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ABSTRACT 

 

REGULATION OF FUNCTIONAL EXPRESSION OF MECHANOSENSITIVE 

TRPV4 CHANNEL IN THE DISTAL NEPHRON BY DIETARY POTASSIUM 

AND SODIUM INTAKE 

 

Nabila Boukelmoune, MS. 

Advisory professor: Oleh. M. Pochynyuk, Ph.D. 

 

        The Ca
2+

-permeable TRPV4 channel is predominantly expressed in the distal 

nephron (DN) and its activity is essential for [Ca
2+

]i elevations in response to increased 

tubular flow. Here, I probed the physiological mechanisms controlling TRPV4 function 

and expression in the DN. I found that renal TRPV4 expression and mRNA levels were 

significantly increased by high K
+
 diet (5%) and decreased by dietary K

+
 restriction 

(0.003%). In contrast, variations in Na
+
 regimen had no apparent effect on TRPV4 

expression and mRNA levels. Regulation of TRPV4 protein expression by K
+
 diet was 

independent of aldosterone action, since saturation of systemic mineralocorticoid 

signaling with DOCA, a precursor of aldosterone, had little effect on TRPV4 protein 

abundance in the kidney. Confocal immunofluorescence in split-opened DNs showed that 

high K
+
 and Na

+
 intake resulted in redistribution of the channel towards the apical plasma 

membrane of DN cells, while K
+
 and Na

+ 
restrictions caused cytosolic distribution of 

TRPV4. Augmented TRPV4 expression and localization to the apical plasma membrane 

during high K
+
 and Na

+
 intake were associated with significantly augmented flow-

induced [Ca
2+

]i responses in DN cells. In summary, my findings demonstrate that high K
+
 

and Na
+
 intake regulate TRPV4 status to properly respond to elevated tubular flow during 
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these physiological stimuli. I also propose that impaired regulation of TRPV4 in the DN 

during variations in dietary intake may result in systemic defects in K
+
 and Na

+ 
balance 

contributing to cardiovascular abnormalities.  
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1. Overview of kidneys function 

 

        The kidneys are paired retroperitoneal bean-shaped organs situated in the posterior side of 

the abdomen, on each side of the vertebral column. A bisected kidney consists of two distinct 

regions: an outer region, the cortex, and an inner region, the medulla as illustrated in figure 1A. 

The functional unit of the kidney is the nephron. In humans, there are 300,000 to 1 million 

nephrons per kidney and in mouse there are ~ 11,000 (1-4). Structurally, each nephron consists 

of a glomerulus (site for ultrafiltration), located in the cortex and one double hairpin-shaped 

tubule that extends into the medulla and connects to the collecting duct system, which merges to 

join the ureter (Figure 1B). Physiologically, the nephrons play an important role in the filtration 

of blood by removing the excess of electrolytes and water, as well as eliminating waste products 

such as urea and creatinine by producing and excreting urine. This is crucial for maintaining 

whole body fluid homeostasis. Small molecules such as ions, glucose and amino acids, are also 

freely filtered and reabsorbed.   

        The main function of the glomerulus is to produce an ultrafiltrate of plasma which is 

further processed by the tubule via reabsorptive and secretory mechanisms. The renal tubule is a 

hollow structure consisting of a monolayer of epithelial cells. The tubule is formed of distinct 

segments, the proximal tubule, the thick and thin descending limbs, the thin and thick ascending 

limbs and the distal convoluted tubule (Figure 1). The fine tuning of water and electrolytes 

occurs in the late parts of the renal tubule and specifically in the collecting duct (CD). All that is 

not reabsorbed is excreted in the urine. Ultimately, the urine is emptied in the urinary bladder 

through the renal pelvis and ureters. 
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Figure 1. Kidney and renal tubule structure. (A) Kidney structure showing the cortex, 

medulla, pelvis and ureter. (B) Structure of the different regions of the renal tubule. 

Adapted from Servier medical art http://www.servier.com/Powerpoint-image-bank 

 

2. Electrolytes transport in the distal nephron 

 

        The distal nephron (DN), which includes the connecting tubule (CNT) and the collecting 

duct (CD) system, serves to fine-tune water and electrolytes transport to match dietary intake 

with urinary excretion (5,6). The DN is composed of two distinct cell populations, 

morphologically and functionally different. Principal cells (PCs) are the most abundant cell 

type, representing 70-75% of the total cell population (5). PCs mediate Na
+
 absorption (mainly 

via the epithelial Na
+
 channel ENaC), water reabsorption (via aquaporin type 2 channels) and 

K
+
 secretion (through the Renal Outer Medullary K

+
 channel (ROMK)-dependent pathways. 

The remaining cells in the distal nephron are intercalated cells (ICs). ICs are responsible for 

acid/base transport (7). ICs also contribute to the large conductance K
+
 channel (BK)-dependent 

http://www.servier.com/Powerpoint-image-bank


4 

 

K
+
 secretion and probably the small-conductance calcium-activated potassium channel SK3-

dependent potassium secretion, in response to elevated K
+ 

intake (8,9).  

3. Hormonal regulation in the distal nephron 

 

        Transport in the DN segment is highly regulated. Indeed, this segment is very sensitive to 

hormones including aldosterone, angiotensin II, and vasopressin. The central hormonal regulator 

of Na
+
 and K

+
 transport is aldosterone. Increased plasma [K

+
] after a dietary K

+
 load triggers 

adrenal aldosterone secretion which in turn stimulates K
+
 secretion. Furthermore, activation of 

the Renin-Angiotensin-Aldosterone system (RAAS) in response to dietary Na
+
 restriction 

increases ENaC expression via the aldosterone–mineralocorticoid receptor (MR) pathway.  

4. Mechanical stress in the distal nephron 

 
        Renal tubular cells face a constant exposure to a variety of mechanical forces such as 

circumferential stretch, osmotic pressure gradients, hydrostatic pressure and fluid shear stress 

(10-19). The ultrafiltrate delivery through tubules provokes a frictional force which, in turn 

regulates vectorial transport of Cl
-
, Mg

2+
, glucose, K

+
 and Na

+
 (10,19-22) and a variety of other 

processes such as cytoskeleton organization and activity of transcription factors (12). The 

greatest values of a mechanical stress occur in the distal nephron and the collecting duct, where 

it is viewed as an important stimulus for the regulation of water and electrolytes transport (23). 

Specifically, elevations in tubular fluid flow increase Na
+
 reabsorption and K

+
 secretion in the 

distal nephron through several mechanisms. One of which involves the activation of ion 

channels, such as the apically localized epithelial Na
+
 channel (ENaC).  ENaC determines 

electrogenic Na
+
 reabsorption within the DN, and was shown to be stimulated in response to 

elevations in tubular flow rates within physiological range in isolated rabbit cortical collecting 
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ducts (CCDs), possibly by alterations of the cytoskeleton, leading to an increase in Na
+
 

reabsorption (6,24,25). Another mechanism is the crucial regulation of K
+
 balance, since plasma 

K
+
 concentration influences cellular electrical excitability, and is important for proper 

functioning of neurons, skeletal and cardiac muscles. K
+
 homeostasis and K

+
 secretion in the 

distal nephron depend on ENaC- mediated Na
+
 absorption. The high flow rate directly activates 

ENaC, thereby increasing the driving force for K
+
 secretion (21,26-28). K

+
 transport is complex, 

under normal physiological conditions; renal K
+
 secretion is mediated through the highly 

selective apical K
+
 channel ROMK (Kir1.1) (21,29,30). In contrast, under high K

+
 dietary intake 

other K
+
 channels contribute to its secretion. Indeed, flow-dependent K

+
 secretion occurs 

through activation of the luminal Ca
2+

 activated K
+
 channel (BK) in response to flow elevations 

in the distal tubule and CD (14,23,31-34). This process is Ca
2+

-dependent, it parallels with flow 

induced Ca
2+

 influx and is mediated through transducers such as TRP channels. Recent 

experimental evidence strongly suggests that the activity of Ca
2+

-permeable TRPV4 channel, 

highly expressed on the apical plasma membrane of the distal nephron cells, mediates elevations 

in [Ca
2+

]i caused by fluid flow. In cultured and native distal nephron cells, inhibition and genetic 

interference with TRPV4 function abrogate elevations in [Ca
2+

]i in response to shear stress 

caused by fluid flow (23,35,36). 

        In addition to BK, Ca
2+

-dependent small conductance SK3 (KCa2.3) channel, expressed 

predominantly at the apical border of the CNT and CD, is activated by mechanical stimuli. SK3 

has a higher affinity for Ca
2+

 over that observed for BK channel and can potentially play a role 

in K
+
 secretion, as observed in TRPV4 positive cells of the CNT and CCD (8,37). 
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5. The Transient Receptor Potential family of ion channels 

i. Description: 

 

        Transient receptor potential (TRP) genes were first described in the fruit fly Drosophila 

melanogaster (38). Studies in the fly visual system identified a mutant presenting a transient 

response to steady light as compared to a sustained response in the wild-type, as recorded by 

electro-retinograms (39). The mutant form was named transient receptor potential. Later, the trp 

gene was identified by Montell and Rubin in 1989 (38). Because of its structural homology with 

other cation channels and permeation properties, the product of the trp gene was proposed to be, 

a 6-transmembrane segment protein functioning as a Ca
2+

 permeable cation channel (40). The 

length of Human TRP genes is about 911 kb with 11 to 39 exons (41). Members of the TRP 

channel family form seven subfamilies, and the number of channels within each subfamily 

varies across species. Within each subfamily, the transmembrane domain shares the highest 

homology. Based on sequence homology, the 7 TRP channels subfamilies are classified as 

follows and represented in figure 2: 

1. TRPCs for canonical (7 members), the closest homolog to Drosophila Trp channels (42). 

2. TRPVs for Vaniloid (6 members), named in reference to the first identified channel, 

TRPV1. This channel is activated by Capsaicin, member of vanilloids. In this study, we 

focus on the fourth member of TRPV sub-family (TRPV4) (42). 

3. TRPM subfamily (8 members) for Melastatin (TRPM1), first cloned from a murine 

melanoma cell line (42).  

4. TRPMLs for MucoLipins (3 members) (42). 

5. TRPPs for Polycystins (5 members), issued originally from 2 genes, Polycystic Kidney 

Diseases 1 and 2 (PKD1 for TRPP1, and PKD2 for TRPP2) (42). 
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6. TRPN (1 member), named after the NO-mechano-potential C (NOMP-C) channel of 

Caenorhabditis elegans. The channel is distinguishable by a succession of ankyrin 

repeats in its amino-terminal region (42,43). And to date, the only TRPN family member 

identified is from Zebrafish. 

