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FUNCTIONS OF THE HOMEOBOX GENE DLX4 IN CONTROLLING 

INFLAMMATORY SIGNALING AND METASTASIS OF EPITHELIAL OVARIAN 

CANCER 

 

Dhwani Haria, B.S. 

 

Advisory Professor: Honami Naora, Ph.D. 

 

       Epithelial ovarian cancer (EOC) accounts for the most number of deaths among women 

with gynecological malignancies in the United States. Approximately 80% of EOC patients 

are diagnosed with disease that has disseminated beyond the confines of the ovaries. The five 

year survival rate for patients with advanced stage EOC is less than 30% and the recurrence 

of chemoresistant disease is high. Identifying the mechanisms that control peritoneal 

metastasis of EOC is therefore critical for improving treatment of advanced stage disease. 

The homeobox gene DLX4 encodes a transcription factor that is absent from most normal 

adult tissues. Previous studies from our laboratory have identified that DLX4 is highly 

expressed in advanced stage EOC and is strongly associated with reduced survival. The 

underlying hypothesis of my study is that DLX4 promotes peritoneal dissemination of EOC. 

The overall goal of my study is to determine the role and mechanisms of DLX4 in controlling 

peritoneal metastasis of EOC. My specific aims are: 1) to determine whether DLX4 promotes 

peritoneal dissemination of EOC, and 2) to identify the mechanisms by which DLX4 controls 

tumor–peritoneum interactions. Firstly, my studies have identified that DLX4 promotes EOC 

dissemination by inducing expression of the cell adhesion molecule CD44 which is a major 
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receptor for hyaluronan, a glycosaminoglycan that is expressed on mesothelial cells lining 

the peritoneal cavity and abdominal organs. Secondly, my studies have identified that DLX4 

induces CD44 expression by activating the pro-inflammatory cytokine interleukin 1-beta (IL-

1β) which in turn stimulates the nuclear factor kappa B (NF-κB) signaling pathway. This 

study provides insights into the mechanisms of peritoneal metastasis of EOC and raises the 

possibility that targeting inflammatory signaling could be a strategy for treatment of 

advanced stage EOC.  
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CHAPTER 1: INTRODUCTION 

A. BIOLOGY OF OVARIAN CANCER 

1. Classification and Clinical Staging of Ovarian Cancer 

       Ovarian cancer accounts for the highest lethality among women with gynecologic 

malignancies in the United States 
1
. Ovarian cancers are classified as 1) epithelial tumors, 2) 

sex cord stromal tumors and 3) germ cell tumors. Epithelial ovarian cancers (EOC) constitute 

about 60% of all ovarian tumors and 90% of malignant tumors 
2
. It has been traditionally 

thought that EOC originates from the ovarian surface epithelium. However, recently, the 

fallopian tube and some other epithelial tissues have been reported as origins for EOC 
3, 4

. 

EOC is a heterogeneous disease and is categorized into different subtypes based on their 

histologic features 
2
. These histologic subtypes exhibit different types of mutations (Table 1). 

The serous subtype is the most common form of EOC (Figure1) 
5, 6

. The stage of the disease, 

i.e. its spread within the ovaries or to other parts of the body is evaluated during surgery 

(Table 2) 
7
. Due to a lack of distinctive symptoms and specific diagnostic biomarkers, more 

than 60% of EOC patients are diagnosed with disease that has already spread throughout the 

peritoneal cavity (Figure 2) 
8
. In contrast, only 15% of EOC patients present with ovarian-

confined disease at the time of initial diagnosis (Figure 2) 
8
. The five-year survival rate for 

women with advanced-stage EOC is less than 30% as compared to over  90% for women 

with localized disease (Figure 2) 
8
. The majority of patients with advanced-stage EOC who 

undergo tumor-debulking surgery and conventional platinum-taxane chemotherapy relapse 

within 18 months 
9
.   
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Table 1: Common mutations identified in the histologic subtypes of EOC 

 

 

Histologic subtype 

 

Mutations 

 

 

References 

 

 

 

 

 

Serous 

 

High grade serous: 

TP53 

CDKN2A 

BRCA1/2 

Low grade serous: 

BRAF 

KRAS 

ERBB2 

 

 

 

 

 

 
10-12

 

 

 

 

Endometrioid 

 

CTNNB1 

PIK3CA 

PTEN 

ARID1A 

 

 

 

 
5, 13

 

 

 

Mucinous 

 

 

KRAS 

 

 
5, 14

 

 

 

Clear cell 

 

HNF1B 

PTEN 

ARID1A 

PIK3CA 

 

 

 
5, 15-17
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Figure 1. Relative frequencies of subtypes of EOC 

Relative frequencies of subtypes of EOCs as reported by two independent studies 
5, 6

. 
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Table 2: International Federation of Gynecology and Obstetrics (FIGO) staging of 

EOC
7
 

 

 

FIGO Stage 

 

Characteristics of the tumor 

 

I 

 

Tumor is confined to the ovaries 

 

II 

 

 

Tumor involves one of both ovaries with extension and/or 

implantation on pelvic organs e.g. uterus and/or fallopian tubes 

 

III 

 

Tumor involves one or both ovaries with disease that has spread to 

the peritoneum outside the pelvis and/or to retroperitoneal lymph 

nodes 

 

IV 

 

Distant metastases to liver, spleen and extra-abdominal organs 

with development of pleural effusions 
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Figure 2. Stage distribution of EOC and five-year survival rate by stage 
8
. 

(A) Percentage of EOC cases by tumor stage as reported by SEER, where localized disease 

corresponds to FIGO Stage I, regional disease corresponds to FIGO stage II and distant 

disease corresponds to FIGO Stages III and IV. (B) Five-year survival rate by tumor stage. 

  

92.3% 

71.7% 

27.4% 
21.8% 

0

20

40

60

80

100

Localized Regional Distant Unknown

Five-year survival rate 

15% 18% 

61% 

6% 

0

10

20

30

40

50

60

70

Localized Regional Distant Unknown

Percent of EOC cases by tumor stage 



6 
 

Currently, the most commonly used biomarker for EOC is the glycoprotein cancer 

antigen-125 (CA-125) 
18

. Serum levels of CA-125 are found to be elevated in approximately 

80% of advanced-stage EOC cases and is used for post-operative monitoring 
18, 19

. However, 

measurement of CA-125 is not highly sensitive for detection of early stage EOC. CA-125 

levels are also elevated in other conditions such as pregnancy, endometriosis, menstruation 

and other malignancies like pancreatic, breast, lung, and gastric cancers 
20

. There is, 

therefore, a critical need for the identification of novel diagnostic biomarkers for early 

detection of EOC and new molecular targets for effective treatment against highly metastatic 

and chemoresistant EOC.  

2. Biology of dissemination of EOC 

       Unlike most other types of solid tumors, EOC does not typically metastasize via 

lymphatic or hematogenous routes 
21

. In the initial stage, the tumor is confined to one or both 

the ovaries. As the disease progresses, the ovarian capsule is disrupted and the tumor first 

spreads by directly extending to adjacent organs, for example, uterus and fallopian tubes 

(Figure 3) 
22

. Distal dissemination of EOC occurs primarily via intraperitoneal seeding 

(Figure 4). Exfoliated tumor cells are transported by the circulating peritoneal fluid and 

undergo implantation on the mesothelial linings of the peritoneal cavity wall and abdominal 

organs (Figures 3,4) 
22

. This peritoneal carcinomatosis is commonly associated with 

formation of ascites 
22

. 
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Figure 3. Pattern of spread of EOC 

In the early stage, the tumor (shown as red masses) is confined to one or both the ovaries. 

Once the ovarian capsule is disrupted, the tumor spreads by direct extension to adjacent 

organs. Exfoliated tumor cells are then transported by the circulating peritoneal fluid and 

implant on the mesothelial linings of the pelvic cavity wall and abdominal organs. The 

omentum is the most common implantation site 
22

. 
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Figure 4. Model of peritoneal seeding of EOC 

Distal spread of EOC cells (shown in red) occurs via ‘seeding’ of the peritoneal cavity. EOC 

cells are exfoliated into the peritoneal fluid and form multicellular aggregates to escape 

anoikis. Surviving EOC cells are transported by the circulating peritoneal fluid and then 

implant on the mesothelial linings of the peritoneal cavity 
22

.  

  



9 
 

2.1. Implantation of EOC cells on to the peritoneum  

       The ability of EOC cells to ‘seed’ the peritoneal cavity is a hallmark of this disease. The 

attachment of EOC cells to the peritoneal surfaces is a key rate-limiting step. It is thought 

that attachment of EOC cells to the peritoneum is mediated via two primary mechanisms: 1) 

attachment to the mesothelial cells lining the peritoneal cavity and 2) attachment to the sub-

mesothelial extracellular matrix (ECM) 
23-26

. Mesothelial cells, that are derived from the 

mesoderm, form a monolayer that lines the surface of body’s three serosal cavities: pleural, 

pericardial and peritoneal 
27

. The mesothelial cell lining functions as a protective layer and a 

non-adhesive surface that facilitates movement of other tissues and plays an essential role in 

immune and inflammatory responses 
27

. Attachment of EOC cells to mesothelial cells is 

mediated by a repertoire of ligands and receptors. The EOC biomarker CA-125 can mediate 

tumor cell implantation by binding the glycosylphosphatidyl inositol (GPI)-linked protein 

mesothelin that is expressed on mesothelial cells 
28, 29

. Integrins are cell surface protein 

complexes composed of α and β subunits that have been reported to facilitate attachment of 

EOC cells to mesothelial cells and also to the sub-mesothelial ECM 
30

. Several groups have 

demonstrated that β1 integrin mediates binding of EOC cells to peritoneal mesothelial cells 

31-33
. On the other hand, several studies have reported that integrins such as β1 and αvβ3 

promote EOC metastasis by binding to components of the ECM such as collagen type, 

fibronectin, laminin and vitronectin 
34-37

. A study by Iwanicki and colleagues demonstrated 

that spheroids of EOC cells can gain access to the sub-mesothelial ECM by displacing 

mesothelial cells that line the peritoneal organs by utilizing myosin-generated traction force 

that is dependent on activation of α5β1 integrin and talin I 
38

.  
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       Cadherins constitute a gene super-family of membrane glycoproteins that facilitate cell-

cell adhesion via homophilic interactions. Substantial evidence indicates that alteration in 

cadherin expression, often termed ‘cadherin switching’ drives tumor progression 
39, 40

. The 

most well-characterized form of cadherin-switching involves upregulation of N-cadherin and 

P-cadherin and downregulation of E-cadherin 
39, 40

. Loss of E-cadherin expression and 

increase in expression of N-cadherin in advanced stage EOC correlates with poor prognosis 

in patients 
41

. High expression of P-cadherin has also been found to correlate with reduced 

overall survival of EOC patients 
41

. P-cadherin facilitates formation of multi-cellular 

aggregates of EOC cells, inhibits anoikis and also promotes attachment of EOC cells to 

peritoneal mesothelial cells 
42

.  

