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PLASMACYTOID DENDRITIC CELL-MEDIATED HUMORAL AUTOIMMUNITY 

By 

Stephanie M. Dorta-Estremera, B.S. 

Supervisory Professor: Wei Cao, Ph.D. 

Humoral autoimmunity is characterized by the breakdown of B cell immune tolerance to 

self-antigens and consequent production of pathogenic autoantibodies. Plasmacytoid dendritic 

cells (pDCs), a potent type I interferon (IFN-I) producer, have been linked to the pathogenesis 

of systemic lupus erythematosus (SLE), a prototypic systemic humoral autoimmune disease. 

However, the cellular events that stimulate the development of humoral autoimmunity as a 

result of pDC activation have not been characterized. Moreover, the B cell subset(s) 

responsible for the generation of autoantibodies remains to be clearly identified.  

The immunization of DNA-containing amyloids into non-autoimmune mice triggers the 

activation of pDCs and induction of lupus-like disease, characterized by the production of 

autoantibodies. Using this lupus model that is dependent on pDC activation and IFN-I 

production, we delineated the B cell responses elicited during the break of tolerance and 

characterized the key cellular players that may influence those responses. We found that, when 

IgM autoantibodies were induced, germinal centers were inhibited whereas immature B cells 

were activated and expanded. Such interesting observation suggested that humoral 

autoimmunity may arise from B cells outside germinal centers. While pDCs were involved in the 

overt activation of immature B cells, type II interferon (IFN-II) promoted their expansion. In 

addition, both IFN-I and IFN-II were required for isotype-class switch of autoantibodies thereby 

the generation of pathogenic subtypes. We further determined that IFN-II was produced by 

natural killer (NK) cells, which contributed to the development of humoral autoimmunity. In 

contrast, NKT cells suppressed the autoimmune B cell response. Last, we demonstrated that 
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serum amyloid P-component, a humoral factor that binds to amyloids, prevented the activation 

of pDCs and IFN-I production thus may exert a protective role against humoral autoimmunity.  

Our results established a functional link between IFN-I and IFN-II, where IFN-I from pDCs 

and IFN-II from NK cells are essential in stimulating multiple types of adaptive immune cells to 

coordinate the differentiation and expansion of self-reactive B cells. Selective targeting of the 

key cellular and molecular players may lead to innovative therapies for SLE and other 

autoimmune diseases. 
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1.1 Humoral Autoimmunity 

While protecting the host against pathogens, the immune system must also avoid a 

response against host cells (self). Autoimmune diseases develop when the immune system 

triggers an immune response against self-components, which is also referred as break of 

tolerance. B cells and T cells can become self-reactive and have organ-specific or systemic 

effects. For example, type 1 diabetes is considered an organ-specific autoimmune disease, 

whereas systemic lupus erythematosus (SLE) is considered a systemic disease.  

The escape of self-reactive B cells from negative selection, a process that, in theory, should 

prevent their development, may trigger the development of antibodies that react to self-antigens. 

These antibodies may form immune complexes (ICs) and bind tissue self-antigens, which may 

lead to organ damage. This antibody-mediated autoimmune response is called humoral 

autoimmunity. 

The innate and adaptive immune system must maintain a fine balance to react against 

foreign pathogens while preventing the recognition of self-proteins. A dysregulation in any arm 

of the immune system may trigger a cascade of events leading to the development of 

autoimmunity. The early events promoting an autoimmune reaction remain to be known [1]. This 

dissertation will focus on the identification of novel mechanisms involved during the 

development of humoral autoimmunity. 

1.2 Systemic Lupus Erythematosus 

SLE is the prototype of humoral autoimmunity characterized by the production of 

autoantibodies reactive to nuclear cell components. These antibodies can form ICs, composed 

by autoantibodies and DNA or RNA, that deposit in different tissues and trigger inflammation. 

SLE pathogenesis may target multiple organs including the kidney, heart, joints, skin, lungs, 

blood, vessels, liver and nervous system. The course of the disease is unpredictable, with 



3 
 

periods of more active disease, called flares, followed by remissions. Due to the complex 

manifestation of the disease, it can be difficult to diagnose. However, two typical organ 

manifestations together with the appearance of anti-nuclear antibodies (ANA) are sufficient for 

an SLE diagnosis [2, 3].  

 The etiopathogenesis of SLE is not completely understood, but is considered a 

combination of genetic, hormonal and environmental factors that result in the break of immune 

tolerance. The genetic contribution on SLE is evidenced by the finding that siblings from SLE 

patients are more likely to develop SLE compared with individuals without affected siblings [4]. 

Furthermore, single nucleotide polymorphisms in genes coding for major histocompatibility 

complex (MHC)-class II, Fcγ-receptors and complement factors have been associated to 

increased susceptibility to SLE [5]. The role of sex hormones has also been linked to SLE due 

to the striking incidence of SLE among women; around 90% of SLE patients are women of 

child-bearing age [6]. In addition, environmental factors such as increased exposure to sunlight 

and smoking can induce flares in SLE patients.  

The appearance of autoantibodies can start years before the onset of clinical symptoms 

[2]. This phenomenon could facilitate the earlier diagnosis of the disease. However, the cellular 

mechanisms occurring at the initiation phase of the disease are not well understood. The innate 

immune cells, plasmacytoid dendritic cells (pDCs) are thought to play an important role at this 

early stage, due to their ability to produce type I interferons (IFN-I) [7, 8].  

1.3 Plasmacytoid dendritic cells 

Dendritic cells (DCs) are innate immune cells able to present antigens to T cells. In mice, 

these cells express the CD11c marker and can be subdivided in several subsets, including the 

pDCs. Mouse pDCs express Siglec-H and BST-2, and have the ability to produce large amounts 

of IFN-I upon stimulation. These rare innate immune cells preferentially express the toll-like 
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receptors TLR7 and TLR9 on endosomal membranes, which are activated by nucleic acids with 

particulate-like properties or as part of a protein complex through receptor-mediated 

endocytosis [9]. Signaling through these TLRs triggers the recruitment of the myeloid 

differentiation primary response gene 88 (MyD88) adaptor molecule. MyD88 pathway, which is 

used by most TLRs, except TLR3, activates a multi-protein signal complex, containing IL-1 

receptor-associated kinase- (IRAK) 1 and 4, which further associates with tumor necrosis factor 

receptor-associated factor (TRAF)-6 and TRAF-3 and IκB kinase (IKK) -α [10]. This complex 

leads to the phosphorylation of interferon regulatory factor (IRF) -3, IRF7 and IRF5, which 

translocate to the nucleus and facilitate IFN-I gene transcription [11, 12].  

The ability of pDCs to produce IFN-I enables them to modulate T cell and B cell 

responses, which are important during viral infection and autoimmunity (Figure 1.1) [13]. Also, 

pDCs can modulate immune cells independently of IFN-I. Depending on the stimuli, pDCs can 

also produce pro- and anti-inflammatory cytokines and chemokines, such as IL-6, IL-12, 

CXCL18, CXCL10, CCL3, CCL4, BAFF and APRIL, which modulate T cell, NK cell and B cell 

responses [13-15]. Also, they express MHC class II and co-stimulatory molecules, which make 

them capable of priming T cells [16, 17]. 

1.4 Interferons  

The IFNs are a large family of cytokines that comprise three distinct classes: IFN-I, IFN-II 

and type III IFNs. IFN-I consist of different IFN-α subtypes, IFN-β and other novel gene products 

(IFNε, IFNτ, IFNκ, IFNω, IFNδ and IFNζ). Type II IFN (IFN-II) is composed by IFN-γ, and type III 

IFN consists of IFN-λ. All three classes of IFNs have the ability to interfere with viral replication 

[18]. However, IFN-I and IFN-II have numerous additional functions that influence innate and 

adaptive immune responses, making them relevant in cancer and autoimmune diseases.  

 



5 
 

 

1.4.1 Type I Interferons 

Almost all cells can produce both IFN-α and IFN-β after stimulation of pattern recognition 

receptors (PRRs) by microbial products or self-nucleic acids. Among the PRRs, RIG-I, the 

melanoma differentiation-associated gene 5 (Mda-5) (from the RIG-I-like proteins), NOD2, 

TLR3, TLR4, TLR7, TLR8 and TLR9 are involved in the induction of IFN-I as well as the 

induction of many other inflammatory cytokines (Figure 1.2) [19, 20]. In the cytosol, RIG-I and 

Mda-5 recognize double-stranded RNA (dsRNA), whereas NOD2 recognizes ssRNA. In 

endosomal compartments TLR3, TLR7 and TLR8, and TLR9 respond to dsRNA, single-

Figure 1.1. Plasmacytoid dendritic cell functions. pDCs are important drivers of both 

innate and adaptive immune responses. Their ability to rapidly produce type I IFNs and 

different cytokines enables pDCs to present antigens to T cells, promote T cell and B cell 

responses and induce immune cell recruitment to infection sites or to inflamed tissues. 

Reprinted by permission from Macmillan Publishers Ltd: [Nat Rev Immunol] (Swiecki M and 

Colonna M., The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol, 

2015. 15(8):874-7) doi:10.1038/nri3865. Copyright Clearance Center. 
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stranded RNA (ssRNA) and unmethylated CpG DNA, respectively [21-23]. Also, TLR4, present 

in the cytosol, recognizes lipopolysaccharides (LPS) from bacteria [24]. Whereas dendritic cells 

(DCs), monocytes and macrophages express TLR4, TLR7 and TLR8, pDCs preferentially 

express TLR7 and TLR9. The differential distribution of TLRs in different immune cell types 

allows a robust response against a broad range of viruses and bacteria [12, 25].  

After IFN-I release, these cytokines signal through the IFN-α/β receptor (IFNAR) (Figure 

1.3) [26].  Binding of IFN-I to their receptor leads to the dimerization of the two receptor 

subunits, IFNAR1 and IFNAR2. This triggers the activation of the Janus family kinases 1 (JAK1) 

and tyrosine kinase 2 (Tyk2). These activated kinases recruit and phosphorylate the 

transcription factors signal transducer and activator of transcription (STAT) 1 and STAT2, which 

associate with IRF9 forming the IFN stimulated gene-factor 3 (ISGF3) complex. The complex 

translocates to the cell nucleus and binds to IFN-stimulated response elements (ISRE) and 

activates the transcription of hundreds of interferon-stimulated genes (ISGs) [18]. 

IFN-I are able to modulate innate and adaptive immune responses. For example, IFN-I 

regulate cell migration, NK cell cytotoxicity, antigen presentation by DCs, and enhance antibody 

production and survival of B cells [12]. Because of the wide range of effects on different cell 

types, IFN-I are agents of treatment in different diseases. Due to their anti-viral capacities, IFN-I 

are used as treatment for hepatitis B and C [27].  Additionally, IFN-I have been used as a 

treatment for melanoma, leukemia and Kaposi’s sarcoma [28, 29]. However, this treatment 

increased the susceptibility to develop autoimmune diseases [30, 31]. Also, IFN-I has been 

linked to the development of autoimmune diseases, which will be a major topic of this 

dissertation.  
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Figure 1.2. Pathways of type I IFN induction. Microbial products can be recognized by 
cell-surface and intracellular pattern recognition receptors, including Toll-like receptors 
(TLRs) and retinoic acid-inducible gene I (RIG-I), to trigger the induction of type I 
interferons (IFNs) by several distinct signaling pathways. Adapted by permission from 
Macmillan Publishers Ltd: [Nat Rev Immunol] (McNab F, et al., Type I interferons in 
infectious disease. Nat Rev Immunol, 2015. 15(2):87-103). Copyright Clearance Center.  
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1.4.2 Type I Interferon in systemic lupus erythematosus 

In SLE and other autoimmune diseases, the activation of the IFN-I system is observed 

during disease. PBMCs from SLE patients show a notable upregulation of interferon-stimulated 

Figure 1.3. Type I IFN receptor signaling. Binding of type I IFNs to the IFNAR triggers a 
signaling cascade to activate the IFN-response elements which transcribe hundreds of 
ISGs. Adapted by permission from Macmillan Publishers Ltd: [Nat Rev Immunol] (Platanias 
LC., Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat Rev Immunol, 
2005. 5(5):375-86). Copyright Clearance Center. 
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genes (ISGs; referred as IFN-signature) suggesting the stimulation of cells by IFN-I [32]. 

Furthermore, a proportion of SLE patients have elevation of IFN-α in the serum and existence of 

IFN-α-producing cells in affected tissues [33-35]. The increased levels of IFN-α in the serum 

and type I IFN signature are associated with a more severe disease [36]. Additionally, IFN-I 

present in SLE sera can induce the in vitro differentiation of monocytes to dendritic cells, which 

can promote T cell proliferation [37]. Another mechanism by which IFN-I may be involved in SLE 

development is through the induction of BAFF by myeloid cells, which can further enhance the 

survival of B cells [38, 39].  Altogether, IFN-I may play a pathogenic role in SLE patients. 

Studies in both humans and mice provide evidence that IFN-I contribute to the 

development of SLE. As mentioned, case reports revealed that some patients under IFN-I 

treatment for malignancies or chronic viral infections exhibit features of SLE including the 

development of anti-nuclear antibodies [27-30].  In addition, exogenous IFN-α exacerbates 

disease on autoimmune-prone mice, whereas IFNAR deficiency protects them from developing 

autoantibodies.  Most of these autoimmune-prone mice do not show an IFN signature [38, 40, 

41].  

It has been proposed that the activation of pDCs is through nucleic acid-containing ICs. [7, 

8]. These ICs can be internalized via receptor-mediated phagocytosis and activate TLR9 in 

pDCs to produce IFN-I. However, this event first requires the presence of autoantibodies. The 

role of pDCs as initiators of autoimmunity has just been recently described. Our lab first 

determined that pDC depletion prevented autoimmune development in an inducible lupus model 

[42]. Subsequently, several groups have reported that depletion of pDCs or dysfunction of pDCs 

prohibited autoantibody generation and lupus pathogenesis in lupus-prone mice [43]. However, 

the cellular events occurring after pDC activation that contribute to the development of 

autoantibodies are not well understood. This dissertation aims to study the mechanism by 

which pDC activation stimulates humoral autoimmunity. 



10 
 

1.5 B cells  

1.5.1 B cell development 

After birth, B cells develop in the bone marrow from hematopoietic precursor cells and 

pass through a rearrangement process of the immunoglobulin gene segments until a functional 

BCR is formed. The pairing of a rearranged heavy chain, consisting of VH, DH and JH gene 

segments, with a rearranged light chain, consisting of VL and JL gene segments, will generate a 

complete BCR. This process is defined by 3 developmental stages (Figure 1.4) [44]. First, pro-B 

cells rearrange the D and J segments of the heavy chain, followed by a second rearrangement 

joining a V region with the DJ segment. This can form a functional μ-heavy chain that allows the 

entry to the second stage, known as pre-B-cell. At this stage, B cells form the pre-B cell 

receptor. The rearrangement of the light chain and its expression on the cell surface allows the 

formation of the IgM molecule and these cells enter the third stage, and are identified as 

immature B cells. Immature B cells leave the bone marrow and migrate to the spleen where 

they finalize their development and can differentiate into mature B cell subsets [45].  

Immature B cells, also termed transitional B cells, home to the follicle of the spleen. There 

are three main transitional subsets, T1, T2 and T3, which are classified based on the expression 

of CD23 and IgM [46]. Although not completely clear, T1 (IgMhi CD23low) B cells are thought to 

give rise to follicular B cells, T2 (IgMhigh CD23+) B cells most likely give rise to marginal zone 

(MZ) B cells, whereas T3 B cells (IgM-CD23-) cells are thought to be anergic [47] 

Different signals modulate the development and maturation of B cells in the bone marrow 

and in peripheral lymphoid organs. Signaling through the BCR by antigen modulates B cell 

development. Additionally, the presence of CXCL12 and IL-7 are required for B cell 

development in the bone marrow. In the periphery, BAFF provides survival signals to immature 

B cells through its binding to the BAFF receptor [48].   
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The mature B cell compartment is mostly composed by follicular B cells, but MZ B cells 

are also present in the spleen. Follicular B cells migrate through the blood and lymphoid organs 

until activation. This B cell population needs antigen-mediated BCR stimulation and T cell co-

stimulation for their differentiation into plasma cells. In contrast, MZ B cells can differentiate into 

antibody-producing following exposure to TLR ligands. Due to their ability to quickly produce 

antibodies, MZ B cells are considered innate-like cells, therefore, they play a major role in T cell-

independent responses [49]. 

 

 

Figure 1.4. B cell development. In the bone marrow, B cells undergo a maturation process 
consisting of the pro-B cell, pre-B cell and immature B cell stage. After a mature BCR 
receptor is rearranged, immature B cells go to the periphery and continue their development. 
In the periphery, immature B cells develop from T1 B cell to T2 B cell, at this stage T3 B cells 
(anergic B cell population) may develop or they continue their maturation into mature B cells. 
Adapted by permission from Macmillan Publishers Ltd: [Nat Rev Immunol] Cambier JC, et al., 
B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev 
Immunol, 2007. 7(8):874-7. Copyright Clearance Center. 
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1.5.2 Antibody responses 

Antibody responses can be divided according to the location where the B cells develop 

into antibody secreting cells. In most instances, T-independent responses develop at 

extrafollicular niches, although the presence of extrafollicular T cells may also help in the 

activation of B cells at this location. The movement of B cells into extrafollicular areas drives the 

generation of plasmablasts, which produce low affinity antibodies against invading pathogens 

[50]. In contrast, T-dependent responses mostly develop on germinal centers (GCs). The 

establishment of GCs generates long-lived plasma cells and high affinity antibodies [51, 52].  

1.5.3 Germinal Center  

The GC allows the formation of highly diverse and specific antibodies (Figure 1.5) [53]. 

After antigen exposure, activated follicular B cells migrate to the center of the B cell follicle and 

proliferate within the follicular DC network [54]. Along with follicular DCs, T follicular helper cells 

(Tfh) assist in the formation of the GC response by providing survival signals to GC B cells 

(expressing Fas and GL-7). After 8-10 days, the GC polarizes with proliferating B cells 

(centroblasts) on the T cell side and with the resting B cells (centrocytes) on the other. 

Centroblasts are highly proliferative and undergo somatic hypermutation (SHM), which is the 

basis for affinity maturation of antibodies. SHM induces high rates of mutation in the 

immunoglobulin variable region genes of the B cells, which produces high affinity antibodies. 

After the SHM process is completed, B cells undergo selection. B cells with high affinity BCR 

survive, while those with weak or moderate affinity either die immediately or undergo SHM 

again. Then, B cells may switch their Ig class expression to other classes to acquire a distinct 

effector function; this process is known as class-switch recombination (CSR). Lastly, the B cells 

that survive these processes either become memory B cells or long-lived plasma cells [55]. 
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During this process different checkpoints occur to ensure antigen specificity of the humoral 

response, which will be discussed in section 1.5.6.  