7. TRPA1 (or ANKTM1) a distant member of TRP channels family (44). 

 

 

Figure 2. TRP channels family tree in mammals.  

ii. General structure of TRP channels 

 

        Based on sequence analysis, in analogy with voltage gated potassium channels, TRP 

channels superfamily are organized in tetramers (45). TRP channels exist as homotetramers and 
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can also form heterotetramers with other members of TRP family. An example of heteromeric 

interactions is the direct association between TRPP2 and TRPV4 channels to form 

mechanosensitive heteromeric complexes (46-48).  

        Despite different subfamily groups, monomers have the same architecture, composed of 6 

hydrophobic transmembrane domains (S1-S6) separated by hydrophilic segments (Figure 3). 

Between segments 5 and 6 is a P loop. The association of P-loops forms the channel pore. The 

S5-S6 loop also forms the selectivity filter of the channel pore (49). The amino and carboxy 

termini are cytoplasmic and include specific domains which differ between subfamilies:  

a. Ankyrin repeats with a structural homology and regularity at the N-terminus of TRPV (6 

repeats) and TRPC subfamilies (4-5 repeats). Another category of channels have 

numerous repeats: TRPA1, TRPN subfamily with 17-29 repeats. These repeats allow 

interactions with the cytoskeleton and protein-protein interactions (50).  

b. A conserved TRP box on the 6
th

 transmembrane domain. This sequence is believed to be 

a site of regulation of TRP channels by lipids such as phosphatidylinositol 4,5-

bisphosphates (PIP2) (51-53). 

c. Enzymatic domains (chanzymes) (54). For example, TRPM2 has an ADP-ribose 

pyrophosphatase “NUDIX” domain (55), TRPM6 and TRPM7 have an alpha kinase 

domain with a phosphotransferase activity (56). 

iii. Transient Receptor Potential Vanilloid family 

 

        The TRPV family comprises 6 members which form 3 subfamilies: 

TRPV1/TRPV2/TRPV4, and TRPV5/TRPV6 (Ca
2+

 selective channels), and TRPV3 (Figure 2) 

(57). TRPV1- 4 are thermosensitive, polymodal, non-selective cation channels, conducting Ca
2+
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and Na
+
, with a permeability ratio PCa/PNa between 1 and 10 (49,58,59).  TRPV4, also known as 

OTRPC4, VRL-2, VR-OAC, and TRP12, was first cloned based on homology with C. elegans 

OSM-9 (60). It is a Ca
2+

- permeable channel expressed in a wide variety of tissues and organs 

such as the kidneys, lungs, heart, brain, dorsal root and trigeminal ganglia, and endothelial cells. 

TRPV4 was first identified as a channel activated by hypotonicity-induced cell swelling (59-64). 

TRPV4 has been demonstrated to be sensitive to a wide variety of physical and chemical 

stimuli. Thus, it is considered as a polymodal channel. The channel is activated by shear stress, 

hypoosmotic cell swelling, non-noxious temperatures, acidity, phorbol esters (PKC activating 

and non-activating phorbol esters) and downstream metabolites of arachidonic acid 

(epoxyyeicosatrienoic acids) (65-67). My research project aims at understanding the regulation 

and function of TRPV4 in the kidney. 

6. TRPV4 

i. Structure 

 

        Mammalian TRPV4 ortholog contains approximately 871 amino acids. The channel 

permeates calcium and sodium ions, with a relatively high calcium permeability (permeability 

ratio PCa
2+

 /PNa
+

 = 6) (68). The amino terminus side of TRPV4 has at least three ankyrin repeat 

domains (60), four protein kinase phosphorylation sites, and a cAMP- dependent Protein kinase 

A phosphorylation site upstream of the ankyrin repeats. In addition, the presence of a Src family 

dependent tyrosine phosphorylation site has been localized within the first ankyrin domain. 

TRPV4 has been demonstrated to be activated downstream of PKC activation in response to 

mechanical stress. In addition, at 37° C, PKC activation by phorbol esters has been shown to 

lead to the channel opening and to rise of intracellular [Ca
2+

]. In response to hypotonic stress, a 

Src-mediated phosphorylation of a tyrosine residue within the first ankyrin repeat has been 



10 

 

reported (69). The pore loop is composed of hydrophobic pore helix and an ion selectivity 

segment which constitute the channel selectivity filter. The carboxy terminal tail of the channel 

is the docking site for at least two interacting proteins. One of these two sites has been reported 

to bind calmodulin (70) and a mutation in this region results in a loss of Ca
2+

 dependent 

calmodulin binding and a decrease in TRPV4 currents (60,71). In addition, a microfilament 

associated protein 7 (MAP7) interacts with the channel upstream of the calmodulin binding site 

(72). 

        Activation of PKC by PMA, a potent and specific activator, substantially enhanced both 

the gating and the phosphorylation of TRPV4. Bradykinin, which activates Gq and hence PKC, 

also potentiated activation of TRPV4 by phosphorylation of 3 potential sites close to the N-

terminal domain: Ser 
162

, Thr
175

, and Ser
189

 (73). In addition to PKC activation of PKA by 

forskolin, an adenylyl cyclase activator enhanced TRPV4 gating. An effect reversed by the 

specific PKA inhibitor, H89 (73). The effect of PKA and PKC on TRPV4 was facilitated by the 

scaffolding protein AKAP79, which tethers both kinases to TRPV4, thus enhancing the channel 

function and phosphorylation (73).  

 



11 

 

 

Figure 3. TRP channels general structure. (A) TRP channel structure showing the 6 

transmembrane segments (S1-S6), a p-loop between S5 and S6, the ankyrins repeats, and 

the TRP box at the N- and C-termini respectively. (B) Upper view of a TRP channel, with 

the different segments organized to form the pore region. 

ii. Channel activation 

 

        TRPV4 has been reported to be activated by a wide variety of stimuli including: 

1. Physical stimuli 

 

 TRPV4 and osmolarity changes 

        TRPV4 is activated at physiological osmolarities (270-300 mOsmol/l) and modulated by 

changes in extracellular osmolarity. Increases in osmolarity above 300 mOsmol/l have been 

reported to reduce the channel activity (61,74). In contrast, a hypotonic medium increases 

TRPV4 activity (60,61,74). In response to hypotonicity, tyrosine phosphorylation by members 

of the Src family of tyrosine kinases was suggested, and mutation of Tyr 253 residue has been 

shown to abolish TRPV4 response (69). In addition to tyrosine phosphorylation, TRPV4-

mediated responses to changes in osmolarity result from activation of endogenous signaling 

pathways. Cell swelling induces the activation of phospholipase A2 (PLA2), release of 

arachidonic acid (AA) from membrane phospholipids, and cytochrome P450 (CYP450) 

epoxygenase dependent metabolism of AA to epoxyeicosatrienoic acids (EETs) activating the 

channel. 

        TRPV4 channel regulates volume change, causing regulatory volume decrease (RVD) and 

increase in response to hypo and hypertonicity, respectively. As an example, TRPV4 elicits Ca
2+
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influx into bronchial epithelial cells that triggers regulatory volume decrease via Ca
2+

 dependent 

potassium channels (75). Furthermore, in salivary gland epithelium, TRPV4 interacts with 

Aquaporin 5 (AQP5), a channel which plays a role in the regulation of water permeability and 

cell volume (75). Indeed, acinar cells lacking TRPV4 or AQP5 displayed reduced Ca
2+

 entry 

and loss of RVD (75). Recent studies proposed an association of AQP2 and TRPV4 in the renal 

cortical collecting duct (76). This association is suggested to be required for calcium entry 

followed by the efflux of ions and osmotically active organic solutes (76). 

 TRPV4 and tubular fluid flow 

 

        Distal nephron cells are permanently exposed to variations in protourine flow. These 

changes in flow can be modulated by the rate of glomerular filtration, tubuloglomerular 

feedback, diuretics, chronic diabetes, hypertension or variations of dietary sodium, potassium 

and protein intake (77-85). Changes in fluid hemodynamics produces shear stress, transmural 

pressure and stretch which affects epithelial cells of the tubule. Several studies demonstrated 

that cellular responses to this stimuli are mediated through elevations in [Ca
2+

]i (10,13-19). This 

suggests that Ca
2+ 

permeable TRPV4 channel, abundantly expressed in the distal nephron, plays 

a role in sensing flow in this region. 

 Temperature  

 

        TRPV4 can be activated by heat. The temperature threshold for the channel activation is 

between 27°-35°C. The physiological function of TRPV4 as a temperature sensor is supported 

by its expression in the thermosensory regions of the hypothalamus (86) and the vascular 

endothelium, where it plays a role in temperature-dependent Ca
2+

 homeostasis (87). TRPV4 
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temperature sensitivity was also observed in heterologous expression system, in human 

embryonic kidney HEK293 cells (36,86).  

 

2. Chemical stimuli 

 

        TRPV4 is activated by synthetic compounds such as: 4α-PDD and the specific channel 

agonist GSK1016790A. TRPV4 is also activated by phorbol ester derivatives and arachidonic 

acid metabolites (65-67). Moreover, the channel can be blocked using Ruthenium Red, RN1734 

and the specific antagonist HC 067047.   

 Activation by 4α-phorbol ester derivatives 

 

        4α-phorbol ester derivatives (4α-PDD) are exogenous agonists of TRPV4. 4α-PDD has 

been shown to activate the channel with an EC50 of 0.2 µM (88). They are considered to be 

specific activators of TRPV4, since they weakly activate TRPV1 and other channels. In the 

mechanism of TRPV4 activation by 4α-phorbols (89), several mutations in the S3–S4 region 

have been reported to alter the channel sensitivity to 4 α-PDD and heat, suggesting the 

important role of this region in the channel activation. 

 Activation by arachidonic acid metabolites 

 

        TRPV4 can be activated by products of metabolism of arachidonic acid and cannabinoid 

anamdamide, such as epoxyeicosatrienoic acids (5, 6) and (8, 9)-EETs produced by CYP450 

epoxygenase (90).  
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 Regulation of TRPV4 by Ca
2+

 

 

        Activation and inactivation of TRPV4 is regulated by Ca
2+

 flux. TRPV4 activity is reduced 

in the absence of extracellular Ca
2+ 

(70). Activation of the channel by 4-α phorbol ester or 

hypotonicity is reduced in the absence of Ca
2+

 (70).  TRPV4 is activated by small elevations in 

[Ca
2+

]i via mechanisms involving direct binding of calmodulin (CaM) to the channel. Mutations 

of the CaM-binding site, preventing Ca
2+

-CaM binding has been shown to decrease the rate and 

extent of channel activation. In contrast to modest [Ca
2+

]i elevations, high increase in [Ca
2+

]i 

lead to TRPV4 inhibition and desensitization via a negative feedback mechanism  protecting 

cells from the cytotoxic effect of a high intracellular [Ca
2+

]i  (70). 

