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  The purpose of this work was to determine if quantitative image features (QIFs) extracted 

from computed tomography (CT) and flourodeoxyglucose (FDG) positron emission tomography 

(PET) could provide prognostic information to improve outcome models. Our goal for this work was 

to determine if it may one day be feasible to incorporate QIFs into personalized cancer care. QIFs 

were used to quantitatively characterize patient disease as seen on imaging.  A leave-one-out cross-

validation procedure was used to assess the prognostic ability of QIFs extracted from CT and PET in 

addition to conventional prognostic factors (CPFs).  QIFs were found to improve model fit for overall 

survival in contrast enhanced CT (CE-CT) (p = 0.027) and FDG-PET (p = 0.007). 

Correlations/associations were observed between QIFs from CE-CT, FDG-PET, and CPFs. However, 

our results indicate that while correlations/associations exist, QIFs provided additional prognostic 

information. QIFs from FDG-PET improved models using CPFs including GTV in terms of patient 

stratification, c-index, and log-likelihood more than QIFs from CE-CT alone. Various studies were 

performed assessing the reproducibility of FDG-PET based QIFs and found that reconstruction 

methods certainly impact the obtained QIF values. However, features maintain a reasonable 

reproducibility (mean CCC = 0.78) that may be improved when using similar reconstructions (e.g., 

3D OSEM) (CCC = 0.93).  The two FDG-PET features found to be prognostic were also able to 

isolate sub-cohorts of patients that demonstrated survival differences based on radiation dose. 

QIFs were found to provide additional prognostic information beyond that found from CPFs. 

Initial evidence suggests that the examined FDG-PET based QIFs may have utility across cohorts and 

could potentially determine which patients may benefit from dose escalation. 
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Chapter 1 Introduction 

Non-small cell lung cancer (NSCLC) results in more deaths than any other type of cancer in 

the United States.1 AJCC TNM staging, which classifies patients as stage I through IV, is a 

commonly used tool that dictates patient prognosis and treatment.2 Patients with stages I-III are 

viewed as potentially curative and receive definitive treatment.  Early stage patients (stages I/II) can 

achieve a 5-year survival rate between 45-50% and are predominantly treated with surgical resection.3  

Locally-advanced, non-metastatic (stage III) patients have a 5-year survival rate between 5-15%.3  

These patients are predominantly treated with a combination of radiation therapy and chemotherapy 

(chemoradiotherapy).  Stage III NSCLC is a particularly diverse cohort because patients can have 

varying primary tumor size/extent (T stages: 1 through 4) and nodal involvement (N stages: 0 through 

3).  This diversity of patients yields similarly diverse outcomes.  Some patients succumb to their 

disease only a few months after diagnosis while others are able to do remarkably well and live 5 or 

more years post treatment.   

Currently, the predominant factor in assessing prognosis and treatment is the patient’s TNM 

stage. Further individualization is performed in practice based on other conventional prognostic 

factors (CPFs), such as tumor volume, histology, age, gender, performance status, and smoking 

history.4 However, the impact of these CPFs is based purely on the experience/opinion of the treating 

physician(s) and is not standardized.  Furthermore, quantitative models have been shown to have the 

ability to outperform physicians when it comes to predicting a patient’s outcome to treatment.5 While 

there is a body of literature regarding CPFs in stage III NSCLC, there are no standardized tools that 

allow physicians to individually predict patient outcome in order to give a more personalized 

prognosis or aid in treatment decision making. Outcome nomograms exist for various other forms of 

cancer via the Memorial Sloan Kettering Cancer Center (http://www.mskcc.org/nomograms).  

However, these nomograms are not routinely used in the clinic, have yielded a wide range of 

observed results, and only utilize relatively generic CPFs similar to TNM staging.   
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The concept of personalized cancer care recognizes that each cancer patient is unique. The 

needs, tolerances, and outcomes of patients can vary widely even if they receive the same 

treatment/care and are classified as similar based on CPFs. Therefore, a major goal in cancer 

medicine is to eventually tailor each patient’s care specifically to that individual rather than to utilize 

population-based data when determining prognosis, appropriate follow-up intervals, or treatment.6, 7  

Medical imaging is a source of potentially prognostic information that is routinely obtained, 

non-invasive, and specific to each patient. Imaging is already a primary tool for determining TNM 

stage and is currently performed as part of routine standard of care for patients with NSCLC. 

Additionally, there is a growing body of evidence suggesting that additional prognostic information 

can be ascertained from quantitatively analyzing a patient’s tumor using quantitative image features 

(QIFs). QIFs are commonly based on disease histograms, co-occurrence matrices, nearest gray tone 

difference matrices, filtration-based features, and shape/volume based features.8–11 These QIFs have 

been shown to have prognostic abilities in a variety of settings using pretreatment computed 

tomography (CT) and fluorodeoxyglucose (FDG) positron emission tomography (PET) scans.8, 10, 12–25 

This process is referred to as “radiomics” since it was motivated by other high-throughput analyses 

methods, such as genomics, proteomics, etc. However, many radiomics studies relate QIFs purely to 

patient outcome and not any sort of genomic, proteomic, or biological endpoint.   

Multiple publications using QIFs extracted from CT scans have shown relationships between 

tumor heterogeneity and patient outcome.8, 10, 14–17, 19, 20, 25–30 Relationships have been observed using 

both non-contrast enhanced (NCE) and contrast enhanced (CE) scans. Furthermore, associations have 

also been shown relating QIFs from CT to tumor histology, genetic variations, and glucose 

metabolism. The largest and most comprehensive of these studies was performed by Aerts et al.8 

They found that a four-feature signature developed from a cohort of 422 patients had prognostic 

power when applied to an independent data set of 225 patients.  They also were able to demonstrate 

associations between the four prognostic QIFs and tumor gene expression in a cohort of 83 patients.  

All of these cohorts consisted of patients with NSCLC of varying stages (i.e., stages I through IV). 
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Other literature regarding prognostic value of CT-based QIFs is largely composed of small, 

retrospective studies that frequently utilize re-substitution statistics or optimal cut-off methods for 

assessing prognostic value. Proper validation techniques are needed when analyzing the potential 

impact of CT-based QIFs. Ideally, bootstrapping or cross-validation techniques may be utilized if 

independent or external sources of data are not available. Furthermore, there is tremendous 

uncertainty in the literature regarding whether information from CT-based QIFs yields added 

predictive accuracy compared to CPFs, such as staging, disease volume, performance status, 

histology, etc.   

Similar observations and pitfalls exist regarding FDG-PET-based QIFs. A significant body of 

literature exists regarding “standard” FDG-PET measures, such as SUVmax, SUVmean, metabolic tumor 

volume, etc.31–34 However, significantly fewer publications address more complex QIFs examining 

disease heterogeneity and shape. The literature regarding more complex QIFs is composed 

predominantly of small, retrospective studies lacking proper validation and/or multivariate analyses 

examining the added benefit of QIFs to currently known CPFs. Nonetheless, existing publications 

suggests a potential relationship between FDG-PET-based QIFs and patient outcome in NSCLC.12, 21, 

35, 36 

While there is compelling evidence that additional prognostic information can be extracted 

from quantitatively analyzing CT and FDG-PET, additional evaluations are needed to thoroughly 

investigate the potential of QIFs in these modalities and to address gaps in existing data. The goal of 

this work is to expand upon findings from existing publications regarding CT and FDG-PET QIFs in 

an effort establish a foundation for assessing whether or not imaging-based QIFs may one day be 

used as part of personalized cancer care. Retrospective cohorts will be generated and used to extract 

QIFs from patient imaging alongside patients CPF and outcomes from patient medical records. This 

data will be used to assess the prognostic value of QIFs and CPFs, variability/reproducibility of QIFs, 

and to quantify the relationship(s) between QIFs, CPFs, and physical tumor characteristics (e.g., 
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necrosis, vessels, and cavitation).  Exploratory analysis will evaluate the possible modification of 

treatment based on QIFs.   
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Chapter 2 Principal Hypothesis and Specific Aims 

Principal Hypothesis:  

The addition of quantitative image features from CT and PET scans to models using only 

conventional prognostic factors can improve patient outcome models.  

 

Specific Aim 1: Analysis of CT-based Quantitative Image Features 

Specific Aim 1 Hypothesis: The addition of CT-based quantitative image features will significantly 

improve outcome models compared to models using conventional prognostic factors 

Project 1.1 Quantify the impact of adding CT-based quantitative image features to outcome 

models containing only CPFs including and excluding GTV 

Project 1.2 Quantify the reproducibility of CT-based quantitative image features and its impact 

on outcome models 

Project 1.3 Quantify the prognostic value of adding CE-CT-based quantitative image features to 

outcome models containing only CPFs 

 

Specific Aim 2: Analysis of FDG-PET-based Quantitative Image Features 

Specific Aim 2 Hypothesis: The addition of FDG-PET-based quantitative image features will 

significantly improve outcome models compared to models using conventional prognostic factors 

Project 2.1 Quantify the impact of adding FDG-PET-based quantitative image features to 

outcome models containing only CPFs 

Project 2.2 Quantify the reproducibility of FDG-PET-based quantitative image features using 

“pseudo” test-retest scans 

Project 2.3 Quantify the reproducibility of FDG-PET-based quantitative image features using 

retrospective reconstructions of phantom and patient data  
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Specific Aim 3: Assess relationships between CT-based quantitative image features, PET-based 

quantitative image features, conventional features, and morphologic features 

Specific Aim 3 Hypothesis: There will be significant relationships between some quantitative image 

features between modalities and with tumor volume, staging, and morphologic characteristics.  

Project 3.1 Quantify correlations between prognostic FDG-PET-based and CECT-based 

quantitative image features 

Project 3.2 Quantify if relationships exist between CE-CT-based and FDG-PET-based 

quantitative image features with tumor volume and TNM staging 

Project 3.3 Quantify if there are correlations between FDG-PET-based quantitative image 

features, CECT-based quantitative image features, and morphologic characteristics (vessels, 

necrosis, air cavities, etc.) 

 

Specific Aim 4: Potential use of FDG-PET-based quantitative image features 

Specific Aim 4 Hypothesis: Significant FDG-PET-based based quantitative image features found in 

Specific Aim 2 will allow for identification of sub-cohorts that will demonstrate a significant 

stratification of patients based on radiation dose.  

Project 4.1 Assess whether significant PET-based quantitative image features relate to a 

difference in patient survival for those treated with an escalated radiation dose   
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Chapter 3 Methodology 

A substantial portion of the methods is written or based on the following publications: 

Fried DV, Mawlawi O, Zhang L, Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of 

FDG PET quantitative image features combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published 

online July 15, 2015. ©Radiological Society of North America. 

 

Fried DV, Tucker SL, Zhou S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture 

Features in Stage III Non-Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 

10.1016/j.ijrobp.2014.07.020. Volume 90, Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

The permissions for reuse of these materials were obtained from both the Radiological Society of North America and Elsevier B V.  

 

3.1 Conventional Prognostic Factors 

We extracted patient T stage (T1/T2 vs T3/T4), N stage (N0/N1 vs N2/N3), Overall Stage (3a 

vs 3b), age, gender, histology (squamous cell carcinoma vs other), Karnofsky performance status 

(KPS) (100-90 vs <90), smoking status (current, former, never), estimated pack years, use of 

induction chemotherapy, and gross tumor volume (GTV) from the medical record.  These factors 

were included as they have all been suggested to be prognostic in stage III NSCLC.4  All TNM 

staging was performed according to the 7th edition American Joint Committee on Cancer staging 

manual.37  GTV consisted of both the primary and nodal disease as defined by the treating radiation 

oncologist for definitive radiation therapy. The GTV was transformed in all cohorts except Cohort 1 

(the different cohorts are descried below) prior to modeling using the logarithm to the base 2 in order 

to reduce the influence of relatively extreme measurements during the modeling process. The GTV in 

Cohort 1 was not log transformed as the distribution of GTV was relatively free of outliers and was 

approximately normally distributed. CPFs were used to construct reference prediction models using 

factors previously thought to be prognostic in stage III NSCLC in order to have an appropriate 

assessment for the incremental benefit of QIFs. It is essential in biomarker research to demonstrate 

evidence that new biomarkers (i.e., QIFs) provide added prognostic value in addition to what is 

already known from CPFs. There is some debate regarding whether to treat GTV as a CPF or QIF. 

While GTV is quantitative in nature and not considered part of determining AJCC TNM stage, it has 

been cited as a prognostic factor in NSCLC in a variety of publications. To accommodate both sides 
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of this debate, results using CPFs excluding GTV, CPFs including GTV, and CPFs including GTV 

and QIFs were determined. 

3.2 Patient Cohorts 

Cohort 1: 91 Patients with Pretreatment Tavg, T50, and CE-CT  

 We retrospectively reviewed the medical records of patients with stage III NSCLC treated at 

MD Anderson Cancer Center with definitive radiation therapy between July 2004 and January 2012. 

These dates were chosen in order to include patients receiving 4DCT, which our institution 

implemented in early 2004, and provide adequate follow-up time.  We excluded all patients receiving 

induction chemotherapy, proton-based radiation therapy, <5 years post-treatment for another solid 

tumor, multiple primary lesions, non-platinum-based concurrent chemotherapy, and those not 

receiving a diagnostic contrast-enhanced scan prior to 4DCT treatment planning. The median follow-

up for all living patients at time of analysis was 59 months (range, 17 – 97 months).  CPFs and 

treatment characteristics of all patients are listed in Table 1. All patients received a diagnostic 

contrast-enhanced CT (CE-CT) and a non-contrasted 4DCT scan prior to treatment. For contrast-

enhanced scans, patients were scanned using 120 kVp, 400-1160 mA, and an exposure time of 265-

570 ms. All images were reconstructed using the standard reconstruction kernel. Axial images were 

512 x 512 pixels with voxel dimensions of 0.059-0.090 cm x 0.059-0.090 cm x 0.25 cm. For the 

4DCT scans, the average intensity projection (TAVG) and expiratory phase (T50) images were used in 

this study. Patients were scanned using 120 kVp, 100-200 mA, and an exposure time of 500-800 ms.  

All images were reconstructed using the standard reconstruction kernel.  Axial images were 512 x 

512 pixels with voxel dimensions of 0.096 cm x 0.096 cm x 0.25-0.30 cm. 

Effort was made to generate a cohort that was as homogeneous as possible in terms of their 

clinical characteristics (all stage III NSCLC), treatment characteristics (all treated with definitive 

radiation therapy), and imaging characteristics (similar acquisition/reconstruction parameters). 

The aim of this cohort was to test the improvement of using QIFs from CT in outcome models 

compared to models using only CPFs. 
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Table 1. Cohort 1 – Patient CPFs and Treatment Characteristics 

Conventional Prognostic 

Factors 
N % 

Treatment 

Characteristics 
N % 

No. Patients 91 NA Radiation Dose   

Median Age (years) 65 NA 1.8- 2.0 Gy/fx 79 87 

Mean GTV (cc) 132 NA Other 12 13 

Gender   Radiation Type   

Male 55 60 3DCRT 5 6 

Female 36 40 IMRT 86 94 

T Stage   Concurrent Chemotherapy   

T1/T2 43 47 Carboplatin-based 78 86 

T3/T4 48 53 Cisplatin-based 13 14 

N Stage   Adjuvant Chemotherapy   

N0/N1 11 12 Yes 37 41 

N2/N3 80 88 No 54 59 

Overall Stage      

IIIa 45 50    

IIIb 46 50    

Histology      

Squamous cell carcinoma 46 50    

Other 45 50    

Smoking Status      

Never 5 6    

Former 65 71    

Current 21 23    

Pack Years      

0-24 13 14    

25-49 37 41    

50-74 22 24    

75+ 19 21    

Performance Status 

(KPS) 
     

100-90 37 41    

80-70 53 58    

<70 1 1    

Abbreviations: No. = Number; cc = cubic centimeters; GTV = gross tumor volume; KPS = Karnofsky performance status; 

Gy = gray; fx = fraction; 3DCRT = 3 dimensional conformal radiation therapy; IMRT = intensity modulated radiation 

therapy 

 

This table has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker 

SL, Zhou S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture 

Features in Stage III Non-Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 

10.1016/j.ijrobp.2014.07.020. Volume 90, Issue 4, Pages 834-842. 2014. ©Elsevier. 
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Cohort 2: 249 Patients with Pretreatment CE-CT  

 We retrospectively reviewed the medical records of patients with stage III NSCLC treated 

with definitive radiation therapy between August 2004 and December 2012.  These dates were chosen 

in order to include many patients receiving contrast-enhanced CT scans during the time of use of 

4DCT at MD Anderson Cancer Center and provide adequate follow-up time.  We excluded all 

patients <5 years post-treatment for another solid tumor, multiple primary lesions and those not 

receiving a diagnostic contrast-enhanced scan prior treatment.  These criteria yielded a cohort of 249 

patients for analysis.  The median follow-up for all patients living at the time of analysis was 53 

months (range, 15 – 106 months).  CPFs and treatment characteristics of all patients are listed in 

Table 2.   All patients received a diagnostic contrast-enhanced CT (CE-CT) and a non-contrasted 

4DCT scan prior to treatment.  For contrast-enhanced scans, patients were scanned using 120 kVp, 

400-1160 mA, and an exposure time of 265-570 ms.  All images were reconstructed using the 

standard reconstruction kernel.  Axial images were 512 x 512 pixels with voxel dimensions of 0.059-

0.090 cm x 0.059-0.090 cm x 0.25 cm.    

The purpose of this cohort was similar to cohort 1. Effort was made to identify a 

homogeneous cohort of patients in terms of clinical characteristics, treatment characteristics, and 

imaging characteristics. The predominant difference being the increased number of patients (91 

versus 249) and that these were only required to have a pretreatment CE-CT for analysis. We found 

that CE-CT features appeared to be the most prognostic in section 4.1.1 Results for Project 1.1: 

Quantify the impact of adding CT-based quantitative image features to outcome models containing 

only CPFs including and excluding GTV. Therefore, this cohort was assembled to test if a model 

could be developed using only CE-CT derived features and test whether using QIFs from CE-CT 

improved outcome models compared to models using only CPFs.  
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Table 2. Cohort 2 - Patient CPFs and Treatment Characteristics 

Conventional Prognostic 

Factors 
N % 

Treatment 

Characteristics 
N % 

No. Patients 249 NA Fractionation   

Median Age (years) 66 NA 1.8- 2.0 Gy/fx 227 91 

Mean GTV (cc) 156 NA Other 22 9 

Gender   Radiation Type   

Male 138 55 3DCRT 9 4 

Female 11 44 IMRT 187 75 

T Stage   Protons 53 21 

T1/T2 145 58 Chemotherapy Sequence   

T3/T4 104 42 Concurrent 105 42 

N Stage   Induction-Concurrent 60 24 

N0/N1 24 10 Concurrent-Adjuvant 69 28 

N2/N3 225 90 Other 8 3 

Overall Stage   None 7 3 

IIIa 131 53 Concurrent Type   

IIIb 118 47 Platin Doublet 212 85 

Histology   Platin Doublet + Erlotinib 13 5 

Squamous Cell Carcinoma 104 42 Single Agent Platin 11 4 

Other 145 58    

Smoking Status      

Never 16 6    

Former 182 74    

Current 51 20    

Pack Years      

0-24 44 18    

25-49 88 35    

50-74 63 25    

75+ 54 22    

Performance Status 

(KPS) 
     

100-90 73 29    

80-70 171 69    

<70 5 2    

Abbreviations: No. = Number; cc = cubic centimeters; GTV = gross tumor volume; KPS = Karnofsky performance status; 

Gy = gray; fx = fraction; 3DCRT = 3 dimensional conformal radiation therapy; IMRT = intensity modulated radiation 

therapy 
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Cohort 3: 195 Patients with Pretreatment PET  

 We retrospectively reviewed the medical records of patients with stage III NSCLC treated 

definitively with external beam radiation therapy between January 2008 and January 2013.  These 

dates were chosen for two reasons: 1) to ensure patients’ PET scans were acquired and reconstructed 

in 3D, which MD Anderson Cancer Center implemented in 2008, and 2) to ensure patients had a 

minimum potential follow-up of one year at the time of analysis.  We excluded patients that were <5 

years post-treatment for another solid tumor, had multiple primary lesions, or had primary lesions 

<5mL as measured on their PET scan.  This yielded 195 patients for analysis.  The median follow-up 

for all patients living at the time of analysis was 37 months (range, 3-70 months).  Three patients 

were lost to follow-up prior to one year. CPFs and treatment characteristics of all patients are listed in 

Table 3.   

All patients received a PET/CT scan prior to initiation of treatment.  Scans were taken using 

either a GE Discovery RX or STE scanner at MD Anderson Cancer Center. Patients with PET scans 

taken at any outside institutions were excluded.  All images were reconstructed using 3D-ordered 

subset expectation maximization using 2 iterations, 20-21 subsets, and a 6mm post-processing 

Gaussian blurring filter.  All images were comprised of 128 x 128 pixels with voxel dimensions of 

5.47 x 5.47 x 3.27 mm.  Patients fasted for at least 6 hours prior to administration of an average 

injected dose of 381 Mbq (range, 255 – 540).  The average duration from injection to scan was 78 

minutes (range, 50 – 124).  A low-dose non-contrasted CT was acquired for attenuation correction 

using 120 kVp, automated mA modulation, 1.35 pitch, and 3.75 mm slice thickness. 

The aim of this cohort was similar to cohorts 1 and 2. We wanted to test the improvement of 

using QIFs from FDG-PET in outcome models compared to models using only CPFs.  
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Table 3. Cohort 3 - Patient CPFs and Treatment Characteristics 

Conventional Prognostic 

Factors 
N % 

Treatment 

Characteristics 
N % 

No. Patients 195 NA Fractionation   

Median Age (years) 66 NA 1.8- 2 Gy/fx 160 82 

Mean GTV (cc) 183 NA Other 35 18 

Gender   Radiation Type   

Male 125 64 3DCRT 1 <1 

Female 70 36 IMRT 126 66 

T Stage   Protons 64 33 

T1/T2 97 50 Chemotherapy Sequence   

T3/T4 98 50 Concurrent 80 41 

N Stage   Induction-Concurrent 56 29 

N0/N1 31 16 Concurrent-Adjuvant 46 23 

N2/N3 164 84 Other 11 6 

Overall Stage   None 2 1 

IIIa 107 55 Concurrent Type   

IIIb 88 45 Platin Doublet 176 90 

Histology   Platin Doublet + Erlotinib 13 7 

Squamous Cell Carcinoma 89 46 Single Agent Platin 6 3 

Other 106 54    

Smoking Status      

Never 19 10    

Former 130 66    

Current 46 24    

Pack Years      

0-24 47 24    

25-49 55 28    

50-74 49 25    

75+ 44 23    

Performance Status 

(KPS) 
     

100-90 58 30    

80-70 131 67    

<70 6 3    

Abbreviations: No. = Number; cc = cubic centimeters; GTV = gross tumor volume; KPS = Karnofsky performance status; 

Gy = gray; fx = fraction; 3DCRT = 3 dimensional conformal radiation therapy; IMRT = intensity modulated radiation 

therapy 

 

This table has been reused with the permission of the original publisher from the following publication:  Fried DV, Mawlawi 

O, Zhang L, Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of FDG 

PET quantitative image features combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. 

Published online July 15, 2015. ©Radiological Society of North America. 
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Cohort 4: 78 Patients with Pretreatment PET and Contrast-Enhanced CT 

This cohort contained the 78 patients that were included in both Cohorts 2 and 3.  The 

parameters regarding the patient’s scans are thus the same as described in Cohorts 2 and 3.  The 

primary function of this cohort was to compare features extracted from CECT versus PET/CT as well 

as assess auto-segmentation concordance in terms of necrosis volume.  

Cohort 5: 24 Patients with “Large” Tumors on PET 

 This cohort contained 24 patients from Cohort 3 who had primary tumors ranging in size 

between 77 and 309 cc as measured on FDG-PET. The primary tumors of these patients were 

resampled within MIM version 6.2 (MIM Software Inc., Cleveland, OH) using trilinear interpolation. 

