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MOBILIZATION OF ADIPOSE STROMAL CELLS  

IN OBESITY AND CANCER BY SPARC AND ITS 

PROTEOLYTIC ISOFORMS 

 
Chieh Tseng, Ph.D. 

Advisory Professor: Mikhail G.Kolonin, Ph.D. 

 

Obesity increases cancer risk and progression as shown by epidemiologic studies. 

However, the underlying pathophysiology remained unclear. Adipose stromal cells (ASC) 

are adipose tissue-derived mesenchymal progenitors, abundant in white adipose tissue 

(WAT). In this study, we show that the ASC pool is expanded in obesity and is associated 

with promoted tumor growth. Next, by using a chimeric GFP-RFP bone marrow 

transplant model, we observed higher tumor infiltrating cells with ASC phenotype in 

obese mice compared to lean. Consistently, systemic circulating ASC frequency is six 

fold higher in tumor-bearing obese mice compared to lean. The tumor infiltrating cells 

with ASC phenotype are found to be perivascular, suggesting them being incorporated 

into vessels as pericytes to support tumor vasculature. We obtained evidence that ASC is 

mobilized in response to obesity and cancer, however, the mechanisms regulating ASC 

trafficking are poorly defined. We previously reported that the binding of the 

matricellular protein SPARC to β1 integrin on ASC surface induces their motility. Here, 

we demonstrate that absence of SPARC diminishes ASC capacity to mobilize. As 

adiposity correlates with circulating SPARC and is the major producer of it, we evaluate 
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SPARC level in distinct adipose depots and identify two SPARC proteolytic isoforms: C-

SPARC (lacking the N-terminus) and N-SPARC (lacking the C-terminus), generated in 

the mesenteric white adipose tissue of obese mice. Both isoforms exhibit distinct 1 

integrin binding capacity. C-SPARC binds to β1 integrin on ASC, while N-SPARC fails 

to, but shows to be a potent extracellular matrix (ECM) / integrin interaction blocker and 

these events are associated with integrin-dependent FAK-ERK signaling and integrin-

independent ILK-Akt signaling. We show that both isoforms induce ASC de-adhesion 

and, acting through different mechanisms, have additive effect in promoting ASC 

migration. 
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Chapter 1 

Introduction 
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OBESITY 

 Obesity, a term to describe excessive accumulation of white adipose tissue (WAT) 

is defined as body mass index (BMI=weight/height
2
) of ≥30 kg/m

2
 (Renehan et al., 2008). 

The association of obesity and disease has been long recognized, as Greek physician 

Hippocrates wrote “Corpulence is not only a disease itself, but the harbinger of others” 

(Haslam and James, 2005). Indeed, subsequent epidemiological studies demonstrated that 

obesity increases the risk and mortality rate and is associated with multiple diseases 

including metabolic disorders, cardiovascular diseases and several cancers (colorectal, 

esophageal, kidney and pancreatic cancer) (Basen-Engquist and Chang, 2011; Renehan et 

al., 2008).   

Report by World Health Organization (WHO) showed that the worldwide obesity rate has 

doubled since 1980 and it is estimated that at least 6 million adults worldwide were obese 

in 2014. Unfortunately, the obesity problem extends to children as well. It is reported that 

at least 42 million children below the age of five are overweight. This predisposes the child 

to obesity in adulthood and causes them to be more susceptible to metabolic disorders. The 

alarming rise in obesity incidence accompany its negative health impact is appalling and 

has highlighted the importance of understanding obesity pathophysiology.  

The causes of obesity are multifactorial and have been associated with complex interaction 

between genetic and environmental components (Renehan et al., 2015). The genetic 

influence on obesity is observed in twin studies showing a stronger concordance for fat 

mass among identical twins (70–90%) compared to fraternal twins (35–45%) (Gibbons, 

2008; Silventoinen et al., 2010). In addition, genetic aberrations including single gene 

mutations in melanocortin-4 receptor (MC4R), pro-opiomelanocortin (POMC), leptin and 
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leptin receptor or single-nucleotide polymorphisms also attribute individuals to higher 

obesity susceptibility (Barsh et al., 2000). These studies have provided compelling 

evidence on the importance of genetic heritability on obesity (Stunkard et al., 1986). The 

other major attributors to obesity includes changes in human behavior of adapting to a 

more sedentary lifestyle, aging, increased accessibility to and intake of high caloric foods 

parallel the rising prevalence of obesity worldwide (Kopelman, 2000). In sum, obesity 

results from a chronic surplus in energy which tips over the immune balance of adipose 

tissue. This drives the adipose tissue microenvironment to become pro-inflammatory and 

remain in the state of chronic inflammation (Cinti, 2005; Kopelman, 2000). To elucidate 

the pathophysiology of obesity and its clinical manifestations, it is fundamental to have a 

comprehensive understanding in the role of adipose tissue and its link in pathology.  
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Literature Review 
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Obesity and Inflammation 

Obesity, characterized by a prolonged state of low-grade inflammation, has been 

linked by mounting evidence to increase cancer risks and is involved in the development of 

metabolic disorders including type II diabetes, dyslipidemia and cardiovascular diseases 

(Muoio and Newgard, 2008; Ouchi et al., 2011). 

Inflammation is a biological response triggered by pathological events such as tissue 

injuries, infection and toxic stimuli (Medzhitov, 2008). Short-term (acute) inflammation is 

largely believed to be beneficial that facilitates tissue repair and protects against infection. 

However, when inflammation is prolonged as observed in obesity, detrimental effects 

result as chemical mediators and structural dynamics of adipose tissue changes (Sun et al., 

2011).  

Generally, the adipose tissue (AT) of a healthy individual predominantly resides with 

regulatory immune cells such as type 2 lymphocytes and eosinophils (Sun et al., 2011). 

The cytokines secreted by regulatory immune cells include interleukin (IL)-10, IL-4 and 

IL-13, which promote adipose tissue-residing macrophages (ATM) to retain their anti-

inflammatory M2 state (Makki et al., 2013). However, in obesity, the rapid expansion of 

adipose tissue associated with elevated expression of stress makers on the adipocyte cell 

surface, increased cellular turnover rate and upregulation of chemotactic factors that have 

been shown to increase pro-inflammatory M1 macrophages (Wellen and Hotamisligil, 

2003). The heightened production of IFN-γ by pro-inflammatory immune cells (e.g. NK 

cells and CD8
+
 T cells), drives ATM to polarize and switch to pro-inflammatory M1 state. 

In addition, elevated cell death and increased expression levels of monocyte chemotactic 
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protein (MCP)-1, -1, -2, -3 and RANTES in adipose tissue also increase macrophage 

infiltration. Previous studies reported an increase from 10-15% of ATM in lean visceral 

adipose tissue to 50% ATMs in obese mice (Schipper et al., 2012; Sun et al., 2011). These 

pro-inflammatory macrophages increase collagen deposition and induce adipose tissue 

fibrosis, which leads to further exacerbation of adipose tissue inflammation as it limits 

proper adipose tissue expansion and deregulates adipocyte function. Macrophages 

infiltrating WAT in obesity are the major secretors of IL -6 and tumor necrosis factor- 

(TNF-), which lead to insulin resistance by blocking insulin signaling (Hotamisligil et al., 

1994) and reduce glucose transporter GLUT4 expression in adipocytes (Lumeng et al., 

2007). Aside from macrophages, adipokines from adipocytes and other adipose-residing 

cells are also associated with poor clinical manifestations of obesity.  

Insulin resistance and glucose intolerance have been associated with aberrations in 

adipokines: leptin and TNF-α that regulate inflammatory responses and glucose 

metabolism through modulating activities of JNK-1 and IKKβ pathway (de Luca and 

Olefsky, 2008), while resistin promotes insulin resistance by modulating the activity of the 

insulin signaling inhibitor: suppressor of cytokine signalling 3 (SOCS3) (Ouchi et al., 

2011). Adipokines with trophic effects including insulin-like growth factors (IGFs), 

epidermal growth factor (EGF), and transforming growth factor-beta (TGF-β) confer 

malignant cells with advantages in survival and proliferation. Upregulated TGF-β and IL-6 

in obesity promote tumor angiogenesis by stimulating growth factors activity such as 

hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and 

fibroblast growth factors (FGF-1 and FGF-2) (Calle and Kaaks, 2004; Renehan et al., 

2008).  

http://www.discoverymedicine.com/tag/egf/
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ADIPOSE STROMAL CELLS 

Adipose Tissue Function and Composition  

The AT consists of two different type of adipose tissue, namely the energy-storing 

WAT and energy-dissipating brown adipose tissue (BAT). WAT and BAT exhibit distinct 

functionality. BAT is characterized by high level of mitochondria uncoupling protein 1 

(UCP1), best known to produce heat by non-shivering thermogenesis through uncoupling 

the oxidative respiration from adenosine triphosphate production (Cinti, 2011; Virtanen et 

al., 2009). During cold acclimation, the activation of -adrenergic receptor in brown 

adipocyte cell membranes leads to free fatty acid (FFA) production (Ouellet et al., 2012). 

The high level of FFA activates UCP-1 to increase proton leakage and heat dissipation. 

Morphologically, brown adipocyte contains smaller, multilocular lipid droplets whereas 

WAT is characterized by large unilocular lipid droplets (Cinti, 2011; Hassan et al., 2012).  

Structurally, the WAT takes the form of loose connective tissue that is commonly found 

attached to other organs. WAT is present in multiple discrete sites in the body. The best-

defined WAT depots in human are subcutaneous (SC) WAT and intra-abdominal WAT. 

The intra-abdominal WAT is also known as visceral or intraperitoneal (i.p.). The visceral 

adipose depots include omental WAT (associated with stomach), mesenteric WAT 

(associated with intestine) and peripheric (surrounding the kidney). Adipocytes can be 

found embedded in with other tissues such as skeletal muscles and lymph nodes) (Bjorndal 

et al., 2011; Lee et al., 2013). Given its organization and distribution, WAT has been 

recognized as a thermal insulator (providing heat and protecting organ against mechanical 

stress) and energy storing depot of the body (Cinti, 2012). The unique feature of WAT to 

uptake and store excessive energy as triacylglycerols and release of the lipids in times of 
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need, helps an animal survival when food is scarce. A more comprehensive evaluation of 

WAT function in recent years has found WAT to be an active endocrine organ that 

regulates metabolism, inflammation and reproduction (Trayhurn and Wood, 2005).  

The lipid-laden adipocyte is the major component of AT that constitutes about 50% of the 

AT cellular contents while the other half are immune cells, fibroblast, endothelial cells and 

progenitor cells (adipose stromal cells) ( Fig. 1-1) (Tsuji et al., 2014). To study the highly 

heterogeneous cellular content of AT, physical dissociation (mincing) along with 

enzymatic collagenase digestion, followed by a defined immunophenotype of the cell 

surface markers can be employed to isolate specific cell population of interest.  
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Figure1-1 Cellular components of white adipose tissue. The white adipose tissue 

composed of mainly the lipid-laden adipocyte (50%) and stromal vascular fraction (cell 

pellet) containing haematopiotic cells, preadipocyte, endothelial cells and progenitor cells 

(adipose stromal cells). The cellular components within WAT can be separated by 

enzymatic collagenase digestion.  

Figure obtained with permission of Springer from book chapter “Tseng C & Kolonin MG. Adipose Tissue-

Derived Progenitor Cells and Cancer. In: Angiogenesis in Adipose Tissue. Springer, New York, 2013, 

pp321-337 
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Adipose stromal cells  

The adipose stromal cells (ASC) are a multipotent cell population residing in the 

perivascular niche of AT (Kolonin et al., 2012). ASC share traits previously reported in 

bone marrow-derived mesenchymal stem cell (MSC), documented as plastic-adhering 

fibroblastoid colony-forming units (CFU-F). ASC display high proliferative capacity and 

are able to differentiate into cells of mesodermal lineages: fat, bone, cartilage, muscle and 

non-mesodermal origin: neuron-like cells (Gimble et al., 2011). Previous studies revealed 

activation of ASC under ischemic conditions, as well as them participating in tissue repair 

by supporting angiogenesis and modulating immune response (Bagno et al., 2012; Puissant 

et al., 2005). Given the ease of isolation and abundance of ASC in adipose tissue, ASC has 

emerged as a promising source of progenitor cells for regenerative medicine (Gimble et al., 

2007). ASC can be isolated from resected AT by enzymatic collagenase digestion to obtain 

the non-lipid-laden cell pellet named the stromal vascular fraction (SVF).   

Similar to progenitor cells from different sources, the heterogeneity and sensitivity of 

surface marker expression to manipulation (cell isolation protocol and culture conditions) 

of ASC have rendered it a challenge to accurately assign a specific immunophenotypic 

signature to ASC. Thus, at present, no definitive surface markers are given to the ASC cell 

population. To characterize ASC, the International Society for Cellular Therapy (ISCT) 

and International Federation for Adipose Therapeutics and Science (IFATS) have 

recommended basing the definition of ASC on their multilineage potential, plastic adherent 

properties and immunophenotype (Bourin et al., 2013).  
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The surface marker expression on ASC has been characterized by several groups (Bourin 

et al., 2013; Maumus et al., 2011; Zimmerlin et al., 2010) using flow cytometry. As ASC 

and MSC have overlapping traits and functions, initially, it was postulated that the two cell 

populations may be identical. However, more recent studies showed a different propensity 

of ASC and MSC to differentiate into distinct cell lineages (Huang et al., 2005; Im et al., 

2005) and differences in cell surface marker profile (described in Table 1). It is shown that 

CD36 and CD34 are expressed on ASC but not on MSC (Pachon-Pena et al., 2011; 

Sengenes et al., 2005).  

Our group and others have isolated plastic-adhering fibroblastoid cells that are negative for 

leukocyte and endothelial cell surface markers: CD45 and CD31, respectively and positive 

for the progenitor cell marker CD34 (Traktuev et al., 2008; Zhang et al., 2009). This CD45 

negative CD31 negative CD34 positive (CD45-CD31- CD34+) immunophenotype has 

been faithful for isolation of cells validated to be capable of differentiating into 

chondrocytes, adipocytes and osteoblasts in vitro. Recently, by combinatorial phage 

display approaches, our group has identified 51 integrin and a new decorin derivative to 

be expressed on ASC with progenitor capacity (Nie et al., 2008) (Daquinag et al., 2011).  
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Table 1: ASC and MSC immunophenotype. The cell surface markers expression on 

freshly isolated ASC or MSC, determined by flow cytometry analysis. 
(Adapted from Minteer, D.M., Marra, K.G., and Rubin, J.P. (2015). Adipose stem cells: biology, safety, 

regulation, and regenerative potential. Clin Plast Surg 43,169-179 and Bourin, P., Bunnell, B.A., Casteilla, L., 

Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K., and Gimble, J.M. (2013). 

Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-

derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and 

Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15, 641-648. ) 

 

Multiple studies demonstrated beneficial effects of ASC, participating in tissue repair by 

increasing angiogenesis, immunosuppression (Puissant et al., 2005), resolving scar tissue 

formation and secretion of growth factors. Transplantation of ASC in hindlimb ischemic 

mice showed an increase in angiogenesis associated with elevated angiogenic growth 

factor production. Human and rat ASC engraftment in myocardial infarction models have 

shown to significantly improve cardiac function and diminish scar area in the injured 

region (Bagno et al., 2012; Cai et al., 2009). Similar to MSC, ASC do not express major 
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histocompatibility complex (MHC) class II (Tse et al., 2003), are immunoprivileged and 

inhibit lymphocyte activation and proliferation in response to mitogens (Puissant et al., 

2005). In additional, ASC also modulate immune response by attenuating macrophage 

infiltration (Lin et al., 2013). Importantly, as the major component of SVF, the ASC are 

crucial in adipose tissue expansion serving as adipocytes precursor and to support blood 

vessel development (Fig.1-2). Angiogenesis relies on coordinated assembly of perivascular 

matrix, endothelial cells (EC) and pericytes (Song et al., 2005; von Tell et al., 2006). The 

formation of mature blood vessel requires close association of pericytes to EC (Gerhardt 

and Semb, 2008). The absence of pericyte coverage in pericytes-depleted mouse models 

(Song et al., 2005) or impaired pericytes recruitment by antagonist results in increased 

vessel permeabilization and leakage (Cooke et al., 2012). The perivascular location of ASC 

and association with EC suggested them as pericytes/adventitial cells (Tang et al., 2008; 

Traktuev et al., 2008). It is believed that the pro-angiogenic capacity of ASC is acted upon 

through its paracrine effect, by secretion of angiogenic factors that modulate EC growth, 

survival and differentiation (Gerhardt and Semb, 2008; von Tell et al., 2006) 
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Adipose stromal progenitor cells and their potential pathological 

functions  

The inherent properties of ASC have drawn great clinical interest, recognizing the 

potential of these cells in tissue repair coupled with immunosuppressive ability, therefore 

ASC, offer great therapeutic promise for a large number of immune and degenerative 

diseases. However, like a double-edge sword, the pro-angiogenic, cell death evading and 

immunomodulatory properties of ASC are implicated in pathological processes as well. 

Tumors may exploit these features to facilitate cancer progression, raising significant 

safety concerns for clinical applications (Bertolini et al., 2015; Zhang et al., 2009).  

Similar to tissue growth, tumor progression relies on establishment of functional 

microenvironment and recruitment of cells to form new vasculatures, to support its 

expansion. Tumor vasculatures are distinct from normal tissues, as they are characterized 

by a chaotic mixture of irregular vessels that are often tortuous, functional flawed and 

leaky. The abnormalities in cellular arrangement and perivascular matrix result in 

compromised perfusion with inefficient nutrient delivery and waste clearance (Nagy and 

Dvorak, 2012). Multiple studies showed that ASC promote neovascularization, and that 

circulating ASC numbers increase in cancer (Bellows et al., 2011) (Kidd et al., 2012; 

Klopp et al., 2012; Zhang et al., 2009) In tumors, ASC are found located in the 

perivascular region, contributing to tumor vasculature integrity. It has been proposed that 

the secretomes from ASC contain growth factors such as HGF, VEGF and fibroblast 

growth factor that enhance EC survival, growth and sprouting in tumors.  
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In addition to their vasculogenic role, ASC contribute to ECM remodeling and enhance 

ECM stiffness (Chandler et al., 2012). ASC along with adipocytes and other SVF cells 

modulate the production of ECM structural proteins including collagens and fibronectin 

(Kolonin et al., 2012; Mariman and Wang, 2010). In obesity, the ASC pool is expanded. 

Concomitantly, changes in ECM structural components and upregulation of inflammatory 

genes (Henegar et al., 2008; Mariman and Wang, 2010) increase ECM rigidity. The ECM 

stiffness is crucial in dictating cell behavior (Mariman and Wang, 2010), showing 

increased proliferation and invasiveness of malignant cells on rigid ECM (Alexander et al., 

2008; Ulrich et al., 2009). 

ASC have been proposed to serve as cancer-associated fibroblasts (CAF) (Kidd et al., 2012; 

Klopp et al., 2012; Kolonin et al., 2012; Zhang et al., 2009 ). CAF are fibroblast-like cells 

that facilitate tumor progression through conferring oncogenic signals and structural 

support to malignant cells (Karnoub et al., 2007; Olumi et al., 1999). Furthermore, CAF 

increase malignant cell survival through activating nuclear factor-B (NF-B)-regulated 

anti-apoptotic signaling, and enhance tumor resistance to chemotherapy by reducing drug 

uptake (Loeffler et al., 2006) (Fig. 1-2).  
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Figure 1-2. Proposed functions of ASC in adipose tissue remodeling and tumor 

progression. The hypothetical mechanisms through which ASC promote adipose tissue 

expansion, by contributing to preadipocyte pool to differentiate into mature adipocytes and 

support adipose tissue vasculatures functioning as pericytes and provide growth factors 

(shown in green arrows). ASC modulate extracellular matrix (ECM) components and 

rigidity to support adipose tissue expansion and stimulate tumor growth. In cancer, ASC 

may serve as source for adipocytes and cancer associated fibroblast (CAF), secreting pro-

inflammatory cytokines to promote tumor survival and growth. ASC support tumor 

vasculature by incorporation into tumor vessel lumen (shown in blue and green arrows).  

Figure obtained with permission of Springer from book chapter “Tseng C & Kolonin MG. Adipose Tissue-

Derived Progenitor Cells and Cancer. In: Angiogenesis in Adipose Tissue. Springer, New York, 2013, 

pp321-337 
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Adipose Tissue Expansion 

Adipose tissue, the energy repository in mammals provides a long-term fuel reserve 

for future need. In the event of energy overload, surplus energy is stored as triacylglycerols 

in adipocytes (Cinti, 2005). In contrast, the high energy fuel triacylglycerols are readily 

mobilized when energy is deficient. To meet the demand of constant energy fluctuations, 

adipose tissue is highly plastic and possesses the unique capability to retract and expand in 

a non-transformed state (Sun et al., 2011). Adipose tissue expansion, like any other tissue 

expansion, requires angiogenesis and structural remodeling (Cao, 2010). The formation of 

new vasculature is key in supplying cells, oxygen, growth factors and cytokines to 

facilitate tissue growth, repair and expansion. In addition, it is also crucial for removal of 

metabolic wastes.  

The healthy expansion of adipose tissue relies on controlled changes in ECM components 

parallel with orchestrated events coordinated by hypertrophy and hyperplasia of various 

cell types including adipose progenitor cells, endothelial progenitor cells, and infiltrating 

immune cells (Sun et al., 2011). Adipose progenitor cells are capable of differentiating into 

adipocytes while endothelial progenitor cells incorporate and facilitate neovascularization. 

Immune cells such as macrophages provide growth, survival and angiogenic factors. The 

interplay of these cells is crucial in development of functional adipose tissue (Wernstedt 

Asterholm et al., 2014). 

However, pathological expansion of adipose tissue ensues when the aforementioned 

processes are disrupted; resulting in poorly perfused hypoxic adipose tissue. Hypoxic 

adipose tissue is associated with inflammation and increased fibrosis. Hypoxia-inducible 
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transcription factors increase proinflammatory cytokines expression and migratory ability 

in activated macrophages (Imtiyaz et al., 2010). Ectopic overexpression of degradation 

resistant HIF-1α in mouse adipocytes showed an upregulation of ECM components 

including collagens, lysyl oxidase (LOX) and elastin (Sun et al., 2011). Abnormal 

deposition of these matrix components leads to hypoxia-induced fibrosis in AT.  
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Toward mechanisms controlling ASC mobilization 

Cell mobilization is a term describing recruitment of a cell from its original niche 

into the circulation. This cascade of events involves multiple steps and interplays of 

different factors including adhesion molecules, proteases, cytokines and chemokines. For 

instance, upon granulocyte colony-stimulating factor (G-CSF) treatment, bone marrow 

residing cells respond by inducing proteases expression of matricellular factors that reduce 

hematopoietic stem cell (HSC) adhesion with its immediate surrounding matrix. In parallel, 

up-regulation of proteases and chemokines facilitate mobilized cells to traffic and 

extravasate into circulation (Petit et al., 2002). Homing of mobilized cells is dictated by a 

chemokine gradient. Although the molecular mechanisms governing ASC mobilization 

remained elusive, extensive clinical studies on haemapiotic stem cells led us to hypothesize 

that a similar mechanism underlies ASC mobilization.  

 Pathological expansion of tissues such as WAT in obesity or tumor growth in 

cancer progression, lead to inadequate oxygenation, creating hypoxic microenvironment 

within the organ (Bertolini et al., 2012). Hypoxia is a robust inducer of inflammatory and 

chemotactic factors, which promotes macrophage infiltration by upregulation of monocyte 

chemotactic proteins (MCP)-1, -1α, -2, -3, and RANTES expression in adipose tissue (Ota, 

2013; Surmi and Hasty, 2008). In tumors, hypoxia induces upregulation of stromal cell-

derived factor (SDF-1) in tumor-associated fibroblasts and promotes recruitment of 

CXCR4 expressing macrophages (Murdoch et al., 2004). Similarly, augmented CXCR4 

expression in ASC is observed in ischemic conditions (Thangarajah et al., 2009). A recent 

study showed microperfusion of mouse fat pad with a CXCR4 antagonist increased ASC 

release, suggesting the involvement of the CXCL12/CXCR4 axis in regulating ASC 
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retention/migration in vivo (Gil-Ortega et al., 2013). Furthermore, glucagon-like peptide-1 

receptor agonist stimulates ASC migration by upregulation the SDF-1/CXCR4 signaling 

cascade and p-Akt activity (Zhou et al., 2015). Interestingly, the CXCL12/CXCR4 

signaling axis is also shown to be involved in HSC and endothelial progenitor cell 

mobilization and blockade of this signaling axis partially disrupts the recruitment of 

progenitor cells to the ischemic heart tissue (Abbott et al., 2004; Liu and Velazquez, 2008). 

Consistent with ASC displaying tropism to inflammatory cues, activation and increased 

mobilization of ASC are reported in both obesity and cancer. Our group and others 

reported expression of chemokine receptors: CCR1, CCR4, CCR7, CXCR1, CXCR2 and 

CXCR5 on ASC in response to inflammation stimuli (Klopp et al., 2012; Ponte et al., 2007; 

Von Luttichau et al., 2005). An increased in expression of chemokine (C-C motif) ligand 

(CCL)-2, -3, -5, -7, -8, -11 and chemokine receptors (CCR)-1, -2, -3, and -5 are observed 

in both subcutaneous and visceral AT of obese patient (Huber et al., 2008). However, the 

role of theses chemokines in modulating ASC migration remained to be determined. 

Similarly, the concomitant upregulation of CXCR1 and CXCR2 on ASC may be 

responsible for directing their migration in response to CXCL1 and IL-8 secreted by 

endometrial cancer cells (Klopp et al., 2012). The complex signaling networks of ASC 

migration in cancer remained unclear.  

In cell mobilization, in addition to chemokine/chemokine receptor-directed ASC 

trafficking, the modulation of cell contacts with its microenvironment is key in regulating 

cell motility. Strong adhesion of cells to its niche prevents cell migration. Tissue expansion 

induces factors involved in ECM remodeling. One of such matricellular molecules is 

SPARC (secreted protein acidic rich in cysteine) (Kos and Wilding, 2010). SPARC is 
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known to control cell-cell interaction and cell adhesion. Previously, our group showed that 

binding of the SPARC to β1 integrin on ASC surface promotes cell migration, implicating 

the role of SPARC in cell mobilization (Nie et al., 2008). Indeed, SPARC has been shown 

to activate fibroblast migration in myocardial infarction models (Takahashi et al., 2001). 

Clinical data on elevated SPARC concentration in plasma of obese individual is consistent 

with the possibility that SPARC induces ASC deadhesion and migration, facilitating its 

incorporation into new WAT vessel during tissue expansion. Likewise, a similar 

mechanism maybe involved in tumor vascularization supported by elevated SPARC level 

in serum of cancer patients (Ikuta et al., 2005). 
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SECRECTED PROTEIN ACIDIC RICH IN CYESTEINE (SPARC) 

SPARC PROTEIN STRUCTURE  

 

Figure 1-3. Functional domains of SPARC. SPARC consists of three distinct domains: 

acidic domain (red), the follistatin-like domain (grey) and extracellular calcium binding 

domain (green). The functional properties of distinctive domain and its interacting proteins 

are shown. 

 

SPARC, also named as osteonectin when initially found in bone (Bolander et al., 

1988), and BM-40 when discovered in the basement-membranes (Dziadek et al., 1986) , is 

a non-structural matricellular protein that is highly conserved across different species. The 

positions of cysteine residues within SPARC are found to be highly homologous among 

species, suggesting the importance of the 3D structure to its function.  

SPARC has a molecular weight of 34kDa and migrates to 43kDa on sodium dodecyl 

sulfate polyacrylamide gel electrophoresis due to glycosylation. The signaling peptide of 

SPARC (17 amino acids) is removed during processing generating the mature SPARC. 

Mature SPARC consists of three domains, namely the N-terminal acidic domain (Ala1-

Glu52), follistatin-like (FS) domain (amino acid Asn53-Pro137) and extracellular calcium 

(EC) -binding domain (Cys138-Ile286) (Chlenski and Cohn, 2010). Each domain has been 

reported to exhibit distinct functions (Figure 1-3). The N-terminus of SPARC has low 
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calcium ion binding affinity (Kd 10mM), bears the transglutaminase cross linking amine 

acceptor sites and was recently found to have a chemosensitizing role through activating 

caspase 8 signaling (Rahman et al., 2011). Synthetic peptides spanning regions of the 

SPARC N-terminus possess cells spreading inhibition ability (Lane and Sage, 1990) and 

also activates MMP2 (Gilles et al., 1998).   

The structural morphology of the cysteine-rich FS domain of SPARC bears resemblance to 

the epidermal growth factor, supported by conserved distribution of the disulfide bonds 

(Chlenski et al., 2004). This region of SPARC binds multiple factors including inhibin, 

activin, heparin and proteoglycans. FS domain is a potent antagonist of angiogenesis and 

cell migration. Interestingly, it also bears the pro-angiogenic copper binding sequence 

KGHK (Bradshaw and Sage, 2001). The synthetic peptide spanning EGF module of the FS 

domain promotes fibroblast proliferation, disrupts endothelial cell focal adhesion, and 

inhibits its entry into S phase of the cell cycle (Chlenski et al., 2004).  

