeded in 96-well plates to obtain confluent monolayers. At one day thereafter, green fluorescent protein (GFP)-expressing EOC cells (15,000 per well) were seeded onto mesothelial cells and the plates were incubated at 37°C for one hour. For blocking experiments, EOC cells were pre-incubated with the CD44 blocking Ab or control IgG at a concentration of 10μ g/ml for one hour and then seeded onto mesothelial cells. Unattached EOC cells were removed by gently washing the wells 3 times with culture media. Attached EOC cells were viewed by immunofluorescence microscopy and cells were counted in five random 200X microscopic fields per well in three independent experiments.

In other experiments, plates were coated with collagen I, fibronectin or laminin (Sigma-Aldrich, St. Louis, MO) at a concentration of 0.5µg/well and the plates were incubated at 4°C overnight. Plates were then washed 2 times with phosphate-buffered saline (PBS) and GFP-expressing EOC cells were seeded onto coated plates and the plates were incubated at 37°C for one hour. Attached cells were evaluated as described above.

6. Flow cytometry

Abs were diluted in PBS containing 1% bovine serum albumin (BSA). For cell surface staining of CD44, tumor cells were incubated with CD44 Ab (1:10) for 30 minutes at 4°C, washed and incubated with peridinin-chlorophyll-protein complex (PerCP)-conjugated antimouse IgG. For intracellular staining of DLX4 and phosphorylated p65, tumor cells were fixed in 1% paraformaldehyde (20 minutes at 4°C) and permeabilized in 0.1% saponin (15 minutes at room temperature). Following washing, cells were incubated with Abs to DLX4 (1:20) and phosphorylated NF-κB p65 (1:500) for 30 minutes at 4°C, washed and incubated with PerCP- or phycoerythrin (PE)- conjugated secondary Abs. Staining was detected by flow cytometry (FACS Calibur, BD Biosciences).

7. ELISA

ELISA kit for IL-1 β was purchased from R&D Systems (Minneapolis, MN). Cells were lysed using M-PER buffer (Pierce Biotechnology) and cell lysates were prepared as per the manufacturer's instructions. Intracellular IL-1 β levels were assayed in the cell lysates as per the manufacturer's instructions and normalized to the total cellular protein content in three independent experiments.

8. Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted from cells using PureLink RNA mini kit (Invitrogen, Carlsbad, CA) as per the manufacturer's instructions. 1 µg of RNA was used to synthesize cDNA using qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD) as per the manufacturer's instructions. Transcript levels were analyzed on CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA) using primers listed in Table 5 and iTaq Universal SYBR® Green Supermix (Bio-Rad) as per the manufacturer's instructions. Target gene transcript levels were normalized to levels of ribosomal protein *RPL32*. mRNA levels were assayed in triplicate in two independent experiments.

 Table 5: Primers for qRT-PCR

Gene	Sequence		
CD44	Forward	5'- GGCTTTCAATAGCACCTTGC - 3'	
	Reverse	5'- ACACCCCTGTGTTGTTTGCT - 3'	
CDH3	Forward	5'- CAGGTGCTGAACATCACGGACA - 3'	
	Reverse	5'- CTTCAGGGACAAGACCACTGTG - 3'	
	Forward	5'- GGATTCTCCAGAAGGTGGTTTCG - 3'	
IIGBI	Reverse	5'- TGCCACCAAGTTTCCCATCTCC - 3'	
IL1B	Forward	5'- CCACAGACCTTCCAGGAGAATG - 3'	
	Reverse	5'- GTGCAGTTCAGTGATCGTACAGG - 3'	
RPL32	Forward	5'- ACAAAGCACATGCTGCCCAGTG - 3'	
	Reverse	5'- TTCCACGATGGCTTTGCGGTTC - 3'	

9. Chromatin Immunoprecipitation (IP)

Chromatin IP assays were performed using EZ-ChIP Chromatin Immunoprecipitation Kit (Upstate Biotechnology, Temecula, CA). Cells were crosslinked by adding formaldehyde to a final concentration of 1% for 10 minutes at room temperature. Glycine was then added at room temperature for 5 minutes to quench formaldehyde. Cells were then washed twice with 1X PBS and harvested. Cell pellets were lysed with Sodium Dodecyl Sulfate (SDS) lysis buffer (Upstate Biotechnology) and then sonicated to generate fragments of DNA of ~200-1000 base pairs in length. Sheared chromatin was first pre-cleared by incubating with protein G agarose beads for 1 hour. Pre-cleared chromatin was then incubated with Abs to DLX4 or normal IgG overnight at 4°C. Protein G agarose beads were then added and incubated for 1 hour at 4°C. The agarose-antibody/chromatin complex was washed as per the manufacturer's instructions followed by elution of protein/DNA complexes, reverse crosslinking of protein/DNA complexes at 65°C overnight and purification of DNA using spin columns. Purified DNA was used to amplify fragments of the *IL1B* promoter by PCR. PCR products were analyzed on a 3% agarose gel. The primers used for PCR amplification are listed in Table 6.

 Table 6: Primers for chromatin IP assays

Gene		Sequence	
IL1B	Forward	5'- GGTAGAGACCCACACCCTCA - 3'	
	Reverse	5'- CATGGAAGGGCAAGGAGTAG - 3'	
<i>GAPDH</i> (Glyceraldehyde 3-	Forward	5'- TACTAGCGGTTTTACGGGCG - 3'	
phosphate dehydrogenase)	Reverse	5'- TCGAACAGGAGGAGCAGAGAGCGA - 3'	

10. Luciferase reporter assays

Cells were plated at a density of $1-2 \times 10^5$ cells per well in 12-well plates and cotransfected with expression plasmids (500ng/well) and NF- κ B Luc or Negative Luc reporter plasmids (100ng/well) using Lipofectamine 2000 reagent. At 24 hours after transfection, luciferase activities were assayed using the Dual-reporter assay kit (Promega, Madison, WI). Efficiencies of transfections were normalized using Renilla luciferase readings. Relative luciferase activities were assayed in three independent experiments.

11. Statistical analysis

Statistical significance for differences in the number of peritoneal implants in mice was assessed by Mann-Whitney *U*-Test. Statistical significance for *in vitro* assays was calculated by Student's *t*-test. All statistical analyses were performed using STATISTICA10 software (StatSoft, Inc.). *P* values < 0.05 were considered significant.

CHAPTER 3: ROLE OF DLX4 IN PERITONEAL DISSEMINATION OF EOC

A. RATIONALE

More than 60% of EOC patients are diagnosed with advanced stage disease that has spread throughout the peritoneal cavity ⁸. EOC cells typically spread by shedding into the circulating fluid that transports the cells throughout the peritoneal cavity. EOC cells then implant on to the mesothelial linings of the peritoneal and abdominal organs including the mesentery, diaphragm, omentum and cavity wall (Figures 3, 4). However, the mechanisms that enable implantation of EOC cells on to peritoneal surfaces are poorly understood.

Previous studies from our laboratory have found that the homeobox gene *DLX4* is highly expressed in advanced stage EOC ¹²⁹. High expression of DLX4 correlated with disease stage and poor survival of patients ¹²⁹. However, the mechanisms by which DLX4 promotes peritoneal metastasis of EOC are not known. In this chapter, the goal of my studies is to determine whether DLX4 promotes peritoneal dissemination of EOC.

B. RESULTS

1. DLX4 promotes implantation of EOC cells onto peritoneal surfaces in i.p. mouse xenograft models

In advanced stage disease, exfoliated EOC cells are transported by the circulating peritoneal fluid (Figure 4). Thereafter, these circulating EOC cells implant onto the mesothelial cells that line the peritoneal cavity. Nests of tumor cells are frequently observed on the mesentery, diaphragm and omentum of patients (Figure 3). Our laboratory has previously generated xenografts by i.p. inoculation of female nude mice with cells of GFP-expressing A2780 EOC lines that stably express or lack DLX4¹²⁹. To initiate this study, I analyzed tissues of mice inoculated with vector-control A2780 cells and with DLX4-expressing A2780 cells (+DLX4) to determine the degree of implantation of EOC cells to sites within the peritoneal cavity. Significantly higher numbers of implants were observed on the mesentery and diaphragm of mice inoculated with +DLX4 A2780 cells as compared to mice inoculated with equal numbers of vector-control A2780 cells (P < 0.01) (Figure 9). This observation raised the possibility that DLX4 promotes attachment of EOC cells to the mesothelial linings of the peritoneal and abdominal organs.

Figure 9. DLX4 increases the number of peritoneal tumor implants in i.p. mouse xenograft models

Female nude mice (n=5 per group) were inoculated i.p. with $3x10^6$ cells of vector-control and +DLX4 A2780 cell lines and sacrificed 4 weeks thereafter. Numbers of implants were counted on hematoxylin-eosin (HE) stained xenograft tissue sections from **A**) diaphragm and **B**) mesentery of mice. Bar, 2mm.

2. DLX4 promotes in vitro attachment of EOC cells to mesothelial cells

For this study, two EOC cell lines were used as models. For determining the effect of overexpressing DLX4, I used retrovirally transduced stable A2780 cell lines that express either empty vector or DLX4. For determining the effect of inhibiting DLX4, I used 2008, an EOC cell line that endogenously expresses DLX4 at a high level ¹²⁹. Knockdown of DLX4 in 2008 cells was carried out by using two shRNA plasmids that targeted two different sites within *DLX4* (shDLX4-A and shDLX4-B). Overexpression of DLX4 in A2780 cell lines and knockdown of DLX4 in 2008 cell lines was assayed and quantified by qPCR analysis (not included) and flow cytometric analysis of intracellular staining of DLX4 (Figure 10).

Attachment of EOC cells within the peritoneal cavity is mediated via two primary mechanisms: attachment of EOC cells to the mesothelial cells lining the peritoneal cavity and attachment to the sub-mesothelial ECM ²³⁻²⁶. To determine whether DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells, *in vitro* cell attachment assays were performed (Figure 11) by seeding equal numbers of GFP-expressing vector-control A2780 cells and +DLX4 A2780 cells on to confluent monolayers of primary normal human mesothelial cells. Significantly higher number of +DLX4 A2780 cells were attached to the mesothelial cells as compared to the vector-control A2780 cells (P < 0.01) (Figure 12A). Conversely, 2008 cells in which DLX4 was knocked down (shDLX4-A and shDLX4-B) showed significantly reduced attachment to mesothelial cells as compared to control 2008 cells (P < 0.01) (Figures 12B, 12C). These findings indicate that DLX4 promotes attachment of EOC cells to mesothelial cells.