 

 

A specialized T cell subset modulates GC development and function. It has been well 

characterized that Tfh cells, which express ICOS, CXCR5 and PD-1, are required for the 

development of GC B cells. The help provided by Tfh cells is essential for the survival and 

proliferation of GC B cells. This T cell subset regulates GC size, restrict low-affinity B cell entry 

Figure 1.5. Germinal center reaction. Antigen-activated B cells differentiate into 
centroblasts that undergo clonal expansion and somatic hypermutation (SHM) in the dark 
zone of the germinal center. Centroblasts then differentiate into centrocytes and move to 
the light zone, where T follicular helper cells and follicular dendritic cells (FDCs) select B 
cells with a B cell receptor highly specific to the immunizing antigen. Centrocytes that are 
not specific to the antigen undergo apoptosis and are removed. Then, a subset of 
centrocytes undergoes immunoglobulin class-switch recombination (CSR). Antigen-
selected centrocytes eventually differentiate into memory B cells or plasma cells. Reprinted 
by permission from Macmillan Publishers Ltd: [Nat Rev Immunol] Klein U and Dalla-Favera 
R., Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol, 2008. 
8(1):874-7. doi:10.1038/nri2217. Copyright Clearance Center. 
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into the GC while supporting high-affinity B cell selection [56, 57]. Therefore, the presence and 

functionality of Tfh cells is important for antibody responses.  

The major transcriptional regulator of the germinal center is B cell Lymphoma 6 (Bcl6). 

Both GC B cells and Tfh cells express Bcl6. The disruption of the Bcl6 gene blocks the 

development of GC B cells and Tfh cells, making it a master regulator of antibody affinity 

maturation in GCs [53]. Due to the repressive function of Bcl6, its expression modulates a broad 

array of genes to prevent premature activation and differentiation of GC B cells [58]. Also, Bcl6 

can suppress genes that are required to drive the differentiation of alternative T helper cell 

lineages [59]. 

1.5.4 Extrafollicular Responses 

Circulating B cells pass through the extrafollicular bridging channels when migrating into 

the follicle. Some B cell populations are positioned in this area, including transitional B cells and 

MZ B cells. Although not as well defined as GC structures, extrafollicular regions contain DCs 

and T cells, providing a microenvironment necessary for B cell interaction and activation. After B 

cell activation, extrafollicular B cells usually form short-lived plasma cells, called plasmablasts, 

mostly after T-independent responses. However after immunization with T-dependent antigens, 

extrafollicular responses have also been observed. A specialized CD4+ T cell subset, with 

similar characteristics to Tfh cells, helps in the formation of extrafollicular responses. These 

extrafollicular T helper cells (Tefh) require ICOS and Bcl6 for their development and express 

CD40L and IL-21 to induce B cell maturation [50, 60].  

1.5.5 B cell migration 

Chemokine receptors facilitate the migration of B cells inside secondary lymphoid organs. 

Among these receptors, CXCR5 and CCR7 are upregulated on cells destined to go to the GC. 

Their respective ligands are CXCL13, which is produced by follicular DCs, and CCL19/CCL21, 
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produced by T cells. Recently identified, Epstein-Barr virus induced molecule 2 (EBI-2) signaling 

has the ability to guide naïve and activated B cells throughout the follicle. For B cells to localize 

in extrafollicular foci, EBI-2 is retained, CXCR5 is downregulated and CXCR4 is increased. A 

tight regulation of these chemokine receptors and their ligands ensures a homeostatic antibody 

response [61, 62]. However, little is known about the initial signals that induce cells to move 

towards one region or the other. Whether IFN-I directly or indirectly affects the migration of B 

cells into the GC and/or extrafollicular areas during autoimmunity need to be further 

investigated. 

1.5.6 B cell tolerance 

B cell tolerance is essential for maintaining unresponsiveness to self-antigens. Central 

and peripheral mechanisms exist to prevent the generation of self-reactive B cells and the 

development of humoral autoimmunity. In the bone marrow, immature self-reactive B cells can 

become anergic, deleted, or the specificity of their receptor can be edited (referred as receptor 

editing). Ligand specificity and BCR signal strength play key roles in determining the fate of the 

B cell during the selection process [63].  

However, 50-80% of immature B cells that emerge from the bone marrow are 

autoreactive; therefore, peripheral tolerance checkpoints must exist to prevent further 

maturation of self-reactive B cells [64]. This phenomenon is noticed after analyzing immature B 

cells in healthy individuals, where most of them are polyreactive and capable of binding self-

antigen [64]. However, only a small percentage of immature B cells survive and enter the pool of 

mature naïve B cells. 

Indeed, in peripheral lymphoid organs, autoreactive B cells are deleted at the transitional 

stage and in the germinal center. The first checkpoint occurs between the immature B cell from 
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the bone marrow and the transitional T1 B cell from the spleen. The second is between the T1 

and T2/T3 stage and the third is between T2/T3 B cells and mature B cell subsets [65].  

During these checkpoints positive and negative selection processes take place, where 

ligand specificity, BCR signal strength and the cellular microenvironment ultimately determine 

the fate of the B cell. It has been proposed that soluble antigens with low valency provide a 

positive signal to the B cell, whereas polyvalent self-antigens cause deletion of the B cell [66]. 

Additionally, the presence of BAFF is thought to provide a positive signal for further B cell 

differentiation at the transitional stage [67]. The mechanism that modulate the positive and 

negative selection processes to prevent the selection of autoreactive B cells is still not very well 

understood.  

Not clear is also the process of B cell selection inside GCs. However, two models have 

been proposed. In both models, follicular DCs present antigens to B cells. B cells that have 

affinity against self or show low affinity against foreign antigen undergo apoptosis due to lack of 

T cell help or inadequate BCR signaling from follicular DCs. In the first model, the different 

strengths of BCR signaling against foreign antigens determine survival and affinity maturation, 

i.e., high affinity BCRs acquire proper T cell help and further survive, divide and differentiate. In 

the second model, sufficient BCR signaling is required but competition for T cell help limit 

selection. A GC B cell that presents the highest number of antigen-MHC complexes compared 

with neighboring cells will be selected by antigen-specific T cells [54]. The exact mechanism by 

which B cell tolerance is broken inside GCs during autoimmunity it remains ambiguous.  

1.5.7 B cell dysregulations in SLE 

Patients with SLE show dramatic changes in their B cell subsets [68]. The most 

pronounced alterations are increased frequencies of transitional, memory and plasmablasts [65, 

69, 70]. Among the naïve B cell population in SLE patients, 25-50% expresses self-reactive 
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BCR, whereas healthy individuals have from 5-20% self-reactive naïve B cells [71]. Moreover, a 

subpopulation of memory B cells show signs of SHM that correlates with disease activity, 

suggesting a GC origin [72]. 

In murine lupus models, dysregulated B cell subsets have been detected. One of the most 

affected B cell subsets are GCs. Many autoimmune-prone mice spontaneously develop GCs, 

and their presence correlates with the appearance of autoantibodies [73]. In addition, other B 

cell subsets have been found expanded in vivo. For example, MZ B cells are expanded in 

NZB/W F1 and B6.Sle1.Sle2.Sle3 mice and they generate anti-dsDNA IgM antibodies [74, 75]. 

Recently, transitional B cells have been shown to be expanded in TLR7-transgenic mice and the 

presence of anti-RNA antibodies was thought to come from this population; however the 

presence of this B cell subset was independent of IFNAR signaling [76]. The effect of pDC 

activation on the development of self-reactive B cells needs to be studied in a mouse model that 

exhibit a type I IFN signature.  

1.6 Helper cells in humoral autoimmunity 

Different immune cells can help and shape B cell responses. T cells have long been 

known to provide critical help to B cells in response to protein antigens. Because most B cell 

responses require T cell help, peripheral B cell tolerance largely depends on T cells.  The 

specialized T helper subset, Tfh, provides positive signals to B cells inside the GC. These Tfh 

cells not only need to enter GCs, but also must be competent to provide appropriate co-

stimulation to B cells. Overexpression of molecules expressed by Tfh cells, such as CD40L, 

ICOS and IL-21, induces break of B cell tolerance and autoimmunity, whereas blockade of 

these molecules prevents autoantibody development in autoimmune-prone mice [57, 77].  

Glycolipid antigens can elicit B cell responses through the activation of invariant NKT 

cells. These NKT cells express an invariant T cell receptor that is Vα14-Jα18 in mice and Vα24-
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Jα18 in humans. Unlike conventional T cells that recognize antigens by MHC class II, NKT cells 

recognize antigens presented by CD1d [78]. A specialized subset of NKT cells is also present in 

the GC, with similar phenotypic characteristics to Tfh cells. The activation of NKT cells with 

glycolipid antigens induces a rapid formation of GCs, but it can also promote the formation of 

extrafollicular plasmablasts [79, 80]. Despite the stimulatory role of NKT cells in normal antibody 

responses, NKT cells seem to have a suppressive function during autoimmunity. This is 

supported by several findings showing that NKT cell deficiency exacerbated autoantibody 

generation [81, 82].   

Growing evidence has shown that non-classical helper cells can interact with B cells and 

provide the necessary signals for B cell activation and differentiation. Among these, neutrophils, 

macrophages and mast cells have been shown to directly or indirectly induce B cell activation 

[83]. Moreover, NK cells have been shown to induce B cell activation in vitro [84]. It seems that 

different types of antigens activate a different set of helper cells to induce the necessary 

antibody response. Whether different types of helper cells are induced during systemic 

autoimmunity needs to be further studied. Due to the complexity and multicellular players 

involved during autoimmunity, this is a likely scenario. 

1.7 Mouse lupus models 

As pointed before, different lupus mouse models share certain similarities with human SLE 

(Table 1.1), such as the development of autoantibodies against nuclear components, which may 

lead to immune complex deposition in the kidneys and proteinuria [85, 86]. However, there are 

some disadvantages while using these mouse models. Autoimmune-prone mice, such as 

NZB/W F1 and MRL-Faslpr strains which develop spontaneous lupus disease, harbor mutations 

in different genes that predispose them to autoimmunity. Due to effects on different immune cell 

types, the contribution by a specific gene to disease pathogenesis is difficult to dissect. In 
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contrast to human SLE, these mice lack the IFN-I signature. Although BXSB mice show a weak 

type I IFN signature, the development of lupus is only observed in male mice [87]. This is in 

contrast to human SLE, where female preponderance exists. 

 

Some inducible lupus models have been developed to study autoimmunity in non-

autoimmune mice. Injection of pristane, a hydrocarbon oil, in C57BL/6 or Balb/c mice causes 

the development of autoantibodies and IC-mediated glomerulonephritis [88]. Even though these 

mice exhibit a type I IFN signature, IFN-α is produced by inflammatory monocytes instead of 

pDCs [89]. 

1.7.1 Amyloid-induced lupus model 

Our laboratory has developed a novel inducible lupus model that is better suited for 

studying pDC-mediated humoral autoimmunity. Nucleic acid-containing amyloids can activate 

pDCs through TLR9 activation, leading to IFN-I production. More importantly, the immunization 

of non-autoimmune mice with DNA-containing amyloids triggers a lupus-like disease. These 

mice develop autoantibodies against several anti-nuclear antigens, such as DNA, histone and 

Table 1.1. Spontaneous lupus mouse models.  
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Sm/RNP. Additionally, the immunized mice exhibited IC deposition in the kidneys, which 

correlated with proteinuria. A type I IFN signature was present in these mice, and depletion of 

pDCs prevented the development of autoantibodies [42]. Moreover, deficiency of Ifnar or 

impairment of pDCs’ capacity to produce IFN-I prevented the development of anti-nuclear 

antibodies (Figure 1.6) [90]. Therefore, this model allows experimental delineation of pDC-

mediated induction of humoral autoimmunity. 

 

Interestingly, the functional amyloid curli, produced during biofilm formation, can 

complex with DNA and activate DCs to produce IFN-I.  When injected in vivo, curli-DNA or 

bacteria-producing curli amyloid induced lupus-like disease [91]. Since DNA-containing 

amyloids can certainly elicit an autoimmune reaction, it is relevant to study the immunological 

events occurring after amyloid stimulation in vivo. The amyloid-induced lupus model may help 

elucidate these events.  

  

Figure 1.6. Amyloid-induced lupus model. Immunization with DNA-containing amyloids 
into non-autoimmune mice triggers the development of anti-nuclear antibodies (ANA). 
Deficiency in Ifnar1 (Ifnar-/-) or mutations in TLR signaling from pDCs (feeble), which impairs 
their cytokine production, prevents the development of ANA.    
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1.8 Organization of the dissertation 

1.8.1 Rationale of this dissertation 

Type I IFNs and pDCs have been directly linked to SLE pathogenesis; however the 

cellular cascade that stimulates the development of humoral autoimmunity as a result of pDC 

activation has not been described. Moreover, the origin of self-reactive B cells is unknown: it is 

not clear whether the GC, extrafollicular responses or both are necessary for the development 

of autoreactive B cells. Although different lupus mouse models are available, most of them lack 

a type I IFN signature, which is predominantly present in SLE patients [32]. In addition, 

spontaneous lupus mice contain polygenic mutations, which make it difficult to dissect the 

contribution by individual genes. Fortunately, we have developed an inducible lupus mouse 

model, where the immunization of non-autoimmune mice with DNA-containing amyloids induces 

a break of tolerance, characterized by the presence of autoantibodies and IC deposition in the 

kidney. These mice show a type I IFN signature and require pDCs for autoantibody 

development [42]. We believe that this mouse model better mimics SLE pathogenesis, thus will 

allow us to analyze the B cell responses and identify cellular players downstream of pDC 

activation, which leads to the establishment of autoimmunity. Additionally, we will determine 

whether humoral factors known to interact with amyloids, can affect the ability of amyloid to 

activate pDCs.  

1.8.2 Aims 

We hypothesize that pDCs stimulate the development of humoral autoimmunity by 

promoting a cascade of cellular events, which involve the development of self-reactive B cells 

that can arise from the germinal center and/or extrafollicular locations by activating immune 

helper cells. Separately, the presence of pentraxins may influence this process by affecting 

amyloid-mediated pDC activation. 
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We developed the following AIMS: 

 AIM I: Determine the role played by germinal center response in pDC-mediated humoral 

autoimmunity. 

 AIM II: Determine whether extrafollicular B cells are involved in pDC-mediated humoral 

autoimmunity. 

 AIM III: Identify immune helper cells that participate in pDC-mediated humoral 

autoimmunity. 

 AIM IV: Determine whether serum amyloid P-component (SAP) modulates amyloid-

mediated pDC activation in vitro. 

In Chapters II, III and IV, we will use the amyloid-induced lupus model, to study how pDC 

mediates humoral autoimmunity. On Chapter II and III, B cell responses will be analyzed. We 

will mostly focus on the B cell responses occurring during break of tolerance, defined as the first 

appearance of IgM autoantibodies. Specifically, in Chapter II we will analyze the presence of 

GC B cells and possible factors influencing their development during pDC-mediated humoral 

autoimmunity. In Chapter III, we will analyze different B cell subsets outside GCs that are 

activated in this autoimmune model. To complete the in vivo study, in Chapter IV, we will identify 

immune helper cells and the potential mechanisms used by these cells to influence the 

development of autoantibodies. The results of these 3 chapters will identify the key B cell subset 

that produce autoantibodies initially and the cellular players that modulate the generation of self-

reactive B cells in a pDC-mediated autoimmune model. 

Additionally, in Chapter V, we will study the ability of humoral factors present in serum, 

which are known to interact with amyloid, such as SAP, to modulate pDC activation in vitro. This 

dissertation will uncover novel mechanisms that promote and modulate humoral autoimmunity.  
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CHAPTER 2. 

GERMINAL CENTERS ARE INHIBITED DURING PLASMACYTOID DENDRITIC CELL-

MEDIATED AUTOIMMUNITY 

 

 

 

 

 

 

 

 

 

 



24 
 

2.1 Rationale 

Humoral autoimmunity surges from the development of autoantibodies whose origin 

remains unknown. It has been suggested that autoantibodies arise primarily from GCs. This 

hypothesis is supported by several findings. First, peripheral blood from SLE patients contains 

an expanded B cell subset with GC characteristics, including enhanced SHM [70, 92]. In 

accordance, autoantibodies and plasma cells from SLE patients display extensive SHM [93].  

Second, numerous mouse strains that develop SLE-like disease exhibit spontaneous GCs in the 

spleen. The generation of these GCs correlates with the onset of autoantibody production [94].  

The role of GCs in SLE is further supported by the dysregulated phenotype of Tfh cells in 

patients with SLE and lupus mouse models. In some SLE patients, circulating T cells with 

characteristics of Tfh are expanded and correlated with autoantibody titers and severity of end-

organ involvement [71]. Additionally, polymorphisms of IL-21, a major Tfh cytokine that induces 

GC development, and IL-21R are associated with SLE [95]. In mice, an expanded Tfh 

population, which produces high levels of IL-21, has been found in the sanroque mice, which 

harbored a mutation that regulates ICOS expression on T cells, and developed spontaneous 

GCs and aggressive lupus-like disease [96]. A haploinsufficiency of Bcl6, which reduced GC B 

cells and Tfh cells, also reduced lupus pathogenesis in sanroque mice, further supporting the 

role of GCs in SLE development [73]. Additionally, excessive production of IL-21 has been 

observed in MRL-Faslpr and BXSB/Yaa mice and their crossing with Il21r-/- prevented the 

development of autoantibodies [97]. However, it is unclear whether GC response is similarly 

affected in pDC-mediated humoral autoimmunity, as the spontaneous lupus mouse models do 

not exhibit a type I IFN signature. 

This major caveat is overcome in the amyloid-induced lupus model. DNA-containing 

amyloids can activate pDCs to produce IFN-I. Interestingly, after in vivo immunization, DNA-
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containing amyloids can induce lupus-like disease in non-autoimmune mice, characterized by 

the production of self-reactive antibodies and IC deposition in the kidneys. The depletion of 

pDCs abolished the lupus-like symptoms. Due to the presence of human serum albumin (HSA) 

in the amyloid backbone, we can simultaneously analyze and contrast the immunogen-reactive 

and the self-reactive antibody responses.  By using this inducible lupus mouse model, we 

intend to determine whether pDC-IFN-I axis elicits a GC reaction to promote the 

development of self-reactive B cells.  