       The most-studied cell adhesion molecule that promotes attachment of EOC cells to the 

mesothelial lining is the cell-surface glycoprotein CD44. CD44 proteins are encoded by a 

highly conserved gene and are present in different isoforms 
43

. This heterogeneity among the 

different isoforms is due to differential glycosylation and alternative splicing of exons 
43

. The 

smallest isoform CD44s is the most common isoform and is present on the membrane of 

most vertebrate cells. However, unlike CD44s, variant isoforms of CD44 are only expressed 

on some epithelial cells during embryogenesis, lymphocytes and in certain cancers 
44, 45

. 

CD44v7 has been reported to promote metastasis of pancreatic adenocarcinomas 
46

. Another 

study reported that CD44v6 interacts with vascular endothelial growth factor-A (VEGF-A) 

and hepatocyte growth factor (HGF) to promote tumor angiogenesis 
47

. Standard and variant 

isoforms of CD44 have been detected in EOCs 
48

. Expression of CD44s in EOC is an 

independent predictor of survival and its expression correlates with poor outcomes and 

decreased overall survival 
49-51

. CD44 is a major receptor for the glycosaminoglycan, 
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hyaluronic acid (HA) that is synthesized by mesothelial cells lining the peritoneal cavity 
52, 53

. 

CD44 facilitates attachment of EOC cells to peritoneal mesothelial cells by binding to HA 
24, 

53, 54
. A study by Strobel and colleagues demonstrated that a CD44 neutralizing antibody (Ab) 

significantly inhibited EOC cell implantation on peritoneal mesothelial linings in 

intraperitoneal (i.p.) xenograft models 
55

. However, the mechanisms that induce expression 

of CD44 in EOC cells are poorly understood and require further investigation.  

2.2. Inflammatory signaling in EOC 

       A second hallmark of EOC is the formation of ascites 
56

. Accumulation of fluid in the 

peritoneal cavity stems from increased vessel permeability 
57, 58

. VEGF-A is widely 

recognized as the causative factor of ascites formation. High levels of VEGF-A have been 

demonstrated to induce vascular permeability and stimulate formation of ascites in EOC 
59-62

. 

Ascitic fluid contains a wide range of growth factors, inflammatory cytokines and 

chemokines that function via autocrine and paracrine mechanisms and promote tumor 

progression 
63

. Pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), 

interleukin-10 (IL-10) and interleukin-1β (IL-1β) are present in ascites of EOC patients and 

are associated with poor outcomes in patients 
64

. IL-6 promotes EOC cell growth and also 

stimulates chemoresistance and tumor angiogenesis 
65-68

. Elevated levels of IL-8 also 

promote angiogenesis in EOC 
69

. Elevated levels of IL-1β in ascites of EOC patients 

significantly correlate with poor histopathological grade and reduced progression-free 

survival 
70

. Normal and malignant EOC cells as well as activated stromal immune cells are 

the major sources of IL-1β 
71

. Constitutive secretion of IL-1β by EOC cells promotes tumor 

invasion by inducing expression of matrix metalloproteinase-1 (MMP-1) and tumor 

angiogenesis by stimulating production of VEGF 
72, 73

. IL-1β promotes inflammatory 



12 
 

signaling in tumors via activation of nuclear factor kappa B (NF-κB) signaling pathway 
74

. 

Secretion of IL-1β by EOC cells downregulates expression of p53 in stromal fibroblasts and 

stimulates NF-κB signaling which in turn leads to an increase in the expression of other 

molecules such as IL-8, IL-6 and VEGF 
75

. However, the mechanisms by which IL-1β 

promotes peritoneal metastasis of EOC are not clear. 

2.3. NF-κB signaling in EOC 

       The NF-κB signaling pathway is activated in many types of tumors. A central 

component of the pathway comprises a family of five transcription factors: p50, p52, p65 

(RelA), c-Rel and RelB 
76

. There are two different pathways for activation of NF-κB 

signaling: canonical and non-canonical. The canonical signaling pathway is triggered by 

microbial products and pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) 

and IL-1 leading to activation of RelA or c-Rel, which form dimers with p50 
77

. The dimers 

interact with inhibitors of NF-κB family of proteins (IκBα, IκBβ, and IκBε) in the cytoplasm 

and are in an inactive state. When the canonical pathway is triggered, the IκB proteins get 

phosphorylated by the IκB kinases (IKKs) on conserved serine residues and in turn IκB 

proteins undergo degradation by the ubiquitin-proteasome pathway and release the NF-κB 

dimers. The dimers then translocate to the nucleus and function as transcription factors to 

activate target genes (Figure 5) 
77

. The non-canonical signaling pathway is activated by TNF-

family cytokines like B-cell activating factor (BAFF), lymphotoxin B, CD40 ligand (CD40L) 

and receptor activator of NF-κB ligand (RANKL), which results in the activation of 

RelB/p52 complexes. Whereas the canonical pathway is typically regulated by the IKKβ and 

IKKγ subunits, the non-canonical pathway is regulated by IKKα which phosphorylates and 

processes p100, the precursor form of p52 (Figure 5) 
77, 78

. Although NF-κB signaling is 
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widely activated in solid tumors, there are no known oncogenic mutations in members of the 

NF-κB family. The activation of this pathway, therefore, has largely been attributed to 

inflammatory signals in the tumor microenvironment 
79

.  

       The ovarian tumor microenvironment contains a wide variety of pro-inflammatory 

cytokines that are secreted by tumor cells and stromal cells. High levels of TNF-α, IL-1α, IL-

1β and IL-6 have been detected in EOC tissues as compared to levels in normal ovarian 

tissues 
80-82

. Several studies have demonstrated that high levels of cytokines such as TNF-α 

and IL-1β in EOC promote tumor progression by activation of NF-κB signaling 
75, 83

. For 

example, a study by Kulbe and colleagues identified that TNF-α, through its activation of 

NF-κB, upregulates expression of the chemokine receptor CXCR4 which in turn interacts 

with its ligand CXCL12, and promotes increased tumor growth and migration 
83

. Activation 

of the NF-κB pathway in turn induces downstream target genes that encode ligands that 

activate the pathway such as TNF-α and IL-1β, and also other target genes encoding IL-6, IL-

8, VEGF and MMPs 
74

. This NF-κB signaling loop leads to activation of chronic signaling in 

tumors. A number of independent studies have demonstrated a strong association between 

activation of NF-κB transcription factors in EOC and poor outcomes in patients 
84, 85

. Higher 

expression of NF-κB transcription factors such as p50 and p65 has been detected in 

advanced-stage EOCs as compared to borderline and benign tumors or normal ovaries 
85

. 

Levels of phosphorylated p65 in EOC strongly correlate with advanced disease stage and 

high tumor grade 
86, 87

. However, the mechanisms by which chronic NF-κB signaling 

promotes peritoneal dissemination of EOC are poorly understood. 
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Figure 5: NF-κB signaling pathway 

The canonical NF-κB signaling pathway is triggered by proinflammatory cytokines such as 

TNF-α and IL-1β whereas the non-canonical NF-κB signaling pathway is triggered by 

cytokines such as lymphotoxin B, CD40L, BAFF and RANKL. These signals lead to 

activation of the IKK complex (shown in blue). In the canonical pathway, the IKK complex 

phosphorylates IκB (shown in green) at two serine residues, which signals it for degradation 

and release of the phosphorylated NF-κB dimers (shown in orange). The NF-κB dimers then 

translocate to the nucleus and induce transcription of target genes 
88

. Activation of the IKK 

complex in the non-canonical pathway leads to phosphorylation and degradation of p100, 

releasing p52-RelB heterodimers (shown in yellow). The heterodimers then translocate to the 

nucleus and activate transcription of target genes 
89

. 
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B. HOMEOBOX GENES 

1. General overview of homeobox genes 

       Homeobox genes consist of a large super-family of approximately 200 vertebrate genes 

that play essential roles in body plan specification and development of virtually all organ 

systems during embryogenesis 
90, 91

. In adults, homeobox genes regulate tissue homeostasis 

and regeneration, differentiation of hematopoietic progenitors and vascular remodeling 
92, 93

. 

Homeobox genes were first identified due to their mutations in Drosophila that caused 

formation of body segments in the wrong context. For example, loss-of-function mutations in 

the Antennapedia gene in Drosophila results in development of ectopic antennae instead of 

legs 
94

. Similarly, in humans, aberrant expression of homeobox genes can cause 

developmental defects like malformation of limbs or other sensory defects 
95, 96

. Homeobox 

genes encode proteins termed ‘homeoproteins’ that primarily function as transcription factors 

97, 98
. Homeoproteins consist of a highly conserved DNA binding domain that is known as the 

‘homeodomain’. This homeodomain forms three alpha-helices which binds DNA elements 

having TAAT core motifs (Figure 6) 
99

.   

  



16 
 

 

 

 

Figure 6. Structure of the homeodomain 

Transcription factors encoded by homeobox genes consist of a highly conserved 61 amino 

acid DNA binding domain termed the ‘homeodomain’. The homeodomain forms three α-

helices (colored boxes) that bind DNA elements containing TAAT core motifs 
99

. 
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2. Genomic organization of homeobox genes 

       In mammals, homeobox genes are classified into different families based on the 

similarities in their homeodomains and functional motifs 
100

. Mammalian homeobox gene 

families are named after their homologs in Drosophila. For example, members of the 

mammalian gene families DLX, CDX, and OTX are named after homologous Drosophila 

gene families distal-less, caudal, and orthodenticle respectively 
101

. Eventhough many 

homeobox genes in mammals are dispersed throughout the genome, members of HOX and 

DLX gene families are arranged in clusters 
102, 103

. The 39 members of the mammalian HOX 

gene family are grouped in clusters on four different chromosomes (Figure 7) 
104, 105

. 

