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FIGURE 34. Expression of IGF-I in NPM-ALK+ ALCL cell lines. (A) Western blotting 
shows overexpression of endogenous IGF-I in 4/5 NPM-ALK+ ALCL cell lines. EJM 
(plasma cell myeloma) and RSC96 (Schwann cells) cell lines were used as positive and 
negative controls, respectively. (B) RT-PCR shows the presence of IGF-I mRNA in SUP-
M2, SR-786, DEL (low level), and EJM, and its absence in Karpas 299, SU-DHL-1, and 
RSC96. (C) SUP-M2, SR-786, and DEL cell lines demonstrate the presence of secreted IGF-
I in cell culture supernatants. The EJM cell line was included because it expresses IGF-I 
protein and mRNA. IGF-I is almost undetectable in cell culture supernatants from Karpas 
299 and RSC96 cells. The experiment was repeated 3 times, and the results shown are the 
mean ± SD. P<0.01 for SUP-M2, SR-786, and DEL compared with other cell lines. Adapted 
by direct permission from BLOOD (Shi P, Lai R, Lin Q, Iqbal AS, Young LC, Kwak 
LW, Ford RJ, Amin HM. IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to 
induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells. Blood. 2009 Jul 
9;114(2):360-70.), copyright 2009. 
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FIGURE 35. NPM-ALK does not affect the levels of expression of IGF-IR and IGF-I. 
(A) Western blotting shows that at 48 h, downregulation of NPM-ALK by ALK siRNA was 
not associated with decreased expression of IGF-IR, pro-IGF-I or IGF-I proteins in SUP-M2, 
SR-786, and DEL cell lines. Analysis of IGF-IR levels after transfection of the cells with 
ALK siRNA was performed at extended time points (12, 24, 48, 72, and 96 h), and also in 
other cell lines including Karpas 299 and SU-DHL-1, with similar results (data not shown). 
β-Actin shows equal protein loading. (B) Downregulation of NPM-ALK in the 3 cell lines 
did not decrease the levels of IGF-IR mRNA. The example shown is at 48 h after transfection 
of the cells with ALK siRNA. The results are shown as means ± SE of 4 consistent 
experiments. In addition, analysis of IGF-IR mRNA was performed at other time points and 
cell lines as described in Fig. 6A. Changes in IGF-IR mRNA levels were not detected at any 
time point (data not shown). (C) An ELISA assay showing that specific downregulation of 
NPM-ALK did not decrease the levels of secreted IGF-I in the 3 NPM-ALK+ ALCL cell 
lines SUP-M2, SR-786, and DEL. The results represent means ± SE of 3 experiments. 
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3.6. Discussion for Aim 3 

In this aim we show that posttranslational defects exist and contribute to the pathogenesis of 

NPM-ALK+ ALCL. Firstly, we found that there was an overall upregulation of SUMO 

proteins expression in 5 NPM-ALK+ ALCL cell lines as well as in ALK+ ALCL patients’ 

specimens compared to normal human T lymphocytes. Specifically, the expression of 

SUMO-2/3 was increased in the lymphoma cell lines and patients’ tumor samples. In 

addition, the expression of SUMO-1 was increased in majority of cell lines and patients’ 

tumors. In contrast, expression of the SUMOylation inhibitor SENP1 was decreased in the 

cell lines and patients’ tumors than the T lymphocytes. We also showed that NPM-ALK is 

SUMOylated via covalent modification by SUMO proteins, which protects it from 

degradation. In support of this idea, inhibition of SUMOylation through restoration of the 

deSUMOylating SENP1 protease decreased SUMO protein expression, and induced a 

substantial decrease in NPM-ALK protein expression in the cytoplasm and nucleus. Our data 

provide strong evidence that SUMOylation contributes to the stability of NPM-ALK protein 

in NPM-ALK+ ALCL. Downregulation of SUMOylation by SENP1 resulted in decreased 

viability, proliferation, and colony formation potential of the lymphoma cells, suggesting that 

disruption of the SUMOylation pathway induces tumor-suppressing effects in this type of 

cancer. Secondly, we found that NPM-ALK does not regulate the expression of IGF-I and 

IGF-IR proteins. IGF-I is the main ligand for IGF-IR and causes posttranslational 

modifications of IGF-IR thorough phosphorylation and subsequent activation. 