 

 

Figure 4. TRPV4 regulatory pathways. AA:Arachidonic acid, EETs: poxyeicosatrienoic 
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acids, PLA2:phospholipase A2, Src: src family of tyrosine kinases, CYP450: cytochrome 

P450 epoxygenase. 

 

iii. TRPV4 channelopathies: 

 

        Channelopathies are disorders resulting from the dysfunction of ion channels. Mutations in 

TRPV4 channel genes cause alterations of TRPV4 structure and function which has been linked 

to several pathologies such as skeletal diseases (skeletal dysplasias) and neuropathies (distal 

hereditary spinal muscle atrophies, congenital distal hereditary motor neuropathies) (91). 

7. Significance of proposed research 

 

        The distal nephron is under continuous exposure to mechanical stimuli, such as tubular 

flow. This physical stress is a critical regulator of distal nephron transport rate. Variations in 

dietary K
+
 and Na

+
 intake produce changes in tubular flow and osmotic gradients, creating a 

mechanical stress perceived by epithelial cells in the renal tubule. These cells respond to 

mechanical stress by increasing intracellular calcium levels. These responses are critical 

regulators of a variety of processes ranging from transport of water and solutes to cellular 

growth and differentiation. Inability to perceive mechanical stimuli has been linked to numerous 

pathologies associated with systemic imbalance of electrolytes and to development of polycystic 

kidney disease (PKD). TRPV4 has been identified as a mechanosensitive channel (23). We have 

recently identified a pivotal role of TRPV4 in cellular calcium response to elevated tubular flow 

in distal nephron cells (92). Indeed, this flow mediated Ca
2+

-response was abolished in TRPV4 

knockout mice (35).  
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        While TRPV4 activity is essential for [Ca
2+

]i elevations in response to increased tubular 

flow, the underlying physiological mechanisms governing the channel function remain unclear 

and require further investigation. 

        In this study, I aim to investigate the impact of sodium and potassium diets on TRPV4 

function, expression and subcellular localization in mouse distal nephron cells. I hypothesize 

that increased flow to the distal nephron in response to variations in Na
+
 and K

+ 
intake will 

impact TRPV4 channel activity and possibly its expression and subcellular localization. 
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MATERIALS AND METHODS 

 

        For all experiments, 6 to 8 weeks old wild type,  male C57BL/6 mice (Charles rivers 

laboratories, Wilmington, MA) were separated into 5 groups and were given a high sodium (2% 

Na
+
, TD.92034), low sodium (< 0.01% Na

+
, TD.90228), high potassium (5%), low potassium 

(0.01% K
+
) or regular (0.32% Na

+
, 0.9% K

+
, TD.7912) diets respectively, for 7 days. All diets 

were purchased from Harlan Teklad (Madison, WI, USA).  Animals had free access to tap 

water. In some experiments, animals were subcutaneously injected with Deoxycorticosterone 

acetate (DOCA, 2.4 mg/injection/animal) for 3 consecutive days. Animal use and welfare 

adhered to the National Institutes of Health Guide for the Care and use of Laboratory Animals 

following a protocol reviewed and approved by the Institutional Laboratory Animal Care and 

Use Committee of The University of Texas Health Science Center at Houston. 

1. Tissue isolation 

 

        Mice were sacrificed by CO2 administration and cervical dislocation. Kidneys were 

immediately isolated and stored on ice. Kidneys were subsequently decapsulated and 

homogenized followed by either analyses by Western blotting, RNA isolation (see below), or 

cut into thin slices (<1mm) for isolation of individual nephrons for Ca
2+

 imaging and 

Immunohistochemistry using a well-established protocol in our lab (93). 

2. Western blot analyses 

 

        Kidneys were dissected and placed on ice, decapsulated and homogenized in a dounce 

glass homogenizer in 1 ml of ice-cold hypotonic lysis Buffer (Table 1). 1mM PMSF and 2 

mg/ml EDTA-free protease inhibitor cocktail (Roche, Mannheim, Germany) were added to the 

lysates to prevent protein degradation. Homogenates were centrifuged at 1,000 g for 15 minutes 
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at 4 °C. The supernatants were removed and stored at – 80°C for later use. Protein concentration 

was determined with Bradford assay using Immunoglobulin G (IgG, Abcam, Cambridge, UK) 

as a standard. Each standard (10 µl/well of the following concentrations of IgG: 0.5 µg/µl, 0.3 

µg/µl, 0.15 µg/µl, 0.1 µg/µl and 0.05 µg/µl) and samples (10 µl/well) were placed into a 96 well 

plate in triplicates. 200 µl of Coomassie dye (Bio-rad, Hercules, CA, USA) was added for the 

colorimetric reaction.  The absorbance shift of the Coomassie dye in each sample was measured 

at a wavelength of 595 nm using a microplate reader (Molecular devices spectro). Protein 

concentration was determined for each sample using the IgG standard curve. Samples were 

further diluted to a final concentration of 1 µg/µl using hypotonic lysis buffer (Table 1), reduced 

in 5X SDS buffer (Table 1) with 20 mM Dithiothreitol and denatured at 75°C for 10 minutes. 15 

µg of each samples were loaded per well of a 5% stacking gel followed by a separation on a 9% 

polyacrylamide gels (Table 1) at 150 volts during 1 hour 40 minutes. Proteins were then 

transferred to a nitrocellulose membrane using wet transfer in towbin buffer (Table 1) at 100 

volts for 1 hour 30 minutes at 4 °C. The nitrocellulose membrane was blocked for 1 hour in 5 % 

filtered nonfat milk (LabScientific Inc, New Jersey, USA) in TBS-Tween wash buffer (Table 1) 

and subsequently incubated with anti-actin (1:2000 dilution, Abcam, Cambridge, UK) or anti-

tubulin (1:2000 dilution, Abcam, Cambridge, UK) and either with anti-TRPV4 (1:1000 dilution, 

Alomone Labs, Jerusalem, Israel) or anti-TRPC3 (1:500 dilution, Alomone Labs, Jerusalem, 

Israel) primary antibodies for 2 hours at room temperature. Membranes were incubated with 

TRPV4 or TRPC3 control antigens provided by vendor (Alomone Labs, Jerusalem, Israel) to 

verify for antibody specificity. Membranes were washed 3 times for 5 minutes in TBS-Tween 

wash buffer and then incubated with peroxidase-conjugated goat anti-rabbit secondary 

antibodies (1:30,000 dilution, Bio-Rad, Hercules, CA) for 1 hour at room temperature. 

Membranes were washed 3 times for 5 minutes in wash buffer and incubated in a mixture of 
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ECL reagents (Thermo Scientific, Waltham, MA, USA) following manufacturer`s protocol. 

Membranes were attached to a cassette and subsequently exposed to an X-Ray film (Phoenix 

Research Products, Candler, NC, USA) at different exposure. Blots were analyzed using Image 

Studio Lite version 3.1 software (LI-COR, Lincoln, Nebraska, USA). TRPV4 and TRPC3 

protein upper bands (~ 95 kDa) were selected and their intensities were normalized to the 

corresponding actin bands (~ 45 kDa) used as a loading control.  

Table 1: chemicals and solutions  

Hypotonic lysis buffer 50 mM Tris base, 1% Triton X-100, 5 mM EDTA, 7<pH<8 

5 X SDS reducing buffer 10 % SDS, 50 % Glycerol, 1M Tris pH 6.8, 0.5 % Bromophenol blue 

 

9 % resolving gel 

6.6 ml H2O, 4.5 ml 30 % acrylamide, 3.75 ml 1.5 M Tris pH 8.8, 150 

µl 10 % SDS, 150 µl 10 % APS, 15 µl TEMED 

 

5 % stacking gel 

3.42 ml H2O, 1.02 ml 30% acrylamide, 1.5 ml 0.5 M Tris pH 6.8, 60 

µl 10 % SDS, 60 µl 10 % APS, 6 µl TEMED 

10 X electrode buffer, 1L 144.2 g Glycine, 30.3 g Tris base, 10 g SDS 

Towbin buffer, 1L 200 ml Methanol, 14.4 g Glycine, 3 g Tris base 

Wash buffer, 1L 150 mM NaCl, 50 mM Tris-HCL, pH 7.5, 0.1 % Tween 20 

Physiological buffer 150 mM NaCl, 5mM KCl, 5 mM Glucose, 10 mM HEPES, 1 Mm 

CaCl2, 2mM MgCl2 

 

 

 

Figure 5. Absence of TRPV4 bands following incubation with control antigen. 
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Representative Western Blot of TRPV4 expression in whole kidney lysates of C57BL/6 

mice. Lysates were run on a polyacrylamide gel and probed with TRPV4 blocking 

peptide, anti-TRPV4 and anti-tubulin antibodies. 

 

 

3. RNA extraction and RT- quantitative PCR (RT-qPCR) 

 

        Kidneys were isolated, decapsulated and homogenized in TRIzol Reagent, 1 ml per 50-100 

mg of tissue (Ambion, Life Technologies), using a glass teflon homogenizer and then incubated 

5 minutes at room temperature to dissociate the nucleoprotein complex. 0.2 ml chloroform 

(Fisher Scientific) was added to the homogenate and mixed for 15 seconds. Samples were 

incubated for 3 minutes at room temperature followed by a centrifugation at 12,000 x g for 15 

minutes at 4°C. This step allowed a phase separation where the mixture separates into three 

distinct phases. RNA was in the transparent upper aqueous phase. Subsequently, the supernatant 

was removed and RNA was precipitated by adding 0.5 ml of 100 % Isopropanol (Sigma). 