Likewise, the six members of the mammalian DLX gene family are arranged in bigene 

clusters and are located upstream of the HOX gene clusters (Figure 7) 
105, 106

. It has been 

postulated that clusters of HOX and DLX gene families derived from gene duplication during 

evolution 
103, 107

.  
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Figure 7. Clusters of HOX and DLX gene families 

The 39 members of the mammalian HOX gene family are organized in clusters on 4 different 

chromosomes. The 6 members of the DLX gene family are arranged in bigene clusters, 

located upstream of the HOX loci  
105, 106

.  
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3. Deregulation of homeobox genes in tumors 

       Substantial evidence indicates that expression of several homeobox genes is deregulated  

in a wide variety of tumors 
97

. Deregulation of homeobox genes in cancer falls into two broad 

categories. The first category of homeobox genes are those that are usually expressed only in 

normal, differentiated adult tissues but are often downregulated in tumors and have tumor 

suppressive functions (Figure 8) 
97, 99, 101

. Loss of expression of these homeobox genes has 

been attributed to epigenetic mechanisms, long non-coding RNAs and chromosomal 

aberrations like loss of heterozygosity 
101

. For example, loss of HOXA5 in breast cancers 

occurs due to promoter hypermethylation 
108

. Loss of HOXA5 results in a down-regulation of 

p53 expression and tumor progression in breast cancers 
108

. The long non-coding RNA 

HOTAIR which is located in the HOXC locus binds to and re-targets Polycomb Repressive 

Complex 2 (PRC2), a large multi-protein complex that mediates transcriptional silencing 
109, 

110
. HOTAIR re-targets the PRC2 complex to the HOXD locus 

109
. In breast cancers, 

increased expression of HOTAIR in primary tumors is considered to be highly predictive of 

metastatic disease and poor outcomes 
109

. The homeobox gene NKX3.1, which maps to 

chromosomal region 8p21, is expressed in fetal and adult prostate tissues and controls normal 

differentiation of prostatic epithelium 
111, 112

. Loss of heterozygosity of NKX3.1 occurs in 

approximately 60%-80% of prostate cancers 
113

. Loss of NKX3.1 induces development of 

prostatic intraepithelial neoplasia (PIN) 
114

. Furthermore, loss of NKX3.1 coupled with loss of 

the tumor suppressor gene PTEN and overexpression of oncogene c-myc promotes prostate 

cancer progression 
115-118

. 

       The second category of homeobox genes are those that are usually expressed in 

embryonic tissues but not in adult tissues. These homeobox genes are often upregulated in 
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tumors and have tumor promoting functions (Figure 8) 
97, 99, 101

. Gain of function of 

homeobox genes in tumors can be caused by chromosomal aberrations like gene 

amplification 
101

. For example, the HOXB gene cluster and the homeobox gene DLX4 map to 

the 17q21.3-q22 region, a chromosomal hotspot amplified in about 10% of breast cancers 

and EOC 
119-121

. HOXB7 is also overexpressed in various other types of tumors such as 

pancreatic cancer, colorectal cancer and melanomas 
122-124

. High expression of HOXB7 in 

breast cancers, EOC and melanomas drives tumor progression in part by activating 

transcription of the gene that encodes basic fibroblast growth factor (bFGF) 
122, 125-127

. 

HOXB7 also promotes resistance to tamoxifen in breast cancers by inducing expression of 

epidermal growth factor receptor (EGFR) and its ligands, thereby activating EGFR signaling 

128
. HOXB7 and DLX4 are over-expressed in more than 50% of breast cancers and EOC 

though only 10% of cases exhibit a loss of the chromosomal region containing the gene 

cluster 
129, 130

. This highlights the need to identify more mechanisms of homeobox gene 

deregulation as well as downstream transcriptional targets that will aid in developing better 

targeted therapies.  
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Figure 8. Trends in the aberrant expression of homeobox genes in tumors  

Homeobox genes that are normally expressed only in embryonic tissues are often activated in 

tumors and generally have tumor-promoting functions (shown in orange). Homeobox genes 

that are normally expressed in normal differentiated adult tissues are down-regulated in 

tumors and generally have tumor-suppressive functions (shown in yellow) 
101

.  
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Table 3: Examples of significance of aberrant homeobox gene expression in tumors  

 

Homeobox 

gene 

 

Type of cancer 

 

Expression 

pattern 

in tumors 

 

Functional significance of 

deregulation in tumors 

 

References 

 

 

HOXB7 

 

melanoma, breast, 

pancreatic, 

colorectal, ovarian 

  Induces expression of EGFR 

and FGF2  

 Promotes tumor growth and 

angiogenesis 

 Promotes EMT and 

chemoresistance 

 

 
122-128

 

 

 

HSIX1 

 

breast, 

pancreatic, 

rhabdomyosarcomas 

  Promotes tumor growth by 

inducing cyclin A1 

 Promotes lymphangiogenesis 

and metastasis by inducing 

VEGF-C and ezrin expression  

 

 
131-135

 

 

 

 

HOXA9 

 

 

ovarian, 

glioblastomas 

 

  Promotes EOC growth by 

stimulating cancer-associated 

fibroblasts and macrophages 

with immunosuppressive 

properties 

 Promotes EOC dissemination 

via induction of P-cadherin  

  

 

 
136-139

 

 

 

NKX3.1 

 

 

prostate 

  Loss of NKX3.1 causes PIN-

like lesions in mice 

 Co-operates with loss of PTEN 

to induce prostate cancer 

progression  

 

 
114, 116-118

 

 

 

 

HOXA5 

 

 

 

breast 

  Loss of HOXA5 promotes cell 

cycle deregulation and 

metastasis by inducing loss of 

p53 and promoting expression 

of Twist 

 Loss of HOXA5 induces 

genomic instability by down-

regulating expression of human 

MutL homolog 1 (hMLH1) 

 

 

 
108, 140, 141

 

 

 

 

CDX2 

 

 

 

colorectal  

  Loss of CDX2 promotes 

genomic instability by inducing 

DNA repair via non-

homologous end joining (NHEJ) 

pathway 

 Loss of CDX2 deregulates cell 

cycle progression by down-

regulating expression of cyclin 

dependent kinase inhibitors 

p27Kip1 and p21/waf1/cip1 

  

 

 
142-144
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4. Role of the homeobox gene DLX4 in tumors 

       DLX4, a member of the DLX family of homeobox genes, is also reported as BP1, DLX7 

and DLX8 
91, 145

. DLX4 is generally expressed in endometrium, placenta, trophoblast and 

normal bone marrow cells but not in other normal adult tissues 
146-148

. Increasing evidence 

indicates that DLX4 is expressed in hematological malignancies and also solid tumors such as 

EOC, breast, prostate, and lung cancers (Table 4). Previous studies in our laboratory have 

demonstrated that high expression of DLX4 in tumors confers resistance to anti-proliferative 

signals mediated by TGF-β, promotes genomic instability and chemoresistance in various 

tumors 
149, 150

. DLX4 has been reported to promote invasiveness of breast cancer by inducing 

expression of TWIST and inhibiting expression of E-cadherin 
151, 152

. Other studies from our 

laboratory have found that DLX4 is absent from normal ovary and ovarian cystadenomas 
129

. 

On the other hand, expression of DLX4 in EOC strongly correlates with advanced disease 

stage, high tumor grade and reduced overall survival of patients 
129

. The ability of DLX4 to 

promote EOC growth has been attributed in part to its stimulation of tumor angiogenesis 
129

. 

However, the mechanisms by which DLX4 promotes EOC metastasis are poorly understood.  
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Table 4: Examples of aberrant expression and functional significance of DLX4 in 

tumors 

 

Type of cancer 

 

Pattern of DLX4 

expression in 

cancers 

 

Functional significance of 

deregulation of DLX4 in cancers 

 

References 

 

 

Breast 

 

 

Overexpressed in 

80% of breast 

cancers 

 

 Represses BRCA1 expression 

 Upregulates Twist and promotes 

tumor metastasis  

 Promotes tumor cell survival by 

inducing Bcl-2 and inhibiting 

apoptosis 

 

 
130, 151-157

 

 

 

Ovarian 

 

Overexpressed in 

~50% of EOC and 

correlates with 

advanced disease 

stage and high tumor 

grade 

 

 Promotes tumor angiogenesis 

by inducing expression of 

VEGF and bFGF 

 
129

 

 

 

Prostate 

 

Overexpressed in 

70% of prostatic 

adenocarcinomas 

  
158

 

 

 

Choriocarcinoma 

 

Expressed in normal 

placenta and human 

choriocarcinoma cell 

lines 

 

 Promotes tumor cell survival  

 
159, 160

 

 

 

Leukemias 

 

Overexpressed in 

bone marrow of 63% 

of acute myeloid 

leukemia (AML) 

cases 

 

 Increases clonogenicity of 

leukemic cells 

 Induces expression of c-myc  

 
148, 161, 162
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C. HYPOTHESIS AND SPECIFIC AIMS 

       The high morbidity and mortality caused by EOC stems from its propensity to 

disseminate throughout the peritoneal cavity and the inability to detect the disease at an early, 

organ-confined stage. Cancer-associated ascites is enriched in growth factors and 

inflammatory cytokines that promote inflammatory signaling and peritoneal metastasis. 

However, the mechanisms by which EOC cells activate chronic inflammatory signaling and 

by which inflammatory cytokines promote metastasis are poorly understood. The overall goal 

of my study is to identify the molecular mechanisms that promote rapid metastasis of EOC.  

       Expression of the homeobox gene DLX4 in EOC has been found to be strongly 

associated with advanced disease stage and poor survival of patients. However, the 

significance of DLX4 in promoting metastasis of EOC is not known. My broad hypothesis is 

that DLX4 promotes peritoneal dissemination of EOC. Specifically, I hypothesize that DLX4 

promotes peritoneal dissemination of EOC by controlling inflammatory signaling.  

The specific aims of my study are:  

1) To determine whether DLX4 promotes peritoneal dissemination of EOC 

2) To identify the mechanisms by which DLX4 controls tumor-peritoneum interactions 
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CHAPTER 2: MATERIALS AND METHODS 

1. Antibodies 

       Sources of antibodies (Abs) were as follows: DLX4 Ab (for flow cytometry, Abcam, 

Cambridge, MA), DLX4 Ab (for chromatin immunoprecipitation, Abnova, Taipei, Taiwan), 

CD44 Ab (for flow cytometry, BD Biosciences, San Jose, CA), CD44 Ab (for neutralization, 

Abcam), phosphorylated NF-κB p65 (Ser 536) Ab (for flow cytometry, Cell Signaling 

Technology, Danvers, MA). Secondary Abs were purchased from Pierce Biotechnology, 

Rockford, IL and BD Biosciences.  