The C-terminal EC-domain consists of two EF-hand motifs that bind calcium ions with 

high affinity Kd (0.08-0.6M). Point mutations and deletion studies of this region 

identified the critical collagen binding sites consisting of residues R149, N156, L242, 

M245 and E246 (Sasaki et al., 1998). Single-bond peptide cleavage by an unknown 

protease or metalloproteinases within the EC-domain of SPARC increases its collagen 

binding affinity (Hohenester et al., 2008; Sasaki et al., 1998). The function of the synthetic 

peptide spanning the second EF-hand domain interferes with growth factors such as VEGF, 

PDGF and bFGF signaling, inhibits endothelial cell growth and disrupts focal adhesions 

(Chlenski and Cohn, 2010).   
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SPARC FUNCTION  

SPARC is a multifunctional glycoprotein that is found to be ubiquitously expressed 

in various tissues. Upregulation of SPARC is commonly reported in tissues undergoing 

active tissue remodeling such as tissue renewal, tissue repair, mineralization, angiogenesis, 

embryonic development and tumorigenesis (Chlenski et al., 2004). Only limited basal 

expression is found in non-remodeling adult tissues. Elevated SPARC expression promotes 

fibroblastoid cells migration in myocardial infarction and also facilitates adipose tissue 

expansion (secreted protein acidic rich in cysteine) (Wu et al., 2006). Among the 

multifunctional roles of SPARC, it is best recognized as a modulator of cell-extracellular 

matrix (ECM) contact, cell-cell interactions, ECM deposition and migration (Naimi and 

Van Obberghen, 2009). SPARC disengages and induces rounding of bovine aortic 

endothelial cells (Sage et al., 1989) and enhances ASC migration (Nie et al., 2008). Further 

evidence links the counter-adhesive characteristic of SPARC to its ability to disrupt focal 

adhesion assembly and promote rearrangement of stress actin fiber in endothelial cells 

(Murphy-Ullrich et al., 1995). The multifaceted SPARC activities are mediated by 

interacting with the ECM proteins and several cellular surface receptors, including 

VCAM1, stabilin-1, and integrins.  
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SPARC in Extracellular Matrix (ECM) Remodeling 

 
ECM comprises of two major types of macromolecules, namely the fibrous 

proteins and the proteoglycans. The fibrous proteins composed of collagens, fibronectin, 

laminins and elastins (Frantz et al., 2010). In the ECM, SPARC binds to multiple 

components including collagens (type I, II, III, IV and V), thrombospondin 1, entactin and 

vitronectin (Chlenski et al., 2004). Among these ECM components, the interaction of 

SPARC with collagens is best characterized. Collagens, the most abundant structural 

protein in vertebrate tissues provide mechanical support for protein anchorage or cell 

attachment. The proper formation of collagen fibers is critical to maintain tensile strength 

of tissue and retains its normal morphology. SPARC serves as a chaperone in modulating 

collagen fibril formation and incorporation of it into the ECM (Rentz et al., 2007). As 

SPARC is present in the secretary pathway, it is proposed to interact with collagen I and 

affect collagen I assembly and trafficking (Martinek et al., 2007). A study utilizing a 

SPARC mutant (Val196-Phe 203 deletion) which mimics activation by proteolysis, 

showed a drastic inhibition of collagen fibrillogenesis (Giudici et al., 2008).   

Additional factors that have been shown to affect SPARC association with collagens 

include calcium concentration, proteases processing and glycosylation. SPARC derived 

from bone consists of high mannose and biantennary glycans, thereby shows a differential 

binding affinity to collagen I and V compared to platelet-derived SPARC that are 

decorated with bi and triantennary glycans  (Chlenski et al., 2004). Furthermore, a previous 

study showed that absence of N-glycosylation at residue 99 significantly increases the 

capacity of SPARC binding to collagen V. This disparity in binding may be partly 

attributed to masking/unmasking of specific collagen binding sites on SPARC (Xie and 
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Long, 1995). EDTA chelation of calcium ions disrupts SPARC/ collagen binding. SPARC 

is a substrate for several extracellular proteases, producing bioactive proteolytic fragments. 

Single-bond peptide cleavage by an unknown protease or metalloproteinase within the EC-

domain (Pro237-Leu238) of SPARC increases its collagen binding affinity without 

changing its -helical conformation. Point mutation and deletion studies of this region 

identified the critical collagen binding sites consisting of residues R149, N156, L242, 

M245 and E246 (Sasaki et al., 1998).   

To evaluate the physiological function of SPARC, SPARC-null mice in various transgenic 

backgrounds have been generated (Gilmour et al., 1998; Norose et al., 2000). Adult 

SPARC-deficient mice present with reduced collagen content in the dermis and harbor 

only approximately half the tensile strength compared to WT mice (Bradshaw et al., 

2003b). Early onset of cataractogenesis results from irregular distribution of laminin and 

collagen IV in the lens capsule basement membrane is another prominent phenotypic 

abnormalities of SPARC-deficient mice (Bradshaw et al., 2003b; Norose et al., 2000). 

Proper matrix protein deposition in the lens capsule is critical for physiological 

permeability of the tissue (Norose et al., 2000). This impairment contributes to 

pathological changes in the ions and fluid balance across the basement membrane. 

SPARC- deficient mice also have reduced collagen deposition in bone and lower 

osteoblast and osteoclast numbers (Delany et al., 2000). This absence of SPARC in bone is 

proposed to result in impairment of linking organic and mineral phases of the bone tissue 

(Long, 2001; Mansergh et al., 2007). SPARC-deficient mice progress to severe osteopenia 

by 6 months of age. The early development of osteopenia is also partly attributed to the 

decreased synthesis of new bone by osteoblasts (Delany et al., 2000). Interestingly, the 
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reduced bone mass is accompanied by a higher adiposity in the SPARC-deficient mice 

(Bradshaw et al., 2003b). Overall, the absence of SPARC results in phenotypic 

abnormalities that is mostly associated with aberrations in ECM structure and assembly 

defect.  

ECM assembly and deposition are greatly influenced by extracellular proteases. Matrix 

proteases degrade ECM components to facilitate tissue remodeling. An additional 

mechanism by which SPARC affects ECM remodeling is through modulating 

metalloproteinase expression by cells. SPARC promotes MMP1, MMP3, and MMP9 

expression in fibroblasts; MMP1 and 9 in monocytes; and up-regulation of MMP2 activity 

in cancer cells (Chlenski and Cohn, 2010).  
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SPARC and Obesity  

In obesity, the infiltration of pro-inflammatory cells into the tissue produces 

cytokines that change the dynamics of ECM deposition. These changes result in a more 

fibrotic tissue microenvironment characterized by increased ECM proteins expression such 

as integrins, type IV collagen, lumican and laminin 1 chain (Kos and Wilding, 2010). 

Excessive ECM deposition leads to increased rigidity of tissues and disrupts the normal 

tissue function and architecture. Previous studies identified SPARC as one of the key 

factors up-regulated in obesity (Tartare-Deckert et al., 2001). Elevated SPARC expression 

is observed in both obese human and mouse adipose tissue as compared to lean human and 

mouse. The serum levels of SPARC correlate with adiposity of human and fluctuate in 

accordance to the changes in BMI, suggesting adipose tissue to be the major source of 

SPARC in obesity. Given the capability of SPARC to modulate collagen deposition and its 

association with obesity, SPARC is proposed to be a pro-fibrotic factor. Consistent with 

such a role, a lower streptozoticin-induced renal fibrosis is detected in SPARC-deficient 

mice as compared to the wild-type mice (Taneda et al., 2003). In addition to directly 

affecting ECM deposition, SPARC induces pro-fibrotic protein Transforming Growth 

Factor- (TGF-) expression. TGF- stimulates fibroblasts to contract ECM and synthesize 

matrix proteins such as collagen and fibronectin (Leask and Abraham, 2004). 

The adipocytes are the predominant secretor of SPARC in obesity. Phenotypic 

characterization of adipose tissue in wild type or SPARC-deficient mice demonstrated 

significantly increased adiposity with increased adipocyte number and cell size in SPARC-

deficient mice compared to wild-type mice (Nie and Sage, 2009). SPARC limits 

adipogensis by stimulation of the wnt/β-catenin signaling pathway and has been shown to 
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inhibit adipose stromal cell differentiation into adipocytes. Exogenous SPARC treatments 

decrease adipogenic transcription from genes. Consistently, SPARC-deficient marrow cells 

have higher adipsin and CCAAT/enhancer binding protein delta expression and display 

increased propensity towards adipocyte differentiation (Delany et al., 2003). SPARC 

expression during adipogenesis is biphasic, which spikes in preadipocytes during early 

stage of differentiation, followed by a drop as differentiation progresses. However, SPARC 

level eventually rises in mature adipocytes (Nie and Sage, 2009).    

 

 

 

 

 

 

 

 

 

 

 



30 
 

SPARC Proteolysis  

The ECM is highly versatile and undergoes constant remodeling, i.e. assembly and 

degradation (Daley et al., 2008). Remodeling of ECM involves modification and 

degradation by proteases. This post-translational proteolytic protein processing is 

important in influencing the ECM microenvironment. ECM is crucial in providing 

structural and biochemical support to cells and dictates diverse biological events including 

cell growth, survival, differentiation and migration (Brekken and Sage, 2001). The matrix 

metalloproteinases (MMPs) are among the best-studied proteases involved in ECM 

degradation. In addition to cleaving the structural components of ECM, MMPs also target 

a wide range of non-structural ECM proteins.  

Matricellular protein SPARC is a substrate for numerous extracellular proteases. Cleavage 

of SPARC produces bioactive fragments with distinct functions that are contextual. For 

example, limited proteolysis of recombinant SPARC by MMP3 generates 3 major 

fragments in vitro. These truncated derivatives modulate cell growth, cell migration and 

angiogenesis distinctively (Sage et al., 2003). In addition, SPARC proteolysis occurring in 

chicken chorioallantoic membrane is associated with pro-angiogenic properties (Iruela-

Arispe et al., 1995) and cathepsin K-cleaved SPARC promotes bone metastasis (Podgorski 

et al., 2009). Limited proteolysis of SPARC modulates collagen binding. Sasaki reported 

that cleavages of SPARC by unknown proteases or MMPS at in the EC domain residue 

L198, increases SPARC binding affinity for collagens. The proteolytic cleavage revealed 

masked epitope for collagen on SPARC, thereby increasing its affinity for collagen binding 

(Sasaki et al., 1997; Sasaki et al., 1998; Sasaki et al., 1999). 
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SPARC and ASC 

Matricellular protein SPARC abundantly secreted by adipocytes is also secreted by 

adipose tissue-residing cells including fibroblasts, endothelial cells, pericytes and 

macrophages. SPARC has reported functions in influencing migration, mobilization and 

cellular structure. SPARC expression is transiently upregulated in injured myocardium and 

stimulates fibroblast migration, a process critical in wound healing (Wu et al., 2006). A 

counter adhesive role of SPARC induces endothelial cell rounding (Murphy-Ullrich et al., 

1995) and increases endothelial permeability (Goldblum et al., 1994). SPARC regulates 

pericytes migration through interacting with TGF-1 accesory receptor endoglin (Rivera 

and Brekken, 2011). The functional role of SPARC specifically in progenitor cell 

physiology remained unexplored. Our group identified SPARC as an ASC-interacting 

protein by characterizing ASC surface proteomic using phage display combinatorial 

random peptide library. These studies identified of the ASC surface SPARC receptor of to 

be 51 integrin (Nie et al., 2008; Weaver et al., 2008). The binding of SPARC to 1 

integrin at focal adhesions on ASC is associated with changes in cellular structure 

resembling focal adhesion disassembly, mediating an intermediate cell adhesion state 

which favor cell migration (Nie et al., 2008).  

In obesity, adipose tissue undergoes remodeling to accommodate energy surplus. The 

expansion of WAT relies on angiogenesis, differentiation of preadipocytes and ECM 

remodeling. Formation of new vasculature to support healthy WAT expansion involves 

mobilization and proliferation of progenitor cells. Elevated SPARC expression in obesity 

may contribute to ASC migration by binding to 1 integrin at focal adhesions, modulating 

ASC and ECM interactions. This event along with chemokine receptors CCR1, CCR4, 
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CCR7 and CXCR5 that are over expressed on ASC induced by inflammation stimuli 

(Klopp et al., 2012; Ponte et al., 2007; Von Luttichau et al., 2005), promotes ASC 

mobilization. Subsequent studies are required to elucidate the complex signaling networks 

involved in regulating ASC migration in response to obesity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Integrin and Cell Adhesion 

Integrins are transmembrane adhesion receptors expressed on cells as 

noncovalently-linked heterodimeric α and β subunits. In mammals, there are 18 -integrin 

and 8 -integrin subunits; heterodimerization of these subunits produces 24 distinct 

integrin heterodimers (Iwamoto and Calderwood, 2015). Integrin receptors are involved in 

cell adhesion to surrounding ECM proteins, generating signals critical for cellular 

processes that occur during development, immune response and progression of diseases 

(Hynes, 2002). Integrins bind a variety of matrix molecules ranging from ECM proteins, 

cell surface, or other soluble factors. The integrin repertoire expressed by a specific cell 

determines its ECM binding dynamic. Pertinent to our study, 51 integrin binds to 

fibronectin while 11 integrin binds to collagen. In addition to being an adhesion receptor, 

integrin directs intracellular signaling. The cytoplasmic domain of integrin associates with 

the intracellular focal adhesion (FA) complex proteins such as Focal adhesion kinase (FAK) 

and integrin-linked kinase (ILK) (Veevers-Lowe et al., 2011). Ligand binding results in 

integrin conformational changes and subsequently induces integrin clustering and 

formation of mature adhesion complex. More than 150 proteins have been identified within 

the adhesion complex including intracellular signaling components, adaptor proteins that 

interact with actin cytoskeletons. FAK is one of the major kinases involved in mediating 

signal from integrin to regulate focal adhesion, cell motility and shape. In general, integrin 

activation leads to FAK autophosphorylation at tyrosine 397 which allows recognition by 

SH2-containing proteins (SRC-family kinases) that subsequently bind and phosphorylate 

the adaptor protein paxillin as well as additional FAK sites. The FA signaling is highly 

complex and composition of FA varies according to its location. Molecular compositions 
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of FA at the cell edge are reported to be distinct from the core (Ivaska, 2012; Mitra et al., 

2005).    

Cell adhesion is central for cell motility. Strong adhesion of cells to extracellular 

substratum impedes the cell’s ability to move, while low adhesion fails to provide 

sufficient traction to facilitate cell movement. Therefore, the maximum cell motility is 

observed in an intermediate adhesion regulated by the integrins and the concentrations of 

the ligands (Vicente-Manzanares et al., 2005). 

FAs undergo assembly and dissociation during cell migration. As the cell migrates, it is 

polarized. Adhesion contacts are formed at the leading edge to provide traction force while 

disassembly and retraction of the rear involves disrupting integrin-ECM or integrin-

cytoskeleton interaction (Lo, 2006; Nagano et al., 2012).  

We and others have previously shown that SPARC associates with 51 integrin (Nie et 

al., 2008; Weaver et al., 2008). This association on ASC is found to be localized to FAs. 