After each resampling, the PETedge tool was used to recontour the primary. This was done in an 

effort to determine how robust features were to changing the size of the region of interest (ROI). 

Some findings have indicated that the ROI volume can influence the obtained quantitative values due 

to the nature of some of the feature calculations.(Xenia Fave, unpublished). This approach was 

primarily used to determine how reproducible the mathematical formulas of the underlying features 

were to changes in volume. In addition, we used these resampled tumors in order to determine an 

approximate threshold where QIF reproducibility breaks down in our patients. The aim was to 

establish a cut-off for tumor volumes that are too small to be adequately assessed using our metrics.   

Cohort 6: 53 Patients with “Pseudo” Test/Retest PET  

This cohort contained 53 patients with NSCLC who received a PET/CT at an outside 

institution followed by a PET/CT at MD Anderson Cancer Center. No treatment was delivered to 

these patients between the two scans. There were no requirements regarding treatment, stage, etc., as 

was the case in other cohorts. The average time between scans was 48 days (range: 8 – 111). The 

purpose of this cohort was to analyze the reproducibility of PET-based QIFs by calculating the 

concordance correlation coefficient (CCC) (see 3.7.6 Concordance Correlation Coefficient).  
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3.3 Quantitative Image Features 

3.3.1 Histogram Features 

Histogram features used a first-order histogram that represents a particular region of interest 

by tabulating the number of pixels within a particular value. For QIFs requiring a histogram (standard 

deviation, uniformity, entropy), i.e., CT scans in Hounsfield units (HU), the images are first 

transformed into 8-bit images across the entire hypothetical CT range resulting in 16 HU bins (4096 

HU values/28 = 16 HU bins).  This transformation was done in order to de-noise the image and supply 

a more appropriate bin size for histogram calculations (i.e., not 1 HU per bin). From a histogram, 

metrics, such as the mean, median, variance, entropy, skewness, kurtosis, and uniformity, can be 

calculated. The mean, median, and variance of a distribution are commonplace in 

mathematics/statistics; however, the concepts of entropy, skewness, kurtosis, and uniformity are often 

times less well-known.  Entropy is generally thought of as the associated “randomness.”  We define 

entropy below in equation 1.  

ENTROPY = − ∑ (
𝐻

𝑛
) ∗  log2 (

𝐻

𝑛
) 

𝑯 = ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚, 𝒏 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 

Skewness is a measure of the asymmetry of the histogram where a positive value is when the 

distribution is skewed towards lower values and negative value is when a distribution is skewed 

towards higher values.  We define skewness below in equation 2.  

 SKEWNESS =
𝐸(𝑥 − 𝜇)3

𝜎3
        

𝐸 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑥 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚, 𝜇 = 𝑚𝑒𝑎𝑛, 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

Kurtosis is a measure of the “peakedness” of the histogram where a positive value is when 

the distribution peaks more than the normal distribution and a negative value is when a distribution 

peaks less than the normal distribution.  We define kurtosis below in equation 3.  

KURTOSIS =
𝐸(𝑥 − 𝜇)4

𝜎4
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𝐸 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑥 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚, 𝜇 = 𝑚𝑒𝑎𝑛, 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

Uniformity (or Energy as it is referred to in some publications) is a measure of how much 

variation of values is present in the histogram.  A value of 1 means there is only one value within the 

ROI and the smaller the uniformity the more variation in the values within the ROI. We define 

uniformity below in equation 4.  

 UNIFORMITY = ∑ (
𝐻

𝑛
)

2

        

𝑯 = ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚, 𝒏 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 

The bin width used for histograms was different between CT and PET images.  For CT, the 

features requiring a histogram (entropy and uniformity) used a bin width of 16 HU. For PET, the 

features requiring a histogram used a bin width of 1 SUV (i.e. entropy and uniformity).  The 

remaining PET histogram features used the native floating point SUV values from the ROI (i.e. mean, 

maximum, peak, standard deviation, coefficient of variation).  

 

3.3.2 Co-Occurrence Matrix Features 

Co-occurrence matrix (COM) features were first proposed by Haralick et al. in 1973.9  These 

features expand upon information contained in histograms by also containing information regarding 

the spatial relationships between voxels.  Traditionally, COM features are calculated by generating a 

matrix relating voxel displacement and directions. In this work, a voxel displacement of 1 was always 

used along with averaging across the unique directions (13 in 3D; 4 in 2D).  This allowed the features 

calculated to be non-directional in nature.  Once the average is performed, the COM is normalized by 

the total number of voxels to express the matrix in terms of probabilities rather than raw counts. 

Averaging across the 13 unique 3D directions was used in the analysis of Cohort 1.  Subsequent 

analyses averaged across the 4-unique 2D directions.  This transition was made in order to address the 

concern of non-isocentric displacements that arise when voxel x-y dimensions are not equivalent to 

the slice spacing within an image.    
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ROIs from CT and PET images were normalized prior to COM matrix feature calculation.  In 

CT, the values within the ROI were scaled to 8 bits (256 values) over the standard digital CT 

representation range (4096 values) in the same manner as previously described.  This effectively 

rounded the values within the ROI to the nearest 16 HU.  In PET, images were first scaled to the 

number of gray levels between the minimum and maximum of the tumor SUV using the minimum 

and maximum as the gray level limits.  This effectively rounded the SUV values within the contour to 

the nearest whole number and subtracted the minimum SUV.  For example, a lesion with a minimum 

SUV of 3.2 and a maximum of 17.8 would be first scaled to be comprised of values ranging from 3 to 

18 and then the minimum value (3) subtracted resulting in values from 0 – 15. This allowed for the 

analyses to have a finite number of gray levels and ensure that the new scaled values had a consistent 

relationship to the underlying SUV values (i.e., a difference of one between scaled values represented 

an SUV change of one). This methodology was recommended by Leijenaar et al. as this methodology 

allows for a more meaningful comparison of texture values between images.38 By subtracting the 

minimum SUV value, the COM features were calculated using variability in uptake regardless of 

underlying amplitude.  Other metrics, such as SUVmax and SUVmean, were used to quantify 

amplitude of uptake.  

Numerous COM features exist within the literature.  A variety of these features were 

investigated during the course of multiple projects; however, the four features that were consistently 

used in all analyses are explained below.  COM(i,j) corresponds to the COM for an arbitrary 

displacement and direction.  

COM contrast quantifies the amount of discrepancy in values seen within the ROI. COM 

contrast increases when there are voxels within a displacement region that differ greatly in terms of 

their value (this is expressed in the |i-j|2 term below). 

𝑪𝑶𝑵𝑻𝑹𝑨𝑺𝑻 =  ∑ ∑|𝑖 − 𝑗|2

𝑁

𝑗=1

𝑁

𝑖=1

𝐶𝑂𝑀(𝑖, 𝑗) 

𝑵 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 
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COM correlation quantifies the joint probability occurrence of the specified pixel pairs (i.e., 

the dependency of values on those of the neighboring pixels). 

𝑪𝑶𝑹𝑹𝑬𝑳𝑨𝑻𝑰𝑶𝑵 = ∑ 𝐶𝑂𝑀(𝑖, 𝑗) [
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

𝜎𝑖2𝜎𝑗2 ]

𝑁−1

𝑖,𝑗=0

 

𝝁𝒊 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐶𝑂𝑀 𝑟𝑜𝑤𝑠, 𝝁𝒋 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐶𝑂𝑀 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

𝝈𝒊 = variance of COM rows, 𝝈𝒋 = variance of COM columns 

 

COM energy quantifies the variation in values seen within the ROI and is very similar to 

histogram uniformity. The main difference is that COM energy is based on values within the 

specified displacement (1 in this work) whereas in histogram uniformity, location of voxels plays no 

role. If the probability of finding adjacent voxels with different values is high, the COM energy will 

decrease, and if the probability of finding adjacent voxels with similar values or patterns of values is 

low, the COM energy will be closer to 1.  A uniform image has a COM energy value of 1.   

𝑬𝑵𝑬𝑹𝑮𝒀 = ∑ ∑ 𝐶𝑂𝑀(𝑖, 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

 

𝑵 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 

COM homogeneity quantifies how consistent values are within the ROI. This can also be 

seen as the opposite of contrast only with a linear relationship between value differences rather than 

an exponential one.   

𝑯𝑶𝑴𝑶𝑮𝑬𝑵𝑬𝑰𝑻𝒀 =  ∑ ∑
𝐶𝑂𝑀(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁

𝑗=1

𝑁

𝑖=1

 

 Additional COM features were only assessed in section 4.1 Results of Specific Aim 1. The 

formulas for these features are shown below.  

𝑺𝑼𝑴 𝑶𝑭 𝑺𝑸𝑼𝑨𝑹𝑬𝑺: 𝑽𝑨𝑹𝑰𝑨𝑵𝑪𝑬 =  ∑ ∑(𝑖 − 𝜇)2

𝑁

𝑗=1

𝑁

𝑖=1

𝐶𝑂𝑀(𝑖, 𝑗) 

𝜇 = 𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 
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𝑰𝑵𝑽𝑬𝑹𝑺𝑬 𝑫𝑰𝑭𝑭𝑬𝑹𝑬𝑵𝑪𝑬 𝑴𝑶𝑴𝑬𝑵𝑻 =  ∑ ∑
1

1 + (𝑖 − 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

 𝐶𝑂𝑀(𝑖, 𝑗) 

𝑺𝑼𝑴 𝑨𝑽𝑬𝑹𝑨𝑮𝑬 =  ∑ 𝑖𝑝𝑥+𝑦(𝑖)

𝑁

𝑖=2

𝐶𝑂𝑀(𝑖, 𝑗) 

𝑝𝑥+𝑦(𝑖) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑟𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑠𝑢𝑚𝑖𝑛𝑔 𝑡𝑜 𝑥 + 𝑦 

𝑺𝑼𝑴 𝑽𝑨𝑹𝑰𝑨𝑵𝑪𝑬 =  ∑(𝑖 − 𝑆𝑈𝑀 𝐸𝑁𝑇𝑅𝑂𝑃𝑌)2𝑝𝑥+𝑦(𝑖)

𝑁

𝑖=2

 

𝑺𝑼𝑴 𝑬𝑵𝑻𝑹𝑶𝑷𝒀 =  − ∑ 𝑝𝑥+𝑦(𝑖)

𝑁

𝑖=2

𝐿𝑂𝐺{𝑝𝑥+𝑦(𝑖)} 

𝑬𝑵𝑻𝑹𝑶𝑷𝒀 = −  ∑ ∑ 𝐶𝑂𝑀(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝐿𝑂𝐺{𝐶𝑂𝑀(𝑖, 𝑗)} 

𝑫𝑰𝑭𝑭𝑬𝑹𝑬𝑵𝑪𝑬 𝑬𝑵𝑻𝑹𝑶𝑷𝒀 =  − ∑ 𝑝𝑥−𝑦(𝑖)𝐿𝑂𝐺{

𝑁−1

𝑖=0

𝑝𝑥−𝑦(𝑖)} 

𝑝𝑥−𝑦(𝑖) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑟𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑠𝑢𝑚𝑖𝑛𝑔 𝑡𝑜 𝑥 − 𝑦 

𝑰𝑵𝑭𝑶𝑹𝑴𝑨𝑻𝑰𝑶𝑵 𝑴𝑬𝑨𝑺𝑼𝑹𝑬 𝑶𝑭 𝑪𝑶𝑹𝑹𝑬𝑳𝑨𝑻𝑰𝑶𝑵 𝟏 =  
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑀𝐴𝑋(𝐻𝑋, 𝐻𝑌)
 

𝐻𝑋𝑌 = 𝐸𝑁𝑇𝑅𝑂𝑃𝑌; 𝐻𝑋 𝑎𝑛𝑑 𝐻𝑌 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑖𝑒𝑠 𝑜𝑓 𝑝𝑥 𝑎𝑛𝑑 𝑝𝑦 

𝐻𝑋𝑌1 =  −  ∑ ∑ 𝐶𝑂𝑀(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝐿𝑂𝐺{𝑝𝑥(𝑖)𝑝𝑦(𝑗)} 

𝐻𝑋𝑌2 =  −  ∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝐿𝑂𝐺{𝑝𝑥(𝑖)𝑝𝑦(𝑗)} 

𝑰𝑵𝑭𝑶𝑹𝑴𝑨𝑻𝑰𝑶𝑵 𝑴𝑬𝑨𝑺𝑼𝑹𝑬 𝑶𝑭 𝑪𝑶𝑹𝑹𝑬𝑳𝑨𝑻𝑰𝑶𝑵 𝟐 = 1 − 𝑒√−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 
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3.3.3 Nearest Gray Tone Difference Features 

Nearest gray tone difference features were introduced by Amadasum and King.11  Their aim 

was to design texture features corresponding to visual properties due to their wide applicability and 

promise in feature selection. We calculated these features after converting CT scans into 8-bit images 

in the same manner as described above in section 3.3.2 Co-Occurrence Matrix Features. These 

features are calculated by first constructing a 1-D matrix (NGTDM) where “the ith entry is a 

summation of the differences between the gray level of all pixels with gray level I, and the average 

gray level of their surrounding neighbors.” Four features were extracted from this matrix: coarseness, 

contrast, busyness, and complexity using a neighborhood distance of 1 in all three dimensions.  

 Coarseness measures the size of the primitive (basic pattern) making up the texture. For 

instance, an image of static would have a small coarseness value; however, a checkerboard with large 

square sizes would have a large coarseness value.   

𝐶𝑂𝐴𝑅𝑆𝐸𝑁𝐸𝑆𝑆 = [𝜖 + ∑ 𝑝𝑖𝑠(𝑖)

𝐺ℎ

𝑖=0

]

−1

 

 𝒑𝒊 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 (𝑖), 𝒔(𝒊) =  𝑖𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑁𝐺𝑇𝐷𝑀,   
𝝐 = 1𝐸 − 6, 𝑮𝒉 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 

 

Contrast is a measure of visible of different intensity levels within the ROI.  For instance, an 

image of black and white stripes has adjacent regions of high and low values and thus has very high 

contrast.   

𝐶𝑂𝑁𝑇𝑅𝐴𝑆𝑇 = [
1

𝑁𝑔(𝑁𝑔 − 1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 − 𝑗)2

𝐺ℎ

𝑖=0

𝐺ℎ

𝑗=0

] [
1

𝑁𝑔2
∑ 𝑠(𝑖)

𝐺ℎ

𝑖=0

] 

𝒑𝒊/𝒋 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 (𝑖/𝑗), 𝒔(𝒊) =  𝑖𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑁𝐺𝑇𝐷𝑀,   

 𝑵𝒈 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒𝑠, 𝑮𝒉 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 
 

Busyness measures the amount of rapid changes of intensity from pixel to its neighbor (i.e., 

the spatial frequency of intensity changes).   

𝐵𝑈𝑆𝑌𝑁𝐸𝑆𝑆 =
[∑ 𝑝𝑖𝑠(𝑖)𝐺ℎ

𝑖=0 ]
∑ ∑ 𝑖𝑝𝑖 − 𝑗𝑝𝑗

𝐺ℎ
𝑖=0

𝐺ℎ
𝑗=0

⁄  
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𝒑𝒊/𝒋 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 (𝑖/𝑗), 𝒔(𝒊) =  𝑖𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑁𝐺𝑇𝐷𝑀,  

𝑮𝒉 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 

 

Complexity measures the information content within an ROI.  ROIs with many primitives 

with varying average intensities are viewed to have high content and thus high complexity. 

∑ ∑ [
|𝑖 − 𝑗|

𝑛2(𝑝𝑖 + 𝑝𝑗)
]

𝐺ℎ

𝑗=0

𝐺ℎ

𝑖=0

[𝑝𝑖𝑠(𝑖) + 𝑝𝑗𝑠(𝑗)] 

 

𝒑𝒊/𝒋 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 (𝑖/𝑗), 𝒔(𝒊) =  𝑖𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑁𝐺𝑇𝐷𝑀,  

𝑮𝒉 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑔𝑟𝑎𝑦 − 𝑡𝑜𝑛𝑒 
 

3.3.4 Laplacian of Gaussian Filtration Features 

Laplacian of Gaussian filtration (LOG) features rely on the Laplacian of Gaussian filter, 

which is commonly used for edge and/or blob detection. An LOG filter first convolves a given image 

with a Gaussian kernel with a specified scale (σ) and then the result is computed with a Laplacian 

operator. The scales examined were 1, 1.5, 1.8, 2.0 and 2.5. These scales along with a filter size of 

11-voxels were chosen as they have been used extensively in publications by Ganeshan et al.10, 14, 15, 19 

Since the voxels within our images were approximately 1mm in the x-y dimension, edges/objects 

larger than approximately 4mm (σ = 1) to 12mm (σ = 2.5) were not blurred out by the Gaussian 

portion of the LOG filter. This allowed the selection of a particular scale by which to blur out 

potential image noise and selectively focus on areas of interest of differing sizes (e.g. regions of 

heterogeneity between 4 and 12mm). A filter size of 11-voxels was used as this was found to be 

sufficient to include the entirety of the filter at the various scales yet an increase in this size did not 

drastically alter the quantified feature values. Modifications to a pure LOG filtering process need to 

be made when applying this filter to a ROI and not an entire image.  The steps used in our work are 

described below: 
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1. A threshold is applied to the original ROI to exclude values below -50HU (i.e., air). These 

values are replaced with the value 5000 (or arbitrary “high” number in relation to the HU 

values within the image). This is done to remove edge effects later in the calculation.   

2. The LOG kernel is applied to each 2D slice with the designated σ with a size of 11x11. 

3. The result is converted into an unsigned integer so that all negative values are converted to 

zeros. The replacement of values with 5000 in Step 1 is performed so that influences of the 

edge of the ROI are negative values and are thus removed.   

Once these steps are performed, the resulting filtered image is used to calculate the average, 

standard deviation, entropy, and uniformity of the results. An example of the result can be seen in 

Figure 1. It can be seen that the filtered image highlights the edges seen within the original image but 

does not take into consideration the edge of the air cavity within the center of the tumor.  It can also 

be seen that the “tissue” in the superior portion of the tumor has a larger number and more intense 

edges than the necrotic fluid present under the air cavity. The edges seen within the necrotic fluid are 

most likely due to noise from the reconstruction while the more intense edges in the tumor tissue are 

most likely due to vessel and tissue contrast enhancement.  

 

Figure 1. Laplacian of Gaussian Example. Original Tumor (left) and Results of LOG 

Filtration (right) (σ = 1) 
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3.3.5 Contrast Enhanced CT Auto-segmentation of Morphologic Characteristics 

We developed an auto-segmentation algorithm to separate tumors into air, necrosis, tissue, 

and enhancing vessels components (see Figure 2). Physician-delineated gross tumor volumes (GTV) 

were drawn from patients’ treatment CTs (non-contrasted). The GTV contour was transferred to the 

diagnostic CE-CT after deformable registration of the two images. The cutoffs used within the auto-

segmentation algorithms were defined by taking manually drawn regions of interest from 10+ 

patients. Tumor tissue, enhancing vessels, and necrosis were delineated and used to determine 

histograms for each tissue type. Values that maximally separated the histograms from each tissue type 

were used as cutoffs. The auto-segmentation allows for the calculation of the volume of each category 

along with the percentage each category represents of a particular tumor.  The algorithm follows the 

series of steps described below: 

1. Air outside the tumor is removed via thresholding below the value of -50 HU. 

Any portions that are removed but are surrounded by non-excluded voxels are filled with the 

value of 0 HU. The voxels are filled to minimize the impact of air in the following step 

(blurring).  

2. The resulting region of interest (ROI) is blurred with a Gaussian kernel of size 5x5 pixels and 

a sigma of 1.5. The blurring leads to more accurate thresholding segmentation that is less 

influenced by image noise.  

3. An initial guess of what regions constitute necrosis is made by finding voxels with values 

between -25 HU and 20 HU. Values surrounded by voxels deemed to be part of the initial 

necrosis guess are also deemed part of the initial necrosis guess. 

(Steps 4-9 deal exclusively with identifying necrosis). 

4. The initial necrosis guess is then eroded two pixels and dilated two pixels. The purpose of 

this is to remove small regions. 
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5. If a necrotic guess does not exist, then the tumor is deemed to have no voxels that constitute 

necrosis, and the algorithm proceeds to Step 10. If a necrotic guess does exist, the algorithm 

continues to Step 6. 

6. The largest 3D continuous region of the initial necrosis guess is identified and the centroid 

found. 

7. From this centroid, a 3D region growing algorithm is performed using an inclusion criterion 

of being within ±35HU of the initial centroid seed point. 

8. Post region growing, 2D regions containing less than 50 pixels are removed. This is done to 

avoid small regions of necrosis that are not usually observed (i.e., a vast majority of necrotic 

regions are quite sizable). 

9. The resulting voxels are deemed “necrosis.” 

10. Regions having values less than -50Hu are deemed “air.” 

11. Voxels with values greater than 120HU are the initial enhancing vessel guess. Regions that 

are less than 3 voxels are removed and the result is deemed “enhancing vessels”. 

12. Voxels with values between 20 HU and 120 HU are the initial tissue guess.  Regions smaller 

than 20 voxels are removed from the guess. 

13. Regions belonging to air, necrosis, or enhancing vessels are removed from the tissue guess. 

14. The results are deemed “tissue.” Unlabeled regions can exist; however, these regions are 

usually located at a tumor/air border and have a very small volume.  
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Figure 2. CE-CT Results of Auto-segmentation of Air (gray), Necrosis (red), Tissue (green), 

and Vessels (blue) 
 

This auto-segmentation allows for the calculation of the volume of each category along with 

the percentage each category represents of a particular tumor.   

 

3.3.6 PET Necrosis Auto-segmentation 

The PET necrosis auto-segmentation algorithm first must have an ROI that encompasses the 

tumor. These contours were first made using the PETedge tool in MIMvista as described in previous 

work.39  The algorithm then follows the series of steps below: 

1. Voxels within 5 voxels of the edge vertically or horizontally or 3 voxels diagonally are 

deemed not eligible to be labeled as necrosis. 

2. If no voxels are eligible or the max SUV within the eligible voxels is less than 8, the tumor is 

designated to not have any necrosis.  Otherwise, proceed to Step 3. The value of 8 was used 

as it was observed during algorithm development that necrotic regions rarely had SUV values 

higher than 8. 

3. A k-means clustering is performed with the number of means equal to one-fifth the range of 

the eligible voxels plus one.  The lowest k-means centroid from this process is used as the 
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threshold for necrosis unless this value is greater than an SUV of 5.  If the threshold from the 

k-means process is greater than 5, then 5 is used as the guess.  The purpose of this is to adjust 

the level of the threshold based on the range of the SUV values within the tumor. Tumors 

with lower overall SUV values tend to also have lower SUV within necrotic regions.  This 

adaptive step helps to facilitate picking a representative cutoff.  

4. The voxels that are eligible and greater than the threshold cutoff are deemed not necrosis 

while the remaining values are still eligible. 

5. The voxels still eligible to be deemed necrotic are then eroded using the same process as 

described in Step 1.  

6. Remaining eligible voxels are removed if they are not at least connected to two other voxels 

(i.e., the minimum size criteria for a necrotic region is 3 voxels). 

7. Voxels that remain eligible after these steps are deemed necrotic. 

 

An example of the result of this process is shown below in Figure 3. 

 

Figure 3. PET Results of Auto-segmentation of Necrosis (blue) 
 

This auto-segmentation allows for the calculation of the volume of necrosis and the 

percentage of the tumor that is necrotic. The segmentation of necrosis is simpler on FDG-PET than on 
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CE-CT due to its functional nature and higher contrast between necrotic and non-necrotic tissue. The 

volume of necrosis and the percentage of the tumor that is necrotic were compared between 

autosegmentation methods as a measure of robustness of the CE-CT segmentation.   

3.4 Region of Interest Contouring on CT 

Tumor texture analysis on CT scans was conducted using the primary gross tumor volume (GTV) 

contour delineated by each patient’s treating physician.  The nodal tumor volumes were excluded 

from texture analysis.  In some cases, further contour modification was performed.  The reason for 

further modification is due to the goal of analyzing tissue with an extremely high likelihood of 

representing tumor, whereas clinically physicians routinely include any and all tissue with a 

reasonable likelihood of representing tumor.  Therefore, overly generous portions of the contour, 

such as invasion into bone and other normal tissue structures such as the aorta, were modified.  