To determine whether DLX4 promotes attachment of EOC cells to components of the sub-mesothelial ECM, *in vitro* cell attachment assays were performed by seeding equal numbers of GFP-expressing A2780 cells (empty vector and +DLX4) onto plates coated with ECM components, i.e. collagen I, fibronectin and laminin. No significant difference was observed between the numbers of vector-control and +DLX4 A2780 cells that attached to the components of the ECM (Figure 13). Similarly, no significant difference was observed in the numbers of DLX4-knockdown 2008 cells and control 2008 cells that attached to the ECM components (Figure 13). Together, these observations indicate that DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells but not to the components of the ECM.

Figure 10. Overexpression of DLX4 in A2780 cells and knockdown of DLX4 in 2008 cells

Flow cytometric analysis of intracellular staining of DLX4 in (**A**) A2780 cell lines that express empty vector and DLX4 and in (**B**) 2008 cells that express empty vector, nontargeting shRNA and shRNAs that target two different sites within *DLX4* (shDLX4-A and shDLX4-B). Mean fluorescence intensities (MFI) of staining are indicated.

Figure 11. In vitro cell attachment assays

Equivalent numbers of GFP-expressing EOC cells (shown in green) were seeded onto confluent monolayers of primary normal human mesothelial cells (shown in yellow) in 96-well plates or on wells coated with collagen I, fibronectin or laminin. Cell attachment was assayed at one hour after seeding. Attached cells were viewed by immunofluorescence microscopy and counted in five random 200X microscopic fields per well. Each assay was performed in triplicate.

Figure 12. DLX4 promotes *in vitro* attachment of EOC cells to peritoneal mesothelial cells

Equivalent numbers of GFP-expressing EOC cells were seeded onto confluent monolayers of peritoneal mesothelial cells. After one hour, numbers of attached cells were counted in 5 random 200X microscopic fields per well. Numbers of (**A**) Attached vector-control and +DLX4 A2780 cells and (**B**) Control and DLX4-knockdown 2008 cells and (**C**) A representative picture of GFP-expressing 2008 cells attached to the monolayer of mesothelial cells. Shown in (A) and (B) are mean \pm sd values of three independent attachment assays.

Figure 13. DLX4 does not mediate attachment of EOC cells to components of the ECM

Equivalent numbers of vector-control and +DLX4 A2780 cells and control and DLX4knockdown 2008 cells were seeded on wells that were (**A**) uncoated or coated with (**B**) collagen I, (**C**) fibronectin and (**D**) laminin. Numbers of attached cells were counted after 1 hour in five random 200X microscopic fields per well. Shown are mean \pm sd values of three independent attachment assays.

3. DLX4 induces expression of CD44 in EOC cells

Attachment of EOC cells to the mesothelium lining the peritoneal cavity is mediated by various cell adhesion molecules such as P-cadherin, β 1 integrin and CD44 ^{24, 32, 33, 42}. Because DLX4 is a transcription factor, DLX4 might promote attachment of EOC cells to mesothelial cells by inducing expression of these cell adhesion molecules. To investigate this possibility, I initially performed qRT-PCR to evaluate mRNA levels of candidate genes that encode cell adhesion molecules when DLX4 was overexpressed or knocked down. When DLX4 was overexpressed in A2780 cells, there was more than a 10-fold induction in *CD44* mRNA levels as compared to levels in vector-control A2780 cells (*P* <0.001) (Figure 14A). However, there was no induction in mRNA levels for P-cadherin (*CDH3*) or β 1 integrin (*ITGB1*) (Figures 14B, 14C). Conversely, when DLX4 was knocked down in 2008 cells, there was a significant reduction in *CD44* mRNA levels (*P* < 0.01) (Figure 14A). No reduction in *CDH3* or *ITGB1* mRNA levels was observed after knockdown of DLX4 (Figures 14B, 14C).

To further confirm the induction of CD44 by DLX4, I analyzed cell surface levels of CD44 protein by flow cytometry in vector-control and +DLX4 A2780 cells and in control and DLX4-knockdown 2008 cells. This analysis showed an induction in CD44 levels when DLX4 was overexpressed in A2780 cells (Figure 15A) and a reduction in CD44 levels when DLX4 was knocked down in 2008 cells (Figure 15B). These findings indicate that DLX4 induces expression of CD44.

Figure 14. DLX4 induces expression of CD44 but not P-cadherin or β1 integrin

A2780 cells that expressed empty vector or DLX4 and 2008 cells that expressed empty vector, non-targeting shRNA or shRNAs for *DLX4* (shDLX4-A and shDLX4-B) were assayed by qRT-PCR for mRNA transcript levels of (A) *CD44*, (B) *CDH3* (encoding P-cadherin) and (C) *ITGB1* (encoding β 1 integrin). All samples were analyzed in triplicates in two independent experiments. Error bars represent standard deviation.

Figure 15. DLX4 induces expression of CD44

Cell surface levels of CD44 were assayed by flow cytometry in (A) A2780 cells that expressed empty vector or DLX4 and in (B) 2008 cells that expressed empty vector, non-targeting shRNA or shRNAs against *DLX4* (shDLX4-A and shDLX4-B).

4. DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells via CD44

The glycoprotein CD44 is a major receptor for HA that is synthesized by peritoneal mesothelial cells ^{52, 53}. Binding of CD44 to HA promotes attachment of EOC cells to mesothelial cells ^{24, 53, 54}. Because my findings indicated that DLX4 promotes attachment of EOC cells to mesothelial cells and also induces CD44, I evaluated whether DLX4 promotes attachment of EOC cells to mesothelial cells via CD44. In vitro cell-attachment assays were performed in which vector-control and +DLX4 A2780 cells were pre-incubated with a neutralizing Ab against CD44 prior to seeding onto mesothelial cells (Figure 16). The Ab was directed against an epitope close to the HA-binding domain of CD44 (Figure 16). Treatment with this neutralizing CD44 Ab blocked the attachment of +DLX4 A2780 cells to the peritoneal mesothelial cells, whereas treatment with control IgG had no effect (Figure 17). In contrast, treatment with CD44 Ab had no significant effect on the ability of vectorcontrol A2780 cells to attach to mesothelial cells (Figure 17). This observation was consistent with my previous findings that vector-control A2780 cells express very low levels of CD44 (Figures 14A, 15). Together, these findings indicate that DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells via CD44.

Figure 16. Mechanism of CD44-mediated attachment of EOC cells to mesothelial cells

The cell adhesion molecule CD44, which is present on EOC cells, is a major receptor for HA that is synthesized by mesothelial cells ^{52, 53}. Interaction of CD44 and HA facilitates implantation of EOC cells to mesothelial cells lining the peritoneal cavity ^{24, 53, 54}. The CD44 blocking Ab is directed against an epitope very close to the HA-binding domain of CD44 and prevents binding of CD44 to HA ¹⁶⁵.

Figure 17. Neutralization of CD44 blocks the ability of DLX4-expressing EOC cells to attach to mesothelial cells

GFP-expressing empty vector and +DLX4 A2780 cells were pre-incubated with CD44 blocking Ab or normal IgG for 1 hour and then seeded onto confluent monolayers of mesothelial cells. Attachment of A2780 cells to the mesothelial monolayer was assayed at 1 hour after seeding. Attached cells were counted in 5 random 200X microscopic fields. Shown are mean \pm sd values of three independent attachment assays.

C. CONCLUSION

My studies in Chapter 3 demonstrate that overexpression of DLX4 in EOC cells induces CD44 expression and promotes attachment of EOC cells to mesothelial cells. Conversely, knockdown of DLX4 in EOC cells down-regulates expression of CD44 and reduces attachment of EOC cells to mesothelial cells. Furthermore, blocking CD44 in DLX4overexpressing EOC cells hinders their ability to attach to mesothelial cells. Together, these findings indicate that DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells by inducing expression of CD44. The molecular mechanisms by which DLX4 induces expression of CD44 in EOC cells will be discussed in Chapter 4.

<u>CHAPTER 4: MECHANISMS OF DLX4 IN PERITONEAL DISSEMINATION AND</u> <u>INFLAMMATORY SIGNALING IN EOC</u>

A. RATIONALE

Formation of ascites is one of the hallmarks of advanced-stage EOC ⁵⁶. Ascites of EOC patients contains a wide variety of pro-inflammatory cytokines such as IL-8, IL-6 and IL-1 β that stimulate tumor progression^{63, 66, 67, 69, 72, 73}. Expression of these cytokines is associated with poor prognosis of EOC patients ⁶⁴. However, the precise mechanisms by which inflammatory signaling in EOC contributes to peritoneal dissemination of tumors is poorly understood.

Studies in Chapter 3 demonstrated that DLX4 promotes the attachment of EOC cells to peritoneal mesothelial cells (Figure 12). My studies identified that this stimulatory effect of DLX4 is mediated by its ability to induce expression of CD44 on the surface of EOC cells (Figures 14A, 15, 17). In this chapter, the goal of my studies is to identify the mechanisms by which DLX4 induces expression of CD44 in EOC cells.

B. RESULTS

1. DLX4 induces expression of IL-1β

Because DLX4 primarily functions as a transcription factor, I initially hypothesized that DLX4 might directly activate *CD44* transcription. However, no potential DLX4 binding sites were identified in the *CD44* promoter region by performing analysis of transcription factor binding sites (Genomatix). Several studies have demonstrated that the pro-inflammatory cytokine IL-1 β promotes expression of CD44 in other inflammatory diseases such as arteriosclerosis and rheumatoid arthritis ^{166, 167}. Other studies have identified that IL-1 β levels are elevated in EOC patients ⁷⁰. I therefore hypothesized that DLX4 induces expression of CD44 in EOC cells by stimulating production of IL-1 β .

To determine whether DLX4 induces expression of IL-1 β in EOC cells, I evaluated the expression of IL-1 β when DLX4 was overexpressed or knocked down. *IL1B* mRNA levels were significantly higher in +DLX4 A2780 cells as compared to the vector control A2780 cells (P < 0.001) (Figure 18A). Conversely, *IL1B* mRNA levels were significantly lower in DLX4-knockdown 2008 cells as compared to control 2008 cells (P < 0.001) (Figure 18A). Similarly, IL-1 β protein levels were induced when DLX4 was overexpressed in A2780 cells and were reduced when DLX4 was knocked down in 2008 cells (Figure 18B). These results demonstrate that DLX4 induces expression of IL-1 β in EOC cells.

Figure 18. DLX4 induces expression of IL-1β

mRNA transcript levels of *IL1B* were assayed by qRT-PCR in (**A**) empty vector control and +DLX4 A2780 cells and (**B**) control (non-targeting) and DLX4-knockdown (shDLX4-A) 2008 cells. Shown are mean \pm sd values of three independent assays.

Protein levels of IL-1 β were assayed by ELISA in (C) empty vector control, +DLX4 and +DLX4 A2780 cells transfected with non-targeting shRNA and *IL1B* shRNA and (D) control (non-targeting), DLX4-knockdown (shDLX4-A) and DLX4-knockdown 2008 cells that were reconstituted with *IL1B*. Shown are mean ± sd values of three independent assays.

