
The Texas Medical Center Library The Texas Medical Center Library 

DigitalCommons@TMC DigitalCommons@TMC 

Dissertations and Theses (Open Access) MD Anderson UTHealth Houston Graduate 
School 

12-2015 

Redirecting T Cells With Chimeric Antigen Receptors To Target Redirecting T Cells With Chimeric Antigen Receptors To Target 

Cd123+ Leukemia Cd123+ Leukemia 

Radhika Thokala 

Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations 

 Part of the Translational Medical Research Commons 

Recommended Citation Recommended Citation 
Thokala, Radhika, "Redirecting T Cells With Chimeric Antigen Receptors To Target Cd123+ Leukemia" 
(2015). Dissertations and Theses (Open Access). 644. 
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/644 

This Dissertation (PhD) is brought to you for free and 
open access by the MD Anderson UTHealth Houston 
Graduate School at DigitalCommons@TMC. It has been 
accepted for inclusion in Dissertations and Theses (Open 
Access) by an authorized administrator of 
DigitalCommons@TMC. For more information, please 
contact digcommons@library.tmc.edu. 

https://digitalcommons.library.tmc.edu/
https://digitalcommons.library.tmc.edu/utgsbs_dissertations
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1124?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/644?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digcommons@library.tmc.edu


REDIRECTING T CELLS WITH CHIMERIC ANTIGEN 

RECEPTORS TO TARGET CD123+ LEUKEMIA 
 

by 
 

 

Radhika Thokala, M.S. 
 
 
 
 

APPROVED: 
 
 
 
 
 

Dean Anthony Lee, M.D., Ph.D., 

Supervisory Professor 
 
 
 
 

Richard Eric Davis, M.D 
 

 
 
 
 

Dat Tran M.D. 
 
 
 

 
Kenneth Tsai, M.D., Ph.D 

 

 
 
 
 

Elizabeth Shpall, M.D. 
 
 
 
 
 
 

APPROVED: 
 
 
 

 
Dean, The University of Texas 

Graduate School of Biomedical Sciences at Houston 
 
 
 
 
 
 
 

 
i 



 
 

REDIRECTING T CELLS WITH CHIMERIC ANTIGEN 

RECEPTORS TO  TARGET CD123+ LEUKEMIA 

 
 
 
 

 
A 

DISSERTAT ION 

Presented to the Faculty of 

The University of Texas 

Health Science Center at Houston 
and 

The University of Texas MD Anderson Cancer Center 

Graduate School of Biomedical Sciences  

in Partial Fulfillment of the Requirements  
                         for the Degree of 

 

 
 
 
 
 

DOCTOR OF PHILOSOPHY 
 

 
 
 
 
 

by 
 

 
Radhika Thokala M.S. 

Houston, Texas 

December 2015 

 
 
 
 
 
 
 
 
 
 

 
ii 



 

 

DEDICATION 
 
 

JESUS ALMIGHTY 

MY BELOVED PARENTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
iii 



ACKNOWLEDGEMENTS 
 
 

This work could not have been accomplished without the help of many   people. I would like to 

thank my mentor Dr. Laurence Cooper with utmost gratitude for the opportunity to work in his 

laboratory. His guidance and supervision throughout my graduate studies have been 

instrumental for my development as an independent researcher. My sincere thanks to Dr. Lee for 

being my mentor for the last few months and his valuable guidance and support for m y 

dissertation, when Dr. Cooper moved to Ziopharm as C.E.O. I would also like to extend my 

thankfulness to my advisory and examination committee members Dr. Richard Eric Davis,  

Dr. Dat Tran, Dr. Kenneth Tsai, Dr. Elizabeth Shpall, Dr. Francois Claret for their important 

contribution, guidance and support for my PhD training. 

I would like to thank my lab members in the past and present who taught me many different 

scientific techniques making this work possible. In particular Helen Huls who was always there 

for me in the lab, Simon Olivares who taught me molecular biology, Tiejuan Mi for mice 

experiments. I would like to thank Drew Deniger a senior graduate student and good friend 

helped me to choose right experiments which saved me lot of time. Thanks to my fellow 

students Lenka Hurton, Denise Crossland, Hillary Caruso, David Rushworth and Janani 

Krishnamurthy for their help and fun time we had as graduate students. Thanks to my other lab 

members and numerous technicians without whose help this dissertation is possible. My deepest 

gratitude and thanks to Sanat Dave at histopathology tissue bank for providing primary samples 

needed for this study. 