Contours were extracted and analyzed directly from the treatment planning system using in-house 

software (IBEX) developed by Luke Hunter and Dr. Lifei Zhang built using a commercial software 

package (Matlab version 8.1.0. Natick, Massachusetts: The MathWorks Inc., 2013).40, 41  For the 

AVG-CT and T50-CT, a lower and upper threshold of -100 to 200 HU was implemented to exclude 

lung tissue, air, and/or bone in order to determine our final ROI.  A lower threshold of -100 HU was 

used for the contrast enhanced images in Cohort 1 and -50 HU threshold in subsequent cohorts. In 

CE-CT images, no upper threshold was used.  Only voxels within the defined threshold bounds were 

included in the texture analysis. 

3.5 Region of Interest Contouring on PET 

Patient’s primary and nodal tumor volumes were delineated using the PETedge feature from 

MIM version 6.2 (MIM Software Inc., Cleveland, OH). This method was chosen as it was found to be 

the most accurate and consistent technique for target volume contouring for lung cancer lesions on 

FDG-PET in an extensive review by Werner-Wasik et al.42 This study found that PETedge was the 

most accurate for both segmenting spheres at multiple source-to-background ratios and multiple sizes. 

Spheres of a known volume that were > 20mm and < 20mm in diameter were found to have lower 
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mean absolute percent error (10.99% error) using PET edge compared to thresholding (17.5% error) 

(25% to 50% at 5% increments of SUVmax) and manual segmentation (19.5% error). It was also 

observed that PETedge had the least systematic bias (-0.05% error) among the segmentation methods 

tested. PETedge works, in principal, by first placing the cursor towards the center of the lesion of 

interest. Upon clicking, four “spokes” emanate from the central point in orthogonal directions and 

dragging the cursor extends them until they reach what the user identifies as a reasonable edge of the 

tumor. The software then uses the gradient of the SUV values to determine where the maximum 

descent is located and contours accordingly. This algorithm is purely quantitative and is therefore not 

influenced by the user’s preference of window/level, which can generate significant variation in the 

apparent size of the lesion. For heterogeneous and/or necrotic tumors, this sequence sometimes had to 

be repeated more than once to adequately cover the entire tumor. The PETedge algorithm is semi-

automated and thus is capable of higher throughput than manual contouring. When contouring the 

primary and nodal volumes on the FDG-PET, the radiation treatment plan and the diagnostic 

radiology notes were consulted to determine location of primary and nodal disease. Once the contours 

were finished, they were exported along with the FDG-PET image into IBEX. 

One issue that arose during this process was that the RT structure is stored as a series of 

spatial points based on a resolution higher than that of PET scans. IBEX is programmed to convert 

these line/point contours into binary masks for analysis. IBEX considers any voxel containing or 

within the contour as part of the binary mask. This was problematic for the voxels at the edge of the 

contour due to the relatively low-resolution of PET.  The issue initially observed was that voxels 

could be included in the binary mask when the majority of the voxel was not even within the contour.  

In order to remedy this, Dr. Lifei Zhang and I developed a resampling algorithm that determined the 

fraction of the edge PET voxels that were included in the delineated contour.  This was then used to 

determine how much of the voxel should be included in the contour in order to be analyzed (i.e., 

included in the binary mask). The results of this process can be seen in Figure 4. For this work, a 50% 

cutoff was used to determine which voxels would be analyzed (i.e., if a majority of the voxel was 



44 

 

inside the contour, it was analyzed). This algorithm helped ensure that unnecessary low SUV voxels 

from the tumor edge were not included in the analyses. 

 

 

Figure 4. (A) Original FDG-PET Contour/Image (B) Analyzed Voxels Using a 50% Cutoff 
 

3.6 Assessment of QIF Reproducibility using Phantom and Patient Data 

A National Electrical manufacturers Assocation (NEMA) International Electrotechnical 

Commision (IEC) PET phantom was used to assess the reproducibility of QIFs on 3 different 

scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT). Phantom preparation and 

initial scanning was performed by Dr. Osama Mawlawi and Joe Meier. Acquisitions were made using 

a source-to-background ratio of approximately 10:1. The phantom contains 6 spheres with inner 

diameters of 10, 13, 17, 22, 28 and 37mm suspended in the background of 18F-FDG water. The 

phantom was positioned at the center of the FOV of the PET scanner and data were acquired in 3D 

mode. Acquisitions lengths were varied in an effort to provide equal integrated disintegrations (i.e. 

count statistics). Initial acquisitions were made on three PET scanners (GE Discovery VCT, GE 

Discovery 710, and Siemens mCT) using standard clinical protocols by Dr. Osama Mawlawi and Joe 
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Meier. I then retrospectively reconstructed using different values of iteration, subsets, Gaussian filter 

width, and matrix size. Table 4 below illustrates the reconstructions acquired per scanner. These 

values were chosen as the seemed representative of what was performed clinically in a publication 

analyzing PET/CT scanner performance characterization.43  The differences in parameters between 

scanners (i.e., 21 versus 24 subsets) were due to differences in manufacturer options. Both the 710 

and mCT were reconstructed using time-of-flight whereas the VCT was not as it is not time-of-flight 

capable.  

Table 4. Parameters Used for  Phantom and Patient Retrospective Reconstructions  
GE Discovery VCT GE Discovery 710 Siemens mCT 

Iter SS FW Matrix Size Iter SS FW Matrix Size Iter SS FW Matrix Size 
2 21 2 128 2 24 2 128 2 21 2 128 
2 21 2 256 2 24 4 128 2 21 4 128 
2 21 4 128 2 24 6 128 2 21 6 128 
2 21 4 256 2 24 2 192 2 21 2 200 
2 21 6 128 2 24 4 192 2 21 4 200 
2 21 6 256 2 24 6 192 2 21 6 200 
3 21 2 128 2 24 2 256 2 21 2 256 
3 21 2 256 2 24 4 256 2 21 4 256 
3 21 4 128 2 24 6 256 2 21 6 256 
3 21 4 256 3 24 2 128 3 21 2 128 
3 21 6 128 3 24 4 128 3 21 4 128 
3 21 6 256 3 24 6 128 3 21 6 128 
    3 24 2 192 3 21 2 200 
    3 24 4 192 3 21 4 200 
    3 24 6 192 3 21 6 200 
    3 24 2 256 3 21 2 256 
    3 24 4 256 3 21 4 256 
    3 24 6 256 3 21 6 256 

       Iter = iterations, SS = subsets, FW = filter width 

The image slice going through the center of the spheres was used for analysis. Since the 

spheres were of different sizes, each sphere was impacted to a different degree by partial volume 

effects. Therefore, the SUV values within each of the spheres were not consistent. We exploited this 

observation and proceeded to use these spheres (all at 10:1 source to background) as a surrogate for 

assessing stability of heterogeneous values that are seen in patient tumors.  

We first analyzed all images for each scanner (VCT, 710, mCT) that used a fixed matrix size 

(e.g., 128, 192, 200, or 256). This led to image groupings of 6 images of consistent matrix sizes and 

therefore voxel sizes. These image groups were able to be assessed in a voxel-by-voxel manner since 

these images able to be perfectly overlaid on another. A “range image” could then be produced where 
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the image showed the size of the SUV range within a particular voxel across all six analyzed images 

that used various iterations, subsets, and filter widths within the reconstruction. For example, a 

particular voxel within one of the spheres had values of 1.1, 1.4, 0.9, 2.1, 1.7, and 1.0 in the 6 images 

obtained from a single scanner at a particular matrix size. That voxel in the range image would have a 

value of 1.2 (max value: 2.1 – minimum value: 0.9). An example of a range image is shown below in 

Figure 5. From these range images, we could calculate what percentage of voxels within the spheres 

had a maximum SUV less than 1.  This cutoff was chosen because in our analyses the bin size when 

calculating our QIFs was set to 1. Therefore, voxel changes <1 would not influence the resulting 

feature value more than what is observed by discretizing the image into integer bins from a floating 

point number (SUV) initially.  

 

Figure 5. Example Range Image of NEMA IEC Phantom 
 

Additionally, we calculated QIF values using values within the spheres. We used a threshold 

(SUV > 1.5) on the clinical protocol image (or image closest to what is performed clinically) in order 

to define the contour of the six spheres. This contour was used within each scanner as the input mask 

for calculating the QIFs. The purpose of this segmentation methodology was to ensure that the same 
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contour was being assessed across the different images in order to demonstrate that the changes in 

QIFs were due to the changes in values and not changes in contouring. QIF values were extracted 

from each of the three scanners using the various reconstruction parameters. The median, mean, and 

standard deviation seen within each scanner and across all scanners were calculated and compared to 

the values from the patient data in terms of their standard deviations (Table 13).   

A similar process was performed using patient scans. We identified 5 patients (with 6 

analyzed lesions) with NSCLC with primary tumors that were similar to those included in Cohort 3. 

In terms of volume, these 6 tumors reasonable spanned the range of volumes seen in Cohort 3 (16cc – 

275cc). These patient scans were reconstructed using the same parameters as the phantom scans and 

described in Table 4. However, the primary was re-contoured separately for each reconstruction 

whereas in the phantom analysis the same contour was used for the six spheres across all 

reconstructions for a given matrix size.  

 

3.7 Statistical Methods 

3.7.1 Use of Cross-Validation for Assessment of Prognostic Value 

All statistical analyses were conducted in R 3.0.2 with the following R packages: survival 

v(2.37-4), penalized (0.9-42), and survcomp v(1.10.0).  The CPFs and QIFs (features calculated for 

primary, nodal, and total disease were defined as separate features) extracted from each patient’s 

pretreatment CT or PET scan were entered into a penalized multivariate Cox proportional hazards 

model.  The Cox proportional hazards model is a survival model relating a unit increase in a covariate 

to the hazard rate (i.e., risk of event per unit time).  The hazard function for the proportional hazards 

model is shown below. 

ℎ(𝑡|𝑋) = ℎ(𝑡) exp(𝑋1𝛽1 + ⋯ + 𝑋𝑝𝛽𝑝) 

𝒉(𝒕) = 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 ℎ𝑎𝑧𝑎𝑟𝑑, 𝒉(𝒕|𝑿) = 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 ℎ𝑎𝑧𝑎𝑟𝑑 𝑎𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 

𝑿 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒, 𝜷 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝒑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 
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This penalized modeling framework simultaneously carries out covariate selection alongside 

model development. Covariate selection is performed as L1 penalization reduces non-informative 

covariate coefficients to zero. This selection allows the user to input “eligible” covariates with the 

algorithm returning only covariates seeming to have prognostic ability via cross-validation. The 

penalization is directed by the L1 penalty parameter, which balances model fit and model complexity.  

The penalty parameter is determined by maximizing the cross-validated likelihood. The R penalized 

package standardizes all covariates by their unit central L2-norm prior to penalization in order to 

minimize the influence of covariate’s scales.  The model coefficients are subsequently rescaled to 

reflect their original covariate’s magnitudes.  

In order to adjust for the bias associated with training and testing a model on the same 

internal dataset, we predominantly used methodologies suggested by Simon et al. to generate cross-

validated Kaplan-Meier curves.44  This methodology allows a reasonable estimate for out-of-sample 

performance of our models while only using an internal dataset.45  Cross-validated Kaplan-Meier 

curves are generated using model predictions for patients that are derived from models developed 

without the patient’s inclusion in model training.  When performing leave-one-out cross validation, a 

patient is left out of model development and a prediction for this patient is generating using the 

remaining cohort.  The patient who is left out is changed and this process repeated such that each 

observation in the sample has a prediction from when it was not involved in model 

development.  These predictions (we utilized the linear predictor generated during each fold of cross-

validation) are used to stratify patients into risk groups. The linear predictor is defined as the sum of 

each of the model coefficient times the corresponding covariate value of that specific patient.  

Therefore, the higher the linear predictor, the higher the predicted risk. We then used these 

predictions to generate risk groups based on a median cutoff in Cohort 1 due to the low number of 

patients or k-means clusters (see 3.7.5 K-Means Clustering of Predictions).  In addition, we also 

calculated the concordance index (c-index) at multiple time points (see 3.7.3 Concordance Index at 

Multiple Time Points).  
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The outcome of overall survival was of primary interest in the analyses followed by local-

regional control and freedom from distant metastases. The outcomes were measured as the time from 

the initiation of treatment until the corresponding event in months.  Treatment initiation was defined 

as the first cycle of chemotherapy for patients receiving induction chemotherapy or the first day of 

radiation treatment for patients receiving radiotherapy upfront.  Patients not experiencing an event 

were censored at the last known follow-up date.  The MD Anderson Cancer Center Institutional 

Review Board approved all retrospective chart review study and waived the need for informed 

consent. The study complied with all Health Insurance Portability and Accountability Act (HIPAA) 

regulations.  

To develop a model using covariates found to be predictive in cross-validation, QIFs that 

were included in greater than 50% of the folds were used along with the CPFs that were included in 

greater than 50% of folds in the preceding analysis. These nested models were compared using a 

likelihood ratio test to assess for impact of adding QIFs.     

3.7.2 Permutation Test and Impact of Feature Reproducibility on Predictions (Cohort 1) 

In Cohort 1, a permutation test was performed where the patient outcomes were randomly 

permuted with respect the QIFs and CPFs and the original analysis was re-run. This process was 

repeated 200 times in order to determine what proportion of randomly permuted data achieved a log-

rank score greater than our original models (i.e., the p-value). 

Test-retest scans were obtained from 10, 10, and 13 independent patients for the TAVG-CT, 

T50-CT, and CE-CT, respectively. The test-retest scans of the AVG-CT and T50-CT images were 

taken at MD Anderson Cancer Center and on average separated by 27 min (range: 16-47).  CE-CT 

test-retest images from patients within a close time period were not available; therefore, CE scans 

taken outside MD Anderson Cancer Center prior to treatment were obtained and compared to the 

diagnostic CE-CT taken within MD Anderson Cancer Center.  The average separation between these 

scans was 38 days (range: 17-72).  The contours for the test-retest scans were performed by a single 

observer (DF) on separate occasions for the test and retest scans in order to incorporate intra-observer 
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contour variability. The classification reproducibility of our models was calculated incorporating the 

reproducibility seen via the test-retest scans. This was performed by utilizing the mean and standard 

deviation of the differences between the extracted metrics from the test and re-test scans to generate a 

normal distribution.   

We added the values obtained by sampling this normal distribution with the associated mean 

and standard deviation of the differences for each feature to the original features. These values were 

then put through the same cross-validation process as the original feature values to determine how the 

reproducibility would influence the predictions and subsequent classification reproducibility.     

The classification reproducibility is defined as the percent of patients categorized into the 

same group as the original models when incorporating the test-retest variation into the texture 

parameters.  This was done for the models incorporating the QIFs and CPFs. The CPFs were assumed 

to be constant.  

3.7.3 Concordance Index at Multiple Time Points 

 The concordance index or c-index was originally introduced by Harrell et al.46  The purpose 

of this measure was to serve as an analog for area under the receiver operating characteristic curve in 

survival analysis. The c-index is computed by analyzing all eligible combinations of patient pairs 

within a cohort. In order to generate c-indices at multiple time points, restrictions were placed as to 

which patient pairs would be eligible to contribute to the c-index calculation. For example, the c-

index at 6 months only allowed patient pairs whose outcomes differed by at least 6 months.      

3.7.4 Analysis of Relationship between Quantitative Image Features, Conventional Features and 

Morphologic Characteristics 

We used the 249 patients in Cohort 2 for this analysis. When comparing QIFs to conventional 

features, such as staging and volume, the QIF values for conventional feature values above and below 

the median were assessed using a Wilcoxon rank-sum test. When comparing QIFs to morphologic 

characteristics, the 249 tumors were divided into two groups (tissue type present or absent based on 

auto-segmentation methods previously described) and compared by their quantitative feature values. 



51 

 

Significant differences between the presence/absence of a particular tissue type of tumors in terms of 

the resulting QIFs values were assessed using a Wilcoxon rank-sum test. 

 Additionally, QIF values from tumors containing a particular tissue type were compared to 

the QIF values from the same  tumors using contours that excluded one or all morphological 

characteristics  (e.g., excluding air and necrosis, excluding air and enhancing vessels, including only 

tissue [i.e., excluding air, necrosis, and enhancing vessels respectively], etc.). QIF values obtained 

from the ROIs that excluded a single or combination of tissues were plotted versus the QIF values 

obtained from the entire tumor ROI in Figure 21. In addition, the plots were stratified for vessels and 

necrosis according to whether the volume of vessels or necrosis was greater than the average across 

all tumors where these tissue types were present. Differences between the values obtained from the 

entire tumor versus the same tumors excluding the tissue type(s) were assessed using a paired 

Wilcoxon signed-rank test. Differences in values of LOG_Average and uniformity between tumors 

with higher than average volume of vessels/necrosis versus lower than average volume of 

vessels/necrosis were assessed using a Wilcoxon rank-sum test. The coefficient of determination (R2) 

was calculated from the linear regression for each of these plots.  

The reproducibility of the values obtained for volume and percentage of tumor containing 

necrosis between CE-CT and FDG-PET auto-segmentation methodologies was assessed using the 

concordance correlation coefficient (CCC).47 

3.7.5 K-Means Clustering of Predictions 

The process of using a cutoff based on optimizing the log-rank statistic, the median, or 

balancing patient numbers in each subgroup is quite common in many publications regarding 

prognostic scores or outcome prediction models. Optimization of the log-rank statistic is not a 

preferred method, since these results are almost always overly optimistic and can be problematic, 

particularly when the number of covariates being analyzed increases. Use of the median to separate 

patients into “high risk” and “low risk” is reasonable but not optimal. This process does not take into 

account the underlying distribution of predictions and frequently groups patients with similar 
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predictions into different risk groups.  Balancing patient numbers (i.e., generating groups with the 

same number of patients in each category) suffers from the same issue as using a median cutoff. We 

proposed implementing a k-means clustering on the generated predictions in order to generate more 

uniform cohorts. In linear regression models, a calibration curve is often shown, plotting the 

predictions versus the actual values. For survival analyses this is not possible since survival curves 

must be generated from multiple patients and the issue of censoring makes it so not every patient has 

a defined “actual value.” By generating uniform cohorts, the displayed Kaplan-Meier curves are a 

more reflective display of calibration of the model/predictions. In our analyses, we increased the 

number of k-means clusters so long as each risk group contained a significant number of patients.    

3.7.6 Concordance Correlation Coefficient 

The concordance correlation coefficient (CCC) measures reproducibility between two 

covariates. Others have used this metric (or the nearly identical intra-class correlation coefficient) to 

assess the reproducibility of texture features under different acquisition conditions. We used the CCC 

when analyzing the reproducibility when resampling in Cohorts 1 and 5 along with the “pseudo” 

test/retest scans from Cohort 6.  

3.7.7 Analysis of PET Tumor Resampling (Cohort 5) 

Primary tumors in Cohort 5 were resampled to different spatial resolutions using trilinear 

interpolation using MIM 6.2. The resulting images of the primary tumors were re-contoured using the 

PETedge feature after each interpolation and grouped into similarly sized cohorts based on the 

number of voxels present. Voxel groupings consisted of the following approximate voxel sizes: 27 

(range: 18-34), 55 (range: 43-73), 108 (range: 92-138), 226 (range: 171-322), and 488 (range: 369-

641). The features calculated from the resampled ROIs were compared to the features calculated from 

the ROIs at native resolution using the CCC. This was performed in an effort to identify if any 

mathematical biases existed due to the nature of the QIF calculations.   
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3.7.8 Sub-cohorts Based on FDG-PET QIFs to Determine Impact of Dose Escalation  

This analysis was performed on Cohort 3. Patients receiving 60-70 Gy (median: 66 Gy) were 

considered “low dose” while patient receiving 74 Gy were considered “high dose.” Different sub-

cohorts comprised of ranges of both solidity and COM energy were examined to determine if any 

sub-cohorts would demonstrate a survival difference between those receiving low and high doses. 

Sub-cohorts were created allowing different values of solidity and COM energy at five percentile 

thresholds. This was done in order to observe if there existed any pattern regarding the impact of dose 

escalation in regards to our QIFs. A log-rank test was used to determine significance of separation 

between low-dose and high-dose patient Kaplan-Meier curves.  We refer to the sub-cohort chosen 

from examining the trend of increasing COM energy and solidity values as the “high QIFs values 

sub-cohort” and the sub-cohort chosen from examining the trend of decreasing COM energy and 

solidity values as the “low QIFs values sub-cohort.”  The sub-cohort chosen in each analysis was 

done so by balancing the number of events and sample size with the p-value being representative of 

all significant cells.   
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Chapter 4 Results 

A substantial portion of the results is described in or based on following publications: 

Fried DV, Mawlawi O, Zhang L, et al. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative image features 

combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published online July 15, 2015. ©Radiological 

Society of North America. 

 

Fried DV, Tucker SL, Zhou S, et al. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell 

Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, Issue 4, 

Pages 834-842. 2014. ©Elsevier. 

 

The permissions for reuse of these materials were obtained from both the Radiological Society of North America and Elsevier B V.  

 

4.1 Results of Specific Aim 1: Analysis of CT-based Quantitative Image Features 

Specific Aim 1 examined CT-based quantitative image features for prognostic value, 

reproducibility, and value of each CT image type in cohort 1.  

4.1.1 Results for Project 1.1: Quantify the impact of adding CT-based quantitative image features to 

outcome models containing only CPFs including and excluding GTV 

Sixty-six QIFs were assessed in each fold of cross-validation.  These features are shown in  

 

 

 

 

 

 

 

 

Table 5.  The predictive Kaplan-Meier curves generated from the cross-validated predictions using 

CPFs excluding GTV, CPFs including GTV, and CPFs including GTV and QIFs are shown.  The p-

values in the lower left of each figure represent the p-value of the associated log-rank test. Figure 6, 

Figure 7, and Figure 8 illustrate the stratification in overall survival using the aforementioned 

covariate combination types.   
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Table 5. Extracted Quantitative Image Features for Cohort 1 

Intensity 

Histogram 

(IHIST)^ 

Absolute 

Gradient 

(Grad)- 

Nearest Gray Tone 

Difference Matrix 

(NGTDM)= 

Co-Occurrence 

Matrix (COM)+ 

Laplacian of 

Gaussian  

Filtration 

Metrics (LoG)* 

Mean 

Variance 

Skewness 

Kurtosis 

Entropy 

Uniformity 

Mean 

Variance 

Skewness 

Kurtosis 

% non-zero 

Coarseness 

Contrast 

Busyness 

Energy 

Contrast 

Correlation 

Sum of Squares 

Inv. Diff. Moment 

Sum Average 

Sum Variance 

Sum Entropy 

Entropy 

Diff. Entropy 

Infomc1 

Infomc2 

Mean 

Uniformity 

Standard 

Deviation 

Entropy 

 

^,- Histograms and gradient images were generated by first converting CT into 8-bit image (i.e. bins of 16 HU)  

=NGTDM were computed using a neighborhood = 1 on the converted 8-bit CT 
+COM were computed on the 8-bit CT. Features were averaged across all 3D directions. 

* Sigma values used for the Laplacian of Gaussian Filter of: 1.0, 1.5, 1.8, 2.0, and 2.5 for the largest axial (LA) 

slice and for the entire tumor with a filter size of 11 voxels.  
This table has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou S,Liao 
Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell 

Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, Issue 4, 

Pages 834-842. 2014. ©Elsevier. 
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Figure 6. Overall Survival Comparing High Risk versus Low Risk Patients Using Models 

Incorporating CPFs Excluding GTV. 
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 7. Overall Survival Comparing High Risk versus Low Risk Patients Using Models 

Incorporating CPFs Including GTV.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 
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Figure 8. Overall Survival Comparing High Risk versus Low Risk Patients Using Models 

Incorporating CPFs Including GTV and CT-Based QIFs.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 9, Figure 10, and Figure 11 illustrate the stratification in local-regional control. 