Given the counter-adhesive role of SPARC, it was proposed that SPARC interferes with 

51 binding to fibronectin which creates intermediate cell adhesion that facilitates cell 

mobility. Additional studies such as gain-of-function or loss-of-function of components 

involved in SPARC signalings are required to elucidate the precise mechanism involved in 

SPARC- induced cell rounding. 
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Focal Adhesion Kinase (FAK) and Integrin-linked kinase (ILK) 

FAK, a non-receptor tyrosine kinase, first identified in 1992 (Parsons, 2003), is a 

major integrin- signaling protein localized to adhesion contact. FAK is expressed on most 

cells and serves as a central mediator of integrin signaling or other growth factors (Mitra et 

al., 2005; Parsons, 2003). FAK regulates a diverse array of biological functions including 

cell migration, cell survival, and cell cycle progression and growth factor signaling 

(Parsons, 2003; Zhao and Guan, 2011). FAK-null mutant mice are embryonic lethal 

characterized by profound mesodermal defects and FAK-deficient fibroblast form 

excessive focal contact and showed abnormality in their capacity to migrate. These 

phenotypes suggest that FAK is crucial in cell migration and modulating integrin-mediated 

adhesion disassembly (Mitra et al., 2005). Integrin engagement transduces outside-to-

inside signals through activating FAK, characterized by increase in Tyr397 

autophosphorylation. Following activation of FAK, SH2- and  SH3-domain-containing 

proteins are recruited to the site, which mediate subsequent downstream signalings 

including the action of Rho family GTPases Rac and Cdc42, controlling cellular 

attachment, extension and retraction coordinated with actin-myosin cortex redistribution 

(Mitra et al., 2005; Parsons, 2003).  

During cell migration, FA bindings to ECM provide traction force to pull the cell body 

forward. Subsequently, disruption of FA at the cell rear is essential to allow cell movement. 

The process of FA turnover is regulated by FAK. FAK phosphorylation at Tyr
397

 promotes 

recruitment of protein complex that are involved in integrin endocytosis. Dissociation of 

FA complexes and integrin endocytosis is associated with rapid dephosphorylation of FAK 

at Tyr
397

(Nagano et al., 2012).  
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In addition to FAK, Integrin-linked kinase (ILK) is another well known integrin-

interacting protein localized to FA (Widmaier et al., 2012). Both kinases constitute the FA 

signaling complex and are involved in mediating integrin signaling, thus may be partially 

interdependent (McDonald et al., 2008). ILK is an important mediator of integrin signaling 

regulating a wide array of processes such as cell growth, survival, differentiation and 

migration. Multiple studies in development and caner have demonstrated the role of ILK in 

modulating cell migration. Ligand binding to integrin leads to ILK activation which 

subsequently activates a diverse downstream effectors including glycogen synthase kinase 

3 (GSK3) (McDonald et al., 2008).    

Previous studies shown that FAK and ILK as proteins functionally engaged with SPARC 

modulating cell migration and survival (Nie et al., 2008; Shi et al., 2007; Weaver et al., 

2008). However, their role in ASC migration remained unclear. Based on the role of ILK 

and FAK in cell migration, we hypothesized that SPARC/1 signaling through these 

kinases is essential to induce ASC migration which leads to their mobilization. 
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Chapter 3 

Methods and Materials 

 

 

Part of this chapter is taken verbatim by permission from the Stem Cells: Chieh Tseng and 

Kolonin, Proteolytic Isoforms of SPARC Induce Adipose Stromal Cell Mobilization in 

Obesity, Stem Cells, Epub ahead of print. 

 

 

 

 

 



38 
 

3-1. Mice  

All animal experimentations complied with protocols approved by UT Health Animal Care 

and Use Committee. Mouse strains C57BL/6, GFP-mice (UCP-GFP) and RFP-mice 

(ACTB-mRFP1)(Zhang et al., 2012) were purchased from Jackson. SPARC
-/-

 mice were 

received from Dr. Helene Sage.  For diet-induced obesity, mice were given fed high-fat 

(HFD) (60 kcal% fat) diet D12492, regular chow (13.1 kcal% fat) or low-fat diet (LFD) 

D12450B (10 kcal% fat) from Research Diets, New Brunswick, NJ. EchoMRI-100T (Echo 

Medical Systems) was used to measure adipose tissue mass and lean mass as described 

(Taicher et al., 2003). For tumor engraftment, 2.5x10^5 EO771 breast adenocarcinoma 

cells were subcutaneously injection into the mammary fat pat with 21-gauge needle. 

Tumor size was measured weekly with a caliper; tumor volume was calculated as (length 

X width
2
 X 0.52). All mice were housed and care for in a standard 12 hours light/dark 

cycle, in accordance with institutional standards. Mice were carbon-dioxide-euthanatized 

prior to tissue extraction. 

3-2. Cell isolation and culture 

For isolation of stromal vascular fraction (SVF), adipose tissues from C57BL/6 WT 

and SPARC
-/-

 mice were resected from various adipose depots (subcutaneous, 

intraperitoneal and epididymal), minced, and digested with collagenase (Worthington 250 

U/ml in PBS) and dispase ( Roche, 2.4U/ml in PBS) for an hour at room temperature with 

intermittent shaking. Preparations were passed through a 40 μm mesh and centrifuged at 

400g for 8 min. The SVF pellets were washed and resuspended with alpha-MEM. The 

SVF pellets were subjected to immunostaining, flow cytometry analysis, Western blotting, 

or culture. ASC, enrichment for which was confirmed by flow cytometry using CD34, 
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CD31, and CD45 as markers, were cultured in alpha-MEM supplemented with 10% FBS 

and penicillin/streptomycin. To obtain peripheral blood mononucleated cells (PBMC), 

whole blood was collected from cardiac puncture of euthanized mice. The anticoagulant-

treated blood was gently layered onto Ficoll-paque solution (GE) and centrifuged 

(Eppendorf centrifuge 5810R) at 2000rpm 20min, brake 0. The buffy coat layer enriched 

with mononuclear cells was collected and washed with alpha-MEM or fluorescence-

activated cell sorting solution (2%BSA/1 mm EDTA) then subjected to flow analysis. 3T3-

L1 and HEK 293 cells (purchased from American Type Tissue Collection) were cultured 

in Dulbecco's Modified Eagle's Media containing 10% fetal bovine serum (FBS) 

supplemented with 10% FBS and penicillin/streptomycin. Breast adenocarcinoma E0771 

(from F.M.Sirotnak) was cultured in RPMI supplemented with 10% FBS supplemented 

with 10% FBS and penicillin/streptomycin. 

3-3. Flow cytometry 

For fluorescence-activated cell sorting (FACS) analysis, peripheral blood 

mononucleated cells (PBMCs) were obtained by Ficoll-sodium metrizoate centrifugation 

procedure (GE Health). PBMC or SVF cells (used as a gating control) were pretreated with 

red blood cell lysis buffer and stained with respective antibodies. Cells were prepared at a 

concentration of 1 million cells per milliliter and pregated to exclude non-viable cells, 

tissue debris, cell clumps, red blood cells based on 40,6-diamidino-2-phenylindole staining. 

Live PBMCs were sorted into populations as described with FACSAria/FACSDiva 

software based on the IgG clones: eFluor 660-conjugated rat anti-CD34 (RAM34, 

eBioscience, 1:100), PE conjugated rat anti-CD312 (MEC 13.3, BD Biosciences, 1:100), 
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and APC-cy7-conjugated rat anti-CD45 (30-F11, BD Biosciences,1:100). Gating was 

based on the corresponding isotype controls (BD Biosciences, San Jose, CA). 

3-4. Transwell assay 

Cell migration assays were conducted as described (Corning, USA). Cells were seeded 

(triplicate) in 200 μl of 0.1% FBS medium. Inserts were placed in wells containing 700 μl 

of 5% or 0.1% FBS medium supplemented with SPARC or indicated SPARC isoforms, 

10% FBS was used as positive control. The cells were incubated for 16 hr. Non-migrated 

cells retaining in the insert were removed gently by swabbing with a cotton swab. The 

inserts were fixed with 4% paraformaldehyde for 10 min at room temperature and stained 

with crystal violet. Migrated cells attached on the other side of the insert were counted 

using a bright-field microscope.  

3-4. Tissue processing and immunofluorescence microscopy 

Tissues obtained were processed as previously described (Zhang et al., 2009), 

briefly, formalin-fixed and paraffin embedded 5 mm tissue sections were subjected to 

Novocastra antigen retrieval solution (Leica, Buffalo Grove, IL), washed with Phosphate 

Buffered Salt (PBS) containing 0.01% Triton-X, and blocked in serum-free protein block 

(DAKO, Carpinteria, CA). For preparation of WAT whole mounts, fragments of WAT 

were partly digested with collagenase/dispase for 15 minutes at room temperature and 

washed with PBS. Whole mounts or SVF cells, preincubated with SPARC proteins (100 

nM) for 30 minutes where indicated, were prepared for immunofluorescence by washing 

with PBS and fixing with 4% 
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paraformaldehyde for 10 minutes at room temperature, rendered permeable with 0.3% 

Triton X-100 for 5 minutes, and blocking with Seablock (Thermo scientific, Waltham, MA) 

for 1 hour at 24
 o

C. Samples were incubated at 4
 o

C overnight with primary antibodies as 

follows: mouse anti-SPARC monoclonal antibody Mab303 (gift from Helene Sage, 1:100), 

goat anti-mouse SPARC (R&D Systems, Minneapolis, MN, 1:100), rabbit anti-perilipin 

(Cell Signaling Technology, Danvers, MA, 1:100), rat anti-mouse F4/80 (Abcam, 

Cambridge, MA1:100), rat anti-CD34 (Abcam, 1:100), rabbit anti-stabilin-1 (Santa Cruz, 

Santa Cruz, CA,1:100), rat anti active b1 integrin 9EG7 (BD Pharmingen, San Diego, 

CA,1:100), rabbit anti-paxillin Tyr118 (Cell Signaling Technology, Beverly, MA, 1:100), 

phalloidin (Invitrogen, Carlsbad, CA, 1:40), or biotinylated isolectin B4 (Vector 

Laboratories, Burlingame, CA,1:75). Following washing, the samples were incubated with 

secondary antibodies at room temperature for 1 hour in PBS/0.01% Triton-X. Secondary 

antibodies used were donkey Alexa 488-conjugated IgG (Invitrogen, 1:150) and Cy3-

conjugated IgG (Jackson ImmunoResearch, West Grove, PA, 1:300). Nuclei were 

stained with Hoechst 33258 or DRAQ5 (Cell Signaling Technology, 1:1,000). Samples 

were mounted in ProLong Gold Antifade Mountant (Life Technologies, Austin, TX). 

Image acquisition was done using confocal Leica TCS SP5 microscope (images captured 

using Plan Apo 310/0.40CS, 340/0.75 U-V-I) and analyzed using LAS AF software or 

with Olympus IX70 (Center Valley, PA) inverted fluorescence microscope (images taken 

with 310/0.25, 320/0.40, or 340/0.60) using Olympus DP71 camera. Images were analyzed 

with cell-Sens software. Staining with secondary antibodies alone was used to set threshold 

and exclude nonspecific signal. All images were acquired at room temperature. Brightness 

and contrast of images were adjusted with Adobe Photoshop CS3. 
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 3-5.Short-hairpin RNA (shRNA) lentiviral production and infection 

1 integrin, ILK, FAK silencing experiments were performed with 

lentiviral pLKO.1-puro vectors from Sigma-Aldrich (St. Louis, MO). The following 

oligonucleotides were used: TRCN0000066645 and TRCN0000066646 for b1integrin; 

TRCN0000023484 and TRCN0000023488 for FAK, TRCN0000022515 and 

TRCN0000022517 for ILK. Green fluorescent protein (GFP)-short-hairpin RNA (shRNA) 

PLKO.1 was used as untargeted shRNA control. 293T cells were co-transfected with 

indicated protein shRNA or control shRNA carrying GFP tag, packing plasmids 

(deltaVPR8.9) and envelope plasmid (VSV-G) using Lipofectamine 2000 reagent 

according to the manufacturer’s instructions or calcium phosphate for 2 days, and virus 

particles containing indicated protein or control shRNAs were filtered through 0.45 µm 

pore cellulose acetate membranes and used to infect 3T3L1 cells. All the infected cells 

were cultured and puromycin (2 μg/ml) medium selection medium for 4 days. The 

knockdown efficiency was validated by western blotting. 

 

3-6. ILK kinase assay 

The ILK kinase assay was performed according to the manufacturer’s protocol (Cell 

Signaling Technology, Nonradioactive Akt Kinase Assay Kit) with some modifications. 

3T3-L1 cells (or immortalized mouse ASC (Zhang et al., 2009) used with the same result) 

transduced with indicated silencing constructs were serum-starved for 24 hr before 

incubation with SPARC or SPARC isoforms for 10 min. Cells were washed with PBS, 

harvested and lysed with cell lysis buffer. Lysate (500 g) were immunoprecipitated with 2 

g of goat anti-ILK antibody (Santa Cruz) at 4
o
C overnight. Protein A/G plus agarose 
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beads were used to pull down immune complexes (Thermo Scientific), followed by 3 

washes with cell lysis buffer. The isolated immune complexes were then incubated with 1 

g GSK-3 fusion protein subtract in reaction buffer containing 200 M ATP, for 30 min 

at 30°C. Western blotting with rabbit anti-phospho-GSK-3 / (Ser21/9) antibody (Cell 

Signaling Technology, 1:1000) was use to detect substrate phosphorylation. 

3-7. Western blot analysis 

Cells were lysed with radio-immuno-protein assay (RIPA) buffer (150 mM sodium 

chloride, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulfate, and 50 mM Tris, pH 8.0, protease inhibitor cocktail (Roche). The protein 

concentration was determined with Bradford protein assay (Pierce, Appleton, WI). An 

equal amount of protein/lane was loaded onto 10% polyacrylamide SDS Tris–Glycine gels. 

After electrophoresis (20 mA/gel), proteins were electroblotted onto polyvinylidene 

fluoride (PVDF) membranes (Millipore, Billerica, MA). Membranes were blocked (5% 

nonfat dry milk) and then incubated with primary antibody overnight at 4
o
C, followed by 

incubation with horseradish peroxidase (HRP)-conjugated secondary antibody at room 

temperature for 1 hr. The blots were developed by using enhanced chemiluminescence 

(Pierce). Mouse anti--actin antibody was from Sigma (1:5000). Goat anti-1 integrin and 

anti-ILK antibodies were from Santa Cruz Biotechnology (1:1000). Goat anti-SPARC 

(R&D Systems), mab303, rabbit anti-FAK (Abcam) and rabbit anti-phospho-FAK (pY397) 

(Invitrogen) were used at 1:1000. Rabbit anti-Akt, anti-phospho-Akt (S473), anti-phospho-

paxillin (Tyr118), anti-ERK, and anti-phospho-ERK1/2 (Thr202/Tyr204) antibodies were 

from Cell Signaling Technology (1:1000).  

3-8. Expression and purification of recombinant proteins 



44 
 

The cDNA encoding SPARC and its truncated fragments were PCR-amplified 

using the SPARC cDNA as a template, cloned into vector pcDNA3.1 and sequence-

verified. Human embryonic kidney 293 (HEK-293) cells were transiently transfected with 

the vectors by calcium phosphate precipitation. Empty vector for expression was used as a 

negative control. The recombinant His-tagged proteins were purified from conditioned 

culture media by Ni-NTA-Bind Resin (Novagen, Madison, WI) according to 

manufacturer’s protocol with minor modifications. Briefly, the Ni-NTA-Bind resin slurry 

was pre-washed with 1X Ni-NTA bind buffer (50 mM NaH2PO4, pH 8.0; 300 mM NaCl; 

10 mM imidazole) and mixed with conditioned medium for an hour at 4
o
C. The protein-

resin complex was packed into column for subsequent wash (1X Ni-NTA Wash Buffer: 50 

mM NaH2PO4, pH 8.0; 300 mM NaCl; 20 mM imidazole) and elution (1X Ni-NTA Elute 

Buffer: 50 mM NaH2PO4, pH 8.0; 300 mM NaCl; 250 mM imidazole). The eluted His-

tagged proteins were subjected to desalting and dialysis (Pierce). The purity of isolated 

proteins was examined by SDS-PAGE. The identity of the isolated recombinant proteins 

was confirmed by Western blot analyses using mouse anti-His (Sigma, 1:1000) and goat 

anti-SPARC (R&D Systems, 1:1000) antibodies. 