SUMOylation is a dynamic process that induces major impact on target proteins 

including changing their stability, localization, and activity. Whereas SUMOylation is 

important for physiological processes, it is deregulated in cancer cells [248]. In line with this 

possibility, our data showed that the SUMO proteins were aberrantly overexpressed and 
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SENP1 protease was decreased in NPM-ALK+ ALCL compared to normal T lymphocytes. It 

has been established that an important outcome of SUMOylation is the maintenance of 

protein stability by protecting targets from proteosomal degradation [237, 249-254]. We were 

able to identify K24 and K32 within the NPM domain as targets for SUMOylation in NPM-

ALK oncogenic protein. Indeed, all SUMO modifiers were capable of modifying NPM-ALK 

at these lysine residues. Mutations induced at K24 and K32 in the SUMO consensus motifs 

of NPM-ALK prevented SUMO-1 and SUMO-3 from modifying NPM-ALK as well as 

resulted in significant degradation of NPM-ALK protein, testifying to the stabilizing effect of 

SUMOylation on NPM-ALK. Moreover, both SUMO-1 and SUMO-3 were required to 

induce substantial degradation, in contrast to the level of degradation achieved individually 

by these modifiers. This observation suggests that this dual mutation that prevents both 

SUMO modifiers from modifying NPM-ALK is required for NPM-ALK to undergo 

degradation. Also, the finding that NPM-ALK double mutant was not degraded entirely 

because NPM-ALK double mutant maintained its ability to bind with SUMO-2. Therefore, 

we cannot completely exclude that other SUMO binding motifs may encompass potential 

binding sites for other SUMO modifiers, such as SUMO-2, which also conveys protection of 

NPM-ALK from degradation.  

We elected to study SENP1 because of its ability to deSUMOylate all 3 SUMO modifiers, 

unlike other SENPs that have preferential deSUMOylation activities [255-257]. SENPs have 

2 primary functions: 1) the conversion of SUMO precursors to mature SUMO via removal of 

a portion of the C-terminus; and 2) the removal of SUMO from target proteins. These SENP-

controlled processes contribute to the dynamic nature of SUMOylation. In fact, using 

immunofluorescence staining we found that SENP1 moves from the nucleus to cytoplasm in 

only 15 min. This is in line with previous studies which showed the very short time required 
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by SENP1 to shuttle between the nucleus and cytoplasm, and how this mechanism allows 

SENP1 to elicit different functions in multiple compartments within the cell [245, 246, 258-

260]. It has been shown that amino acid residues located at positions 171-177, within the N-

terminal region of SENP1, are essential for SENP1 nuclear targeting. This was directly 

demonstrated through substitution experiments in which the basic residues within this short 

motif hindered significantly SENP1 nuclear accumulation and restricted its expression in the 

cytoplasm. Although this motif is does not fit the classical consensus NLS sequence, these 

results provided evidence that this region can be classified as a nonconesus NLS and more 

importantly, is required for SENP1 nuclear import as well as modulating SENP1 activity 

[260]. Reestablishment of SENP1 in NPM-ALK+ ALCL cells resulted in increased 

deSUMOylation activity, which was associated with decreased expression of the SUMO 

proteins and NPM-ALK protein levels. As a result, downregulation of the SUMOylation 

pathway by SENP1 decreased cell viability, proliferation, and colony formation.  

NPM is inherently capable of moving between the nucleus and cytoplasm [50]. The 

nuclear localization signal (NLS) of NPM is present within its C-terminus [17]. Nonetheless, 

the NPM segment that associates with ALK to form the NPM-ALK chimera is derived from 

the more proximal N-terminus that lacks the NLS, explaining why NPM-ALK lacks the 

ability to move to the nucleus [50]. However, nuclear translocation of NPM-ALK still occurs 

primarily because of the formation of heterodimers between wild type NPM and NPM-ALK. 

Our experiments showed that the expression of NPM-ALK in the nucleus, as well as 

cytoplasm, was significantly reduced after SENP1 transfection. This may be explained by: 1) 

SENP1 activity increased in the nucleus upon transfection with SENP1 plasmid, allowing for 

deSUMOylation to simultaneously increase in the nucleus leading to NPM-ALK 

destabilization; and 2) SENP1-mediated degradation of NPM-ALK heterodimers in the 
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nucleus makes them less available for nuclear export into the cytoplasm. Our results suggest 

a model in which SUMOylation provides stabilization of NPM-ALK protein, which appears 

to further sustain NPM-ALK expression and accumulation in the nucleus and cytoplasm.  