2.2 Differential humoral responses to immunogen vs self-antigen 

To study the events occurring during break of tolerance, we analyzed the antibody 

responses in non-autoimmune mice at 1-3 weeks after injection of HSA-DNA (further referred as 

control) or DNA-containing amyloid (further referred as amyloid) mixed with complete Freund’s 

adjuvant (CFA) [42]. During the first two weeks after immunization, antigen-specific antibody 

levels were low in both control- and amyloid-immunized mice. However, at 3 weeks of 

immunization striking differences were observed between the two groups of immunized mice: 

the levels of IgG antibodies reactive to the immunogen (anti-HSA) dramatically increased in 

mice receiving control, whereas mice receiving amyloid did not show such increase (Figure 

2.1A). In contrast, the levels of histone-specific IgM antibodies were elevated after immunization 

with amyloid, but not with control (Figure 2.1B). Anti-histone IgG antibodies were undetectable 

at this time point (data not shown). Consistent with this result, the in vitro culture of isolated B 

cells from amyloid-immunized mice produced lower levels of anti-HSA IgG and higher levels of 

anti-histone IgM compared to B cells from control-immunized mice after R848 stimulation, a 

TLR7 agonist (Figure 2.1C, 2.1D). Altogether, these data showed that pDC activation induces a 

break of tolerance at 3 weeks of immunization, characterized by the generation of self-reactive 

antibodies. Intriguingly, amyloid inhibits the immunogen-specific antibody response. 
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To confirm our results, we generated hybridoma clones from B cells isolated from control- 

and amyloid- immunized mice. The same amounts of B cells (2x106 cells) were fused to 

myeloma cells. As expected, higher percentage of clones from mice receiving control produced 

anti-HSA antibodies (Figure 2.2A), whereas higher percentage of B cells from mice receiving 

amyloid produced anti-histone antibodies (Figure 2.2B).  Interestingly, some clones were 

reactive to 2 or more additional antigens. For example, some clones produced antibodies that 

reacted to histone and also to HSA and Sm/RNP. After comparing the polyreactivity between B 

cell clones from control or amyloid, we found that most of the histone-specific antibodies from 

amyloid immunized mice also reacted to the immunogen and/or to other self-antigen  (Figure 

2.2C); this is similar to the observed property of B cells from SLE patients [98]. Altogether, these 

data indicated that during break of tolerance, which occurred at 3 weeks in our model, self-

reactive B cells are selected to produce primarily polyreactive autoantibodies, whereas 

immunogen-specific B cells are inhibited. 
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Figure 2.1. Immunogen-specific antibodies are decreased while self-reactive 
antibodies are increased during break of tolerance.  
(A) Sera from control or amyloid immunized C57BL/6 mice was collected at different time 
points after immunization and anti-HSA IgG antibodies were detected by ELISA (n = 3).  
B) Levels of anti-histone IgM antibodies were detected in the sera by ELISA (n = 3 – 7)  
(C) After 3 weeks of immunization, enriched B cells were cultured for 7 days in media or 
R848 and anti-HSA IgG antibodies were detected in the supernatant. Two additional 
experiments were performed. 
(D) Levels of anti-histone IgM antibodies were detected in the supernatant from the 
samples as in (C). 
(A, B and D) Data represented as means + SEM. P values: **p<0.005, and ***p<0.0005. 
Student’s t-test was performed to detect statistical difference between groups. 
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2.3 Germinal centers reactive to immunogen are diminished 

GCs are a unique microenvironment where antigen-specific B cells are selected and 

develop into antibody-secreting cells. Due to the differential antibody responses induced by 

control- vs. amyloid-immunization, we assumed that the development of GCs may also be 

affected. To clearly identify GC B cells, we utilized the Bcl6yfp reporter mice. In these mice, the 

yellow fluorescent protein (YFP) gene was inserted in-frame right after the initiation codon of the 

Figure 2.2. Break of tolerance induces polyreactive B cell clones.  
(A) Hybridomas were prepared from sorted total CD19+B220+ cells and the levels of anti-
HSA IgG were detected in the supernatant by ELISA. Graphs show % of positive clones 
among all clones tested. (control – n = 37 clones; amyloid – n = 40 clones)  
(B) Anti-histone IgM antibodies were detected by ELISA from the samples as (A). 
(C) Reactivity to HSA, histone and Sm/RNP were tested in anti-histone IgM positive clones 
(control – n = 2; amyloid – n = 9).  
(A-C) Data from one experiment. Collaborator contributions: Long Vien from Hybridoma 
Core Facility at MD Anderson Cancer Center performed the fusion of sorted B cells into 
myeloma cells.  
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Bcl6 gene, allowing the identification of Bcl6+ cells, mostly GC B cells and Tfh cells, by the YFP 

signal [99]. Bcl6yfp/+ mice develop comparable GC B cells and Tfh cell numbers as C57BL/6 

mice, whereas, homozygous Bcl6yfp/yfp mice contain lower number of GC-derived cells [99]. 

Therefore, we immunized the Bcl6yfp/+ mice with control or amyloid and quantified 

CD19+GL7+Fas+Bcl6+ GC B cells at different time points by flow cytometry. During the first 2 

weeks, GC B cell numbers were highly increased in mice that received control but not those that 

received amyloid (Figure 2.3A). Surprisingly, at week 3, amyloid induced a reduction of GC B 

cells whereas control immunization maintained high GC B cell numbers (Figure 2.3B). To 

confirm these results, we performed immunofluorescence staining on frozen spleens from mice 

3 weeks after immunization. By staining with peanut agglutinin (PNA) and IgD, we could 

observe that amyloid immunization restricted the development of GCs, as the spleen from 

amyloid-immunized mice formed not only less number of GCs but also smaller GCs (Figure 

2.3C). This occurred at the same time when immunogen-specific antibodies were decreased 

(Figure 2.3A), suggesting that those antibodies came from GC B cells.  

To confirm this finding, we biotinylated HSA and identified B cells that were able to bind 

to this immunogen by flow cytometry. In fact, a high percentage of GC B cells from control-

immunized mice recognized HSA, whereas GC B cells from amyloid-immunized mice barely 

showed positivity towards HSA (Figure 2.4A). Non-GC B cells displayed marginal reactivity 

towards the immunogen (Figure 2.4B). Moreover, depletion of GL7+Fas+ GC B cells resulted in 

the loss of hybridoma clones that produce IgG reactive to HSA (data not shown). Altogether, we 

conclude that amyloid inhibits GC-derived immunogen antibodies.   
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Figure 2.3. Amyloid immunization diminishes GC B cells.  
(A) Spleens from Bcl6yfp/+ mice immunized with control or amyloid were analyzed by flow 
cytometry to quantify GC B cells at different time points.  
(B) Flow cytometry plot depicting GC B cells after 3 weeks of immunization.  
(C) Frozen spleen sections from C57BL/6 mice immunized with control or amyloid after 3 
weeks of immunization were stained with PNA and IgD to quantify GC numbers and GC size. 
Magnification x10 using Leica SP8 confocal microscope and individual images were taken to 
the whole spleen section to count GCs. Average GC areas were determined by using ImageJ 
software. 
(A and C) Data represented as means + SEM  (n = 3). P values: *p<0.05. Student’s t-test 
was performed to detect statistical difference between groups. 
 

Figure 2.4. GC B cells are specific to the immunogen.  
(A) Biotinylated HSA was used to identify immunogen-specific GC B cells. 
(B) HSA-specific B cells, excluding GC B cells, were detected as in (A).  
(A-B) Similar results obtained in 4 independent experiments, 3 replicates per experiment.  
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2.4 Activation-induced cell death may promote germinal center inhibition  

The reduction of GC B cells by amyloid was intriguing to us; therefore we wanted to 

determine the mechanism responsible for this phenomenon. To determine whether proliferation 

of GC B cells was affected, we analyzed the expression of Ki67, a cell cycle-associated protein. 

Quantification by flow cytometry revealed that amyloid immunization induced lower percentage 

of Ki67+ GC B cells compared to control-immunization (Figure 2.5A). This result was consistent 

with histological analysis, showing lower Ki67+ cells inside GCs in amyloid-immunized spleen 

(Figure 2.5B). These data suggested that a decrease in B cell proliferation may explain the 

reduction of GC B cells during break of tolerance.  

 

 

 

Figure 2.5. GC B cells show impaired proliferation.  
(A) Ki67 expression was analyzed on GC B cells by flow cytometry after 2 weeks of 
immunization. Similar results were obtained from 2 additional experiments, 3 replicates 
each. 
(B) Spleens were frozen to detect GCs and Ki67 expression by immunofluorescence. Data 
is representative of one experiment (n = 3). 
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Activation-induced cell death (AICD) is an important negative selection mechanism to 

prevent self-reactivity. In T cell-dependent responses, AICD is initiated in B cells after 

stimulation of the Fas receptor by Fas ligand on T cells [100, 101].  To determine whether GC B 

cells undergo AICD during break of tolerance, we analyzed the expression of Fas and activation 

markers on GC B cells by flow cytometry and RT-PCR. Interestingly, GC B cells from amyloid-

immunized mice showed enhanced surface (Figure 2.6A) and mRNA expression (Figure 2.6B) 

of Fas compared to control-immunized mice. Additionally, the surface expression of CD80 was 

increased on GC B cells after amyloid immunization, which correlated with increased mRNA 

expression (Figure 2.6C and 2.6D).   

Figure 2.6. Amyloid induces markers of AICD on GC B cells.  
(A) The surface expression of Fas was analyzed on GC B cells by flow cytometry after 3 
weeks of immunization. Similar results were obtained in 3 additional experiments, 3 
replicates per experiment. 
(B) The mRNA expression of Fas was quantified by RT-PCR on cell sorted GC B cells after 2 
weeks of immunization. Data represents 2 pooled experiments. 
(C) The surface expression of CD80 was analyzed on GC B cells by flow cytometry after 3 
weeks of immunization. 
(D) The mRNA expression of CD80 was quantified on GC B cells as in (B). 
(E) EndoU mRNA expression was quantified as in (B and D). 
(B, C, D and E) Data represented as means + SEM. P values: *p<0.05, **p<0.005. Student’s 
t-test was performed to detect statistical difference between groups.  
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Recently, endonuclease PolyU-Specific (EndoU), a novel RNA-binding protein, has been 

identified as an important positive regulator of AICD on B cells. Therefore, we wanted to 

determine whether EndoU is expressed by GC B cells.  Interestingly, GC B cells from amyloid-

immunized mice upregulated EndoU, implying that the reduction of GC B cells relates to AICD 

(Figure 2.6E).  

2.5 pDC-IFN-I pathway is required for autoantibody development but dispensable for GC 

inhibition 

The peptide/histidine transporter solute carrier family 15, member 4 (Slc15a4) is crucial for 

cytokine production triggered by TLR7, TLR9 and NOD1 [102, 103]. Mice carrying a mutation on 

Slc15a4 gene, named “feeble”, showed defects in pDCs’ ability to produce cytokines, including 

IFN-I [104]. To determine whether pDC activation and IFN-I signaling influence the GC reaction 

during break of tolerance, we immunized feeble and Ifnar1-/- mice and quantified GCs, as 

previously described. As noted in Figure 2.7A, amyloid-immunized C57BL/6 mice showed 

decreased numbers of GCs whereas feeble mice, but not Ifnar1-/- mice, showed a partial rescue 

of GC B cells. This suggests a putative role of pDC activation on GC regulation, independent of 

IFN-I. It could be noted that both feeble and Ifnar1-/- mice developed less GCs with control-

immunization compared to C57BL/6 mice, suggesting a requirement of IFN-I in the full 

development of GCs in immunogen responses. After analyzing antibody production, no 

difference was detected in anti-HSA IgG antibodies from feeble and Ifnar1-/- mice receiving 

amyloid-immunization (Figure 2.7B). Altogether, these data suggested that pDC activation may 

not be responsible for the GC inhibition triggered by amyloid. 

In a previous study, we have demonstrated that feeble and Ifnar1-/- mice did not develop 

class-switched autoantibodies [90] (Figure 1.6). To determine whether pDC activation is 

required to induce break of tolerance, we analyzed autoantibody development in feeble and 
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Ifnar1-/- mice after 3 weeks of immunization with amyloid. Interestingly, we observed that anti-

histone IgM was induced in C57BL/6 mice but not in feeble or Ifnar1-/- mice (Figure 2.7C). Our 

data showed that pDCs are required for the development of self-reactive clones and their further 

isotype class-switching. 

 

 

 

 

 

 

 

Figure 2.7. pDC-IFN are required for the initial autoantibody development but may not 
be involved in GC B cell inhibition.  
(A) Numbers of GC B cells on spleens after 3 weeks of immunization in the corresponding 
mouse strains. 
(B) Levels of anti-HSA IgG antibodies in the serum after 3 weeks of immunization. 
(C) Levels of anti-histone IgM was quantified as in (B). 
(A-C) Data represented as means + SEM (n = 5 – 8). P values: *p<0.05, **p<0.005, 
***p<0.0005, ****p<0.00005, n.s. is > 0.05. Student’s t-test was performed to detect 
statistical difference between groups.  
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2.6 Defective GC development does not affect IgM autoantibody response but hinders 

isotype-class switching of autoantibodies  

The dramatic reduction of GCs during break of tolerance suggested that GCs may be 

dispensable for autoantibody development. To assess the role of GCs on the development of 

humoral autoimmunity, we analyzed mice with impaired Bcl6 function, a major transcriptional 

factor involved in the development of GCs. Bcl6yfp/yfp mice have reduced numbers of GC B cells 

and Tfh cells [99]. To analyze long-term autoantibody development, mice received an injection 

of control or amyloid with CFA, followed by 2 booster immunizations in incomplete Freund’s 

adjuvant (IFA) 2 weeks apart. After amyloid immunization, GC B cells were almost undetectable 

in Bcl6yfp/yfp mice (data not shown). Interestingly, these mice developed similar anti-histone IgM 

antibodies compared to WT mice after 7 weeks of amyloid immunization (Figure 2.8A). 

However, impairment of Bcl6 significantly reduced the production of anti-nuclear IgG antibodies 

(Figure 2.8B). Moreover, Bcl6yfp/yfp mice showed a significant impairment on the development of 

histone-specific pathogenic IgG isotypes, such as IgG2b and IgG2c (Same as IgG2a in Balb/c 

mice), suggesting a defect in isotype class-switching (Figure 2.8C). These data demonstrated 

that, while Bcl6 is dispensable for autoreactive IgM production, it is alternatively involved in 

subsequent IgG class-switching.   
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2.7 Discussion 

It is still unknown how the pDC-IFN axis promotes the positive selection and expansion of 

self-reactive B cells and what the cellular origin of autoantibodies is. We have determined that, 

in the amyloid-induced autoimmune model, pDCs and IFN-I play distinct roles in immunogen 

and self-reactive humoral responses. While pDCs do not seem to affect immunogen-specific 

antibodies, they appear to promote the production of autoantibodies at the initiation phase of the 

disease, and also the class-switching of autoantibodies. Interestingly, defective GCs did not 

Figure 2.8. Bcl6 may be required for isotype class switching to pathogenic 
autoantibodies  
(A) Levels of anti-histone IgM were detected in sera from C57BL/6 or Bcl6yfp/yfp mice after 7 
weeks of immunization (n = 11 – 16).  
(B) Sera from (A) were tested for anti-nuclear reactivity on HEP-2 cells. 
(C) Different anti-histone IgG subtypes in the sera were analyzed by ELISA (n = 4 – 5). Data 
from one experiment. 
(A-C) Data represented as means + SEM. P values: *p<0.05, **p<0.005, ***p<0.0005, 
****p<0.00005, n.s. is > 0.05. Student’s t-test was performed to detect statistical difference 
between groups.  
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affect the IgM autoantibody response; however, they were likely required for the class-switching 

of autoantibodies. Our data suggests that the break of tolerance may occur initially outside GCs. 

Several studies in mouse and human have suggested that autoantibodies can arise 

outside GCs. In MRL-Faslpr mice, rheumatoid factor and anti-dsDNA antibodies are produced in 

extrafollicular sites [105, 106]. In BXSB/Yaa mice, both follicular and extrafollicular responses 

drive the generation of autoantibodies [97]. More importantly, not all self-reactive plasma cells 

from SLE patients contain SHM mutations, suggesting that some have differentiated outside 

GCs [98]. By analyzing the amyloid-induced lupus model, we have determined that self-reactive 

antibodies can arise in the absence of GCs, suggesting an extrafollicular origin. This is 

supported by several findings. First, GCs are reduced after amyloid immunization and Bcl6 

impairment failed to affect IgM autoantibody development. This result needs to be further 

confirmed by analyzing Bcl6-deficient mice. Second, upon fusion of splenic B cells from 

amyloid-immunized mice with myeloma cells, the generation of self-reactive B hybridoma clones 

was unaffected by the depletion of GC B cells (data not shown). We would speculate that GCs 

are not the initial source of self-reactive B cells, but rather a second location to enhance 

autoantibody production and/or promote isotype class-switching to more pathogenic 

isotypes. In support of this claim, at 7 weeks of immunization, GC B cells are recovered in 

amyloid immunized mice (data not shown), suggesting that at later stages they are a possible 

source of autoantibodies. In the following chapter, non-GC B cells will be analyzed to identify a 

potential self-reactive B cell subset responsible for the initial break of tolerance in this model. 

The mechanism by which GCs are reduced is still unclear, but antigen availability, 

dysregulation of Tfh cells or apoptosis of B cells may all affect GC response. Lower antigen 

availability can prevent GC development [107]. In our model, the sequestration of the 

immunogen HSA in the amyloid structure might prevent their availability to induce GCs. This 

possibility needs to be further study. The role of Tfh cells will be examined in Chapter 4. 
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Programmed cell death might be triggered and result in GC reduction [108]. One type of 

programmed cell death occurs after engagement of TLR7 and BCRs, which triggers activation 

of B cells and necroptosis. However, this mechanism is not likely to happen in our model, since 

TLR7 deficiency did not rescue GCs from amyloid-induced inhibition (data not shown). 

Moreover, the upregulation of Fas and EndoU implies that AICD, an important negative 

selection mechanism, occurs in GC B cells. Further confirmation of GC B cell death, through 

analysis of caspase activity and detection of dying GC B cells, is needed to substantiate this 

conclusion. We will speculate that the inhibition of GC development might relate to an enhanced 

negative selection process to censor the generation of self-reactive B cells. 

Our study and recent investigations support the concept that polyreactive antibodies can 

be generated during autoimmunity. The idea that immune responses generated against foreign 

antigens may give rise to cross-reactive antibodies that bind both self-antigen and foreign 

antigen is called “molecular mimicry” [109]. These polyreactive antibodies have been found not 

only in autoimmune diseases following infections, but also in SLE patients undergoing flares 

[98]. The reason why an antibody can react to multiple unrelated antigens is still a matter of 

speculation. It is thought that low affinity antibodies have a more flexible antigen-binding pocket 

that can accommodate different antigens [110]. Therefore, it is likely that the initial 

autoantibodies produced during break of tolerance are of low affinity.  