I am especially grateful to my family for giving me the opportunity to follow my 

dreams and the love to make them a reality. Most of all I would like to thank my lord Jesus 

Christ whose perfect love, patience, and gift are the real strength behind all my work and 

accomplishments. 

iv 



 

 

ABSTRACT 
 

 
 

REDIRECTING T CELLS WITH CHIMERIC ANTIGEN 

RECEPTORS TO TARGET CD123+ LEUKEMIA 
 

 

Radhika Thokala, Ph.D* 
 

 

Advisory Professor: Dean Anthony Lee, M.D, Ph.D 
 
 
 

CD123 or interleukin receptor alpha (IL-3Rα) is expressed on hematological 

malignancies such as acute myeloid leukemia (AML) and some acute lymphoblastic 

leukemia (ALL). Significantly, CD123 is over-expressed on leukemic stem cells 

(LSCs) compared to normal hematopoietic stem cells and thus targeting this tumor- 

associated antigen (TAA) provides the potential to prevent relapse. The prototyical 

chimeric antigen receptor (CAR) is fashioned by combining the variable light (V L) 

and heavy (VH) as a scFv derived from a single monoclonal antibody (mAb) 

specific for the TAA. We describe a new approach for generating CD123-specific 

CARs generating a chimeric scFv that is made up of the VL and VH harvested from 

two mAbs that are each specific for CD123. The hypothesis is VL and VH from 

different antibodies to the same TAA can be recombined to form unique binding 

domains that retain antigen specificity but may have altered binding 

characteristics. This non-homologous recombination of antibody binding domain 

may be used to select CAR for optimal anti-tumor characteristics, such as 

increasing the therapeutic index. The chimeric scFvs were derived by fusing the 

VL a n d  V H chains derived from mAbs 26292, 32701, 32703, 32716 specific to  
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CD123. Sleeping Beauty (SB) was employed as a non-viral gene transfer s ystem 

to stably express 2
nd

 generation CARs in T cells derived from peripheral blood 

mononuclear cells (PBMC). The CARs were co-expressed with inducible Caspase 

9 (iCaspase9) for conditional ablation of T cells in case of off-target toxicities. The SB 

plasmids coding for two CARs (transposons) activated T cells via chimeric CD28 

with CD3-zeta and CD137 with CD3-zeta were electroporated into PBMC. 

Following electrotransfer of the SB system the genetically modified T cells were 

preferentially propagated on activating and propagating cells (AaPC) designated as 

Clone 1-CD123. The AaPC were derived from K562 cells genetically modified to 

co-express co-stimulatory molecules (CD86 and CD137L), a membrane bound 

cytokine (IL-15 fused to IL-15Rα), and the TAAs CD123 and CD19. CAR+ T 

cells specifically produced IFN-γ and lysed CD123+ leukemic cell lines and 

primary AML patient samples, but did not lyse D123neg tumor cells. The addition 

of a chemical dimerizer to activate iCaspase9 resulted in destruction of genetically 

modified T cells. Both populations of CAR+ T cells produced and eliminated 

leukemic tumors in vivo. We observed no difference in the anti-tumor effects 

whether the CARs triggered T cells via CD28 or CD137. These studies suggest 

that CD123 can be targeted by CAR+ T cells and that the hybrid arrangement 

of VL and VH maintained specificity for CD123. 
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CHAPTER-I 

INTRODUCTION 

 
 
 

I.1. Hematological malignancies 
 

Hematological malignancies affects blood, bone marrow (BM) and 

lymphatic system. They originate from BM or the cells of immune system and 

are the fifth most commonly occurring cancers and the second leading cause 

of cancer death. Based on the type of white blood cells affected hematological 

malignancies are broadly classified as i) Lymphoma:  affects the lymphatic 

system, produces uncontrolled growth of white blood cells (WBCs) in lymph 

nodes. Lymphoma can be further classified as Hodgkin’s lymphoma (HL) and 

Non-Hodgkin’s lymphoma (NHL) ii) Myeloma: also known as plasma cell 

myeloma, myelomatosis, or Kahler's disease a type of cancer affecting plasma 

cells that produces antibodies. It begins in the BM by accumulation of abnormal 

plasma cells iii) Leukemia: leukemia is the most common type of cancer in 

children younger than 15 years and adults older than 55 years. Leukemia begins 

with the abnormal accumulation of lymphocytes or myeloid cells in the BM. 