SUMOylation can lead to alteration of protein surfaces, which greatly affects interactions 

of the target protein with other molecules that can also indirectly influence the target’s 

stability. For instance, it has been shown that SUMOylation can promote protein-protein 

interactions [261-265]; however, in many cases, SUMOylation leads to protein-protein 

interaction interference [266-268]. For instance, SUMOylated E2-25K prevents interaction 

with the ubiquitin E1 activating enzyme [268]. Similarly, there have been studies indicating 

that disruption of SUMOylation reveals ubiquitin-acceptor lysine residues located elsewhere 

in the protein, whose subsequent ubiquitination will promote protein degradation [250, 251, 

269]. In NPM-ALK+ ALCL cells, deSUMOylation of NPM-ALK by SENP1 led to an 

increase in the association of ubiquitin and NPM-ALK, suggesting that SUMOylation may 

be able to prevent NPM-ALK from entering the proteosomal degradation pathway. NPM-

ALK has been previously shown to be ubiquitinated through hsp70-mediated proteosomal 

degradation, although a specific lysine residue for ubiquitination has not been identified 

[247]. Our data suggest that transfection of SENP1 resulted in the removal of the SUMO 

modifiers, which unmasked lysine residues in NPM-ALK and made them available for 

modification by ubiquitin for proteosomal degradation. To this end, there is no direct 

evidence that ubiquitin binds to and modifies K24 and K32 that we identified as sites of 

modification by SUMO proteins, however, we cannot completely rule out that at least one of 

these residues possess ability to modified by ubiquitin. Indeed, entering the amino acid 

sequence in a web-based ubiquitination prediction search algorithm (UbPred; 

www.ubpred.org) revealed that NPM-ALK contains potential ubiquitination site at K32  
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(intermediate statistical confidence of p=0.71). Importantly, we have provided evidence that 

ubiquitin and NPM-ALK are physically associated after SENP1 transfection, and it is likely 

that deSUMOyaltion triggers the ubiquitination pathway.  

It has been previously shown that IGF-IR undergoes ligand-dependent SUMOylation, 

which appears to be a prerequisite for its nuclear translocation [238, 270]. It has also been 

shown that this nuclear translocation requires the phosphorylation of IGF-IR [271]. In our 

lymphoma cells, IGF-I stimulation induced nuclear expression of pIGF-IR (Figure S7). We 

also determined that IGF-IR is capable of interacting with SUMO proteins in NPM-ALK+ 

ALCL cells (Figure S8), and that transfection of SENP1 leads to decreased expression of 

IGF-IR in the cytoplasm as well as decreased pIGF-IR nuclear expression (Figure S9). We 

have recently demonstrated that the physical association between NPM-ALK and IGF-IR 

proteins enhances the stability of NPM-ALK [127]. In support of this idea, specific targeting 

of IGF-IR by siRNA significantly decreased NPM-ALK protein levels, attesting to the 

contribution of IGF-IR to maintaining NPM-ALK protein stability [127]. In contrast, NPM-

ALK has no effect on IGF-IR protein stability (Figure 35 in section 3.5.3.2.). Therefore, it 

can be postulated that deSUMOylation of IGF-IR by SENP1 perhaps causes interference of 

its association with NPM-ALK, which would lead to NPM-ALK protein instability. 

However, futher studies need to be performed to establish such a claim. Jointly, these 

alternative mechanisms also provide novel evidence in which SUMOylation contributes to 

NPM-ALK protein stability.  

It was previously demonstrated that chimeric oncogenes such as the Ewing sarcoma 

oncogenic fusion proteins induce the expression of IGF-I, the primary ligand of IGF-IR, 

which enhances the phosphorylation/activation of IGF-IR though dimerization [68]. In this 

aim, we tested whether NPM-ALK induces effects similar to Ewing sarcoma fusion proteins 
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on IGF-I levels. Specific abrogation of NPM-ALK by siRNA failed to reduce pro-IGF-I or 

IGF-I protein levels, which suggests that NPM-ALK lacks ability to upregulate IGF-I 

expression, and therefore does not possess a posttranslational effect on IGF-IR, at least from 

this aspect.  

