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GENETICS OF OBESITY IN STARR COUNTY, TEXAS MEXICAN AMERICANS 

Heather Michelle Highland 

Advisory Professor: Craig L. Hanis, Ph.D. 

 Currently, over two-thirds of Americans are classified as over-weight or obese. 

Obesity increases risk for many other diseases including type 2 diabetes, heart disease, 

stroke, and cancer, making obesity the largest public health problem in America and 

most other Westernized nations. Hispanics have a higher rate of both obesity and type 2 

diabetes, making them a particularly interesting population in which to study obesity. 

For the last 33 years, the Starr County Health Studies has collected an array of 

phenotypes and biological samples from residents of Starr County, along Texas-Mexico 

border. This study includes 825 subjects who were not known to have diabetes at 

ascertainment. These subjects have now been seen a second time, on average 8.5 years 

later. At both visits we measured several aspects of obesity including BMI, 

bioimpedance to estimate percent body fat, and waist, hip, and arm circumferences. By 

using multivariate approaches to leverage the array of obesity measures, we have better 

captured both the amount of adipose tissue and the location of fat deposits.  

To assess association of obesity related traits with genetic variation from both 

genome-wide array data imputed to 1000 Genomes Phase 1 integrated dataset and 

exome sequencing, both gene-based and single variant tests were conducted. Through 

these single variant tests, we identified an association with waist to hip ratio and low 

frequency variants, in two adjacent GABA receptor subunit genes, GABRB2 and 
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GABRA6, including a nonsynonymous variant in GABRA6. Additional associations 

include an association with a composite measure of adiposity that encompasses degree 

of adiposity and location of excess fat above or below the waist and TREK1, a gene 

responsible for trafficking the GABAA receptor to the cell membrane. Gene based tests 

of rare variants yielded associations between central versus peripheral adiposity and 

ACSL1, a gene involved in triglyceride biosynthesis. Further replication is required to 

confirm these associations. While the importance of neuronal signaling pathways in 

body fat distribution has long been known, many aspects of these pathways are poorly 

understood. Better understanding of these pathways may identify potential 

pharmaceutical targets. 
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Chapter 1: Background and Significance 

Epidemiology and Impact of Obesity 

 With obesity prevalence increasing at alarming rates, it is now more important 

than ever to understand the risk factors and underlying biology of body fat mass and 

distribution. Obesity is defined as having a body mass index (BMI) of at least 30 

kg/m2(1).The prevalence of obesity has more than doubled between 1995 and 2012(1). 

Hispanics, particularly in Texas, consistently have a higher prevalence of obesity than 

the general United States population (Figure 1). The research presented here focuses on 

identifying genetic factors contributing to obesity specifically in the Mexican-American 

population of Starr County, Texas.  

	

Figure 1. Prevalence of obesity and overweight. The prevalence of BMI > 25kg/m2 in 

the United States and Texas split by ancestry(1).  

45

50

55

60

65

70

75

80

1995 1997 1999 2001 2003 2005 2007 2009 2011

p
er

ce
n

ti
le

 o
ve

rw
ei

gh
t 

an
d

 o
b

es
e

Year
US and territories Texas Hispanics

US and Territories Hispanics Texas



 2	

 While one could argue whether obesity itself is a disease, it is certainly a risk 

factor for the development of many other diseases, including type 2 diabetes, heart 

disease, cancer, stroke, osteoarthritis, and sleep apnea. A decrease in body fat, lowers an 

individual’s risk of developing these comorbidities. These comorbidities contribute to 

the considerable economic impact of obesity in the forms of increased medical costs, lost 

productivity, and the diet and exercise industry. Individuals with elevated BMIs have 

higher costs for medical care; the biggest absolute increases are attributable to 

comorbidities of circulatory diseases (10.53% increase) including cardiovascular disease 

and myeloproliferative diseases (10.67% increase) such as chronic myelogenous 

leukemia and thrombocytosis in men and musculoskeletal conditions (3.46% increase) 

and circulatory diseases (4.27% increase) in women(2). Someone with a BMI of 45 will 

average more than double the medical costs of someone with a BMI of 19(2). In total the 

excess medical spending attributable to obesity was $147 billion in 2008(3). Beyond 

increased medical costs, employees with obesity are estimated to have a 22% increase in 

missed work over their normal-weight counterparts(4). While employers have increased 

costs due to obesity in the form of higher insurance premiums, lost labor, and decreased 

productivity, individuals have increased spending as well, largely in the form of medical 

expenditures and costs associated with attempts to lose weight. The weight loss industry 

accounts for more than $60 billion spending annually; this spending includes gym 

memberships, supplements, diet food, and weight loss plans(5).  

Lifestyle intervention, diet, exercise, and behavior therapy have all been shown 

to result in clinically significant weight loss in some people. In an 8-year behavioral 

intervention, 26.9% of individuals had a net weight loss of at least 10% at the end of the 
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study(6). This weight loss alters risk for comorbidities in a disproportionate manner; for 

example behavioral intervention aimed at reducing weight by 7%, also reduces risk of 

developing type 2 diabetes by 58%(7). The success of these studies is contrary to what 

was seen in early studies, where it was shown that nearly all weight was regained within 

5 years(8), leading to a common perception that achieving long-term weight loss is near 

impossible. However, population based studies of the NHANES 1999-2006 show that 

17.3% of individuals reported long term weight loss, defined as a >10% weight loss 

maintained for at least a year(9). In NHANES 1999-2002, 33.5% of overweight 

individuals that had lost at least 10% of their maximum weight experienced weight 

regain in the prior year(10).  