2. Plasmids 

       A human DLX4 cDNA plasmid was provided by Dr. Patricia Berg (George Washington 

University) 
162

. Flag-tagged DLX4 was subcloned into pIRES-EGFP2 vector (Clontech, Palo 

Alto, CA) 
149

. Flag-tagged DLX4 was also subcloned into the retroviral vector, pRetroQ 

(Clontech). pGFP-VRS plasmids containing non-targeting shRNA and DLX4 shRNAs were 

purchased from OriGene Technologies (Rockville, MD). IL1B cDNA was purchased from 

Origene Technologies. pGipZ lentiviral vectors containing IL1B shRNA and non-targeting 

shRNA were purchased from shRNA and the ORFeome Core Facility (University of Texas 

MD Anderson Cancer Center, Houston, TX). The NF-κB-luciferase reporter construct 

containing tandem repeats of NF-κB transcriptional response element (TRE) was purchased 

from SABiosciences (Frederick, MD). pBabe-GFP-IκBα dominant negative (IκBα-DN) 

construct was provided by Dr. William Hahn (Broad Institute of Harvard and MIT, 

Cambridge, MA; Addgene plasmid 15264) 
163

.  
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3. Cell culture 

3.1. EOC cell lines 

       The EOC cell line A2780 was provided by Dr. Gordon Mills (University of Texas MD 

Anderson Cancer Center). The EOC cell line 2008 was provided by Dr. Zahid Siddik 

(University of Texas MD Anderson Cancer Center). Both cell lines were cultured in RPMI 

1640 medium supplemented with 10% Fetal Bovine Serum (FBS), 2mM glutamine and 

penicillin-streptomycin. 

3.2. Primary human mesothelial cells 

       Cultures of primary normal human mesothelial cells were provided by Dr. Ernst Lengyel 

(University of Chicago). Mesothelial cells were obtained from normal omental tissues of 

women undergoing surgery for benign conditions 
164

. Cultures were maintained in RPMI 

1640 medium supplemented with 20% FBS, 2mM glutamine, 100 U/ml penicillin and 100 

μg/ml streptomycin.  

4. Transfection and generation of stable lines 

       For generating A2780 stable lines, the retroviral constructs containing empty vector and 

Flag-tagged DLX4 were used to transfect Ampho293 cells using Lipofectamine 2000 (Life 

Technologies, Carlsbad, CA). Viral supernatants were harvested after 48 hours and used to 

infect A2780 cells. Stable lines were selected with puromycin (0.5μg/ml). Lipofectamine 

2000 was used for transient transfections of A2780 and 2008 cells.  
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5. In vitro cell attachment assays 

       In vitro cell attachment assays were performed as described in Ko et al 
30

. Mesothelial 

cells (30,000 per well) were seeded in 96-well plates to obtain confluent monolayers. At one 

day thereafter, green fluorescent protein (GFP)-expressing EOC cells (15,000 per well) were 

seeded onto mesothelial cells and the plates were incubated at 37ºC for one hour. For 

blocking experiments, EOC cells were pre-incubated with the CD44 blocking Ab or control 

IgG at a concentration of 10μg/ml for one hour and then seeded onto mesothelial cells. 

Unattached EOC cells were removed by gently washing the wells 3 times with culture media. 

Attached EOC cells were viewed by immunofluorescence microscopy and cells were counted 

in five random 200X microscopic fields per well in three independent experiments. 

       In other experiments, plates were coated with collagen I, fibronectin or laminin (Sigma-

Aldrich, St. Louis, MO) at a concentration of 0.5μg/well and the plates were incubated at 4ºC 

overnight. Plates were then washed 2 times with phosphate-buffered saline (PBS) and GFP-

expressing EOC cells were seeded onto coated plates and the plates were incubated at 37ºC 

for one hour. Attached cells were evaluated as described above.  

6. Flow cytometry 

       Abs were diluted in PBS containing 1% bovine serum albumin (BSA). For cell surface 

staining of CD44, tumor cells were incubated with CD44 Ab (1:10) for 30 minutes at 4°C, 

washed and incubated with peridinin-chlorophyll-protein complex (PerCP)-conjugated anti-

mouse IgG. For intracellular staining of DLX4 and phosphorylated p65, tumor cells were 

fixed in 1% paraformaldehyde (20 minutes at 4°C) and permeabilized in 0.1% saponin (15 

minutes at room temperature). Following washing, cells were incubated with Abs to DLX4 
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(1:20) and phosphorylated NF-κB p65 (1:500) for 30 minutes at 4°C, washed and incubated 

with PerCP- or phycoerythrin (PE)- conjugated secondary Abs. Staining was detected by 

flow cytometry (FACS Calibur, BD Biosciences).  

7. ELISA 

       ELISA kit for IL-1β was purchased from R&D Systems (Minneapolis, MN). Cells were 

lysed using M-PER buffer (Pierce Biotechnology) and cell lysates were prepared as per the 

manufacturer’s instructions. Intracellular IL-1β levels were assayed in the cell lysates as per 

the manufacturer’s instructions and normalized to the total cellular protein content in three 

independent experiments.  

8. Quantitative RT-PCR (qRT-PCR) 

       Total RNA was extracted from cells using PureLink RNA mini kit (Invitrogen, Carlsbad, 

CA) as per the manufacturer’s instructions. 1 μg of RNA was used to synthesize cDNA using 

qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD) as per the manufacturer’s 

instructions. Transcript levels were analyzed on CFX96 Touch Real-Time PCR Detection 

System (Bio-Rad, Hercules, CA) using primers listed in Table 5 and iTaq Universal SYBR® 

Green Supermix (Bio-Rad) as per the manufacturer’s instructions. Target gene transcript 

levels were normalized to levels of ribosomal protein RPL32. mRNA levels were assayed in 

triplicate in two independent experiments. 
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Table 5: Primers for qRT-PCR 

 

Gene 

 

Sequence 

 

 

CD44 

 

Forward 

 

5’- GGCTTTCAATAGCACCTTGC - 3’ 

 

Reverse 

 

5’- ACACCCCTGTGTTGTTTGCT - 3’ 

 

 

CDH3 

 

Forward 

 

5’- CAGGTGCTGAACATCACGGACA - 3’ 

 

Reverse 

 

5’- CTTCAGGGACAAGACCACTGTG - 3’ 

 

 

ITGB1 

 

Forward 

 

5’- GGATTCTCCAGAAGGTGGTTTCG - 3’ 

 

Reverse 

 

5’- TGCCACCAAGTTTCCCATCTCC - 3’ 

 

 

IL1B 

 

Forward 

 

 

5’- CCACAGACCTTCCAGGAGAATG - 3’ 

 

Reverse 

 

 

5’- GTGCAGTTCAGTGATCGTACAGG - 3’ 

 

 

RPL32 

 

Forward 

 

5’- ACAAAGCACATGCTGCCCAGTG - 3’ 

 

Reverse 

 

5’- TTCCACGATGGCTTTGCGGTTC - 3’ 
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9. Chromatin Immunoprecipitation (IP) 

       Chromatin IP assays were performed using EZ-ChIP Chromatin Immunoprecipitation 

Kit (Upstate Biotechnology, Temecula, CA). Cells were crosslinked by adding formaldehyde 

to a final concentration of 1% for 10 minutes at room temperature. Glycine was then added at 

room temperature for 5 minutes to quench formaldehyde. Cells were then washed twice with 

1X PBS and harvested. Cell pellets were lysed with Sodium Dodecyl Sulfate (SDS) lysis 

buffer (Upstate Biotechnology) and then sonicated to generate fragments of DNA of ~200-

1000 base pairs in length. Sheared chromatin was first pre-cleared by incubating with protein 

G agarose beads for 1 hour. Pre-cleared chromatin was then incubated with Abs to DLX4 or 

normal IgG overnight at 4°C. Protein G agarose beads were then added and incubated for 1 

hour at 4°C. The agarose-antibody/chromatin complex was washed as per the manufacturer’s 

instructions followed by elution of protein/DNA complexes, reverse crosslinking of 

protein/DNA complexes at 65°C overnight and purification of DNA using spin columns. 

Purified DNA was used to amplify fragments of the IL1B promoter by PCR. PCR products 

were analyzed on a 3% agarose gel. The primers used for PCR amplification are listed in 

Table 6. 

  

  



32 
 

Table 6: Primers for chromatin IP assays 

 

 

Gene 

 

 

Sequence 

 

 

IL1 

 

 

 

Forward 

 

5’- GGTAGAGACCCACACCCTCA - 3’ 

 

Reverse 

 

5’- CATGGAAGGGCAAGGAGTAG - 3’ 

 

GAPDH 

(Glyceraldehyde 3-

phosphate 

dehydrogenase) 

 

Forward 

 

5’- TACTAGCGGTTTTACGGGCG - 3’ 

 

Reverse 

 

5’- TCGAACAGGAGGAGCAGAGAGCGA - 3’ 
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10. Luciferase reporter assays 

       Cells were plated at a density of 1-2 x 10
5
 cells per well in 12-well plates and co-

transfected with expression plasmids (500ng/well) and NF-κB Luc or Negative Luc reporter 

plasmids (100ng/well) using Lipofectamine 2000 reagent. At 24 hours after transfection, 

luciferase activities were assayed using the Dual-reporter assay kit (Promega, Madison, WI). 

Efficiencies of transfections were normalized using Renilla luciferase readings. Relative 

luciferase activities were assayed in three independent experiments. 

11. Statistical analysis 

       Statistical significance for differences in the number of peritoneal implants in mice was 

assessed by Mann-Whitney U-Test. Statistical significance for in vitro assays was calculated 

by Student’s t-test. All statistical analyses were performed using STATISTICA10 software 

(StatSoft, Inc.). P values < 0.05 were considered significant.  
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CHAPTER 3: ROLE OF DLX4 IN PERITONEAL DISSEMINATION OF EOC 

A. RATIONALE 

       More than 60% of EOC patients are diagnosed with advanced stage disease that has 

spread throughout the peritoneal cavity 
8
. EOC cells typically spread by shedding into the 

circulating fluid that transports the cells throughout the peritoneal cavity. EOC cells then 

implant on to the mesothelial linings of the peritoneal and abdominal organs including the 

mesentery, diaphragm, omentum and cavity wall (Figures 3, 4). However, the mechanisms 

that enable implantation of EOC cells on to peritoneal surfaces are poorly understood. 