2. *IL1B* is a direct transcriptional target of DLX4

DLX4 is primarily known to function as a transcription factor. I therefore hypothesized that *IL1B*, the gene that encodes IL-1 β , is a direct transcriptional target of DLX4 in EOC cells. A putative DLX4 binding motif was identified in the human *IL1B* promoter (Figure 19A). Binding of endogenous DLX4 to the binding site detected on the *IL1B* promoter was demonstrated by chromatin IP assays in 2008 cells (Figure 19B).

Figure 19. DLX4 directly binds to *IL1B* promoter

(A) Representation of the *IL1B* promoter with a putative DLX4 binding site (TATAAAT) located between nucleotides -353 to -359. (B) Chromatin immunoprecipitation analysis of the interaction of endogenous DLX4 in 2008 cells with the putative binding site identified on the *IL1B* promoter. Input DNA corresponds to 1% of the chromatin solution before immunoprecipitation. Immunoprecipitation was performed with DLX4 Ab and control IgG. Purified DNA was amplified with primers specific to *IL1B* promoter region and *GAPDH*.

54

3. DLX4 induces NF-KB transcriptional activity in EOC cells

IL-1β is known to induce canonical NF-κB signaling in tumors ⁷⁴. Because my studies demonstrated that DLX4 induces expression of IL-1β in EOC cells, I investigated whether DLX4 promotes NF-κB transcriptional activity in EOC cells. To accomplish this, I assayed luciferase activity of a reporter construct driven by a synthetic promoter containing tandem repeats of NF-κB binding sites (Figure 20A) in cells in which DLX4 was overexpressed or knocked down. Overexpression of DLX4 in A2780 cells induced a 3-fold increase in NF-κB transcriptional activity (P < 0.001) (Figure 20B). Conversely, knockdown of DLX4 in 2008 cells reduced NF-κB transcriptional activity by 50% (P < 0.01) (Figure 20B).

When canonical NF-κB signaling is activated, NF-κB transcription factors p65, p50 and c-Rel translocate to the nucleus, phosphorylate, form dimers and activate NF-κB target genes (Figure 5)^{77, 88}. High level of phosphorylated p65 in EOC is associated with advanced disease stage in patients ⁸⁵⁻⁸⁷. In subsequent studies, I evaluated levels of phosphorylated p65 in EOC cells when DLX4 was overexpressed or knocked down by flow cytometric analysis of intracellular staining. Higher levels of phosphorylated p65 were detected in +DLX4 A2780 cells as compared to the vector-control cells (Figure 21A). Conversely, lower levels of phosphorylated p65 were detected in DLX4-knockdown 2008 cells as compared to control 2008 cells (Figure 21B). Together, these results demonstrate that DLX4 induces NF-κB transcriptional activity and levels of phosphorylated NF-κB transcription factor p65 in EOC cells.

A

NF-KB driven reporter

Figure 20. DLX4 induces NF-KB signaling in EOC cells

(A) An illustration of the NF- κ B-driven luciferase reporter construct containing tandem repeats of NF- κ B transcriptional response elements. (B) Luciferase reporter assays were performed to assay NF- κ B transcriptional activity in empty vector and +DLX4 A2780 cells and 2008 cells transfected with empty vector, non-targeting shRNA and shRNAs against *DLX4* (shDLX4-A and shDLX4-B). Shown are relative luciferase activities in three independent experiments. Error bars represent standard deviation.

Figure 21. DLX4 induces levels of phosphorylated p65 in EOC cells

Intracellular levels of phosphorylated p65 were assayed in (**A**) empty vector and +DLX4 A2780 cells and (**B**) 2008 cells transfected with non-targeting shRNA and shRNA against *DLX4* (shDLX4-A) by flow cytometry.

4. Induction of NF-κB signaling by DLX4 in EOC cells is mediated by IL-1β

Canonical NF- κ B signaling activity in tumors is triggered by several cytokines including IL-1 β ⁷⁴. My studies have demonstrated that DLX4 promotes IL-1 β expression and NF- κ B transcriptional activity in EOC cells (Figures 18, 19, 20, 21). To determine whether induction of NF- κ B activity in EOC cells by DLX4 occurs due to its induction of IL-1 β , I inhibited expression of IL-1 β by using shRNA against *IL1B* in +DLX4 A2780 cells. ELISA assays were performed to confirm that the shRNA reduced the IL-1 β level in +DLX4 A2780 cells to the basal IL-1 β level seen in vector control A2780 cells (Figure 18C). To evaluate NF- κ B transcriptional activity, luciferase reporter assays were performed using the NF- κ B driven reporter construct. Inhibition of IL-1 β by shRNA in +DLX4 A2780 cells reduced the level of NF- κ B transcriptional activity almost to the level detected in vector-control A2780 cells (Figure 22A). This finding indicates that the ability of DLX4 to stimulate NF- κ B transcriptional activity is substantially mediated by its induction of IL-1 β .

To confirm my findings, I investigated whether reconstitution of IL-1 β can rescue the transcriptional activity of NF- κ B when DLX4 is knocked down. To accomplish this, I transfected *IL1B* cDNA into DLX4-knockdown 2008 cells. ELISA assays were performed to confirm that transfection of *IL1B* cDNA in DLX4-knockdown 2008 cells restored the IL-1 β level to a level comparable to that of control 2008 cells (Figure 18D). Reconstitution of IL-1 β in DLX4-knockdown 2008 cells restored NF- κ B transcriptional activity to a level comparable to that seen in control 2008 cells (Figure 22B). These results indicate that the induction of NF- κ B transcriptional activity by DLX4 in EOC cells is mediated by its induction of IL-1 β .

Figure 22. DLX4 induces NF-κB transcriptional activity in tumors via its induction of IL-1β

Reporter assays using the NF- κ B driven luciferase construct were performed to assay NF- κ B transcriptional activity in (**A**) empty vector control A2780 cells, empty vector control A2780 cells transfected with I κ B α -DN, +DLX4 A2780 cells and +DLX4 A2780 cells transfected with I κ B α -DN, non-targeting shRNA and shRNA against *IL1B* and (**B**) control (non-targeting) 2008 cells, DLX4-knockdown 2008 (shDLX4-A) cells and DLX4-knockdown 2008 cells after reconstitution with *IL1B* cDNA. Shown are relative luciferase activities in three independent experiments. Error bars represent standard deviation.

5. DLX4 induces CD44 in EOC cells in an IL-1β and NF-κB-dependent manner

My studies have demonstrated that DLX4 induces expression of 1) CD44 and 2) IL-1 β in EOC cells (Figures 14A, 15, 18, 19). In subsequent experiments, I evaluated whether DLX4 induces expression of CD44 in an IL-1 β -dependent mechanism. To accomplish this, I evaluated expression of CD44 by flow cytometry when IL-1 β was knocked down in +DLX4 A2780 cells. Knockdown of IL-1 β in +DLX4 A2780 cells reduced the CD44 level almost to the level seen in vector control cells (Figure 24). This finding indicates that the induction of CD44 by DLX4 is primarily mediated by its induction of IL-1 β .

CD44 has been identified as a direct transcriptional target of NF- κ B ¹⁶⁸. Because my studies also demonstrated that DLX4 induces NF- κ B transcriptional activity in EOC cells via IL-1 β , I evaluated whether DLX4 induces CD44 expression in a NF- κ B-dependent manner. To evaluate this, I inhibited NF- κ B transcriptional activity in +DLX4 A2780 cells by expressing a dominant negative I κ B α construct (I κ B α -DN). This construct contains serine-32 to alanine and serine-36 to alanine substitutions ¹⁶³. I κ B α -DN inhibits NF- κ B signaling by retaining the NF- κ B transcription factors in the cytoplasm. When the canonical signaling pathway is triggered by external stimuli, IKK normally phosphorylates I κ B α and the release of NF- κ B dimers which then translocate to the nucleus and transcriptionally activate target genes (Figure 5) ¹⁶⁹. Mutations at serine-32 and serine-36 of I κ B α prevents the phosphorylation and degradation of I κ B α , thus retaining the NF- κ B transcription factors in the cytoplasm and blocking NF- κ B signaling (Figure 23) ¹⁶⁹.

I initially confirmed that IκBα-DN inhibited NF-κB transcriptional activity in +DLX4 A2780 cells by performing luciferase assays with the NF-κB-driven reporter construct (Figure 22A). In subsequent experiments, I evaluated whether DLX4 induces expression of CD44 in a NF-κB dependent manner. To determine this, I evaluated expression of CD44 by flow cytometry when NF-κB transcriptional activity was blocked with IκBα-DN in +DLX4 A2780 cells. Flow cytometric analysis revealed that the CD44 level in +DLX4 A2780 cells was reduced by IκBα-DN almost to the CD44 level seen in vector control A2780 cells (Figure 24). Together, these findings demonstrate that DLX4 promotes expression of CD44 in EOC cells via induction of IL-1 β expression and NF-κB signaling.

Figure 23. Mechanism of IκBα-DN in abrogating NF-κB signaling

The I κ B α -DN construct contains substitution mutations of its two serine residues, 32 and 36. These mutations prevent the phosphorylation and degradation of I κ B α by IKK complex. I κ B α therefore retains NF- κ B dimers in the cytoplasm and thereby blocks NF- κ B transcriptional activity ¹⁶⁹.

Figure 24. DLX4 induces expression of CD44 in EOC cells via IL-1 β and NF- κ B signaling

Cell surface expression of CD44 was assayed by flow cytometry in empty vector control A2780 cells, +DLX4 A2780 cells and +DLX4 A2780 cells transfected with non-targeting shRNA, *IL1B* shRNA and I κ B α -DN.

6. Reconstitution of IL-1 β in DLX4-knockdown EOC cells rescues the expression of CD44

My previous findings demonstrated that DLX4 induces CD44 expression in an IL-1 β and NF- κ B-dependent manner (Figure 24). To confirm my results, I evaluated whether reconstitution of IL-1 β in DLX4-knockdown cells can rescue the expression of CD44. To accomplish this, I transfected DLX4-knockdown (shDLX4-A) 2008 cells with *IL1B* cDNA and analyzed CD44 levels by flow cytometry. Reconstitution of IL-1 β in DLX4-knockdown 2008 cells restored the CD44 level to a level comparable to that seen in control 2008 cells (Figure 25). This finding demonstrates that DLX4 induces CD44 expression via induction of IL-1 β in EOC cells.

Figure 25. Reconstitution of IL-1 β in DLX4-knockdown EOC cells rescues the expression of CD44

CD44 expression was assayed by flow cytometry in control 2008 cells (non-targeting), DLX4-knockdown 2008 (shDLX4-A) cells, and DLX4-knockdown 2008 cells after reconstitution of IL-1β.