The four major types of leukemia are acute myelogenous leukemia (AML), 

chronic myelogenous leukemia (CML) acute lymphocytic leukemia (ALL) and 

chronic lymphocytic leukemia (CLL). Approximately 75% of leukemias 

affecting children are ALL, whereas AML and CLL are the most common  
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http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044363&amp;amp%3Bamp%3Bamp%3Bamp%3Bamp%3Bamp%3Bversion=Patient&amp;amp%3Bamp%3Bamp%3Bamp%3Bamp%3Bamp%3Blanguage=English
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http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000346545&amp;amp%3Bamp%3Bamp%3Bamp%3Bamp%3Bamp%3Bversion=Patient&amp;amp%3Bamp%3Bamp%3Bamp%3Bamp%3Bamp%3Blanguage=English


 

 
 

among adults followed by ALL and CML (1-3).  Immunotherapies  targeting 

tumor associated antigens (TAAs) e.g CD19 by adoptive  transfer of 

genetically  engineered  T cells resulted  in  drastic  regression  of tumors  and 

complete  remission  in  CLL patients   in  clinical setting  (4-8). The focus of 

this dissertation   is on developing adoptive immunotherapies by targeting surface 

proteins expressed on for B-ALL and AML through genetic modification of T 

cells. 

 
 
 

 
I.1.A. B-cell Acute Lymphoblastic Leukemia 

 
ALL originates from B or T lymphocytes in the BM. B-cell acute 

lymphoblastic leukemia (B-ALL) is clonal accumulation of B cell blasts 

resulting in suppression of normal hematopoiesis. More than 80% of ALLs in 

children and 70% ALLs in adults belong to B-ALL lymphoid group (9, 10). 

Key tools to diagnose B-ALL include c ytogenetic studies to identify genetic 

alterations in B cell blasts, molecular studies to detect translocations, genome- 

wide associations to detect genetic changes where routine techniques are 

unavailable, flow cytometry to analyze surface phenotype and monitoring 

minimal residual disease (MRD) (11). Improved chemotherapeutic approaches 

and radiation followed by allogeneic hematopoietic stem cell transplantation 

(HSCT) with cord-blood and haplo-identical approaches over the past decade 

enhanced the long-term survival in 90% of children. 
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Although transplant related mortality (TRM) has decreased markedly over 

the past 15 years, relapse remains a concern in high risk group children. 

Several groups reported that presence of MRD pre and post HSCT is a 

predictable tool to detect relapse.  Rate of relapse can be decreased by 

monitoring MRD and occurrence of Graft versus Host Disease (GvHD) in 

First 2 months after the transplant. Employing novel agents and 

immunotherapies before and after HSCT will lower MRD and improve Graft 

versus Leukemic effect (GvL) and survival in children and adults (12-16). 

 
 
 

 

I.1.B. Acute Myelogenous Leukemia 
 

AML is the most common form of leukemia mostly affecting adults over 

55 years. AML is a clonal proliferation of malignant myeloid blast cells in the 

BM with impaired normal hematopoiesis. Despite many advances in treatments 

AML still remains a lethal disease. Standard chemotherapy and radiation 

regimens ensure long-term remission only in 30 to 50% of patients with a low 

survival probability resulting in resistance and relapse (17-19). The relapse in 

AML is due to MRD caused by small population of Leukemic stem cells 

(LSCs) resistant to drugs and radiation. Initial treatment strategy for AML 

patients include induction chemotherapy to eliminate blast cells, followed by 

consolidation therapy to target the leukemic stem cells. Because of abundant 

availability of AML samples, relative simplicity of acquiring them from BM, recent 

advances in the understanding of molecular aspects such as role of 
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Chromosomal translocations, easy to analyze AML subsets by flow cytometry enable 

to progress the studies on AML. Introducing advanced treatment options beyond 

or in addition to current standard treatments will radically change the survival 

rates of people diagnosed with AML. Antigen specific based adoptive 

immunotherapy will play a complimentary role in eradicating MRD by targeting 

leukemia associated antigens expressed on LSCs and leukemic cells (20-22). 