       Previous studies from our laboratory have found that the homeobox gene DLX4 is highly 

expressed in advanced stage EOC 
129

. High expression of DLX4 correlated with disease stage 

and poor survival of patients 
129

. However, the mechanisms by which DLX4 promotes 

peritoneal metastasis of EOC are not known. In this chapter, the goal of my studies is to 

determine whether DLX4 promotes peritoneal dissemination of EOC.  
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B. RESULTS 

1. DLX4 promotes implantation of EOC cells onto peritoneal surfaces in i.p. mouse 

xenograft models 

       In advanced stage disease, exfoliated EOC cells are transported by the circulating 

peritoneal fluid (Figure 4). Thereafter, these circulating EOC cells implant onto the 

mesothelial cells that line the peritoneal cavity. Nests of tumor cells are frequently observed 

on the mesentery, diaphragm and omentum of patients (Figure 3). Our laboratory has 

previously generated xenografts by i.p. inoculation of female nude mice with cells of GFP-

expressing A2780 EOC lines that stably express or lack DLX4 
129

. To initiate this study, I 

analyzed tissues of mice inoculated with vector-control A2780 cells and with DLX4-

expressing A2780 cells (+DLX4) to determine the degree of implantation of EOC cells to 

sites within the peritoneal cavity. Significantly higher numbers of implants were observed on 

the mesentery and diaphragm of mice inoculated with +DLX4 A2780 cells as compared to 

mice inoculated with equal numbers of vector-control A2780 cells (P < 0.01) (Figure 9). This 

observation raised the possibility that DLX4 promotes attachment of EOC cells to the 

mesothelial linings of the peritoneal and abdominal organs.  
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Figure 9. DLX4 increases the number of peritoneal tumor implants in i.p. mouse 

xenograft models 

Female nude mice (n=5 per group) were inoculated i.p. with 3x10
6
 cells of vector-control and 

+DLX4 A2780 cell lines and sacrificed 4 weeks thereafter. Numbers of implants were 

counted on hematoxylin-eosin (HE) stained xenograft tissue sections from A) diaphragm and 

B) mesentery of mice. Bar, 2mm. 
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2. DLX4 promotes in vitro attachment of EOC cells to mesothelial cells  

       For this study, two EOC cell lines were used as models. For determining the effect of 

overexpressing DLX4, I used retrovirally transduced stable A2780 cell lines that express 

either empty vector or DLX4. For determining the effect of inhibiting DLX4, I used 2008, an 

EOC cell line that endogenously expresses DLX4 at a high level 
129

. Knockdown of DLX4 in 

2008 cells was carried out by using two shRNA plasmids that targeted two different sites 

within DLX4 (shDLX4-A and shDLX4-B). Overexpression of DLX4 in A2780 cell lines and 

knockdown of DLX4 in 2008 cell lines was assayed and quantified by qPCR analysis (not 

included) and flow cytometric analysis of intracellular staining of DLX4 (Figure 10). 

       Attachment of EOC cells within the peritoneal cavity is mediated via two primary 

mechanisms: attachment of EOC cells to the mesothelial cells lining the peritoneal cavity and 

attachment to the sub-mesothelial ECM 
23-26

. To determine whether DLX4 promotes 

attachment of EOC cells to peritoneal mesothelial cells, in vitro cell attachment assays were 

performed (Figure 11) by seeding equal numbers of GFP-expressing vector-control A2780 

cells and +DLX4 A2780 cells on to confluent monolayers of primary normal human 

mesothelial cells. Significantly higher number of +DLX4 A2780 cells were attached to the 

mesothelial cells as compared to the vector-control A2780 cells (P < 0.01) (Figure 12A). 

Conversely, 2008 cells in which DLX4 was knocked down (shDLX4-A and shDLX4-B) 

showed significantly reduced attachment to mesothelial cells as compared to control 2008 

cells  (empty vector and non-targeting) (P < 0.01) (Figures 12B, 12C). These findings 

indicate that DLX4 promotes attachment of EOC cells to mesothelial cells. 
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       To determine whether DLX4 promotes attachment of EOC cells to components of the 

sub-mesothelial ECM, in vitro cell attachment assays were performed by seeding equal 

numbers of GFP-expressing A2780 cells (empty vector and +DLX4) onto plates coated with 

ECM components, i.e. collagen I, fibronectin and laminin. No significant difference was 

observed between the numbers of vector-control and +DLX4 A2780 cells that attached to the 

components of the ECM (Figure 13). Similarly, no significant difference was observed in the 

numbers of DLX4-knockdown 2008 cells and control 2008 cells that attached to the ECM 

components (Figure 13). Together, these observations indicate that DLX4 promotes 

attachment of EOC cells to peritoneal mesothelial cells but not to the components of the 

ECM.   
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Figure 10. Overexpression of DLX4 in A2780 cells and knockdown of DLX4 in 2008 

cells 

Flow cytometric analysis of intracellular staining of DLX4 in (A) A2780 cell lines that 

express empty vector and DLX4 and in (B) 2008 cells that express empty vector, non-

targeting shRNA and shRNAs that target two different sites within DLX4 (shDLX4-A and 

shDLX4-B). Mean fluorescence intensities (MFI) of staining are indicated. 

 

 

 



40 
 

 

 

Figure 11. In vitro cell attachment assays 

Equivalent numbers of GFP-expressing EOC cells (shown in green) were seeded onto 

confluent monolayers of primary normal human mesothelial cells (shown in yellow) in 96-

well plates or on wells coated with collagen I, fibronectin or laminin. Cell attachment was 

assayed at one hour after seeding. Attached cells were viewed by immunofluorescence 

microscopy and counted in five random 200X microscopic fields per well. Each assay was 

performed in triplicate. 
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Figure 12. DLX4 promotes in vitro attachment of EOC cells to peritoneal mesothelial 

cells 

Equivalent numbers of GFP-expressing EOC cells were seeded onto confluent monolayers of 

peritoneal mesothelial cells. After one hour, numbers of attached cells were counted in 5 

random 200X microscopic fields per well. Numbers of (A) Attached vector-control and 

+DLX4 A2780 cells and (B) Control and DLX4-knockdown 2008 cells and (C) A 

representative picture of GFP-expressing 2008 cells attached to the monolayer of mesothelial 

cells. Shown in (A) and (B) are mean ± sd values of three independent attachment assays.   
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Figure 13. DLX4 does not mediate attachment of EOC cells to components of the ECM 

Equivalent numbers of vector-control and +DLX4 A2780 cells and control and DLX4-

knockdown 2008 cells were seeded on wells that were (A) uncoated or coated with (B) 

collagen I, (C) fibronectin and (D) laminin. Numbers of attached cells were counted after 1 

hour in five random 200X microscopic fields per well. Shown are mean ± sd values of three 

independent attachment assays.  
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3. DLX4 induces expression of CD44 in EOC cells 

       Attachment of EOC cells to the mesothelium lining the peritoneal cavity is mediated by 

various cell adhesion molecules such as P-cadherin, β1 integrin and CD44 
24, 32, 33, 42

. Because 

DLX4 is a transcription factor, DLX4 might promote attachment of EOC cells to mesothelial 

cells by inducing expression of these cell adhesion molecules. To investigate this possibility, 

I initially performed qRT-PCR to evaluate mRNA levels of candidate genes that encode cell 

adhesion molecules when DLX4 was overexpressed or knocked down. When DLX4 was 

overexpressed in A2780 cells, there was more than a 10-fold induction in CD44 mRNA 

levels as compared to levels in vector-control A2780 cells (P <0.001) (Figure 14A). 

However, there was no induction in mRNA levels for P-cadherin (CDH3) or β1 integrin 

(ITGB1) (Figures 14B, 14C). Conversely, when DLX4 was knocked down in 2008 cells, 

there was a significant reduction in CD44 mRNA levels (P < 0.01) (Figure 14A). No 

reduction in CDH3 or ITGB1 mRNA levels was observed after knockdown of DLX4 

(Figures 14B, 14C).  

       To further confirm the induction of CD44 by DLX4, I analyzed cell surface levels of 

CD44 protein by flow cytometry in vector-control and +DLX4 A2780 cells and in control 

and DLX4-knockdown 2008 cells. This analysis showed an induction in CD44 levels when 

DLX4 was overexpressed in A2780 cells (Figure 15A) and a reduction in CD44 levels when 

DLX4 was knocked down in 2008 cells (Figure 15B). These findings indicate that DLX4 

induces expression of CD44.  
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Figure 14. DLX4 induces expression of CD44 but not P-cadherin or β1 integrin 

A2780 cells that expressed empty vector or DLX4 and 2008 cells that expressed empty 

vector, non-targeting shRNA or shRNAs for DLX4 (shDLX4-A and shDLX4-B) were 

assayed by qRT-PCR for mRNA transcript levels of (A) CD44, (B) CDH3 (encoding P-

cadherin) and (C) ITGB1 (encoding β1 integrin). All samples were analyzed in triplicates in 

two independent experiments. Error bars represent standard deviation. 
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Figure 15. DLX4 induces expression of CD44 

Cell surface levels of CD44 were assayed by flow cytometry in (A) A2780 cells that 

expressed empty vector or DLX4 and  in (B) 2008 cells that expressed empty vector, non-

targeting shRNA or shRNAs against DLX4 (shDLX4-A and shDLX4-B). 
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4. DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells via CD44 

       The glycoprotein CD44 is a major receptor for HA that is synthesized by peritoneal 

mesothelial cells 
52, 53

. Binding of CD44 to HA promotes attachment of EOC cells to 

mesothelial cells 
24, 53, 54

. Because my findings indicated that DLX4 promotes attachment of 

EOC cells to mesothelial cells and also induces CD44, I evaluated whether DLX4 promotes 

attachment of EOC cells to mesothelial cells via CD44.  In vitro cell-attachment assays were 

performed in which vector-control and +DLX4 A2780 cells were pre-incubated with a 

neutralizing Ab against CD44 prior to seeding onto mesothelial cells (Figure 16). The Ab 

was directed against an epitope close to the HA-binding domain of CD44 (Figure 16). 