Our data supports the hypothesis that IFN-I and Bcl6 play a pathogenic role in the 

development of autoantibodies. Therefore, therapeutic strategies aiming to block IFN-I or 

BCL6 may help control disease severity and progression in SLE patients.  
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CHAPTER 3.  

ACTIVATION OF NON-GERMINAL CENTER B CELLS IN PLASMACYTOID 

DENDRITIC CELL-MEDIATED HUMORAL AUTOIMMUNITY 
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 3.1 Rationale 

Many tolerance checkpoints exist during B cell development and maturation to prevent the 

generation of self-reactive clones. At these checkpoints, the BCR is tested for self-reactivity and 

may undergo negative selection if its affinity against self-antigen is above threshold. Defects at 

any of these checkpoints may release self-reactive B cells even before they enter the GC. 

 Different B cell subsets outside GCs have been found to be dysregulated in humoral 

autoimmunity. For example, MZ B cells are known to produce anti-DNA antibodies in several 

lupus mouse models, most likely in a T-cell independent manner [74, 75]. In TLR7-transgenic 

mice, which mostly develop anti-RNA antibodies, T1 B cells were found to be expanded in vivo 

and produced high levels of autoantibodies in vitro [76]. However, the dysregulation of T1 B 

cells was independent of IFN-I in this mouse model [76]. In SLE patients, transitional B cells are 

hyper-responsive to IgM crosslinking and IFN-α; the latter stimulation decreases apoptosis and 

increases proliferation of the B cells [111]. Additionally, age-associated B cells (ABCs), originally 

found in aging mice, are expanded in MRL-Faslpr, NZB/W F1 and BXSB mice [104, 112]. This B 

cell population proliferates robustly in response to TLR9 or TLR7 agonists and can quickly 

produce IgG class-switched autoantibodies. A corresponding ABC subset has been found in 

patients with scleroderma and rheumatoid arthritis, but not on SLE patients [112]. At this time, 

whether pDC-IFN axis induces the activation of non-GC B cell subsets to establish 

autoimmunity is not clear. In this chapter, we will characterize different B cell subsets in 

the amyloid-induced lupus model and identify potential non-GC B cells that are activated 

by pDCs. 

Chemotaxis of B cells through different areas of lymphoid organs is essential for proper B 

cell responses. The migration of B cells to outer follicular areas is partially regulated by the EBI-

2 signaling pathway. The ligand for EBI-2 is the oxysterol 7α,25-hydroxycholesterol (25-OHC) 
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[61]. The expression of EBI-2 and the two enzymes required for synthesis of 25-OHC, 

cholesterol 25-hydroxylase (Ch25h) and oxysterol 7α-hydroxylase (Cyp7b1), are upregulated 

under inflammatory conditions. Additionally, Ch25h is induced by IFN-I [62]. Mice deficient in 

Ch25h or Cyp7b1, which have impaired production of 25-OHC, develop defective T cell-

dependent plasma cell responses [113, 114]. We hypothesize that in the amyloid-induced lupus 

model, Ch25h is upregulated therefore promoting B cell localization into extrafollicular areas. By 

analyzing autoantibody development in Ch25h-deficient mice, we will determine whether the 

blockade of extrafollicular responses would affect the generation of self-reactive 

antibodies. 

3.2 Immature B cells are expanded during break of tolerance  

To identify the potential B cell subset that is activated during break of tolerance, we 

immunized mice with control or amyloid, and quantified the numbers of different B cell subsets.  

Interestingly, after 3 weeks of amyloid immunization, spleens were bigger (Figure 3.1A) and 

showed an increased number of B cells (Figure 3.1B) compare to control-immunized mice, 

suggesting an overt B cell activation. To differentiate between different stages of B cell 

development and B cell subsets, we utilized the markers CD93, IgM, CD21 and CD23 for their 

identification by flow cytometry. Notably, immature B cells (B220+CD93+CD138-) were increased 

after amyloid immunization, whereas mature B cells (B220+CD93-CD138-) did not differ between 

the two immunized groups (Figure 3.2A). Among immature B cell subsets, all of the transitional 

B cells were increased after amyloid immunization; however, T1 B cells (IgM+CD23-) were 

expanded most significantly (Figure 3.2B). The numbers of mature B cell subsets, follicular B 

cells (CD23+CD21int), marginal zone B cells (CD23-CD21+) and extrafollicular B cells (CD23-

CD21-) did not dramatically change after amyloid immunization (Figure 3.2C). ABCs, which 

have been found expanded in some autoimmune-prone mice, were not altered in our model 
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(Figure 3.2D). Our data suggested that, during break of tolerance, immature B cells, 

preferentially T1 B cells, are expanded. 

 

 

 

 

Figure 3.1. B cells are expanded after amyloid immunization.  
(A) Balb/c mice were immunized with control or amyloid, and after 3 weeks of immunization 
spleens were weighted. 
(B) B220+ B cells from the spleen were quantified after 3 weeks of immunization.  
(A and B) Data represented as means + SEM. P values: *p<0.05. Student’s t-test was 
performed to detect statistical difference between groups. Similar results were obtained from 
three additional experiments. 
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3.3 Immature B cells are functionally activated during break of tolerance 

To directly determine whether immature B cells are activated during break of tolerance, 

we sorted different B cell subsets and analyzed mRNA expression of different markers related 

to IFN signaling, activation and somatic hypermutation (Figure 3.3A). As expected, amyloid 

stimulated the expression of the ISG Mx1 in immature B cells (Figure 3.3B). Additionally, 

immature B cells showed enhanced expression of Cd80 and Cd86, demonstrating activation 

induced by amyloid (Figure 3.3B). Intriguingly, these cells showed upregulation of Rag1 and 

Rag2, important genes involved in receptor editing in peripheral lymphoid organs; a process that 

occurs in self-reactive B cells (Figure 3.3C) [115]. Also, the upregulation of Aicda suggests that 

SHM and class-switching is occurring in these cells (Figure 3.3C). These data suggested that 

immature B cells responded to IFN, were highly activated and may be undergoing receptor 

editing, SHM and class-switching during break of tolerance.  

Figure 3.2. Transitional B cells are expanded during break of tolerance.  
(A) After 3 weeks of immunization, immature (B220+CD138-CD93+) and mature 
(B220+CD138-CD93-) B cells were quantified in Balb/c mice. Data from 2 experiments (n = 
6). 
(B) Transitional B cells were quantified, after gating B220+CD138-CD93+, according to their 
expression of CD23 and IgM (T1 = CD23-IgM+, T2 = CD23+IgM+, T3 = CD23-IgM-)  
(C) Mature B cell subsets were quantified in Balb/c mice, after gating B220+CD138-CD93+, 
according to their expression of  CD23 and CD21 (FO = CD23+CD21int, MZ = CD23-CD21+, 
EF = CD23-CD21-).  
(D) Age-associated B cells were identified as CD19+B220+CD11bmidCD11cmid in Balb/c mice 
from the same samples as in (A).  
(B-D) Data from 1 experiment (n = 3). Similar results were obtained from three additional 
experiments.  
(A-D) Data represented as means + SEM. P values: *p<0.05. Student’s t-test was performed 
to detect statistical difference between groups.  
Abbreviations: FO (follicular), MZ (marginal zone), EF (extrafollicular). 
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3.4 Transitional B cells show a type I IFN signature and upregulate genes related to 

B cell migration 

To comprehensively assess the signaling pathways being activated on immature B cells, 

we sorted T1, T2, and follicular B cells, from control- and amyloid-immunized mice and 

performed gene expression profiling analysis by microarray (Figure 3.4A). The pathway analysis 

showed that T1 B cells have enhanced expression of genes related to chemotaxis, cell viability, 

Figure 3.3. Immature B cells show an activated gene profile.   
(A) Sorting strategy to isolate different B cell subsets after 2 weeks of immunization. Cells 
were first gated as B220+CD138-.  
(B-C) Immature (CD93+), extrafollicular (CD93-CD23-) and follicular (CD93-CD23+) B cells 
were sorted from WT mice and the mRNA expression of different genes was analyzed by 
RT-PCR. Data from 2 experiments.  
Abbreviations: EF (extrafollicular), FO (follicular). 
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proliferation and activation. Not surprisingly, several ISGs were upregulated in immature B cells 

after amyloid immunization, such as Iigp1, Isg20, Ifi44, Xaf1, Ifitm2, and Oasl2 (Figure 3.4B). 

Additionally, genes involved in B cell trafficking, such as S1pr2, S1pr3, Ch25h and Cyp7b1, 

were upregulated after amyloid immunization (Figure 3.4C).  Therefore, immature B cells, 

mostly transitional B cells, have an IFN signature and show changes in their migratory gene 

profile during the break of tolerance induced by amyloid.  

Unexpectedly, several germinal center-specific genes were upregulated on immature B 

cells after amyloid immunization. The germinal center associated, signaling and motility 

(Gcsam) gene and the regulator of G-protein signaling (Rgs) -13 were upregulated specifically 

on T1 and T2 B cells in amyloid-immunized mice (Figure 3.4D). Both Gcsam, also known as 

HGAL, and Rgs13 are highly expressed on GC B cells [116, 117]. Thus, during break of 

tolerance, a GC-like program may be induced in transitional B cells. 

The pathway analysis also showed that amyloid induces several signaling pathways that 

are activated by IFN-α and/or IFN-γ (data not shown). It is now clear that many ISGs are 

induced by both IFN-α and IFN-γ; therefore this was not completely surprising. However, some 

of the ISGs induced are specifically upregulated by IFN-γ. For example, iigp1 was highly 

upregulated on T1 and T2 B cells compared to other B cell subsets after amyloid immunization 

(Figure 3.4B). These data suggested that both IFN-α and IFN-γ may be produced during break 

of tolerance and they may impact B cell responses, a topic that will be discussed in Chapter 4.  
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3.5 Plasmacytoid dendritic cells are required for the activation of immature B cells 

To determine whether pDCs are involved in the activation profile of immature B cell 

subsets, we sorted T1 and T2 B cells from WT or feeble mice, which have defective TLR 

signaling on pDCs, and analyzed the expression of relevant genes in B cells by amyloid (Figure 

3.3 and 3.4). We could observe that Mx1, Rag1, Rag2 and Aicda were upregulated on both 

transitional B cell subsets from C57BL/6 mice but not in feeble mice (Figure 3.5A and B). In 

addition, upregulation of the GC-related genes Rgs13 and Gcsam in T1 B cells required pDC 

function (Figure 3.5). These data demonstrates that pDCs are required for the activation of 

immature B cells. 

Figure 3.4. Transcriptome of immature B cells.  
(A) A microarray analysis was performed on sorted T1, T2 and follicular (FO) B cells after 2 
weeks of immunization. The color map of the microarray data is depicted.  
(B) The expression of ISGs in the three B cell populations is depicted. Gene expression is 
compared to each B cell subset from control immunized mice. 
(C) The expression of chemotaxis-related genes was determine as in (B). 
(D) GC-related genes were analyzed as in (B and C).  
(A-D) Collaborators: Philip Brohawn and Christopher A. Morehouse from MedImmune LLC 
performed the microarray analysis.  
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3.6 The oxysterol pathway and Rgs13 are redundant for autoantibody development.  

The microarray data showed that immature B cells upregulated genes related to migration 

during break of tolerance. Therefore, we wanted to determine the role of novel chemotaxis 

pathways in humoral autoimmunity. Interestingly, transitional B cells expressed higher levels of 

Ch25h and Cyp7b1 after amyloid immunization (Figure 3.4C). We further confirmed this 

observation by RT-PCR and showed that immature B cells significantly upregulated Ch25h and 

Cyp7b1 after amyloid immunization (data not shown). The expression of these enzymes, which 

Figure 3.5. pDCs promote the activation of transitional B cells.  
(A) T1 (CD93+CD23-IgM+) B cells were sorted after 2 weeks of immunization from C57BL/6 
or feeble mice and the mRNA expression of different genes was analyzed by RT-PCR. 
(B) Gene expression was analyzed in T2 B cells (CD93+CD23+IgM+) as in (A). Data from 1 
experiment. 
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are known to stimulate EBI-2 signaling, may instruct a preferential positioning of immature B 

cells to extrafollicular areas. 

Deficiency in Ch25h prevents the transient movement of B cells outside the follicles at 

early stage of B cell response [113]. To determine whether the oxysterol pathway is involved in 

the initiation of autoimmunity, we immunized Ch25h-/- mice with control or amyloid and analyzed 

GC development and generation of autoantibodies in the serum. Although we observed an 

increase in GC B cell numbers after control immunization in Ch25h-deficient mice, amyloid-

mediated GC inhibition was not affected in these mice (Figure 3.6A). In addition, the levels of 

anti-histone IgM antibodies were similar between WT and Ch25h-/- mice at 3 weeks of 

immunization (Figure 3.6B). We also observed that Ch25h deficiency did not affect the 

development of class-switched autoantibodies (Figure 3.6C). These data suggested that, even 

though Ch25h is upregulated on B cells during break of tolerance, EBI-2-mediated chemotaxis 

pathway may be redundant for autoantibody generation and other mechanisms may be involved 

in B cell migration. 

Rgs13 belongs to the RGS family, which modulates the activity of the heterotrimeric G 

proteins, including all chemokine receptors [118]. We confirmed by RT-PCR that Rgs13 was 

upregulated on immature B cells after amyloid immunization (Figure 3.5). To determine whether 

Rgs13 modulates B cell responses, we induced autoimmunity in Rgs13-deficient mice, which 

were previously generated by Hwang IY, 2013 [117]. However, GC B cells were similar between 

WT and knockout mice after control or amyloid immunization (Figure 3.6D). Furthermore, Rgs13 

deficiency did not affect the early nor late autoantibody production (Figure 3.6E, 3.6F). These 

data suggested that Rgs13 signaling may be redundant for B cell responses in pDC-mediated 

autoimmunity. 
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Figure 3.6. The oxysterol pathway and Rgs13 may be redundant on controlling GC 
migration and autoantibody generation.  
(A and D) After 3 weeks of immunization, GC B cells were quantified on spleens by flow 
cytometry on the corresponding mouse strains. 
(B and E) The levels of anti-histone IgM antibodies were detected on the sera by ELISA on 
the corresponding mouse strains after 3 weeks of immunization.  
(C and F) The levels of anti-histone IgG antibodies were detected on the sera by ELISA on 
the corresponding mouse strains after 7 weeks of immunization. 
(A – F) Data represented as means + SEM (n = 3 – 6). P values: *p<0.05, **p<0.005 and 
***p<0.0005. Student’s t-test was performed to detect statistical difference between groups.  
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3.7 Discussion 

The origin of B cells responsible for the break of tolerance and humoral autoimmunity in 

response to type I interferon stimulation has not been identified. We have determined that, in 

the amyloid-induced lupus model, the expansion of immature B cells correlated with the 

development of self-reactive antibodies. This B cell subset was activated and displayed a 

transcriptional profile of dysregulated lymphocyte trafficking and SHM. pDCs seemed to 

promote overt activation of these immature B cells. 

Interestingly, not only IFN-I but also IFN-II have been linked to SLE development. 

Recently, a study using modular repertoire analysis revealed that SLE patients not only contain 

a type-I IFN signature but also involves IFN-γ [119]. This was not completely surprising due to 

the largely overlapping inducible gene signature between type-I and type-II IFNs [120]. In fact, 

both IFN-α and IFN-γ have been found elevated in SLE serum [121]. Also, like IFN-α, IFN-γ 

treatment occasionally triggers lupus-like disease. Interestingly, IFN-γ is required for the 

development of autoimmunity in MRL-Faslpr, NZB/W F1 mice, and in pristane-induced and 

chemically-induced lupus models [122-124]. In the amyloid-induced model, we have determined 

that dual type I and type II IFN signatures exist in immature B cells during break of tolerance. 

However, the exact mechanism by which both IFN-I and IFN-II trigger self-reactivity is still 

unclear. In the following chapter, the role of IFN-II in the development of autoantibodies will be 

studied.  

Immature B cells have been identified as a potential self-reactive population. In peripheral 

blood of SLE patients, increased frequencies of pre-immune B cells, including transitional B 

cells, were detected previously [69, 70]. These transitional B cells are hyper-responsive to IgM 

crosslinking and IFN-α, which induces enhanced survival and proliferation in vitro [111]. 

Interestingly, immature B cells were found expanded and activated during break of tolerance 
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after amyloid immunization. This is similar to the expansion of T1 B cells observed in TLR7-

transgenic mice [76]. Thus, we propose that immature B cells are the self-reactive B cell subset 

after IFN-I and IFN-II production during break of tolerance. Due to the low frequency of self-

reactive B cells and mostly low affinity BCRs towards the self-antigen, the direct identification of 

autoimmune B cells has been challenging. Recently, tetramers from linear autoepitopes have 

been developed to identify La and small nuclear ribonucleoprotein reactive B cells in mice [125]. 

The utilization of similar tools can help us identify self-reactive B cells in our lupus model. 

The mechanism by which IFN-I promotes the activation of immature B cells is not well 

understood. However, IFN-I upregulates BAFF expression by myeloid cells [126]. Moreover, 

BAFF signaling in immature B cells promotes their survival and proliferation [67]. Therefore, it is 

likely that in our system IFN-I promotes the proliferation of immature B cells through the 

induction of BAFF. The direct role of BAFF in the amyloid-induced lupus model needs to be 

further investigated to confirm our hypothesis. 

Ch25h seemed redundant for GC development and autoantibody production in the 

amyloid-induced autoimmune model. Ch25h catalyzes the production of 25-OHC, the most 

potent ligand for EBI-2, which is an important pathway for B cell migration. In EBI2-deficient 

mice, GC size was not affected; however, plasmablast-derived antibodies were reduced only 

transiently after antigen immunization [61]. Therefore, it has been suggested that EBI-2 

signaling mostly affect the early migratory events occurring after B cell activation and that 

additional chemokine receptors, such as CXCR4, CXCR5 and CCR7 participate after GCs are 

formed. The possible redundancy of chemokine and oxysterol pathways complicates the 

previous study and our current analysis alike.  The examination of mice deficient in two or more 

components of B cell trafficking would help elucidate the importance of B cell positioning in 

autoantibody production during break of tolerance.  
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Similarly, Rgs13 is redundant in modulating B cell responses during autoimmunity. Rgs13 

is highly expressed by GC B cells and lymphomas; however, there are conflicting reports 

regarding the role of Rgs13 in GC development and autoimmunity. One study indicates that 

Rgs13 limits the GC response, whereas another publication suggests that Rgs13 prolongs the 

GC program and exacerbate autoimmunity [117, 127]. In our study, we did not observe major 

differences on GC size or autoantibody production in Rgs13-deficient mice after amyloid 

immunization. These results could be due to the redundant functions of the 20 different RGS; 

thus their overall physiological roles remain to be dissected [128]. 