In this aim, we identified for the first time that SUMOylation contributes to maintaining 

NPM-ALK protein stability, and hinders its proteosomal degradation. In contrast, SENP1-

mediated disruption of SUMOylation causes degradation of NPM-ALK, which thereby 

reduces the oncogenic potential of this oncogenic protein. At the other hand, we found that 

NPM-ALK does not regulate IGF-I-mediated posttranslational modulation of IGF-IR. 
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3.6.1. Supplemental 
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FIGURE S7. IGF-IR is SUMOylated. IGF-IR was immunoprecipitated in Karpas 299 and 
SR-786 cells, and expression of SUMO proteins was evaluated by Western blotting.  These 
studies revealed SUMO-1 and SUMO-2/3 are associated with IGF-IR, as indicated by bands 
present in lane 1 (IGF-IR immunoprecipitation) and not in lanes 2 and 3, where mouse IgG 
was immunoprecipitated or beads alone, respectively.  
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In this work, we identified novel dregulated mechanisms that determine the pathogenic 

expression of IGF-IR and NPM-ALK, two potent oncogenic proteins that play important 

roles in the survival of NPM-ALK+ ALCL; an aggressive type of cancer that predominantly 

affects children and young adults. 

At the transcriptional level, we found that two transcription factors, namely Ik-1 and 

MZF1, are markedly decreased in NPM-ALK+ ALCL cell lines and patients lymphoma 

tissues. Importantly, we provided evidence that Ik-1 and MZF1 negatively regulate the IGF-

IR gene promoter, which leads to a significant decrease in the expression of IGF-IR mRNA 

and protein. We also used FISH analysis and found no evidence to support amplification of 

the IGF-IR gene in this lymphoma. It is important to note that although we performed FISH 

analysis in 5 established NPM-ALK+ ALCL cell lines and obtained consistent findings, it 

cannot be ruled out that if a large cohort of patient samples were analyzed, rare cases with 

IGF-IR gene amplification might have been discovered. 

At the posttranscriptional level, we found that the time required for the decay of IGF-IR 

mRNA is significantly longer in the NPM-ALK+ ALCL cell lines than normal human T 

lymphocytes, which supports the idea that more IGF-IR mRNA transcripts are available for 

translation into IGF-IR protein, resulting in the overexpression of IGF-IR in this lymphoma. 

Also at the posttranscriptional levels, we showed that miR-30a and miR-30d are substantially 

decreased in NPM-ALK+ ALCL cell lines and human lymphoma tissues. Importantly, we 

demonstrated that miR-30a and miR-30d are capable of binding and inhibiting the IGF-IR-

3’UTR to decrease IGF-IR protein expression.  

At the posttranslational level, we identified for the first time that SUMOylation, a 

posttranslational modification mechanism, is deregulated in NPM-ALK+ ALCL. In this 
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regard, SUMOylation appears to sustain the stability of NPM-ALK protein and facilitates its 

nuclear and cytoplasmic accumulation. Although it has been demonstrated in other types of 

cancer, herein our data support that SUMOylation sustains IGF-IR protein stability also in 

NPM-ALK+ ALCL. On the other hand, there was no evidence to support that NPM-ALK is 

involved in the regulation of IGF-I expression, and hence doesn’t impact IGF-I-mediated 

phosphorylation/activation of IGF-IR.  

Intriguingly, our data support that increased expression of IGF-IR protein and decreased 

expression of miR-30a and miR-30d appear not to be directly resulting from the expression 

of NPM-ALK. Although NPM-ALK has significant oncogenic potential and its expression is 

considered the mainstay feature in NPM-ALK+ ALCL, most likely NPM-ALK is not the only 

factor that governs the clinicopathological and the immunophenotypic features of NPM-

ALK+ ALCL as known in human patients. Evidence suggests the oncogenic effects of NPM-

ALK stem from its ability to collaborate with other survival-promoting proteins within the 

lymphoma cells. Although the lymphomagenic potential of NPM-ALK has been 

demonstrated in chimeric as well as transgenic (Tg) mice models, mice typically developed 

significant B-cell lymphoma and plasma cell tumors with a smaller proportion developing T-

cell neoplasms. [272]. For instance, it has been shown that in an NPM-ALK Tg mouse model 

under the control of a murine CD4 promoter, mice developed lymphoma tumors of B-cell 

origin [56]. In addition, the lymphoma tumors found in some these mice were exclusively 

plasmablastic [56]. In another model, NPM-ALK transgenic mice under the control of the 

Vav-promoter also gave rise almost exclusively to tumors of a B-cell origin [273]. This is 

particularly interesting because the Vav-promoter is directly involved in the development and 

expression of all the types of hematopoietic lineages. Furthermore, in a transgenic mouse 

model in which NPM-ALK was under the control of the lck promoter, the developed tumors 
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were of immature T lymphoblastic type [274]. While the lck promoter model is more suitable 

for studying T-cell lineage tumors (lck promoter is active in T cells), the authors concluded 

that this animal model does not reflect the classic human NPM-ALK+ ALCL development. 