 

3-9. ELISA Protein Binding Assays 

For direct ELISA binding assays, 20 lg/ml of collagen I (Cultrex, Gaithersburg, 

MD), collagen IV (Cultrex), or fibronectin (BD Bioscience) was immobilized onto 96-well 

Maxisorb Immunoplates (NUNC) overnight at 4
o
C, respectively, by absorption. The coated 

plates were washed with PBS/0.01% Triton-X (PBST), followed by blocking with 3% 

bovine serum albumin (BSA) at room temperature for 2 hours. Full length (FL)-SPARC, 
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C-SPARC, N-SPARC, and a control His6-tagged protein CLIC4 (Daquinag et al., 2011) 

were biotinylated (Thermo Scientific) and 100 nM of proteins was added and allowed to 

bind for 2 hours at room temperature (Fig. 4-7A). Similarly, direct ELISA binding assay 

was also performed with SPARC protein immobilized onto 96-well followed by washes, 

blocking, and treatment with biotinylated 51 integrin (R&D Systems, 1.25 g/ml) (Fig. 

4-5G). For competitive ELISA binding assays (Fig. 4-7B), the ECM-coated plates were 

washed with PBST, followed by blocking with 3% BSA. Biotinylated mouse 51 or 

11 integrin (R&D Systems, 1.25 mg/ml) was pretreated with 100 nM of His6-tagged 

SPARC, C-SPARC, N-SPARC, or CLIC4 then allowed to bind to the ECM-coated wells. 

Bound biotinylated proteins were probed with streptavidin-HRP (R&D Systems, 1:200) 

after three washes with PBST. Ultra-TMB (Pierce) substrate was added, and absorbance 

was measured at 450 nm using a SpectraMax M2 (Molecular Devices, Sunnyvale, CA). 

 

3-10. Cell adhesion and detachment assay 

Cell adhesion assay was performed as described (Humphries, 2009) with minor 

modifications. Briefly, 96-well plates were coated with 20 g/ml fibronectin (BD 

Bioscience) overnight at 48C and blocked with 10 mg/ml of heat-denatured BSA for 30 

minutes at room temperature.Passage-1 SPARC
-/-

 ASC were trypsinized and resuspended 

in warm DMEM/HEPES (gassed with 5% CO2) at a concentration of 5x10
5
 cells per 

milliliter followed by 10 minutes incubation at 37
 o

C. Fifty milliliters of cell suspension 

was mixed with FL-SPARC or SPARC isoforms (500 nM) and plated onto the fibronectin-

coated plates in triplicates. Cells were incubated at 37
 o
C and at the 15 minutes time point, 

phase-contrast images were captured. After 1 hour incubation, wells were washed with 
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PBS, fixed with paraformaldehyde, and stained with crystal violet. For quantification, the 

percentage of cells with rounded morphology was scored by analyzing 10 representative 

x10 view fields. Cell detachment assay was performed with passage-1 SPARC
-/-

 ASC or 

3T3L1 transduced with non-targeted shRNA or shRNA silencing b1 integrin, ILK, or FAK 

that were plated onto fibronectin-coated 96-well plate. 500 nM of FLSPARC, C-SPARC, 

or N-SPARC was added to ASC (for indicated time interval) or 3T3L1 control knockdown 

or protein silenced clones (for 30 minutes). The dislodged cells were aspirated and wells 

were washed with PBS. Remaining cells were fixed with 10% paraformaldehyde for 10 

minutes at room temperature followed by washing and crystal violet staining/microscopy. 

For quantification, cells in 10 x10 view fields were counted or crystal violet stain was 

dissolved with 10% acetic acid and cell number was read as absorbance (570 nm). The 

percentage of adherent cells was measured by normalizing to OD of untreated control 

wells. 

Statistical Analyses 

Microsoft Excel was used to graph data as mean ± SEM and to calculate P-values using 

homoscedastic Student’s t-Test. P < 0.05 was considered significant. Data met 

assumptions of normality. 
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Chapter 4 

Results 

 

Figures 4-1 to 4-2 are obtained and modified by permission from the American 

Association for Cancer Research: Yan Zhang, Alexes C. Daquinag, Felipe Amaya-

Manzanares, Olga Sirin, Chieh Tseng, and Mikhail G. Kolonin. Stromal Progenitor Cells 

from Endogenous Adipose Tissue Contribute to Pericytes and Adipocytes That Populate 

the Tumor Microenvironment. Cancer Research, 2012, 72(20), 5198-5208. And Figures 4-

3 to 4-14 are obtained by permission from Stem Cells: Chieh Tseng and Kolonin, 

Proteolytic Isoforms of SPARC Induce Adipose Stromal Cell Mobilization in Obesity, 

Stem Cells, Epub ahead of print. 
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SUMMARY 

Obesity increases cancer risk and progression as shown by epidemiologic studies. 

However, the underlying pathophysiology remains unclear. In this study, we show that the 

ASC pool is expanded in obesity and is associated with promoting of tumor growth. Next, 

by using a chimeric GFP-RFP bone marrow transplant model, we observed higher numbers 

of tumor-infiltrating cells with ASC phenotype in tumor grafted in obese mice compared to 

lean. Consistently, systemic circulating ASC frequency is six fold higher in tumor-bearing 

obese mice compared to lean. The tumor infiltrating cells with ASC phenotype are found 

to be perivascular, suggesting that there are being incorporated into vessels as pericytes to 

support tumor vasculature. We have obtained evidence that ASC are mobilized in response 

to obesity and cancer; however, the mechanisms regulating ASC trafficking are poorly 

defined. Previously, we reported the binding of the matricellular protein SPARC to β1 

integrin on ASC surface induces their motility (Nie et al., 2008). However, the 

physiological significance of this SPARC effect has not been established. Here, for the first 

time, we report that SPARC is required for ASC mobilization in obesity and investigate the 

biochemical mechanism of its function. We show that SPARC is required for ASC 

mobilization into the systemic circulation in obesity. We also identified the mechanism of 

signal transduction induced by SPARC binding to its receptor, β1 integrin, on ASC surface. 

Our result demonstrates that this interaction induces ASC motility through integrin-

dependent FAK-ERK signaling and integrin independent ILK-Akt signaling. We further 

identified two SPARC proteolytic isoforms, CSPARC (lacking the N-terminus) and N-

SPARC (lacking the C-terminus), generated in visceral WAT in the context of obesity. We 

show that C-SPARC, but not N-SPARC, binds to β1 integrin on ASC, while N-SPARC 

B F 
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preferentially binds to the ECM and blocks ECM/integrin interaction. Our study 

demonstrates that that both C-SPARC and N-SPARC induce ASC de-adhesion from the 

ECM, which is associated with modulation of integrin-dependent FAK-MAPK signaling 

and integrin-independent ILK-Akt signaling. Importantly, we show that these SPARC 

isoforms, acting on ASC through distinct mechanisms, have an additive effect in inducing 

ASC migration.  
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RESULTS 

Obesity-induced promoted tumor growth independent of diet  

Obesity promotes tumor growth, which has been demonstrated by multiple groups 

(Allott and Hursting, 2015; Calle and Kaaks, 2004; Calle et al., 2003). In our study, we set 

up cohort of obese (body weight greater than 45 grams) and lean mice (body weight less 

than 30 grams) by placing them on high-fat diet or low-fat diet. To eliminate the difference 

in diet as confounding variables in cancer progression, diet normalization was initiated by 

subjecting both groups of mice to regular chow for 1 month before tumor engraftment. 

Consistent with previous studies, Lewis lung carcinoma (LLC) growth engrafted in obese 

mice exhibited accelerated growth kinetics as compared to the lean mice (Fig. 4-1A). A 

concomitant reduction in body weight was observed in obese mice as tumors grew in size; 

however, the lean mice weight remained relatively constant throughout (Fig. 4-1A). Our 

data suggest that the excessive WAT in obesity is a crucial component in obesity-induced 

tumor growth. In obese mice, a 7-fold increase in WAT mass was observed (data not 

shown).  As WAT is characterized by abundance of ASC, we next evaluated the effect of 

increased adiposity on ASC frequency. ASC frequency was measured by enumerating 

CD34+CD31-CD45- expressing cells with flow cytometry (Zhang et al., 2009).  Our result 

showed modest elevation in ASC frequency in obese mice intraperitoneal (i.p.) WAT 

measuring 32.6 % whereas in lean mice, a 30.4% was detected. Given the WAT mass was 

expanded in obesity, with a total of 1.0 ± 0.23 grams in lean and 6.19  0.25 grams from 

obese mice i.p. WAT. The net number of ASC from obese mice was extrapolated to be 6 

times higher in obese mice as compared to lean mice (Fig. 4-1C). Taking advantage of 

plastic-adhering properties of ASC, we subjected the WAT stromal/vascular cells fraction 
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to culture. We quantified and recovered a higher number of ASC from obese mice (Fig. 4-

1E), characterized by defined nuclei and nucleoli (white arrow) distinct from Indian ink 

internalizing monocytic cells (black arrow) (Fig. 4-1D). Together, these data demonstrated 

that the expanded WAT mass in obesity act as additional ASC reserve. We next set out to 

test if the increased ASC reserve contributes to cancer progression by facilitating ASC 

trafficking into systemic circulation and recruitment to tumors. We analyzed circulating 

ASC frequency of tumor-bearing obese and lean mice, by comparing CD34+CD45- cell in 

PBMC. The result showed limited frequency of circulating CD34+CD45-cells (0.06%) in 

lean mice, while in obese mice, a 6-fold increase in frequency was registered (to 0.37%) 

(Fig. 4-1F). Morphologic analysis of FACS sorted-cell expressing CD34+CD31-CD45- 

from PBMC or WAT, revealed them to be similar and undistinguishable from one another 

(Fig. 4-1G). PBMC-derived CD34+CD31-CD45- cells from obese mice formed 

fibroblastoid colonies with adipogenic potential, characterized by lipid-containing 

adipocytes (Fig. 4-1H). Combined, our data showed increased obesity-associated egress of 

CD34+CD31-CD45- adipose tissue-derived progenitors in circulation with ASC phenotype.  
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Figure 4-1: ASC expansion promotes tumor growth 

 

(A) LLC tumor growth kinetic in diet-induced lean and obese C57BL/6 mice. Following 

diet normalization (week 0), LLC were engrafted onto lean and obese C57BL/6 mice (left). 

Body mass of mice following tumor engraftment (right). Error bars, SEM. *, P < 0.05.  

 

(B)  Flow cytometric analysis of ASC in i.p. WAT (shown as percentage of viable cells). 

Viable SVF were gated for CD31-CD45- cells and subsequently on CD34+ cells. SSC-A, 

side scatter. (C) Relative ASC number in i.p.WAT of lean and obese mice. Quantification 

based on CD34+CD31-CD45- ASC frequency enumerated by flow cytometry and total i.p. 

WAT mass recovered from lean and obese mice. (D) Representative bright field 
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micrograph of Indian ink-stained i.p.WAT cells cultured for a day. ASC (white arrowheads) 

and monocytes (black arrows). (E) Relative adherent ASC number recovered from 

i.p.WAT of lean and obese. Scale bar, 50 mm. Error bars, SEM. *, P < 0.05. 

 

 

(F) Flow cytometry enumeration of CD34+CD31-CD45- cells from PBMC of lean and 

obese mice with tumor, shown as percentage of viable cells. (G) Representative phase 

contrast micrographs of FACS-sorted cells from WAT or PBMC (CD34+CD31-CD45-) of 

an obese mouse. (H) Micrographs of PBMC–derived CD34+CD31-CD45- stained with Oil 

red O, showing lipid droplets (white arrows).  

Experiments in figure 4-1 were conducted by Yan Zhang, Felipe Amaya-Manzanares, Olga 

Sirin and Chieh Tseng. 
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Bone marrow transplantation model for tracking WAT-derived cells 

 

Next, to test whether excessive WAT contributes to circulating ASC, we designed 

an in vivo model to enable us to distinguish ASC from cells of hematopoietic origin 

(Chantrain et al., 2008; Du et al., 2008; Kolonin et al., 2012). The chimeric GFP-RFP bone 

marrow transplant model was generated by replacing irradiated GFP-mouse bone marrow 

with RFP cells. Both GFP+ and RFP+ cells were found in all tissues evaluated and we 

have confirmed RFP+ cells to co-express CD45+ leukocyte markers. 

Similar to the no color mice, chimeric GFP-RFP mice placed on HFD or LFD were 

normalized to the regular chow diet prior to EO771 tumor engraftment.  Tumor growth and 

volume were significantly greater in obese chimeric GFP-RFP. Consistently, higher GFP+ 

infiltrating cell numbers with ASC phenotype were recovered from tumors of obese 

chimeric mice. Our result demonstrates a higher ASC trafficking from WAT to tumor in 

obesity.  
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4-2. Pericyte recruitment in obesity and tumor vascularization 

 

To determine the functional roles of recruited ASC in tumor, we evaluated the 

difference in tumor structures between lean and obese mice. Haematoxylin eosin staining 

of tumor revealed increased malignant cells viability with reduced hemorrhagic and 

necrotic regions in obese mice. On the basis that angiogenesis is a key determinant in 

tumor growth that is crucial in providing oxygenation, nutrient delivery and waste removal 

(Du et al., 2008; Hanahan and Weinberg, 2011). We therefore assessed whether ASC 

infiltrating into tumor is associated with angiogenesis and blood vessel remodeling. 

Comparative immunofluorescence analysis of tumor sections demonstrated that a higher 

number of host-derived GFP+ cells reside in close proximity with CD31+ endothelial cells 

in tumors of obese mice (Fig. 4-2A and 4-2B). The co-localization of GFP+ cells with 

pericyte marker: desmin, revealed them to be involved in tumor vessels maturation. 

Notably, in obese mice, the tumor vasculature density was 2-fold higher than the lean mice. 

(Fig. 4-2C). Tumor blood vessels in lean mice were found sparsely distributed and 

structurally more compressed, whereas in obese mice, the tumor vasculature was larger and 

better perfused with blood cells (Fig. 4-2A and 4-2B). Quantification of blood vessels co-

expressing desmin and GFP in tumors showed a higher frequency in the obese mice (Fig. 

4-2D), suggesting increased vessel maturation associated with obesity (Fig. 4-2C). 