Treatment with this neutralizing CD44 Ab blocked the attachment of +DLX4 A2780 cells to 

the peritoneal mesothelial cells, whereas treatment with control IgG had no effect (Figure 

17). In contrast, treatment with CD44 Ab had no significant effect on the ability of vector-

control A2780 cells to attach to mesothelial cells (Figure 17). This observation was 

consistent with my previous findings that vector-control A2780 cells express very low levels 

of CD44 (Figures 14A, 15). Together, these findings indicate that DLX4 promotes 

attachment of EOC cells to peritoneal mesothelial cells via CD44. 
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Figure 16. Mechanism of CD44-mediated attachment of EOC cells to mesothelial cells 

The cell adhesion molecule CD44, which is present on EOC cells, is a major receptor for HA 

that is synthesized by mesothelial cells 
52, 53

. Interaction of CD44 and HA facilitates 

implantation of EOC cells to mesothelial cells lining the peritoneal cavity 
24, 53, 54

. The CD44 

blocking Ab is directed against an epitope very close to the HA-binding domain of CD44 and 

prevents binding of CD44 to HA 
165

. 
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Figure 17. Neutralization of CD44 blocks the ability of DLX4-expressing EOC cells to 

attach to mesothelial cells 

GFP-expressing empty vector and +DLX4 A2780 cells were pre-incubated with CD44 

blocking Ab or normal IgG for 1 hour and then seeded onto confluent monolayers of 

mesothelial cells. Attachment of A2780 cells to the mesothelial monolayer was assayed at 1 

hour after seeding. Attached cells were counted in 5 random 200X microscopic fields. Shown 

are mean ± sd values of three independent attachment assays. 
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C. CONCLUSION 

       My studies in Chapter 3 demonstrate that overexpression of DLX4 in EOC cells induces 

CD44 expression and promotes attachment of EOC cells to mesothelial cells. Conversely, 

knockdown of DLX4 in EOC cells down-regulates expression of CD44 and reduces 

attachment of EOC cells to mesothelial cells. Furthermore, blocking CD44 in DLX4-

overexpressing EOC cells hinders their ability to attach to mesothelial cells. Together, these 

findings indicate that DLX4 promotes attachment of EOC cells to peritoneal mesothelial cells 

by inducing expression of CD44. The molecular mechanisms by which DLX4 induces 

expression of CD44 in EOC cells will be discussed in Chapter 4. 
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CHAPTER 4: MECHANISMS OF DLX4 IN PERITONEAL DISSEMINATION AND 

INFLAMMATORY SIGNALING IN EOC 

A. RATIONALE 

       Formation of ascites is one of the hallmarks of advanced-stage EOC 
56

. Ascites of EOC 

patients contains a wide variety of pro-inflammatory cytokines such as IL-8, IL-6 and IL-1β 

that stimulate tumor progression
63, 66, 67, 69, 72, 73

. Expression of these cytokines is associated 

with poor prognosis of EOC patients 
64

. However, the precise mechanisms by which 

inflammatory signaling in EOC contributes to peritoneal dissemination of tumors is poorly 

understood. 

      Studies in Chapter 3 demonstrated that DLX4 promotes the attachment of EOC cells to 

peritoneal mesothelial cells (Figure 12). My studies identified that this stimulatory effect of 

DLX4 is mediated by its ability to induce expression of CD44 on the surface of EOC cells 

(Figures 14A, 15, 17). In this chapter, the goal of my studies is to identify the mechanisms by 

which DLX4 induces expression of CD44 in EOC cells.  
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B. RESULTS 

1. DLX4 induces expression of IL-1β 

       Because DLX4 primarily functions as a transcription factor, I initially hypothesized that 

DLX4 might directly activate CD44 transcription. However, no potential DLX4 binding sites 

were identified in the CD44 promoter region by performing analysis of transcription factor 

binding sites (Genomatix). Several studies have demonstrated that the pro-inflammatory 

cytokine IL-1β promotes expression of CD44 in other inflammatory diseases such as 

arteriosclerosis and rheumatoid arthritis 
166, 167

. Other studies have identified that IL-1β levels 

are elevated in EOC patients 
70

. I therefore hypothesized that DLX4 induces expression of 

CD44 in EOC cells by stimulating production of IL-1β.  

       To determine whether DLX4 induces expression of IL-1β in EOC cells, I evaluated the 

expression of IL-1β when DLX4 was overexpressed or knocked down. IL1B mRNA levels 

were significantly higher in +DLX4 A2780 cells as compared to the vector control A2780 

cells (P < 0.001) (Figure 18A). Conversely, IL1B mRNA levels were significantly lower in 

DLX4-knockdown 2008 cells as compared to control 2008 cells (P < 0.001) (Figure 18A). 

Similarly, IL-1β protein levels were induced when DLX4 was overexpressed in A2780 cells 

and were reduced when DLX4 was knocked down in 2008 cells (Figure 18B). These results 

demonstrate that DLX4 induces expression of IL-1β in EOC cells. 
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Figure 18. DLX4 induces expression of IL-1β 

mRNA transcript levels of IL1B were assayed by qRT-PCR in (A) empty vector control and 

+DLX4 A2780 cells and (B) control (non-targeting) and DLX4-knockdown (shDLX4-A) 

2008 cells. Shown are mean ± sd values of three independent assays. 

Protein levels of IL-1β were assayed by ELISA in (C) empty vector control, +DLX4 and 

+DLX4 A2780 cells transfected with non-targeting shRNA and IL1B shRNA and (D) control 

(non-targeting), DLX4-knockdown (shDLX4-A) and DLX4-knockdown 2008 cells that were 

reconstituted with IL1B. Shown are mean ± sd values of three independent assays.  
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2. IL1B is a direct transcriptional target of DLX4 

       DLX4 is primarily known to function as a transcription factor. I therefore hypothesized 

that IL1B, the gene that encodes IL-1β, is a direct transcriptional target of DLX4 in EOC 

cells. A putative DLX4 binding motif was identified in the human IL1B promoter (Figure 

19A). Binding of endogenous DLX4 to the binding site detected on the IL1B promoter was 

demonstrated by chromatin IP assays in 2008 cells (Figure 19B).  
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Figure 19. DLX4 directly binds to IL1B promoter 

(A) Representation of the IL1B promoter with a putative DLX4 binding site (TATAAAT) 

located between nucleotides -353 to -359. (B) Chromatin immunoprecipitation analysis of the 

interaction of endogenous DLX4 in 2008 cells with the putative binding site identified on the 

IL1B promoter. Input DNA corresponds to 1% of the chromatin solution before 

immunoprecipitation. Immunoprecipitation was performed with DLX4 Ab and control IgG. 

Purified DNA was amplified with primers specific to IL1B promoter region and GAPDH. 
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3. DLX4 induces NF-κB transcriptional activity in EOC cells 

       IL-1β is known to induce canonical NF-κB signaling in tumors 
74

. Because my studies 

demonstrated that DLX4 induces expression of IL-1β in EOC cells, I investigated whether 

DLX4 promotes NF-κB transcriptional activity in EOC cells. To accomplish this, I assayed 

luciferase activity of a reporter construct driven by a synthetic promoter containing tandem 

repeats of NF-κB binding sites (Figure 20A) in cells in which DLX4 was overexpressed or 

knocked down. Overexpression of DLX4 in A2780 cells induced a 3-fold increase in NF-κB 

transcriptional activity (P < 0.001) (Figure 20B). Conversely, knockdown of DLX4 in 2008 

cells reduced NF-κB transcriptional activity by 50% (P < 0.01) (Figure 20B). 

       When canonical NF-κB signaling is activated, NF-κB transcription factors p65, p50 and 

c-Rel translocate to the nucleus, phosphorylate, form dimers and activate NF-κB target genes 

(Figure 5) 
77, 88

. High level of phosphorylated p65 in EOC is associated with advanced 

disease stage in patients 
85-87

. In subsequent studies, I evaluated levels of phosphorylated p65 

in EOC cells when DLX4 was overexpressed or knocked down by flow cytometric analysis 

of intracellular staining. Higher levels of phosphorylated p65 were detected in +DLX4 

A2780 cells as compared to the vector-control cells (Figure 21A). Conversely, lower levels 

of phosphorylated p65 were detected in DLX4-knockdown 2008 cells as compared to control 

2008 cells (Figure 21B). Together, these results demonstrate that DLX4 induces NF-κB 

transcriptional activity and levels of phosphorylated NF-κB transcription factor p65 in EOC 

cells. 

  



56 
 

 

 

 

 

Figure 20. DLX4 induces NF-κB signaling in EOC cells 

 (A) An illustration of the NF-κB-driven luciferase reporter construct containing tandem 

repeats of NF-κB transcriptional response elements. (B) Luciferase reporter assays were 

performed to assay NF-κB transcriptional activity in empty vector and +DLX4 A2780 cells 

and 2008 cells transfected with empty vector, non-targeting shRNA and shRNAs against 

DLX4 (shDLX4-A and shDLX4-B). Shown are relative luciferase activities in three 

independent experiments. Error bars represent standard deviation. 

2008 A2780 
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Figure 21. DLX4 induces levels of phosphorylated p65 in EOC cells 

Intracellular levels of phosphorylated p65 were assayed in (A) empty vector and +DLX4 

A2780 cells and (B) 2008 cells transfected with non-targeting shRNA and shRNA against 

DLX4 (shDLX4-A) by flow cytometry. 
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4. Induction of NF-κB signaling by DLX4 in EOC cells is mediated by IL-1β 

       Canonical NF-κB signaling activity in tumors is triggered by several cytokines including 

IL-1β 
74

. My studies have demonstrated that DLX4 promotes IL-1β expression and NF-κB 

transcriptional activity in EOC cells (Figures 18, 19, 20, 21). To determine whether induction 

of NF-κB activity in EOC cells by DLX4 occurs due to its induction of IL-1β, I inhibited 

expression of IL-1β by using shRNA against IL1B in +DLX4 A2780 cells. ELISA assays 

were performed to confirm that the shRNA reduced the IL-1β level in +DLX4 A2780 cells to 

the basal IL-1β level seen in vector control A2780 cells (Figure 18C). To evaluate NF-κB 

transcriptional activity, luciferase reporter assays were performed using the NF-κB driven 

reporter construct. Inhibition of IL-1β by shRNA in +DLX4 A2780 cells reduced the level of 

NF-κB transcriptional activity almost to the level detected in vector-control A2780 cells 

(Figure 22A). This finding indicates that the ability of DLX4 to stimulate NF-κB 

transcriptional activity is substantially mediated by its induction of IL-1β. 

       To confirm my findings, I investigated whether reconstitution of IL-1β can rescue the 

transcriptional activity of NF-κB when DLX4 is knocked down. To accomplish this, I 

transfected IL1B cDNA into DLX4-knockdown 2008 cells. ELISA assays were performed to 

confirm that transfection of IL1B cDNA in DLX4-knockdown 2008 cells restored the IL-1β 

level to a level comparable to that of control 2008 cells (Figure 18D). Reconstitution of IL-1β 

in DLX4-knockdown 2008 cells restored NF-κB transcriptional activity to a level 

comparable to that seen in control 2008 cells (Figure 22B). These results indicate that the 

induction of NF-κB transcriptional activity by DLX4 in EOC cells is mediated by its 

induction of IL-1β.   
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Figure 22. DLX4 induces NF-κB transcriptional activity in tumors via its induction of 

IL-1β 

Reporter assays using the NF-κB driven luciferase construct were performed to assay NF-κB 

transcriptional activity in (A) empty vector control A2780 cells, empty vector control A2780 

cells transfected with IκBα-DN, +DLX4 A2780 cells and +DLX4 A2780 cells transfected 

with IκBα-DN, non-targeting shRNA and shRNA against IL1B and (B) control (non-

targeting) 2008 cells, DLX4-knockdown 2008 (shDLX4-A) cells and DLX4-knockdown 

2008 cells after reconstitution with IL1B cDNA. Shown are relative luciferase activities in 

three independent experiments. Error bars represent standard deviation. 
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5. DLX4 induces CD44 in EOC cells in an IL-1β and NF-κB-dependent manner 

       My studies have demonstrated that DLX4 induces expression of 1) CD44 and 2) IL-1β in 

EOC cells (Figures 14A, 15, 18, 19). In subsequent experiments, I evaluated whether DLX4 

induces expression of CD44 in an IL-1β-dependent mechanism. To accomplish this, I 

evaluated expression of CD44 by flow cytometry when IL-1β was knocked down in +DLX4 

A2780 cells. Knockdown of IL-1β in +DLX4 A2780 cells reduced the CD44 level almost to 

the level seen in vector control cells (Figure 24). This finding indicates that the induction of 

CD44 by DLX4 is primarily mediated by its induction of IL-1β. 