The National Weight Control Registry was designed to look at the behaviors of 

those that successfully maintained weight loss(11); this study found at 5 and 10 years of 

follow up that 86.6% of participants maintained at least 10% weight loss(12). Those that 

started with a bigger initial weight loss showed faster regain while those who had 

maintained weight loss for more than 2 years at baseline experienced less regain(12). 

Weight loss and maintenance, which leads to decreased risk of comorbidities, were once 

perceived to be near impossible. Now it is recognized that while difficult, a subset of the 

populations can achieve long-term weight loss through lifestyle changes. 

For those who cannot achieve sufficient weight loss through lifestyle changes, 

surgical interventions have become a viable option. Following weight-loss surgery, a 

majority of patients with diabetes, hypertension, hyperlipidemia, or obstructive sleep 

apnea had these comorbid condition(s) resolved(13, 14). Due to the overall impact on 

health, insurance companies now offer coverage for weight-loss surgeries such as gastric 
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bypass and gastric banding; however, changes in requirements, such as surgery center 

designation, may keep some from accessing this coverage(15). Different weight-loss 

surgeries have different risks and benefits. While gastric bypass (laparoscopic Roux-en-

Y gastric bypass) yields higher excess weight loss than the gastric band, 69% versus 

46%, gastric bypass comes with a higher risk of perioperative complications(16). The 

adjustable gastric band is subject to long-term complications that may result in a second 

operation due to band slippage, pouch dilation, or unsatisfactory weight loss(16). In 

2013 approximately 179,000 bariatric surgeries were performed in the United States(17). 

The rate has slowed considerably from the initial exponential growth seen in the early 

2000s(15). The decline in surgeries in 2011-2013 seen in Figure 2 may be due to 

different sources of data, but others have suggested the decline is due to combined 

economic recession and increased surgery center regulation(15, 18).

	

Figure 2. Incidence of Bariatric Surgery in the United States. Estimates from 1992-

2009 came from (18). Estimates from 2011-2014 came from (17). No estimates were 

available for 2010. 
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Obesity Risk Factors 

 The body accumulates fat as a means of storing energy when more calories are 

consumed than are expended. In his “thrifty gene” hypothesis, Neel proposed that 

evolutionarily, this stored energy allows someone to survive when food resources are 

scarce(19, 20). In developed societies, humans no longer have extended periods of food 

scarcity. Furthermore, the typical Western diet now consists of processed foods that are 

high in fat and sugar that are inexpensive and convenient. While diet is one part of the 

energy balance, energy expenditure must also be considered. As computers, television 

and video games have become ubiquitous across America, people are spending more 

leisure time in a sedentary state. This, coupled with an increase in desk jobs, has led to a 

significant decrease in total energy expenditure(19).  

Even though most members of Western society are exposed to this “obesogenic” 

environment, not everyone becomes obese(21). This difference may, in part, be due to 

differences in diet and exercise. In large part, exercise habits and food preferences are 

learned in childhood(22). Other factors affecting obesity risk are sex, age, smoking, 

education, socioeconomic status, racial group, and family history(23).  

The location of stored body fat is sexually dimorphic. Men have a greater 

propensity to store excess body fat as visceral adipose tissue, while women are more apt 

to store excess fat as subcutaneous adipose tissue, meaning overweight men have more 

fat between their organs while overweight women carry fat just under the skin; this 

sexual dimorphism increases with age(24). Visceral adipose tissue is thought to have a 

larger effect on metabolic state and overall health(24).  
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Obesity prevalence increases with increasing age through the 50’s, and begins to 

decline in the 60’s(23). The decline in later years may be due to a combination of a 

survivor’s effect and weight loss due to serious health conditions. The prevalence of 

obesity is lower for smokers (17.8%) than never smokers (20.9%) or former smokers 

(23.9%)(23). Weight gain is associated with smoking cessation and the amount of 

weight gained is correlated with cigarettes smoked per day(25).  

Education, socioeconomic status, income, and ethnicity have complex combined 

relationship with obesity. Obesity prevalence decreases with increasing level of 

education(23). Lower income is associated with increased obesity prevalence(26). 

African Americans have higher obesity rates than Hispanics which have higher rates 

than Caucasians(26). Ancestry contributes to obesity risk through differences in culture 

and genetics, but is confounded by disparities in income and education(26). Some of the 

differences may stem from differences in food availability, neighborhood walkability, 

and access to exercise facilities(26). 

Family history encompasses two factors, the common environment shared by 

people living together and genetics. Close relatives tend to have similar body shapes and 

sizes. This is reflected in the correlation of BMIs between different relationships as 

shown in Table 1. Twin studies yield higher heritability estimates (0.60-0.80) than 

family studies (0.30-0.60)(27); while adoption studies yield estimates similar to family 

studies in the absence of a common environment(28). Adoption studies, which look at 

monozygotic twins adopted by different families at birth, show that in the absence of a 

shared home environment, BMIs have a correlation of 0.66 to 0.70(29). A priori there 

are many factors and pathways likely to be involved in the risk of obesity with each 
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subject to alteration by genetic variation. These include genes involved in basal 

metabolic rate regulation, lipid metabolism, carbohydrate metabolism, and neurological 

factors involved in feeding and exercise behaviors(30). Identification of these genes, 

however, has proven to be challenging, however one example of a pathway that has 

repeatedly been implicated in obesity is the leptin-melanocortin pathway.  