 
 
 
 

I.2. T lymphocytes and adaptive immune system 
 

Immune system protects organisms from infection and disease and broadly 

classified as innate immune system and adaptive immune system. The innate 

immune system serves as first line of defence in case of infection and has broad 

range of specificity for different pathogens. The blood cell types that mediate 

innate immune system include i.e macrophages, natural killer (NK) cells. In 

contrast adaptive immune system is specific to part of pathogen (tumor 

associated antigens and peptides) resulting in long-lasting response through 

formation of immunological memory (78-82). T lymphocytes are a type of 

white blood cells that plays a major role in adaptive immune system by cell- 

mediated-response. Based on TCR structure, T cells can be classified into two 

types, i) alpha/beta (αβ) T cells: TCR is a heterodimer composed of an alpha 

and beta chains. Each chain has a variable (V) region and a constant 

(C)  region. The V regions each contain 3 hyper variable regions that make up 
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the antigen-binding  site. αβ T cells comprises up to 95-99% of circulating T 

cells  ii) gamma/delta (γδ) T cells : TCR is  a heterodimer  composed  of 

gamma  and delta chains.  The TCR of αβ T cells binds to a bimolecular 

complex consisting of peptide of antigen lying within the groove of MHC 

displayed at the surface of antigen presenting cell (APC) i.e. dendritic cells 

(DCs), B-cells, macrophages (83). Αβ T cells are distinguished from other 

lymphocytes such as NK cells and B cells by the presence of T cell receptor 

(TCR) on their surface and recognize its antigens in the context of major 

histocompatibility complex (MHC). Most of T cells in the body belong to sub 

sets CD4 or CD8. CD8+ T cells bind to epitopes that are part of major MHC 

class I and CD4+ T cells bind to epitopes that are part of MHC class II molecules.  

All  most  all  the cells  in  the body express  MHC-class  I and professional 

antigen APCs DCs, B cells and macrophages express MHC-class II molecules.  

The best understood CD8+ T cells cytotoxic lymphocytes (CTLs) whose main 

function is to destroy infected or a tumor cell by binding to its specific peptide 

or antigen. CD4+ T cells are essential for both cell mediated and antibody 

mediated (Humoral) immunity. In  cell  mediated immunity  CD4+  T cells binds  

to antigen presented by APCs by releasing lymphokines that  attract  other  

immune   cells  to  the  area  resulting in inflammation.   Humoral immunity is 

mediated by B cells primarily through 

5 
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production of antibodies. CD4+ cells, called helper T cells binds to antigen 

presented by B cells resulting development of clones of plasma cells secreting 

antibodies (84-85). 

 

 

I.3. Chimeric Antigen Receptors 
 

The concept of redirecting T-cells to TAAs by genetic modification 

was first developed by Prof. Zelig Eshhar and colleagues at the Weizmann 

Institute of Science in Rehovot, Israel in 1980s. By 1989, the same group had 

created the first functional CAR T cells (25). Chimeric antigen receptors 

(CARs) are recombinant receptors derived by fusing single chain fragment 

variable (scFv) region of a monoclonal antibodies (mAbs) specific to TAAs to 

T cell signaling domains  (i.e. CD3ζ, CD28) via a transmembrane domain 

CD8α, CD28) and a hinge (i.e IgG4, CD8α, CD28) (Figure 1). Generally 

the scFvs used in making CARs are derived from well characterized murine 

mAbs or fully humanized mAbs (hmAbs). CARs recognize targeted antigen in 

its native form independent of major MHC compatability. The moieties used to 

recognize antigens by CARs can be broadly fall into three categories 

i) scFv derived from mAbs specific to targeted antigen ii) fragment antigen- 

binding  (Fab) selected from libraries  iii) nature ligands  that binds  to their 

cognate receptors. The “generation” in the CAR refer to the intracellular 

signaling domains.  First generation CARs include only CD3ζ as signaling 

domain and showed limited T cell activation and short term T cell expansion 
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but enabled cytotoxicity. Second generation CARs include one co- stimulatory 