Lastly, in a chimeric animal model, irradiated mice transplanted with bone marrow cells 

infected with a retroviral construct, pSRαMSVtkneo–NPM-ALK that contains the 

human NPM-ALK cDNA, developed lymphomas that were composed of immunoblast-like B-

cells [53]. Collectively, these observations indicate that NPM-ALK may be inclined to 

transform B-cell lineages in mice, in contrast to tumors of T-cell origin such as those of 

human NPM-ALK+ ALCL [275]. More importantly, these data are inline with our results that 

failed to show that NPM-ALK, despite being a very important survival molecule in NPM-

ALK+ T-cell lymphoma, does not necessarily regulate all factors contributing to the survival 

of these cells, e.g., the increase in IGF-IR or the decrease in miR-30a/miR-30d expressions.  

The evidence provided by the animal studies supporting how NPM-ALK is very 

important for development of lymphoma tumors yet, these tumors are not necessarily similar 

to NPM-ALK+ ALCL in humans further strengthens the argument that the multilevel 

deregulation identified in our experiments carry important potential in the pathogenesis of 

this aggressive disease. However, there are limitations to in vitro studies including that this 

experimental system lacks essential components that affect the cells under physiological 

conditions such as the microenvironment that includes surrounding stromal tissue and blood 

vessels. These elements are not found in a purely in vitro system, and can influence the 

outcome of the result. In vivo experiments, although more closely related to human 

conditions, also have their limitations. While animal models do contain the 

microenvironment, they do not represent human conditions exactly. Differences in species, 

even subtly, can produce different outcomes. Therefore, perhaps the ideal way to examine if 
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truly a specific oncogenic mechanism is deregulated is by directly analyzing this mechanism 

in a large cohort of patients with correlation to clinicopathological features and response to 

therapy and survival data. In our study, we analyzed  the expression of  Ik-1, MZF1, miR-30, 

and SUMO proteins in relatively small patient populations. Although such analysis supports 

that these aberrancies indeed exist in patients, more extensive analysis in a larger cohort of 

patients is expected to help to provide concrete conclusions.   

It has been shown that NPM-ALK interacts with several molecules known to regulate 

cellular survival. In preliminary studies conducted in our lab, we found that NPM-ALK 

interacts with IGF-IR to maintain the latter’s phosphorylation status. Reciprocally, our data 

suggested that IGF-IR not only maintains NPM-ALK phosphorylation, but also sustains its 

stability. In the current study, we have further demonstrated using several experimental 

approaches in which modifications of transcriptional, posttranscriptional, and 

posttranslational pathways resulted in abrogation of IGF-IR signaling system was associated 

with a remarkable decrease in NPM-ALK protein expression attesting that IGF-IR sustains 

the stability of NPM-ALK. At least from these data, IGF-IR could represent a unique 

oncogenic entity in this lymphoma. 

The aberrant expression/function of key molecules at each regulatory stage, beginning at 

the “gene level” and ending at the “protein level”, allows IGF-IR to escape tight regulatory 

systems in this lymphoma; in contrast to normal human T lymphocytes, in which these 

systems keep IGF-IR expression at low physiologic levels. This observation further 

emphasizes the contributions of every single system. It also suggests that the failure of one 

mechanism to maintain overexpression of IGF-IR might result in alternative pathways that 

rescue IGF-IR expression and maintain it at very high levels for it to continue to elicit 

oncogenic effects. Targeting IGF-IR not only provides opportunities to decrease the 
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oncogenic effects mediated by IGF-IR alone, but could also affect significantly the 

oncogenic potential of NPM-ALK due to IGF-IR’s regulatory effects on the stability of the 

fusion protein. Exploring how these individual mechanisms are themselves deregulated could 

be an important direction for future studies (Figure 36).  

Our model supports the multifaceted nature of NPM-ALK+ lymphoma, and that 

disturbances in more than one regulatory mechanism exist, which reflects the complex 

survival network in these lymphoma cells in particular as well as in cancer cells in general. 