Samples were incubated for 10 minutes at room temperature and centrifuged at 12,000 x g for 

10 minutes at 4°C. Finally, supernatants were removed and RNA pellets were washed with 75% 

ethanol per 1 ml TRIzol reagent used initially. Samples were then quickly vortexed and 

centrifuged at 7,500 x g for 5 minutes at 4°C. Supernatant was discarded and RNA pellets were 

air-dried until becoming transparent, RNA was then resuspended in 30 µl RNAse-free water 

(Gibco, Life Technologies). RNA concentrations and quality were determined 

spectrophotometrically at 260 and 280 nm. To determine RNA quality, Agilent 2100 

Bioanalyzer (Agilent Technologies) was used for electrophoretic separation of very small 

amounts of RNA that can be detected by laser induced fluorescence. cDNA was synthesized in 
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270 µl total volume by addition of 3 µl well 
-1 

RT master mix consisting of : 45 µl RT 10X 

buffer, 90 µl deoxynucleotides mix, 54.6 µl random primer, 62.4 µl H2O and 18 µl Affinity 

Script enzyme to a 96 well plate followed by a 2 µl volume of sample (20 ng/ µl). Each sample 

was analyzed in triplicate plus a control without reverse transcriptase. Plates were covered with 

Biofilm A (MJR) and incubated in a thermocycler (MJR, Waltham, MA, USA) for 30 minutes 

at 50 °C followed by 5 minutes at 72°C. Subsequently 3 µl of PCR master mix (52.5 µl  

Jumpstart 10X, 70 µl  primer/probe mix (Table 2), 59.5 µl MgCl2, 21 µl deoxynucleotides mix, 

909.5 µl H2O and 5.3 µl Taq Polymerase (Sigma) were added to each well of the cDNA plate. 

Plate was then placed in a light cycler 480 II and Quantitative RT-PCR was performed 

following cycling conditions: denaturation at 95 °C for 2 minutes, amplification at 95 °C for 12 

seconds and amplification at 60 °C for 30 seconds for a total of 40 cycles. 

Table 2: Probes and primer sequences 

 

TRPV4 Probe 5’-/56-FAM/CCTGCTTGT/ZEN/GTACCTGCTCTTCATGA/31ABkFQ/-3’ 

Primer 1 5’-TCGTCACAGACCTTCATGTTG-3’ 

Primer 2 5’-CCTCTTCAAAGACCTCTTCCG-3’ 

HPRT Probe 5’-/56-FAM/CTTGCTGGT/ZEN/GAAAAGGACCTCTCGAA/31ABkFQ/-

3’ 

Primer 1 5’-AACAAAGTCTGGCCTGTATTC-3’ 

Primer 2 5’-CCCCAAAATGGTTAAGGTTGC-3’ 

 

4. [Ca
2+

]i measurements 

 

        Kidney slices were placed in an ice cold physiological solution buffered with HEPES pH 

7.4 (Table 1). Distal nephrons were identified by their typical morphology and color, they were 

mechanically isolated from kidney slices by micro-dissection using watchmaker forceps under a 

stereomicroscope. Isolated distal nephrons were attached to poly-L-lysine coated coverslips 

(5*5 mm). Coverslips containing distal nephrons were placed in a perfusion chamber mounted 
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on a Nikon Eclipse Ti inverted microscope and perfused with bath solution at room temperature. 

In order to access the apical membrane, distal nephrons were split opened with two sharpened 

micropipettes controlled with micromanipulators. Intracellular calcium levels were measured in 

individual cells within the split opened area of distal nephrons from mice kept on high sodium, 

high potassium and control diets using Fura-2 fluorescence radiometric imaging. Split opened 

distal nephrons were loaded with 2 µmol/L of Fura -2/acetoxymethyl ester (EMD biosciences, 

USA) in a bath solution at room temperature for 40 minutes. Then, they were placed in an open-

top imaging chamber (Warner RC-10) with a bottom coverslip viewing window and the 

chamber attached to the microscope stage of an inCa imaging workstation (Intracellular 

Imaging, Inc). Cells were imaged using a 20x Nikon super fluor objective and regions of interest 

were selected for individual cells. Typically 10-30 cells were simultaneously monitored per 

coverslip and the results were averaged for each experiment. Intracellular calcium was estimated 

from the Fura-2 fluorescence by repetitive brief excitation at 340 nm and 380 nm and by 

calculating the ratio of the emission intensities (R = F340/F380) at 511 nm every 5 seconds in 

order to avoid decay in Fura-2 signals due to photobleaching (92,94). This ratio represents an 

index of relative changes in [Ca
2+

]i. The ratio can be converted to actual [Ca
2+

]i values after 

calibration of fluorescence intensities in permeabilized cells (with ionomycin) in solutions with 

known [Ca
2+

]i (94,95). InCytIm2 -version 5.29c software (Intracellular Imaging, OH, USA) was 

used to visualize and quantify Fura-2 fluorescence in split-opened distal nephrons.  

5. Immunofluorescence microscopy 

 

        Freshly isolated split opened distal nephrons from mice fed with low Na
+
, low K

+
, high 

Na
+ 

and high K
+ 

diets were fixed in 4% paraformaldehyde in Phosphate buffered saline PBS (pH 

7.4) for 15 minutes. After fixation, samples were washed 3 times for 5 minutes in PBS and 
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permeabilized in 0.1% Triton X-100 for 5 minutes then washed 3 times for 5 minutes in PBS. 

To prevent non-specific staining, samples were treated with 10 % normal goat serum (Jackson 

Immunoresearch laboratories) in PBS for 30 minutes at room temperature. Following washing 

in PBS, split opened distal nephrons were incubated in a mixture of TRPV4 primary antibody 

diluted 1:1000, Alomone labs), 1% normal goat serum and 0.1% Triton X-100 in PBS during 3 

hours. Subsequently, samples were washed 3 times for 5 minutes in PBS and then incubated 

with goat anti-rabbit IgG labeled with Alexa Fluor 488 (1:2000 dilution, Invitrogen) in the 

presence of 1% normal goat serum and 0.1% Triton X-100 in PBS for 90 minutes at room 

temperature, in the dark; followed by three washes in PBS. Nuclei were stained with Dapi (1.5 

µM, Calbiochem) for 1 minute in the dark. Samples were attached to glass slides using 

mounting medium (Thermo Scientific). Samples were examined using a Nikon Eclipse confocal 

fluorescence microscope with a 40x Plan fluor oil immersion objective. Samples were excited 

with 405 and 488 nm lasers and emission captured with a 16-bit CoolSNAP HQ
2 

camera 

(photometrics) interfaced to a computer running NIS-Elements version 4.00 software. 3-D 

stacks of split opened distal nephrons were generated from a series of confocal plane images 

with 0.25 µm steps on Z- axis (93). 

6. Statistical methods 

 

        Summary data were given as mean values  SEM as indicated in the figures. Differences 

among the groups were analyzed with a one-way ANOVA. The significance level was defined 

as p<0.05. 
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RESULTS 

 

        We have recently demonstrated that Ca
2+

 permeable TRPV4 channel is essential for flow-

dependent [Ca
2+

]i elevations (35,92,93). Interestingly, it has been shown that variations in 

dietary potassium and to a lesser extent, sodium intake affect tubular fluid delivery leading to an 

increase of the flow rate in the distal nephron, thereby augmenting mechanical stress. Thus, we 

hypothesized that increased Na
+
 and K

+
 intakes, will lead to respective increase in TRPV4 

expression and function. To address this hypothesis, I employed a variety of experimental 

approaches including western blotting; real time quantitative PCR, Fura-2 Ca
2+

 imaging and 

immunofluorescence microscopy. 

1. Changes in dietary potassium intake regulate renal TRPV4 expression 

 

        To assess the effects of variations in the K
+
 diet on renal TRPV4 expression, we performed 

western blotting as described in Materials and Methods. Figure 6A shows a representative 

western blot monitoring TRPV4 expression in whole kidney homogenates from C57BL/6 mice 

fed low, regular, and high K
+
 diets for 7 days. Since TRPV4 expression in the kidney is 

restricted to the distal tubule, I used whole kidney homogenates, as a reliable indicator of 

changes in the distal nephron. TRPV4 protein expression appeared as a duplet around ~ 95 kDa 

of a glycosylated (upper) and non-glycosylated (lower) bands.  Renal TRPV4 levels were 

significantly increased in high K
+
 diet samples and significantly reduced in low K

+
 diet samples 

as compared to the control conditions (Figure 6B). 
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Figure 6.  Effect of high K
+

 diet on TRPV4 expression in the kidney.  (A) 

Representative Western Blot of TRPV4 expression in whole kidney lysates of C57BL/6 

mice fed with low (0.01%), regular (0.9%) and high (5%) K
+
 diet for 7 days.  Lysates 

were run on a polyacrylamide gel and probed with anti-TRPV4 antibody. (B) Summary 

graph comparing TRPV4 expression levels from whole kidney homogenates similar to 

that shown in (A). Intensities of TRPV4 bands were normalized to intensities of the 

respective actin bands.  * Significant decrease versus regular diet (P≤0.05 by One-way 

ANOVA). ** Significant increase versus regular diet (P≤0.01 by One-way ANOVA). The 

data are represented as means ± SEM with numbers of individual experiments embedded 

in the graph. 

 

        To examine if this regulation was specific to TRPV4, I next probed the levels of TRPC3, 

another mechanosensitive, Ca
2+

 permeable TRP channel, expressed in the distal nephron.  As 

opposed to TRPV4, TRPC3 protein levels remained unchanged in high, low and regular K
+
 diet 

conditions (Figure 7A and B). Overall, these results suggest that TRPV4 is specifically 

regulated by variations in K
+
 regimen. 
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Figure 7.  Effect of High K
+

 diet on renal TRPC3 protein levels.  (A) Representative 

Western Blot of TRPC3 expression in whole kidney lysates of C57BL/6 mice fed a low 

(0.01%), regular (0.9%) and high (5%) K
+
 diets.  Lysates were run on a polyacrylamide 

gel and probed with anti-TRPC3 or actin antibodies. (B) Summary graph comparing renal 

TRPC3 expression levels from western blots similar to that shown in (A). Intensities of 

TRPC3 bands were normalized to the intensities of the respective actin bands.  The data 

are represented as means ± SEM with numbers of individual experiments embedded in 

the graph. 

 

2. Regulation of TRPV4 mRNA levels by variations in K
+
 diet 

 

        My results in Figure 6 demonstrated that TRPV4 levels are enhanced by a high potassium 

diet. I next asked whether TRPV4 regulation also occurs at the mRNA level.  To test for this, I 

performed a real-time quantitative PCR to monitor changes in TRPV4 mRNA levels. Consistent 

with our hypothesis, I observed a significant augmentation of relative TRPV4 mRNA levels in 

high K
+
 diet and a reduction in low K

+
 diet as compared to control conditions (Figure 8). 
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Therefore, I concluded that TRPV4 is significantly modulated by potassium diet at both the 

mRNA and the protein levels. 