7. DLX4 promotes EOC cell attachment to mesothelial cells via induction of IL-1β and NF-κB transcriptional activity

My studies demonstrated that DLX4 promotes the attachment of EOC cells to peritoneal mesothelial cells via induction of the cell adhesion molecule CD44 (Figure 17). My findings also demonstrated that DLX4 induces CD44 expression in EOC cells via induction of IL-1 β (Figures 24, 25). In subsequent experiments, I evaluated whether DLX4 mediates the attachment of EOC cells to mesothelial cells in an IL-1 β -dependent manner. To accomplish this, I performed *in vitro* cell attachment assays using GFP-expressing vector-control and +DLX4 A2780 cells and +DLX4 A2780 cells in which IL-1 β was knocked-down. Knockdown of IL-1 β in +DLX4 A2780 cells significantly inhibited the ability of these cells to attach to mesothelial cells (*P* < 0.01), whereas non-targeting shRNA had no effect (Figure 26).

Because my studies demonstrated that DLX4 induces expression of CD44 in EOC cells by stimulating NF- κ B transcriptional activity (Figure 24), I evaluated whether DLX4 promotes attachment of EOC cells to mesothelial cells in an NF- κ B-dependent manner. To accomplish this, I evaluated the ability of +DLX4 A2780 cells to attach to mesothelial cells when NF- κ B was inhibited by I κ B α -DN. Expression of I κ B α -DN in +DLX4 A2780 cells reduced the ability of these cells to attach to mesothelial cells almost to the level seen in empty vector control A2780 cells (Figure 26). These results demonstrate that DLX4 promotes EOC cell attachment to mesothelial cells in an IL-1 β and NF- κ B-dependent manner. These findings are consistent with my previous findings that DLX4 induces expression of CD44 in an IL-1 β and NF- κ B-dependent manner (Figures 24, 25).

Figure 26. DLX4 promotes EOC cell attachment to mesothelial cells via induction of IL-1 β and NF- κ B

The ability of EOC cells to attach to mesothelial cells was assayed by *in vitro* cell attachment assays using vector control A2780 cells, +DLX4 A2780 cells and +DLX4 A2780 cells transfected with non-targeting shRNA, *IL1B* shRNA and I κ B α -DN. Shown are mean \pm sd values of three independent attachment assays.

8. Reconstitution of IL-1β in DLX4-knockdown EOC cells rescues the effect of DLX4

My previous findings demonstrated that DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells in an IL-1 β and NF- κ B dependent manner (Figure 26). To further confirm these results, I evaluated the effect of reconstituting IL-1 β in DLX4-knockdown EOC cells on their ability to attach to mesothelial cells. Reconstitution of IL-1 β in DLX4-knockdown 2008 cells rescued the ability of these cells to attach to mesothelial cells to a level that was comparable to that of control 2008 cells (Figure 27). This finding demonstrated that DLX4 primarily promotes attachment of EOC cells to mesothelial cells via its induction of IL-1 β in EOC cells.

Figure 27. Reconstitution of IL-1 β in DLX4-knockdown EOC cells rescues the effect of DLX4

The ability of EOC cells to attach to mesothelial cells was assayed by *in vitro* cell attachment assays using control (non-targeting) 2008 cells, DLX4-knockdown (shDLX4-A) 2008 cells and DLX4-knockdown 2008 cells that were reconstituted with IL-1 β . Shown are mean \pm sd values of three independent attachment assays.

C. CONCLUSION

My studies in Chapter 4 provide important insights into the mechanisms by which DLX4 promotes expression of CD44 and the ability of EOC cells to attach to peritoneal mesothelial cells. My studies have identified that DLX4 directly binds to and activates the gene encoding IL-1 β in EOC cells. In addition, DLX4 induces NF- κ B signaling in EOC cells via its induction of IL-1 β . Furthermore, my studies demonstrate that inhibition of IL-1 β and NF- κ B signaling in +DLX4 A2780 cells significantly blocked the induction of CD44 and the ability of these cells to attach to mesothelial cells. Conversely, reconstitution of IL-1 β in DLX4-knockdown 2008 cells rescues the expression of CD44 and the ability of these cells to attach to attach to mesothelial cells. In summary, my results indicate that DLX4 induces expression of IL-1 β and NF- κ B signaling in EOC cells which in turn induce expression of CD44 and the ability of EOC cells to attach to peritoneal mesothelial cells.

CHAPTER 5: DISCUSSION

A. DLX4 PROMOTES ATTACHMENT OF EOC CELLS TO THE MESOTHELIUM LINING THE PERITONEAL CAVITY

The high lethality of EOC stems from rapid peritoneal involvement of the disease and late diagnosis. A key rate-limiting step in peritoneal metastasis of EOC is the attachment of EOC cells to the mesothelial lining of the peritoneal cavity. My studies in Chapter 3 demonstrated that high expression of DLX4 in EOC cells promotes their attachment to the peritoneal mesothelial cells (Figure 12). On the other hand, overexpression of DLX4 did not promote attachment of EOC cells to the sub-mesothelial ECM components such as collagen I, fibronectin and laminin (Figure 13). My findings demonstrate that DLX4 mediates the attachment of EOC cells by inducing expression of the cell adhesion molecule CD44 (Figures 14A, 15, 17). However, DLX4 did not induce expression of P-cadherin and β 1 integrin that also mediate EOC-peritoneal interactions (Figures 14B, 14C). The inability of DLX4 to induce expression of β 1 integrin is consistent with the inability of DLX4 to mediate EOC cell attachment to the components of the ECM. Notably, blocking CD44 did not completely abrogate the attachment of EOC cells to mesothelial cells (Figure 17). Interactions between EOC cells and the peritoneum are known to be mediated by multiple cell adhesion molecules ^{24, 32, 33, 42}. This explains the inability of the CD44 neutralizing Ab to completely abolish the attachment of +DLX4 EOC cells to mesothelial cells (Figure 17). These findings are consistent with other studies that have demonstrated that using a single neutralizing Ab against CD44, β 1 integrin or P-cadherin was not sufficient to completely block EOC cell attachment to mesothelial cells ^{24, 33, 42, 55}. A study by Strobel and colleagues also demonstrated that combining CD44 and β1 integrin blocking Abs resulted in an additive

inhibitory effect on EOC cell attachment ³³. These findings indicate that multiple cell adhesion molecules need to be targeted simultaneously to effectively block attachment of EOC cells to mesothelial cells. The interplay between these different cell adhesion molecules can be a focus of future studies and provide insights for development of better targeted therapies.

B. DLX4 PROMOTES CD44 EXPRESSION AND EOC-MESOTHELIAL CELL INTERACTIONS BY INDUCING IL-1β EXPRESSION AND ACTIVATING NF-κB SIGNALING

IL-1 β is a pleiotropic cytokine that contributes to inflammation in numerous pathological conditions such as cancer, arteriosclerosis, type II diabetes, rheumatoid arthritis, osteoarthritis and cardiovascular disorders ¹⁷⁰. Although many other cytokines mediate inflammatory signaling, IL-1 β is known as the 'gatekeeper of inflammation' ¹⁷¹. My studies in Chapter 4 demonstrated that high expression of DLX4 in EOC cells induces expression of IL-1 β by direct transcriptional activation (Figures 18, 19). Inhibition of IL-1 β in +DLX4 EOC cells resulted in a down-regulation of CD44 expression and reduced the ability of EOC cells to attach to mesothelial cells (Figures 24, 26). Conversely, reconstitution of IL-1 β in DLX4-knockdown EOC cells restored CD44 levels and the ability of EOC cells to attach to mesothelial cells (Figures 25, 27). The ability of DLX4 to promote CD44 expression and attachment of EOC cells to mesothelial cells therefore, primarily occurs via its induction of IL-1 β in EOC cells. A study by Foster and colleagues has demonstrated that induction of CD44 by IL-1 β in vascular smooth muscle cells contributes to pathogenesis of arteriosclerosis 167 . Another study by Campo and colleagues has demonstrated that IL-1 β and HA induce CD44 expression and inflammatory signaling in rheumatoid arthritis ¹⁶⁶. My

study is the first to demonstrate the significance of IL-1 β in inducing CD44 expression in controlling cell-cell interactions that mediate metastasis of EOC.

IL-1β induces the NF-κB signaling pathway in a wide variety of physiological and pathological conditions ⁷⁷. My findings in Chapter 4 demonstrated that high expression of DLX4 stimulates NF-κB signaling in EOC cells via its induction of IL-1β (Figures 20, 21, 22). Moreover, inhibition of NF-κB signaling in +DLX4 EOC cells down-regulated CD44 levels and decreased the ability of EOC cells to attach to mesothelial cells (Figures 24, 26). These results indicate that DLX4 induces expression of CD44 and the attachment of EOC cells to peritoneal mesothelial cells by activating NF-κB signaling in EOC cells. My functional studies therefore support findings of clinical studies that identified a strong correlation between activated NF-κB signaling in EOC and advanced disease stage ⁸⁴⁻⁸⁷.

Substantial evidence indicates that NF- κ B activates expression of a wide variety of target genes that promote tumor cell survival, tumor angiogenesis and metastasis ⁷⁴. For example, NF- κ B promotes tumor angiogenesis by induction of pro-angiogenic growth factors such as VEGF, IL-6 and IL-8 in multiple types of tumors including EOC ^{69, 172-174}. NF- κ B can also promote epithelial-mesenchymal transition (EMT) by transcriptional upregulation of Twist 1 ¹⁷⁵. However, NF- κ B is also known to have pro-apoptotic functions in certain cell types and conditions. For example, a study by Ryan and colleagues demonstrated that p53 can induce tumor cell death via activation of MEK1 and NF- κ B signaling ¹⁷⁶. Another study by Rocha and colleagues demonstrated that p53 downregulates cyclin D1 expression by inhibiting Bcl-3, a member of the I κ B family of proteins and a transcriptional co-activator for NF- κ B transcription factor p52 ¹⁷⁷. These authors found that p53 induces formation of p52/histone deacetylase1 (HDAC1) repressor complexes, which replaces Bcl-3/p52 activator complexes

and thereby represses transcription of the gene encoding cyclin D1 ¹⁷⁷. A study by Yang and colleagues demonstrated that NF- κ B signaling can have dual functions in EOC ¹⁷⁸. On one hand, NF- κ B has a tumor-suppressive functions by sensitizing EOC cells to apoptosis induced by paclitaxel and carboplatin. On the other hand, NF- κ B has tumor-promoting functions in aggressive forms of EOC and contributes to chemoresistance ¹⁷⁸. Because DLX4 is expressed in advanced-stage and aggressive forms of EOC ¹²⁹, my findings that induction of NF- κ B signaling in DLX4-expressing EOC cells contributes to EOC progression are consistent with other studies that have identified a tumor-promoting role of NF- κ B in advanced stage tumors.