 

Figure 9. Local-Regional Control Comparing High Risk versus Low Risk Patients Using 

Models Incorporating CPFs Excluding GTV.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-
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Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 10. Local-Regional Control Comparing High Risk versus Low Risk Patients Using 

Models Incorporating CPFs Including GTV.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 11. Local-Regional Control Comparing High Risk versus Low Risk Patients Using 

Models Incorporating CPFs Including GTV And CT-Based QIFs.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 
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Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 12, Figure 13, and Figure 14 illustrate the stratification in freedom from distant metastses. 

 

Figure 12. Freedom from Distant Metastases Comparing High Risk versus Low Risk 

Patients Using Models Incorporating CPFs Excluding GTV.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 13. Freedom from Distant Metastases Comparing High Risk versus Low Risk 

Patients Using Models Incorporating CPFs Including GTV.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-
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Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

Figure 14. Freedom from Distant Metastases Comparing High Risk versus Low Risk 

Patients Using Models Incorporating CPFs Including GTV And CT-Based Qifs.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 

 

 Across all outcomes (overall survival, local-regional control, and freedom from distant 

metastases), stratification was improved by including CT-based QIFs to models using CPFs alone or 

CPFs including GTV. No stratification was significant prior to adding the CT-based QIFs according 

to the log rank test (p > 0.05) and stratifications across all outcomes were significant after including 

CT-based QIFs (p < 0.05).  

 Overall survival stratification was much less compared to other two outcomes that were 

assessed. The separation between high and low risk groups did not appear until after 36 months. At 

this time point, the patient numbers in the high and low risk groups were low (11 and 13, 

respectively). While statistically different, the amplitude of difference between risk groups was small. 

 For both local-regional control and freedom from distant metastases, separation between risk 

groups appeared almost immediately and was much higher in amplitude than what was observed for 
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overall survival. Since models for each outcome were generated independently (i.e. patients modeled 

as being low risk in terms of overall survival were not necessarily the same patients modeled as low 

risk in terms of local-regional control or freedom from distant metastases), one can only infer that the 

QIFs appeared more prognostic for disease failure (locally and distantly) than patient survival.  

  

 

 

 

 

 

 

 

 

 

 

Figure 15, Figure 16, and Figure 17 show the concordance indices for overall survival, local-

regional control, and freedom from distant metastases, respectively using the multiple time point 

methodology described in section 3.7.3 Concordance Index at Multiple Time Points. 
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Figure 15. Concordance Indices for Overall Survival Predictions Using Minimum Outcome 

Differences of 6, 12, 18, and 24 Months.  
 

 

Figure 16. Concordance Indices for Local-Regional Control Predictions Using Minimum 

Outcome Differences Of 6, 12, 18, And 24 Months.  
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Figure 17. Concordance Indices for Freedom from Distant Metastases Predictions Using 

Minimum Outcome Differences of 6, 12, 18, And 24 Months.  
 

For overall survival, local-regional control, and freedom from distant metastases predictions 

generated using CPFs including GTV and QIFs resulted in superior stratification of patients.  

Furthermore, c-indices at every time point were greater for predictions generated using CPFs 

including GTV and QIFs. The inclusion of GTV to the other CPFs resulted in improved c-indices in 

all outcomes but the inclusion of QIFs always resulted in additional improvement. Furthermore, it 

was observed that the c-indices increased with an increasing outcome separation between patients (i.e. 

for later time points). This inherently makes sense since one would hope a model would be able to 

predict patient outcomes more effectively when the outcomes are substantially different (e.g. patient 

survivals of 36 months versus 6 months) rather than close (e.g. patient survivals of 12 months versus 

11 months). Larger increases in c-indices for later time points were seen in models utilizing CT-based 

QIFs.   

Table 6 illustrates the models developed from the cross-validation methodology using CPFs 

including GTV and QIFs. 
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Table 6. Outcome Models for Covariate Combinations in Cohort 1 

Covariate 
OS Model 

 

LRC Model 

 

FFDM Model 

 

CPFs: Coefficient p-value Coefficient p-value Coefficient p-value 

Age  

(65> vs ≤65) 
0.37 0.19 NI - NI - 

ECOG  

(0/1 vs 2) 
0.49 0.1 NI - NI - 

Histology  

(SCC vs Other) 
0.31 0.31 NI - NI - 

Gender  

(Male vs Female) 
-0.2 0.46 NI - -1.34 <0.01 

GTV 0.005 <0.01 NI - 0.002 0.35 

QIFs:       

CE-CT       

LoG _Average 

(LA, σ=1) 
0.45 0.01   0.41 0.03 

LOG_Average 

(σ=1) 
NI - 0.59 <0.01 NI - 

IHIST_kurtosis -0.05 0.13 NI - -0.20 0.02 

NGTDM_busyness NI - NI - 108.7 0.21 

COM_infomc1 NI - NI -   

AVG-CT       

LoG_SD 

(σ=1) 
0.04 0.11 NI - 0.15 <0.01 

LoG_SD 

(LA, σ=1.5) 
NI - NI - 0.056 0.43 

LoG_Uniformity 

(LA, σ=2.5) 
1.56 0.04 NI - NI - 

T50-CT       

GRAD_kurtosis NI - NI - 0.202 <0.01 

LOG_Averageσ 

(LA, σ=1.5) 
-0.29 0.12 NI - NI - 

COM_sosvariance 0.003 0.03 NI - NI - 

LoG_Uniformity 

(LA, σ=1.5) 
NI - -2.3 0.05 NI - 

Abbreviations: NI-not included in model, SCC-squamous cell carcinoma, GTV-gross tumor volume, SD-standard 

deviation, LA-largest axial slice. This table has been reused with the permission of the original publisher from the 

following publication:  Fried DV, Tucker SL, Zhou S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic 

Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer. 

International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 

90, Issue 4, Pages 834-842. 2014. ©Elsevier. 

Across all outcomes, features from the CE-CT (specifically the LOG_Average) appeared to 

be the most consistent and significant QIF. The LOG_Average was significant in both local-regional 

control and freedom from distant metastases (p < 0.01 and 0.03, respectively). For overall survival, 
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the same feature but only used on the largest axial slice was significant (p = 0.01). The 

LOG_Averages calculated on the entire tumor versus the largest axial slice were highly correlated 

(Pearson correlation coefficient = 0.91, p < 0.01) and thus would be unlikely to be selected within the 

same model framework due to the ability of the penalized algorithm to handle covariate collinearity.  

To ensure these results were not due to over fitting or the ratio of the number of features 

being analyzed to the number of patients, a permutation test was performed (see 3.7.2 Permutation 

Test and Impact of Feature Reproducibility on Predictions (Cohort 1)). The log-rank statistic derived 

when outcomes were permuted with respect to the QIFs and CPFs (i.e., random data) was greater than 

the true, non-randomized log-rank statistic in 11/200 (p = 0.055), 0/200 (p < 0.005), and 1/200 (p = 

0.005) for OS, LRC, and FFDM, respectively.  

4.1.2 Results for Project 1.2: Quantify the reproducibility of FDG-PET-based quantitative image 

features using “pseudo” test-retest scans 

Data from test-retest scans from 10, 10, and 13 independent patients for the AVG-CT, T50-

CT, and CE-CT, respectively, were used for our assessment of reproducibility.  We found that 

85%,(56/66), 75%,(50/66), and 23%,(15/66) of texture features had a CCC>0.9 for features generated 

from T50-CT, Average-CT, and CE-CT, respectively. 

Incorporating reproducibility within our models yielded 80.4% (SD=3.7), 78.3 (SD=4.0), and 

78.8% (SD=3.9) classification reproducibility in terms of OS, LRC, and FFDM, respectively.  Figure 

18 illustrates an example iteration where we compared the predicted outcome with reproducibility to 

the original predicted outcome in terms of FFDM and calculate the classification reproducibility.   
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Figure 18. Example from Single Simulation of the Impact of Texture Feature 

Reproducibility on FFDM Estimates. Outcome Prediction from Original Model (X-Axis) 

Compared to Prediction Incorporation of the Variation in QIFs From Test/Retest Scans (Y-

Axis). 
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Tucker SL, Zhou 

S,Liao Z, Mawlawi O, Ibbott G, Court LE. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-

Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, and Physics doi: 10.1016/j.ijrobp.2014.07.020. Volume 90, 

Issue 4, Pages 834-842. 2014. ©Elsevier. 
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4.1.3 Results for Project 1.3: Quantify the prognostic value of adding CE-CT-based quantitative 

image features to outcome models containing only CPFs 

The 249 patients in Cohort 2 were used for analysis of prognostic value of CE-CT QIFs. 

Forty three QIFs were assessed during cross-validation.  These features are shown in Table 7.  

 

Table 7. Extracted Quantitative Image Features for Cohort 2 

Intensity 

Histogram 

(IHIST)* 

Nearest Gray 

Tone 

Difference 

Matrix 

(NGTDM)* 

Co-Occurrence 

Matrix (COM)* 

Laplacian of 

Gaussian  

Filtration 

Metrics 

(LoG)* 

Volume/Morphologic 

Characteristics 

Mean 

Standard 

Deviation 

 

Skewness 

Kurtosis 

Entropy 

Uniformity 

Coarseness 

Contrast 

Busyness 

Complexity 

Energy 

Contrast 

Correlation 

Sum of Squares 

Inv. Diff. Moment 

Sum Average 

Sum Variance 

Sum Entropy 

Entropy 

Diff. Entropy 

Infomc1 

Infomc2 

Mean 

Standard 

Deviation 

 

Volume 

Surface Area 

Air Volume 

Tissue Volume 

Necrosis Volume 

Vessel Volume 

Air Percentage 

Tissue Percentage 

Necrosis Percentage 

Vessel Percentage 

*The same parameters were used as described in Table 5 for each type of extracted QIFs 

The predictive Kaplan-Meier curves generated from the cross-validated predictions using 

CPFs excluding GTV, CPFs including GTV, and CPFs including GTV and QIFs are shown in Figure 

19, Figure 20, Figure 21, respectively.  Three clusters based on k-means were used to stratify patients 

into low, medium, and high risk groups based for overall survival. Local-regional control and 

freedom from distant metastases were investigated; however CE-CT based QIFs did not appear to be 

prognostic for these outcomes. A comparison of the c-indices is seen in Figure 22. 
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Figure 19. Overall Survival Comparing High Risk, Medium Risk, and Low Risk Patients 

Using Models Incorporating CPFs Excluding GTV 
 

 

Figure 20. Overall Survival Comparing High Risk, Medium Risk, and Low Risk Patients 

Using Models Incorporating CPFs Including GTV  
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Figure 21. Overall Survival Comparing High Risk, Medium Risk, and Low Risk Patients 

Using Models Incorporating CPFs Including GTV And CE-CT Based QIFs 
 

The addition of GTV to CPFs improved stratification (Figure 19 versus 20) and the c-indices 

at every time point (Figure 22).  However, the addition of QIFs did not improve stratification nor the 

c-index beyond what was obtained using CPFs including GTV (Figure 21). These results are most 

likely due to the dominant prognostic feature being GTV. Table 8 illustrates the models developed 

using the covariates that were included in greater than 50% of the cross-validation folds. For the 

model using CPFs including GTV and QIFs, the significance of GTV was several orders of 

magnitude lower than any other factor. This was not observed in the analysis of Cohort 1. While 

significant, GTV significance was observed to be on a similar order of magnitude as other features in 

Cohort 1.    
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Figure 22. Concordance Indices for Overall Survival in Cohort 2 (CE-CT QIFs Only) Using 

Minimum Outcome Differences of 6, 12, 18, and 24 Months. 
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Table 8. Outcome Models for Covariate Combinations in Cohort 2 

Covariates 

CPFs 

excluding 

GTV 

p-

value 

CPFs 

including 

GTV 

p-value 

CPFs 

including 

GTV and 

QIFs 

p- 

value 

CPFs:       

Age 

(continuous) 

NI - 0.009 0.32 0.012 0.22 

GTV 

(log2) 

NI - 0.296 <0.01 0.340 <0.01 

Gender 

(Male vs 

Female) 

0.151 0.33 NI - NI - 

Histology 

(SCC vs Other) 

0.138 0.37 NI - NI - 

Induction -0.56 <0.01 -0.400 0.04 -0.39 0.04 

KPS 

(<90 vs ≥90) 

0.354 <0.01 0.282 0.02 0.25 0.04 

N Stage 

(N2/3 vs N0/1) 

0.628 0.04 0.826 0.01 0.84 <0.01 

Overall Stage 

(3b vs 3a) 

0.259 0.09 0.200 0.20 0.21 0.17 

QIFs:       

Global 

Uniformity 

NI - NI - -6.11 0.02 

COM  

sum variance 

NI - NI - -0.0002 0.10 

Percent Air NI - NI - 1.26 0.53 
  Abbreviations: NI=not included in model; SCC=squamous cell carcinoma; GTV=gross tumor volume; KPS = Karnofsky 

performance status; SD= standard deviation; LA=largest axial slice 

The addition of GTV to the Cox model containing induction, KPS, N stage, and overall stage 

(i.e., the CPFs excluding GTV) led to a statistically significant improvement in model fit (p = 8 x 10-

6).  Adding the QIFs from Table 7 to the model using the CPFs including GTV also led to a statically 

significant improvement in model fit (p = 0.027).   

While comparisons of stratification on a Kaplan-Meier plot or c-indices are reasonable visual ways to 

assess for prognostic value, performing a likelihood ratio test on nested models is seen as the gold 

standard. Ultimately, it appears that QIFs from CE-CT add prognostic value but are not substantially 

adding information not accounted for from GTV or CPFs. Initially, it was somewhat surprising that 

the LOG_Average feature, which was significant in the Cohort 1 analysis, was not selected in this 
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analysis.  However, LOG_Average and COM sumvariance were significantly correlated (Pearson 

correlation coefficient = 0.91, p < 0.01). 

 

4.2 Results of Specific Aim 2: Analysis of FDG-PET-based Quantitative Image Features 

Specific Aim 2 examined PET-based quantitative image features for prognostic value, 

reproducibility, and volumetric stability.  

4.2.1 Results for Project 2.1: Quantify the impact of adding FDG-PET-based quantitative image 

features to outcome models containing only CPFs 

Twenty-eight QIFs were assessed in each fold of cross-validation. These features are shown 

in Table 9.   

Table 9. Extracted Quantitative Image Features for Cohort 3 (pretreatment FDG-PET) 

Intensity Histogram (IHIST)- Co-Occurrence Matrix (COM)+ Shape/Volume   

Mean* -- SUVmean 

Maximum* -- SUVmax 

Peak* -- SUVpeak 

Entropy 

Uniformity 

Standard Deviation 

Coefficient of Variation 

Cumulative Histogram 

Contrast 

Correlation 

Energy 

Homogeneity 

Volume* -- MTV 

Surface Area* 

Convex Hull Volume 

Solidity 

 

Presence of Necrosis 

 

*These features were calculated for the primary, nodal disease, and total disease (primary plus nodal) 

^ This features was only calculated for the nodal disease, and total disease (primary plus nodal) 
- Entropy, Uniformity, and cumulative histogram were generated using a bin size of 1 SUV. The other features used the raw 

SUV values 
+A bin size of 1 SUV was used for COM features. COM features were averaged across all 2D directions using all axial 

slices of the ROI.  

 
This table has been reused with the permission of the original publisher from the following publication:  Fried DV, Mawlawi O, Zhang L, 

Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative image features 

combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published online July 15, 2015. ©Radiological 

Society of North America. 

 

The predictive Kaplan-Meier curves generated from the cross-validated predictions of overall 

survival using CPFs excluding GTV, CPFs including GTV, and CPFs including GTV and QIFs are 

shown in Figure 23, Figure 24, and Figure 25, respectively. Local-regional control and freedom from 

distant metastases were assessed; however FDG-PET based QIFs did not appear to be prognostic for 

these outcomes. The p-values in the lower left of each figure represent the p-value of the associated 
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log-rank test.  The curves were divided into 5 risk groups via k-means clustering in order to 

demonstrate prediction calibration.  

 

 

 

Figure 23. Overall Survival Comparing Various Risk Groups (Defined Using K-Means 

Clustering from Low Risk to High Risk) Using Models Incorporating CPFs Excluding GTV.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Mawlawi O, Zhang L, 

Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative image features 

combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published online July 15, 2015. ©Radiological 

Society of North America. 
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Figure 24. Overall Survival Comparing Various Risk Groups (Defined Using K-Means 

Clustering from Low Risk to High Risk) Using Models Incorporating Cpfs Including GTV. 
 

 

Figure 25. Overall Survival Comparing Various Risk Groups (Defined Using K-Means 

Clustering from Low Risk to High Risk) Using Models Incorporating Cpfs Including GTV 

And QIFs.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Mawlawi O, Zhang L, 

Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative image features 

combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published online July 15, 2015. ©Radiological 

Society of North America. 
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Figure 26 illustrates the concordance indices for overall survival. 

 

Figure 26. Concordance Indices for Overall Survival in Cohort 3 (FDG-PET Based QIFs) 

Using Minimum Outcome Differences of 6, 12, 18, And 24 Months.  
This figure has been reused with the permission of the original publisher from the following publication:  Fried DV, Mawlawi O, Zhang L, 

Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative image features 

combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published online July 15, 2015. ©Radiological 

Society of North America. 

 

For overall survival predictions generated using CPFs including GTV and QIFs resulted in 

superior stratification of patients.  Furthermore, c-indices at every time point were greater for 

predictions generated using CPFs including GTV and QIFs (Figure 26). The inclusion of GTV to the 

other CPFs resulted in improved c-indices but the inclusion of QIFs always resulted in substantial 

further improvement.   

Table 10 illustrates the models developed from the cross-validation methodology using CPFs 

including GTV and QIFs. 
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Table 10. Overall Survival Models for Covariate Combinations in Cohort 3 

Covariates CPFs excluding GTV CPFs including GTV 
CPFs including  

GTV and QIFs 

CPFs: 
Coefficient p-value Coefficient p-value Coefficient 

p- 

value 

Age (continuous) 0.027 <0.01 0.029 <0.01 0.027 <0.01 

Induction -0.226 0.24 -0.130 0.52 -0.138 0.49 

T Stage 

(T1/2 vs T3/4) 

-0.200 0.25 -0.286 0.11 
-0.198 0.31 

Gender 

(Male vs Female) 

0.525 <0.01 0.506 0.01 
0.467 0.02 

GTV 

(Log2) 

NI - 0.196 0.02 
0.225 0.01 

KPS 

(<90 vs ≥90) 

0.257 0.07 0.202 0.16 
0.307 0.03 

Overall Stage 

(3b vs 3a) 

0.277 0.13 0.215 0.25 
NI - 

QIFs:       

COM Energy NI - NI - -7.23 0.05 

Solidity NI - NI - -0.780 <0.01 
Abbreviations: NI-not included in model, GTV-gross tumor volume, COM-co-occurrence matrix, CPFs – conventional 

prognostic factors 

This table has been reused with the permission of the original publisher from the following publication:  Fried DV, Mawlawi O, Zhang L, 

Fave X, Zhou S, Ibbott G, Liao Z, Court LE. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative image features 

combined with clinical prognostic factors. Radiology doi: 10.1148/radiol.2015142920. Published online July 15, 2015. ©Radiological 
Society of North America. 

The addition of GTV to the Cox model containing induction, KPS, T stage, gender and 

overall stage (i.e., the CPFs excluding GTV) led to a statistically significant improvement in model fit 

(p = 0.04).  Adding the QIFs from Table 9 to the model using the CPFs including GTV also led to a 

statically significant improvement in model fit (p = 0.007). Disease solidity (the volume of disease 

divided by the smallest convex volume that would be able to encompass all disease) along COM 

energy (a metric quantifying the uniformity of the SUV values within the primary) were the QIFs 

selected in all folds of cross-validation and were significantly (i.e., solidity; p < 0.01) or marginally 

significantly (i.e., COM energy; p = 0.05) associated with overall survival in the multivariate Cox 

model.   

The presence of necrosis and percent of tumor exhibiting necrosis were examined in a 

separate analysis. Neither of these features was selected in cross-validation nor were they significant 

using univariate or multivariate Cox proportional hazards analyses (p > 0.05).    
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While comparisons of stratification on a Kaplan-Meier plot or c-indices are reasonable visual 

ways to assess for prognostic value, performing a likelihood ratio test on nested models is seen as the 

gold standard. Ultimately, it appears that QIFs from CECT add prognostic value not accounted for by 

CPFs or GTV. 

4.2.2 Results for Project 2.2:  Quantify the reproducibility of FDG-PET-based quantitative image 

features using “pseudo” test-retest scans 

Cohort 6 was used to analyze the reproducibility of “pseudo” test-retest scans (i.e. patients 

having one scan taken at an outside institution followed by a scan taken at MD Anderson without any 

intervention between scans). The CCC was calculated for all 53 test-retest pairs, only pairs with 

different reconstruction dimensionality (2D vs 3D, n = 40), pairs with both scans having 3D 

reconstruction (n = 10), pairs with varying time differences between scans, pairs with <25% change 

in volume, and between scans acquired using different PET/CT models. The results from these 

analyses are shown in Table 11. Representative features were chosen from the various QIF types as 

shown in Table 9.  Of note, the average CCC is more reasonable than expected at 0.78 using all 

scanners and imaging parameters. Furthermore, it can be seen that the QIF reproducibility improves 

when both scans are obtained using 3D reconstruction techniques versus a mix of 2D and 3D 

reconstruction (average CCC = 0.93 vs 0.72). Reproducibility also apparently worsens when scans are 

separated in time by more than 61 days (average CCC = 0.81 vs 0.62). Based on this data, 

standardization of PET acquisitions could lead to more reproducible QIFs and potentially enhance 

prediction models.    
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Table 11. CCC Values from “Pseudo” Test-Retest PET Scans 

 
All Reconstruction Type 

Time Difference  

(days) 

Low  

Volume 

Change 

Model Type 

QIF 
All 

(N = 53) 

2D - 3D 

(n = 40) 

3D - 3D 

(n = 10) 

0-30 

(n = 16) 

31-60 

(n = 25) 

61+ 

(n = 12) 

<25%  

(n=24) 

ST-RX 

(n = 15) 

ST-STE  

(n=11) 

Volume 0.92 0.92 0.97 0.93 0.86 0.95 0.99 0.96 0.92 

Surface Area 0.93 0.93 0.97 0.94 0.87 0.96 0.99 0.97 0.93 

Entropy 0.82 0.8 0.95 0.79 0.87 0.62 0.84 0.88 0.75 

Max 0.84 0.76 0.95 0.82 0.89 0.67 0.8 0.87 0.86 

Peak 0.78 0.72 0.9 0.8 0.81 0.36 0.78 0.85 0.81 

Mean 0.85 0.78 0.96 0.82 0.87 0.81 0.86 0.87 0.91 

Std 0.87 0.8 0.96 0.83 0.93 0.68 0.85 0.89 0.92 

Uniformity 0.77 0.78 0.9 0.72 0.82 0.52 0.74 0.84 0.54 

Kurtosis 0.66 0.37 0.09 0.87 0.42 -0.11 0.4 0.47 0.28 

Skewness 0.57 0.54 0.26 0.76 0.46 0.35 0.58 0.47 0.43 

COMContrast 0.93 0.62 0.97 0.88 0.98 0.5 0.64 0.87 0.95 

COMCorrelation 0.77 0.7 0.93 0.71 0.82 0.74 0.69 0.88 0.5 

COMEnergy 0.6 0.67 0.54 0.63 0.56 0.32 0.55 0.68 0.31 

COMHomogneity 0.7 0.69 0.87 0.53 0.79 0.61 0.66 0.8 0.68 

cumHistogram 0.71 0.62 0.8 0.81 0.64 0.71 0.7 0.78 0.63 

          
Average 

 (all metrics) 
0.78 0.72 0.93 0.81 0.82 0.62 0.74 0.87 0.75 
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4.2.3 Results for Project 2.3: Quantify the reproducibility of FDG-PET-based quantitative image 

features using retrospective reconstructions of phantom and patient data 

The percent of voxels less than 1 or 2 SUV using the NEMA IEC phantom, as described in 

Section 3.6, is shown below in Table 12. 