 

Figure 8. Effect of high and low K
+

 diet on TRPV4 mRNA levels.  (A) Relative 

expression of TRPV4 mRNA detected by qRT-PCR in kidneys of C57BL/6 mice fed with 

low (0.01%), regular (0.9%) and high (5%) K
+
 diets for 7 days. Total RNA was reverse 

transcribed into cDNA using random primers and real time q-PCR was performed using 

TRPV4 primers covering exons 12-13, to monitor changes in mRNA levels.  Mean 

TRPV4 cycle threshold values were normalized to the respective HPRT cycle threshold 

values. * Significant increase versus low K
+
 diet (P≤0.05 by One-way ANOVA). The data 

are represented as means ± SEM with numbers of individual experiments embedded in 

the graph. 
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3. Renal TRPV4 expression is not regulated by aldosterone 

 

        Elevated K
+
 intake leads to increase in plasma K

+
 levels and this, in turn, stimulates 

aldosterone release by the adrenal cortex to promote renal K
+
 excretion (21,26-28). To test 

wether the increase in TRPV4 protein levels during systemic administration of a high potassium 

regimen is due to increased plasma aldosterone concentrations, I injected mice with 

Deoxycosterone Acetate (DOCA), a precursor of aldosterone, at saturating concentrations (2.4 

mg), during 3 consecutive days in order to maximally stimulate aldosterone cascade. DOCA 

treatment had no effect on kidney TRPV4 protein levels, as shown in figure 9A and the 

summary graph 9B.  In addition to TRPV4, I observed no changes in TRPC3 protein abundance 

after DOCA administration as represented in figure 9C and the summary graph 9D. The absence 

of changes in TRPV4 and TRPC3 protein abundance points to an aldosterone independent 

regulation of the channels in the distal part of the renal nephron. The absence of aldosterone 

action suggests that the increase in tubular flow per se may account for the increase in TRPV4 

expression in response to a high K
+
 diet.  
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Figure 9. Effect of saturation of mineralocorticoid status with DOCA on TRPV4 and 

TRPC3 expression. (A) and (C) Representative Western Blot of TRPV4 (A) or TRPC3 

(C) expression in whole kidney lysates of C57BL/6 mice injected with 2.4 mg DOCA for 

3 consecutive days before experimentation.  Lysates were run on a polyacrylamide gel 

and probed with either anti-TRPV4 or anti-TRPC3 antibodies. (B) and (D) Summary 

graphs comparing renal TRPV4 (B) or TRPC3 (D) expression levels from western blots 

similar to that shown in (A) and (B). Intensities of TRPV4 and TRPC3 bands were 

normalized to the intensities of the respective actin bands.  The data are represented as 

means ± SEM with numbers of individual experiments embedded in the graph. 

4. High and low Na
+
 diet have little effect on total TRPV4 expression in the 

kidney and no effect on TRPC3 protein abundance 

 

        Similarly, high sodium intake also produces a rise in sodium delivery to the distal nephron 

to increase urinary sodium excretion. This leads to a higher tubular flow in the DN.  To assess 

the effect of variations in Na
+
 diet on TRPV4, I probed the channel expression in whole kidney 

homogenates from mice fed low, high and regular Na
+
 regimens for 7 days (Figure 10A). 
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Surprisingly, a high sodium intake produced only a modest insignificant raise of TRPV4 protein 

levels as compared to low and regular diets (figure 10B).  Similarly, TRPC3 levels were 

unchanged by variations in dietary Na
+
 intake (figure 10C and D).   

 

 

Figure 10.  Effect of high and low Na
+

 diet on TRPV4 and TRPC3 expression in the 

kidney.  (A) and (C) Representative Western Blot of TRPV4 and TRPC3 expression in 

whole kidney lysates of C57BL/6 mice fed with low (<0.01%), regular (0.32%) and high 

(2%) Na
+
 diets for 7 days.  Lysates were run on a polyacrylamide gel and probed with 

either anti-TRPV4 or anti-TRPC3 antibodies. (B) and (D) Summary graphs comparing 

renal TRPV4 or TRPC3 expression levels from western blots similar to that shown in (A) 
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and (C). Intensities of TRPV4 and TRPC3 bands were normalized to the intensities of the 

respective actin bands.  The data are represented as means ± SEM with numbers of 

individual experiments embedded in the graph. 

 

5. Regulation of TRPV4 mRNA levels by variations in Na
+
 diet 

 

        I have shown that variations in Na
+
 diet, and particularly high Na

+
 diet had little effect on 

TRPV4 protein abundance, as represented in figure 10.  I next tested if these changes in Na
+
 

intake affect TRPV4 mRNA, by performing a real time q-PCR.  As summarized in figure 11, 

high Na
+
 diet does not affect TRPV4 mRNA levels as compared to regular diet.  Furthermore, 

low Na
+
 diet elicits a small reduction in TRPV4 mRNA levels as compared to control 

conditions. 

        The absence of stimulatory effect of a high Na
+
 diet on TRPV4 suggest that either an 

increase in flow does not regulate TRPV4 expression, or different modes of adaptation exist in 

the distal nephron in response to elevated K
+
 and Na

+
 intake. It needs to be noticed, though, that 

the lack of increase in TRPV4 expression by high Na
+
 intake does not exclude other regulations 

of the channel at the post-translational level, such as trafficking and gating.  
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Figure 11. Effect of high and low Na
+
 diets on TRPV4 mRNA levels. (A) Relative 

expression of TRPV4 mRNA detected by qRT-PCR in kidneys of C57BL/6 mice fed with 

low (<0.01%), regular (0.32%) and high (2%) Na
+
 diets for 7 days. Total RNA was 

reverse transcribed into cDNA using random primers and real time q-PCR was performed 

using TRPV4 primers covering exons 12-13, to monitor changes in mRNA levels.  Mean 

TRPV4 cycle threshold values were normalized to the respective HPRT cycle threshold 

values. The data are represented as means ± SEM with numbers of individual 

experiments embedded in the graph. 

 

6. TRPV4-mediated responses to elevated flow are augmented by high K
+
 and 

Na
+
 diets 

 

        We next probed how an increase in K
+ 

and Na
+
 diet affect TRPV4-dependent [Ca

2+
]i 

elevations in response to flow in distal nephron cells. Individual DNs were mechanically 

isolated from kidney sections and split-opened with sharp micropipettes to get a monolayer of 

cells.  This approach allows access to the apical plasma membrane, to monitor in real-time 

changes in [Ca
2+

]i at the cellular level, in response to mechanical stimulation (Figure 12A). 

Changes in Ca
2+

 concentrations in response to flow are a reliable readout of TRPV4 activity, as 
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previously demonstrated by our group (92). Freshly isolated split opened distal tubules where 

subjected to an abrupt 10 X elevation in flow, producing a shear stress of approximately 3 

dyn/cm
3 

(92,93).  This flow elevation caused a significant increase in [Ca
2+

]i in high potassium 

and sodium as compared to control conditions (Figure 12B and C).  These results show that 

TRPV4- mediated [Ca
2+

]i elevations are regulated by both high Na
+
 and K

+
 diets.   

 

Figure 12: Regulation of TRPV4- mediated mechanosensitive [Ca
2+

]
i
 responses by 

high K
+

 and Na
+

 diets.  (A) Representative micrographs of a split-opened murine distal 

nephron taken under bright-field illumination (left) and fluorescent emission of FURA-2 

with 380 nm excitation (right). This technique enables unequivocal separation of a 

fluorescent signal from individual cells within a split opened area.  It also allows direct 

mechanical manipulations with the apical surface of cells. (B) The average time course of 
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[Ca
2+

]
i
 responses to 10x increases in flow (1.5 ml/min to 15 ml/min) over the apical 

surface (shown with the gray bar on top) recorded from distal nephrons from mice put on 

either regular, high K
+
, or Na

+
 diets. (C) Summary graph comparing the average 

responses to flow in control and high K
+
 and Na

+
 diets. * - Significant increase versus 

control (P≤ 0.05 by One-way ANOVA).  The data are represented as means ± SEM with 

number of individual experiments embedded in the graph. 

 

7. TRPV4 subcellular localization in the distal nephron is regulated by dietary 

K
+
 and Na

+
 

 

        I next examined whether TRPV4 localization in distal nephron cells is controlled by 

variations in potassium and sodium diets. I monitored intracellular channel distribution using 

immunofluorescence confocal microscopy in split-opened distal nephrons (as described in 

methods). As shown in Figure 13, TRPV4 expression was predominantly cytosolic under low 

potassium and sodium conditions, as apparent in a representative confocal fluorescent image in 

figures 13B and F.  In contrast, TRPV4 fluorescent signal was shifted to the apical membrane 

under high potassium and sodium conditions, with a more prominent effect produced by high K
+
 

diet (Figure 13A versus 13E). In order to perform a quantitative analysis of the observed 

channel subcellular localization, I used line scan analysis of the fluorescent signal distribution 

along the z-axis in cross-sections of three dimensional stacks similar to those shown in figure 

13. Figures 13C and G represent the average distribution of fluorescence intensity reporting 

TRPV4 expression in low and high potassium and sodium diets, respectively.  As illustrated in 

figure 13, high potassium and sodium diets shifted the fluorescent signal toward the apical area. 

In addition, high potassium diet caused the sharpening of the fluorescence distribution. 
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Summarized in figures 13D and H, the half-width of the fluorescence intensity was significantly 

reduced from ~ 1.6 ± 0.12µm (n = 12) in low K
+
 to ~ 1.3±0.03 µm (n = 23) in high K

+
 diet. 

Whereas, for Na
+
 diet, the half- width was ~ 1.7±0.1 µm (n = 15) in low Na

+
 diet and ~ 1.6±0.14 

µm (n = 8) in high Na
+
 diet. These values were not significantly different. These results suggest 

that TRPV4 subcellular localization and trafficking to the apical membrane is regulated by high 

K
+
 and Na

+
 diets.  