domain such as CD28 or 41BB exhibited improved T cell expansion, cytokine 

production and T cell persistence. Third generation CARs include three 

intracellular endo-domains the most common combination has been CD28, 

CD137 (4-1BB), and CD3ζ (26-29) (Figure 2). The efficacy of CAR T cells 

targeting its TAAs depends on various factors such as i) position and distance 

of epitope from cell surface and formation of optimal T cell synapse ii) length 

and flexibility of hinge region between scFv and transmembrane domain iii) 

antigen density on tumor cells iv) Activation of endo-domains  (30-33). 
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Figure 1. Schematic re presentation of 2nd generation chimeric antigen 

receptor. Single chain fragment variable (scFv) region of a monoclonal 

antibodies (mAbs) specific to TAA fused to T cell signaling domains (i.e. 

CD3ζ, CD28) via a transmembrane domain (i.e CD8α, CD28) and a hinge 

 

(i.e IgG4, CD8α, CD28). 
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Figure 2. Schematic of three generations of CARs. The first- 

generation CARs consisted of the single-chain variable fragment of 

monoclonal antibodies specific for tumor associated antigen fused IgG4 

constant region followed by CD28 transmembrane alpha helix and CD3ζ 

signaling endodomain. Second generation CARs were generated to 

incorporate the intracellular domains of one or more costimulatory 

molecules such as CD28 or CD137 within the endodomain. Third- 

generation CARs include a combination of costimulatory endodomains 

e.g CD28 and CD137. 
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I.4. Clinical trials and CAR T cells 
 

CD19 was the first antigen targeted by CAR engineered T cells since it is 

expressed by most of B-cell leukemias and lymphomas but not on tissue other 

than normal B lineage cells (34, 35). Successful eradication of tumors with 

different CD19 directed CARs resulted in multiple clinical studies targeting 

large number of surface molecules expressing on hematological malignancies 

as well as solid tumors such as HER2, GD2, prostate-specific membrane 

antigen (PSMA) and mesothelin (36). To date the most promising clinic a l 

outcome including complete remission have been reported with second 

generation CARs targeting CD19 expressed by B-cell leukemia and lymphoma 

(37-39). In July, 2014, CD19-specific CAR T cell therapy (CTL019) 

developed at University of Pennsylvania (UPenn) was granted “breakthrough 

therapy” status by Food and Drug Administration (FDA) (40). Second 

generation CARs with CD3ζ and CD137 signaling domains out- performed the 

ones signaling through CD28 and CD3ζ in terms of therapeutic efficacy though 

the preclinical models have not shown any difference between them (41). The 

reasons for better efficacy of CD137 CARs over CD28 CARs not known at 

present, chapter III of this dissertation will describe the comparative evaluation 

of efficacy CD123-specific CARs with CD28 and CD137 co-stimulatory 

domains. 
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I.5. Sleeping beauty transposition 

 
Stable integration of transgenes can be accomplished by viral and non- 

viral methods. Most of the clinical trials currently use retroviral or lentiviral 

vectors for CAR transgene transfer (42). Viral vectors are efficient in gene 

transfer but often associated with genotoxic effects and immunological 

complications (43-44). DNA transposons have been developed as an alternative 

method for gene transfer. Sleeping beauty (SB) transposon system is a 

molecular reconstruction from evolutionarily decayed sequences in salmonid 

genomes (45). Unlike lentiviral and retroviral vectors, SB gene transfer requires 

less production cost for manufacturing clinical grade T cells and does not 

integrate at sites of active transcription. It has been shown SB transposons do 

not activate oncogenes though the mode of integration into genome by random 

method. The SB system has a two DNA plasmids a transposon with the gene 

of interest (e.g CAR) flanked by Inverted repeats/Direct repeats (IR/DR) and 

a transposase that catalyzes excision and integration of gene of interest into TA 

dinucleotide site of recipient genome (46). TA nucleotides are randomly 

distributed in the genome enabling random integration of transgenes through SB 

s ystem and has been shown to be safe in preclinical studies (47- 49). Electro-

transfer of two transposons into peripheral blood mononuclear cells (PBMC) 

results in transient expression of SB transposase and stable expression and 

integration of CAR transgene into the genome. The major safety concern for 

CAR T cells is genotoxicity and 
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the risk of insertional mutagenesis associated with introduced genetic material. 