Even though this lymphoma is driven by a major oncogene such as NPM-ALK, our data 

strongly suggest that the regulation of the expression of IGF-I/IGF-IR molecules is largely 

independent from NPM-ALK. Despite the fact that this lymphoma, similar to few other types 

of cancer, is driven by a major oncogene, numerous epithelial, mesenchymal, neural, and 

hematological cancers are instead driven by several oncogenic molecules that work in 

harmony to promote cell survival. Notably, upregulation of IGF-IR is a common feature 

among the majority of these tumors. Thus, the findings in our lymphoma model could be 

applied to other types of cancer. In support of this idea, our data show that miR-30a and miR-

30d can negatively regulate IGF-IR posttranscriptionally; not only in NPM-ALK+ ALCL but 

also in breast and colon cancers as well. Our study also demonstrates that upregulation of 

IGF-IR gene expression results from aberrancies in transcriptional regulatory mechanisms, 

namely Ik-1 and MZF1 transcription factors, resembling what was found before with other 

transcription factors that regulate IGF-IR in epithelial and mesenchymal tumors. In a similar 

fashion, our data support that aberrant SUMOylation of IGF-IR occurs in NPM-ALK+ 

ALCL, and these findings are in line with previously established findings in other types of 

cancer where SUMOylation of IGF-IR plays important roles in their pathogenesis. 

Furthermore, our current study supports that SUMOylation plays an additional important role 
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via maintaining the stability of NPM-ALK. These observations highlight that although 

different types of cancer exhibit remarkably heterogeneous clinical and pathological features, 

certain molecular characteristics are still common among them.  

Overall, we provide novel evidence that multilevel deregulation of survival mechanisms 

contributes to the pathogenesis of NPM-ALK+ ALCL. We hope that our findings will further 

current knowledge of the pathobiology of NPM-ALK+ ALCL and provide a framework for 

the tailoring of novel therapeutic strategies to eradicate this lymphoma.  
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FIGURE 36. Mechanisms contributing to deregulated survival mechanisms in NPM-
ALK+ ALCL. Ik-1 and MZF1 expression levels are significantly decreased, preventing them 
from transcriptionally inhibiting IGF-IR gene expression and allowing IGF-IR mRNA to be 
transcribed. MiR-30a and miR-30d are markedly decreased in NPM-ALK+ ALCL. Lack of 
suppression of the IGF-IR-3’UTR by these miRs allows IGF-IR protein to stabilize. 
Furthermore, slower decay of IGF-IR mRNA increases its bioavailability for protein 
translation. Fully translated IGF-IR is further stabilized by the posttranslational modification 
SUMOylation. SUMOylated IGF-IR can indirectly stabilize NPM-ALK, which is itself is 
capable of being SUMOylated. How these mechanisms are regulated (indicated by “?”) is a 
direction of future study.   
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Future Directions 

Apart from the future studies mentioned in the individual discussion sections, identifying 

whether each of our identified mechanisms have regulatory effects on each other as well as 

determining how these aberrant mechanisms are deregulated would be worth pursuing, as 

illustrated in Figure 36. Some of the important mechanisms that require further analysis 

include: 

1. Determining whether NPM-ALK contributes to the decreased expression levels of Ik-1 

and MZF1 in these lymphoma cells. Preliminary experiment: Transfect NPM-ALK+ 

ALCL cells with scrambled siRNA or ALK siRNA, and check Ik-1 and MZF1 expression 

levels by qPCR and Western blotting.  

2. Identifying the host genes of miR-30a and miR-30d may lead to better understanding of 

how these microRNAs are deregulated, not only in NPM-ALK+ ALCL but also in any 

other type of cancer. It is possible that Ik-1 and MZF1 help support the transcription of 

miR-30 by regulating its host gene. Preliminary experiment: Identify miR-30 genes. In 

addition, overexpression of Ik-1 and MZF1 in NPM-ALK+ ALCL cells by transfection, 

and measure miR-30 expression levels by qPCR.   

3. It has been previously shown that miR-30 directly targets the SUMO conjugating enzyme 

Ubc9, and that restoration of a previously decreased miR-30 expression level inhibits 

Ubc9 expression. Exploring whether the aberrantly decreased expression of miR-30 in 

NPM-ALK+ ALCL cells contributes to upregulation of SUMOylation would also support 

IGF-IR and NPM-ALK protein stability. Preliminary experiment: Overexpress miR-30a 

and miR-30d in NPM-ALK+ ALCL cells, and measure Ubc9 and SUMO expression by 

qPCR and Western blotting.   
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