        In summary, our data suggest a differential regulation of mechanosensitive TRPV4 channel 

by high K
+
 and Na

+
 diets. While high K

+
 diet elicits increase in TRPV4 protein, mRNA, channel 

activity and translocation to the apical membrane, a high Na
+
 diet does not affect TRPV4 

protein, but causes an increase in the channel activity and its translocation to the apical 

membrane.   
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Figure 13: Variations in dietary K
+

 and Na
+

 intakes control TRPV4 subcellular localization 

in distal nephron cells. (A), (B), (E) and (H) Representative confocal plane micrographs (axes 

are shown) and respective cross-sections showing TRPV4 subcellular localization (anti-TRPV4, 

pseudocolor green) in split-opened distal nephrons from mice kept on high and low K
+
 diets, as 

shown in (A) and (B) and high and low Na
+
 diets, as shown in (E) and (F). Nuclear DAPI 

staining is shown by pseudocolor blue. “a” and “b” indicate apical and basolateral sides, 

respectively.  (C) and (G) The distribution of intensities of averaged fluorescent signals 

representing TRPV4 localization along a line on Z-axis in individual cells from distal nephrons 
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similar to that shown in (A), (B), (E) and (F). For each individual cell, the fluorescent signals 

were normalized to their respective maximal values. The position of the apical and basolateral 

sides is shown with arrow on the top. (D) and (H) Summary graph of half-width means for 

distributions of fluorescence signals shown in (C) and (G).   * Significant increase in high 

versus low K
+
 diet (P≤ 0.05 by One-way ANOVA).  The data are represented as means ± SEM 

with number of individual experiments embedded in the graph. 
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DISCUSSION  

 

        The present study provides important novel insights into the mechanisms regulating 

TRPV4-based mechanosensitivity in the distal nephron.  It is well established that regulation of 

electrolytes transport (i.e. Na
+
 and K

+
) to match dietary intake occurs in the distal nephron.  

There, Ca
2+ 

permeable TRPV4 channel, in addition to being abundantly expressed, plays a 

central role in Ca
2+

 elevations in response to changes in tubular fluid dynamics.  

Mechanosensitive [Ca
2+

]i responses are important determinants of many physiological processes 

in late nephron segments, including flow-dependent Na
+
 and K

+
 secretion (14).  Here, I 

identified physiological determinants controlling total renal TRPV4 abundance, in addition to 

functional activity and subcellular localization in murine distal nephrons.  I show that both 

protein abundance and messenger RNA of TRPV4 in the kidney are up regulated by dietary K
+
 

load.  In contrast, increased dietary Na
+
 has a limited to no effect on the channel protein and 

mRNA levels.  Furthermore, I found that high K
+
 and Na

+
 loads are responsible for augmented 

TRPV4 activation in response to elevated flow over the apical plasma membrane, in addition to 

TRPV4 translocation to the apical membrane. This regulation of TRPV4 is essential for 

balancing ions excretion and reabsorption. 

        It has been previously established that both high K
+
 and Na

+
 diets affect tubular fluid 

delivery, leading to an augmented flow rate to the distal nephron, thereby augmenting 

mechanical stress (11,12). Our group has provided experimental evidence that TRPV4 mediates 

Ca
2+

 influx in distal nephron epithelial cells in response to elevated luminal flow.  First, we and 

others have confirmed that TRPV4 is abundantly expressed in the distal nephron (35,92,93,96). 

Second, we demonstrated that genetic interference with the channel disrupts Ca
2+

 responses to 

shear stress in cultured collecting duct cells (35).  Furthermore, we showed that TRPV4 
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knockdown in mice abolishes flow induced [Ca
2+

]i elevations in the connecting tubule and the 

cortical collecting duct (35). In addition, we demonstrated that pharmacological inhibition of the 

channel, using a highly selective antagonist, HC-067047 prevents changes in [Ca
2+

]i during 

increased flow (92,93).  These observations led us to hypothesize that this channel plays a 

pivotal role in regulating electrolytes transport in the distal nephron.   

        The kidney is the primary site for regulation of K
+
 homeostasis.  When plasma K

+
 levels 

increase in response to a high K
+
 intake, a state known as hyperkalemia, aldosterone secretion 

by the adrenal cortex increases. This increase affects the activity and abundance of ion channels, 

such as those responsible for K
+
 secretion (6,97-100).  Our findings that TRPV4 protein levels 

are not altered in response to the aldosterone precursor deoxycorticosterone acetate (DOCA) 

injections, suggests that the channel is probably independently regulated of aldosterone release.  

The question then arises as to which hormones could regulate the channel in the distal nephron. 

I envision this as a possible direction of my future research. 

        Gao F et al. have shown that high sodium intake (4%) didn’t increase TRPV4 expression in 

the renal cortex and medulla of Wistar rats (101). This result is consistent with my observations 

that renal TRPV4 protein expression and mRNA levels are not enhanced in response to dietary 

Na
+
 load. The lack of regulation of TRPV4 expression by high Na

+ 
diet is likely due to the fact 

that there is little need to increase K
+ 

excretion under these conditions.  

        In this study, I demonstrate that TRPV4 activity is controlled by high K
+
 and Na

+
 

regimens.  The combined immunohistochemical and functional analysis point to an expression 

of functional TRPV4 along the apical /subapical region of the cells.  Our group has shown that, 

in the kidney, TRPV4 channel activity and trafficking are controlled by PKC- and PKA- 

dependent pathways, respectively. While PKA-dependent pathway promotes TRPV4 trafficking 
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and translocation to the apical membrane; PKC-dependent pathway increases the channel 

activity at the plasma membrane (93).  However, on the mechanism of PKA- mediated 

regulation of channel translocation from the basolateral to the apical membrane, we propose that 

TRPV4 trafficking in distal nephron cells could be under control of antidiuretic hormone 

(vasopressin). This might be tested in my future work.  

        As stated before, to ensure K
+
 homeostasis in response to K

+
 load, its secretion is increased 

in distal nephron cells through regulation of locally expressed ion channels. The renal outer 

medullary potassium (ROMK) channels are responsible of basal K
+
 secretion. BK channels, 

expressed in PCs and ICs of the CNT and CD are important for flow-dependent K
+ 

secretion, a 

process dependent on the presence of Ca
2+

 (6).  Several studies have shown that 

pharmacological blockade or genetic ablation of BK channel markedly blunts flow-induced K
+
 

secretion (102-104). In addition to ROMK and BK channels, Berrout J et al have shown that 

TRPV4 mediated Ca
2+

 influx, leading to increase in [Ca
2+

]i, activates SK3 channel, a high Ca
2+

 

affinity-activated K
+
 channel (8), abundantly expressed in the distal nephron.  This is believed to 

be pivotal for the regulation of K
+
 excretion. My assessment of renal TRPV4 protein abundance 

during a high dietary K
+
 intake is in agreement with my quantitative analysis of the channel 

mRNA levels and by functional studies in split-opened murine distal nephrons, where I 

demonstrate the increase in TRPV4 mediated Ca
2+

 responses to elevated flow. In summary, high 

K
+
 diet maximally stimulates TRPV4 protein expression, mRNA and translocation to the apical 

membrane. While, Na
+
 diet has a different effect, since Na

+
 reabsorption does not require Ca

2+
.  

        It would be of great interest to test for possible interactions between TRPV4 and Ca
2+

-

activated K
+
 channels, such as BK channels, to determine whether such regulation is due to their 
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association or indirectly via independent signaling entities with a coordinated function in distal 

nephron cells.   

        To summarize my studies, first, I have identified novel physiological stimuli controlling 

TRPV4 mechanosensitivity and intracellular Ca
2+

 responses, to regulate transport rates in the 

distal nephron. Second, I have demonstrated that Na
+
 and K

+
 loads control TRPV4 channel 

function and/or expression as well as its translocation to the apical membrane of distal nephron 

cells. This regulation is envisioned to be an adaptive response to elevated tubular flow in the 

course of these physiological stimuli, but it is still unclear whether diets exert a direct action on 

TRPV4 or may involve activation of a mediator or hormone, and this would be the subject of 

future studies in the field.  

  



46 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY  



47 

 

BIBLIOGRAPHY 

 

1. Hughson, M., Farris, A. B., 3rd, Douglas-Denton, R., Hoy, W. E., and Bertram, J. F. 

(2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. 

Kidney international 63, 2113-2122 

2. Nyengaard, J. R., and Bendtsen, T. F. (1992) Glomerular number and size in relation to 

age, kidney weight, and body surface in normal man. The Anatomical record 232, 194-

201 

3. Hoy, W. E., Hughson, M. D., Bertram, J. F., Douglas-Denton, R., and Amann, K. (2005) 

Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16, 

2557-2564 

4. Keller, G., Zimmer, G., Mall, G., Ritz, E., and Amann, K. (2003) Nephron number in 

patients with primary hypertension. The New England journal of medicine 348, 101-108 

5. Pearce, D., Soundararajan, R., Trimpert, C., Kashlan, O. B., Deen, P. M., and Kohan, D. 

E. (2014) Collecting Duct Principal Cell Transport Processes and Their Regulation. 

Clinical journal of the American Society of Nephrology : CJASN  

6. Staruschenko, A. (2012) Regulation of transport in the connecting tubule and cortical 

collecting duct. Comprehensive Physiology 2, 1541-1584 

7. Carraro-Lacroix, L. R., and Malnic, G. (2010) Acid-base transport by the renal distal 

nephron. Journal of nephrology 23 Suppl 16, S19-27 

8. Berrout, J., Mamenko, M., Zaika, O. L., Chen, L., Zang, W., Pochynyuk, O., and O'Neil, 

R. G. (2014) Emerging role of the calcium-activated, small conductance, SK3 K+ 

channel in distal tubule function: regulation by TRPV4. PloS one 9, e95149 



48 

 

9. Holtzclaw, J. D., Grimm, P. R., and Sansom, S. C. (2011) Role of BK channels in 

hypertension and potassium secretion. Current opinion in nephrology and hypertension 

20, 512-517 

10. Liu, W., Xu, S., Woda, C., Kim, P., Weinbaum, S., and Satlin, L. M. (2003) Effect of 

flow and stretch on the [Ca
2+

]i response of principal and intercalated cells in cortical 

collecting duct. American journal of physiology. Renal physiology 285, F998-F1012 

11. Satlin, L. M., Carattino, M. D., Liu, W., and Kleyman, T. R. (2006) Regulation of cation 

transport in the distal nephron by mechanical forces. American journal of physiology. 

Renal physiology 291, F923-931 

12. Weinbaum, S., Duan, Y., Satlin, L. M., Wang, T., and Weinstein, A. M. (2010) 

Mechanotransduction in the renal tubule. American journal of physiology. Renal 

physiology 299, F1220-1236 

13. Geyti, C. S., Odgaard, E., Overgaard, M. T., Jensen, M. E., Leipziger, J., and Praetorius, 

H. A. (2008) Slow spontaneous [Ca
2+

] i oscillations reflect nucleotide release from renal 

epithelia. Pflugers Archiv : European journal of physiology 455, 1105-1117 

14. Liu, W., Morimoto, T., Woda, C., Kleyman, T. R., and Satlin, L. M. (2007) Ca
2+ 

dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. 