The risk of insertional mutagenesis can be alleviated by transiently expressing 

CAR by mRNA electroporation. This would require multiple infusions of CAR 

T cells to generate effective anti-tumor effect but it may reduce the 

cytotoxicity to normal tissues (50). 

 

 
 
 
 

I.6. Activating and Propagating Cells  
 

Activating and Propagating Cells (AaPCs) are a group of immune cells that 

mediate immune response by presenting antigens complexed with MHC to 

certain lymphocytes such as T cells. Classical APCs include dendritic cells 

(DCs), macrophages and B cells among which DCs are the most efficient and 

equipped with MHC I and MHC II molecules on their surface (51). Adoptive 

transfer of mature DCs augment T-cell responses in humans, hence DC 

immunization is considerably important in immunotherapy of cancer (52). 

However development of DCs as T cell expanding platform is expensive and 

laborious and sometimes dysfunctional in cancer patients (53, 54). Since CARs 

activate T cells independent of MHC and TCR specificity, a method of 

propagation avoiding TCR/MHC interactions is also needed for ex vivo 

propagation. Different platforms do exist to achieve this most popular are 

CD3/CD28 coated beads and artificial antigen presenting cells (aAPC) (2). 

This dissertation uses an approach that focuses on expanding Sleeping beauty 

modified T cells on Activating and Propagating Cells (AaPCs) a K562 is a CML 
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Cell line genetically modified co-expressing co-stimulatory molecules and 

cytokines for T cell expansion (Figure 3). The advantages of K562 as APC 

over DCs are they i) do not express MHC class I and II molecules except 

limited expression of MHC-class C which therefore prevents allogenic T cell 

responses ii) can be easily manipulated genetically by viral or non-viral 

methods iii) express adhesion molecules required for aAPC-T cell interactions 

iv)  do not skew endogenous TCR response to particular antigens (55). Patients 

treated with T cells expanded on K562-AaPC did not show toxicity, suggesting 

this is a safe approach for manufacturing clinical grade T cells. So far K562- 

derived aAPC have been used in 4 clinical trials at MD Anderson cancer 

center      (NCT01497184,       NCT01653717,      NCT01619761, 

NCT00968760). Various versions of K562 based aAPC had been created by 

University of Pennsylvania (UPenn) to expand CD19-specific CAR T cells in 

autologous as well as allogeneic setting. K562-clone 4 was developed by 

enforced expression of CD19, CD32, CD64, CD86, CD137L, and enhanced 

green fluorescence protein (eGFP) tagged Fc- IL15 fusion protein. This 

dissertation used K562-Clone1 which is similar to clone 4 except it has enforced 

expression of IL-15 fused to IL-15Rα replacing (eGFP) tagged Fc- IL15 fusion 

protein, ROR1 and CD123 in addition to CD19, CD64, CD86, CD137L 

(Figure 3). 
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Figure 3. Sche matic of CAR T ce lls Expansion on AaPC. PBMC are isolated from whole 

blood by density gradient centrifugation using Ficoll-Hypaque and are electroporated with 

plasmids encoding either (i) Sleeping Beauty transposase or (ii) Sleeping Beauty transposon 

containing CAR. Transfected cells were phenotyped for CAR expression next day and cells 

stimulated with γ-irradiated K562-derived AaPC every7 days supplementing with IL2 and IL- 

21. Following 3-4 weeks of co-culture, CAR T cells expanded to clinically relevant numbers are 

ready for cr yopreservation and then infusion into cancer patients. Figure includes K562- Clone1- 

CD123 that express  CD19, ROR1,  CD64,  CD86,  CD137L,  mIL15 (1IL15 fused to IL15Rα) 

and CD123. 
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I.7. Interleukin-3 Receptor α (CD123) 
 