C. MULTIPLE ROLES OF DLX4 IN TUMOR PATHOGENESIS

My studies demonstrated that DLX4 induces expression of CD44 in EOC cells and promotes their attachment to mesothelial cells by inducing expression of IL-1 β and NF- κ B signaling (Figure 24, 26). However, by inducing IL-1 β and NF- κ B signaling, DLX4 could also stimulate a variety of other processes that promote progression of EOC. IL-1 β has been reported to confer chemoresistance in pancreatic carcinoma cell lines ¹⁷⁹. IL-1 β also promotes tumor vascularization in lung cancers via induction of VEGF ¹⁸⁰. IL-1 β and TNF- α have been implicated in the induction of hypoxia inducible factor-1 (HIF-1) expression in hepatoma cells, which in turn induces VEGF and tumor angiogenesis ¹⁸¹. IL-1 β , TNF- α and interferon- γ (IFN- γ) also stimulate expression of inducible nitric oxide synthase (iNOS) in various tumors ¹⁸². Nitric oxide, the product of iNOS, plays an important role in promotion of tumor angiogenesis by regulating HIF-1 and VEGF expression in tumors ¹⁸². Previous studies from our laboratory have demonstrated that DLX4 promotes EOC growth and angiogenesis by inducing expression of pro-tumorigenic factors such as VEGF and fibroblast growth factor-2 (FGF-2) ¹²⁹. Since expression of VEGF is activated by IL-1 β and NF- κ B signaling, my findings could explain the mechanism by which DLX4 induces VEGF expression and angiogenesis in EOC.

In addition to EOC, DLX4 is overexpressed in other types of solid tumors including breast and prostate cancers and in leukemias ^{153, 155, 156, 158, 162}. The mechanisms by which DLX4 promotes progression of other types of tumors are not well understood. DLX4 is highly expressed in inflammatory breast cancers (IBCs), an aggressive subtype of breast cancer ¹⁵⁶. My findings that DLX4 stimulates NF-kB signaling raise the possibility that DLX4 might also promote the aggressive behavior of IBCs. Some specific sets of homeobox genes have been found to act similarly in different types of tumors. One such example is HOXB7 which is overexpressed in EOC, melanoma and breast cancers ^{122, 125, 126}. Several studies have demonstrated that HOXB7 promotes tumor growth and angiogenesis via upregulation of FGF-2 in these different types of tumors ^{122, 125-127}. On the other hand, other sets of homeobox genes act differently in different types of tumors. One example is HOXA9. HOXA9 has been demonstrated to have tumor promoting properties in EOC and glioblastomas ¹³⁶⁻¹³⁹. Expression of HOXA9 in EOC cells induces stromal cells to produce growth factors that support tumor growth ¹³⁷. HOXA9 also promotes peritoneal dissemination of EOC by inducing the cell adhesion molecule P-cadherin¹³⁹. In contrast, HOXA9 has tumor-suppressive functions in breast cancers ¹⁸³. HOXA9 has been reported to prevent progression of breast cancers by maintaining BRCA1 expression ¹⁸³. My study has shown that high expression of DLX4 promotes inflammatory signaling and peritoneal dissemination of EOC via induction of IL-1 β and NF- κ B signaling. However, it remains to be determined whether DLX4 promotes progression of other types of tumors by stimulating

NF- κ B signaling. Further investigation of the role of DLX4 in controlling NF- κ B signaling in tumors will provide insights into the therapeutic targeting of the NF- κ B signaling pathway.

D. THERAPEUTIC IMPLICATIONS

Because DLX4 is a transcription factor that shares functional domains in common with other family members, it may be difficult to specifically target DLX4 for therapeutic purposes. On the other hand, inhibiting the downstream effectors of DLX4, i.e. IL-1 β and the NF- κ B signaling pathway may be a promising strategy. Several IL-1 therapeutics such as IL-1 receptor antagonists, anti-IL-1 monoclonal Abs, soluble IL-1 receptor II (IL-1RII), IL-1β converting-enzyme (ICE) inhibitors and IL-1 ligand traps are being currently used in the treatment of rheumatoid arthritis ¹⁸⁴. Such novel treatments could be applied for the treatment of cancer. In addition, agents that target the NF- κ B signaling pathway could be an effective therapeutic strategy ¹⁸⁵. For example, Bortezomib is a proteasome inhibitor that blocks NF- κB signaling and is already in use for treatment of multiple myeloma and mantle cell lymphoma¹⁸⁶. Moreover, inhibition of CD44-HA interaction and EOC cell adhesion using CD44 monoclonal Abs or small molecule inhibitors could be another possible strategy for treatment of advanced-stage EOC ^{187, 188}. Further studies examining the effect of these inhibitors in EOC will provide insights into strategies for effective treatment for advanced stages of this disease.

E. CONCLUSION

The high mortality of EOC primarily stems from the rapid peritoneal dissemination of the disease and the inability to detect the disease at an early stage. The mechanisms that control tumor-peritoneum interactions are not well understood. My study supports a model in which DLX4 promotes CD44-mediated peritoneal attachment of EOC via induction of the pro-inflammatory cytokine IL-1 β and activation of NF- κ B signaling (Figure 28). Further study of the regulation and function of the NF- κ B signaling pathway and its activating ligands and downstream effectors could yield important insights into possible therapeutic targets and new treatment strategies for patients with advanced-stage and chemoresistant EOC.

Figure 28. Model of the mechanism by which DLX4 promotes intraperitoneal dissemination of EOC

DLX4 promotes CD44-mediated attachment of EOC cells to the peritoneal mesothelial cells by inducing expression of IL-1 β and activating NF- κ B signaling

BIBLIOGRAPHY

1. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013, CA: A Cancer Journal for Clinicians 2013, 63:11-30

2. Chen VW, Ruiz B, Killeen JL, Cote TR, Wu XC, Correa CN: Pathology and classification of ovarian tumors, Cancer 2003, 97:2631-2642

 Dubeau L, Drapkin R: Coming into focus: the nonovarian origins of ovarian cancer, Ann Oncol 2013, 24 Suppl 8:viii28-viii35

4. Levanon K, Crum C, Drapkin R: New insights into the pathogenesis of serous ovarian cancer and its clinical impact, J Clin Oncol 2008, 26:5284-5293

5. Prat J: New insights into ovarian cancer pathology, Ann Oncol 2012, 23 Suppl 10:x111-117

6. Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM: The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin, Int J Gynecol Pathol 2004, 23:41-44

7. Prat J: Staging classification for cancer of the ovary, fallopian tube, and peritoneum, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2014, 124:1-5

Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, Kosary C, Yu M, Ruhl J, Tatalovich Z: SEER Cancer Statistics Review, 1975–2011. Edited by National Cancer Institute. Bethesda, MD, <u>http://seer</u>. cancer. gov/csr/1975_2011/, based on November, 2013,

9. Agarwal R, Kaye SB: Ovarian cancer: strategies for overcoming resistance to chemotherapy, Nat Rev Cancer 2003, 3:502-516

10. Singer G, Stohr R, Cope L, Dehari R, Hartmann A, Cao DF, Wang TL, Kurman RJ, Shih Ie M: Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation, Am J Surg Pathol 2005, 29:218-224

11. Vang R, Shih Ie M, Kurman RJ: Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems, Adv Anat Pathol 2009, 16:267-282

12. Vereczkey I, Serester O, Dobos J, Gallai M, Szakacs O, Szentirmay Z, Toth E: Molecular characterization of 103 ovarian serous and mucinous tumors, Pathol Oncol Res 2011, 17:551-559

13. McConechy MK, Ding J, Senz J, Yang W, Melnyk N, Tone AA, Prentice LM, Wiegand KC, McAlpine JN, Shah SP, Lee C-H, Goodfellow PJ, Gilks CB, Huntsman DG: Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles, Mod Pathol 2014, 27:128-134

14. Cuatrecasas M, Villanueva A, Matias-Guiu X, Prat J: K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases, Cancer 1997, 79:1581-1586

15. Tan DS, Kaye S: Ovarian clear cell adenocarcinoma: a continuing enigma, J Clin Pathol 2007, 60:355-360

16. Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Nakayama N, Ishikawa M, Ishibashi T, Iida K, Kobayashi H, Otsuki Y, Nakayama S, Miyazaki K: Loss of

ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma, Mod Pathol 2012, 25:282-288

17. Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ, Shih Ie M: Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma, Am J Pathol 2009, 174:1597-1601

18. Diaz-Padilla I, Razak AR, Minig L, Bernardini MQ, Maria Del Campo J: Prognostic and predictive value of CA-125 in the primary treatment of epithelial ovarian cancer: potentials and pitfalls, Clin Transl Oncol 2012, 14:15-20

19. Bast RC, Jr., Badgwell D, Lu Z, Marquez R, Rosen D, Liu J, Baggerly KA, Atkinson EN, Skates S, Zhang Z, Lokshin A, Menon U, Jacobs I, Lu K: New tumor markers: CA125 and beyond, Int J Gynecol Cancer 2005, 15 Suppl 3:274-281

20. Cannistra SA: Cancer of the ovary, N Engl J Med 2004, 351:2519-2529

21. Lengyel E: Ovarian cancer development and metastasis, Am J Pathol 2010, 177:1053-1064

22. Naora H, Montell DJ: Ovarian cancer metastasis: integrating insights from disparate model organisms, Nat Rev Cancer 2005, 5:355-366

23. Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR, Jr., Skubitz AP: Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers, Gynecol Oncol 2004, 93:170-181

24. Cannistra SA, Kansas GS, Niloff J, DeFranzo B, Kim Y, Ottensmeier C: Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H, Cancer Res 1993, 53:3830-3838

25. Ksiazek K, Mikula-Pietrasik J, Korybalska K, Dworacki G, Jorres A, Witowski J: Senescent peritoneal mesothelial cells promote ovarian cancer cell adhesion: the role of oxidative stress-induced fibronectin, Am J Pathol 2009, 174:1230-1240

26. Niedbala MJ, Crickard K, Bernacki RJ: Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion, Exp Cell Res 1985, 160:499-513

27. Mutsaers SE: Mesothelial cells: their structure, function and role in serosal repair, Respirology 2002, 7:171-191

28. Kaneko O, Gong L, Zhang J, Hansen JK, Hassan R, Lee B, Ho M: A binding domain on mesothelin for CA125/MUC16, J Biol Chem 2009, 284:3739-3749

29. Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M, Miyajima A: Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion, J Biol Chem 2004, 279:9190-9198

30. Ko SY, Lengyel E, Naora H: The Mullerian HOXA10 gene promotes growth of ovarian surface epithelial cells by stimulating epithelial-stromal interactions, Mol Cell Endocrinol 2010, 317:112-119