Table 12. Percent of Sphere Voxels with a Maximum Change in SUV <1 or < 2 

Scanner Matrix Size %Voxels < 1 SUV %Voxels < 2 SUV 

VCT 
128 92 99 

256 75 94 

710 

128 80 98 

192 61 88 

256 62 90 

mCT 

128 91 98 

200 72 90 

256 69 88 

 

QIF values were extracted from each of the three scanners using the various reconstruction 

parameters using fixed contours of the spheres. The median, mean, and standard deviation seen within 

each scanner and across all scanners were calculated and compared to the values from the patient data in 

terms of their standard deviations (Table 13).  In addition, the same process was performed using 6 

lesions from 5 different patients. The ratio of Cohort 3 patient standard deviation for each feature to the 

standard deviation observed in the 6 test lesions are shown in Table 14.  
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Table 13. Change in QIF Values due to Variation in Reconstruction Parameters and Comparison 

to Variation in Cohort 3 Patient QIF Values 
Scanner Metric Contrast Correlation Energy  Homogeneity Uniformity SUVmax SUVmean SD Entropy 

All min 2.53 0.21 0.014 0.35 0.103 10.3 5.0 2.9 2.88 

All max 25.91 0.86 0.044 0.59 0.169 17.2 6.9 4.3 3.50 

All median 12.15 0.58 0.023 0.44 0.119 12.8 5.9 3.6 3.27 

All mean 12.91 0.54 0.024 0.44 0.123 13.1 5.9 3.6 3.27 

All SD 6.76 0.21 0.008 0.07 0.015 1.8 0.5 0.3 0.16 

VCT min 2.53 0.40 0.023 0.41 0.122 10.3 5.0 2.9 2.88 

VCT max 15.57 0.86 0.044 0.59 0.169 12.4 5.2 3.5 3.27 

VCT median 7.86 0.62 0.03 0.47 0.13 11.2 5.1 3.3 3.16 

VCT mean 8.61 0.63 0.03 0.49 0.137 11.1 5.1 3.3 3.11 

VCT SD 5.31 0.21 0.007 0.07 0.015 0.7 0.1 0.2 0.12 

710 min 4.90 0.21 0.015 0.36 0.103 11.3 6.0 3.2 3.09 

710 max 25.91 0.78 0.041 0.52 0.14 17.2 6.9 4.3 3.50 

710 median 12.15 0.58 0.026 0.46 0.117 14.7 6.5 3.9 3.35 

710 mean 14.52 0.51 0.026 0.44 0.119 14.2 6.4 3.8 3.31 

710 SD 7.19 0.21 0.009 0.06 0.013 1.6 0.3 0.3 0.15 

mCT min 5.04 0.21 0.014 0.35 0.104 11.1 5.7 3.4 3.10 

mCT max 24.33 0.77 0.033 0.51 0.136 15.9 6.1 4.1 3.48 

mCT median 13.55 0.56 0.017 0.41 0.114 13.1 5.9 3.7 3.36 

mCT mean 14.26 0.51 0.019 0.42 0.117 13.2 5.9 3.7 3.33 

mCT SD 6.25 0.20 0.005 0.05 0.01 1.4 0.1 0.2 0.12 

           

Cohort 3 
Patients 

SD 17.1 0.17 0.031 0.11 0.07 7.5 3.7 1.7 0.68 

           

All 
SDpts/
SDphan 

2.53 0.83 3.69 1.66 4.43 4.22 6.77 4.81 4.33 

VCT 
SDpts/
SDphan 

3.22 0.84 4.31 1.50 4.27 10.64 63.92 8.11 5.72 

710 
SDpts/
SDphan 

2.38 0.83 3.52 1.90 5.19 4.82 11.66 5.19 4.50 

mCT 
SDpts/
SDphan 

2.74 0.85 5.90 2.02 6.87 5.41 29.08 6.87 5.85 

SD = standard deviation; SDpts = Cohort 3 patient standard deviation; SDphan; phantom standard deviation; 

SDpts/SDphan = ratio of standard deviation between Cohort 3 patient and phantom values; min = minimum value 

observed for the particular feature for the scanner used across the different parameters (18 total images); max = 

maximum value observed for the particular feature for the scanner used across the different parameters (18 total 

images); median = median value observed for the particular feature for the scanner used across the different 

parameters (18 total images); mean = mean value observed for the particular feature for the scanner used across the 

different parameters (18 total images); SD = standard deviation of values observed for the particular feature for the 

scanner used across the different parameters (18 total images) 
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Table 14. Change in QIF Values from Patient Scans due to Variation in Reconstruction 

Parameters and Comparison to Variation in Patient QIF Values 

 
Contrast Correlation Energy Homogeneity Uniformity SUVmax SUVmean SD Entropy 

Patient Ratio 1 7.82 1.42 5.11 1.85 15.03 10.05 20.45 10.44 10.05 

Patient Ratio 2 9.45 1.26 8.81 2.36 10.49 12.72 13.89 13.37 9.92 

Patient Ratio 3 3.24 0.94 11.54 1.83 11.11 6.89 22.48 5.62 7.68 

Patient Ratio 4a 9.30 1.43 5.68 2.19 6.78 4.36 26.90 7.27 6.32 

Patient Ratio 4b 3.71 1.61 13.37 2.50 16.62 3.69 22.34 5.02 8.14 

Patient Ratio 5 2.71 1.35 21.97 2.48 15.57 4.93 25.52 5.30 6.97 

          

Average Patient Ratio 6.04 1.33 11.08 2.20 12.60 7.11 21.93 7.84 8.18 

Phantom Ratio - 710 2.38 0.83 3.52 1.90 5.19 4.82 11.66 5.19 4.50 

 

4.3 Results of Specific Aim 3: Assess relationships between CT-based quantitative image features, PET-

based quantitative image features, conventional features, and morphologic features 

Specific aim 3 examined whether relationships exist between CT-based quantitative image 

features, PET-based quantitative image features, conventional features, and morphologic features. 

Correlations were investigated using features identified in previous analyses, such as COM energy and 

solidity in PET and LOG_Average and Uniformity in CE-CT. Uniformity in PET was also tested as it 

was found to be strongly correlated with COM energy and is calculated in the same fashion only without 

taking into account 2D displacement associations.   

 

4.3.1 Results for Project 3.1: Quantify correlations between prognostic FDG-PET-based and CECT-

based quantitative image features 

Cohort 4 was used for determining correlations between PET and CE-CT QIFs that were found to 

have prognostic value in sections 4.1.1 and 4.2.1. FDG-PET based uniformity was also added to this list 

as it was found to be significantly correlated to COM Energy and have a very similar formula for 

quantification. Table 15 shows the Pearson correlation coefficients and associated p-values testing 

whether two metrics are significantly correlated. 
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Table 15. Correlations between PET and CE-CT Features  

 CE-CT QIFs 

FDG-PET QIFs LOG_Average Uniformity 

COM Energy -0.32 (p = 0.005) -0.005 (p = 0.96) 

Solidity 0.31 (p = 0.006) 0.26 (p = 0.02) 

Uniformity -0.41 (p = 0.0002) -0.03 (p = 0.80) 

 

The LOG_Average from CE-CT was associated with the 3 examined PET QIFs. Uniformity from 

CE-CT was significantly correlated with solidity but not with COM energy or uniformity. This data found 

that patients having heterogeneous FDG-uptake in the primary tumor and more dispersion between 

primary and nodal disease were correlated with tumors found to have high intensity and/or frequent edges 

on CE-CT. While statistically significant in many cases, the correlation coefficients were quite low across 

all comparisons. Graphical representations plotting CE-CT QIFs versus FDG-PET QIFs are shown in 

Figure 27.  This implies that relationships do exist between QIFs from different modalities; however they 

by no means can be used interchangeably. For example, in Figure 27 it is clear that in the bottom left 

figure comparing CE-CT LOG_Average to FDG-PET uniformity that higher values of FDG-PET 

uniformity are associated with lower values of CE-CT LOG_Average. However, one could not simply use 

CE-CT LOG_Average and accurately determine the FDG-PET uniformity. For instance, having an FDG-

PET uniformity value of 0.1 is associated with CE-CT LOG_Average values ranging from 1 to 4.5.  
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Figure 27. Assessment of Correlations between Prognostic CE-CT QIFs (LOG_Average and 

Uniformity) and Prognostic FDG-PET QIFs (COM Energy, Solidity, and Uniformity) 
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4.3.2 Results for Project 3.2: Quantify if relationships exist between CE-CT-based and FDG-PET-based 

quantitative image features with tumor volume and TNM staging 

Cohort 2 was used to determine if relationships existed between CE-CT QIFs and tumor volume 

(volume = primary volume and GTV = primary volume + nodal volume) or TNM staging.  Cohort 3 was 

used to determine if relationships existed between FDG-PET QIFs and tumor volume or TNM staging. 

When comparing to FDG-PET QIFs, both the primary and GTV (i.e., the metabolic tumor volume, MTV) 

were determined from the contours on the FDG-PET scan and not based on the CT. Box plots relating 

CE-CT and FDG-PET QIFs are shown below in 
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Figure 28 and Figure 29, respectively. The p-values were determined from Wilcoxon rank-sum 

tests.    
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Figure 28. Comparison of LOG_Average and Uniformity from CE-CT Versus Tumor Volume 

and Staging 
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Figure 29. Comparison of COM Energy, Uniformity, and Solidity from FDG-PET versus Tumor 

Volume and Staging  
 

Significant differences in CE-CT, LOG_Average, and CE-CT uniformity were observed between 

various CPFs. Significant differences in FDG-PET COM energy, solidity and uniformity were also 

observed between various CPFs. Uniformity was significantly different when stratified by primary tumor 

volume, GTV, and T stage.  FDG-PET based COM energy was significantly different when stratified by 

primary volume, T stage, and N stage. FDG-PET based solidity significantly differed when stratified by 

all tested CPFs. FDG-based uniformity was significantly different when stratified by primary tumor 

volume, GTV, and T stage. Significant differences were observed between QIFs when stratified by CPFs. 

The results of Specific Aims 1 and 2 suggest that even though relationships exist between QIFs and CPFs, 

QIFs provide additional prognostic information. 
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4.3.3 Results for Project 3.3: Quantify if there are correlations between FDG-PET-based quantitative 

image features, CECT-based quantitative image features, and morphologic characteristics (vessels, 

necrosis, air cavities, etc.) 

Radiologists routinely observe morphologic characteristics of tumors such as the presence of 

necrosis, cavitation, and heterogeneous enhancement when examining CE-CT images. The purpose of 

this project was to quantitatively assess how morphologic features influence the prognostic QIFs found in 

sections 4.1.1 and 4.2.1. Sections 3.3.5 Contrast Enhanced CT Auto-segmentation of Morphologic 

Characteristics and 3.3.6 PET Necrosis Auto-segmentation describe how morphologic characteristics can 

be extracted in a quantitative fashion.  Namely, these sections describe the extraction and quantification 

of volume and percent of the tumor that consists of vessels, necrosis, air cavities, and tumor tissue. 

Features quantifying vessels, necrosis, air cavities, and tumor tissue are able to be extracted from CE-CT 

and features regarding necrosis are able to be extracted from PET.  Figure 30 displays boxplots of 

dichotomous comparisons between QIFs and the presence/absence of tissue types and their associated p-

values as determined by the Wilcoxon rank-sum test. 
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Figure 30. Comparison of LOG_Average and Uniformity on CE-CT versus The 

Presence/Absence of Various Tissue Types 
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Figure 31 and Figure 32 below compare the extracted necrosis volume and necrosis percentage of 

tumor from FDG-PET and CE-CT auto-segmentations, respectively.    

 

Figure 31. Comparison of Necrosis Volumes Determined By FDG-PET Vs CE-CT 

 

Figure 32. Comparison of Necrosis Percentage Determined By FDG-PET vs CE-CT 
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The CCC values from Figure 31 and Figure 32 were 0.85 and 0.76, respectively. It was observed 

that the auto-segmentation from CE-CT identified more small regions of necrosis compared to the auto-

segmentation from FDG-PET.  In general, the agreement seen between the two methodologies was 

reasonable based on their CCC values.  

In addition to quantifying correlations between PET, CE-CT, and morphologic characteristics, it 

was important to determine how the presence of morphologic characteristics influences QIF metrics. To 

investigate this, plots were generated (Figure 33) comparing the original (i.e., total tumor) to the original 

tumor ROI excluding certain tissue types. The details of these analyses are described in 3.3.5 Contrast 

Enhanced CT Auto-segmentation of Morphologic Characteristics. 
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Figure 33. Comparison of CE-CT Feature Value for Entire Tumor (X-Axis) with Feature Value 

Excluding a Particular Tissue Type or Types (Only Tissue: Excludes Air, Necrosis, and Vessels). 

(A) Comparison of LOG_Average Values from Tumors with Enhancing Vessels when the 

Vessels Are Present (X-Axis) or Excluded (Y-Axis). (B) Comparison of Uniformity Values from 

Tumors with Enhancing Vessels when the Vessels are Present (X-Axis) or Excluded (Y-Axis). 

(C) Comparison of LOG_Average Values from Tumors with Necrosis when the Necrosis Is 
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Present (X-Axis) or Excluded (Y-Axis). (D) Comparison of Uniformity Values from Tumors 

with Necrosis when the Necrosis Is Present (X-Axis) or Excluded (Y-Axis). (E) Comparison of 

LOG_Average Values from Tumors with Cavitation when the Cavitation Is Present (X-Axis) or 

Excluded (Y-Axis). (F) Comparison of Uniformity Values from Tumors With Cavitation when 

the Cavitation Is Present (X-Axis) or Excluded (Y-Axis). 
 

All R2 values from the plots in Figure 33 were greater than 0.81. Excluding enhancing vessels 

and/or necrotic regions led to a decrease in measured LOG_Average values and an increase in uniformity 

values. As expected, a decrease in LOG_Average (metric quantifying number and intensity of “edges” 

within the tumor) led to an increase in uniformity. Figure 33E and Figure 33F illustrate that analyzing 

only tumor tissue (i.e., excluding necrosis and enhancing vessels) yielded different values of 

LOG_Average and intensity histogram uniformity when compared to the total tumor including all 

morphologic tissue types (p = 0.001 and  = 0.037, respectively).  While these values are statistically 

different, the R2 values are generally very high (greater than 0.81). This implies that while statistically 

different, the values are still highly related. No differences were found when comparing uniformity values 

between tumors with above or below average volumes of vessels or necrosis based on our sampled 

cohort. However, it was found that tumors with above average volume of vessels and necrosis were found 

to have significantly higher values of LOG_Average (p < 0.01) for both the total tumor contour and ROI 

excluding these morphologic features.  
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4.4 Results of Specific Aim 4: Potential use of FDG-PET-based quantitative image features 

4.4.1 Results for Project 4.1: Assess whether significant PET-based quantitative image features relate to 

a difference in patient survival for those treated with an escalated radiation dose   

Section 4.2.1 was able to identify FDG-PET based QIFs that appeared to be prognostic for patient 

survival. The purpose of this project was to see if these QIFs could be used to identify patients that would 

benefit from receiving an escalated radiation dose. We hypothesized that patients with primary tumors 

with uniform FDG-uptake (i.e. high values of COM energy) may benefit from dose escalation as 

heterogeneous FDG-uptake has been associated with poor pathologic factors, aggression, and inferior 

outcome. Additionally, we also hypothesized that patients with non-dispersed local-regional disease (i.e. 

high values of solidity) could also potentially benefit from dose escalation as these patients are probably 

less likely to develop metastatic disease and would result in less dose delivered to cardiothoracic normal 

tissue structures (this was confirmed in an analysis shown in Appendix D: Relationship of Cardiothoracic 

Dosimetry with Disease Solidity). The development of metastatic disease would reduce the survival 

impact associated with an increase in local control and higher normal tissue doses have been shown to 

reduce patient survival. Therefore, we chose to investigate the impact of dose escalation considering both 

patient COM energy and disease solidity. Since high values of each feature were hypothesized to be 

beneficial with increased radiation dose, we assessed the impact of creating sub-cohorts of patient with 

high values of both COM energy and disease solidity.   

We first stratified all patients in Cohort 3 by radiation dose (74 Gy vs 60-70 Gy). Dose escalation 

did not result in a difference in overall survival or progression-free survival (Figure 34).   
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Figure 34. Stratification of Overall Survival and Progression-Free Survival by Dose Level in All 

Patients within Cohort 3 
 

A grid search was performed to examine different combinations of sub-cohorts as determined by 

varying cutoffs of the QIFs found to be prognostic in 4.2.1 Results for Project 2.1 (i.e., solidity and COM 

energy). Initially, the search was performed to isolate patients with homogeneous SUVs within the 

primary tumor (high COM energy) and close proximity of disease (high solidity). The results of this 

search are seen in Figure 35. The values within the figures are the p-values from a log-rank test when 

stratifying the specific sub-cohort by dose level. Values at the top left have mild cutoffs in terms of the 

QIFs and thus include majority of all patients (180/195). Values progressively closer to the bottom right 

have more strict cutoffs in terms of QIFs and include patients with progressively higher values. As higher 

and higher cutoffs are implemented for the QIFs, the p-values from the log-rank test between dose levels 

become significant for both overall survival and progression-free survival.  
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Figure 35. Log-Rank P-Values from Sub-Cohorts Based on High Values FDG-PET QIFs In 

Terms Of Overall Survival (A) and Progression-Free Survival (B) 
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Kaplan-Meier plots from the sub-cohort in the cell with the dashed white outline Figure 35 are 

shown in Figure 36.  In this sub-cohort, patients receiving an escalated dose of 74 Gy had superior overall 

survival and progression-free survival compared to those receiving 60-70 Gy (p = 0.01 and 0.02, 

respectively).   

 

Figure 36. Kaplan-Meier Plots Stratified by Dose Level for The Sub-Cohort with High Values 

Of FDG-PET QIFs In Terms of Overall Survival and Progression-Free Survival 
 

The opposite association (i.e., impact of low values of COM energy and solidity) was examined 

in the same manner. The results of this search are seen in Figure 37. Values at the bottom right now have 

mild cutoffs in terms of the QIFs and thus include the majority of all patients (179/195). Values 

progressively closer to the top left have more strict cutoffs in terms of QIFs and include patients with 

progressively lower values. It can be seen as more strict cutoffs are implemented for the QIFs, the p-

values from the log-rank test between dose levels become significant for both overall survival and 

progression-free survival. 
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Figure 37. Log-Rank P-Values from Sub-Cohorts Based on High Values of FDG-PET QIFs In 

Terms of Overall Survival(A) and Progression-Free Survival(B) 
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Figure 38. Kaplan-Meier Plots Stratified by Dose Level for the Sub-Cohort with Low Values of 

FDG-PET QIFs In Terms of Overall Survival and Progression Free Survival 
 

Kaplan-Meier plots from the sub-cohorts in the cells with the dashed white outlines in Figure 37 

are shown in Figure 38.  In this sub-cohort, patients receiving an escalated dose of 74 Gy had inferior 

overall survival and progression-free survival compared to those receiving 60-70 Gy (p = 0.02 and 0.025, 

respectively).   

Furthermore, using a multivariate Cox model, receiving 74 Gy versus 60-70 Gy was an 

independent prognostic factor for both overall survival (high value QIFs: p = 0.012, low value QIFs: p = 

0.02) and progression-free survival (high value QIFs: p = 0.015, low value QIFs: p = 0.025) when 

adjusting for overall stage, T stage, receiving induction chemotherapy, age, gender, and GTV.  These 

CPFs were used as they were selected during cross-validation in our previous work in 4.2.1 Results for 

Project 2.1: Quantify the impact of adding FDG-PET-based quantitative image features to outcome 

models containing only CPFs. 
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Table 16. Comparison of Conventional Prognostic Factors  

  High QIFs Values Subgroup   
Low QIFs Values  

Subgroup 

  74Gy 60-70Gy p-value   74Gy 60-70Gy p-value 

Mean GTV (cc) 200 219 0.69   192 186 0.87 

Age (mean) 65 63 0.49   67 63 0.18 

MTV (cc) 118 123 0.91   104 126 0.44 

Overall Stage     0.31       0.79 

3a 24 28     16 25   

3b 7 15     8 16   

KPS     0.3       0.78 

60 0 3     1 3   

70 3 2     1 3   

80 18 29     16 20   

90 10 8     6 14   

100 0 1     0 1   

Induction     0.29       0.42 

No 21 34     18 26   

Yes 10 9     6 15   

Concurrent     0.51       0.38 

No 0 2     0 3   

Yes 31 41     24 38   

Adjuvant     1       0.25 

No 20 27     20 28   

Yes 11 16     4 13   

Histology     0.24       1 

Squamous Cell 11 22     10 16   

Other 20 21     14 25   

Smoking     0.1       0.44 

Never 0 4     1 4   

Former 23 23     19 26   

Current 8 16     4 11   

Gender     0.03       1 

Male 27 27     9 16   

Female 4 16     15 25   
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Figure 34 though Figure 38 demonstrate that the QIFs found to be prognostic in section 4.2.1 

Results for Project 2.1: Quantify the impact of adding FDG-PET-based quantitative image features to 

outcome models containing only CPFs were capable of identifying sub-cohorts of patients whose survival 

was influenced by dose escalation. Dose escalation did not appear to influence patient survival on the 

entire cohort. Figure 35 and Figure 37 show that these observations followed a definite trend and were not 

purely the result of selecting a significant result from a large number of tests. Dose escalation was found 

to be prognostic in the isolated sub-cohorts even when controlling for CPFs such as overall stage, T stage, 

receiving induction chemotherapy, age, gender, and GTV. The lack of imbalances in Table 16 implies 

that CPFs do not appear to be responsible for the observed survival differences.   
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Chapter 5 Discussion 

Discussion Specific Aim 1 

We hypothesized that the addition of CT-based quantitative image features would significantly 

improve outcome models compared to models using conventional prognostic factors.  This hypothesis 

was confirmed as the addition of CT-based quantitative image features significantly improved outcome 

models compared to models using conventional prognostic factors. QIFs extracted from CT were able to 

improve model fit compared to models using CPFs excluding or including GTV. The initial analysis of 

Cohort 1 (91 patients with a pretreatment TAVG, T50, and CE-CT) found that the addition of QIFs improved 

the stratification of patient outcome compared to models using CPFs including or excluding GTV.  In 

addition, incorporating the reproducibility of QIFs yielded a percent classification reproducibility of 

approximately 80%. QIFs from CE-CT were found to be the most significant in terms of prognostic value 

for patient outcome between CT types but were far less reproducible compared to features from TAVG and 

T50.  The choice to analyze only CE-CT images in Cohort 2 was based on data from Cohort 1 that found 

the most significant source of prognostic information was from the features extracted from CE-CT.  

Having contrast injected facilitates greater HU differences within the tumor due to the contrast infiltrating 

vessels and subsequently into the tissue. We hypothesized this may be the reason the CE-CT derived 

features were more prognostic than those from the non-contrast 4D-CT. Therefore, we decided to develop 

a cohort of patients who only needed to have a CE-CT regardless of whether they received a 4D-CT scan.  