       CD44 has been identified as a direct transcriptional target of NF-κB 
168

. Because my 

studies also demonstrated that DLX4 induces NF-κB transcriptional activity in EOC cells via 

IL-1β, I evaluated whether DLX4 induces CD44 expression in a NF-κB-dependent manner. 

To evaluate this, I inhibited NF-κB transcriptional activity in +DLX4 A2780 cells by 

expressing a dominant negative IκBα construct (IκBα-DN). This construct contains serine-32 

to alanine and serine-36 to alanine substitutions 
163

. IκBα-DN inhibits NF-κB signaling by 

retaining the NF-κB transcription factors in the cytoplasm. When the canonical signaling 

pathway is triggered by external stimuli, IKK normally phosphorylates IκBα at serine-32 and 

serine-36 
169

. This phosphorylation results in proteasomal degradation of IκBα and the 

release of NF-κB dimers which then translocate to the nucleus and transcriptionally activate 

target genes (Figure 5) 
169

. Mutations at serine-32 and serine-36 of IκBα prevents the 

phosphorylation and degradation of IκBα, thus retaining the NF-κB transcription factors in 

the cytoplasm and blocking NF-κB signaling (Figure 23) 
169

.  
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I initially confirmed that IκBα-DN inhibited NF-κB transcriptional activity in +DLX4 

A2780 cells by performing luciferase assays with the NF-κB-driven reporter construct 

(Figure 22A). In subsequent experiments, I evaluated whether DLX4 induces expression of 

CD44 in a NF-κB dependent manner. To determine this, I evaluated expression of CD44 by 

flow cytometry when NF-κB transcriptional activity was blocked with IκBα-DN in +DLX4 

A2780 cells. Flow cytometric analysis revealed that the CD44 level in +DLX4 A2780 cells 

was reduced by IκBα-DN almost to the CD44 level seen in vector control A2780 cells 

(Figure 24). Together, these findings demonstrate that DLX4 promotes expression of CD44 

in EOC cells via induction of IL-1β expression and NF-κB signaling.       
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Figure 23. Mechanism of IκBα-DN in abrogating NF-κB signaling 

The IκBα-DN construct contains substitution mutations of its two serine residues, 32 and 36. 

These mutations prevent the phosphorylation and degradation of IκBα by IKK complex. 

IκBα therefore retains NF-κB dimers in the cytoplasm and thereby blocks NF-κB 

transcriptional activity 
169

. 
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Figure 24. DLX4 induces expression of CD44 in EOC cells via IL-1β and NF-κB 

signaling 

Cell surface expression of CD44 was assayed by flow cytometry in empty vector control 

A2780 cells, +DLX4 A2780 cells and +DLX4 A2780 cells transfected with non-targeting 

shRNA, IL1B shRNA and IκBα-DN. 
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6. Reconstitution of IL-1β in DLX4-knockdown EOC cells rescues the expression of 

CD44 

       My previous findings demonstrated that DLX4 induces CD44 expression in an IL-1β and 

NF-κB-dependent manner (Figure 24). To confirm my results, I evaluated whether 

reconstitution of IL-1β in DLX4-knockdown cells can rescue the expression of CD44. To 

accomplish this, I transfected DLX4-knockdown (shDLX4-A) 2008 cells with IL1B cDNA 

and analyzed CD44 levels by flow cytometry. Reconstitution of IL-1β in DLX4-knockdown 

2008 cells restored the CD44 level to a level comparable to that seen in control 2008 cells 

(Figure 25). This finding demonstrates that DLX4 induces CD44 expression via induction of 

IL-1β in EOC cells.  
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Figure 25. Reconstitution of IL-1β in DLX4-knockdown EOC cells rescues the 

expression of CD44 

CD44 expression was assayed by flow cytometry in control 2008 cells (non-targeting), 

DLX4-knockdown 2008 (shDLX4-A) cells, and DLX4-knockdown 2008 cells after 

reconstitution of IL-1β. 
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7. DLX4 promotes EOC cell attachment to mesothelial cells via induction of IL-1β and 

NF-κB transcriptional activity 

       My studies demonstrated that DLX4 promotes the attachment of EOC cells to peritoneal 

mesothelial cells via induction of the cell adhesion molecule CD44 (Figure 17). My findings 

also demonstrated that DLX4 induces CD44 expression in EOC cells via induction of IL-1β 

(Figures 24, 25). In subsequent experiments, I evaluated whether DLX4 mediates the 

attachment of EOC cells to mesothelial cells in an IL-1β-dependent manner. To accomplish 

this, I performed in vitro cell attachment assays using GFP-expressing vector-control and 

+DLX4 A2780 cells and +DLX4 A2780 cells in which IL-1β was knocked-down. 

Knockdown of IL-1β in +DLX4 A2780 cells significantly inhibited the ability of these cells 

to attach to mesothelial cells (P < 0.01), whereas non-targeting shRNA had no effect (Figure 

26).  

      Because my studies demonstrated that DLX4 induces expression of CD44 in EOC cells 

by stimulating NF-κB transcriptional activity (Figure 24), I evaluated whether DLX4 

promotes attachment of EOC cells to mesothelial cells in an NF-κB-dependent manner. To 

accomplish this, I evaluated the ability of +DLX4 A2780 cells to attach to mesothelial cells 

when NF-κB was inhibited by IκBα-DN. Expression of IκBα-DN in +DLX4 A2780 cells 

reduced the ability of these cells to attach to mesothelial cells almost to the level seen in 

empty vector control A2780 cells (Figure 26). These results demonstrate that DLX4 

promotes EOC cell attachment to mesothelial cells in an IL-1β and NF-κB-dependent 

manner. These findings are consistent with my previous findings that DLX4 induces 

expression of CD44 in an IL-1β and NF-κB-dependent manner (Figures 24, 25).  
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Figure 26. DLX4 promotes EOC cell attachment to mesothelial cells via induction of IL-

1β and NF-κB 

The ability of EOC cells to attach to mesothelial cells was assayed by in vitro cell attachment 

assays using vector control A2780 cells, +DLX4 A2780 cells and +DLX4 A2780 cells 

transfected with non-targeting shRNA, IL1B shRNA and IκBα-DN. Shown are mean ± sd 

values of three independent attachment assays. 
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8. Reconstitution of IL-1β in DLX4-knockdown EOC cells rescues the effect of DLX4  

       My previous findings demonstrated that DLX4 promotes attachment of EOC cells to 

peritoneal mesothelial cells in an IL-1β and NF-κB dependent manner (Figure 26). To further 

confirm these results, I evaluated the effect of reconstituting IL-1β in DLX4-knockdown 

EOC cells on their ability to attach to mesothelial cells. Reconstitution of IL-1β in DLX4-

knockdown 2008 cells rescued the ability of these cells to attach to mesothelial cells to a 

level that was comparable to that of control 2008 cells (Figure 27). This finding 

demonstrated that DLX4 primarily promotes attachment of EOC cells to mesothelial cells via 

its induction of IL-1β in EOC cells. 
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Figure 27. Reconstitution of IL-1β in DLX4-knockdown EOC cells rescues the effect of 

DLX4  

The ability of EOC cells to attach to mesothelial cells was assayed by in vitro cell attachment 

assays using control (non-targeting) 2008 cells, DLX4-knockdown (shDLX4-A) 2008 cells 

and DLX4-knockdown 2008 cells that were reconstituted with IL-1β. Shown are mean ± sd 

values of three independent attachment assays. 
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C. CONCLUSION 

       My studies in Chapter 4 provide important insights into the mechanisms by which DLX4 

promotes expression of CD44 and the ability of EOC cells to attach to peritoneal mesothelial 

cells. My studies have identified that DLX4 directly binds to and activates the gene encoding 

IL-1β in EOC cells. In addition, DLX4 induces NF-κB signaling in EOC cells via its 

induction of IL-1β. Furthermore, my studies demonstrate that inhibition of IL-1β and NF-κB 

signaling in +DLX4 A2780 cells significantly blocked the induction of CD44 and the ability 

of these cells to attach to mesothelial cells. Conversely, reconstitution of IL-1β in DLX4-

knockdown 2008 cells rescues the expression of CD44 and the ability of these cells to attach 

to mesothelial cells. In summary, my results indicate that DLX4 induces expression of IL-1β 

and NF-κB signaling in EOC cells which in turn induce expression of CD44 and the ability 

of EOC cells to attach to peritoneal mesothelial cells.   
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CHAPTER 5: DISCUSSION 

A. DLX4 PROMOTES ATTACHMENT OF EOC CELLS TO THE MESOTHELIUM 

LINING THE PERITONEAL CAVITY  

       The high lethality of EOC stems from rapid peritoneal involvement of the disease and 

late diagnosis. A key rate-limiting step in peritoneal metastasis of EOC is the attachment of 

EOC cells to the mesothelial lining of the peritoneal cavity. My studies in Chapter 3 

demonstrated that high expression of DLX4 in EOC cells promotes their attachment to the 

peritoneal mesothelial cells (Figure 12). On the other hand, overexpression of DLX4 did not 

promote attachment of EOC cells to the sub-mesothelial ECM components such as collagen 

I, fibronectin and laminin (Figure 13). My findings demonstrate that DLX4 mediates the 

attachment of EOC cells by inducing expression of the cell adhesion molecule CD44 

(Figures 14A, 15, 17). However, DLX4 did not induce expression of P-cadherin and β1 

integrin that also mediate EOC-peritoneal interactions (Figures 14B, 14C). The inability of 

DLX4 to induce expression of β1 integrin is consistent with the inability of DLX4 to mediate 

EOC cell attachment to the components of the ECM. Notably, blocking CD44 did not 

completely abrogate the attachment of EOC cells to mesothelial cells (Figure 17). 

Interactions between EOC cells and the peritoneum are known to be mediated by multiple 

cell adhesion molecules 
24, 32, 33, 42

. This explains the inability of the CD44 neutralizing Ab to 

completely abolish the attachment of +DLX4 EOC cells to mesothelial cells (Figure 17). 