Relationship Correlation 

Monozygotic twins 0.74 
Dizygotic twins 0.32 
Full siblings 0.24 
Parent-offspring 0.19 
Spouses 0.12 

Table	1.	BMI	correlation	between	relatives. Pooled estimates across studies come 

from Maes et al. (27) 

Underlying Signaling Pathways 

While many mechanisms are plausible, most variants identified so far associated 

with obesity are in genes relating to the leptin-melanocortin pathway (shown in Figure 

3), which is involved in hunger and satiety. Leptin, a hormone secreted by adipose 

tissue, travels through blood to the arcuate nucleus of the hypothalamus where it binds to 

the leptin receptor (LepR) in two types of cells to decrease food intake through two 

distinct pathways, the anorexigenic pathway and orexigenic pathway(31). In the 

anorexigenic pathway, leptin binding to the leptin receptor induces transcription of 

proopiomelanocortin (POMC), which is then cleaved into α-MSH and β-MSH by 

prohormone convertase 1(PC1)(32). α-MSH and β-MSH travel to the paraventricular 

nucleus of the hypothalamus and signal through the melanocortin 4 (MC4R) and 

melanocortin 3 (MC3R) receptors to inhibit food intake and decrease fat storage(32). 

This is accomplished through unknown mechanisms that involve Single-minded 
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homolog 1 (Drosophila) (SIM1), nucleobindin 2 (NUCB2), brain derived neurotrophic 

factor (BDNF) and Tyrosine receptor kinase B (TrkB) that is encoded by NTRK2(32). In 

the orexigenic pathway, the binding of leptin to the leptin receptor inhibits agouti related 

protein (AgRP) expression in the arcuate nucleus of the hypothalamus(32). AgRP acts as 

an antagonist of α-MSH by binding MC3R and MC4R, inhibiting signaling of satiety 

through these receptors(32). NPY is produced in the same neurons as AgRP(33). In 

mice, the NPY is released in the paraventricular nucleus of hypothalamus and results in 

increased production of corticotropin-releasing factor and subsequent activation of the 

hypothalamic pituitary adrenal axis which controls cortisol levels and the “fight or flight 

response” to stress. (34). NPY is down regulated with increased leptin levels(33). 

Disruption of the leptin-melanocortin pathway can result in obesity, as demonstrated by 

several monogenic obesity disorders where mutations in these pathway genes lead to 

severe obesity. This pathway demonstrates the complex relationship between genes and 

their gene products. The complexity and redundancy of pathways contributes to the 

difficulty of identifying genes and variants that contribute to obesity but whose effects 

may be masked by the complex relationships between gene products. 
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Figure	3. Leptin- Melanocortin Pathway.	Image adapted and expanded from	Beckers,	

S.,	D.	Zegers,	L.	F.	Van	Gaal,	and	W.	Van	Hul.	2009.	The	role	of	the	leptin‐

melanocortin	signalling	pathway	in	the	control	of	food	intake.	Critical	reviews	in	

eukaryotic	gene	expression	19:267‐287.(32). Abbreviations: ARC: Arcuate nucleus of 

hypothalamus, LepR: leptin receptor, POMC: proopiomelanocortin, PC1: prohormone 

convertase 1, AgRP: agouti related protein, NPY: neuropeptide Y, α-MSH: alpha 

Melanocyte stimulating hormone, β-MSH: beta Melanocyte stimulating hormone, PVN: 

paraventricular nucleus of hypothalamus, MC3R: melanocortin 3 receptor, MC4R: 

melanocortin 4 receptor, NUCB2: nucleobindin 2, SIM1: involve Single-minded 

homolog 1 (Drosophila), CRF: corticotropin-releasing factor, BDNF: brain derived 

neurotrophic factor, TrkB: Tyrosine receptor kinase B, VMH: ventromedial nucleus of 

hypothalamus. 
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Monogenic Disorders 

In addition to common obesity, there are single gene disorders that cause obesity 

or lipodystrophy, sometimes in the context of a more complex syndrome (Table 2). 

Monogenic forms of obesity are typically characterized by being extreme and very early 

onset. Many of the genes implicated in single gene disorders are also part of the leptin 

melanocortin pathway and are characterized by hyperphagia. Mutations in MC4R result 

in the most common form of monogenic obesity, occurring in up to 6% of individuals 

with severe childhood obesity, meaning a BMI z-score ≥ 3 standard deviations from the 

age and sex specific mean (35, 36). Leptin (LEP) and leptin receptor (LEPR) mutations 

are perhaps the best-recognized genes due to parabiosis experiments involving the first 

murine obesity models. ob/ob (LEPR homolog) and db/db (LEP homolog) knock out 

mice are phenotypically similar; the mice are hyperphagic, develop morbid obesity and 

diabetes(37). When sewn together so as to share their circulatory systems with either a 

wild-type or db/db mouse, an ob/ob mouse decreases food intake, lose weight, and have 

decreased blood sugar levels; when paired with the db/db mouse, these effects are so 

severe that the ob/ob mouse can die of starvation without intervention(37). In contrast, 

db/db mice, paired with either wild-type or ob/ob mouse, continue to gain weight in the 

form of adipose tissue while its partner starves to death(37). Similarly, humans with 

mutations in both copies of LEP, develop severe obesity in early childhood characterized 

by hyperphagia, but respond to treatment with leptin injections(38).  

Lipodystrophy is class of metabolic disorders characterized by the loss of body 

fat and sometimes localized accumulation of body fat. Both monogenic forms and 

acquired forms (see Table 2) have been reported(39). Lipodystrophy patients have 
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complications of insulin resistance, hepatic steatosis, and hypertriglyceridemia, 

highlighting that adipose tissues is metabolically active(39).  