American journal of physiology. Renal physiology 293, F227-235 

15. Mamenko, M., Zaika, O., Jin, M., O'Neil, R. G., and Pochynyuk, O. (2011) Purinergic 

activation of Ca
2+

-permeable TRPV4 channels is essential for mechano-sensitivity in the 

aldosterone-sensitive distal nephron. PloS one 6, e22824 

16. Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, 

W., Brown, E. M., Quinn, S. J., Ingber, D. E., and Zhou, J. (2003) Polycystins 1 and 2 



49 

 

mediate mechanosensation in the primary cilium of kidney cells. Nature genetics 33, 

129-137 

17. Praetorius, H. A., and Leipziger, J. (2009) Released nucleotides amplify the cilium-

dependent, flow-induced [Ca
2+

]i response in MDCK cells. Acta physiologica 197, 241-

251 

18. Praetorius, H. A., and Leipziger, J. (2010) Intrarenal purinergic signaling in the control 

of renal tubular transport. Annual review of physiology 72, 377-393 

19. Woda, C. B., Leite, M., Jr., Rohatgi, R., and Satlin, L. M. (2002) Effects of luminal flow 

and nucleotides on [Ca
2+

](i) in rabbit cortical collecting duct. American journal of 

physiology. Renal physiology 283, F437-446 

20. Morimoto, T., Liu, W., Woda, C., Carattino, M. D., Wei, Y., Hughey, R. P., Apodaca, 

G., Satlin, L. M., and Kleyman, T. R. (2006) Mechanism underlying flow stimulation of 

sodium absorption in the mammalian collecting duct. American journal of physiology. 

Renal physiology 291, F663-669 

21. Muto, S. (2001) Potassium transport in the mammalian collecting duct. Physiological 

reviews 81, 85-116 

22. Satlin, L. M. (2004) Developmental regulation of expression of renal potassium 

secretory channels. Current opinion in nephrology and hypertension 13, 445-450 

23. Wu, L., Gao, X., Brown, R. C., Heller, S., and O'Neil, R. G. (2007) Dual role of the 

TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. American 

journal of physiology. Renal physiology 293, F1699-1713 

24. Loffing, J., and Korbmacher, C. (2009) Regulated sodium transport in the renal 

connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Archiv : 

European journal of physiology 458, 111-135 



50 

 

25. Schild, L. (2010) The epithelial sodium channel and the control of sodium balance. 

Biochimica et biophysica acta 1802, 1159-1165 

26. Palmer, L. G., and Frindt, G. (2007) Na
+ 

and K
+
 transport by the renal connecting tubule. 

Current opinion in nephrology and hypertension 16, 477-483 

27. Rodan, A. R., Cheng, C. J., and Huang, C. L. (2011) Recent advances in distal tubular 

potassium handling. American journal of physiology. Renal physiology 300, F821-827 

28. Wang, W. H., and Giebisch, G. (2009) Regulation of potassium (K) handling in the renal 

collecting duct. Pflugers Archiv : European journal of physiology 458, 157-168 

29. Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I., and Kurachi, Y. (2010) 

Inwardly rectifying potassium channels: their structure, function, and physiological 

roles. Physiological reviews 90, 291-366 

30. Welling, P. A., and Ho, K. (2009) A comprehensive guide to the ROMK potassium 

channel: form and function in health and disease. American journal of physiology. Renal 

physiology 297, F849-863 

31. Rieg, T., Vallon, V., Sausbier, M., Sausbier, U., Kaissling, B., Ruth, P., and Osswald, H. 

(2007) The role of the BK channel in potassium homeostasis and flow-induced renal 

potassium excretion. Kidney international 72, 566-573 

32. Taniguchi, J., and Imai, M. (1998) Flow-dependent activation of maxi K
+
 channels in 

apical membrane of rabbit connecting tubule. The Journal of membrane biology 164, 35-

45 

33. Taniguchi, J., Tsuruoka, S., Mizuno, A., Sato, J., Fujimura, A., and Suzuki, M. (2007) 

TRPV4 as a flow sensor in flow-dependent K
+
 secretion from the cortical collecting 

duct. American journal of physiology. Renal physiology 292, F667-673 



51 

 

34. Woda, C. B., Bragin, A., Kleyman, T. R., and Satlin, L. M. (2001) Flow-dependent K
+ 

secretion in the cortical collecting duct is mediated by a maxi-K channel. American 

journal of physiology. Renal physiology 280, F786-793 

35. Berrout, J., Jin, M., Mamenko, M., Zaika, O., Pochynyuk, O., and O'Neil, R. G. (2012) 

Function of transient receptor potential cation channel subfamily V member 4 (TRPV4) 

as a mechanical transducer in flow-sensitive segments of renal collecting duct system. J 

Biol Chem 287, 8782-8791 

36. Gao, X., Wu, L., and O'Neil, R. G. (2003) Temperature-modulated diversity of TRPV4 

channel gating: activation by physical stresses and phorbol ester derivatives through 

protein kinase C-dependent and -independent pathways. J Biol Chem 278, 27129-27137 

37. Jin, M., Berrout, J., Chen, L., and O'Neil, R. G. (2012) Hypotonicity-induced TRPV4 

function in renal collecting duct cells: modulation by progressive cross-talk with Ca
2+

-

activated K
+
 channels. Cell Calcium 51, 131-139 

38. Montell, C., and Rubin, G. M. (1989) Molecular characterization of the Drosophila trp 

locus: a putative integral membrane protein required for phototransduction. Neuron 2, 

1313-1323 

39. Cosens, D. J., and Manning, A. (1969) Abnormal electroretinogram from a Drosophila 

mutant. Nature 224, 285-287 

40. Hardie, R. C., and Minke, B. (1992) The trp gene is essential for a light-activated Ca
2+

 

channel in Drosophila photoreceptors. Neuron 8, 643-651 

41. Nilius, B., and Owsianik, G. (2011) The transient receptor potential family of ion 

channels. Genome biology 12, 218 

42. Montell, C. (2005) The TRP superfamily of cation channels. Science's STKE : signal 

transduction knowledge environment 2005, re3 



52 

 

43. Venkatachalam, K., and Montell, C. (2007) TRP channels. Annual review of 

biochemistry 76, 387-417 

44. Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., Hricik, T. R., Earley, 

T. J., Hergarden, A. C., Andersson, D. A., Hwang, S. W., McIntyre, P., Jegla, T., Bevan, 

S., and Patapoutian, A. (2003) ANKTM1, a TRP-like channel expressed in nociceptive 

neurons, is activated by cold temperatures. Cell 112, 819-829 

45. Clapham, D. E., Runnels, L. W., and Strubing, C. (2001) The TRP ion channel family. 

Nature reviews. Neuroscience 2, 387-396 

46. Kottgen, M., Buchholz, B., Garcia-Gonzalez, M. A., Kotsis, F., Fu, X., Doerken, M., 

Boehlke, C., Steffl, D., Tauber, R., Wegierski, T., Nitschke, R., Suzuki, M., Kramer-

Zucker, A., Germino, G. G., Watnick, T., Prenen, J., Nilius, B., Kuehn, E. W., and Walz, 

G. (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. The Journal 

of cell biology 182, 437-447 

47. Zhang, Z. R., Chu, W. F., Song, B., Gooz, M., Zhang, J. N., Yu, C. J., Jiang, S., Baldys, 

A., Gooz, P., Steele, S., Owsianik, G., Nilius, B., Komlosi, P., and Bell, P. D. (2013) 

TRPP2 and TRPV4 form an EGF-activated calcium permeable channel at the apical 

membrane of renal collecting duct cells. PloS one 8, e73424 

48. Stewart, A. P., Smith, G. D., Sandford, R. N., and Edwardson, J. M. (2010) Atomic force 

microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 

heterotetramer. Biophysical journal 99, 790-797 

49. Clapham, D. E. (2003) TRP channels as cellular sensors. Nature 426, 517-524 

50. Gaudet, R. (2008) A primer on ankyrin repeat function in TRP channels and beyond. 

Molecular bioSystems 4, 372-379 



53 

 

51. Liu, B., and Qin, F. (2005) Functional control of cold- and menthol-sensitive TRPM8 

ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25, 1674-1681 

52. Liu, D., and Liman, E. R. (2003) Intracellular Ca
2+

 and the phospholipid PIP2 regulate 

the taste transduction ion channel TRPM5. Proceedings of the National Academy of 

Sciences of the United States of America 100, 15160-15165 

53. Rohacs, T., Lopes, C. M., Michailidis, I., and Logothetis, D. E. (2005) PI(4,5)P2 

regulates the activation and desensitization of TRPM8 channels through the TRP 

domain. Nature neuroscience 8, 626-634 

54. Montell, C. (2003) Mg
2+

 homeostasis: the Mg2+nificent TRPM chanzymes. Current 

biology : CB 13, R799-801 

55. Perraud, A. L., Fleig, A., Dunn, C. A., Bagley, L. A., Launay, P., Schmitz, C., Stokes, A. 

J., Zhu, Q., Bessman, M. J., Penner, R., Kinet, J. P., and Scharenberg, A. M. (2001) 

ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif 

homology. Nature 411, 595-599 

56. Schlingmann, K. P., Waldegger, S., Konrad, M., Chubanov, V., and Gudermann, T. 

(2007) TRPM6 and TRPM7--Gatekeepers of human magnesium metabolism. 