Combined, these results reinforce the notion that ASC expansion in obesity contributes to 

the perivascular cell pool, thereby promoting tumor progression. 
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4-2. Pericyte recruitment in obesity and tumor vascularization 

 

(A & B) Representative immunofluorescence images of tumor section from obese and lean 

mice stained with antibodies against CD31 (red) and GFP (green). Images shown were 

taken at high (B) and low (A) magnification of tumor internal viable regions. Tumor 

vessels contains GFP+CD31- perivascular/stromal cells indicated by green arrows and 

luminal GFP+CD31+ endothelial cells (yellow arrows) and. Note increased pericyte 

coverage and larger in size of the tumor vessels in obese mice. 
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(C) Comparative analysis of tumor vessel density, width and pericytes coverage between 

obese and lean. Vessel density was quantified as mean number of vessels/100x view field. 

Vascular size was assessed as mean lumen width for all vessels scored. The maturity of 

vessel was assessed as mean percentage of vessels associated with desmin+ pericytes 

among all vessels scored. Error bar, SEM. D, confocal immunofluorescence tumor analysis 

with antibodies against GFP (green) and desmin (red). Yellow signal indicates GFP+ 

pericytes, which is confirmed by Z-stack projections of median series for individual cells 

in the indicated magnified area (bottom). 

Experiments in figure 4-2 were conducted by Yan Zhang, Felipe Amaya-Manzanares and 

Chieh Tseng. 
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4-3. SPARC Promotes Mouse ASC Motility and Mobilization 

Having shown that ASC are mobilized in cancer and obesity (Zhang et al., 2012) 

and our observations that SPARC induces ASC de-adhesion and motility (Nie et al., 2008), 

we hypothesized that SPARC promotes ASC mobilization. To test this in vivo, we 

compared ASC circulation in SPARC
-/-

 mice (Bradshaw et al., 2003a; Norose et al., 1998) 

and wild-type (WT) SPARC
+/+

 mice. Peripheral blood mononuclear cells (PBMC) were 

analyzed in lean mice (<30 g) raised on chow and in diet-induced obese (DIO) mice (>45 g) 

raised on high-fat diet for 5 months. Circulating ASC among PBMC were enumerated by 

flow cytometry based on the previously established CD34
+
CD31

-
CD45

-
 cell surface 

signature and gating strategy (Daquinag et al., 2015; Daquinag et al., 2011; Zhang et al., 

2012). Only background (0.01%) of PBMC had the ASC immunophenotype in lean mice, 

while upon DIO induction 0.12% of PBMC were registered as ASC (Fig. 4-3A). In 

contrast, only background (0.015% of PBMC) ASC circulation was observed in obese 

SPARC
-/-

 mice, while the frequency of CD45
+
 leukocytes was unaffected by SPARC 

deficiency.  

We then explored the mechanism through which SPARC may induce cell mobilization. 

Our previous analysis of human SPARC effect on ASC motility was potentially 

confounded by secretion of endogenous SPARC by ASC (Nie et al., 2008). Here, based on 

a reported approach (Bradshaw et al., 1999), we used cells from SPARC
-/-

 mice to avoid 

interference by autocrine secretion of SPARC. In a trans-well assay, recombinant mouse 

SPARC protein added to the cell culture medium promoted migration of suspended murine 

ASC in a dose-dependent manner (Fig. 4-3B). To assess the effect of SPARC on adherent 

ASC, we examined the response of ASC cultured on plates coated with fibronectin, an 
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adhesion ligand of α5β1 integrin. After 10 minutes of incubation with SPARC, the 

majority of ASC exhibited a rounded morphology and after 12 hours underwent partial 

detachment, while untreated ASC remained well spread (Fig. 4-3C). These results 

suggested that SPARC induces ASC mobilization by promoting their de-adhesion from the 

matrix.  
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4-3 SPARC promotes ASC mobilization and migration 

 

(A) SPARC is required for ASC mobilization. Viable PBMC stained with CD45-APC-cy7, 

CD31-PE and CD34-eFluor 660 were gated based on isotype controls to identify ASC as 

CD34
+
CD31

-
CD45

-
 cells. The graphs show relative percentage of ASC in PBMC of lean 

and obese WT and SPARC
-/-

 mice (n=3/group). 
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4-3. SPARC promotes ASC mobilization and migration 

 

(B) SPARC promotes ASC motility. Primary ASC from SPARC
-/-

 mice were incubated 

without (-) or with indicated concentrations of mouse recombinant SPARC and allowed to 

trans-migrate through 8 m pores within 16 hrs and stained with crystal violet. 

Representative micrographs are shown. Mean numbers of trans-migrated cells / view field 

at indicated SPARC concentration are quantified in the graph.  

 

(C) SPARC induces ASC de-adhesion. Phase-contrast images of SPARC
-/-

 ASC on 

fibronectin-coated plate were taken at 10 min and 12 hrs after exposure to 25 g/ml (735 

nM) SPARC. Normalized percentage of adherent cells at indicated time point is quantified 

in the graph. Experiments shown were repeated at least three times with similar result. 

Scale bar, 50 µm. Error bars, SEM from triplicate wells. * P0.05. 
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4-4. SPARC-induced ASC deadhesion is linked with 1 integrin signaling  

Based on previous studies suggesting that SPARC promotes cell motility by 

binding to β1 integrin at focal adhesions (Nie et al., 2008; Weaver et al., 2008), we further 

investigated the signaling events activated by this protein interaction. SPARC
-/-

 ASC 

treated with mouse SPARC, which induced a time-dependent change in cell morphology 

evident by bright-field microscopy (Fig. 4-4A), were subjected to immunofluorescence 

analysis. An antibody against phosphorylated (Tyr118) paxillin demonstrated that focal 

adhesions observed in untreated cells became disassembled upon SPARC treatment (Fig. 

4-4A). This was concomitant with active 1 integrin changing its localization from the cell 

surface to the peri-nuclear area, as revealed with an antibody specifically binding to active 

1 integrin (Fig. 4-4A). This integrin redistribution, indicative of integrin internalization 

and recycling typically observed upon stimulation of cell migration (Gu et al., 2011), was 

associated with a marked cytoskeleton reorganization revealed by F-actin staining with 

phallodin (Fig. 4-4A).  

Our previous work showed that 3T3-L1 preadipocytes serve as a convenient model to 

study SPARC / 1 integrin interaction (Nie et al., 2008). The response of 3T3-L1 cells to 

SPARC was similar to that of SPARC
-/-

 ASC, albeit less striking (Fig. 4-4B). This 

indicated that endogenous SPARC, which is produced by 3T3-L1 cells (Chavey et al., 

2006), does not preclude the effect of exogenous SPARC. To determine whether 1 

integrin, ILK, or FAK are essential for SPARC signaling, we individually silenced each of 

these genes in 3T3-L1 cells using lentivirus expressing targeted short hairpin RNAs 

(shRNA); 3T3-L1 cells transduced with a non-targeted shRNA were used as control. For 
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each gene, we tested several clones and chose a representative clone displaying expression 

silencing of the respective protein, as verified by immunoblotting (Fig. 4-4C). We serum-

starved the cells and examined the effect of SPARC on signaling after 5 and 15 min. FAK 

phosphorylation was substantial in control untreated cells, while treatment with SPARC 

reduced FAK phosphorylation at Tyr397 in a time-dependent manner (Fig. 4-4C). Tyr397 

is a site of FAK autophosphorylation, reduction in which is observed upon a decrease in 

integrin signaling (Caswell and Norman, 2006; Eke et al., 2012; Lu et al., 2001; Zheng and 

Lu, 2009). Concomitantly, increased Thr202/Tyr204 phosphorylation of ERK1/2 was 

observed for SPARC-treated cells (Fig. 4-4C). Baseline FAK phosphorylation in the 

absence of SPARC was decreased for both 1 integrin knockdown and ILK knockdown 

cells (Fig. 4-4C). The changes in FAK and ERK1/2 phosphorylation upon SPARC 

treatment were not observed in cells with silenced 1 integrin, ILK, or FAK. These data 

indicate that MAPK activation by SPARC relies on 1 integrin signaling through both ILK 

and FAK (Fig. 4-4C). Because SPARC signaling is mediated by protein kinase B (Akt) in 

cancer cells (Alachkar et al., 2014; Shi et al., 2007), we also analyzed Akt activation. Akt 

phosphorylation (S473) was modestly induced by SPARC not only in control but also in 

1 integrin, ILK, and FAK knockdown cells (Fig. 4-4C). This suggests that Akt activation 

in SPARC-treated cells is likely a non-specific response to cell de-adhesion rather than due 

to 1 integrin signaling. 

Loss of either 1 integrin, FAK, or ILK resulted in abrogation of SPARC-induced 

induction of suspended cell motility (Fig. 4-4D). We also observed a reduction in SPARC-

mediated cell de-adhesion in the absence of 1 integrin, FAK, or ILK (Fig. 4-4E). 
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Combined, these results indicate that SPARC-mediated cell de-adhesion and migration is 

associated with inhibition of 1 integrin signaling through ILK and FAK. 

4-4. SPARC-induced ASC deadhesion is linked with 1 integrin signaling 

 

(A) Representative phase-contrast images of SPARC-/- ASC on fibronectin-coated plates 

incubated with 500 nM of FL-SPARC for indicated periods of time. Immunofluorescence 

with antibodies against activated 1 integrin (arrow) costained with p-paxillin (Tyr118) 

antibodies, SPARC antibodies, or phalloidin revealing cytoskeletal filaments is shown. 

Nuclei are blue.  
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4-4. SPARC-induced ASC deadhesion is linked with 1 integrin signaling 

 

(B) SPARC-induced 3T3L1 de-adhesion is linked with β1 integrin signaling. 

Representative phase-contrast images of 3T3L1 on fibronectin-coated plates incubated with 

500 nM of FL-SPARC for 0, 5 and 15 min time interval. Immunofluorescence with 

antibodies against activated β1 integrin (arrow) co stained with p-paxillin (Tyr118), 

SPARC and phalloidin revealing cytoskeletal filaments is presented. Nuclei are blue. Scale 

bar, 50 µm. 
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4-4. SPARC-induced ASC deadhesion is linked with 1 integrin signaling 

 

 

(C) 3T3-L1 cells were transduced with non-targeted shRNA (control) or shRNA silencing 

1 integrin, ILK, or FAK. Serum-starved cells were incubated with mouse SPARC (500 

nM) and cell lysates obtained at 0, 5, and 15 minutes post treatment were analyzed by 

Western blotting using antibodies against indicated antigens. Anti--actin immunoblotting 

demonstrates equal protein loading for different time points.  
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4-4. SPARC-induced ASC deadhesion is linked with 1 integrin signaling 

 

(D) Dose-dependent trans-well migration of 3T3-L1 cells transduced with non-targeted 

shRNA or shRNA silencing 1 integrin, ILK, or FAK. For the assay, cells were exposed to 

SPARC at indicated concentrations.  

 

(E) Cell detachment assay with 3T3-L1 cells transduced with non-targeted shRNA or 

shRNA silencing b1 integrin, ILK, or FAK incubated with 500 nM SPARC for 30 minutes. 

Data shown are representative of two or three independent experiments. Error bars, SEM 

from triplicate wells. *, p<0.05.  
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4-5. Obesity-induced SPARC isoforms in MS WAT 

To identify the source of ASC mobilized in obesity, we investigated the differences 

in SPARC expression in individual WAT depots of lean and DIO mice. 

Immunofluorescence analysis revealed high expression of SPARC protein in mesenteric 

(MS) WAT of DIO mice (Fig. 4-5A). Distribution is very different while in WAT of lean 

mice SPARC was observed mainly in stromal cells; in DIO mice SPARC was also 

abundant in adipocytes (Fig. 4-5A). To quantify this change, protein extracts from MS, 

subcutaneous (SC), and epididymal (EP) WAT from lean and obese mice were 

immunoblotted with SPARC antibodies. This confirmed the highest (5.5-fold) induction in 

SPARC levels for MS WAT in obesity, while less than a 2-fold obesity-associated 

elevation was observed for SC and EP WAT after normalization to -actin expression (Fig. 

4-5B).  

We next investigated if obesity results in generation of SPARC isoforms. 

Immunoprecipitation from distinct WAT depots was performed using an antibody mab303 

that recognizes an epitope R149-L198 within the EC domain of SPARC (Weaver et al., 

2008). Immunoblotting with polyclonal anti-SPARC antibodies demonstrated the presence 

of a lower molecular weight obesity-specific SPARC isoform in MS WAT (Fig. 4-5C). 

Scaled-up immunoprecipitate separated on a protein gel revealed the presence of an 

additional SPARC isoform generated in MS WAT of obese mice (Fig. 4-5D). 

Densitometry quantification of protein bands revealed that the abundance of full length 

(FL)-SPARC: C-SPARC: N-SPARC was 2.3: 1.3: 1.0, respectively, in MS WAT. The two 

MS WAT obesity-specific SPARC isoforms were subjected to Edman degradation protein 

sequencing, which identified them as proteolytic fragments of SPARC. The longer 
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fragment (amino acids 14-285) missing the 13 N-terminal residues was termed C-SPARC; 

the shorter fragment (amino acids 1-196) missing amino acids (197-285) was termed N-

SPARC (Fig. 4-5E). According to previous SPARC domain mapping (Hohenester et al., 

2008; Kzhyshkowska et al., 2006; Nie et al., 2008; Sasaki et al., 1998; Weaver et al., 2008), 

C-SPARC is expected to bind to 1 integrin, while N-SPARC, lacking the C-terminal 1 

integrin-binding domain, is expected to be deficient in integrin binding but still bind to 

stabilin-1.  

To analyze the function of SPARC proteolytic isoforms, we constructed vectors for 

expression of FL-SPARC, C-SPARC, and N-SPARC as fusions with a His6 tag. To ensure 

glycosylation and functionality of the secreted proteins, mammalian HEK293 cells were 

stably transfected with the expression vectors or insertless vector control. His6-tagged FL-

SPARC, C-SPARC, and N-SPARC were affinity-purified from conditioned media 

collected from transfection clones. Identity, purity, and concentration normalization of the 

soluble recombinant proteins was performed by immunoblotting with anti-SPARC 

antibodies (Fig. 4-5F). To test whether N-SPARC retains  integrin interaction, we 

precipitated protein complexes from cells co-transfected with 1 integrin and indicated 

SPARC variants with anti-His tag antibodies and immunoblotted the co-

immunoprecipitates with anti-1 integrin antibodies. As expected, 1 integrin co-

immunoprecipitated with FL-SPARC and C-SPARC, while its co-immunoprecipitation 

with N-SPARC was markedly lower (Fig. 4-5F). We further validated our observation by 

assessing direct binding of biotinylated 51 integrin to SPARC variants. While FL-

SPARC and C-SPARC displayed direct 51 integrin binding, N-SPARC binding was not 

significantly above nonspecific background (Fig. 4-5G). These data confirm that the 
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SPARC C-terminus mediates 1 integrin binding and suggest that the C-SPARC and N-

SPARC isoforms may have distinct functions. 

4-5. Obesity-induced SPARC isoforms in MS WAT 

 

(A) Immunofluorescence analysis of MS WAT sections from lean and obese mice with 

anti-SPARC (green), anti-perilipin (red) antibodies. Nuclei are blue.  

 
 
 

(B) Tissue lysates obtained from SC, MS, and EP WAT of WT lean and obese mice were 

analyzed for SPARC expression by Western blotting. Densitometry values were adjusted 
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to -actin intensity and expression above level observed in SC WAT of lean mice was 

calculated (ratio) with AlphEaseFC software. 