The third class of monogenic obesity disorders is syndromic disease. These 

diseases occur with an array of other traits specific to each disorder (see Table 2). Many 

monogenic disorders include intellectual disability, hypogonadism, malformations of 

organs, and bone deformities. For example Bardet-Beidel syndrome, which is a 

ciliopathy characterized by renal abnormalities, retinal degeneration, polydactyly, central 

obesity, and intellectual disability(40), is a genetically heterogeneous disease, with 19 

different genes implicated thus far. Some of these genes form the BBSome, which is a 

molecule involved in signaling receptor trafficking to the cilia(41). Wilms tumor, 

aniridia, genitourinary anomalies, intellectual disability, and obesity (WARGO), is 

caused by a deletion in 11p13; deletions that include genes WT1, PAX6, and BDNF 

include an obesity component of the disease(42). These are just two examples of the 35 

syndromes that include obesity as a key feature. While monogenic obesity, syndromic 

obesity, and genetic forms of lipodystrophy provided insight into the pathways 

contributing to fat mass and distribution, these account for only small fraction of obesity 

cases, but common variants in or near some of these genes have been implicated in 

common obesity as discussed below. 
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Table 2. Monogenic forms of obesity, lipodystrophy, and syndromic obesity. 

monogenic disease characteristics implicated genes mode of 
inheritance 

references 

Monogenic obesity (isolated) hyperphagia, severe early onset obesity BDNF, CRHR1, CRHR2, 
LEP, LEPR, MCHR1, 
MC3R, MC4R, MRAP2, 
NTRK2, PCSK1, POMC, 
SIM1 

varies (43) 

Berardinelli-Seip congenital 
lipodystrophy 

lipoatrophic diabetes, acanthosis nigricans, 
large hands and feet, lipemia, 
hepatosplenomegaly, insulin resistance 

AGPAT2, BSCL2, CAV1, 
PTRF 

AR (39) 

Familial partial 
lipodystrophy (FPL) 

partial lipodystrophy, insulin resistance  CIDEC AR (44)  

Familial partial 
lipodystrophy (FPL) 

loss of subcutaneous fat; fat accumulation 
in face, insulin resistance 

LMNA, PPARG, AKT2, 
PLIN1 

AD (39) 

Autoinflammation, 
lipodystrophy, and 
dermatosis syndrome 

annular erythematous plaques, partial 
lipodystrophy, immune dysregulation, 
recurrent fever, muscle weakness 

PSMB8 AR (45, 46) 

Carbohydrate-deficient 
glycoprotein syndrome type 
1a 

hypotonia, hyporeflexia, trunk ataxia, 
growth retardation, lipodystrophy of the 
buttocks 

PMM2 AD (47)  

Hutchinson-Gilford progeria short stature, low body weight, early hair 
loss, lipodystrophy, scleroderma, aged 
facial features, decreased joint mobility 

LMNA AD, some AR (48)  
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monogenic disease characteristics implicated genes mode of 
inheritance 

references 

Mandibuloacral dysplasia 
(MAD), Type A 

growth retardation, craniofacial anomalies, 
mandibular hypoplasiam, lipodystrophy 
with acral loss of fatty tissue 

LMNA AR (49)  

Mandibuloacral dysplasia 
(MAD), Type B 

small chin, nose, and mouth, thin facial 
skin, skeletal anomalies, generalized 
lipodystrophy,  

ZMPSTE24 AR (50) 

Achondroplasia short-limb dwarfism, characteristic facies, 
obesity 

FGFR3 AD (51)  

AHO 
(Pseudopseudohypoparathyr
oidism) 

resistance to parathyroid hormone, 
thyroid-stimulation hormone, and 
gonadotropins; short stature, obesity, 
round facies, subcutaneous ossifications, 
brachydactyly, intellectual disability 

GNAS Maternally 
inherited defect 

(52) 

Alstrom syndrome blindness, sensorineural hearing loss, 
childhood obesity, hyperinsulinemia, type 
2 diabetes 

ALMS1 AR (53)  

Angelman syndrome with 
obesity 

developmental delays, movement/balance 
disorder, frequent laugher/smiling, speech 
impairment, microcephaly, seizures,  

UBE3A Maternally 
inherited defect 

(54)  

Atypical progeroid syndrome lipodystrophy and progeroid syndrome LMNA AD (55)  
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monogenic disease characteristics implicated genes mode of 
inheritance 

references 

Bardet-Biedl syndrome renal abnormalities, polydactyly, retinal 
degeneration, obesity 

 ARL6, BBIP1, BBS1, 
BBS10, BBS12, BBS2, BBS4, 
BBS5, BBS7, BBS9, 
WDPCP, CCDC28B, 
CEP290, IFT27, LZTFL1, 
MKKS, MKS1, TMEM67, 
SDCCAG8, TRIM32, TTC8 

varies, mostly AR (56-60) 

Borjeson-Forssman-
Lehmann syndrome 

severe mental defect, epilepsy, 
hypogonadism, hypometabolism, obesity, 
characteristic facies,  

PHF6 X-linked (61)  

Brachydactyly mental 
retardation syndrome 

short stature, stocky build, intellectual 
disability, brachymetaphalangia, eczema, 
obesity 

GPR35, AD (62) 

Carney complex with 
primary pigmented nodular 
adrenocortical disease and 
Cushing's syndrome 

tumors, myxomas in the heart, endocrine 
tumors, Cushing's syndrome, weight gain 

PRKAR1A AD (63) 

Carpenter Syndrome 1 acrocephaly, peculiar facies, 
brachydactylyl, congenital heart defects, 
intellectual disability, hypogenitalism, and 
obesity 

RAB23 AR (64)  

Carpenter Syndrome 2 craniosynostosis, polysyndactly, obesity, 
umbilical hernia, cryptochidism, 
congenital heart disease 

MEGF8 AR (65)  