Biochimica et biophysica acta 1772, 813-821 

57. Nilius, B., and Voets, T. (2004) Diversity of TRP channel activation. Novartis 

Foundation symposium 258, 140-149; discussion 149-159, 263-146 

58. Alexander, S. P., Mathie, A., and Peters, J. A. (2004) Guide to receptors and channels, 

1st edition. British journal of pharmacology 141 Suppl 1, S1-126 

59. Vennekens, R., Owsianik, G., and Nilius, B. (2008) Vanilloid transient receptor potential 

cation channels: an overview. Current pharmaceutical design 14, 18-31 



54 

 

60. Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., 

Hudspeth, A. J., Friedman, J. M., and Heller, S. (2000) Vanilloid receptor-related 

osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 

103, 525-535 

61. Nilius, B., Prenen, J., Wissenbach, U., Bodding, M., and Droogmans, G. (2001) 

Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and 

volume-regulated anion currents in HEK-293 cells. Pflugers Archiv : European journal 

of physiology 443, 227-233 

62. Nilius, B., Vriens, J., Prenen, J., Droogmans, G., and Voets, T. (2004) TRPV4 calcium 

entry channel: a paradigm for gating diversity. American journal of physiology. Cell 

physiology 286, C195-205 

63. Vriens, J., Appendino, G., and Nilius, B. (2009) Pharmacology of vanilloid transient 

receptor potential cation channels. Molecular pharmacology 75, 1262-1279 

64. Wissenbach, U., Bodding, M., Freichel, M., and Flockerzi, V. (2000) Trp12, a novel Trp 

related protein from kidney. FEBS letters 485, 127-134 

65. Everaerts, W., Nilius, B., and Owsianik, G. (2010) The vanilloid transient receptor 

potential channel TRPV4: from structure to disease. Progress in biophysics and 

molecular biology 103, 2-17 

66. Guilak, F., Leddy, H. A., and Liedtke, W. (2010) Transient receptor potential vanilloid 

4: The sixth sense of the musculoskeletal system? Annals of the New York Academy of 

Sciences 1192, 404-409 

67. O'Neil, R. G., and Heller, S. (2005) The mechanosensitive nature of TRPV channels. 

Pflugers Archiv : European journal of physiology 451, 193-203 



55 

 

68. Voets, T., Prenen, J., Vriens, J., Watanabe, H., Janssens, A., Wissenbach, U., Bodding, 

M., Droogmans, G., and Nilius, B. (2002) Molecular determinants of permeation 

through the cation channel TRPV4. J Biol Chem 277, 33704-33710 

69. Xu, H., Zhao, H., Tian, W., Yoshida, K., Roullet, J. B., and Cohen, D. M. (2003) 

Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. 

SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 

mediates its response to hypotonic stress. J Biol Chem 278, 11520-11527 

70. Strotmann, R., Schultz, G., and Plant, T. D. (2003) Ca
2+

-dependent potentiation of the 

nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. 

J Biol Chem 278, 26541-26549 

71. Watanabe, H., Vriens, J., Janssens, A., Wondergem, R., Droogmans, G., and Nilius, B. 

(2003) Modulation of TRPV4 gating by intra- and extracellular Ca
2+

. Cell Calcium 33, 

489-495 

72. Suzuki, M., Hirao, A., and Mizuno, A. (2003) Microtubule-associated [corrected] 

protein 7 increases the membrane expression of transient receptor potential vanilloid 4 

(TRPV4). J Biol Chem 278, 51448-51453 

73. Fan, H. C., Zhang, X., and McNaughton, P. A. (2009) Activation of the TRPV4 ion 

channel is enhanced by phosphorylation. J Biol Chem 284, 27884-27891 

74. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T. D. (2000) 

OTRPC4, a nonselective cation channel that confers sensitivity to extracellular 

osmolarity. Nature cell biology 2, 695-702 

75. Liu, X., Bandyopadhyay, B. C., Nakamoto, T., Singh, B., Liedtke, W., Melvin, J. E., and 

Ambudkar, I. (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: 



56 

 

concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J 

Biol Chem 281, 15485-15495 

76. Galizia, L., Pizzoni, A., Fernandez, J., Rivarola, V., Capurro, C., and Ford, P. (2012) 

Functional interaction between AQP2 and TRPV4 in renal cells. Journal of cellular 

biochemistry 113, 580-589 

77. Karlsen, F. M., Holstein-Rathlou, N. H., and Leyssac, P. P. (1995) A re-evaluation of the 

determinants of glomerular filtration rate. Acta physiologica Scandinavica 155, 335-350 

78. Leyssac, P. P., Karlsen, F. M., Holstein-Rathlou, N. H., and Skott, O. (1994) On 

determinants of glomerular filtration rate after inhibition of proximal tubular 

reabsorption. The American journal of physiology 266, R1544-1550 

79. Yip, K. P., Holstein-Rathlou, N. H., and Marsh, D. J. (1993) Mechanisms of temporal 

variation in single-nephron blood flow in rats. The American journal of physiology 264, 

F427-434 

80. Holstein-Rathlou, N. H., and Marsh, D. J. (1990) A dynamic model of the 

tubuloglomerular feedback mechanism. The American journal of physiology 258, F1448-

1459 

81. Dwyer, T. M., and Schmidt-Nielsen, B. (2003) The renal pelvis: machinery that 

concentrates urine in the papilla. News in physiological sciences : an international 

journal of physiology produced jointly by the International Union of Physiological 

Sciences and the American Physiological Society 18, 1-6 

82. Baer, P. G., Bianchi, G., and Liliana, D. (1978) Renal micropuncture study of 

normotensive and Milan hypertensive rats before and after development of hypertension. 

Kidney international 13, 452-466 



57 

 

83. DiBona, G. F., and Rios, L. L. (1978) Mechanism of exaggerated diuresis in 

spontaneously hypertensive rats. The American journal of physiology 235, 409-416 

84. Cheema-Dhadli, S., Lin, S. H., Keong-Chong, C., Kamel, K. S., and Halperin, M. L. 

(2006) Requirements for a high rate of potassium excretion in rats consuming a low 

electrolyte diet. The Journal of physiology 572, 493-501 

85. Mozaffari, M. S., Jirakulsomchok, S., Shao, Z. H., and Wyss, J. M. (1991) High-NaCl 

diets increase natriuretic and diuretic responses in salt-resistant but not salt-sensitive 

SHR. The American journal of physiology 260, F890-897 

86. Guler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., and Caterina, M. (2002) Heat-

evoked activation of the ion channel, TRPV4. J Neurosci 22, 6408-6414 

87. Watanabe, H., Vriens, J., Suh, S. H., Benham, C. D., Droogmans, G., and Nilius, B. 

(2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system 

and in native mouse aorta endothelial cells. J Biol Chem 277, 47044-47051 

88. Watanabe, H., Davis, J. B., Smart, D., Jerman, J. C., Smith, G. D., Hayes, P., Vriens, J., 

Cairns, W., Wissenbach, U., Prenen, J., Flockerzi, V., Droogmans, G., Benham, C. D., 

and Nilius, B. (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol 

derivatives. J Biol Chem 277, 13569-13577 

89. Vriens, J., Owsianik, G., Janssens, A., Voets, T., and Nilius, B. (2007) Determinants of 4 

alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel 

TRPV4. J Biol Chem 282, 12796-12803 

90. Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T., and Nilius, B. (2003) 

Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 

channels. Nature 424, 434-438 



58 

 

91. Nilius, B., and Voets, T. (2013) The puzzle of TRPV4 channelopathies. EMBO reports 

14, 152-163 

92. Zaika, O., Mamenko, M., Berrout, J., Boukelmoune, N., O'Neil, R. G., and Pochynyuk, 

O. (2013) TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive 

polycystic kidney disease. J Am Soc Nephrol 24, 604-616 

93. Mamenko, M., Zaika, O. L., Boukelmoune, N., Berrout, J., O'Neil, R. G., and 

Pochynyuk, O. (2013) Discrete control of TRPV4 channel function in the distal nephron 

by protein kinases A and C. J Biol Chem 288, 20306-20314 

94. Mamenko, M., Zaika, O., O'Neil, R. G., and Pochynyuk, O. (2013) Ca
2+

 Imaging as a 

tool to assess TRP channel function in murine distal nephrons. Methods in molecular 

biology 998, 371-384 

95. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca
2+

 

indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-3450 

96. Tian, W., Salanova, M., Xu, H., Lindsley, J. N., Oyama, T. T., Anderson, S., Bachmann, 

S., and Cohen, D. M. (2004) Renal expression of osmotically responsive cation channel 

TRPV4 is restricted to water-impermeant nephron segments. American journal of 

physiology. Renal physiology 287, F17-24 

97. Palmer, L. G., Antonian, L., and Frindt, G. (1994) Regulation of apical K and Na 

channels and Na/K pumps in rat cortical collecting tubule by dietary K. The Journal of 

general physiology 104, 693-710 

98. Palmer, L. G., and Frindt, G. (2000) Aldosterone and potassium secretion by the cortical 

collecting duct. Kidney international 57, 1324-1328 

99. Wang, W. (2004) Regulation of renal K transport by dietary K intake. Annual review of 

physiology 66, 547-569 



59 

 

100. Beesley, A. H., Hornby, D., and White, S. J. (1998) Regulation of distal nephron K
+ 

channels (ROMK) mRNA expression by aldosterone in rat kidney. The Journal of 

physiology 509 ( Pt 3), 629-634 

101. Gao, F., Sui, D., Garavito, R. M., Worden, R. M., and Wang, D. H. (2009) Salt intake 

augments hypotensive effects of transient receptor potential vanilloid 4: functional 

significance and implication. Hypertension 53, 228-235 

102. Bailey, M. A., Cantone, A., Yan, Q., MacGregor, G. G., Leng, Q., Amorim, J. B., Wang, 

T., Hebert, S. C., Giebisch, G., and Malnic, G. (2006) Maxi-K channels contribute to 

urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's 

syndrome and in adaptation to a high-K diet. Kidney international 70, 51-59 

103. Pluznick, J. L., Wei, P., Grimm, P. R., and Sansom, S. C. (2005) BK-{beta}1 subunit: 

immunolocalization in the mammalian connecting tubule and its role in the kaliuretic 

response to volume expansion. American journal of physiology. Renal physiology 288, 

F846-854 

104. Rieg, T., Bundey, R. A., Chen, Y., Deschenes, G., Junger, W., Insel, P. A., and Vallon, 

V. (2007) Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated 

renal Na+ and water reabsorption. FASEB journal : official publication of the Federation 

of American Societies for Experimental Biology 21, 3717-3726 

 

 

 

 



60 

 

 

VITA 

 

Nabila Boukelmoune was born in Oran, Algeria.  She attended the University of Science and 

Technology of Oran, Algeria, majoring in Molecular Genetics. She received her Engineer (B. 

Sc) degree in 2006. Nabila then worked as a medical representative for Julphar, one of the 

largest pharmaceutical companies in the Middle East and North Africa.  In the fall of 2011, she 

entered the Graduate Program in Molecular Biology at The University of Oran and received a 

Master of Science in 2012. Nabila joined the Graduate School of Biomedical Sciences at The 

University of Texas Health Science Center at Houston in fall 2012. She is a Master’s student in 

the Cell and Regulatory Biology graduate program and will graduate in December 2014. 


	Regulation Of Functional Expression Of Mechanosensitive Trpv4 Channel In The Distal Nephron By Dietary Potassium And Sodium Intake
	Recommended Citation

	tmp.1419021201.pdf.hhXVO