Surprisingly, another GC-specific gene was found upregulated on immature B cells, during 

break of tolerance. GCSAM, also known as HGAL, is specifically expressed in GC B cells and 

GC-derived B cell lymphomas. It has been demonstrated that GCSAM enhances Syk activation 

after BCR signaling, which increases B cell proliferation [129].  It is interesting to note that Syk 

hyperactivation has been previously observed in B cells from SLE patients [130]. Mice 

transgenic for human GCSAM developed polyclonal B cell lymphoproliferation and amyloidosis, 

suggesting a defect in B cell selection [116]. We speculate that the upregulation of Gcsam on 

T1 B cells after amyloid immunization relates to an enhanced B cell activation and reduced 

negative selection during break of tolerance. Further studies need to be performed to determine 

the role of Gcsam during autoimmunity. 

 Our data suggest that pDC activation may be involved in the overt activation of 

immature B cells and further development of self-reactive B cell clones. 
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CHAPTER 4. 

IMMUNE HELPER CELLS INVOLVED IN PLASMACYTOID DENDRITIC CELL-

MEDIATED HUMORAL AUTOIMMUNITY 
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4.1 Rationale 

Different immune helper cells are known to promote B cell responses. Among these cells, 

T cells provide a second signal for efficient B cell activation. While inside GCs, Tfh cells can 

provide co-stimulation to GC B cells; in extrafollicular areas, an extrafollicular T helper (Tefh) 

cell population is present. Whether Tefh cells are functionally relevant in autoimmunity is still a 

matter of speculation [131, 132]. Due to the presence of additional immune populations in 

extrafollicular areas, it is possible that non-classical helper cells may modulate extrafollicular 

responses. 

Both IFN-α and IFN-γ are known to be involved in mouse and human SLE. Moreover, 

deficiency of IFN-I or IFN-II signaling prevents the development of autoimmune phenotype in 

mice [38, 133]. In the amyloid-induced lupus model, we have identified both IFNs as major 

inducers of B cell activation. Therefore, it is relevant to determine the mechanisms how IFN-I 

and IFN-II promote humoral autoimmunity.  

T cells, NK cells and NKT cells are the major producers of IFN-γ; however, the source of 

IFN-γ that triggers autoimmunity is still unclear. As for T cells, a larger number of the IFN-γ-

producing TH1 cells have been found in SLE patients and autoimmune-prone mice [134-136].  

Also, an increase proportion of CD56bright NK cells, which have lower cytotoxicity and increased 

IFN-γ-secreting capacity, is observed on the periphery of patients with active SLE [137, 138]. 

NKT cells have also been found to produce both IL-4 and IFN-γ in type 1 diabetes and 

experimental allergic encephalomyelitis mouse models [139]. Whether these immune cell 

subsets are activated downstream of pDC-IFN-I axis and modulate humoral autoimmunity is not 

clear.  

In this Chapter, we will identify the key cellular players that modulate B cell responses in 

pDC-mediated humoral autoimmunity.  Since IFN-γ is induced in our model, we will study the 
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contribution of this cytokine and the function of IFN-γ-producing cells in autoimmune 

development in the amyloid-induced lupus model.  

4.2 T cells are required for humoral immune responses to immunogen and self-

antigens 

T cells are required for the development of GC-derived antibody responses. To determine 

the role of T cells in humoral responses in our inducible lupus model, we immunized TCRβ/δ-

deficient mice with control or amyloid. As shown in Figure 4.1A, these mice did not develop anti-

nuclear antibodies. Not surprisingly, they did not develop anti-HSA antibodies (Figure 4.1B). 

Thus, our data suggested that the development of IgG-class switched autoantibodies and 

immunogen-specific antibodies are dependent on T cells.  

Figure 4.1. T cells are required for the development of self- and immunogen-specific 
antibodies.  
(A) Sera from C57BL/6 or TCRβ/δ-/- mice were collected after 7 weeks of immunization and 
tested for anti-nuclear reactivity on HEP-2 cells. Data from 2 experiments.  
(B) Levels of anti-HSA IgG antibodies were detected by ELISA after 7 weeks of 
immunization.  
(A and B) Data represents one experiment. Similar results in 2 additional experiments; 4 
replicates per experiments. Data represented as means. P values: ***p<0.0005, 
****p<0.00005. Student’s t-test was performed to detect statistical difference between 
groups. 
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4.3 Amyloid immunization induces Tfh cell development 

Tfh cells are an essential helper population involved in GC development. Since amyloid 

can activate pDCs to produce IFN-I, we wanted to determine whether amyloid-induced pDC 

activation induces the development of Tfh cells in vitro. We set up a co-culture system, where 

CD11c+ cells, which included both cDCs and pDCs, were mixed with CD4+ T cells from Bcl6yfp/+ 

mice. After 3 days of stimulation, we analyzed surface markers by flow cytometry to quantify the 

Tfh cells. Interestingly, amyloid, but not control, effectively induced the generation of 

CD4+CD44+CXCR5+PD1+ Tfh cells (Figure 4.2A). To confirm this finding in vivo, we examined 

the number of Tfh cells in spleen after amyloid immunization. Strikingly, Tfh cells, identified as 

CD4+CD44+ICOS+CXCR5+PD1+Bcl6+, were significantly increased 1 week after immunization 

(Figure 4.2B). However, the numbers of Tfh cells dramatically reduced after 2 weeks and 

became comparable with the mice receiving control-immunization (Figure 4.2C), which follows 

normal GC kinetics [99]. At 3 weeks, there were no significant differences between Tfh cells 

from control- or amyloid-immunized mice, although the number of GC B cells was reduced in 

mice immunized with amyloid (Figure 2.3).  

Also, Tfh cell population after 1 week of immunization showed a normal transcriptional 

program: when compared with naïve T cells, Tfh cells upregulated Bcl6, Icos, Cxcr5 and Il21. 

Although a slight reduction on Bcl6 expression is observed in Tfh cells from amyloid-immunized 

mice, these cells showed increased expression of Icos, Cxcr5 and Il21 compared to control 

immunized mice, indicating a strong functional activation (Figure 4.2D) [140]. Altogether, these 

data suggest that the inhibition of GCs, triggered after pDC-mediated break of tolerance, is 

independent of Tfh cells. Additionally, the number of CXCR5- T cells, which contain Tefh cells, 

dramatically reduced after 3 weeks of amyloid immunization (Figure 4.2E), implying that Tefh 

cells were not likely induced by amyloid. This is consistent with our preliminary data showing 

that T cell-deficiency did not affect IgM autoantibody production at early stages of autoimmunity 
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(data not shown). Thus, another helper cell type may modulate the extrafollicular responses 

generated at the initiation of autoimmunity. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Amyloid induces Tfh cell expansion.  
(A) CD4+CD44+PD1+CXCR5+ T cells were detected by flow cytometry after 3 days of co-
culture of CD11c+ cells and CD4+ T cells with control or amyloid. Similar results were 
obtained in 2 additional experiments; 2 replicates per experiment. 
(B) Spleens from Bcl6yfp/+ mice immunized with control or amyloid were analyzed by flow 
cytometry to detect Tfh cells after 1 week of immunization. 
(C) Tfh cells were quantified as in (B) at different time points. Data representative of one 
experiment (n = 3). Similar results were obtained in 2 additional experiments; 3 replicates per 
experiment. 
(D) CD4+CD44-ICOS- (naïve) or CD4+ICOS+CD44+CXCR5+PD1+ (Tfh) cells were sorted after 
1 week of immunization and the expression of several genes was determined by RT-PCR. 
Data from one experiment.  
(E) Cell numbers of CD4+ICOS+CD44+CXCR5- T cells were quantified at different time points 
from the samples in (C). 
(C and E) Data represented as means + SEM. P values: *p<0.05, **p<0.005. Student’s t-test 
was performed to detect statistical difference between groups. 
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4.4 Interferon-γ is produced by NK cells during break of tolerance 

We previously demonstrated that B cells show a type II interferon signature after amyloid 

immunization (Figure 3.4). To determine whether IFN-γ is actually produced after amyloid 

inoculation, we quantified its levels in the peritoneal cavity of mice receiving control or amyloid. 

After 24 hrs, IFN-γ was detected in mice injected with amyloid (Figure 4.3A). To determine 

whether IFN-γ is produced in the spleen, we examined IFN-γ production by different immune 

cell types by flow cytometry. Interestingly, NK cells, identified as CD3-NK1.1+NKp46+, but not 

CD4+ or CD8+ T cells, produced elevated IFN-γ protein after amyloid immunization (Figure 

4.3B). NK cells not only produced cytokines, but were also expanded in the spleen (Figure 

4.3C). Interestingly, these cells upregulated the NK cell receptor, NKp46, after amyloid 

immunization (Figure 4.3D). NK cells are known to be cytotoxic; however, this expanded NK cell 

population expressed low levels of CD107a, a marker for degranulation, and TRAIL, an effector 

molecule mediating cytotoxicity (Figure 4.3E and 4.3F). Thus, NK cells, rather than TH1 cells, are 

the predominant IFN-γ-producing cell in our model.  
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Figure 4.3. IFN-γ is produced by NK cells during break of tolerance.  
(A) The levels of IFN-γ were quantified in the peritoneal fluid after 24 hrs of control or amyloid 
inoculation in C57BL/6 mice. (n = 6). Collaborators: Dr. Jingjing Li performed the analysis on 
peritoneal fluids 
(B) The percentage of IFN-γ+ cells was quantified in the spleen after 1 week of control or 
amyloid injection. Data represents one experiment; means + SEM (n = 2-3).  
(C) NK cells were quantified after 2 weeks of immunization. Data represents 2 pooled 
experiments. 
(D-F) The expression levels of D) Nkp46, E) CD107 and F) TRAIL on NK cells was 
determined by flow cytometry (n = 4).  
(A-F) Data represented as means + SEM. P values: *p<0.05. Student’s t-test was performed 
to detect statistical difference between groups. 
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4.5. Type I and type II IFNs enhance T cell and B cell activation in vitro 

 Since IFN-γ is produced in our in vivo model, we wanted to determine whether IFN-γ 

affects the differentiation of IFN-α-induced Tfh cells. To induce IFN-α, we stimulated CD11c+ 

cells with the TLR-9 agonist, CpG A. By using a co-culture system similar to the one described 

in Figure 4.2A, we determined that CpG A-stimulated CD11c+ cells induced the development of 

Tfh cells. Although IFN-γ alone did not induce Bcl6+ Tfh cells, IFN-γ enhanced the development 

of Tfh cells after CpG A stimulation (Figure 4.4). This result demonstrates a cooperative effect 

between IFN-α and IFN-γ in promoting Tfh cell differentiation.  

Figure 4.4. Type I and type II interferon cooperate to generate Tfh cells in vitro.  
(A) Numbers of Tfh cells in the mixed culture of Bcl6yfp/+ CD4+ T cells and CD11c+ DCs 
were quantified after 3 days of culture with the corresponding stimuli. Live cells were gated 
on CD4+CD44+ICOS+CXCR5+Bcl6+ population. Data represents 2 pooled experiments as 
means + SEM (n=4). P values: *p<0.05. Student’s t-test was performed to detect statistical 
difference between groups. 
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To determine whether IFN-I and IFN-II directly affect autoantibody production by B cells, 

we cultured enriched B220+ cells from the autoimmune-prone strain NZB/W F1 in the presence 

or absence of IFN-α and/or IFN-γ. IFN-γ alone, but not IFN-α, enhanced autoantibody 

production (Figure 4.5). Interestingly, the combination of IFN-α and IFN-γ significantly boosted 

the secretion of anti-histone IgM and anti-ssDNA IgM. B cells from WT mice did not produce 

autoantibodies even in the presence of two IFNs in vitro (data not shown), suggesting that 

additional mechanisms must exist to break B cell tolerance. Altogether, our data shows that 

IFN-α and IFN-γ cooperate to enhance autoantibody production in vitro. 

 

 

4.6 Interferon-γ is required for the development of humoral autoimmunity 

To determine the role of IFN-γ in humoral autoimmunity, we analyzed the ability of Ifng-/- 

mice to develop humoral autoimmunity induced by amyloid. In contrast to WT mice, Ifng-

Figure 4.5. IFN-I enhances IFN-II induction of autoantibodies in vitro.  
(A) Enriched B220+ cells from NZB/W F1 mice were cultured with recombinant IFN-α and/or 
IFN-γ at different doses. The supernatant was collected after 7 days of culture and levels of 
anti-histone IgM antibodies were detected by ELISA. 
(B) Levels of anti-ssDNA IgM were detected from the samples in (A).  
(A and B) Data represented as means + SEM (n = 4). P values: *p<0.05, **p<0.005, 
***p<0.0005, ****p<0.00005. Student’s t-test was performed to detect statistical difference 
between groups. 
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deficient mice did not develop anti-nuclear antibodies, as analyzed by HEP-2 staining (Figure 

4.6A). Similarly, we have observed that the anti-self antibodies induced in our model are 

IgG2a/c and IgG2b subclasses (Figure 2.8C), which are known to be the most pathogenic 

isotypes in lupus [141]. Interestingly, Ifng-/- mice failed to develop self-reactive antibodies of the 

IgG2a and IgG2b subclasses after amyloid immunization (Figure 4.6B). These observations are 

consistent with the prevailing role of IFN-γ in driving pathogenic antibody isotypes [142]. 

Figure 4.6. IFN-γ is required during humoral autoimmunity.  
(A) Anti-nuclear IgG antibodies were detected in sera from Balb/c or Ifng-/- immunized with 
control or amyloid (n=5).  
(B) The levels of anti-histone IgG subclasses were detected in the sera after 7 weeks of 
immunization. Data represents one experiment (n=4).  
(A and B) Data represented as means + SEM. P values: *p<0.05, ***p<0.0005. Student’s t-
test was performed to detect statistical difference between groups. 
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To determine the role of IFN-γ during break of tolerance, we immunized WT or Ifng-/- mice 

with control or amyloid after 3 weeks of immunization.  Interestingly, Ifng-/- mice showed a 

decrease in anti-histone IgM antibodies after amyloid immunization compared to WT mice 

(Figure 4.7A).  Since we have observed that T1 B cell expansion correlates with anti-histone 

IgM antibody levels, we wanted to determine whether this population is affected in mice 

deficient on IFN-γ.  Intriguingly, T1 B cells from Ifng-/- mice failed to expand to the same extent 

as T1 B cells from WT mice (Figure 4.7B). Thus, our data revealed that IFN-γ play an essential 

role in the break of tolerance by inducing the expansion of T1 B cells and enabling pathogenic 

class switch of self-reactive antibodies. 

 

 

Figure 4.7. IFN-γ is required for the break of tolerance and generation of T1 B cells.  
(A) After 3 weeks of immunization, levels of anti-histone IgM antibodies were detected from 
the sera of the corresponding mouse strains.  
(B) Numbers of T1 B cells (B220+CD93+CD23-IgM+) were quantified in the spleen of the 
respective mouse strains.  
(A and B) Data represents 2 pooled experiments. Data represented as means + SEM. P 
values: *p<0.05. Student’s t-test was performed to detect statistical difference between 
groups. 
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4.7 NKT cells suppress the development of humoral autoimmunity 

Remarkably, NK cells, instead of Th1 cells, were the producers of IFN-γ in our inducible 

model (Figure 4.3B). To determine whether NK cells are involved in the development of 

autoimmunity, we injected mice with anti-NK1.1 antibody PK136 prior to control- or amyloid-

immunization. Surprisingly, this treatment increased the development of anti-nuclear antibodies 

(Figure 4.8A). This result may be due to the depletion of not only NK cells but also NKT cells 

that express NK1.1. Since NKT cells have been found to be suppressive during humoral 

autoimmunity [81, 82], it is important to dissect the role of NKT cells in our model.  

To determine the role of NKT cells in humoral autoimmunity, we immunized CD1d-

deficient mice that lack NKT cells, with control or amyloid [143]. Interestingly, Cd1d-/- mice 

developed higher anti-histone IgG subtypes, specifically IgG2a and IgG2b (Figure 4.8B). This is 

similar to previous reports showing that CD1d-deficiency worsened autoantibody production [81, 

82]. Moreover, Vα14-Jα18-transgenic mice, which have an expanded population of NKT cells, 

showed a reduction in anti-nuclear autoantibodies after amyloid immunization (Figure 4.8C) 

[144]. A similar reduction was also observed when comparing anti-histone IgG (Figure 4.8D). 

Therefore, the enhanced autoantibody levels observed after PK136 treatment is likely due to the 

depletion of NKT cells. Altogether, we determined that NKT cells inhibit isotype-class switching 

of autoantibodies.  
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4.8 NK cells promote humoral autoimmunity partly through NKp46 

NK cells express several lineage-specific receptors, which are responsible for NK cell 

activation. Mouse NK cells only express Ncr1 (known as NKp46). Interestingly, we have 

observed an upregulation of NKp46 on NK cells after amyloid immunization (Figure 4.3D), 

suggesting a role of this receptor in NK cell function. To determine the function of this activating 

Figure 4.8. NKT cells suppress autoantibody development.  
(A) After 7 weeks of immunization, anti-nuclear antibodies were detected in the sera of mice 
pre-treated with PK136 mAB or IgG2a mAb 24 hrs prior to immunization (n = 7 – 8). 
Collaborator: Dr. Jingjing Li performed this experiment. 
(B) The levels of anti-histone IgG subclasses were detected in the sera of Balb/c or CD1d-/- 
after 7 weeks of immunization (n = 8 – 17).  
(C) ANA were detected in the sera after 7 weeks of immunization on C57BL/6 or Vα14-Tg 
mice (n = 2 – 10).   
(D) Levels of anti-histone IgG antibodies from were detected in the sera from (C) by ELISA .  
(A-D) Data represented as means + SEM. P values: *p<0.05, **p<0.005, ***p<0.0005, 
****p<0.00005. Student’s t-test was performed to detect statistical difference between 
groups.  
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receptor during humoral autoimmunity, we analyzed mice deficient of NKp46 (referred as 

Nkp46gfp/gfp). The insertion of a green fluorescent protein (GFP) cassette into the Ncr1 locus 

rendered a non-functional Ncr1 [145]. Nkp46gfp/gfp mice are susceptible to tumor spread and 

influenza infection but resistant to develop type 1 diabetes [145-147]. To determine the role of 

this receptor in our inducible lupus model, we immunized C57BL/6 mice and Nkp46gfp/gfp mice 

side by side and detected the self-reactive antibodies in the sera. Interestingly, WT mice 

developed anti-histone specific antibodies, whereas deficiency in Nkp46 reduced their 

development (Figure 4.9A). Moreover, Nkp46-deficiency specifically diminished the production 

of pathogenic isotypes, such as IgG2b and IgG2c (Figure 4.9B-C). These data suggest that NK 

cells may promote the development of autoantibodies partly through NKp46.  