Choroideremia with deafness 
and obesity 

 CHM, DFN3 X-linked (66) 
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monogenic disease characteristics implicated genes mode of 
inheritance 

references 

Cohen syndrome psychomotor retardation, clumsiness, 
microcephaly, hypotonia and joint laxity, 
progressive retinochoroidal dystrophy, 
thick hair, short philtrum, characteristic 
facies, obesity 

VPS13B AR (67)  

Combined pituitary hormone 
deficiency 

panhypopituitary dwarfism, deficiency of 
pituitary hormones, increased weight,  

PROP1 AR (68) 

Cortisone reductase 
deficiency 

ACTH-mediated adrenal 
hyperandrogenism, males: precocious 
pseudopuberty; females: hirsutism, 
oligomenorrhea, infertility, overweight 

H6PD complex (69) 

Fanconi-Bickel syndrome hepatorenal glycogen accumulation, 
proximal renal tube dysfunction, impaired 
glacatose and glucose utilization, facial 
obesity, lipodystrophy 

SLC2A2 AR (70) 

Fragile X syndrome with 
Prader-Willi-like phenotype 

intellectual disability, obesity, anal atrasia FMR1 X-linked (71) 

Insulin resistance syndromes severe insulin resistance, acanthosis 
nigricans, accelerated growth, obesity, 
polycystic ovary syndrome 

INSR AD, some AR (72)  

Isolated growth hormone 
(GH) deficiency 

dwarfism, delay bone maturation, 
micropenis, fasting hypoglycemia, truncal 
obesity, young facial appearance, high 
pitched voice 

GH1, GHRHR AR, some AD (73) 
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monogenic disease characteristics implicated genes mode of 
inheritance 

references 

MEHMO syndrome intellectual disability, epileptic seizures, 
hypogonadism and hypogenitalism, 
microcephaly, and obesity 

MEHMO X-linked (74)  

Mental retardation X-linked, 
syndromic 16 

intellectual disability, emotional 
disturbances, hypotonia, obesity, and 
gynecomastia 

MECP2 X-linked (75) 

Mental retardation X-linked, 
syndromic 7 

intellectual disability, obesity, 
hypogonadism, and tapering fingers 

MRXS7 X-linked (76) 

Mental retardation, X-linked, 
syndromic 11 

intellectual disability, characteristic facial 
dysmorphic features, obesity, large testes  

MRXS11 X-linked (77) 

Multiple endocrine neoplasia, 
type 1 with Cushing's disease 

tumors of endocrine tissues, including 
pituitary and adrenal tumors 

MEN1 AD (78) 

Prader-Willi syndrome decreased fetal activity, intellectual 
disability, short stature, hypogonadotropic 
hypogonadism, small hands and feet, 
obesity 

GABRG3, IPW, MAGEL2, 
MKRN3, NDN, PWCR1, 
SNRPN 

Paternally 
inherited defect 

(79) 

Prader-Willi-like syndrome 
(chromosome 6q) 

hypotonia, progressive obesity, delayed 
developmental milestones, small 
extremities 

SIM1 AD (80) 

Prader-Willi-like syndrome, 
X-linked 

hypogenitalism, obesity, intellectual 
disability 

PWLSX X-linked (81) 

Simpson-Golabi-Behmel 1 pre- and postnatal overgrowth, congenital 
heart defects, coarse facies. 

GPC3, GPC4 X-linked (82, 83) 



 17	

monogenic disease characteristics implicated genes mode of 
inheritance 

references 

Simpson-Golabi-Behmel 2 developmental delay, macrocephaly, early 
death, intellectual disability, dysmorphic 
facies, obesity 

OFD1 X-linked (84)  

Thyroid hormone resistance 
syndrome 

Resistance to thyroid hormone, goiter, 
short stature, obesity 

THRB AR (85) 

Ulnar-Mammary (Schinzel) 
syndrome 

ulnar-ray defects, small penis, delayed 
puberty, obesity, abnormal breast 
development 

TBX3 AD (86) 

WAGR syndrome with 
obesity 

Wilms tumor, aniridia, genitourinary 
anomalies, intellectual disability, and 
obesity 

11p13 deletion including 
PAX6, WT1, BDNF 

AD (42) 

Wilson-Turner syndrome dysmorphic facial features, hypogonadism, 
short stature, truncal obesity, severe 
intellectual disability 

HDAC8 X-linked (87) 

Table 2. Monogenic forms of obesity, lipodystrophy, and syndromic obesity.  
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Genetics of Common Obesity 

Investigations of monogenic and syndromic obesity and lipodystrophy have 

identified several genes, including many from the leptin melanocortin pathway, capable 

of causing obesity. These studies certainly demonstrate that genes cause obesity, but 

carriers of these mutations represent only a small proportion of obese people. To identify 

genes involved in the common forms of obesity in humans, over 500 candidate gene 

studies, 95 genome-wide linkage studies, and 43 genome-wide association studies 

(GWAS) with obesity-related traits have been performed(88). The results of these 

studies have established associations with obesity-related traits on all 22 autosomes and 

the X chromosome(88). The linkage studies, in particular, implicate broad regions of the 

genome not specific variants and genes. Genome wide SNP arrays began to dominate the 

field in 2005. The 43 genome wide association studies published to date on obesity and 

adiposity related traits have identified 305 variants at 167 loci associated with an obesity 

related trait at P < 5×10-8 (Figure 4)(89-131). Key findings include associations with 

variants in and near genes that are part of the leptin-melanocortin pathway, including 

MC4R, BDNF, and PCSK1 as well as many other genes, such as LYPLAL1, NEGR1, and 

NRXN3, that are also expressed in the brain and thought to be involved in hunger and 

satiety pathways(21).  