31. Kenny HA, Chiang C-Y, White EA, Schryver EM, Habis M, Romero IL, Ladanyi A, Penicka CV, George J, Matlin K, Montag A, Wroblewski K, Yamada SD, Mazar AP, Bowtell D, Lengyel E: Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion, The Journal of Clinical Investigation 2014, 124:4614-4628

32. Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz AP: CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells, Am J Pathol 1999, 154:1525-1537

33. Strobel T, Cannistra SA: Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro, Gynecol Oncol 1999, 73:362-367

34. Ahmed N, Riley C, Rice G, Quinn M: Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment, Clin Exp Metastasis 2005, 22:391-402

35. Cannistra SA, Ottensmeier C, Niloff J, Orta B, DiCarlo J: Expression and function of beta 1 and alpha v beta 3 integrins in ovarian cancer, Gynecol Oncol 1995, 58:216-225

36. Heyman L, Kellouche S, Fernandes J, Dutoit S, Poulain L, Carreiras F: Vitronectin and its receptors partly mediate adhesion of ovarian cancer cells to peritoneal mesothelium in vitro, Tumour Biol 2008, 29:231-244

37. Shield K, Riley C, Quinn MA, Rice GE, Ackland ML, Ahmed N: Alpha2beta1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis, J Carcinog 2007, 6:11

38. Iwanicki MP, Davidowitz RA, Ng MR, Besser A, Muranen T, Merritt M, Danuser G, Ince TA, Brugge JS: Ovarian cancer spheroids use myosin-generated force to clear the mesothelium, Cancer Discov 2011, 1:144-157

39. Cavallaro U, Schaffhauser B, Christofori G: Cadherins and the tumour progression: is it all in a switch?, Cancer Lett 2002, 176:123-128

40. Patel IS, Madan P, Getsios S, Bertrand MA, MacCalman CD: Cadherin switching in ovarian cancer progression, Int J Cancer 2003, 106:172-177

41. Quattrocchi L, Green AR, Martin S, Durrant L, Deen S: The cadherin switch in ovarian high-grade serous carcinoma is associated with disease progression, Virchows Arch 2011, 459:21-29

42. Usui A, Ko SY, Barengo N, Naora H: P-cadherin promotes ovarian cancer dissemination through tumor cell aggregation and tumor-peritoneum interactions, Mol Cancer Res 2014, 12:504-513

43. Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI: Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons, Proc Natl Acad Sci U S A 1992, 89:12160-12164

44. Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV: Involvement of CD44, a molecule with a thousand faces, in cancer dissemination, Semin Cancer Biol 2008, 18:260-267

45. Zoller M: CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?, Nat Rev Cancer 2011, 11:254-267

46. Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zoller M: CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance, Mol Cancer Res 2009, 7:168-179

47. Tremmel M, Matzke A, Albrecht I, Laib AM, Olaku V, Ballmer-Hofer K, Christofori G, Heroult M, Augustin HG, Ponta H, Orian-Rousseau V: A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis, Blood 2009, 114:5236-5244

48. Cannistra SA, Abu-Jawdeh G, Niloff J, Strobel T, Swanson L, Andersen J, Ottensmeier C: CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors, J Clin Oncol 1995, 13:1912-1921

49. Kayastha S, Freedman AN, Piver MS, Mukkamalla J, Romero-Guittierez M, Werness BA: Expression of the hyaluronan receptor, CD44S, in epithelial ovarian cancer is an independent predictor of survival, Clin Cancer Res 1999, 5:1073-1076

50. Ross JS, Sheehan CE, Williams SS, Malfetano JH, Szyfelbein WM, Kallakury BV: Decreased CD44 standard form expression correlates with prognostic variables in ovarian carcinomas, Am J Clin Pathol 2001, 116:122-128

51. Zhang J, Chang B, Liu J: CD44 standard form expression is correlated with highgrade and advanced-stage ovarian carcinoma but not prognosis, Hum Pathol 2013, 44:1882-1889

52. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B: CD44 is the principal cell surface receptor for hyaluronate, Cell 1990, 61:1303-1313

53. Catterall J, Gardner M, Jones LH, Turner G: Binding of ovarian cancer cells to immobilized hyaluronic acid, Glycoconj J 1997, 14:647-649

54. Ween MP, Oehler MK, Ricciardelli C: Role of versican, hyaluronan and CD44 in ovarian cancer metastasis, Int J Mol Sci 2011, 12:1009-1029

55. Strobel T, Swanson L, Cannistra SA: In vivo inhibition of CD44 limits intraabdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation, Cancer Res 1997, 57:1228-1232

56. Woopen H, Sehouli J: Current and future options in the treatment of malignant ascites in ovarian cancer, Anticancer Res 2009, 29:3353-3359

57. Tan DS, Agarwal R, Kaye SB: Mechanisms of transcoelomic metastasis in ovarian cancer, Lancet Oncol 2006, 7:925-934

58. Kipps E, Tan DS, Kaye SB: Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research, Nat Rev Cancer 2013, 13:273-282

59. Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD, Jaffe RB: Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites,

and causes dramatic vascular remodeling in an ovarian cancer model, Clin Cancer Res 2003, 9:5721-5728

60. Herr D, Sallmann A, Bekes I, Konrad R, Holzheu I, Kreienberg R, Wulff C: VEGF induces ascites in ovarian cancer patients via increasing peritoneal permeability by downregulation of Claudin 5, Gynecologic Oncology 2012, 127:210-216

61. Manenti L, Riccardi E, Marchini S, Naumova E, Floriani I, Garofalo A, Dossi R, Marrazzo E, Ribatti D, Scanziani E, Bani M, Belotti D, Broggini M, Giavazzi R: Circulating plasma vascular endothelial growth factor in mice bearing human ovarian carcinoma xenograft correlates with tumor progression and response to therapy, Mol Cancer Ther 2005, 4:715-725

62. Mesiano S, Ferrara N, Jaffe RB: Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization, Am J Pathol 1998, 153:1249-1256

63. Ahmed N, Stenvers KL: Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research, Front Oncol 2013, 3:256

64. Penson RT, Kronish K, Duan Z, Feller AJ, Stark P, Cook SE, Duska LR, Fuller AF, Goodman AK, Nikrui N, MacNeill KM, Matulonis UA, Preffer FI, Seiden MV: Cytokines IL-1beta, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFalpha in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel, Int J Gynecol Cancer 2000, 10:33-41

65. Cohen S, Bruchim I, Graiver D, Evron Z, Oron-Karni V, Pasmanik-Chor M, Eitan R, Bernheim J, Levavi H, Fishman A, Flescher E: Platinum-resistance in ovarian cancer cells is

mediated by IL-6 secretion via the increased expression of its target cIAP-2, J Mol Med (Berl) 2013, 91:357-368

66. Nilsson MB, Langley RR, Fidler IJ: Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine, Cancer Res 2005, 65:10794-10800

67. Syed V, Ulinski G, Mok SC, Ho SM: Reproductive hormone-induced, STAT3mediated interleukin 6 action in normal and malignant human ovarian surface epithelial cells, J Natl Cancer Inst 2002, 94:617-629

68. Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ, Li LZ: Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells, Cancer Lett 2010, 295:110-123

69. Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ: Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8, Cancer Res 2000, 60:5334-5339

70. Mustea A, Pirvulescu C, Konsgen D, Braicu EI, Yuan S, Sun P, Lichtenegger W, Sehouli J: Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer, Cytokine 2008, 42:77-84

71. Woolery KT, Kruk PA: Ovarian Epithelial-Stromal Interactions: Role of Interleukins1 and 6, Obstetrics and Gynecology International 2011, 2011:

72. Denkert C, Koch I, Berger S, Köbel M, Siegert A, Hauptmann S: Cytokinesuppressive anti-inflammatory drugs (CSAIDs) inhibit invasion and MMP-1 production of ovarian carcinoma cells, Cancer Letters 2003, 195:101-109

73. Stadlmann S, Amberger A, Pollheimer J, Gastl G, Offner FA, Margreiter R, Zeimet AG: Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions, Gynecol Oncol 2005, 97:784-789

74. Karin M, Cao Y, Greten FR, Li ZW: NF-kappaB in cancer: from innocent bystander to major culprit, Nat Rev Cancer 2002, 2:301-310

75. Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, Liu J: Interleukin-1beta promotes ovarian tumorigenesis through a p53/NF-kappaB-mediated inflammatory response in stromal fibroblasts, Neoplasia 2013, 15:409-420

76. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB: NF-kappaB addiction and its role in cancer: 'one size does not fit all', Oncogene 2011, 30:1615-1630

77. Lawrence T: The nuclear factor NF-kappaB pathway in inflammation, Cold Spring Harb Perspect Biol 2009, 1:a001651

78. Dolcet X, Llobet D, Pallares J, Matias-Guiu X: NF-kB in development and progression of human cancer, Virchows Arch 2005, 446:475-482

79. Karin M: NF-kappaB as a critical link between inflammation and cancer, Cold Spring Harb Perspect Biol 2009, 1:a000141

80. Glezerman M, Mazot M, Maymon E, Piura B, Prinsloo I, Benharroch D, Yanai-Inbar I, Huleihel M: Tumor necrosis factor-alpha and interleukin-6 are differently expressed by fresh human cancerous ovarian tissue and primary cell lines, Eur Cytokine Netw 1998, 9:171-179

81. Huleihel M, Maymon E, Piura B, Prinsloo I, Benharroch D, Yanai-Inbar I, Glezerman
M: Distinct patterns of expression of interleukin-1 alpha and beta by normal and cancerous
human ovarian tissues, Eur Cytokine Netw 1997, 8:179-187

82. Piura B, Medina L, Rabinovich A, Dyomin V, Levy RS, Huleihel M: Distinct expression and localization of TNF system in ovarian carcinoma tissues: possible involvement of TNF-alpha in morphological changes of ovarian cancerous cells, Anticancer Res 2014, 34:745-752

83. Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL: The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells, Cancer Res 2005, 65:10355-10362

84. Annunziata CM, Stavnes HT, Kleinberg L, Berner A, Hernandez LF, Birrer MJ, Steinberg SM, Davidson B, Kohn EC: Nuclear factor kappaB transcription factors are coexpressed and convey a poor outcome in ovarian cancer, Cancer 2010, 116:3276-3284

85. Giopanou I, Bravou V, Papanastasopoulos P, Lilis I, Aroukatos P, Papachristou D, Kounelis S, Papadaki H: Metadherin, p50, and p65 expression in epithelial ovarian neoplasms: an immunohistochemical study, Biomed Res Int 2014, 2014:178410

86. Guo RX, Qiao YH, Zhou Y, Li LX, Shi HR, Chen KS: Increased staining for phosphorylated AKT and nuclear factor-kappaB p65 and their relationship with prognosis in epithelial ovarian cancer, Pathol Int 2008, 58:749-756