 

 

 

 

 

 

Figure 4.9. Nkp46-deficiency inhibits isotype class-switching.  
(A) Levels of anti-histone IgG antibodies were detected in the sera by ELISA from the 
corresponding mouse strains after 7 weeks of immunization.  
(B-C) Levels of the anti-histone IgG subclasses, (B) IgG2b and (C) IgG2c were detected in 
the sera from the same samples as in (A).  
(A-C) Data represented as means + SEM (n = 4 – 6). P values: ***p<0.0005, ****p<0.00005. 
Student’s t-test was performed to detect statistical difference between groups. 
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4.9 Discussion    

Loss of B cell tolerance occurs early in SLE, noticed by the presence of autoantibodies 

years before the onset of SLE [2].   However, the initial events triggering the break of tolerance 

are not well understood. This study revealed an important role of IFN-γ in initiating 

autoimmunity, probably through the induction of break of tolerance in T1 B cells. It also 

proposes that NK cells provide critical help in the establishment of humoral autoimmunity. 

It has been widely accepted that IFN-γ is required for autoantibody development, as 

shown in our study and others [133]. The pathogenicity of IFN-γ is likely due to its ability to 

promote IgG class switching to more pathogenic antibodies [148]. However, the mechanism by 

which IFN-γ triggers break of tolerance remains unclear. We have determined that IFN-γ was 

required for the development of T1 B cells and autoantibody production during the early phase 

of lupus disease.  Similarly, TLR7-transgenic mice show expansion of T1 B cells, which 

correlated with autoantibody development [76].  

Tfh cells, and not TH1, were developed after amyloid immunization, probably through the 

interplay between IFN-I and IFN-II. Recently published data showed that addition of IFN-I in cell 

culture induced a Tfh-like cell through STAT1 activation [149]. Also, during chronic viral 

infection, Tfh differentiation was dependent on IFN-I signaling [150]. IFN-γ has also been found 

to induce Tfh differentiation. Excessive IFN-γR signaling in sanroque mice was sufficient to drive 

Tfh development [151]. Moreover, IFN-γ induced the upregulation of Bcl6 in in vitro activated T 

cells through STAT1 [152]. Therefore, IFN-I and IFN-II may synergize to enhance Tfh 

development through STAT1 activation.  

The mechanism by which IFN-I and IFN-II cooperate to enhance antibody production by B 

cells is not well understood. However, both cytokines activate STAT1, which is known to be 

required for plasma cell differentiation [153]. Moreover, the activation of PI3K by both cytokines 
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is important for B cell proliferation. We would speculate that STAT1 signaling and PI3K 

activation may be involved in the enhanced activation of B cells.  

We have identified NK cells as the source of IFN-γ during pDC-mediated autoimmunity. 

Our laboratory has recently determined a mechanism by which IFN-I induce NK cell activation. 

We proposed that IFN-I activates cDCs to produce IL-15, which further triggers the secretion of 

IFN-γ by NK cells [90]. IFN-γ secretion by NK cells can induce isotype class-switching of B cells 

in vitro through IFN-γ-dependent and –independent mechanisms [84]. Moreover, we determined 

that IFN-γ enhanced Tfh development and autoantibody production in vitro. Thus, IFN-γ from 

NK cells likely provides critical help to B cells directly and/or through the activation of T cells.  

The role of NK cells in SLE pathogenesis remains unclear. Several groups have shown 

that NK cell numbers from blood are significantly lower compared with healthy individuals, and 

this correlated with elevated serum levels of IFN-α [154-156]. Importantly, genotype 

combinations of killer cell immunoglobulin-like receptors and their HLA class I ligands that favor 

NK cell activation predispose individuals to certain autoimmune disorders [157]. Furthermore, 

genetic polymorphisms in the activating NK cell receptor NKp30 that results in reduced gene 

transcription conveys protection from primary Sjogren’s syndrome, whereas NKp30-dependent 

IFN-γ secretion by NK cells is significantly elevated in Sjogren’s patients [158].  

We have determined that Nkp46-deficiency diminishes the development of 

autoantibodies, suggesting a pathogenic role for NK cells during autoimmunity. Interestingly, NK 

cells from Nkp46gfp/gfp mice have been shown to produce less IFN-γ in a model of delayed-type 

hypersensitivity. These mice showed reduce levels of antigen-specific IgG2a antibodies which 

correlated with reduced allergic responses [159]. Whether Nkp46-deficiency diminished IFN-γ 

production in NK cells in our autoimmune model needs to be further investigated. Moreover, the 
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analysis of NK cell-deficient mice, which are not currently available, would definitively determine 

whether NK cells can stimulate humoral autoimmunity. 

The depletion of NK1.1+ cells revealed the prominent role of NKT cells during 

autoimmunity. NKT cells are believed to play a regulatory role in lupus pathogenesis [160]. In 

lupus mouse models and in human SLE, NKT cells are reduced. As for MRL/lpr mice, a 

reduction of NKT cells started to be observed right before autoantibody development and this 

trend continued through the progression of the disease until complete disappearance of these 

cells [161]. Adoptive transfer of NKT cells delayed onset of disease [161]. Similar to our results, 

CD1d-deficiency enhanced autoantibody development in NZB/W F1 mice and pristane-induced 

lupus model [81, 82].  

The mechanism by which NKT cells suppress humoral autoimmunity is not well 

understood. It has been suggested that the presentation of self-reactive peptides by CD1d-

positive B cells may trigger a suppressive signal to NKT cells [162]. Interestingly, autoreactive B 

cells have been found to upregulate CD1d expression, suggesting an additional tolerance 

mechanism where NKT cells may play a significant role. In type 1 diabetes and experimental 

allergic encephalomyelitis (EAE), NKT cells produced both IL-4 and IFN-γ, and inhibited 

autoimmune development [163]. Also, NKT cells can limit the inhibitory cytokine IL-10 from 

autoreactive B cells [164]. Whether IL-4 and/or IL-10 play a significant role in NKT-mediated 

inhibition of humoral autoimmunity needs to be further investigated.  

Altogether, this study revealed a novel immunological cascade occurring downstream of 

pDC-IFN-I axis during humoral autoimmunity. Early events are comprised by the production of 

IFN-I by pDCs, IFN-γ production by NK cells and the activation of T1 B cells, which triggers the 

production of self-reactive antibodies that further undergo Ig isotype class-switching. Moreover, 

NKT cells can inhibit this autoimmune reaction. 
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Many therapies have been developed to block IFN-I in SLE; however, our results suggest 

that IFN-II might be a better target. Although, there are concerns regarding the safety of IFN-γ, 

given its importance during infection, a humanized monoclonal antibody against IFN-γ was well 

tolerated and showed some efficacy in patients with Crohn’s disease [165]. Also, another anti-

IFN-γ antibody is being evaluated for safety in patients with SLE [133]. However, these 

therapies may trigger various side effects; thus, conditional targeting of immune cell subsets to 

decrease their cytokine production may be a better approach.  
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CHAPTER 5. 

HUMAN SERUM AMYLOID P-COMPONENT INTERACT WITH MISFOLDED PROTEINS AND 

INHIBIT THE PRODUCTION OF TYPE I INTERFERON BY NUCLEIC-ACID CONTAINING 

AMYLOIDS 

 

 

 

 

This chapter is based on Dorta-Estremera SM., Cao W., “Human pentraxins bind to misfolded 

proteins and inhibit production of type I interferon induced by nucleic acid-containing amyloid”. J 

Clin Cell Immunol (2015) 6:332 doi: 10.4172/2155-9899.1000332 [166]. This is an open-access 

article distributed under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original author and 

source are credited. 
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5.1 Rationale 

The misfolding of monomeric polypeptides that assemble into insoluble amyloid fibrils is 

linked to protein misfolding diseases [167]. A number of proteins have been identified that 

exhibit amyloidogeneic potential; among the most studied are amyloid-beta (Aβ) in Alzheimer’s 

disease (AD) and islet amyloid polypeptide in type 2 diabetes [168-170]. Recent data suggest 

that the self-assembly of amyloidogenic proteins occurs through formation of misfolded 

intermediates that have an oligomeric structure [171, 172]. These aggregate species, also 

known as amyloid precursors (APs), are soluble and display inherent cytotoxicity towards live 

cells, presumably cause neuronal damage in neurodegenerative diseases [173, 174].   

Furthermore, it is now evident that misfolded proteins have aberrant innate immune 

stimulatory capability. For example, amyloid and possibly AP can activate NALP3 

inflammasome and induce IL-1β secretion [175, 176]. In addition, our laboratory has 

demonstrated that amyloid fibrils containing DNA or RNA are potent to activate pDCs to 

produce IFN-I. This activity can be pathogenic as it induces the breakdown of humoral immune 

tolerance in vivo [42]. Similarly, a complex between amyloid protein curli and bacterial DNA, 

present in biofilms, induced IFN-I from dendritic cells and triggered autoimmunity in non-

autoimmune mice [91]. To date, the mechanism by which the host minimizes the harmful effects 

of misfolded proteins is not clear. Therefore, it is important to elucidate the fundamental 

mechanism that is protective against the pathogenicity triggered by the various forms of 

misfolded proteins.  

Pentraxins represent an important element of the humoral innate immune system. They 

are characterized by a common structural organization in five or ten identical subunits arranged 

with pentameric radial symmetry [177, 178]. These pattern-recognition molecules include the 

short pentraxins serum amyloid-P component (SAP) and C-reactive protein, and the long 

pentraxin 3. All pentraxins are able to interact with components of the complement pathway 
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[177, 179]. In addition, short pentraxins can bind to membrane phospholipids and nuclear 

components [180]. Their binding to different ligands is critically promoted by calcium ions, which 

triggers changes in the conformation of SAP [177]. The aggregated form of SAP in Ca2+-

containing solutions interacts with Fcγ receptor, complement, microbes and cell debris [177, 

179, 181, 182]. The binding of pentraxins with diverse ligands is important for host defense and 

removal of damaged cells and nuclear components [179].   

It is well known that SAP can bind to amyloid fibrils in vitro and in vivo, which renders it a 

universal constituent of amyloid deposits [183, 184]. It has been shown that SAP binding 

stabilizes the amyloid fibrils, whereas antibodies against SAP can facilitate the phagocytosis 

and clearance of amyloids [185, 186]. However, it is not known whether SAP modulates pDC 

activation triggered by amyloids. Also, whether SAP interacts with amyloid intermediates has 

not been investigated. Therefore, by studying a stabilized model of AP, we intend to determine 

whether SAP is capable of interacting with the precursor form of amyloid and identify the 

biological impact of SAP through its interaction with DNA-containing amyloids [187, 188].  
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5.2 Serum amyloid P-component recognizes co-factor-containing amyloids  

SAP can bind to different types of ligands in a calcium-dependent manner [177]. To 

verify that the commercially obtained SAP was functionally active, ELISA was performed to 

confirm that SAP bound to Aβ (1-42), an interaction that was enhanced by the presence of 

calcium (Figure 5.1A). Given that amyloid fibrils may contain various cofactors such as nucleic 

acids and glycosaminoglycans [189, 190], we first determined whether SAP binds to in vitro 

generated cofactor-containing amyloids. To do that, we prepared heparin-containing amyloid, 

DNA-containing amyloid and protein-only amyloid as demonstrated previously [188]. The 

resulting insoluble fibrils did not coat ELISA plates evenly (data not shown), therefore a dot blot 

analysis was performed. Briefly, SAP or BSA, an irrelevant protein used as a control, was 

incubated with the amyloid-containing blots in the presence or absence of Ca2+. Our results 

showed that SAP, but not BSA, readily bound to all types of amyloid complexes examined 

(Figure 5.1B). This binding predominantly occurred in the presence of Ca2+. These data 

demonstrated that, in addition to protein-only amyloid, SAP readily binds to hybrid amyloid fibrils 

containing different cofactors.  

 

 

 

 

 

 

 

Figure 5.1. SAP binding to amyloid fibrils-containing cofactors. (A) Binding of SAP to Aβ 
(1-42) (10 μg/ml) in the absence or presence of 2mM Ca2+ was assessed by ELISA. Error 
bars are means ± SEM of duplicate wells (**p<0.005 compared with no Ca2+). Similar results 
were obtained from five independent experiments. (B) Heparin-containing amyloid, DNA-
containing amyloid, and protein-only amyloid were mixed with biotinylated SAP or 
biotinylated BSA in the absence or presence of 2mM Ca2+. After several washes, the 
precipitates were dotted on a membrane, and binding was detected by chemiluminescence. 
Similar results were obtained from three independent experiments. Dorta-Estremera SM and 
Cao W., Human pentraxins bind to misfolded proteins and inhibit production of interferon 
induced by nucleic acid-containing amyloid. J Clin Cell Immunol 6:332. 
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5.3 SAP binds to amyloid precursor protein in the absence of divalent cations 

The AP of amyloidogenic proteins is only formed transiently in solution [191], which 

made it challenging to study their biochemical properties. However, we have recently generated 

a form of stabilized AP derived from HSA, referred to as AP-HSA, which displays partially 

misfolded structure and is capable of converting to amyloid [187].  To determine whether AP-

HSA is recognized by SAP, we performed an ELISA-based assay. In contrast to what was 

observed regarding SAP interaction with amyloid, SAP failed to bind to native HSA or to AP-

HSA in the presence of Ca2+ (Figure 5.2A). Instead, SAP bound considerably to AP-HSA, but 

not native HSA, in the absence of Ca2+ (Figure 5.2B). These data suggested that SAP can 

recognize amyloid precursor proteins under a condition distinct from its interaction with amyloid.  

Given that SAP bound to AP-HSA in the absence of Ca2+, we tested whether Ca2+ would 

influence the interaction between SAP and AP-HSA. As shown in Figure 2C, Ca2+ blocked the 

binding of SAP to AP-HSA in a dose-dependent manner. EDTA is a chelating agent that can 

sequester metal ions such as Ca2+. After the incubation of SAP with different concentrations of 

EDTA in the presence of Ca2+, we showed that EDTA neutralized the inhibitory effect of Ca2+ on 

the binding of SAP to AP-HSA (Figure 5.2D). These results demonstrated that Ca2+ prohibited 

the binding of SAP to AP. 

It is established that the binding of SAP to its ligands can be affected by different 

divalent cations. Similar to Ca2+, Cu2+, but not Mg2+, can promote SAP binding to its ligands 

through the induction of conformational changes in SAP structure [192]. Therefore, we 

determined whether these divalent cations affected SAP-AP interaction. Expectedly, Cu2+ 

blocked SAP interaction with AP-HSA (Figure 5.2E). In contrast, Mg2+ did not affect the binding 

of SAP to AP-HSA (Figure 5.2F). These findings suggested that cations that enable 

conformational changes in SAP effectively inhibit its interaction with AP.  
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Figure 5.2. SAP binding to amyloid precursor protein. (A-F) Binding of SAP to HSA and 
AP-HSA in the presence of 2mM Ca2+ (A), in PBS (B) in PBS with different concentrations of 
Ca2+ (C), in 2mM Ca2+ plus different concentrations of EDTA (D), or with different 
concentrations of Cu2+ (E) or Mg2+ (F) was assessed by ELISA. Error bars are means ± SEM 
of duplicate wells. Similar results were obtained from at least 2 independent experiments 
(*p<0.05, **p<0.005, ***p<0.0005 and ****p<0.00005 compared with HSA). Dorta-Estremera 
SM and Cao W., Human pentraxins bind to misfolded proteins and inhibit production of 
interferon induced by nucleic acid-containing amyloid. J Clin Cell Immunol 6:332. 
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5.4 SAP decamer preferentially binds to amyloid precursor protein 

Human SAP can undergo conformational changes according to the presence of calcium, 

pH, ligand availability and albumin concentration [193-195]. In the absence of Ca2+, SAP forms 

a decamer composed of two cyclic pentamers whereas in the presence of calcium, SAP 

aggregates into high molecular weight complexes [194]. If high concentrations of proteins are 

present in Ca2+-containing conditions, such as HSA in human serum, SAP reverses to a 

pentameric form [195]. To determine the conformation of SAP during its interaction with AP-

HSA, we incubated SAP in the presence of Ca2+ and tested the effect of different concentrations 

of HSA (native monomeric form). As shown earlier (Figure 5.2A), SAP, in the presence of Ca2+ 

but at low levels of HSA, failed to bind AP-HSA. However, it regained the ability to interact with 

AP-HSA in the presence of high doses of HSA (Figure 5.3A). These data hint to us that, when 

interacting with AP, SAP may adopt a pentameric conformation.  
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To further identify the assembly of SAP, gel filtration of purified SAP in different buffer 

conditions was performed. SAP monomer has a molecular weight of 25 kD, therefore SAP 

pentamer has a molecular mass of 127 kD and SAP decamer is 254 kD [195]. In PBS, SAP 

eluted between fractions 13 and 17, within the expected range of decamers. When 2mM Ca2+ 

was added, SAP appeared earlier, in fractions 7 to 16, suggesting the formation of 

heterogeneous higher molecular weight aggregates (Figure 5.3B). These results are consistent 

with our earlier assumption that, SAP exists primarily as a decamer in buffer lacking Ca2+, a 

Figure 5.3. SAP conformation during amyloid precursor protein binding. (A) Effect of 
different doses of HSA, in the presence of 2mM Ca2+, on SAP binding to HSA or AP-HSA 
was assessed by ELISA. Error bars are means ± SEM of duplicate wells (*p<0.05 
compared with HSA). Similar results were obtained from at least two independent 
experiments. (B, C) Biotinylated SAP was incubated in the presence or absence of Ca2+ 
(B) or 80 mg/ml HSA plus Ca2+ (C), and the molecular weight of SAP was assessed by gel 
filtration. Fractions were collected and analyzed by ELISA. Dorta-Estremera SM and Cao 
W., Human pentraxins bind to misfolded proteins and inhibit production of interferon 
induced by nucleic acid-containing amyloid. J Clin Cell Immunol 6:332. 
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conformation enabling its binding to AP-HSA (Figure 5.2B), whereas in the presence of Ca2+, 

SAP autoaggregates and gained capacity to interact with amyloid fibrils (Figure 5.1A and 5.1B). 

Given that high concentration of HSA promoted the binding of SAP to AP-HSA in Ca2+-

containing solution (Figure 5.3A), we further fractionated SAP under this condition. The 

presence of 80 mg/ml HSA in Ca2+-containing PBS solution, reverted the majority of the 

aggregated SAP back into the fractions 13 to 16, which contain lower molecular weight species 

(Figure 5.3C). These data supported the notion that SAP decamer predominantly interacts with 

AP whereas highly aggregated SAP binds to amyloids.  