Two additional well-replicated loci are FTO and INSIG2. A signal in the 

noncoding region of FTO was initially attributed to the FTO gene, due to increased fat 

mass in murine models in which increased FTO expression was induced (132, 133). 

Despite this, the BMI increasing variants have not been connected to changes in FTO 

expression or function. These variants are eQTLs for the neighboring gene, IRX3(134). 
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Smemo et al. show that the BMI associated region of FTO interacts with the promoter of 

IRX3 altering the expression pattern(134). Further support for the role of IRX3 in body 

fat mass comes from knock out murine models that demonstrate a 25-35% decrease in 

body mass in comparison to wild type(134). For this locus the field has been able to 

elucidate a mechanism, through the IRX3 gene, albeit the field was initially dominated 

by FTO studies themselves. This is an exception, however, as generally linkage and 

genome wide chip arrays leave us with broad regions of the genome associated with the 

trait and no causal variant or gene.  
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Figure 4. Obesity Loci Identified by GWAS. Loci identified as being associated with 

obesity-related traits at p value< 1x10-8 are indicated with blue triangles. Monogenic 

adiposity loci are indicated by red triangles. Variants within 1 mega-base are represented 

only once(135).While genome-wide chip data provide an agnostic look, the hypothesis 

that coding variants are more likely to alter gene function justifies looking more closely 

at coding variation. As the cost of sequencing has decreased, there has been a recent 

influx of data in the form of whole genome sequencing, whole exome sequencing, and 

an array targeting low frequency variation seen by exome sequencing data 

(http://genome.sph.umich.edu/wiki/Exome_Chip_Design). To date no large-scale exome 
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array or exome sequencing studies have been published for adiposity traits, although 

these studies are currently underway. 

With the increasing prevalence of obesity, it is important to understand the 

genetic basis of disease. Each gene involved in obesity represents a potential mechanism 

that could be exploited to treat obesity. Heritability estimates indicate there is a 

substantial role for genetic variation, however currently identified genes and variants 

explain less than 3% of the variance in BMI(130). Large-scale studies have investigated 

associations of common variation and only the most basic measures of obesity, BMI and 

WHR, in predominately European samples. To identify novel associations, the work 

presented here utilizes additional adiposity measures, rare coding variants as well as 

common variants in Hispanics from Starr County, Texas.  

Starr County Health Studies 

 To investigate the role of genetic variation in the amount and distribution of body 

fat, a sample of non-diabetic individuals from Starr County, Texas will be used. Starr 

County, Texas lies along the Texas-Mexico border, approximately 100 miles inland from 

the Gulf of Mexico. The population of Starr County is over 95% Hispanic(136).The 

population is overwhelmingly poor, with over 40% of individuals living below the 

poverty line; the median income between 2008 and 2012 being just $24,653(136). The 

combination of homogenous low income and single ancestry composition makes this an 

ideal population for genetic studies.  

The contemporary Mexican-American population is the result of admixture of 

Native Americans, Europeans and Africans. Ancestry was computed for genome-wide 

array data using the 1000 Genomes reference populations using ADMIXTURE 
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(http://www.genetics.ucla.edu/software/admixture/)(137, 138). On average in Starr 

County, Mexican-Americans have 61% European Ancestry, 37% Native American 

Ancestry, and 2% African Ancestry. This is similar to previous reports in this population 

using microsatellite markers and blood groups(139, 140).  

Epidemiological studies in Mexican-Americans in Starr County started in 1981. 

These early studies looked at familial aggregation of diseases including type 2 

diabetes(141), gallbladder disease(142), and hypertension(143). These studies showed an 

exceptionally high prevalence of type 2 diabetes resulting in a long-term focus on 

diabetes, its complications, risk factors, and interventions(144-147).  

From 2002-2006 a group of 1,345 individuals were sampled from the population 

to be representative of adults in Starr County not diagnosed with type 2 diabetes (148). 

During this study, subjects underwent an oral glucose tolerance test, electrocardiogram, 

anthropometrics measurement, blood pressure determination, and collection of blood 

samples. All of these individuals were invited to take part in a second study occurring 

from 2010-2013; 57% of individuals took part in this subsequent study. During the 

second visit, most of the same measures as before were obtained as well as additional 

measures including cardiovascular measures from an echocardiogram and an in-home 

sleep study. The individuals participating in these two examinations form the sample for 

study in this dissertation. 

Because obesity is a major risk factor for developing type 2 diabetes, it has been 

studied through the years in the Starr County Health Studies. One of the first genetic 

studies of obesity in Starr County was an affected sib-pair study that looked for linkage 

between the Leptin gene and obesity(149).While there was no evidence of linkage with 
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obesity in this study, a later study which used families, did find linkage between Leptin 

variation and waist to hip ratio (WHR)(30). This larger study also found evidence of 

linkage between obesity and NPY, but no evidence of linkage for several other candidate 

genes including LEPR, GLP1R, and UCP1(30).  

More recently, association signals from large-scale genotyping studies have been 

replicated in samples from Starr County. For example, Herbert et al. identified 

rs7566605, a variant near INSIG2, associated with BMI in both children and adults(150). 

Replication efforts, including data from Starr County did not find evidence of 

association with this variant and an array of adiposity traits including obesity, BMI, 

weight, waist circumference and WHR(151). The variability of replication of this variant 

across studies has been the subject of much discussion. A meta-analysis looked at 

sources of heterogeneity across studies(152). Heid et al. found evidence that the effect is 

largest when comparing normal weight individuals to individuals with extreme obesity.  