The analysis of Cohort 2 (249 patients with a pretreatment CE-CT) found that QIFs significantly 

improved model fit but did not improve the c-indices or patient stratification. These results suggest that 

CE-CT-based QIFs are associated with a statistically significant improvement in outcome model fit using 

the most sensitive test (log-likelihood ratio).  However, the results would probably not be considered a 

clinically significant improvement in predictive ability since neither the c-index nor visual stratification 

appeared to improve. 
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The results suggest that CT QIFs and more specifically CE-CT-based QIFs may be useful in 

patient outcome modeling. CT-based QIFs have the potential to develop clinically useful prediction 

models using medical images that are already obtained during routine patient staging. Therefore, 

implementation would require little to no added cost and would not require additional time, discomfort, or 

radiation dose to patients.  The ability to stratify patients in ways shown to be superior to current staging 

methods might allow physicians to deliver more optimized, patient-specific treatment.  While our initial 

analysis of Cohort 1 appeared more efficacious in terms of LRC and FFDM, ultimately stratifying 

patients in terms of overall survival would generate the most benefit to physicians and patients alike. Our 

analysis of Cohort 2 using only CE-CT scans did result in improved c-indices and stratification but these 

results may be due to the elevated prognostic ability of CPFs including GTV. The impact of CPFs and 

GTV seen in Cohort 2 is far superior to what was seen Cohort 1 (91 pts), Cohort 3 (195 pts), and Cohort 4 

(77 pts). Since QIFs from CE-CT were still significant in improving model fit in Cohort 2, it is possible 

that improved stratification may be possible in alternative cohorts even though this was not observed in 

our analysis. There is a relatively extensive body of literature supporting the idea that QIFs are prognostic 

in NSCLC with a vast majority performed using non-contrasted CT scans.10, 14, 15, 48–50 However, work by 

Ravanelli et al. did find that CE-CT based QIFs (tumor uniformity * grey level) was able to predict 

response to first-line chemotherapy in NSCLC.51 Additionally, Al-Kadi and Watson also found that 

fractal based QIFs from CE-CT were able to predict  malignant aggressiveness in NSCLC.16 Aerts et al. 

(in non-contrast CT) did find evidence that QIFs improved NSCLC patient outcome stratification in 

addition to tumor volume and staging.  

Project 1.2 found that a majority of QIFs from CE-CT did not have a CCC value greater than 0.9. 

This could be due to the fact that these were not performed in a traditional test/retest fashion but were 

scans taken at different institutions separated by an average of 38 days. Differences in imaging within the 

ten patients, such as scanner type, manufacturer, imaging parameters, contrast timing, etc. (see 17), along 

with growth/underlying change in the tumor could easily be responsible for the low feature 

reproducibility. 
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Table 17. CE-CT Test/Retest Scan Information 

Field Outside Scan (n = 10) MD Anderson Scan (n = 10) 

Pixel Dimension (range) 0.70 – 0.86 0.78 – 0.86 

Manufacturer/Model   

GE/Lightspeed 16 0 7 

GE/Lightspeed VCT 2 2 

GE/Lightspeed Plus 1 1 

GE/Lightspeed Ultra 2 0 

GE/Lightspeed Pro 1 0 

Phillips/Brilliance64 1 0 

Toshiba/Aquilon 2 0 

Siemens/Sensation 16 1 0 

Reconstruction Kernel   

Standard 8 10 

FC03 1 0 

FC13 1 0 
 

 The definition of a CCC value of 0.9 being “reproducible” is also somewhat arbitrary.  While 

this value may be justified for assessing reproducibility of some measurements (e.g., measuring the 

dimensions of an object), this cut-off value may not be ideal in our context. Models including covariates 

with a CCC lower than 0.9 could feasibly still generate valuable information and be independently 

validated. For example, a patient’s performance status has been shown to be vital in predicting survival. 

Yet, assigning performance status is quite subjective between physicians and may not be reproducible in 

the sense of quantitatively having a CCC index greater than 0.9.  The summary of the results for Specific 

Aim 1 projects (1.1-1.3) are shown in Table 18. 
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Table 18. Summary of Results for Specific Aim 1 Projects 

Hypothesis Result(s) 

Project 1.1 Quantify the impact of 

adding CT-based quantitative image 

features to outcome models containing 

only CPFs including and excluding 

GTV 

OS stratification: p=0.046 

LRC stratification: p=0.01 

FFDM stratification: p=0.005 

Project 1.2 Quantify the 

reproducibility of CT-based 

quantitative image features and its 

impact on outcome models 

% QIFs where CCC > 0.9 

Tavg (85%) 

T50 (75%) 

CE-CT(23%) 

 

Reproducibility: 78-80% 

Project 1.3 Quantify the prognostic 

value of adding CE-CT-based 

quantitative image features to outcome 

models containing only CPFs 

Likelihood Ratio Test: 

p = 0.027 

 Stratification not improved 

 

While the addition of CT-based QIFs into survival models has shown significant potential, 

various downsides do exist.  Data is still only available from preliminary studies, which require external 

validation and appropriate assessment of predictive power/accuracy.  Careful consideration, of values for 

parameters involved with each methodology as well as whatever preprocessing steps are applied, needs be 

taken in deciding which QIFs/analysis methods are appropriate for particular tasks. Differing 

quantification methods and their associated parameters have the potential to greatly impact study results.  

Quantitative analysis is also not applicable to all patients.  Those with a small primary tumor or severe 

imaging artifacts are not appropriate to undergo analysis.  Advances in robust, auto-segmentation 

methods would also be exceedingly useful in this field in order to standardize tumor contouring.  

Physician-generated contours are most commonly used in these types of analyses but are far from perfect.  

Thresholding is a useful strategy to enhance contour reproducibility, particularly in lung tumors.  Other 

factors that would influence reproducibility but not included in our analysis are the stability of the CPFs 

between institutions/physicians, such as staging, performance status, tumor volume, etc. Additionally, in 
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this study the imaging protocols were well controlled.  The impact of changing image parameters (e.g., 

tube voltage, reconstruction algorithm, pixel size, manufacturer, etc.) as well as consistency of QIFs 

should be considered when evaluating data from multiple institutions. Multiple groups have investigated 

the impact of variation in imaging on feature reproducibility.41, 48, 52 Balagurunathan et al. found that only 

30% of features examined were reproducible using test/retest scans with a criteria of having a CCC 

greater than or equal to 0.9 and approximately one third of these features were redundant.52 Hunter et al. 

identified that QIFs are not only dependent on the scanner type but also image phase on 4D-CT.41 Care 

should always be taken when determining the appropriateness of feature calculations used for each 

application.  

Our work builds upon the preliminary evidence shown in recent publications supporting the use 

of CT-based QIFs in NSCLC.10, 14, 15, 48–50 Our chosen patients are different in that our cohorts are 

comprised only of patients deemed stage III rather than multiple stages. Furthermore, we examined QIFs 

in relation to a more substantial list of CPFs whereas most of the literature does not perform multivariate 

comparisons or adjust for one or two CPFs such as volume and/or staging. Our analysis of cohort 1 found 

that the LOG_Average feature was significant across multiple outcomes. This supports the findings of 

Ganeshan et al. that have multiple reports of this feature type being significant not only in NSCLC but in 

other disease sites such as liver, breast, and esophageal cancers.10, 14, 15, 17, 19, 27, 28 Our analysis of cohort 2 

found that histogram uniformity was significant in multivariate analysis relating to patient survival. Aerts 

et al. used this feature (called total energy in their work [not to be confused with our COM energy 

feature]) as part of a radiomics signature that was found to be prognostic in both NSCLC and head and 

neck cancer cohorts in addition to relating to tumor gene-expression.8 Furthermore, their energy feature 

alone (i.e. not in a radiomics signature) was able to stratify patient survival in both NSCLC and head and 

neck cancer cohorts and these results were independently validated. However, this work was done using 

non-contrasted CT scans.  

Large, prospective studies are required in order to fully understand the potential impact that CT-

based QIFs could have on outcome prediction models. This work represents a good foundation from 
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which prospective studies could be based on due to the use of cross-validation and preliminary analysis of 

reproducibility. Further work needs to investigate QIFs’ role as a potential source of prognostic 

information as well as ways to ensure/correct for variation in features due to differences in scanners, 

reconstruction, phase (in 4D-CT), etc. Taking into account feature robustness alongside prognostic 

potential is necessary. Data needs to be collected to assess whether images and/or QIFs can be 

“normalized” and/or “corrected” to a particular baseline in terms of scanner, reconstruction, etc. to 

facilitate large scale investigations. Issues relating to the use of contrast material also need additional 

exploration. Very little is known regarding the impact of injection timing or the use of contrast versus 

non-contrasted scans. A cohort of NSCLC patients receiving sequential CT scans in the area of their 

primary tumor after contract injection would be valuable in determining the impact of scan timing post 

injection on QIFs. Furthermore, a cohort of patients receiving both non-contrasted and CE-CT and 

comparing the resulting QIFs should be performed to assess the impact of contrast on feature values.  

Our work provides some insight as to the influence of contrasted vessels on prognostic CT-based 

QIFs, but additional work validating our findings/methods increase our understanding of what these 

features may or may not be ultimately measuring. In general, more uniformity across all aspects of feature 

analysis (such as homogenizing features extracted, feature nomenclature, feature formulas, feature 

parameters used, modeling techniques, image acquisition, etc.) needs to be implemented for the field to 

advance. This process of homogenizing workflow should be the focus of future research in order to 

properly vet the ability of QIFs to provide prognostic information in addition to what is already known 

from CPFs.   

Discussion Specific Aim 2 

We hypothesized that the addition of FDG-PET-based quantitative image features will 

significantly improve outcome models compared to models using conventional prognostic factors. This 

hypothesis was confirmed as the addition of FDG-PET-based quantitative image features significantly 

improved outcome models compared to models using conventional prognostic factors. Incorporating 

pretreatment PET QIFs alongside CPFs in survival models enabled improved model fit and better 
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stratification of patients in terms of overall survival compared to models using CPFs alone.  The use of 

cross-validation allows the use of all data in both training and testing and thus is more efficient than 

splitting data into independent test and validation sets. The results from cross-validation should more 

aptly reflect how the model would perform in an independent cohort comprised of similar patients. 

 Recent data has suggested that quantification of intratumoral heterogeneity may yield prognostic 

information that could improve prediction or response and/or prognosis in patients with NSCLC.12, 21, 23  It 

is hypothesized that tumor heterogeneity in FDG-PET tracer uptake may reflect underlying tumor biology 

such as hypoxia, angiogenesis, and necrosis.14 Therefore, these methods could be used to identify tumors 

that are predisposed to aggressive behavior.  In NSCLC specifically, preliminary data suggests a 

relationship between QIFs and patient outcome.12, 21  However, these studies do not sufficiently adjust for 

CPFs when assessing significance of new QIFs.  This work is unique in that significant effort was made 

to generate multivariate models that implement both QIFs and CPFs to assess the added benefit of QIFs to 

models using CPFs. Furthermore, prediction models frequently utilize cohorts comprised of patients of 

varying stages whereas our cohort is comprised solely of stage III NSCLC.  Models capable of stratifying 

patients that are homogeneously staged may be more clinically useful as different stages of disease 

frequently dictate different treatment courses.  Furthermore, solidity and COM energy were consistently 

selected during cross-validation and conventional PET metrics, such as SUVmean, SUVmax, MTV, etc. , 

were not selected with nearly the same frequency.  This observation suggests that perhaps QIFs 

examining spatial heterogeneity of uptake may be more predictive than conventional PET metrics when 

adjusting for CPFs.  Solidity quantifies how dispersed the primary and nodal disease are in a local region 

context (all stage III patients).  COM energy quantifies the uniformity of the SUV values within the 

primary tumor while taking into account the spatial orientation of the voxels.  The COM energy metric is 

calculated by determining the probabilities for different voxel-adjacent voxel-pairs within the tumor, 

squaring these values, and summing them together.  Therefore, a completely uniform tumor would have a 

COM energy of 1 while a heterogeneous tumor where few adjacent voxels have the same SUV value 

would have a COM energy value that is very small.         



110 

 

Use of QIFs from routinely obtained images has the potential to provide value to clinical practice 

without any added expense or radiation exposure.  Pretreatment risk stratification could enable clinicians 

to deliver more patient-specific treatment tailored to individual risk.  Particularly in advanced NSCLC 

patients, accurate predictions might aid in determining the appropriate level of treatment aggressiveness 

and maintaining as much of a patient’s quality of life as possible.  Additionally, more accurate prediction 

models could ensure more balanced and/or appropriate treatment arms in prospective trials.   

Prediction models that include QIFs have been shown to have significant potential; however, a 

few limitations should be noted.  First, most of the evidence for the prognostic ability of QIFs (including 

this study) comes from retrospective reviews and not from prospective assessment.  Additionally, in order 

to generate sizable cohorts, several studies have used patient data acquired on a variety of scanners 

implementing various/outdated reconstruction parameters (e.g., differing voxel sizes or use of 2D 

reconstruction).  Recently, literature has emerged that found these differences have a significant impact 

on the reproducibility of the extracted QIFs.53–56 Leijenaar et al. have analyzed the reproducibility of QIFs 

using test-retest scans and specifically found that the COM energy feature had an intra-class correlation 

coefficient (this is the same as the CCC used in this work) of 0.96.   

However, our work found using “pseudo” test/retest scans that COM energy had a much lower 

CCC (0.56). This result suggests that this feature may be “portable” enough to have broad implementation 

but normalizing acquisition/reconstruction parameters may be beneficial. Specific Aim 2.2 found that a 

majority of features are reasonably reproducible even when using scans separated by time, reconstruction, 

scanner type, etc. Numerous publications suggest that standard quantitative FDG-PET features, such as 

SUVmean, SUVmax, etc., are variable across scanners/institutions.57–59 Therefore, the observation that QIFs 

were reasonably reproducible in our “pseudo” test/re-test cohort was initially surprising considering the 

nonhomogeneous nature of the protocols/scanners used. The reason for this observation was found to be 

differences in the metric used to define reproducibility.  For instance, the CCC index for SUVmean for all 

test/re-test pairs was 0.85, which is viewed as reproducible.  However, the average absolute percent 

difference for SUVmean was 21%, which is similar to observations in the literature.57       
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Tumor delineation on PET images is also less than straightforward.  Many delineation methods 

exist such as manual contouring, value thresholding, percentage thresholding, and a variety of other semi-

automated techniques.  This work used a semi-automated gradient technique because a review by Werner-

Wasik et al. found this method to be the most robust in terms of accuracy and consistency for NSCLC 

tumors.42This study found PETedge to be superior to manual contour and thresholding due to its lower 

percent error in segmented volume and very low systematic bias. Variations in tumor delineation could 

easily influence the extracted QIFs.  

This investigation generated retrospective reconstruction datasets from a NEMA IEC phantom as 

well as patient scans. The purpose of this data was to determine feature reproducibility in a more 

controlled manner than our “pseudo” test/re-test dataset.  The phantom data did a reasonable job of 

replicating the reproducibility seen within the patient reconstructions.  A majority of features were found 

to have a high ratio of the standard deviation of clinical patient QIFs to standard deviation of QIFs from 

phantom/patient reconstructions. COM correlation and homogeneity performed the poorest, having 

standard deviation ratios of approximately two or less. These features may not be sufficiently robust to 

quantify features from a variety of sources due to their sensitivity to changes in reconstruction. While the 

ratio of standard deviations may seem high, it is important to realize that the potential for substantial 

changes still exists. Our investigation only evaluated reconstruction parameters in routine clinical use. 

Images generating using reconstruction parameters outside the limits of those investigated may still 

generate QIF values that vary substantially from images generated using more routine reconstructions. 

One should also consider the implications of using a ratio of standard deviations between patient data and 

reconstructed data. Substantial percent changes in a particular feature can exist (e.g., SUV max change of 

30%) and still yield a reasonably high ratio of standard deviations. The standard deviation ratio takes into 

account the variance seen within patients and therefore a 30% change may not be substantial when taking 

into account the range of values seen clinically.  While changes in most QIFs due to the different 

reconstruction techniques investigated appear to be minor, future studies should strive to collect imaging 

data with as limited variation in reconstructions/parameters as possible. The balance between 
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homogenizing imaging and patient numbers is something that should be considered on a project-to-

project basis. Future work determining if images can be retrospectively normalized to a particular 

baseline may prove beneficial.  

One important observation that should also be noted is that COM energy and uniformity of FDG-PET are 

very closely correlated. Since uniformity was seen to be more reproducible, it may be wise to analyze 

both COM energy and uniformity in future studies. However, uniformity was found to be more 

susceptible to changes in tumor volume than COM energy. The summary of the results for Specific Aim 1 

Hypotheses (2.1-2.3) are shown in Table 19. 

Table 19. Summary of Results for Specific Aim 2 Hypotheses 

Hypothesis Result(s) 

Project 2.1 Quantify the impact of 

adding FDG-PET-based quantitative 

image features to outcome models 

containing only CPFs 

 

Likelihood Ratio Test: 

OS: p=0.007 

 

Project 2.2 Quantify the 

reproducibility of FDG-PET-based 

quantitative image features using 

“pseudo” test-retest scans 

 

12/15 (80%) of QIFs did not have a 

CCC> 0.9 

 

CCC of 2D-3D reconstruction  

(average = 0.72) vs 3D-3D (average 

= 0.93) 

Project 2.3 Quantify the 

reproducibility of FDG-PET-based 

quantitative image features using 

retrospective reconstructions of 

phantom and patient data  

 

 

3/9 (33%) of QIFs  in NEMA 

phantom and 2/9 (22%) QIFs in 

patients did not have ratio of 

standard deviations greater than 3 

  

 

This promising work has several limitations. First, retrospective data derived only from a single 

institution cohort is hypothesis generating. Proper validation using a sizeable independent cohort of 

patients is needed. Second, we originally considered 26 distinct QIFs and did not solely perform our 

analysis using the two QIFs found to predictive. However, the use of cross-validation for simultaneous 
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multivariate selection of these features should provide a better assessment of predictive model fit than re-

substitution statistics.   

The reproducibility of most FDG-PET QIFs was found to be reasonable considering the variation 

seen in features from Cohort 3. The “pseudo” test/retest analysis found reproducibility values that were 

lower than what has been previously reported in the literature. This is likely due to additional sources of 

variability such as scanner manufacturer/reconstruction methodology, scan timing, tumor growth, change 

in underlying FDG-uptake, etc., that are not present in other publications examining this issue. Feature 

variability within Cohort 3 is likely somewhere in between what was observed in the “pseudo” test/retest 

cohort and patient data using retrospective reconstructions.  

Our work provides additional data supporting the use of FDG-PET QIFs in NSCLC to the 

growing body of literature currently available.12, 21, 23, 35 Similar to our work performed in CT, the 

analyzed FDG-PET cohort from section 4.2.1 was comprised entirely of stage III patients. Kang et al. also 

investigated FDG-PET based QIFs in a cohort comprised solely of stage III NSCLC patients.21 They 

found the area under the curve of the cumulative SUV histogram (AUC-CSH) was an independent 

prognostic factor for progression-free survival, locoregional-recurrence free survival, and distant 

metastases-free survival (p < 0.05). We examined the AUC-CSH metric in section 4.2.1 but it was not 

selected using our methodology in terms of its association with patient survival. AUC-CSH was also not 

found to be associated with overall survival, local-regional control, or freedom from distant metastases on 

univariate analysis. One reason why the prognostic ability of this metric was not able to be validated 

could be that Kang et al. extensively used optimal cut-offs for AUC-CSH as well as other conventional 

prognostic factors. This type of methodology has been associated with an increase in Type I error.60 In 

addition, Tixier et al. also did not find AUC-CSH to be significant predictor of overall survival or 

recurrence free survival.23 

Other work has been performed examining the prognostic ability of FDG-PET based QIFs in 

NSCLC in patients with multiple stages.12, 23 Cook et al. investigated 4 nearest gray tone difference matrix 

features relationship to tumor response along with overall survival, progression-free survival, and local 
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progression-free survival. Tumor coarseness, contrast, and complexity were found to be significantly 

different between responders and non-responders (p < 0.05). Tumor contrast had the largest area under 

the curve for predicting tumor response (AUC = 0.82). Tumor coarseness, contrast, and complexity were 

all found to be significantly predictive of one or more of the outcomes measured. However, the 

relationship between these QIFs and patient outcomes were tested using optimal-cutoffs in a univariate 

manner. These methods could potentially be problematic and have led to overly optimistic results.     

Accurate knowledge of a patient’s prognosis is a valuable tool in medicine and particularly in 

oncology.  We demonstrated that QIFs extracted from pretreatment PET images enhance stratification of 

patients based on overall survival compared to CPFs.  Appropriate use of these models could greatly aid 

the treating clinicians and the patients themselves.  More studies need to be conducted to validate PET 

derived QIFs and determine whether these techniques could one day be implemented clinically.  

Moving forward, additional research should be conducted to standardize all aspects of feature 

analysis (such as homogenizing features extracted, feature nomenclature, feature formulas, feature 

parameters used, modeling techniques, image acquisition, etc.). This is very similar to the standardization 

needed in CT and is perhaps even more difficult. FDG-PET has scanner-based variation just like CT but 

since FDG-PET measures a biological process it has inherent biologic variation from the patient as well 

as variation stemming from the use of a radiotracer (variation injection-scan time interval, injected 

dosage, etc.). A large cohort of patients with imaging from multiple scanners, injection timings, 

reconstruction parameters, etc. would be useful in determining thFeature/methodology standardization 

analyses need to be conducted in order for large scale retrospective/prospective studies to reach their full 

potential in terms of advancing the field.     

Discussion Specific Aim 3 

We hypothesized that there would be significant relationships between some quantitative image 

features between modalities and with tumor volume, staging, and morphologic characteristics. This 

hypothesis was confirmed as significant relationships were found between some quantitative image 

features between modalities and with tumor volume, staging, and morphologic characteristics. A theme 
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throughout this work is the importance of not only determining the prognostic value of QIFs but to 

quantify their significance in addition to CPFs. Furthermore, it is important to gain an understanding of 

why these features seem to be prognostic and if features from different modalities are related. FDG-PET 

based QIFs identified in Specific Aim 2 were significantly correlated with the LOG_Average extracted 

from CE-CT (p < 0.05). Solidity as measured on FDG-PET was also significantly correlated with CE-CT 

uniformity (p < 0.05).  A variety of significant associations were also seen between QIFs (from FDG-PET 

and CE-CT) and CPFs such as volume and staging and morphologic characteristics, such as visualized 

necrosis and vascularity. 

The QIFs extracted in Specific Aims 1 and 2 seem to be related not only to one another in some 

capacity but also to CPFs and morphologic characteristics of tumors. The fact that QIFs have associations 

with CPFs is not a surprise nor does it invalidate our findings since QIFs were shown to have prognostic 

potential beyond CPFs. However, it is important to be cognizant of the fact that these relationships do 

exist in order to not overstate possible conclusions.   

One of the more interesting results from Specific Aim 3 is the identification of a relationship 

between FDG-PET-based QIFs and the LOG_Average and Uniformity QIFs extracted from CE-CT. This 

relationship links features from a predominantly anatomical imaging modality (CT) to a functional 

imaging modality (FDG-PET). The linkage from anatomical to functional supports a hypothesis that 

morphologic characteristics/phenotypes of tumors can relate to underlying functional/biologic 

phenotypes. However, while some associations were statistically significant the correlation coefficients 

were quite low. To our knowledge, there is only one publication in the literature that suggests that two 

different imaging modalities may be related in terms of their extracted QIFs.10 However, this was done in 

non-contrasted CT and was not done using factors found to be significant in any sort of outcome analysis.  

We were able to demonstrate that morphologic characteristics of tumors such as enhancing 

vasculature, necrosis, and air within tumor cavitation can influence the two examined QIF measurements 

(LOG_Average and histogram based uniformity). LOG_Average was found to be influenced by these 

morphologic characteristics of tumors to a greater extent than histogram uniformity. Tumors with necrosis 
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and enhancing vasculature demonstrated an increase in LOG_Average (p < 0.0001 and p < 0.0001, 

respectively) but did not have the same magnitude of impact on histogram uniformity (p=0.19 and p = 

0.03, respectively). The presence of air within cavitated tumors led to a decrease in uniformity (p = 

0.0001). Tumor morphologic characteristics, such as  presence of enhancing vasculature and necrosis, 

may contribute to the underlying reason why QIFs appear to be prognostic in a variety of tumors. Our 

results demonstrated a significant difference in QIF values between tumors with and without air within 

cavitated tumors, necrosis, and enhancing vasculature. 

Excluding morphologic characteristics was found to alter the QIFs measured from tumors; 

however, this was only significant when examining LoG Average and excluding tumors with a large 

volume of vessels. Excluding air, necrosis, and/or vessels from the analyzed contour did not impact the 

resulting QIF values substantially compared to examining only “tumor tissue”. The tumor tissue alone 

appeared to explain a vast majority of the resulting QIF values for LOG_Average and histogram 

heterogeneity compared to analyzing the entire tumor (R-squared = 0.92 and 0.96, respectively).  