These findings are consistent with other studies that have demonstrated that using a single 

neutralizing Ab against CD44, β1 integrin or P-cadherin was not sufficient to completely 

block EOC cell attachment to mesothelial cells 
24, 33, 42, 55

. A study by Strobel and colleagues 

also demonstrated that combining CD44 and β1 integrin blocking Abs resulted in an additive 
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inhibitory effect on EOC cell attachment 
33

. These findings indicate that multiple cell 

adhesion molecules need to be targeted simultaneously to effectively block attachment of 

EOC cells to mesothelial cells. The interplay between these different cell adhesion molecules 

can be a focus of future studies and provide insights for development of better targeted 

therapies.  

B. DLX4 PROMOTES CD44 EXPRESSION AND EOC-MESOTHELIAL CELL 

INTERACTIONS BY INDUCING IL-1β EXPRESSION AND ACTIVATING NF-κB 

SIGNALING 

       IL-1β is a pleiotropic cytokine that contributes to inflammation in numerous pathological 

conditions such as cancer, arteriosclerosis, type II diabetes, rheumatoid arthritis, 

osteoarthritis and cardiovascular disorders 
170

. Although many other  cytokines mediate 

inflammatory signaling, IL-1β is known as the ‘gatekeeper of inflammation’ 
171

. My studies 

in Chapter 4 demonstrated that high expression of DLX4 in EOC cells induces expression of 

IL-1β by direct transcriptional activation (Figures 18, 19). Inhibition of IL-1β in +DLX4 

EOC cells resulted in a down-regulation of CD44 expression and reduced the ability of EOC 

cells to attach to mesothelial cells (Figures 24, 26). Conversely, reconstitution of IL-1β in 

DLX4-knockdown EOC cells restored CD44 levels and the ability of EOC cells to attach to 

mesothelial cells (Figures 25, 27). The ability of DLX4 to promote CD44 expression and 

attachment of EOC cells to mesothelial cells therefore, primarily occurs via its induction of 

IL-1β in EOC cells. A study by Foster and colleagues has demonstrated that induction of 

CD44 by IL-1β in vascular smooth muscle cells contributes to pathogenesis of 

arteriosclerosis 
167

. Another study by Campo and colleagues has demonstrated that IL-1β and 

HA induce CD44 expression and inflammatory signaling in rheumatoid arthritis 
166

. My 
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study is the first to demonstrate the significance of IL-1β in inducing CD44 expression in 

controlling cell-cell interactions that mediate metastasis of EOC.  

       IL-1β induces the NF-κB signaling pathway in a wide variety of physiological and 

pathological conditions  
77

. My findings in Chapter 4 demonstrated that high expression of 

DLX4 stimulates NF-κB signaling in EOC cells via its induction of IL-1β (Figures 20, 21, 

22). Moreover, inhibition of NF-κB signaling in +DLX4 EOC cells down-regulated CD44 

levels and decreased the ability of EOC cells to attach to mesothelial cells (Figures 24, 26). 

These results indicate that DLX4 induces expression of CD44 and the attachment of EOC 

cells to peritoneal mesothelial cells by activating NF-κB signaling in EOC cells. My 

functional studies therefore support findings of clinical studies that identified a strong 

correlation between activated NF-B signaling in EOC and advanced disease stage 
84-87

.  

       Substantial evidence indicates that NF-κB activates expression of a wide variety of target 

genes that promote tumor cell survival, tumor angiogenesis and metastasis 
74

. For example, 

NF-κB promotes tumor angiogenesis by induction of pro-angiogenic growth factors such as 

VEGF, IL-6 and IL-8 in multiple types of tumors including EOC 
69, 172-174

. NF-κB can also 

promote epithelial-mesenchymal transition (EMT) by transcriptional upregulation of Twist 1 

175
. However, NF-κB is also known to have pro-apoptotic functions in certain cell types and 

conditions. For example, a study by Ryan and colleagues demonstrated that p53 can induce 

tumor cell death via activation of MEK1 and NF-κB signaling 
176

. Another study by Rocha 

and colleagues demonstrated that p53 downregulates cyclin D1 expression by inhibiting Bcl-

3, a member of the IκB family of proteins and a transcriptional co-activator for NF-κB 

transcription factor p52 
177

. These authors found that p53 induces formation of p52/histone 

deacetylase1 (HDAC1) repressor complexes, which replaces Bcl-3/p52 activator complexes 
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and thereby represses transcription of the gene encoding cyclin D1 
177

. A study by Yang and 

colleagues demonstrated that NF-κB signaling can have dual functions in EOC 
178

. On one 

hand, NF-κB has a tumor-suppressive functions by sensitizing EOC cells to apoptosis 

induced by paclitaxel and carboplatin. On the other hand, NF-κB has tumor-promoting 

functions in aggressive forms of EOC and contributes to chemoresistance 
178

. Because DLX4 

is expressed in advanced-stage and aggressive forms of EOC 
129

, my findings that induction 

of NF-κB signaling in DLX4-expressing EOC cells contributes to EOC progression are 

consistent with other studies that have identified a tumor-promoting role of NF-κB in 

advanced stage tumors.  

C. MULTIPLE ROLES OF DLX4 IN TUMOR PATHOGENESIS  

       My studies demonstrated that DLX4 induces expression of CD44 in EOC cells and 

promotes their attachment to mesothelial cells by inducing expression of IL-1β and NF-κB 

signaling (Figure 24, 26). However, by inducing IL-1β and NF-κB signaling, DLX4 could 

also stimulate a variety of other processes that promote progression of EOC. IL-1β has been 

reported to confer chemoresistance in pancreatic carcinoma cell lines 
179

. IL-1β also 

promotes tumor vascularization in lung cancers via induction of VEGF 
180

. IL-1β and TNF-α 

have been implicated in the induction of hypoxia inducible factor-1 (HIF-1) expression in 

hepatoma cells, which in turn induces VEGF and tumor angiogenesis 
181

. IL-1β, TNF-α and 

interferon-γ (IFN-γ) also stimulate expression of inducible nitric oxide synthase (iNOS) in 

various tumors 
182

. Nitric oxide, the product of iNOS, plays an important role in promotion of 

tumor angiogenesis by regulating HIF-1 and VEGF expression in tumors 
182

. Previous studies 

from our laboratory have demonstrated that DLX4 promotes EOC growth and angiogenesis 

by inducing expression of pro-tumorigenic factors such as VEGF and fibroblast growth 
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factor-2 (FGF-2) 
129

. Since expression of VEGF is activated by IL-1β and NF-κB signaling, 

my findings could explain the mechanism by which DLX4 induces VEGF expression and 

angiogenesis in EOC. 

       In addition to EOC, DLX4 is overexpressed in other types of solid tumors including 

breast and prostate cancers and in leukemias 
153, 155, 156, 158, 162

. The mechanisms by which 

DLX4 promotes progression of other types of tumors are not well understood. DLX4 is 

highly expressed in inflammatory breast cancers (IBCs), an aggressive subtype of breast 

cancer 
156

. My findings that DLX4 stimulates NF-κB signaling raise the possibility that 

DLX4 might also promote the aggressive behavior of IBCs. Some specific sets of homeobox 

genes have been found to act similarly in different types of tumors. One such example is 

HOXB7 which is overexpressed in EOC, melanoma and breast cancers 
122, 125, 126

. Several 

studies have demonstrated that HOXB7 promotes tumor growth and angiogenesis via 

upregulation of FGF-2 in these different types of tumors 
122, 125-127

.  On the other hand, other 

sets of homeobox genes act differently in different types of tumors. One example is HOXA9. 

HOXA9 has been demonstrated to have tumor promoting properties in EOC and 

glioblastomas 
136-139

. Expression of HOXA9 in EOC cells induces stromal cells to produce 

growth factors that support tumor growth 
137

. HOXA9 also promotes peritoneal 

dissemination of EOC by inducing the cell adhesion molecule P-cadherin 
139

. In contrast, 

HOXA9 has tumor-suppressive functions in breast cancers 
183

. HOXA9 has been reported to 

prevent progression of breast cancers by maintaining BRCA1 expression 
183

. My study has 

shown that high expression of DLX4 promotes inflammatory signaling and peritoneal 

dissemination of EOC via induction of IL-1β and NF-κB signaling. However, it remains to 

be determined whether DLX4 promotes progression of other types of tumors by stimulating 
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NF-κB signaling. Further investigation of the role of DLX4 in controlling NF-κB signaling in 

tumors will provide insights into the therapeutic targeting of the NF-κB signaling pathway. 

D. THERAPEUTIC IMPLICATIONS 

       Because DLX4 is a transcription factor that shares functional domains in common with 

other family members, it may be difficult to specifically target DLX4 for therapeutic 

purposes. On the other hand, inhibiting the downstream effectors of DLX4, i.e. IL-1β and the 

NF-κB signaling pathway may be a promising strategy. Several IL-1 therapeutics such as IL-

1 receptor antagonists, anti-IL-1 monoclonal Abs, soluble IL-1 receptor II (IL-1RII), IL-1β 

converting-enzyme (ICE) inhibitors and IL-1 ligand traps are being currently used in the 

treatment of rheumatoid arthritis 
184

. Such novel treatments could be applied for the treatment 

of cancer. In addition, agents that target the NF-κB signaling pathway could be an effective 

therapeutic strategy 
185

. For example, Bortezomib is a proteasome inhibitor that blocks NF-

κB signaling and is already in use for treatment of multiple myeloma and mantle cell 

lymphoma 
186

. Moreover, inhibition of CD44-HA interaction and EOC cell adhesion using 

CD44 monoclonal Abs or small molecule inhibitors could be another possible strategy for 

treatment of advanced-stage EOC 
187, 188

. Further studies examining the effect of these 

inhibitors in EOC will provide insights into strategies for effective treatment for advanced 

stages of this disease. 
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E. CONCLUSION 

       The high mortality of EOC primarily stems from the rapid peritoneal dissemination of 

the disease and the inability to detect the disease at an early stage. The mechanisms that 

control tumor-peritoneum interactions are not well understood. My study supports a model in 

which DLX4 promotes CD44-mediated peritoneal attachment of EOC via induction of the 

pro-inflammatory cytokine IL-1β and activation of NF-κB signaling (Figure 28). Further 

study of the regulation and function of the NF-κB signaling pathway and its activating 

ligands and downstream effectors could yield important insights into possible therapeutic 

targets and new treatment strategies for patients with advanced-stage and chemoresistant 

EOC.  
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Figure 28. Model of the mechanism by which DLX4 promotes intraperitoneal 

dissemination of EOC 

DLX4 promotes CD44-mediated attachment of EOC cells to the peritoneal mesothelial cells 

by inducing expression of IL-1β and activating NF-κB signaling 
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