5.5 Misfolded structure in amyloid precursor protein is crucial for SAP binding 

EGCG is a natural compound that interferes the formation of β-sheet structure by 

complexing with AP [196]. To determine whether the misfolded structure of AP-HSA is critical 

for its interaction with short pentraxins, different amounts of EGCG were pre-incubated with 

HSA or AP-HSA. By dot blot analysis, we found that high doses of EGCG prohibited the binding 

of SAP to AP-HSA (Figure 5.4A). These data suggested that a misfolded structure of APs might 

be crucial for their recognition by SAP.  

Acidic conditions can promote structural misfolding of proteins; therefore, acidic 

conditions can facilitate the formation of APs in vitro [197, 198]. Consistently, the generation of 

stabilized AP-HSA by crosslinking requires an acidic pH. Conversely, other crosslinkers, such 

as glutaraldehyde and DMP, that only react at basic pH, failed to produce AP [188]. Therefore, 

we crosslinked HSA with glutaraldehyde (referred as HSA-Glut) and DMP (referred as HSA-

DMP) to determine the specific determinant enabling pentraxin binding. Even though all three 

crosslinked HSA products had similar HSA oligomerization (data not shown), SAP selectively 

recognized EDC-stabilized AP-HSA but not glutaraldehyde or DMP-crosslinked proteins (Figure 
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5.4B). Therefore, instead of indiscriminately interacting with any form of aggregated proteins, 

SAP likely recognize specific misfolded structure present within AP.   

 

 

 

 

 

5.6 SAP binding does not affect amyloid precursor-mediated cytotoxicity 

In light of our findings on pentraxin binding to APs, we wanted to determine whether 

such interactions have functional consequence on the cytotoxicity of APs. As previously shown, 

AP-HSA can bind to the cell membrane and exert cytotoxic function [188]. First, to determine 

whether SAP interfere with the binding of AP-HSA to the cell membrane, we incubated SAP with 

biotinylated HSA or AP-HSA before adding it to RPMI 8226 cells, a human plasmacytoma cell 

line. After 1 hr on ice, the cells were washed to remove unbound HSA or AP-HSA followed by 

staining with Alexa Fluor 488-labeled neutravidin.  The binding of HSA or AP-HSA to RPMI 

8226 cells was then examined by flow cytometry. At a concentration up to 50 μg/ml, SAP had no 

Figure 5.4. Misfolded structure in amyloid precursor protein is crucial for SAP 
binding. A) EGCG was incubated with HSA or AP-HSA for 1 hr and binding of SAP to HSA 
or AP-HSA was assessed by dot blot. Similar results were obtained from at least two 
independent experiments. B) Binding of SAP to HSA or HSA crosslinked with EDC (AP-
HSA), DMP (HSA-DMP) or glutaraldehyde (HSA-Glut) was assessed by ELISA. Error bars 
are means ± SEM of duplicate wells. Similar results were obtained from at least two 
independent experiments. Dorta-Estremera SM and Cao W., Human pentraxins bind to 
misfolded proteins and inhibit production of interferon induced by nucleic acid-containing 
amyloid. J Clin Cell Immunol 6:332. 
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significant effect on the surface attachment of AP-HSA (Figure 5.5A).  Second, to determine 

whether SAP affects cell death induced by AP, we stained RPMI 8226 with propidium iodide to 

quantify dead cell population by flow cytometry. SAP (Figure 5.5B) did not affect the cytotoxicity 

of AP-HSA at the dose tested (up to 50 μg/ml). These data suggested that, at the doses tested, 

SAP binding to APs does not affect AP-induced cytotoxicity.  

 

 

 

 

5.7 Binding of SAP to amyloids prevents type I interferon production by 

plasmacytoid dendritic cells 

Earlier observation that SAP binds to diverse types of amyloids (Figure 1B) prompted us 

to investigate whether the association of SAP might affect the innate immune property of 

amyloid fibrils. Given that DNA-containing amyloid can potently activate pDCs [42], we 

investigated whether SAP binding could impact the ability of pDCs to produce IFN-α triggered 

by DNA-containing amyloid.  First, we pre-incubated SAP with comparable amounts of DNA-

containing amyloid or native HSA plus DNA (referred to as control) then added it to the culture 

Figure 5.5. Effect of SAP binding to amyloid precursor protein in cellular cytotoxicity. 
(A-B) Biotinylated HSA or AP-HSA (1 μg/ml) preincubated with different concentrations of 
SAP was added to RPMI 8226 cells. After 1 hr on ice, streptavidin-AF488 and propidium 
iodide were added to analyze binding of HSA or AP-HSA (A) and cell death (B) by flow 
cytometry. Error bars are means ± SEM of 3 pooled experiments (*p<0.05 and ***p<0.0005). 
Dorta-Estremera SM and Cao W., Human pentraxins bind to misfolded proteins and inhibit 
production of interferon induced by nucleic acid-containing amyloid. J Clin Cell Immunol 
6:332. 
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of PBMC. DNA-containing amyloid induced significant amounts of secreted IFN-α; in contrast, 

SAP at 50 µg/ml decreased the levels of IFN-α considerably (Figure 5.6A). No IFN-α was 

detected in cultures incubated with control. SAP had no effect on the production of IL-6 and 

TNFα, two proinflammatory cytokines, in PBMC culture (Figure 5.6B and 5.6C). To further 

confirm the inhibitory effect of SAP, we isolated primary human pDCs from peripheral blood and 

cultured with DNA-containing amyloid together with SAP. Consistently, pDCs produced less 

amounts of IFN-α when exposed to SAP-amyloid complexes (Figure 5.6D). These data revealed 

that SAP binding can limit the activation of pDCs and inhibit the production of type I interferon 

stimulated by nucleic acid-containing amyloids.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. SAP inhibits IFN-α production triggered by DNA-containing amyloids. (A-
C) PBMC were incubated with control (HSA+DNA) or DNA-amyloid with or without SAP (50 
µg/ml) for 24 hrs. Supernatants were analyzed by ELISA for IFN-α (A), IL-6 (B) and TNFα 
(C) secretion. Error bars are means ± SEM of six donors. (D) Purified pDCs were incubated 
with control or DNA-amyloid, and IFN-α was quantified by ELISA after 24 hrs of culture. 
Error bars are means ± SEM of six donors (*p<0.05 and **p<0.005 compared with DNA-
amyloid without SAP). Dorta-Estremera SM and Cao W., Human pentraxins bind to 
misfolded proteins and inhibit production of interferon induced by nucleic acid-containing 
amyloid. J Clin Cell Immunol 6:332. 
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5.8 Discussion 

In this study, we discovered a previously unrecognized interaction between SAP and 

amyloid precursor protein. Our investigation further reveals a molecular mechanism by which 

SAP differentially recognizes amyloid fibrils and AP by adopting different conformations. 

Additionally, we demonstrated that SAP binding can inhibit the innate immune function of 

amyloid, particularly IFN-α production triggered by nucleic acid-containing amyloid.   

Proteins lose structural integrity due to genetic mutations or when subjected to assorted 

stress, which may lead to cellular damage and eventually diseases if not controlled [167]. 

Therefore, mechanisms must exist to prevent the accumulation of extracellular misfolded 

proteins. Here, we report that SAP can interact with terminal amyloid fibrils and/or their soluble 

precursor species, suggesting a fundamental role of this pentraxin in protein homeostasis. 

Interestingly, we observed that the interaction between SAP and amyloid required Ca2+, 

whereas SAP binding to AP was inhibited by divalent cations. It is known that inflammation may 

increase the extracellular levels of calcium ion in the tissue [199]. Therefore, an inflammatory 

condition may favor Ca2+-mediated SAP aggregation and complex formation between SAP and 

amyloid. Since neuroinflammation is exceedingly associated with AD [200], deposition of SAP 

with amyloid is therefore promoted in the brain of AD patients. On the contrary, human 

peripheral blood contains high levels of HSA and Ca2+, in which SAP predominantly exist as 

pentamers [201].  

Suggested by our study, AP may be recognized by pentameric SAP; thus it is likely that 

SAP complexes with AP primarily in the blood. Given that pentraxins readily activate 

complement to facilitate cargo clearance, it is reasonable to hypothesize that circulating 

pentraxins mediate the removal of misfolded proteins. Indeed, we have observed that AP-HSA 

was rapidly cleared from circulation after intravenous injection in mice (data not shown). 
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Therefore, the interaction between pentraxins and misfolded proteins may serve as an important 

protective mechanism to eliminate pathogenic misfolded proteins. 

Although it was unexpected initially to observe that SAP bound to AP, several published 

reports have suggested a unique affinity between these short pentraxins and proteins with 

altered structures. For example, SAP binds to denatured lactate dehydrogenase independently 

of calcium ion [202]. We present experimental evidence to suggest that SAP specifically 

recognize the misfolded structure within AP, a novel finding worthy of further investigation. It is 

likely that the exposed surface of SAP pentamers contains binding sites for the misfolded 

structures on APs.  

We have shown that SAP binding significantly inhibited the magnitude of IFN-α 

production induced by DNA-containing amyloid, despite the fact that, at the same dose, SAP 

had no effect on the cytotoxicity of AP. DNA has been detected within the amyloid plaques in 

AD brain; however, its biological relevance is vague and only under speculation [189]. Several 

recent studies have established a remarkable link between IFN-α in the brain and the 

pathogenesis of cognitive decline and AD [203-205].  However, the molecular entity that triggers 

IFN-α production in CNS has not been identified. We would speculate that DNA-containing 

amyloid fibrils likely serve as a self-derived ligand to induce IFN-α in AD brain, a process that 

can be modulated by SAP.  

SAP has been implicated in the process of autoimmune pathogenesis, playing largely 

regulatory roles. In systemic autoimmune conditions such as systemic lupus erythematosus 

(SLE), dead cell material and nuclear antigens may accumulate and stimulate autoimmune 

reactions [206]. Shown in studies where SAP was transferred or over-expressed in autoimmune 

prone mice, this pentraxin potently ameliorate the disease progression presumably by 

promoting debris clearance [207-210]. However, the relevance of these results in human 
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disease has been difficult due to differences between mouse and human pentraxins [177]. For 

example, SAP is an acute phase protein in mouse; whereas in humans, SAP is constitutively 

expressed [211].  

Here we provide another potential mechanism by which SAP dampen the innate immune 

activation pathway critical for autoimmune response. We have shown that amyloid fibrils 

containing DNA induced the development of anti-nuclear antibody and a lupus-like syndrome, 

mimicking SLE, after inoculated into non-autoimmune mice [42]. Interestingly, not only SAP 

inhibits IFN-α production by pDCs as we have shown here, but also human CRP limits the 

pDCs’ interferon response to autoimmune complexes [212]. Hence, by regulating type I 

interferon response and debris removal, short pentraxins may play an important role in guarding 

against the development of autoimmunity at multiple stages.  

The novel interaction and biological effect we have observed suggest that pentraxins 

may function as key players in controlling the pathogenesis of protein misfolding diseases as 

well as interferon-mediated autoimmune manifestation.  
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CHAPTER 6.  

SUMMARY, SIGNIFICANCE AND FUTURE DIRECTIONS 
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6.1 Summary 

The pDC-IFN-I axis has been linked to the pathogenesis of SLE; however, the cellular 

events occurred during the break of tolerance and the mechanisms modulating pDC-mediated 

autoimmunity remain to be fully delineated. In this dissertation, we have identified different 

cellular players and cytokines involved in the development of humoral autoimmunity. Among 

these, the roles played by pDCs, NK cells, NKT cells, IFN-I and IFN-II were investigated. Also, 

we were able to identify a differential regulation of GC B cells versus immature B cells during 

break of tolerance. We have had several important observations: 

1) pDC activation and IFN-I are required for the initial generation of IgM autoantibodies 

and isotype-class switched autoantibodies. 

2) GC B cells are inhibited whereas immature B cells are expanded during break of 

tolerance. 

3) pDCs promote the activation of immature B cells.  

4) IFN-I from pDCs induces Tfh cell development and IFN-II enhances IFN-I mediated 

Tfh development. 

5) The kinetics of NK cells and immature B cells correlated with the onset of IgM 

autoantibodies (Figure 6.1A).  

6) IFN-γ is produced by NK cells. 

7) IFN-II is required for T1 B cell expansion, IgM autoantibodies and isotype-class 

switching. 

8) NK cells promote autoantibody development partly through NKp46. 

9) NKT cells suppress isotype-class switched autoantibodies. 

10) SAP binds to amyloid and inhibits IFN-I production by pDCs. 
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We propose a cascade of events that occur downstream of pDC activation, where IFN-I 

promotes IFN-γ production by NK cells, which further triggers the activation and expansion of 

immature B cells that produce the initial self-reactive antibodies (Figure 6.2). In contrast to the 

pathogenic role of pDCs and NK cells, NKT cells have a suppressive effect in this process. In 

addition, the presence of SAP may prevent the activation of pDCs by DNA-containing amyloids 

(Figure 6.2). In this complex process, it is likely that dysregulation of any of the key steps may 

result in the break of B cell tolerance.  

 

 

 

 

 

Figure 6.1. Kinetics of cellular players involved in pDC-mediated break of tolerance. 
Representation of the numerical changes occurring at different time points after amyloid 
immunization.  
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6.2 Significance 

SLE causes a heavy physical, emotional and economic burden for affected patients and 

their families. SLE is characterized by prolonged morbidity and significant mortality [213]. The 

treatment of SLE patients has been limited by the use of immunosuppressant drugs to control 

the severe manifestations, which in many cases show partial or no response. Also, these drugs 

lead to generalized immunosuppression and increased their predisposition to infection, 

malignancy and infertility [214]. In view of this poor benefit-risk profile, new drugs need to be 

Figure 6.2. Model for pDC-mediated humoral autoimmunity. DNA-containing amyloid 
activates pDCs to produce IFN-I, which triggers the activation of NK cells to produce IFN-II. 
This further promotes the activation of immature B cells to produce IgM autoantibodies. IFN-
I, IFN-II and NK cells are required for the development of class-switched autoantibodies, 
whether these antibodies arise directly from GCs or immature B cells needs to be further 
investigated. Also, we have determined that NKT cells suppress the development of 
autoantibodies. The exact mechanism by which this occurs needs to be further studied. 
Additionally, SAP can prevent the activation of pDCs by DNA-containing amyloids. 
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developed to target specific immune cells or cytokines that are thought to be central to the 

disease pathogenesis. To develop better diagnosis and treatment, we need a deeper 

understanding of the complex mechanisms involved during disease progression. This 

dissertation revealed the roles played by diverse immune cell types and cytokines, which may 

serve as targets for treating SLE.   

SLE is a highly heterogeneous disease, where different autoantibodies can be present 

and different organs can be affected. Therefore, it is likely that these differences in lupus 

patients are due to different genetic and extrinsic mechanisms. Our model may mimic a specific 

set of patients, where both IFN-I and IFN-II are highly induced. The presence of these two 

cytokines need to be consider at the time of treatment, mostly now that both IFN-I and IFN-II are 

being tested as therapies for SLE. A targeted treatment to patients, depending on the presence 

of type I IFN or type II IFN signatures may provide a better response.  

According to our data, targeting the specific immune cell subsets that produce IFN-I and 

IFN-II may prevent disease pathogenesis or decrease disease burden in SLE patients. Human 

pDCs express several surface receptors, such as BDCA2 and ILT7, as well as intracellular 

signaling adaptors, such as IRF7 and PACSIN-1 that are essential for IFN-I induction [12]. 

Targeting any of these molecules on pDCs may serve useful to control pDC-mediated 

autoimmune pathogenesis. Being the main producer of IFN-γ, NK cells through specific 

depletion may also provide benefits in the treatment of SLE patients.  

The positive correlation between serum titer, disease activity and deposition of immune 

complexes in end-organ pathology implies a pathogenic role for certain autoantibodies. As the 

primary autoantibody-producers, therapies to deplete B cells have been developed; however 

they failed to show effectiveness in the treatment of SLE patients [215]. A more targeted 

approach may be needed to accomplish a positive response. Importantly, this dissertation 
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identified immature B cells as the possible initial source of autoantibodies during humoral 

autoimmunity. Also, GC B cells may play a significant role in the development of pathogenic 

autoantibody isotypes. These B cell subsets may be good therapeutic targets in humoral 

autoimmunity. 

6.3 Future Directions 

 While our study revealed the involvement of different cellular players in the development 

of autoimmunity in a lupus mouse model, it also raised many new questions that may be 

answered in the short term by using our inducible lupus model and other murine autoimmune 

models. 

We determined that the expansion and activation of immature B cells correlated with the 

appearance of autoantibodies; however direct evidence is required to determine whether this B 

cell subset is in fact the autoantibody-producing cell. The analysis of self-reactive B cells has 

been hindered by the lack of reliable tools for identification. It is possible that by using 

phenotypic and microarray analysis, together with the detection of self-reactive clones, we could 

increase our understanding of the development of autoreactive B cells in our lupus model. Also, 

recently generated, self-reactive tetramers may be useful to identify the self-reactive B cell 

subset in our model [125].  

Another important question to answer is whether immature B cells are the ones that 

undergo class-switching and produce IgG autoantibodies. There are two possibilities - immature 

B cells move to GCs and go through isotype-class switching, or a newly developed autoreactive 

B cell in GCs undergo class-switching and start producing autoantibodies at later stages after 

pDC activation. By transferring labeled immature B cells, we could identify their phenotypic 

changes after amyloid immunization. Also, by localizing these cells in the spleen, we could 

determine whether they go to GCs or stay outside GCs.  
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IFN-α and IFN-γ were shown to be required for immature B cell activation and expansion 

in our inducible lupus model; however the molecular mechanism is not known. IFN-α induces 

BAFF expression, and BAFF is known to be involved in the proliferation of immature B cells [67, 

126]. Therefore, we propose to identify the presence of BAFF in our model and the in vivo role 

of BAFF in the development of autoantibodies at early and late stages of autoimmunity. Since 

NK cells are the IFN-γ-producing cell in our model, we propose that these cells may move from 

extrafollicular regions, where they are usually localized, to the marginal zone or GCs to 

influence the differentiation of follicular B cells. The transfer of labeled NK cells into immunized 

mice may help elucidate the mechanism by which NK cells modulate B cell responses in vivo.  

The formation of immune foci are known to induce immune cell activation, thus the 

identification of these immune centers can reveal the cellular players involved at different times 

of disease. Thus, the location of B cells and immune helper cells within the spleen during break 

of tolerance is currently under investigation. Additionally, the study of complex in vitro cultures 

containing different immune cell types and cytokines may expand the understanding of the 

cross-talk between cells and the key signals triggering overt B cell activation. Lastly, conditional 

ablation of cytokines in specific immune cell subsets can confirm the pathogenic or protective 

role of pDCs, NK cells and NKT cells in vivo.  