87. Kleinberg L, Dong HP, Holth A, Risberg B, Trope CG, Nesland JM, Flørenes VA, Davidson B: Cleaved caspase-3 and nuclear factor-κB p65 are prognostic factors in metastatic serous ovarian carcinoma, Human Pathology 2009, 40:795-806

88. Hayden MS, Ghosh S: Shared Principles in NF-κB Signaling, Cell 2008, 132:344-362

89. Razani B, Reichardt AD, Cheng G: Non-canonical NF-κB signaling activation and regulation: principles and perspectives, Immunological Reviews 2011, 244:44-54

90. Mark M, Rijli FM, Chambon P: Homeobox genes in embryogenesis and pathogenesis, Pediatr Res 1997, 42:421-429

91. Panganiban G, Rubenstein JL: Developmental functions of the Distal-less/Dlx homeobox genes, Development 2002, 129:4371-4386

92. Argiropoulos B, Humphries RK: Hox genes in hematopoiesis and leukemogenesis, Oncogene 2007, 26:6766-6776

93. Gorski DH, Walsh K: The role of homeobox genes in vascular remodeling and angiogenesis, Circ Res 2000, 87:865-872

94. Gehring WJ, Hiromi Y: Homeotic genes and the homeobox, Annu Rev Genet 1986, 20:147-173

95. Mortlock DP, Innis JW: Mutation of HOXA13 in hand-foot-genital syndrome, Nat Genet 1997, 15:179-180

96. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond RM, Jr., Brophy PD, Berkman J, Gattas M, Hyland V, Ruf EM, Schwartz C, Chang EH, Smith RJ, Stratakis CA, Weil D, Petit C, Hildebrandt F: SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes, Proc Natl Acad Sci U S A 2004, 101:8090-8095

97. Abate-Shen C: Deregulated homeobox gene expression in cancer: cause or consequence?, Nat Rev Cancer 2002, 2:777-785

98. Levine M, Hoey T: Homeobox proteins as sequence-specific transcription factors, Cell 1988, 55:537-540 99. Samuel S, Naora H: Homeobox gene expression in cancer: Insights from developmental regulation and deregulation, European Journal of Cancer 2005, 41:2428-2437
100. Zhong Y-F, Butts T, Holland PWH: HomeoDB: a database of homeobox gene diversity, Evolution & Development 2008, 10:516-518

101. Haria D, Naora H: Homeobox Gene Deregulation: Impact on the Hallmarks of Cancer, Cancer Hallm 2013, 1:67-76

102. Banerjee-Basu S, Baxevanis AD: Molecular evolution of the homeodomain family of transcription factors, Nucleic Acids Res 2001, 29:3258-3269

103. Stock DW, Ellies DL, Zhao Z, Ekker M, Ruddle FH, Weiss KM: The evolution of the vertebrate Dlx gene family, Proc Natl Acad Sci U S A 1996, 93:10858-10863

104. Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions during animal body patterning, Nat Rev Genet 2005, 6:893-904

105. Krumlauf R: Hox genes in vertebrate development, Cell 1994, 78:191-201

106. Pollard SL, Holland PWH: Evidence for 14 homeobox gene clusters in human genome ancestry, Current Biology 2000, 10:1059-1062

107. Lemons D, McGinnis W: Genomic evolution of Hox gene clusters, Science 2006,313:1918-1922

108. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S: Compromised HOXA5 function can limit p53 expression in human breast tumours, Nature 2000, 405:974-978

109. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar

S, Chang HY: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis, Nature 2010, 464:1071-1076

110. Margueron R, Reinberg D: The Polycomb complex PRC2 and its mark in life, Nature 2011, 469:343-349

111. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate-Shen C, Shen MM: Roles for Nkx3.1 in prostate development and cancer, Genes Dev 1999, 13:966-977

112. Shen MM, Abate-Shen C: Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis, Dev Dyn 2003, 228:767-778

113. Gurel B, Ali TZ, Montgomery EA, Begum S, Hicks J, Goggins M, Eberhart CG, Clark DP, Bieberich CJ, Epstein JI, De Marzo AM: NKX3.1 as a marker of prostatic origin in metastatic tumors, Am J Surg Pathol 2010, 34:1097-1105

114. Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW, Cunha GR, Cardiff RD, Shen MM, Abate-Shen C: Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis, Cancer Res 2002, 62:2999-3004

115. Anderson PD, McKissic SA, Logan M, Roh M, Franco OE, Wang J, Doubinskaia I, van der Meer R, Hayward SW, Eischen CM, Eltoum IE, Abdulkadir SA: Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis, J Clin Invest 2012, 122:1907-1919

116. Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, Abate-Shen C: Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis, Proc Natl Acad Sci U S A 2002, 99:2884-2889
117. Lei Q, Jiao J, Xin L, Chang C-J, Wang S, Gao J, Gleave ME, Witte ON, Liu X, Wu H: NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss, Cancer Cell 2006, 9:367-378

118. Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J: Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis, Oncogene 2009, 28:3307-3319

119. Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, Nozawa S, Inazawa J, Imoto I: Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets, Clin Cancer Res 2003, 9:1995-2004

120. Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E, Ringner M, Sauter G, Monni O, Elkahloun A, Kallioniemi OP, Kallioniemi A: Impact of DNA amplification on gene expression patterns in breast cancer, Cancer Res 2002, 62:6240-6245

121. Watanabe T, Imoto I, Kosugi Y, Ishiwata I, Inoue S, Takayama M, Sato A, Inazawa J: A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization, Gynecol Oncol 2001, 81:172-177

122. Care A, Silvani A, Meccia E, Mattia G, Stoppacciaro A, Parmiani G, Peschle C, Colombo MP: HOXB7 constitutively activates basic fibroblast growth factor in melanomas, Mol Cell Biol 1996, 16:4842-4851

123. Liao WT, Jiang D, Yuan J, Cui YM, Shi XW, Chen CM, Bian XW, Deng YJ, Ding YQ: HOXB7 as a prognostic factor and mediator of colorectal cancer progression, Clin Cancer Res 2011, 17:3569-3578

124. Nguyen Kovochich A, Arensman M, Lay AR, Rao NP, Donahue T, Li X, French SW, Dawson DW: HOXB7 promotes invasion and predicts survival in pancreatic adenocarcinoma, Cancer 2013, 119:529-539

125. Wu X, Chen H, Parker B, Rubin E, Zhu T, Lee JS, Argani P, Sukumar S: HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition, Cancer Res 2006, 66:9527-9534

126. Naora H, Yang YQ, Montz FJ, Seidman JD, Kurman RJ, Roden RB: A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells, Proc Natl Acad Sci U S A 2001, 98:4060-4065

127. Carè A, Felicetti F, Meccia E, Bottero L, Parenza M, Stoppacciaro A, Peschle C, Colombo MP: HOXB7: A Key Factor for Tumor-associated Angiogenic Switch, Cancer Research 2001, 61:6532-6539

128. Jin K, Kong X, Shah T, Penet MF, Wildes F, Sgroi DC, Ma XJ, Huang Y, Kallioniemi A, Landberg G, Bieche I, Wu X, Lobie PE, Davidson NE, Bhujwalla ZM, Zhu T, Sukumar S: The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway, Proc Natl Acad Sci U S A 2012, 109:2736-2741

129. Hara F, Samuel S, Liu J, Rosen D, Langley RR, Naora H: A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2, Am J Pathol 2007, 170:1594-1606

130. Man YG, Fu SW, Schwartz A, Pinzone JJ, Simmens SJ, Berg PE: Expression of BP1, a novel homeobox gene, correlates with breast cancer progression and invasion, Breast Cancer Res Treat 2005, 90:241-247

131. Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB: Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis, Proc Natl Acad Sci U S A 1998, 95:12608-12613

132. Micalizzi DS, Wang CA, Farabaugh SM, Schiemann WP, Ford HL: Homeoprotein Six1 increases TGF-beta type I receptor and converts TGF-beta signaling from suppressive to supportive for tumor growth, Cancer Res 2010, 70:10371-10380

133. Reichenberger KJ, Coletta RD, Schulte AP, Varella-Garcia M, Ford HL: Gene amplification is a mechanism of Six1 overexpression in breast cancer, Cancer Res 2005, 65:2668-2675

134. Wang CA, Jedlicka P, Patrick AN, Micalizzi DS, Lemmer KC, Deitsch E, Casas-Selves M, Harrell JC, Ford HL: SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer, J Clin Invest 2012, 122:1895-1906

135. Yu Y, Davicioni E, Triche TJ, Merlino G: The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis, Cancer Res 2006, 66:1982-1989

136. Costa BM, Smith JS, Chen Y, Chen J, Phillips HS, Aldape KD, Zardo G, Nigro J, James CD, Fridlyand J, Reis RM, Costello JF: Reversing HOXA9 Oncogene Activation by PI3K Inhibition: Epigenetic Mechanism and Prognostic Significance in Human Glioblastoma, Cancer Research 2010, 70:453-462

137. Ko SY, Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel E, Naora H: HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts, J Clin Invest 2012, 122:3603-3617

138. Ko SY, Ladanyi A, Lengyel E, Naora H: Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype, Am J Pathol 2014, 184:271-281

139. Ko SY, Naora H: HOXA9 promotes homotypic and heterotypic cell interactions that facilitate ovarian cancer dissemination via its induction of P-cadherin, Mol Cancer 2014, 13:170

140. Duriseti S, Winnard Jr PT, Mironchik Y, Vesuna F, Raman A, Raman V: HOXA5 Regulates hMLH1 Expression in Breast Cancer Cells, Neoplasia 2006, 8:250-258

141. Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard P, Raman V: HOXA5-Twist Interaction Alters p53 Homeostasis in Breast Cancer Cells, Journal of Biological Chemistry 2005, 280:2294-2299

142. Aoki K, Kakizaki F, Sakashita H, Manabe T, Aoki M, Taketo MM: Suppression of colonic polyposis by homeoprotein CDX2 through its nontranscriptional function that stabilizes p27Kip1, Cancer Res 2011, 71:593-602

143. Bai YQ, Miyake S, Iwai T, Yuasa Y: CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene, Oncogene 2003, 22:7942-7949

144. Renouf B, Soret C, Saandi T, Delalande F, Martin E, Vanier M, Duluc I, Gross I, Freund J-N, Domon-Dell C: Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells, Nucleic Acids Research 2012, 40:3456-3469

145. Fu S, Stevenson H, Strovel JW, Haga SB, Stamberg J, Do K, Berg PE: Distinct functions of two isoforms of a homeobox gene, BP1 and DLX7, in the regulation of the beta-globin gene, Gene 2001, 278:131-139

146. Quinn LM, Johnson BV, Nicholl J, Sutherland GR, Kalionis B: Isolation and identification of homeobox genes from the human placenta including a novel member of the Distal-less family, DLX4, Gene 1997, 187:55-61