 

(C) Tissue lysates obtained from distinct WAT depots of lean and obese mice were IP with 

a SPARC monoclonal antibody Mab303. Non-immune IgG IP from obese MS WAT 

extracts served as a negative control. A single full-length (FL)-SPARC protein band at 43 

kDa is present for SC, MS, and EP WAT of WT but not SPARC-/- mice. Arrow: additional 

39 kDa C-SPARC band immunoprecipitated from obese MS WAT. Light chain IgG 

recognized by the secondary antibody demonstrates equal protein loading.  

 

(D) For indicated WAT depots, scale-up Mab303 immunoprecipitation and 

immunoblotting was performed as in (C) Shown is Coomassie blue staining of the PVDF 

membrane prepared for Edman degradation sequencing that identified two indicated bands 

as C-SPARC and N-SPARC (arrows). (E) A schematic map of reported protein binding 

domains on FL-SPARC and sites of proteolytic cleave (arrows) giving rise to C-SPARC 
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and N-SPARC. Edman degradation sequence terminal are numbered in the SPARC 

sequence, most of which is abbreviated (–). Acidic, FS-like, and EC domains of SPARC 

are indicated. Abbreviations: ASC, adipose stromal cells; ECM, extracellular matrix; EP, 

epididymal; IP, immunoprecipitated; MS, mesenteric; SC, subcutaneous; SPARC, secreted 

protein acidic and rich in cysteine; WAT, white adipose tissue; WCE, whole cell extract; 

WT, wild type. 

 

 

 

(F) Whole cell extracts from HEK293T of 1 integrin co-transfected with His6-tagged FL-

SPARC, C-SPARC, N-SPARC, or control vector were immunoprecipitated with anti-His 

tag antibody, and immunoprecipitates were immunoblotted with 1 integrin and SPARC 

antibodies, which shows preferential FL-SPARC and C-SPARC integrin binding.  
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(G) Wells coated with FL-SPARC, C-SPARC, N-SPARC, or control protein were 

incubated with 1.25 mg/ml of biotinylated 51 integrin. Mean protein binding was 

measured with a secondary streptavidin-HRP conjugate and calorimetric spectroscopy 

(OD450), which shows preferential FL-SPARC and C-SPARC integrin binding. 

Representative data shown are from experiments repeated three (B–D, G) or two (F) times. 

Error bars, SEM from triplicate wells. *, p<0.05 versus His control. Scale bar 50 m.  
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4-6. C-SPARC, but not N-SPARC, binds to ASC  

Because SPARC binds to ASC as a ligand of 1 integrin, we predicted that N-

SPARC lacking the integrin interaction domain might have reduced binding to ASC. To 

test this hypothesis, SPARC
-/-

 ASC were incubated with FL-SPARC, C-SPARC, or N-

SPARC in the medium, washed, and subjected to immunofluorescence analysis with 

polyclonal anti-SPARC antibodies that recognize all SPARC isoforms. Our data show that 

FL-SPARC and C-SPARC bind to ASC surface, while N-SPARC does not (Fig. 4-6A). To 

quantify binding differences, we immunoblotted protein extracts from ASC after SPARC 

isoform addition at several time points. This result indicated that the kinetics of FL-

SPARC and C-SPARC to ASC is comparable, while N-SPARC completely lacks the 

capacity to bind ASC (Fig. 4-6B). 

To further assess selectivity of FL-SPARC, C-SPARC, and N-SPARC for distinct cell 

types, we exposed partly enzymatically-digested fragments of WAT from SPARC
-/-

 mice to 

the His-tagged SPARC fragments. Upon washing and fixation, whole mounts were 

subjected to immunofluorescence (Fig. 4-6C). Counterstaining with isolectin B4 (IB4), 

which specifically binds to the endothelium, demonstrated that all three recombinant 

proteins bound to stromal cells. FL-SPARC and C-SPARC binding was localized to ASC, 

identified as perivascular cells negative for IB4 and CD45 (data not shown) and positive 

for CD34, as well as to alternatively activated macrophages, identified as IB4- cells 

positive for F4/80 and stabilin-1 (Fig. 4-6C). In contrast, N-SPARC bound exclusively to 

IB4- / F4/80+ / stabilin-1+ macrophages but not to IB4- / CD34+ ASC (Fig. 4-6C). These 

results indicate that FL-SPARC and C-SPARC bind to both ASC and macrophages, while 

N-SPARC lacking the integrin-binding domain is only capable of binding to macrophages. 
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4-6 C-SPARC but not N-SPARC binds to ASC 

 

 

(A) Adherent SPARC
-/- 

ASC were incubated with 100 nM of indicated recombinant His6-

tagged SPARC isoforms or control vector in serum-free medium for 10 min. 

Immunofluorescence with anti-SPARC antibody (green) reveals that FL-SPARC and C-

SPARC, but not N-SPARC, bind to ASC. (B): Anti-SPARC immunoblotting of protein 

extracts from ASC treated as in (A) for indicated time intervals. Anti-β-actin 

immunoblotting demonstrates equal protein loading. 

 

 

 

 

 

 



76 
 

4-6 C-SPARC but not N-SPARC binds to ASC 

 

(C) Partly enzymatically digested fragments of MS WAT from SPARC
-/-

 mice were treated 

with 100 nM of FL-SPARC, C-SPARC, or N-SPARC for 30 min, washed, and then fixed 

whole mounts were subjected to immunofluorescence with antibodies against the indicated 

antigens. Endothelium is stained with isolectin B4 (IB4). Green arrows point to SPARC 

isoform on antigen-negative cells; yellow co-localization signal reveals that C-SPARC 

binds to CD34+ ASC and to F4/80+ and stabilin-1+ macrophages, while N-SPARC binds 

only to F4/80+ / stabilin-1+ macrophages. Representative data shown are from 

experiments repeated three times. Nuclei are blue. Scale bar, 50 µm.  
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4-7 N-SPARC is a potent extracellular matrix (ECM) binder and integrin/ECM blocker   

Because N-SPARC retains its ECM-binding domain, we investigated the effect of 

this isoform on integrin / ECM interaction. First, we compared the binding of biotinylated 

recombinant SPARC variants to fibronectin and collagen I. N-SPARC displayed a slightly 

higher binding to these ECM molecules than FL-SPARC at higher concentrations, while 

C-SPARC binding was decreased (Fig. 4-7A). Binding of FL-SPARC to collagen was 

competed by N-SPARC (data not shown), confirming the retention of ECM-binding site in 

this isoform. Because N-SPARC binds ECM but does not bind to 1 integrin, we predicted 

that it may have the capacity to block integrin / ECM interaction. To assess that, we 

compared the effects of the SPARC isoforms in a competitive ELISA assay. Biotinylated 

51 integrin was pre-incubated with the recombinant SPARC proteins and its binding to 

fibronectin was quantified. Compared to FL-SPARC and C-SPARC, N-SPARC 

demonstrated a higher capacity to block 51 integrin binding to fibronectin (Fig. 4-7B). 

N-SPARC also blocked 11 integrin / collagen I binding more efficiently than FL-

SPARC and C-SPARC (Fig. 4-7B). These results suggest that N-SPARC has an increased 

capacity to inhibit ASC adhesion to the ECM. 
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4-.7 N-SPARC is a potent extracellular matrix (ECM) binder and integrin interaction 

blocker 

 

 

 (A) ECM molecule-coated wells were incubated with biotinylated recombinant His6-

tagged FL-SPARC, C-SPARC, N-SPARC or control protein at indicated concentrations. 

Mean protein binding was measured with a secondary streptavidin-HRP conjugate and 

calorimetric spectroscopy (OD450). 
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4-7. N-SPARC is a potent extracellular matrix (ECM) binder and integrin interaction 

blocker 

 

 

 (B) Biotinylated α5β1 or α1β1 integrin were pre-incubated with 100 nM recombinant 

His6-tagged FL-SPARC, C-SPARC, N-SPARC or control protein. Wells, which were 

ECM molecule-coated as in (A), were incubated with the pretreated biotinylated α5β1 or 

α1β1 integrin at indicated concentrations. Mean biotinylated protein binding was measured 

with secondary streptavidin-HRP conjugates and calorimetric spectroscopy (OD450). 

Representative data shown are from experiments repeated twice with triplicate wells. Error 

bars, SEM from triplicate wells. 
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4-8. Both C-SPARC and N-SPARC modulate 1 integrin signaling  

The differences in ASC and ECM binding observed for N-SPARC and C-SPARC 

suggested that these isoforms might differ in their capacity to activate 1 integrin signaling. 

To test this hypothesis, we performed an experiment analogous to Figure 4-4C: 3T3-L1 

cells expressing either a non-targeted shRNA (control cells) or shRNA silencing 1 

integrin, ILK, or FAK were treated with N-SPARC and C-SPARC. Surprisingly, time 

course immunoblotting analysis demonstrated that treatment with both C-SPARC and N-

SPARC still reduced Y397 FAK phosphorylation in a time-dependent manner in control 

cells (Fig. 4-8A, B). Treatment with both C-SPARC and N-SPARC also transiently 

increased Thr202/Tyr204 phosphorylation of ERK1/2 in control cells (Fig. 4-8A, B). As 

seen with FL-SPARC, FAK autophosphorylation and ERK1/2 phosphorylation were not 

affected in 1 integrin knockdown and ILK knockdown cells by either C-SPARC or N-

SPARC treatment (Fig. 4-8A, B). 

We also compared the effect of proteolytic SPARC isoforms on ILK activity. Serum-

starved 3T3L1 cells expressing either non-targeted shRNA or 1 integrin, ILK or FAK 

silencing shRNA were incubated with FL-SPARC, C-SPARC or N-SPARC. After 

incubation, proteins were immunoprecipitated with ILK antibodies and then incubated with 

glycogen synthase kinase 3 (GSK-3), a model ILK substrate (Yokoyama et al., 2011). By 

immunoblotting the kinase reactions with an anti-phospho-GSK-3 antibody, we found 

that GSK-3 phosphorylation by ILK was promoted upon cell treatment with FL-SPARC, 

C-SPARC, and N-SPARC in control cells (Fig. 4-8C). Residual ILK kinase activity was 

also detectable in treated cells transduced with ILK shRNA, which can be explained by the 
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observed ILK immunoprecipitation even despite its substantial silencing (Fig. 4-8C). 

Interestingly, ILK kinase activity was still induced by FL-SPARC, C-SPARC and N-

SPARC upon 1 integrin or FAK silencing (Fig. 4-8C). These data from the 3T3-L1 model 

were reproduced with immortalized mouse ASC (Zhang et al., 2009). Our results suggest 

that SPARC-induced activation of ILK, as well as of Akt (Fig. 4-4C), is regulated by 

signaling independent of 1 integrin and FAK.   

4-8. Both C-SPARC and N-SPARC modulate 1 integrin signaling 
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Both C-SPARC and N-SPARC modulate β1 integrin signaling. 3T3-L1 cells were 

transduced with non-targeted shRNA (control) or shRNA silencing β1 integrin, ILK or 

FAK. (A, B): Serum-starved cells were incubated with 500 nM His6-tagged C-SPARC (A) 

or N-SPARC (B) and cell lysates obtained at 0, 5 and 15 min post-treatment were analyzed 

by Western blotting using antibodies against indicated antigens. Anti-β-actin 

immunoblotting demonstrates equal protein loading for different time points. 

4-8 Both C-SPARC and N-SPARC modulate 1 integrin signaling 

 

(C) Serum-starved cells were untreated (No SPARC) or incubated with 500 nM His6-

tagged FL-SPARC, C-SPARC or N-SPARC for 10 min. Then cells were subjected to the 

ILK kinase assay using GSK-3β as a substrate. Anti-p-GSK-3β immunoblotting signal 

reflects the amount of active ILK immunoprecipitated. Anti-ILK immunoblotting 

demonstrates reduced, yet measurable, ILK immunoprecipitation from cells transduced 

with ILK shRNA. Representative data shown are from experiments repeated three times. 
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4-9. Both C-SPARC and N-SPARC Induce ASC De-adhesion and cooperate in triggering 

ASC migration 

Because N-SPARC and C-SPARC have different binding target preferences but 

have similar effect on cell signaling, we sought to compare their effects on cell attachment 

to the ECM. To assess their effect on adherence, ASC in suspension were treated with 

recombinant SPARC proteins and their ability to attach to fibronectin-coated plates was 

evaluated. After 15 minutes, the majority of untreated ASC displayed spreading 

morphology, whereas FL-SPARC, C-SPARC, and N-SPARC prevented fibronectin-

induced ASC attachment (Fig. 4-9A). We verified this result upon longer (1 hour) cell 

observation (Fig. 4-9B). Compared to untreated control, treatment with FL-SPARC, C-

SPARC, and N-SPARC led to a comparable increase in the frequency of ASC with loosely 

adherent morphology (Fig. 4-9B graph). We also compared the effect of recombinant 

SPARC proteins on attached ASC grown on fibronectin-coated plates. Consistent with the 

attachment data, the rounded cell phenotype indicating de-adhesion was induced not only 

by FL-SPARC and C-SPARC, but also by N-SPARC treatment (Fig. 4-9C).  

Finally, we compared the effects of recombinant SPARC isoforms on motility of 

suspended serum-deprived ASC in a transwell assay. ASC trans-well migration was 

induced not only by FL-SPARC but also by individual cleavage isoforms (Fig. 4-9D). 

Because our data show that C-SPARC and N-SPARC are both generated in MS WAT and 

induce ASC de-adhesion through distinct mechanisms, we hypothesized that they might 

have additive effects. To test this hypothesis, we treated ASC from SPARC
-/-

 mice with 

combinations of recombinant SPARC isoforms at equimolar concentrations and quantified 

the capacity of cells to migrate in the trans-well assay. The effect of FL-SPARC and C-
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SPARC treatment alone on cell migration was comparable and more robust than that of N-

SPARC. Adding C-SPARC along with FL-SPARC did not further increase cell migration, 

consistent with them acting through the same mechanism. Interestingly, combination of N-

SPARC and FL-SPARC had a reduced capacity in activating cell migration compared to 

FL-SPARC alone. Importantly, while N-SPARC alone had a relatively modest effect on 

cell motility, when it was added in combination with C-SPARC cell migration was 

increased by 2-fold, compared to N-SPARC alone (Fig. 4-9D). The combination of C-

SPARC and N-SPARC was the only setting where cell migration induction was 

significantly higher than by FL-SPARC alone. Combined, our data indicate that N-SPARC 

and C-SPARC cooperate in detaching ASC from the ECM, which leads to their motility.  

4-9. Both C-SPARC and N-SPARC induce ASC deadhesion and cooperate in 

triggering ASC migration 

 

(A) Phase contrast images of SPARC
-/- 

ASC 15 min after plating on fibronectin-coated 

plates in serum-free medium containing control (eluate from control vector), His6-tagged 

FL-SPARC, C-SPARC, or N-SPARC (500 nM). 
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(B) Crystal violet staining of SPARC
-/- 

ASC 1 hr after plating on fibronectin-coated plates 

in serum-free medium containing control, His6-tagged FL-SPARC, C-SPARC, or N-

SPARC (500 nM). 