At first glance this result may seem inconsistent; however, this could be due to the interaction 

between these morphologic characteristics and the tumor tissue itself. For example, the presence of 

enhancing vessels or necrosis within the tumor may lead to heterogeneity in contrast uptake within the 

tumor tissue causing more “edges” being measured by LOG_Average. This can be observed in Figure 1. 

Tumors with higher than average volume of vessels (black points in Figure 33) have higher values of 

LOG_Average than tumors with lower than the average volume of vessels (gray points in Figure 33) (p < 

0.05). The same pattern can also be observed in Figure 33 for necrosis (p < 0.05). These types of 

processes may  contribute to the values obtained from QIFs. 

 Literature attempting to determine what is fundamentally being measured from QIFs from CT in 

NSCLC or what tissue-related factors may influence QIF measurement is scant. Ganeshan et al. and van 

Gomez et al. both examined the relationship between CT-based QIFs and SUV features from FDG-

PET.10, 35 Ganeshan et al. found that coarse texture features correated with mean tumor SUV and van 

Gomez et al. found correlations between a variety of CT-based QIFs and FDG-PET features. A separate 
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publication from Ganeshan et al. established relationships between CT-based QIFs and hypoxia markers 

from FDG-PET and pathology.14 Additionally, Aerts et al. observed that certain QIF clusters are 

associated with primary tumor stage, overall stage, and histology. Aerts et al. also found that the QIFs 

incoporated into their “radiomics signature” were found to have high normalized enrichment scores in 

their analysis of gene expression.8 However, a majority of these publications were performed in non-CE-

CT whereas our study was performed using contrast enhanced scans.  

The correlated nature between CE-CT and FDG-PET QIFs suggests that analysis of both 

modalities in tandem has the potential to provide additional prognostic information.  

When designing the autosegmentation algorithms, we found that the most difficult portion was 

differentiating necrosis from tumor tissue. The Hounsfield unit values of air and enhancing vessels are 

substantially different from tissue and therefore amenable to a simple thresholding approach. However, 

tumor necrosis contains Hounsfield unit values that are only slightly lower than the rest of the tumor 

tissue. Tumor necrosis is more easily identified on FDG-PET than on CT (see Figure 3). Therefore, 

establishing that both autosegmentation methods on both image types resulted in similar values of 

necrosis volume and percentage of necrosis within the tumor is encouraging and supports the accuracy of 

segmentation on CE-CT (CCC = 0.85 and 0.76, respectively). The decrease in CCC value between 

necrosis volume and percentage of tumor containing necrosis could be due to variability in delineating the 

tumor itself on CT versus PET and not the autosegmentation. Furthermore, necrotic regions with low 

FDG-avidity may not always appear on CE-CT as having lower Hounsfield unit values which would 

cause discrepancies in quantifying necrosis volume. Overall, the agreement seen between the two 

methodologies was reasonable based on their CCC values and supports the accuracy of CE-CT 

autosegmentation.   

Quantifying and relationships and/or correlations between QIFs from different modalities, CPFs, 

and morphologic characteristics are needed in order to increase our understanding of how and why QIFs 

appear to provide prognostic information. Furthermore, these types of studies are of paramount 
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importance if QIFs are ever to be optimized in terms of their preprocessing and method of quantification. 

The summary of the results for Specific Aim 3 Hypotheses are shown in Table 20. 

Table 20. Summary of Results for Specific Aim 3 Hypotheses 

Hypothesis Result(s) 

Project 3.1. Quantify correlations 

between prognostic FDG-PET-based 

and CECT-based quantitative image 

features 

 

See Table 15 

Project 3.2. Quantify if relationships 

exist between CE-CT-based and FDG-

PET-based quantitative image features 

with tumor volume and TNM staging 

 

 

See 

 
 

Figure 28,  
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Figure 29 

Project 3.3. Quantify if there are 

correlations between FDG-PET-based 

quantitative image features, CECT-

based quantitative image features, and 

morphologic characteristics (vessels, 

necrosis, air cavities, etc.) 

 

 

See Figure 30, Figure 31 
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While this work is a good initial step, there are several limitations. This was done retrospectively 

using only 78 patients with both a CE-CT and FDG-PET taken at a single institution. This does not 

address whether significant associations/correlations would be observed across a wider array of patients, 

scanners, etc. Statistical significance in terms of correlation or separation of groups also does not 

necessarily translate to clinical significance. For instance, while LOG_Average and COM Energy were 

found to be significantly correlated, this does not imply that one could use these features interchangeably 

or that the prognostic value of one feature is comparable to another.  

While we believe our segmentation methodology to be sufficiently robust due to the correlation 

of necrosis volumes between CT and FDG-PET segmentations, further validation of its accuracy would 

be useful. Possible avenues to validate this segmentation would be to consult a radiologist for their 

opinion on segmentations across a range of patient tumors or examine pathology from excised lesions. In 

addition, enhancing the autosegmentation to be more robust to image artifacts, alternative reconstruction 

filters (i.e. standard versus lung versus bone), and non-contrasted scans would increase its utility. As the 

reconstructions rely heavily on HU cutoffs, the ability to adapt these cutoffs on an image-to-image basis 

may also improve its accuracy.    

 

Discussion Specific Aim 4 

We hypothesized that significant FDG-PET-based based quantitative image features found in 

Specific Aim 2 would allow for identification of sub-cohorts that will demonstrate a significant 

stratification of patients based on radiation dose. This hypothesis was confirmed as the significant FDG-

PET-based based quantitative image features (COM energy and solidity)allowed for identification of sub-

cohorts that demonstrated a significant survival stratification of patients based on radiation dose. 

Quantitative image features from CT and PET have been shown to be prognostic in a variety of solid 

tumors including NSCLC.12, 21, 23, 25  To our knowledge, this work is the first to examine the possible 

influence that these factors could have on modifying treatment. This study found that there was no 

difference in overall and progression free survival between patients being treated with 74Gy vs 60-70Gy 
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when examining the entire cohort.  When examining subgroups of our cohort based on values of QIFs, we 

found that dose escalation benefits those with high values of COM energy and solidity (i.e. those who 

have a higher predicted survival based on our previous work) and is detrimental to those with low values 

of COM energy and solidity. We found that receiving 74Gy versus 60-70Gy was an independent 

prognostic factor both overall survival (high value QIFs: p = 0.012, low value QIFs: p = 0.02) and 

progression free survival (high value QIFs: p = 0.015, low value QIFs: p = 0.025) in a multivariate Cox 

proportional hazards model. 

The literature is conflicting whether or not escalating dose yields an improved survival in patients 

with NSCLC. It has been suggested that an increase in the delivered radiation dose may improve patient 

survival in NSCLC.61RTOG 0617 examined whether dose escalation improved survival in stage III 

NSCLC patients treated with chemoradiation.62 This study found that treating to 74Gy versus 60Gy led to 

an increased incidence of grade 3 pneumonitis was detrimental to patient survival at one year (70.4% 

versus 81%, respectively). The reasons for these surprising results are the subject of intense debate.63 

There has been the suggestion that patient heart dose could be responsible for the reduced survival.  

Speirs et al found that cardiac dosimetric parameters such as mean/max heart dose were significant using 

univariate analysis for overall survival but this association was not seen when using multivariate 

techniques adjusting for factors accounting for tumor volume.64  However, a study by Liao et al found that 

the use of IMRT led to an improvement in overall survival compared to 3D conformal radiation therapy 

(3D-CRT) (p = 0.039).65 One could hypothesize that this may have been due to the dosimetric 

improvement allowed by IMRT compared to 3D-CRT in the cardiopulmonary structures. In our study 

comprised almost exclusively of IMRT patients, we did not observe a survival difference between those 

treated to at least 74Gy versus 60-70Gy. It is quite apparent that patient survival is contingent upon a 

multifactorial process and not purely radiation dose. In order to optimize treatment for patients, it would 

be advantageous to know if certain populations of stage III NSCLC are more likely to benefit from 

escalating radiation treatment dose. 
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The present work was able to demonstrate that subgroups with certain values of disease solidity 

and primary COM energy can yield significantly different survival rates based on the use of dose 

escalation. Figure 35 and Figure 37 illustrate that these observations were not obtained by merely 

selecting a subgroup in which a survival difference was seen but that an overall trend is evident regarding 

the impact of dose escalation with high/low values of these two QIFs.  It should also be noted that since 

we chose different percentile cutoffs for the dashed outline cells in Figure 35 and Figure 37, there are 

patients (4) that are in both figures.  This was done merely to display the concept with a reasonable 

sample size in each plot.  We also could have displayed subgroups where the cutoffs were the same and 

therefore there would be no patient overlap.  For example, using the values of 45% COM energy and 55% 

solidity in both Figure 35 and Figure 37, the separation would be significant (p < 0.05) for high/low 

values of QIFs in terms of overall and progression free survival however this would only yield sample 

sizes of 42 and 52 patients, respectively. The summary of the results for Specific Aim 4 Hypothesis are 

shown in Table 21. 

Table 21. Summary of Results for Specific Aim 4 Hypotheses 

Hypothesis Result(s) 

Project 4.1. Assess whether 

significant PET-based quantitative 

image features relate to a difference in 

patient survival for those treated with 

an escalated radiation dose   

 

 

See Figure 35, Figure 36, 

Figure 37, Figure 38 

 

While the results of our work are interesting and have the potential to allow physicians to better 

select patients for dose escalation, there are several limitations.  First and foremost this study is 

retrospective in nature and therefore has all the limitations that are associated with retrospective studies 

such as possible selection biases, attrition bias, methodological changes, etc.  Our cohort also had a 

mixture of patients treated with both proton and photon therapies whereas most studies examining dose 

escalation are comprised of patients treated with photon therapy. Due to the retrospective nature and 

variations in patient treatment within this study it should be seen exclusively as hypothesis generating 
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work. In the future, we hope to extract dosimetric and toxicity data from our patients to determine if any 

trends exists relating to radiation dose and whether these metrics could also be useful in better selecting 

patients for treatment. 

The use of pretreatment QIFs to better select patients for different treatments would be a 

substantial advance in how radiation oncologists treat patients.  We demonstrated that the use of QIFs 

from pretreatment FDG-PET scans in stage III NSCLC patient’s scans may allow clinicians to better 

predict who would benefit from a higher radiation dose. Further work is needed in order to validate these 

findings and better understand what factors influence which patients should be treated to a standard or 

escalated dose.  

There are numerous limitations of this work that need to be considered. More variation in feature 

values could be obtained if images were expanded to include various manufacturers, reconstruction 

parameters, etc.  A large, independent cohort would be needed to fully validate the findings from this 

work and further exploration is needed into the applicability of the metrics across institutions.  

As echoed in the previous discussion sections, feature/methodology standardization is needed in 

order to properly put these results into context and potentially validate their results. A future study 

confirming these results as well as identifying a specific cutoff of both solidity and COM energy should 

be performed before any attempt of prospective assessment.  

Discussion Overall 

Almost all previous studies examining the relationship of QIFs to patient outcome are performed 

in patients staged differently according to AJCC staging. Stratifying patients of the same stage is 

fundamentally more difficult than stratifying patients of different stages for a couple of reasons: 1. There 

will be inherently more variation in terms of patient outcome for patients of various stages and 2. Patients 

of different stages are frequently accompanied by differences in non-cancer related prognostic factors 

such as performance status and comorbidities. Models capable of stratifying patients who are 

homogeneously staged may also be more clinically useful as different stages of disease frequently dictate 

different treatment courses.  Every effort was made to try and quantify the improvement that QIFs can 
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make to outcome models when adjusting for an extensive list of CPFs. Furthermore, proper validation, 

whether using cross-validation or independent cohorts, was implemented whenever possible. A majority 

of studies in the literature do not comprehensively investigate the added benefit of QIFs but merely 

examine their impact alone or adjusting for 1-2 CPFs such as primary tumor volume or TNM staging. 

Most publications also only focus on features relating to the primary tumor and disregard information 

from nodal disease, which has been shown to relate to patient survival.4, 66 Numerous issues exist when 

using re-substitution statistics or optimal cut-offs and these issues permeate through the existing 

literature.    

Some may argue that, for those with a poor predicted prognosis, this knowledge is usually not 

beneficial since patients are already receiving the maximum tolerable treatment.  I would argue that 

treatment optimization does not necessarily equate to treatment escalation.  In some instances, perhaps de-

escalation of treatment and initiation of early palliative care may provide the best care for the patient.  An 

accurate prognosis would also be beneficial to patients and their caregivers.  Those identified as having a 

poor prognosis may be better equipped to make decisions regarding palliative versus definitive treatment 

and the role of hospice care. Section 4.4.1 found that QIFs may be potentially useful in modifying 

treatment for identified patients. This modification of treatment was shown to include both potential 

escalation and de-escalation in terms of ultimately providing patient benefit. 

The major message from this work is that many factors can and do contribute to patient 

outcome/survival. This work explored not only novel QIFs but also CPFs and these factors are only the 

tip of the iceberg. Other indicators, such as genetics, social factors, blood-based markers, etc., all may 

potentially play a role in determining outcome.  Furthermore, the cohort of patients being analyzed also 

plays a significant role in the ultimate findings. In our work, for example, the role of GTV in the CE-CT 

(Cohort 2) versus FDG-PET (Cohort 3) was found to be drastically different even when these patients 

were extremely similar in terms of CPFs. These prognostic discrepancies in basic CPFs really highlight 

the need of performing these types of analyses on extremely large patient cohorts. 
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There is a desperate need for the development of large-scale cohorts that contain not only patient 

clinical data but patient imaging, pathology, and genetics. A big data approach to the field of quantitative 

image analysis (a.k.a. radiomics) would be a tremendous advance. The use of natural language processing 

for efficient extraction of patient clinical data, pathology, and genetics would increase the ease of 

database construction. Automated workflows for extracting images from radiation treatment planning 

systems and/or PACs followed by robust and validated disease segmentation algorithms should be 

employed in the future to facilitate high throughput data collection. Ideally, the use of a single 

quantitative analysis software would be ideal but simply standardizing feature nomenclature and 

calculation across platforms would be a good first step. Databases exist that contain a portion of the 

required information such as the Surveillance, Epidemiology, and End Results (SEER) program. SEER 

could be used as a model in the generation of future databases with more comprehensive information 

needed to truly develop and investigate aspects personalized patient care. 

Ultimately, outcome model development is an extremely difficult process that requires 

knowledge in a variety of areas. Researchers need to be familiar with both the medical and 

quantitative/analysis sides of the problem if they hope to conduct work that may one day translate into 

clinical benefit. The aforementioned work found encouraging results in terms of analyzing the prognostic 

value of QIFs from pretreatment CT and FDG-PET scans in stage III NSCLC patients undergoing 

definitive radiation therapy but has many potential caveats and drawbacks as discussed previously. This 

work has the potential to one day improve the quality of care for these patients and the processes 

described are translatable to other stages and/or tumor types. Additional investigation and/or optimization 

regarding standardization of image acquisition(s), quantification methods, and statistical 

analysis/validation are necessary and encouraged in order to realize the maximum potential of using 

image-based features for improving personalized cancer care.   
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Appendix A: Matlab Code for CE-CT Autosegmentation 

This function was used in the work performed in section 4.3.3 Results for Project 3.3: Quantify if 

there are correlations between FDG-PET-based quantitative image features, CECT-based quantitative 

image features, and morphologic characteristics (vessels, necrosis, air cavities, etc.) in order to segment 

the morphologic characteristics. 

function [Air_out,Necrosis_out,Tissue_out,Vessel_out]=TissueSeg3(CDataSetInfo) 

disp_img = 0; 

Air_bounds=[0 950];%%%white 

Tissue_bounds = [1020 1120];%%%blue 

Vessel_bounds = [1120 2000];%%%green 

  

%%%%%%%%%%%%%%%%% 

%%%%Initiation of Outputs%%%% 

%%%%%%%%%%%%%%%%% 

Tissue_out = 

zeros(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2),size(CDataSet

Info.ROIImageInfo.MaskData,3)); 

Vessel_out = 

zeros(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2),size(CDataSet

Info.ROIImageInfo.MaskData,3)); 

Air_out = 

zeros(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2),size(CDataSet

Info.ROIImageInfo.MaskData,3)); 

  

  

disp('1: Identifying necrotic regions') 

%%%%%%%%%%%%%%%%%% 

%%%Identify Necrosis in 3D%%%% 

%%%%%%%%%%%%%%%%%% 

Necrosis_use = necrosis3d(CDataSetInfo); %Separate Code (see Appendix B) 

disp('2: Finished necrosis region growing') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%Identify Air,Vessels, Tissue on each 2D slice%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for slice = 1:size(CDataSetInfo.ROIBWInfo.MaskData,3); 

    IMG=CDataSetInfo.ROIImageInfo.MaskData(:,:,slice); 

    Mask = CDataSetInfo.ROIBWInfo.MaskData(:,:,slice); 

    filt = fspecial('gaussian', [3 3],0.7); 

    TumorTest1 = roifilt2(filt,IMG,Mask); 

    if isempty(TumorTest1) 

        TumorTest1 = zeros(size(Mask)); 

    end 

    Mask(IMG<875) = 0; 

    Maskfill=imfill(Mask,'holes'); 

     

    %%%%%%%%%%%%%%%%%%% 

    %%%%Identify Air and Vessels%%%% 

    %%%%%%%%%%%%%%%%%%% 

    TumorTest1 = double(TumorTest1).*double(Maskfill); 



134 

 

    TumorTestinit = double(IMG).*double(Maskfill); 

    Air_use=TumorTestinit>Air_bounds(1) & TumorTestinit<=Air_bounds(2); 

    Air_use = imerode(Air_use,ones(2));Air_use = imerode(Air_use,ones(2)); 

    Air_use = imdilate(Air_use,ones(2));Air_use = imdilate(Air_use,ones(2)); 

    Air_use=imfill(Air_use,'holes'); 

    Vessel1=TumorTest1>Vessel_bounds(1) & TumorTest1<=Vessel_bounds(2); 

    Vessel_use=double(bwareaopen(Vessel1,2)); 

    %%%%%%%%%%%%%%%% 

    %%%%Identify Tissue%%%%% 

    %%%%%%%%%%%%%%%% 

    Tissue1=TumorTest1>Tissue_bounds(1) & TumorTest1<=Tissue_bounds(2); 

    Tissue_use=double(bwareaopen(Tissue1,5)); 

    Tissue_use=abs(bwareaopen(abs(Tissue_use-1),20)-1); 

    Tissue_use = Tissue_use - (Tissue_use&(Air_use|Vessel_use|Necrosis_use(:,:,slice))); 

    %%%%%%%%%%%%%%%%% 

    %%%% Define the outputs%%%% 

    %%%%%%%%%%%%%%%%% 

    Vessel_out(:,:,slice) = Vessel_use; 

    Necrosis_out = Necrosis_use; 

    Air_out(:,:,slice) = Air_use; 

    Tissue_out(:,:,slice) = Tissue_use; 

end 

disp('3: Identified Air and Vessels') 

%%%%%%%%%%%%%%%%%%%%%%% 

%%%%Check that Necrosis is Bounded%%%% 

%%%%%%%%%%%%%%%%%%%%%%% 

for i = 1:size(CDataSetInfo.ROIBWInfo.MaskData,3); 

    IMG=CDataSetInfo.ROIImageInfo.MaskData(:,:,i); 

    Mask = CDataSetInfo.ROIBWInfo.MaskData(:,:,i); 

    Mask(IMG<875) = 0; 

    Maskfill=imfill(Mask,'holes'); 

  

     

     

    Regions=bwlabel(Necrosis_use(:,:,i)); 

    Seg_out = 3*Vessel_out(:,:,i)+Necrosis_out(:,:,i)+2*Air_out(:,:,i)+4*Tissue_out(:,:,i); 

    for r = 1:max(Regions(:)) 

        region = Regions==r; 

        SE = strel('disk', 4); 

        Rdilated = imdilate(region,SE); 

        perim = bwperim(Rdilated); 

        [num,~]=hist(Seg_out(perim==1),[0,1,2,3,4]); 

        if(sum(num(2:5))/sum(num(:))>0.75) 

            disp(sum(num(2:5))/sum(num(:))) 

        else 

            Necrosis_use(:,:,i)=Necrosis_use(:,:,i)-region; 

            Tissue_out(:,:,i) = Tissue_out(:,:,i)+region; 

        end 

    end 

    Tissue_out(:,:,i) = imfill(Tissue_out(:,:,i)); 

end 

disp('4: Checked that necrosis met constraints') 

Necrosis_out = Necrosis_use; 

Tissue_out = Tissue_out - (Tissue_out&(Air_out|Vessel_out|Necrosis_out)); 

  

%%%%%%%%%%%%%%%%%%%%% 
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%%%%Initialize Colors for Display%%%% 

%%%%%%%%%%%%%%%%%%%%% 

Red = zeros(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2),3); 

Green = Red; 

Blue = Red; 

White = Red; 

Red(:,:,1) = ones(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2)); 

Green(:,:,2) = ones(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2)); 

Blue(:,:,3) = ones(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2)); 

White(:,:,1) = ones(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2)); 

White(:,:,2) = ones(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2)); 

White(:,:,3) = ones(size(CDataSetInfo.ROIImageInfo.MaskData,1),size(CDataSetInfo.ROIImageInfo.MaskData,2)); 

  

%%%%%%%%%%%%%%%%%%%%% 

%%%%Code for Displaying Results%%%% 

%%%%%%%%%%%%%%%%%%%%% 

if(disp_img==1) 

    for slice = 1:size(CDataSetInfo.ROIBWInfo.MaskData,3); 

        image = slice; 

        IMG=CDataSetInfo.ROIImageInfo.MaskData(:,:,image); 

        Mask = CDataSetInfo.ROIBWInfo.MaskData(:,:,image); 

        I = double(IMG).*double(Mask); 

        figure(1); subplot(1,2,1); 

        figure(1); imagesc(I,[900 1300]); colormap(gray); hold on; 

        figure(1); type1 = imagesc(Red); 

        set(type1, 'AlphaData', Necrosis_out(:,:,slice)*0.2); 

        figure(1); type2 = imagesc(Green); 

        set(type2, 'AlphaData', Tissue_out(:,:,slice)*0.2); 

        figure(1); type3 = imagesc(Blue); 

        set(type3, 'AlphaData', Vessel_out(:,:,slice)*0.2); 

        figure(1); type4 = imagesc(White); 

        set(type4, 'AlphaData', Air_out(:,:,slice)*0.5); hold off; 

        subplot(1,2,2); 

        imagesc(I,[900 1300]); 

        pause(1) 

         

    end 

else 

    disp('display off') 

end 
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Appendix B: Matlab Code for CE-CT Necrosis Identification 

This is a sub-function used in Appendix A: Matlab Code for CE-CT Autosegmentation. 

function Necrosis_use=necrosis3d(CDataSetInfo) 

disp_img =0;%set to zero in IBEX 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%Identify Initial Image and Mask Data%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%% 

IMG=CDataSetInfo.ROIImageInfo.MaskData; 

IMGinit = IMG; 

Maskfill = CDataSetInfo.ROIBWInfo.MaskData; 

Mask_noair = Maskfill; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%removal of air not encapsulated by tumor%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Maskfill(IMGinit<975) = 0; 

Mask_noair(IMGinit<950)=0; 

for i = 1:size(CDataSetInfo.ROIImageInfo.MaskData,3); 

Maskfill(:,:,i) = imfill(Maskfill(:,:,i),'holes'); 

end 

IMGinit(Maskfill==1 & IMGinit<975)=1005;%Fill encapsulated air with 1005 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%Establish guess for necrosis based off threshold and filtered image%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Necr_bounds = [975 1020]; 

for i = 1:size(CDataSetInfo.ROIImageInfo.MaskData,3); 

    filt = fspecial('gaussian',[5 5],1.5); 

    if max(Maskfill(:,:,i))>0 

    IMGinit(:,:,i) = roifilt2(filt,IMGinit(:,:,i),Maskfill(:,:,i)); 

    else 

    end 

end 

use=IMGinit.*uint16(Mask_noair); 