In the long term, the major impact of this dissertation will be its translation to benefit SLE 

patients. It is essential to determine the role played by the cytokines and immune cells 

characterized in this dissertation during SLE development. Dysregulation of IFN-I, IFN-II, pDCs, 

NK cells, NKT cells and B cells have been found on peripheral blood of SLE patients [157, 216, 

217]. However, these individual observations do not reflect the complexity of the disease. I 

propose that a personalized approach must be used to classify patients according to their 

immunological profile and disease pathogenesis. The analysis of the peripheral blood of SLE 

patients, although not completely representative of the systemic disease, can provide relevant 
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information regarding the disease pathogenesis. Thus, it is important to analyze type I IFN 

signature, type II IFN signature and numerical and molecular changes in immune cell types from 

SLE patients and correlate these parameters with disease prognosis, organ involvement, and 

autoantibody specificity. A comprehensive analysis of this kind may help identify cellular and 

molecular targets that can be used as diagnostic markers and/or as treatment.    

6.4 Conclusions 

 A very fine regulation between the two arms of the immune system, i.e. innate and 

adaptive, is needed to prevent autoimmunity. We now know that dysregulation of not one rather 

many different immune cell types, likely stimulates a break of tolerance and development of 

SLE. As mentioned in this dissertation, a shift towards the production of IFN-I and IFN-II can 

promote autoimmunity, whereas a shift towards the activation of NKT cells may prevent it. We 

foresee that a more personalized approach for disease identification will open new opportunities 

to treat patients according to their immune profile. Therefore, a deeper understanding of the 

events triggering autoimmunity, as we have aimed in this dissertation, will accelerate the 

development of more targeted therapies.   
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CHAPTER 7.  

MATERIALS AND METHODS 
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Cao W., “Neutrophils regulate humoral autoimmunity by restricting interferon-γ production via 
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Commons Attribution-NonCommercial-No Derivatives License (CC BY NC ND). Collaborator 
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Portions of this chapter are also based on Dorta-Estremera SM., Cao W., “Human pentraxins 

bind to misfolded proteins and inhibit production of type I interferon induced by nucleic acid-

containing amyloid”. J Clin Cell Immunol (2015) 6:332 doi: 10.4172/2155-9899.1000332 [166]. 

This is an open-access article distributed under the terms of the Creative Commons Attribution 

License, which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited. 

http://dx.doi.org/10.1016/j.celrep.2015.07.021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


96 
 

Reagents. Materials and their suppliers were as follows: purified human serum albumin (HSA), 

Sigma-Aldrich; bacterial DNA (endotoxin-free, Ecoli K-12), Invivogen; Aβ(1-42) peptide, EMD 

Biosciences; Smith antigen/ribonucleoprotein complex (Sm/RNP), Meridian Life Sciences; 

epigallocatechin gallate (EGCG), Sigma-Aldrich; human SAP, Calbiochem. ANA antigen 

substrate slides were purchased from MBL International. Oligonucleotide CpG2006 

(TCGTCGTTTTGTCGTTTTGTCGTT) was synthesized by Sigma-Genosys. HSA and SAP were 

biotinylated by using EZ-link Sulfo-NHS-LC-Biotin (Invitrogen) according to the manufacturer’s 

instructions. Mouse IFN-γ, human interferon α (IFN-α), human interleukin-6 (IL-6) and tumor 

necrosis factor α (TNFα) were detected by using R&D ELISA kits. RPMI 8226 cells were grown 

in RPMI 1640 medium supplemented with 10% fetal bovine serum, 50 units/ml penicillin and 50 

μg/ml streptomycin. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood 

provided by the Gulf Coast Blood Center. pDCs were isolated by BDCA-4 positive selection 

(Miltenyi Biotech) from buffy coats provided by the Gulf Coast Blood Center. 

 

Preparations of AP and amyloid.  HSA-derived AP (AP-HSA) was prepared as described 

before [187]. Briefly, HSA was crosslinked with 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide 

hydrochloride (EDC) in MES buffer at pH 4.7. To produce DNA- and heparin-containing amyloid, 

AP-HSA was mixed at a 1:3 ratio with DNA (Sigma) or heparin (Lovenox, Sanofi-Aventis) and 

after 1 hr, precipitates were centrifuged to remove soluble components. To prepare protein-only 

amyloid, 10 mg/ml HSA was reconstituted in MES buffer and incubated for 4 hrs at 65°C. To 

crosslink HSA with dimethyl pimelimidate (DMP), further referred as HSA-DMP, a 10 fold molar 

excess of DMP (Thermo Scientific) was added to 5 mg/ml of HSA in 0.2M triethanolamine pH 8. 

After 1 hr, the reaction was stopped with glacial acetic acid. To prepare glutaraldehyde-

crosslinked HSA (HSA-Glut), 0.05% glutaraldehyde (Sigma Aldrich) was added to 1 mg/ml HSA 

for 10 min. Tris-HCl was added to terminate the reaction.  
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Antibodies. The following antibodies were used: anti-CD45R/B220 (clone: RA3-6B2) (BD 

Biosciences), anti-CD11c (clone: HL3) (BD Biosciences), anti-CD11b (clone: M1/70) (BD 

Biosciences), anti-CD3 (clone: 145-2C11) (BD Biosciences), anti- NK1.1 (clone: PK136) (BD 

Biosciences), anti-CD49b (clone: DX5) (BD Biosciences),  anti-CD335 (NKp46) (clone: 29A1.4) 

(eBioscience), anti-CD19 (clone: 1D3) (BD Biosciences), anti-CD4 (clone: RM4-5) (BD 

Biosciences), anti-CD8 (clone: 53-6.7) (BD Biosciences), anti-CD44 (clone: IM7) (BD 

Biosciences), anti-CXCR5 (clone: 2G8) (BD Biosciences), anti-CD80 (clone: 16-10A1) (Tonbo 

Biosciences), anti-CD278/ICOS (clone: 7E.17G9) (BD Biosciences), anti-IFN- (clone: XMG1.2) 

(BD Biosciences), anti-GL7 (clone: GL-7) (ebioscience), anti-Fas (clone: 15A7) (ebioscience), 

anti-CD93 (clone: AA4.1) (ebioscience), anti-IgM (clone: II141) (ebioscience), anti-CD138 

(clone: 281-2) (BD Biosciences), anti-CD23 (clone: Cy34.1) (BD Biosciences), anti-CD21 (clone: 

7G6) (BD Biosciences), anti-CD107 (clone: 1D4B) (Biolegend), anti-TRAIL (clone: N2B2) 

(Biolegend), anti-Ki67 (clone: SolA15) (ebiosciences) and anti-IgD (clone: 11-26c2a) 

(Biolegend). 

 

Mice. All experiments were conducted with sex- and age-matched mice. Animal studies were 

approved by the Institutional Animal Care and Use Committees of University of Texas MD 

Anderson. C57BL/6, BALB/cByJ, Ifng-/- (B6.129S-Ifngtm1Ts), Ch25h-/- (B6.129S6-Ch25htm1RUS/J), 

Vα14-Tg (C57BL/6-Tg (CD4-TcraDN32D3), Nkp46gfp/gfp (NCR1 KI/J) and Cd1d-/- (C.129S2-

Cd1tm16ru/J) mice were purchased from The Jackson Laboratory. Dr. W. Overwijk (University of 

Texas M.D. Anderson Cancer Center, Houston, TX) generously provided Ifnar1-/- C57BL/6 mice, 

Dr. SC. Sun (University of Texas M.D. Anderson Cancer Center, Houston TX) generously 

provided TCRβ/δ-/- C57BL/6 mice and Dr. T Okada (RIKEN, Research Center for Allergy and 

Immunology, Yokohama, Japan) generously provided Bcl6yfp C57BL/6 mice. Rgs13KI/KI were 

generously provided by Dr. J Kehrl (NIH/NIAID). All animal experiments were conducted on 8-

12 weeks old mice.  
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Mice injections. The amyloid-induced autoimmune mouse model was performed as previously 

described [42]. Briefly, mice were injected i.p. with control (HSA+DNA) or amyloid (HSA-

amyloid+DNA) in PBS mixed 1:1 in CFA. Serum and spleen cells were analyzed after 7-21 days 

to analyze events occurring during break of tolerance. For long term autoimmune development, 

booster injections with IFA were performed 2 and 4 wks after. For depletion of NK cells, 250μg 

of anti-NK1.1 antibody or control IgG2a were i.p. injected 24hrs before the initial amyloid 

immunization and before every booster immunization. 

 

Analysis of humoral autoimmune responses. Blood samples were collected bi-weekly from 

immunized mice. For anti-nuclear antibodies, sera were analyzed on ANA antigen substrate 

slides containing fixed Hep-2 cells (MBL International). The dilution of sera was 1:100 for 

C57BL/6J or 1:200 for BALB/cByJ mice unless specified. To measure antigen-specific 

autoantibodies, sera (diluted at 1:1000) were first incubated on 96-well polystyrene assay plates 

(Greiner Bio-one) coated with histone type II-A or HSA (all from Sigma-Aldrich), and then 

detected with either horseradish peroxidase-conjugated goat anti-mouse IgG (Jackson 

ImmunoResearch) or biotin-conjugated anti-mouse IgM (Southern Biotech). For isotype 

analysis, sera were incubated (diluted at 1:250) on the antigen-coated ELISA plate then 

detected with an ELISA kit (Bethyl Laboratories).  

 

Flow cytometry. Single-cell suspensions from spleenocytes were obtained and stained with 

fluorophore-conjugated antibodies. For staining of intracellular IFN-, cells were cultured with 

Golgi Plug (3 mM) for 4 hrs, to enable the accumulation of intracellular proteins. The cells were 

then harvested and were fixed for 30 min at 4°C with BD Cytofix/Cytoperm kit (BD Biosciences) 

and subsequently were permeabilized 30 min at 4°C in Perm buffer (BD Biosciences). LSR II or 

FACSFortessa (Becton-Dickinson) was used for flow cytometry analysis and FACSAria for cell 
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sorting (The Flow Cytometry Core at MD Anderson Cancer Center assisted during cell sorting). 

Data were analyzed with FlowJo software (Treestar). GC B cells were gated as 

B220+CD19+GL7+Fas+ or B220+CD19+GL7+Fas+Bcl6+, Tfh cells as CD4+CD44+ICOS+PD-

1+CXCR5+, NK cells as CD3-NK1.1+NKp46+ or CD3-DX5+NKp46+ and immature B cells as 

CD19+CD138-CD93+ unless specified. 

 

Analysis of Peritoneal Fluid. Peritoneal exudate cells were harvested after injection of control 

or amyloid. Cells were spined down and the supernatant was used to analyze the presence of 

cytokines in the peritoneal fluid.  

 

Hybridoma development.  CD19+B220+ B cells were sorted from control or amyloid immunized 

mice. 2 million B cells were mixed with myeloma cells at 1 : 0.8 ratio and fused with 

polyethylene glycol and plated into 96 well plates. (Collaborator: Long Vien from Hybridoma 

Core Facility). After 10 days, cells were expanded into 24 well plates. After 7-15 days, the 

supernatant was collected and tested by ELISA for reactivity against HSA, histone and 

Sm/RNP. 

 

Immunofluorescence Staining.  Spleens were snap-frozen in methylbutane and sections were 

cut at 6µm. Slides were fixed in acetone, blocked with 1% BSA in PBS and then antibodies 

against PNA, IgD and Ki67 (clone: 16A8) (Biolegend) were used to detect GCs. After several 

washes in PBS, a secondary antibody against rat IgG (Life Technologies) was added. Finally, 

Prolong Gold Antifade Mountant (Thermo Scientific) was applied for further analysis in a Leica 

TCS SP8 confocal microscope.   
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Quantitative RT-PCR. Total RNA was isolated from lysed cells by using a PureLink™ RNA Mini 

kit (Life Technologies). RNA was reverse-transcribed into cDNA with iScript reverse 

transcription supermix (Bio-Rad). Real-time quantitative PCR was performed by using iCycler 

Sequence Detection System (Bio-Rad) and iQTM SYBR®Green Supermix (Bio-Rad). The 

expression of individual genes was calculated by normalizing with the levels of S18 and 

displayed as relative expression to that of bone marrow of naive C57BL/6 mice. A list of the 

primers used is listed in Table 1.2. 

 

 

In vitro induction of TFH cells. DCs were isolated from the spleen of C57BL/6 mice using 

FITC-labeled anti-mouse CD11c followed by anti-FITC microbeads. T cells were isolated from 

the spleen of Bcl6yfp/+ mice using anti-mouse CD4 microbeads. T cells and DCs were co-

cultured at the ratio of 10:1 in the presence of 0.5 ug/ml anti-CD3 (BD Biosciences). The cells 

Gene Forward Reverse 

fas aaaccagacttctactgcgattct gggttccatgttcacacga

cd80 tacctgctttgcttccggg tccaaccaagagaagcgagg

EndoU cgtcaacgagaagctgttctccaag ccacatgttcttcaaatcgtccac

isg15 acggtcttaccctttccagtc cccctttcgttcctcaccag

mx1 ttcaaggatcactcatacttcagc gggaggtgagctcctcagt

cd86 caagcttatttcaatgggactgc agcctttgtaaatgggcacg

rag1 ggctagggtcagcagcaagga cacgggatcagccagaatgtgttc

rag2 cagaacttcaggatgggctgtcttt tttgagtgaggattgcactggagac

aicd cgtggtgaagaggagagatagtg cagtctgagatgtagcgtaggaa

ch25h ctgcctgctgctcttcgaca ccgacagccagatgttaatca

cyp27a cccttttggaagcgatacctg gtcagtgtgttggatgtcgtgt

cyp27b tcaggaaaggcaagatctgctga cctgttgactgcaggaaactgtca

bcl6 ttccgctacaagggcaac cagcgatagggtttctcacc

icos cggcagtcaacacaaacaa tcaggggaactagtccatgc

cxcr5 gaatgacgacagaggttcctg gcccaggttggcttcttat

il21 ggagtgaccccgtcatctt aggagcagcagcatgtgag

Table1.2. List of primers.  
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were cultured in media, with different combinations of CpG A 2216 (0.1 μM), recombinant IFN-α 

(R&D Systems) or recombinant mouse IFN- (R&D Systems). After 3 days, cells were harvested 

and analyzed by flow cytometry to evaluate TFH development. 

 

In vitro B cell cultures. B220+cells were isolated from the spleen of C57BL/6 mice using FITC-

labeled anti-mouse B220 followed by anti-FITC microbeads. The cells (1X106/ml) were cultured 

in media or, with different concentrations of recombinant IFN-α and/or recombinant IFN-γ. In 

some experiments R848 (1μg/ml) was added. 

 

Microarray. T1, T2 and Follicular B cells were sorted after 2 weeks of immunization with control 

or amyloid. RNA was isolated from the cells using the RNeasy Mini Kit on-colum Dnase 

digestion (Qiagen) and in collaboration with MedImmune Inc, the Affymetrix Mouse 430.2.0 

array was used to detect the expression of genes in these B cell subsets.  

 

SAP ELISA. To detect the binding of SAP to different ligands, ELISA was performed. Different 

concentrations of Aβ (1-42), Aβ (42-1), Sm/RNP, HSA, AP-HSA, HSA-DMP or HSA-Glut in 

carbonate buffer (45.3mM NaHCO3, 18.2mM Na2CO3 pH 9.6) were coated on ELISA plates 

overnight at 4°C. The plates were blocked with blocking buffer [150mM NaCl, 25mM Tris (TBS), 

1% bovine serum albumin (BSA)] for 1 hr at room temperature. Biotinylated human SAP or CRP 

(4 μg/ml) was added in TBS + 0.01% Tween 20 at different conditions, such as Ca2+, EDTA, 

copper (Cu2+) or magnesium (Mg2+), for 2 hrs. Then, streptavidin-horseradish peroxidase 

(streptavidin-HRP) was added and the 3,3',5,5'-Tetramethylbenzidine (TMB) substrate was used 

to detect color development with maximum absorbance of 450 nm. 
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Dot blot analysis. To identify the binding of pentraxins to cofactor-containing amyloids, 30 μg 

of protein-only amyloid, DNA-containing amyloid or heparin-containing amyloid was made as 

described above and incubated with biotinylated SAP or biotinylated BSA (5 μg/ml) in PBS or 

2mM Ca2+ in PBS overnight. After several washes, the precipitates were resuspended in 100 μl 

of PBS and then 4 µl of this solution was spotted onto activated Immobilon-P membrane 

(Millipore). The blot was then blocked in 1% BSA in TBS and streptavidin-HRP was added. After 

several washes, the blot was developed using SuperSignal West Pico Chemiluminescent 

Substrate (Pierce Biotech). To determine the effect of EGCG on pentraxin binding to AP-HSA, 

EGCG was incubated with 1 μg of HSA or AP-HSA for 1 hr and then 4 µl of the mixture was 

spotted onto an activated membrane as described above. After blocking with 1% BSA in TBS 

for 1 hr, biotinylated SAP or biotinylated CRP was incubated in blocking buffer overnight. After 

several washes, streptavidin-HRP was added and the blot was developed as described above. 

 

Gel filtration. To identify the conformation of SAP at different buffer conditions, a 24 ml 

Superose 6 10/300 GL column was run on an AKTA (Amersham Bioscience) liquid 

chromatography system.  After equilibration with at least 4 column volumes of buffer, 3 μg of 

biotinylated SAP in PBS, 2mM Ca2+ or 2mM Ca2+ plus 80 mg/ml HSA was loaded into the 

column. One ml fractions were collected and used to coat ELISA plates. Streptavidin-HRP was 

used to detect SAP in each fraction.  

 

Binding and cytotoxicity in vitro assays. To determine the effect of SAP binding on the 

cytotoxicity of AP-HSA, RPMI 8226 cells were plated at 0.5 X 106/ml in PBS and biotinylated 

HSA or AP-HSA preincubated with SAP or CRP was added. One hour later, cells were washed 
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and then FITC-conjugated streptavidin and propidium iodide were added to detect binding of 

HSA or AP-HSA and cell death, respectively.  

 

Human in vitro cell culture. Human PBMC (10 X 106/ml) or isolated pDCs was cultured 

overnight in complete medium with 1 μg/ml HSA or AP-HSA mixed with 1 μg/ml E. coli DNA with 

or without SAP. Supernatants were then analyzed by ELISA for cytokine production. 

 

Statistical analysis. Two-tailed, unpaired or paired Student's t-tests were used for statistical 

comparison between two groups, with the assumption of equal sample variance, by using 

GraphPad Prism software. When more than two groups of samples were analyzed, one-way 

ANOVA test was performed. Differences with a P value of <0.05 were considered statistically 

significant.  
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