 

 

(C) SPARC
-/- 

ASC pre-grown on fibronectin-coated plated were incubated with control, 

His6-tagged FL-SPARC, C-SPARC, or N-SPARC (500 nM) for 1hr. Arrows: well 

adherent cells, arrowheads: weekly adherent rounded cells. Graph shows the mean 

percentage of rounded cells. 
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(D) SPARC
-/- 

ASC incubated with His6-tagged FL-SPARC, C-SPARC, or N-SPARC (500 

nM) or their indicated equimolar admixes (combined concentration 500 nM) were 

subjected to the trans-well assay. The graph shows the mean numbers of trans-migrated 

cells/view field. Error bars, SEM from triplicate wells. P0.05 (* compared to untreated; 

** compared to FL-SPARC).  

 

  

A proposed model for the function of C-SPARC and N-SPARC in WAT. In lean mice, 

adipocytes (not shown) express a basal level of FL-SPARC (RED: N-terminal domain; 

GREEN: C-terminal domain). FL-SPARC binding to α5β1 integrin on ASC, as well as to 



87 
 

the ECM and the basement membrane (BM) separating ASC and endothelial cells (EC), 

maintains the dynamic equilibrium of ASC intermediate adhesion. In MS WAT of obese 

mice, adipocytes express increased levels of FL-SPARC that undergoes proteolytic 

processing resulting in N-SPARC and C-SPARC. N-SPARC blocks α5β1 integrin binding 

to the ECM and the BM, while C-SPARC directly modulates β1 integrin signaling 

favoring cell motility and survival. The additive effects of N-SPARC and C-SPARC 

induce ASC de-adhesion and mobilization. Grey circles: nuclei. Representative data shown 

are from experiments repeated at least twice with similar result.   
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Chapter 5 

Discussion & Conclusion 
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5-1. Significance 

Adipose stromal cells (ASC) are mesenchymal adipocyte progenitors abundant in 

fat tissue. The increasing application of ASC in regenerative medicines has been reported 

in multiple randomized clinical trials worldwide (Kolle et al., 2013; Lendeckel et al., 2004), 

examining their efficacy across different areas including cardiovascular diseases, 

autoimmune diseases, and plastic/reconstructive surgery. With ASCs’ vast potential for 

clinical use, it is crucial to better understand their safety and mechanism involved in 

regulating their mobilization. 

 Here, along with accumulating preclinical data (Park et al., 2011; Rowan et al., 2015; 

Strong et al., 2015), we show that the ASC pool expands with obesity and contributes to 

tumor growth by supporting tumor vasculature. We further evaluate the mechanism 

involved in regulating ASC mobility. Extending our previous finding that the matricellular 

protein SPARC binding to 1 integrin on ASC promoted its migration, we demonstrate the 

physiological significance of SPARC in mobilizing ASC into the peripheral circulation. 

We further identify novel proteolytic SPARC isoforms and demonstrate their involvement 

in ASC migration. My thesis study contributes to unraveling the molecular mechanisms 

involved in stem cell trafficking. 
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DISCUSSION 

It has been long believed that the systemic circulating adipokines are the main 

pathophysiological connection between obesity and cancer (Calle and Kaaks, 2004). 

Recently, the tumor-stimulating effect of cells recruited by tumors has been recognized. 

Tumor growth/survival-promoting effects based on direct cellular contact and locally 

secreted paracrine factors have been identified (Nieman et al., 2011; Zhang et al., 2009). In 

our study, we tested the hypothesis of expanded adiposity in obesity, serving as a cell 

source for tumor recruitment to support the tumor microenvironment. Here, we provide 

evidence of ASC pool expansion in obesity and show an increased ASC in circulation. 

Consistent with our model, a similar phenomenon is reported in patients with cancer 

(Bellows et al., 2011; Mancuso et al., 2011). Concomitantly, higher frequency of ASC 

recruitment in tumor engrafted in obese mice associates with increased pericytes coverage 

and tumor growth. These findings are in accordance with pro-angiogenic effects of trophic 

factors secreted by ASC (Gimble et al., 2007; Rehman et al., 2004). In sum, our data on 

expanded ASC pool contributing to increased ASC recruitment to tumor caution against 

the use of cell therapy in patients with cancer (Bertolini et al., 2012). Importantly, ASC 

mobilization in cancer may be the functional determinant of their capacity to promote 

cancer. This has prompted us to understand the mechanisms involved.   

Chemotatic stimuli direct cell migration by inducing cell contraction and changes 

in integrin clustering and attachment to the ECM. Integrin 1 is selectively overexpressed 

on ASC is likely to control their migration. Previously, we reported that binding of 

matricellular protein SPARC to integrin 1 on ASC induces migration. However, it 

remains largely unknown what role SPARC plays in integrin signal transduction and to 
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what extent its capacity to elicit cell detachment from ECM is due to modulating α5β1 

signaling contributes to ASC mobilization (Legate et al., 2009). In our study, we 

demonstrate that SPARC treatment induces focal adhesion disassembly in ASC, 

hallmarked by decreased paxillin phosphorylation and rapid dephosphorylation of FAK at 

Tyr
397

 which accompanied by integrin endocytosis (Nagano et al., 2012). Integrin β1–ECM 

binding leads to integrin activation characterized by FAK autophosphorylation at Tyr
397

, 

therefore, reduced FAK autophosphorylation at Tyr
397

 integrin is consistent with integrin 

disengagement from ECM. Previously, SPARC signaling involving 1 integrin, FAK, ILK, 

ERK and Akt had been evaluated in cancer cells (Shi et al., 2007; Shin et al., 2013). From 

gene knockout experiments, we demonstrated that SPARC-mediated dephosphorylation of 

FAK signaling is β1 integrin-dependent and is required for increased ERK1/2 

phosphorylation on Thr
202

/Tyr
204

. This signaling cascade has been formerly demonstrated 

as key in detachment and migration of epithelial cells (Lu et al., 2001; Teranishi et al., 

2009). Our data suggest that in stromal cells, this signaling pathway is also triggered by 

SPARC. In addition, we show that SPARC induces ILK/Akt activation independent of the 

1 integrin activity; we propose that it is non-specifically turned on in response to cell 

detachment. In sum, our data show that SPARC disruption of integrin-engagement to ECM 

and regulation of growth factor signaling.    

Building on the earlier evidence of SPARC promoting ASC migration (Nie et al., 2008), 

we show that SPARC activity is required for ASC mobilization. SPARC-deficient mice 

exhibit impairment in ASC mobilization (Fig. 4-3A) and tumor engrafted onto SPARC-

deficient mice present with increased permeability, reduced pericytes and lower 

microvessel density (Arnold et al., 2010; Brekken et al., 2003), consistent with ASC’s role 
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in protecting vessel patency.  

Matricellular protein SPARC is a substrate for numerous extracellular proteases. 

Cleavage of SPARC produces bioactive fragments with distinct functions that are context-

dependent. For instance, SPARC proteolytic derivatives from exogenous MMP3 cleavage 

modulate cell proliferation, migration and angiogenesis (Sage et al., 2003) while cleavage 

of SPARC in chicken chorioallantoic membrane is associated with pro-angiogenic 

properties (Iruela-Arispe et al., 1995). SPARC cleaved by Cathepsin K promotes bone 

metastasis (Podgorski et al., 2009) and limited proteolysis in the SPARC EC domain 

increases collagens binding (Sasaki et al., 1997; Sasaki et al., 1998; Sasaki et al., 1999). 

Interestingly, most of the proteolytic SPARC functions are associated with tissue 

remodeling. In mesenteric adipose tissue of obese mice, we discovered two novel 

proteolytic SPARC isoforms. Truncation of SPARC within the extracellular calcium-

binding domain III in helix C (PVE–LLA) (Sasaki et al., 1999), generates N-SPARC 

fragment (Fig 4-5E). This truncation leads to loss of putative 1 integrin binding site but 

retains some collagen-binding residues (R149, N156). Consistent with previous reports of 

proteolytic cleavage revealing masked epitopes for collagen on SPARC (Sasaki et al., 1997; 

Sasaki et al., 1999), N-SPARC displays increased collagen binding affinity and ability to 

block integrin interacting with collagen I and fibronectin, but fails to bind ASC. Proteolytic 

cleavage of C-SPARC occurs within domain I of SPARC (IVE-EET) and does not affect 

its binding to ASC, however, results in decreased interaction of C-SPARC to collagens and 

fibronectin. As no known ECM-interacting sites have been reported in the N-terminus of 

SPARC, this unanticipated reduction with ECM proteins is likely due to structural changes 

of SPARC induced by proteolytic cleavage.  
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Our data demonstrate that FL-SPARC and both proteolytic isoforms induce cell de-

adhesion by acting through distinct mechanisms. Interestingly, despite the loss of its 

capacity to bind ASC through 1 integrin, N-SPARC elicits alterations in integrin-

mediated signaling pathway comparable to those induced by FL-SPARC and C-SPARC. 

These data suggest that integrin-FAK-MAPK signaling is modulated by integrin-

disengagement in cell de-adhesion rather than only by SPARC acting as a ligand. Similarly, 

ILK-Akt signaling well known for a role in regulating cell survival is also activated by all 

SPARC isoforms. This could be a compensatory mechanism trigger by cell de-adhesion to 

avoid anoikis in mobilized cells.  

Our study shows that N-SPARC and C-SPARC are generated in the MS WAT of 

obese mice and display an additive effect in promoting ASC migration. Building upon our 

experimental results and the previously recognized function of SPARC in tissue 

remodeling, we propose a model converging functions of SPARC isoforms in tissue 

expansion. In WAT of lean mice, basal level of SPARC is expressed by adipocyte, 

allowing firm binding of ASC to the perivascular matrix and basement membrane via 

integrin 51, therefore, retaining ASC in their niche. In obesity, adipose tissue undergoes 

expansion. The increased of SPARC expression and its targeting protease in MS WAT 

leads to C-SPARC and N-SPARC accumulation. FL-SPARC, N-SPARC and C-SPARC 

promote ASC detachment, by exerting coordinated effect to disrupt α5β1 integrin 

engagement with the ECM. FL-SPARC and C-SPARC bind directly to integrin α5β1, 

while N-SPARC interacts with ECM to block integrin/ ECM interaction. Detached ASC 

migrate and integrate into expanding neovasculature, facilitating WAT expansion. We 
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propose that a similar mechanism is accountable for ASC mobilization and underlies the 

pathophysiological connection between obesity and cancer.  

CONCLUSION 

Our study demonstrates that the increased adiposity expands ASC pool which 

results in higher frequency of ASC in circulation and tumors. The pro-angiogenic functions 

of ASC in stimulating tumor vascularization and growth upon ASC recruitment to tumors 

explain the function of WAT in obesity and cancer pathophysiology.   

Next, we identified SPARC and its obesity -induced proteolytic derivatives as modulators 

of ASC mobilization and migration. The fundamental mechanism of ASC mobilization is 

believed to be essential in modulating obesity and applies to activation of ASC in tumor 

progression. Protease(s) responsible for SPARC proteolytic derivatives in MS WAT 

remain to be identified. Our work highlights the importance of proteolytic processing in 

regulation of cellular functions.  
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In this thesis study, we demonstrate that SPARC is required for ASC mobilization. 

And for the first time, obesity-induced proteolytic derivatives of SPARC are identified in 

the mesenteric WAT. SPARC proteolytic derivative C-SPARC has cleavage occurring 

within domain I, while N-SPARC is proteolytically cleaved at the (PVE–LLA) 

extracellular calcium-binding domain III in helix C. Our result shows that C-SPARC 

binds to β1 integrin on ASC, while N-SPARC shows a preferential binding to the ECM 

and blocks ECM / integrin interaction. Interestingly, both C-SPARC and N-SPARC induce 

ASC de-adhesion from the ECM and cooperate in promoting cell migration. Although we 

have shown that SPARC and its proteolytic derivatives regulate ASC mobilization, the 

proteases cleaving it remains to be identified.  

In attempt to identify putative proteases for generating N-SPARC and C-SPARC in MS 

WAT, we evaluated the potential protease cleavage site(s) close to the cleavage region of 

N-SPARC and C-SPARC. We identify MMP8 and MMP13 recognition sites to correspond 

to N-SPARC cleavage region. Consistently, previous studies reported comparable 

molecular weight proteolytic fragments generated by MMP13 proteolysis in vitro (Sasaki 

et al., 1997; Sasaki et al., 1998; Sasaki et al., 1999). Lastly, upregulation of MMP8, 

MMP13 (Chavey et al., 2003) (Belo et al., 2009; Maquoi et al., 2002) and cathepsins B, D, 

K and S (Nadler et al., 2000) are reported in obesity. Therefore, we hypothesize that 

MMP8 and MMP13 to be potential protease cleaving SPARC in MS WAT. Additional 

studies are required to validate our prediction. 

The multifactorial functions of SPARC are controversial and have shown to be highly 

contextual. SPARC functions as a tumor suppressor or pro-tumorgenic factor depending on 

the stage and cancer types. Our result showing that SPARC proteolytic isoforms 
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accumulate in mesenteric WAT is particularly intriguing as visceral adiposity is associated 

with numerous pathologies including cancer. Therefore, it would be interesting to evaluate 

SPARC and its proteolytic derivative roles in modulating cancer progression. 

Our pilot study of EO771 breast adenocarcinoma grafted into SPARC-deficient mice 

shows reduced tumor growth (Fig. 6-1A,B) in particular obesity. Haematoxylin eosin 

staining of tumor grafts reveals increased viable region in obese WT tumor compared to 

SPARC
-/-

 and lean WT counterparts (Fig. 6-1C). These data are consistent with our 

previous result showing obesity-associated ASC recruitment support tumor cell survival 

and growth. Importantly, tumor grafted onto obese SPARC
-/-

 mice fails to confer growth 

and survival advantage, consistent with predicted reduced ASC recruitment in the absence 

of SPARC. Immunofluorescence analysis of tumor sections revealed a decrease in ASC-

associated progenitor and endothelium markers in SPARC
-/- 

tumors compared to WT (Fig. 

6-2). This tumor study reinforces the role of SPARC in modulating ASC mobilization and 

tumor trafficking. In the future, we aim to delineate the functional role of SPARC isoforms 

in ASC trafficking in the context of tumor progression. 
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Figure 6-1. Absence of host SPARC is associated with tumor growth deficiency 

 

(A) Representative breast adenocarcinoma E0771 grafts grown in lean wild type or 

SPARC
-/-

 mice (n=5/group). (B) Graph shows volume of tumor grafts from lean and obese 

wild type or SPARC
-/-

 mice. (C) Haematoxylin eosin staining of tumor grafts from (B) 

shows increased viable region in tumor grafted onto obese wild type mice. N: necrotic, V: 

viable. Error bars, SEM from 5 mice. P0.05 
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Figure 6-2. Decreased vasculature in tumor grown in SPARC
-/- 

mice. 

 

Immunofluorescence analysis of EO771 tumor sections comparing ASC-associated 

endothelium (IB+) and progenitor markers (CD34+, -SMA, PDGFR, PDGFR) 

expression in tumor viable regions. 
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