Here I will expand on the obesity related analyses in Starr County. First I will 

investigate measures of obesity using multivariate techniques to capture overall 

adiposity and distribution of fat. I will then carry these measures forward as outcome 

variables for genetic analyses, using both genome-wide array and whole exome 

sequencing data. In addition to standard single variant analyses, gene-based analyses that 

aggregate signal across a gene, accounting for linkage across sites in the case of common 

variants will be utilized. Finally I will investigate the array of variation in genes known 

to cause monogenic obesity disorders. 
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Chapter 2: Alternative obesity measures 

INTRODUCTION 

 While obesity is defined as having a body mass index of at least 30 kg/m2, it is 

actually excess adipose tissue that is associated with the risk of comorbidities. The ease 

with which BMI can be calculated makes it an attractive measure; however, it essentially 

is only weight adjusted for height and does not account for either the type of tissue or fat 

distribution. Two individuals with the same BMI can have very different body 

compositions. For example, athletes are often classified as overweight or obese despite 

having low amounts of adipose tissue and increased muscle mass(153). In Starr County, 

data show that individuals with the same BMI can have markedly different 

distribution/disease profiles. Therefore, it seems prudent to examine alternative measures 

of obesity and fat distribution that may more adequately reflects the underlying 

biological processes. Measures that better reflect the underlying biological processes 

may be more amenable to discover the genetic effects. In this chapter, alternative 

composite measures of obesity are explored. 

Percent body fat quantifies the proportion of adipose tissue in an individual’s 

body. The gold standard for calculating body fat is through medical imaging such as 

dual-energy X-ray absorptiometry (DEXA) or magnetic resonance imaging (MRI); 

however, both of these involve expensive medical equipment, require specialized 

training and expose subjects to radiation(24, 154). Bioelectrical impendence analysis is a 

proxy for percent body fat. Bioelectrical impendence analysis is obtained sending a 

small electrical current through the body and measuring resistance and reactance(155). 

This can be done using small portable devices that require little training. Scales utilizing 
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this technology can now be readily purchased for home use. Offsetting the advantages of 

bioimpedance is the fact that it is sensitive to factors such as dehydration. Even so 

estimates of percent body fat derived from bioimpedance have a correlation greater than 

0.9 with measures from DEXA(155). As with BMI, quantifying the amount or percent of 

adipose tissue does not specify where the adipose tissue is. 

Adipose location and type are important considerations, because deposits in 

different regions of the body have varying metabolic properties. For example, 

subcutaneous adipose tissue is thought to have a lesser role in the risk of developing 

comorbidities whereas excess visceral adipose tissue increases risk for an array of 

metabolic disease such as cardiovascular disease and type 2 diabetes(24). To better 

capture the distribution of body fat, measures such as circumferences and skin folds are 

used. Waist circumference and waist to hip ratio reflect central adiposity, but they are 

correlated with BMI(156). Adjusting for BMI has led to the successful identification loci 

specific to central adiposity(107, 157). Mid upper arm circumference is a measure of 

subcutaneous adipose tissue(158). Another measure of subcutaneous adipose tissue is 

skin fold thickness at a variety of anatomical sites. Skin fold measures have poor 

reproducibility and are more difficult to obtain in obese individuals(159).  

BMI and other single measures of adiposity and adiposity distribution are limited 

in their ability to capture the amount of fat and fat distribution simultaneously. The 

confounding and correlation between these measures is likely to hinder the identification 

of loci and variants. Previously, principal components analyses and factor analyses of 

skinfold measures, percent body fat, body circumferences, BMI, and ratios between 

some of these measures have identified factors that have an independent genetic basis 
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and represent total obesity, subcutaneous fat, or fat distribution between extremities and 

trunk (160-163). 

While the Starr County data does not contain skinfolds, and thus cannot be 

directly compared to any of these prior studies, the multiple circumferences, BMI, and 

percent body fat allow the use of principal components to create composite measures of 

obesity that capture both magnitude and distribution of adiposity. 

METHODS 

In the Starr County Health Studies, measurements of mid upper arm, hip, and 

waist circumferences, height, weight and bioimpendance were assessed at two visits an 

average of 8.5 years apart. Waist measurements were taken to the nearest 10th of a 

centimeter (cm) while holding a tape measure horizontal to the ground at the umbilicus. 

An observer verified the tape measure remained horizontal. Hip measurements were 

taken at the widest circumference to the nearest 10th of a cm. Arm circumference was 

measured half way between the shoulder and elbow to the nearest 10th of a cm. Height 

was measured without shoes using a wall-mounted stadiometer to the nearest 10th of a 

cm. Weight was measured to the nearest 10th of a kilogram using a balance beam scale. 

These were used to calculate BMI. Weight at age 18 and weight at maximum were both 

self reported, and measured height was used to calculate BMI. Bioimpedance was 

measured using a bioimpedance device from RJL Systems (Clinton Township, NJ). Fat 

free mass, and subsequently percent body fat, were then calculated using the equations 

of Segal et al.(155). The average and standard error for each of these measurements at 

each visit and the correlation between the two visits are presented in Table 3, excluding 

individuals diagnosed with type 2 diabetes prior to the visit or without genetic data. 
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Individuals that meet diagnostic criteria for type 2 diabetes at the study visit are retained 

in analyses, because they have not been exposed to diabetes treatments that alter body 

composition. On average, individuals gained 3 kg, 1.6 cm on the hips and 5.1 cm on the 

waist between visits. 