N_guess = (use>Necr_bounds(1)).*(use<=Necr_bounds(2)); 

for i = 1:size(CDataSetInfo.ROIImageInfo.MaskData,3); 

    N_guess(:,:,i) = imfill(logical(N_guess(:,:,i)),'holes'); 

end 

SE = strel('disk', 2); 

N_guess = imdilate(imerode(N_guess,SE),SE); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%Determine if multiple regions within the guess exists, analyze largest%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if(max(N_guess(:))>0) 

    [L,num] = bwlabeln(N_guess); 

    [value,~]=hist(nonzeros(L),1:num); 

    biggest_region = find(max(value)==value); 

    Necr_cent = L==biggest_region(1); 

    N=BWcentroid(Necr_cent); 

    disp('Into region growing') 

    [~,Necrosis_use] = regionGrowing(use, [N(2) N(1) N(3)],35,[],false); 

    disp('Out of region growing') 

    for i = 1:size(CDataSetInfo.ROIImageInfo.MaskData,3); 
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        Necrosis_use(:,:,i)=imerode(Necrosis_use(:,:,i),ones(3)); 

        Necrosis_use(:,:,i) = bwareaopen(Necrosis_use(:,:,i),50); 

        Necrosis_use(:,:,i) =imdilate(Necrosis_use(:,:,i),ones(3)); 

        Necrosis_use(:,:,i) = bwareaopen(Necrosis_use(:,:,i),50); 

    end 

else 

    Necrosis_use = zeros(size(N_guess,1),size(N_guess,2),size(N_guess,3)); 

end 

  

%%%%Necrosis_use is the output of this function%%%% 

  

 

 

%%%%%%%%%%%%%%%% 

%%%%Display Results%%%% 

%%%%%%%%%%%%%%%% 

  

R = zeros(size(IMG,1),size(IMG,2),3); 

R(:,:,1) = 1; 

if(disp_img==1)%This is set to 0 within IBEX and therefore not executed 

    for i = 1:size(CDataSetInfo.ROIImageInfo.MaskData,3); 

        figure(1); 

        subplot(1,3,1);imagesc(use(:,:,i),[900 1300]);colormap(gray);  

        subplot(1,3,2);imagesc(IMG(:,:,i),[900 1300]);colormap(gray);  

         subplot(1,3,3);imagesc(IMG(:,:,i),[900 1300]);colormap(gray); hold on 

        subplot(1,3,3);red=imagesc(R); 

        set(red, 'AlphaData', Necrosis_use(:,:,i)*0.2); 

        pause(1); hold off 

    end 

end 
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Appendix C: R Code for Cross-Validation Technique 

###Used for both CT and PET analyses### 

###Import data### 

datapath <- "Y:/NSCLC_Texture/November2014/" 

data <- read.csv(paste(datapath,"PETall_HDFU.csv", sep = ""), header = T) 

 

###Load Required Packages### 

library("penalized") 

library("survival") 

source("http://bioconductor.org/biocLite.R") 

biocLite("survcomp") 

library("survcomp") 

require(survival) 

require(survcomp) 

require(MASS) 

require(penalized) 

require(pensim) 

require(Hmisc) 

 

###Custom functions which may or may not be used### 

source('Y:/NSCLC_Texture/Jul2014/make_formula.R', echo=FALSE) 

 

####set parameters###### 

out = "surv"  #outcome of interest (e.g. surv,dm,loco) 

out_time <- eval(parse(text = paste("data$",out,"rtstartmos",sep = ""))) 

out_stat <- eval(parse(text = paste("data$",out,"stat",sep = ""))) 

 

 

###Initialize/reformat various covariates#### 

lorig<-dim(data)[2] 

Solidity<-data$MVolume/data$MConvexHullVolume3D 

data[,lorig+1]<-Solidity 

names(data)[lorig+1]<-"Solidity" 

 

data[,lorig+2]<-data$Total.Dose/100*(1+(as.numeric(as.character(data$D.fx))/100)/10) 

names(data)[lorig+2]<-"BED" 

data$BED[which(data$D.fx=="split")]=92.1 

 

data[,lorig+3]<-data$PGlobalStd/data$PGlobalMean 

names(data)[lorig+3]<-"COV" 

 

data[,lorig+4]<-data$PNecrVolume>0.5 

names(data)[lorig+4]<-"NEC" 

 

data[,which(names(data)=="MVolume")]<-log2(data$MVolume) 

data[,which(names(data)=="MConvexHullVolume3D")]<-log2(data$MConvexHullVolume3D) 

data[,which(names(data)=="GTV")]<-log2(data$GTV) 

data[,which(names(data)=="PVolume")]<-log2(data$PVolume) 

data[,which(names(data)=="PSurfaceArea")]<-log2(data$PSurfaceArea) 

data[,which(names(data)=="MSurfaceArea")]<-log2(data$MSurfaceArea) 

 

data$ECOG<-as.ordered(as.numeric(data$ECOG>0)) 

data$KPS<-as.factor(as.numeric(data$KPS<90)) 

data$Smoking<-as.ordered(data$Smoking) 
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data$PY<-as.numeric(data$PY) 

data$Hist<-as.factor(data$Hist) 

data$Tstage<-as.factor(as.numeric(data$Tstage>2)) 

data$Nstage<-as.factor(as.numeric(data$Nstage>1)) 

data$Overall<-as.factor(as.numeric(data$Overall)) 

data$Induction<-as.factor(data$Induction) 

data$PGlobalStd<-as.numeric(data$PGlobalStd) 

data$Gender<-as.numeric(data$Gender) 

data$Solidity[data$Solidity>1]<-1 

 

###Conditions for Inclusion#### 

rule1<-data$PVolume>log2(5) 

data<-data[which(rule1),] 

out_time <- out_time[which(rule1)] 

out_stat <- out_stat[which(rule1)] 

 

###select clinical and QIFs### 

set.seed(5126) 

vars<-names(data)[c(3:13,17,67:114,lorig+1,lorig+2,lorig+3,lorig+4)] 

evaluate_clin<-select.list(vars,multiple=TRUE,graphics=TRUE,preselect=vars[c(1:3,5:12,62)]) 

evaluate_all<-select.list(vars,multiple=TRUE,graphics=TRUE,preselect=vars[c(1:3,5:64)]) 

 

###Initialize Cross-Validated scores### 

predPENsurv_all <- rep(0,length(out_stat)) 

predPENsurv_clin <- rep(0,length(out_stat)) 

predPENscore_all <- rep(0,length(out_stat)) 

predPENscore_clin <- rep(0,length(out_stat)) 

termsOPTouter_clin = NULL 

termsOPTouter_all = NULL 

 

pb<-winProgressBar("SVM-Progress Bar","Initializing",0,100,0) 

 

###Start of Cross-Validation### 

for(i in 1:length(out_stat)){ 

  data_minus_fold = data[-i,] 

  out_time_temp<-out_time[-i] 

  out_stat_temp<-out_stat[-i] 

   ###L1 penalization### 

  opt_clin<-optL1(Surv(out_time_temp,out_stat_temp), penalized = 

data.matrix(data_minus_fold[evaluate_clin]),data=data_minus_fold,standardize = TRUE,trace=TRUE,fold = 10) 

  opt_all<-optL1(Surv(out_time_temp,out_stat_temp), penalized = 

data.matrix(data_minus_fold[evaluate_all]),data=data_minus_fold,standardize = TRUE,trace=TRUE,fold = 10) 

  ###predictions### 

  predPENsurv_clin[i]<-survival(predict(opt_clin$fullfit,penalized=data.matrix(data[i,evaluate_clin])),36) 

  predPENsurv_all[i]<-survival(predict(opt_all$fullfit,penalized=data.matrix(data[i,evaluate_all])),36) 

  ###determination of coefficients used in each fold### 

  coefs_clin<-names(coefficients(opt_clin$fullfit)) 

  coefs_all<-names(coefficients(opt_all$fullfit)) 

  termsOPTouter_clin<-c(termsOPTouter_clin,coefs_clin) 

  termsOPTouter_all<-c(termsOPTouter_all,coefs_all) 

  clin<-coefficients(opt_clin$fullfit) 

  tex_clin<-coefficients(opt_all$fullfit) 

  ###generation of linear predictors### 

  if(length(clin)!=0){ 

    predPENscore_clin[i]<-rowSums(t(matrix(rep(clin,1),nrow = 

length(clin)))*as.numeric(data.matrix(data[i,names(clin)]))) 
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  } 
  if(length(tex_clin)!=0){ 

    predPENscore_all[i]<-rowSums(t(matrix(rep(tex_clin,1),nrow = 

length(tex_clin)))*as.numeric(data.matrix(data[i,names(tex_clin)]))) 

  } 
   

  setWinProgressBar(pb,round(i/length(out_stat)*100),label = paste("Working on Fold",i,"of",length(out_stat),sep=' 

')) 

   

} 
 

###Calculate C-indices### 

cindex_clin<-CTindex(out_time,out_stat,-predPENscore_clin) 

cindex_all<-CTindex(out_time,out_stat,-predPENscore_all) 

 

###k-means for stratification### 

numclusters<-5 

set.seed(1) 

clin_cluster<-rep(0,length(predPENscore_clin)) 

all_cluster<-rep(0,length(predPENscore_clin)) 

clin<-kmeans(predPENscore_clin,numclusters) 

all<-kmeans(predPENscore_all,numclusters) 

for(i in 1:length(clin$centers)){ 

  clin_cluster[clin$cluster==order(clin$centers)[i]]<-i 

} 
for(i in 1:length(all$centers)){ 

  all_cluster[all$cluster==order(all$centers)[i]]<-i 

} 
 

###Plot of KM curves for generated clusters from CV linear predictors### 

layout(matrix(c(1,2,3,3),2,2,byrow=TRUE),heights=c(2,1))       

km.coxph.plot(formula.s=Surv(out_time,out_stat) ~ clin_cluster, data.s=data,x.label="Time (months)", 

y.label="Overall Survival Probability", main.title="Overall Survival\n Conventional Prognostic Factors including 

GTV", leg.pos= "topright", leg.text=paste(c("Lowest Risk     ","Low/Medium Risk       ","Medium Risk     

","Medium/High Risk      ","Highest Risk     ")),leg.inset=0, .col=c("black","darkgray"), .lty=c(1,1,3,3,4),.lwd = 

c(4,5,5,5,6), show.n.risk=TRUE, n.risk.step=6, xlim = c(0,42),verbose=TRUE) 

km.coxph.plot(formula.s=Surv(out_time,out_stat) ~ all_cluster, data.s=data,x.label="Time (months)", 

y.label="Overall Survival Probability", main.title="Overall Survival\n Conventional Prognostic Factors including 

GTV and QIFs", leg.pos= "topright", leg.text=paste(c("Lowest Risk     ","Low/Medium Risk       ","Medium Risk     

","Medium/High Risk      ","Highest Risk     ")),leg.inset=0, .col=c("black","darkgray"),.lty=c(1,1,3,3,4),.lwd = 

c(4,5,5,5,6), show.n.risk=TRUE, n.risk.step=6, xlim = c(0,42),verbose=TRUE) 

 

###Plot of generated c-indices### 

plot(cindex_clin[1:5,1],cindex_clin[1:5,2],lty = 2,lwd = 3,type="b",pch = 16, cex = 1.5, main = "Time Based 

Concordance Index\n Clinical Penalized CV",xlab="Minimum Time Difference for Patient-Patient Comparison 

(Months)",ylab="C-Index",xaxt="n",ylim = c(0,1)) 

lines(cindex_all[1:5,1],cindex_all[1:5,2],type="b",lty = 1,lwd = 3,pch = 16,cex = 1.5, main = "Time Based 

Concordance Index\n Clinical + QIF Penalized CV",xlab="Minimum Time Difference for Patient-Patient 

Comparison (Months)",ylab="C-Index",xaxt="n",ylim = c(0,1)) 

legend("topright",c("CPFs including GTV & QIFs","CPFs including GTV","CPFs excluding GTV"),lty = 

c(1,2,3),lwd = 3,cex=1.5) 

axis(side = 1,at = seq(0,48,6)) 

 

###Identification of covariates selected in >50% of CV folds### 

cnames<-table(termsOPTouter_clin)[order(table(termsOPTouter_clin))] 

anames<-table(termsOPTouter_all)[order(table(termsOPTouter_all))] 
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clinvars<-cnames[which(cnames>length(out_stat)*0.5)] 

allvars<-anames[which(anames>length(out_stat)*0.5)] 

 

###development of "final" models### 

clinform<-as.formula(paste("Surv(","out_time,","out_stat",")~",paste(names(clinvars),collapse="+"),sep = '')) 

allform<-as.formula(paste("Surv(","out_time,","out_stat",")~",paste(c(names(allvars),"Overall"),collapse="+"),sep 

= '')) 

 

###Likelihood ratio test comparing models (need to be nested)### 

anova(coxph(clinform,data=data),coxph(allform,data=data)) 
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Appendix D: Relationship of Cardiothoracic Dosimetry with Disease Solidity 

 
The delivered radiation therapy treatment plans for patients in Cohort 3 were retrospectively 

analyzed. Treatment planning contours were used to determine the mean lung dose, V20 (percent of the 

total volume of lung receiving 20 Gy), and the mean heart. We were able to obtain these metrics for 

193/195 patients for mean lung dose and V20 and 190/195 patients for mean heart dose. Solidity was 

calculated on each patient’s pretreatment FDG-PET using the primary and nodal tumor contours as 

previously described (3.5 Region of Interest Contouring on PET). We hypothesized that dispersed disease 

(i.e. low values of solidity) would increase the dose delivered to cardiothoracic normal tissues.  

Scatter plots were generated comparing GTV versus solidity in terms of mean lung dose, V20, 

and mean heart dose (Figure 39, Figure 40, and Figure 41, respectively). The first and third quartiles of 

the dosimetric variables were used as cutoffs for categorizing the value as low, medium, or high.  This 

categorization was illustrated by the different point colors within the generated scatter plots.  

 

Figure 39. GTV versus solidity in terms of mean lung dose 
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Figure 40. GTV versus solidity in terms of lung V20 

 

Figure 41. GTV versus solidity in terms of mean heart dose 
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For both the mean lung dose and V20, it can be qualitatively observed that patients in the upper 

quartile (red) are those with large volume and low solidity and those in the lower quartile (green) are 

those with low volume and high solidity. This pattern is not observed to the same extent in regard to mean 

heart dose. This is probably due to the increased importance of proximity to the heart which was not taken 

into account.  

Boxplots were also generated using a risk score (Figure 42, Figure 43, Figure 44). Patients with a 

GTV greater than the median and a solidity value less than the median were assigned a score of 2, patients 

with either a GTV greater than the median or a solidity value less than the median were assigned a score 

of 1, and those with a GTV less than the median and a solidity value greater than the median were 

assigned a score of 0. Generally, patients with large AND dispersed disease were given a score of two, 

patient with either larger OR dispersed disease were given a score of one, and those with smaller, 

compact disease were given a score of zero. This was performed for mean lung dose, V20, and mean 

heart dose. Differences in values between risk score groups were assessed using unpaired t-tests.   

 

Figure 42. Mean lung dose stratified by risk score 
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Figure 43. Lung V20 stratified by risk score 

 

Figure 44. Mean heart dose stratified by risk score 
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For mean lung dose and V20, significant differences (p < 0.05) were seen between all three risk 

score groups. For mean heart dose, there was a significant difference between patients with risk scores of 

0 versus 1, but there was no statistically significant difference between patients with risk scores of 1 

versus 2.  

Lastly, we generated linear regression models relating solidity to mean lung dose, V20, and mean 

heart dose while controlling for GTV. The p-values for decreasing solidity leading to an increase in 

cardiothoracic dosimetry values while controlling for GTV in the regression models were 2.5x10-9, 

2.8x10-11, and 0.002 for mean lung dose, V20, and mean heart dose, respectively. Solidity is therefore 

considered to be an independent predictor of all three cardiothoracic dosimetry values even when 

controlling for the volume of disease. This confirmed our hypothesis that more dispersed disease would 

increase the dose to cardiothoracic normal tissues.  
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Appendix E: Comparison of FDG-PET Delineation Methods 

A variety of methods exist for delineating tumors on FDG-PET. We examined common semi-

automatic methodologies (SUV≥2.5, 40% SUVmax, 50% SUVmax) and compared the values obtained 

terms of volume, uniformity, COM energy, and SUVmean compared to the PETedge method used in our 

work using the concordance correlation coefficient (CCC). We examined 20 patients with a volume 

distribution similar to our entire 195 patient cohort in terms of range and median/mean of tumor volumes. 

A summary table of the CCC values is shown below. 

Table 22. CCC Values for Comparison of Delineation Methodologies  

 Volume Uniformity COM Energy SUVmean 

SUV≥2.5 0.89 0.91 0.94 0.7 

40% SUVmax 0.82 0.77 0.77 0.88 

50% SUVmax 0.65 0.64 0.75 0.78 

 

It was observed that delineating using SUV≥2.5 consistently overestimated the volume of the 

tumors and underestimated the SUVmean compared with when PETEdge was used. Delineating using 

40% and 50% SUVmax consistently underestimated the tumor volume, overestimated the uniformity (in 

terms of uniformity and COM energy) and overestimated the SUVmean. The analyzed segmentation 

methods all yielded reasonably different results than those obtained by PETedge for the assessed metrics 

(volume, uniformity, COM energy, and SUVmean). Furthermore, these segmentation methods may also 

have overly optimistic results due to the caveats described below.  

There are some caveats to this analysis. First, I generated not only the PETedge contours but also 

the other contours from various delineation methods. While semi-automatic, the other methods are still 

very reliant on the bounding box applied. Since I had a general notion of the contour result from 

PETedge, I may have biased the size and location of the bounding box to tightly conform to what I 

believed the contour should look like based on PETedge. Furthermore, MIMvista automatically adjusts 
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the window/level of the images based on the values within the image and therefore may result in more 

consistent values than software this feature is not available and the window/level settings are more user 

dependent. Overall, the results may overestimate the accuracy of these methods due to the caveats 

mentioned. There is substantial evidence in the literature regarding the insufficiencies of the methods 

tested.42, 67–69 
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Appendix F: Sequential FDG-PET Analysis 

Ninety seven patients at the time of analysis were enrolled in a protocol entitled “A Bayesian 

Randomized Trial of Image-Guided Adaptive Conformal Photon vs Proton Therapy, with Concurrent 

Chemotherapy, for Locally Advanced Non-Small Cell Lung Carcinoma”. Patients were excluded for 

small  (<5cc) initial primary tumor volume, if they did not have an FDG-PET scan taken either during 

treatment (~30 days from initiation) or post treatment, or if their scans were performed with 2D 

reconstruction. We wanted to assess whether we would be able to observe changes in QIFs across 

different time points. Having only twenty two patient did not really allow for us to sufficiently correlate 

changes in QIFs with any outcomes. In general, it was observed that tumors decreased in volume, 

SUVmax, and SUVmean while becoming more uniform in terms of uniformity and COM energy (see 

Figures, below).  

 

 

Figure 45. Primary volume changes during treatment 
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 Figure 46. SUVmax changes during treatment 

 

Figure 47. SUVmean changes during treatment 
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Figure 48. Uniformity changes during treatment 

 

Figure 49. COM Energy changes during treatment 
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 A summary of the primary tumor feature changes from pre to mid treatment and pre to post 

treatment are shown in Table 23.  

Table 23. Summary of Changes in Features between Pre, Mid, and Post Treatment  

Feature Average 

Pre-

Treatment 

Average 

Mid-

Treatment 

Average 

Post-

Treatment 

Average % 

Change Pre to 

Mid 

Average % 

Change Pre to 

Post 

Volume (cc) 56.5 39.9 16.0 -114 -2077 

SUVmax 16.9 9.0 5.5 -117 -223 

SUVmean 8.9 4.6 3.8 -127 -161 

Uniformity 0.11 0.25 0.43 46 70 

COM energy 0.02 0.12 0.20 62 87 
 

 Table 23 shows that tumors became smaller, less FDG-avid (in both max and mean SUV), and 

more homogeneous (in terms of uniformity and COM energy) from pre-treatment to mid-treatment as 

well as pre-treatment to post treatment. The volume, SUVmax and SUVmean decreased on average by 

approximately 110-130 percent while uniformity and COM energy increased by approximately 50 percent 

from pre-treatment to post treatment. These trends increased from pre-treatment to post treatment with 

even larger reductions in primary volume, SUVmax, and SUVmean and increases in uniformity and COM 

energy. These analysis are inherently selecting tumor that do not have a complete response mid or post 

treatment as lesions would not be evaluable for quantitative analysis. Therefore, this type of assessment 

may be useful in characterizing lesions with a partial response, stable disease, or progressive disease. 

Quantifying changes in tumor uniformity during treatment alongside changes in volume and FDG-avidity 

may provide complimentary information that may be useful assessing response to therapy. Larger 

analyses would be needed to generate evidence relating changes in tumor uniformity to response or 

patient outcome.  
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Appendix G: Assessment of Volumetric Stability 

Primary tumors from FDG-PET scans in cohort 5 were used to determine volumetric stability (i.e. 

reproducibility of QIFs across changes in tumor volume) via resampling (3.7.7 Analysis of PET Tumor 

Resampling (Cohort 5)).  An example using histogram entropy is shown in Figure 50. Figure 50A-E show 

plots of the resampled entropy values versus the original entropy values with the corresponding CCC. 

Figure 16F displays a plot of the CCC values with respect to the approximate number of voxels. Table 24 

contains the CCC values for a variety of features and their association with the number of voxels post 

resampling. It can be observed that the reproducibility decreases as the number of voxels post resampling 

is reduced. Certain features such as mean and standard deviation are stable regardless of the number of 

voxels while other features degrade by varying amounts as the number of voxels is reduced.    

   

Figure 50. Plots of original versus resampled entropy values and associated CCC values 
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Table 24. CCC values of features with respect to the resampled number of voxels  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Voxel Number Groups 

QIFs 27 55 108 226 488 

Volume 0.92 0.94 0.94 0.98 0.99 

cumHistogram 0.35 0.28 0.68 0.67 0.91 

TLG 0.97 0.97 0.98 0.99 0.99 

GlobalEntropy 0.59 0.74 0.87 0.92 0.96 

COV 0.63 0.57 0.79 0.90 0.98 

Global Max 0.73 0.73 0.87 0.88 0.93 

Global Mean 0.98 0.98 0.97 0.98 0.97 

Global Std 0.97 0.94 0.90 0.93 0.96 

Global Uniformity 0.63 0.76 0.89 0.93 0.97 

Kurtosis 0.43 0.49 0.52 0.80 0.91 

Skewness 0.61 0.46 0.78 0.92 0.97 

COM Contrast 0.48 0.59 0.76 0.85 0.94 

COM Correlation 0.04 0.03 0.05 0.11 0.28 

COM Energy 0.62 0.86 0.97 0.99 0.99 

COM Homogeneity 0.56 0.73 0.73 0.86 0.93 
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A volume threshold below which quantitative features cannot be accurately/reproducibility 

measured is an area that requires further investigation. A couple publications have examined this issue but 

a consensus on size limitation has not been reached in order to ensure adequate sampling.53, 70 We found 

that features from tumors consisting of ~55 voxels (~5cc) yielded similar feature reproducibility to much 

larger lesions and that reproducibility suffers when resampling the same tumors to a smaller size. While 

improving reproducibility across tumor volumes is important it is not the only factor one should consider. 

Excluding larger and larger tumors due to non-ideal reproducibility also means reducing cohort sizes and 

the general applicability of quantitative techniques. For example, in our 225 patient cohort with FDG-PET 

scans 93% of patients have primary tumors with at least 27 voxels (lowest cutoff used in analysis). 

However, the percent of eligible patients decreases to 86%, 79%, 61%, and 46% when having a cutoff of 

at least 55, 108, 226, and 488 primary voxels, respectively.  
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