147. Quinn LM, Kilpatrick LM, Latham SE, Kalionis B: Homeobox genes DLX4 and HB24 are expressed in regions of epithelial-mesenchymal cell interaction in the adult human endometrium, Mol Hum Reprod 1998, 4:497-501

148. Shimamoto T, Nakamura S, Bollekens J, Ruddle FH, Takeshita K: Inhibition of DLX-7 homeobox gene causes decreased expression of GATA-1 and c-myc genes and apoptosis, Proc Natl Acad Sci U S A 1997, 94:3245-3249

149. Trinh BQ, Barengo N, Naora H: Homeodomain protein DLX4 counteracts key transcriptional control mechanisms of the TGF-beta cytostatic program and blocks the antiproliferative effect of TGF-beta, Oncogene 2011, 30:2718-2729

150. Trinh BQ, Ko SY, Barengo N, Lin SY, Naora H: Dual functions of the homeoprotein DLX4 in modulating responsiveness of tumor cells to topoisomerase II-targeting drugs, Cancer Res 2013, 73:1000-1010

151. Fu Y, Lian Y, Kim KS, Zhang L, Hindle AK, Brody F, Siegel RS, McCaffrey TA, Fu SW: BP1 Homeoprotein Enhances Metastatic Potential in ER-negative Breast Cancer, J Cancer 2010, 1:54-62

152. Zhang L, Yang M, Gan L, He T, Xiao X, Stewart MD, Liu X, Yang L, Zhang T, Zhao Y, Fu J: DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis,Int J Biol Sci 2012, 8:1178-1187

153. Cavalli LR, Man YG, Schwartz AM, Rone JD, Zhang Y, Urban CA, Lima RS, Haddad BR, Berg PE: Amplification of the BP1 homeobox gene in breast cancer, Cancer Genet Cytogenet 2008, 187:19-24

154. Kluk BJ, Fu Y, Formolo TA, Zhang L, Hindle AK, Man YG, Siegel RS, Berg PE, Deng C, McCaffrey TA, Fu SW: BP1, an isoform of DLX4 homeoprotein, negatively regulates BRCA1 in sporadic breast cancer, Int J Biol Sci 2010, 6:513-524

155. Torresan C, Oliveira MM, Pereira SR, Ribeiro EM, Marian C, Gusev Y, Lima RS, Urban CA, Berg PE, Haddad BR, Cavalli IJ, Cavalli LR: Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis, Cancer Genet 2014, 207:177-187

156. Man YG, Schwartz A, Levine PH, Teal C, Berg PE: BP1, a putative signature marker for inflammatory breast cancer and tumor aggressiveness, Cancer Biomark 2009, 5:9-17

157. Stevenson HS, Fu SW, Pinzone JJ, Rheey J, Simmens SJ, Berg PE: BP1 transcriptionally activates bcl-2 and inhibits TNFalpha-induced cell death in MCF7 breast cancer cells, Breast Cancer Res 2007, 9:R60

158. Schwartz AM, Man YG, Rezaei MK, Simmens SJ, Berg PE: BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and is concordant with prostatic intraepithelial neoplasia, Mod Pathol 2009, 22:1-6

159. Quinn LM, Latham SE, Kalionis B: A distal-less class homeobox gene, DLX4, is a candidate for regulating epithelial-mesenchymal cell interactions in the human placenta, Placenta 1998, 19:87-93

160. Sun Y, Lu X, Yin L, Zhao F, Feng Y: Inhibition of DLX4 Promotes Apoptosis in Choriocarcinoma Cell Lines, Placenta 2006, 27:375-383

161. Awwad RT, Do K, Stevenson H, Fu SW, Lo-Coco F, Costello M, Campbell CL, Berg PE: Overexpression of BP1, a homeobox gene, is associated with resistance to all-trans retinoic acid in acute promyelocytic leukemia cells, Ann Hematol 2008, 87:195-203

162. Haga SB, Fu S, Karp JE, Ross DD, Williams DM, Hankins WD, Behm F, Ruscetti FW, Chang M, Smith BD, Becton D, Raimondi SC, Berg PE: BP1, a new homeobox gene, is frequently expressed in acute leukemias, Leukemia 2000, 14:1867-1875

163. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, Greulich H, Stewart CJ, Mulvey LA, Shen RR, Ambrogio L, Hirozane-Kishikawa T, Hill DE, Vidal M, Meyerson M, Grenier JK, Hinkle G, Root DE, Roberts TM, Lander ES, Polyak K, Hahn WC: Integrative genomic approaches identify IKBKE as a breast cancer oncogene, Cell 2007, 129:1065-1079

164. Kenny HA, Krausz T, Yamada SD, Lengyel E: Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum, Int J Cancer 2007, 121:1463-1472

165. Goncharova V, Serobyan N, Iizuka S, Schraufstatter I, de Ridder A, Povaliy T, Wacker V, Itano N, Kimata K, Orlovskaja IA, Yamaguchi Y, Khaldoyanidi S: Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis, J Biol Chem 2012, 287:25419-25433

166. Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Prestipino V, Calatroni A, Campo S: Hyaluronan in part mediates IL-1beta-induced inflammation in mouse chondrocytes by up-regulating CD44 receptors, Gene 2012, 494:24-35

167. Foster LC, Arkonac BM, Sibinga NE, Shi C, Perrella MA, Haber E: Regulation of CD44 gene expression by the proinflammatory cytokine interleukin-1beta in vascular smooth muscle cells, J Biol Chem 1998, 273:20341-20346

168. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, Dorken B, Zenke M, Stein H, Scheidereit C: Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity, J Exp Med 2002, 196:605-617

169. Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U: Control of I kappa Balpha proteolysis by site-specific, signal-induced phosphorylation, Science 1995, 267:1485-1488

170. Dinarello CA: Biologic basis for interleukin-1 in disease, Blood 1996, 87:2095-2147

171. Dinarello CA: A clinical perspective of IL-1β as the gatekeeper of inflammation,European Journal of Immunology 2011, 41:1203-1217

172. Karst AM, Gao K, Nelson CC, Li G: Nuclear factor kappa B subunit p50 promotes melanoma angiogenesis by upregulating interleukin-6 expression, Int J Cancer 2009, 124:494-501

173. Shibata A, Nagaya T, Imai T, Funahashi H, Nakao A, Seo H: Inhibition of NFkappaB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells, Breast Cancer Res Treat 2002, 73:237-243

174. Xie TX, Xia Z, Zhang N, Gong W, Huang S: Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma, Oncol Rep 2010, 23:725-732

175. Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL, Chao CH, Yamaguchi H, Yang NK, Ding Q, Wang Y, Lai YJ, LaBaff AM, Wu TJ, Lin BR, Yang MH, Hortobagyi GN, Hung MC: Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaBmediated transcriptional upregulation of Twist1, Cancer Res 2012, 72:1290-1300

176. Ryan KM, Ernst MK, Rice NR, Vousden KH: Role of NF-kappaB in p53-mediated programmed cell death, Nature 2000, 404:892-897

177. Rocha S, Martin AM, Meek DW, Perkins ND: p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1, Mol Cell Biol 2003, 23:4713-4727

178. Yang G, Xiao X, Rosen DG, Cheng X, Wu X, Chang B, Liu G, Xue F, Mercado-Uribe I, Chiao P, Du X, Liu J: The biphasic role of NF-kappaB in progression and chemoresistance of ovarian cancer, Clin Cancer Res 2011, 17:2181-2194

179. Arlt A, Vorndamm J, Müerköster S, Yu H, Schmidt WE, Fölsch UR, Schäfer H: Autocrine production of interleukin 1 β confers constitutive nuclear factor κ B activity and chemoresistance in pancreatic carcinoma cell lines, Cancer Research 2002, 62:910-916

180. Saijo Y, Tanaka M, Miki M, Usui K, Suzuki T, Maemondo M, Hong X, Tazawa R, Kikuchi T, Matsushima K, Nukiwa T: Proinflammatory cytokine IL-1 β promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: In vivo analysis of tumor-stromal interaction, Journal of Immunology 2002, 169:469-475

181. Hellwig-Bürgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W: Interleukin-1 β and tumor necrosis factor- α stimulate DNA binding of hypoxia-inducible factor-1, Blood 1999, 94:1561-1567

182. Singh S, Gupta AK: Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies, Cancer Chemother Pharmacol 2011, 67:1211-1224

183. Gilbert PM, Mouw JK, Unger MA, Lakins JN, Gbegnon MK, Clemmer VB, Benezra M, Licht JD, Boudreau NJ, Tsai KKC, Welm AL, Feldman MD, Weber BL, Weaver VM: HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype, The Journal of Clinical Investigation 2010, 120:1535-1550

184. Lewis AM, Varghese S, Xu H, Alexander HR: Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment, J Transl Med 2006, 4:48

185. Ivanenkov YA, Balakin KV, Lavrovsky Y: Small molecule inhibitors of NF-kB and JAK/STAT signal transduction pathways as promising anti-inflammatory therapeutics, Mini Rev Med Chem 2011, 11:55-78

186. Chen D, Frezza M, Schmitt S, Kanwar J, Dou Q: Bortezomib as the First Proteasome Inhibitor Anticancer Drug: Current Status and Future Perspectives, Curr Cancer Drug Targets 2011, 11:239-253

187. Du YR, Chen Y, Gao Y, Niu XL, Li YJ, Deng WM: Effects and mechanisms of anti-CD44 monoclonal antibody A3D8 on proliferation and apoptosis of sphere-forming cells with stemness from human ovarian cancer, Int J Gynecol Cancer 2013, 23:1367-1375

188. Harada H, Nakata T, Hirota-takahata Y, Tanaka I, Nakajima M, Takahashi M: F16438s, Novel Binding Inhibitors of CD44 and Hyaluronic Acid, J Antibiot 2006, 59:770776

VITA

Dhwani Haria, daughter of Bina and Divyesh Haria, was born in Mumbai, India on July 7, 1990. She obtained her school education from Sharon English High School and Ramnarain Ruia Junior College in Mumbai, India. She then pursued her Bachelors in Biological Sciences (concentration in Microbiology and Immunology) with a minor in Chemistry at Virginia Tech. She graduated *summa cum laude* from Virginia Tech in May 2012. In August of 2012, she entered University of Texas Health Science Center/MD Anderson Cancer Center at Houston to pursue her Masters in Biomedical Sciences. She joined the laboratory of Dr. Honami Naora in October of 2012, where she completed her thesis work.

Permanent address:

Indraprasth Society, C-13, Sarvodaya Nagar, Mulund (West), Mumbai 400080, India

Publications:

Haria, D and Naora, H. Homeobox Gene Deregulation: Impact on the Hallmarks of Cancer. Cancer Hallm 2013, 1(2-3): 67-76.