		 VISIT 1 VISIT2 correlation 
Sample size 825 438 - 
Newly diagnosed T2D 5.40% 9.50% - 
Percent female 71% 76% - 
Age (years) 39.6 (9.6) 48.5 (8.9)  - 
Weight (kg) 79.3 (18.5) 81.3 (18.1) 0.90 
Height (cm)  161.6 (8.7) 160.3 (8.2) 0.98 
BMI (kg/m2) 30.3 (6.3) 31.7 (6.6) 0.89 
BMI at age 18 - 23.4 (4.9) - 
BMI at maximum - 35.1 (7.7) - 
Waist circumference (cm) 97.1 (15.0) 105.8 (15.5) 0.82 
Hip circumference (cm) 109.2 (12.5) 112.1 (13.9) 0.87 
WHR 0.89 (0.08) 0.91 (0.07) 0.72 
Percent body fat 32.1 (10) 34.8 (9.7) 0.86 
Arm circumference (cm) 32.9 (4.6) 33.8 (4.9) 0.80 

Table 3. Characteristics of samples at each visit. Means and standard deviations are 

given for each anthropometric measure at each of two study visits. The Pearson’s 

correlation coefficients between measures from the two visits are given in the last 

column. 

Each measure of adiposity has its own strengths and weaknesses. To capture a 

composite of these measures, I combined all the measures at each visit using principal 

components analysis (PCA). Here, the correlation matrix was used since variables have 

different scales. PCA transforms the original set of N measures into N uncorrelated 

linear combinations with the first accounting for the largest proportion of variation and 

the Nth accounts for the least variation. Each principal component is orthogonal 



 28	  

(uncorrelated) to each prior component. For each time point I utilized five measures: 

BMI, percent body fat, waist, hip, and arm circumferences. 

RESULTS 

The proportion of variance explained by each principal component is in Table 4. 

The similarity between the principal components analysis for the two visits is striking. 

For visit 1 and visit 2, the first principal component, which accounts for 82.3% and 

82.6% of the variation, respectively, is strongly correlated with BMI (r2 = -0.98 and -

0.97, respectively) as shown in Tables 5 and 6 and plotted in Appendix Figures 1 and 2. 

The first principal component has similar loadings, the weight each variable has in the 

component, for all five of the correlated obesity measures Tables 5 and 6. 

 proportion of variance 
explained 

 VISIT 1 VISIT 2 
PC1 0.823 0.826 
PC2 0.092 0.089 
PC3 0.050 0.047 
PC4 0.025 0.026 
PC5 0.010 0.012 

Table 4. Proportion of variance explained by each principal component.  

	  	   	  	   Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 
	  	   scaling loading corr. loading corr. loading corr. loading corr. loading corr. 
BMI 6.292 -0.483 -0.980 0.000 0.010 0.000 -0.007 0.000 0.019 0.874 0.200 
waist 15.016 -0.440 -0.890 0.469 0.320 -0.525 -0.260 0.476 0.170 -0.289 -0.065 
hip 12.484 -0.466 -0.950 0.000 -0.030 -0.271 -0.140 -0.814 -0.290 -0.212 -0.048 
PBF 0.100 -0.405 -0.820 -0.822 -0.560 0.000 0.014 0.327 0.120 -0.230 -0.052 
arm 4.641 -0.437 -0.890 0.320 0.220 0.806 0.400 0.000 0.009 -0.236 -0.053 

Table 5. Principal component loadings and correlations for visit 1.	  	  
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		 		 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 
		 scaling loading corr. loading corr. loading corr. loading corr. loading corr. 
BMI 6.500 -0.480 -0.970 0.000 -0.028 0.000 0.008 -0.144 -0.052 0.867 0.210 
waist 14.348 -0.440 -0.890 -0.456 -0.300 0.572 0.280 0.482 0.180 -0.217 -0.049 
hip 12.826 -0.467 -0.950 0.000 0.066 0.226 0.110 -0.757 -0.280 -0.369 -0.096 
PBF 0.097 -0.408 -0.830 0.809 0.540 0.000 -0.024 0.403 0.150 -0.134 -0.030 
arm 4.659 -0.439 -0.890 -0.355 -0.240 -0.786 -0.380 0.105 0.380 -0.215 -0.057 

Table 6. Principal component loadings and correlations for visit 2.  

The second principal component accounts for 9.2% and 8.9% of the variance for 

visit 1 and visit 2 respectively; but unlike BMI is not strongly correlated with any one 

trait. The loadings for principal component 2 (PC2) are zero for both BMI and hip 

circumference. PC2 increases with increasing waist circumference, increasing arm 

circumference and decreasing percent body fat, resulting in a separation between males 

and females. The direction of the loadings is flipped for visit 2, but the magnitude is 

similar. PC2, although uncorrelated with hip circumference, is more correlated with 

waist to hip ratio than either waist circumference or arm circumference, as shown for 

visit 1 in Figure 5. PC2 separates men with excess abdominal fat from women with 

small waist to hip ratios. This indicates that PC2 appears to be capturing degree of 

central adiposity.  

PC3 captures 5% and 4.7% of the variation at visit 1 and visit 2, respectively. 

PC3 increases with increasing arm circumference and decreases with both waist and hip 

circumferences.	Unlike	PC2,	PC3	is	not	sexually	dimorphic.	This	separates	

individuals	that	have	large	waist,	hip,	and	arm	circumferences	from	those	with	

large	waist	and	hip	circumferences,	but	average	arm	circumference.	PC3	is	strongly	

correlated	with	the	ratio	of	arm	circumference	to	waist	circumference	(Figure	6).	
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This	indicates	PC3	is	capturing	disproportionately	central	versus	peripheral	

adiposity.		

 

Figure 5. Relationship between PC2 and PC3 with adiposity measures for visit 1. 

The bottom half shows the scatter plot for each pair of traits, with PC2 in the bottom 

row. The upper half shows the Pearson correlation coefficient for the two measures. 

Histograms of the traits are displayed in the middle. Points are color coded by sex and 

obesity status. Obese males are dark blue; non-obese males are light blue; obese females 

are red, non-obese females are pink. 
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