CD123 is the α subunit of Interleukin-3 cytokine receptor (IL-3Rα) which 

forms high-affinity functional hetero-dimeric receptor along with its β subunit 

CD131. Binding of IL-3 to IL-3R activates the receptor leading to cell survival 

and proliferation (56, 57). IL-3 stimulated activation of spontaneous signal 

transducer and activator of transcription 5 (STAT5) is correlated with over 

expression of CD123 on AML cells resulting in proliferation of tumor cells (58-

60). CD123 has been reported to be overexpressed on up to 95% of leukemic 

blasts and leukemic stem cells (LSCs) in AML, majority of B- ALL blasts, 

but not on normal hematopoietic stem cells (HSC) and no cells outside 

hematopoietic lineage (61-66). Clinically, high CD123 expression in AML 

patients at diagnosis is associated with higher blast counts and a lower complete 

remissions resulting in reduced survival (58-60). Collectively, these findings 

point to the significance of CD123 expression in leukemia cell stimulation and 

AML patient outcome. Phase1 clinical trials targeting CD123 in AML using 

neutralizing mAbs and cytotoxic protein fused to IL-3 cytokine showed limited 

therapeutic efficacy pressing the need for more novel efficacious treatments 

(67-68). Thus CD123 is a viable target in AML through chimeric antigen 

receptors in AML give n its wide expression on leukemic blasts, progenitors, 

LSCs and weak or no detectable expression on hematopoietic stem cells.   The 

main goal of this 
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dissertation is, to redirect T –cell specificity to CD123 through chimeric 

antigen receptors (CARs) to target AML and to generate preclinical data in 

support of an adoptive immunotherapy trial. 

 
 

I.8. Leukemic Stem cells and minimal residual disease 
 

The majority of treated AML patients deemed to be in complete remission 

by chemo and radiation therapies resulting in relapse. The relapse is due to 

MRD attributed to LSCs (74). LSCs are pre-leukemic clonal population of 

HSC by genetic and molecular alterations capable of self- renewal, able to 

initiate leukemia when transplanted in SCID mice by generating rapidly 

proliferating progenitors and leukemic blasts (69-71). HSCs and LSCs have 

common features such as basic phenotype (Lineageneg CD34+CD38neg), slow 

division, self-renewal capacity (69, 72). To our knowledge most of the antigens 

that are expressed in AML are also present on hematopoietic stem cells and 

progenitors. However certain AML markers are over expressed on LSC while 

there is weak or no detectable expression on normal HSCs. CD123 is highly 

expressed on the CD34+CD38neg fraction, leukemic blasts and bulk of AML 

cells when compared to normal hematopoietic cells (73). CD123 and C- type 

lectin-like molecule1 (CLL-1) are robust markers for MRD and highly 

expressed on LSC (75, 76). Employing CAR T cells specific to CD123 after 

hematopoietic 
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transplantation eradicate MRD which contain residual leukemic stem cells. 

Moreover some of the B-ALL patients treated with CD19 CAR T resulted in 

relapse with the residual population of leukemic cells negative for CD19 and 

positive for CD123+ (77). These patients can be treated using CAR T cells 

specific to CD123. The increased expression of CD123 on LSCs compared 

with weak or no detectable expression on HSC presents an opportunity for 

selectively targeting LSCs on AML with CD123-specific CAR+ T cells. 

 

I.9. Dissertation specific aims 
 

This dissertation focuses on three specific aims described as follows 

 
I.9.A. Specific aim #1. To determine if scFvs of chimeric antigen 

receptors derived by “Mix -and-Matching” VL and VH domains from 

two  monoclonal   antibodies   can   redirect   specificity  to   CD123+ 

leukemias. The VL and VH of scFvs of CARs usuall y derived from 
 

single monoclonal antibody specific to targeted antigen.  However this 

dissertation describe a new approach for generating CD123-specific CARs 

generating a chimeric scFv that is made up of the VL and VH harvested from 

two mAbs that are each specific for CD123. The major hypothesis for this 

specific aim is that CARs generated by combining VL and VH chains from 

two different mAbs for CD123 will retain specificity for CD123. We 

hypothesize that the CARs can be selected for targeting CD123 

overexpressing leukemia while sparing normal hematopoietic cells 

expressing CD123 at low levels for improved therapeutics. Rationale for this 

specific aim is i) TAAs are not specific to tumors but also may be  
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expressed at low levels on normal cells, potentially resulting in on-target, 

off-tumor toxicities i i) CD123 is expressed on hematopoietic progenitors 

and weakly expressed on monocytes, neutrophils, basophils and 

megakaryocytes iii) The affinity of the scFv for TAA also affects the 

density of TAA required for efficient killing. iv) CAR T cells preferably 

target tumors with high antigen density, while cells with lower density are 

more resistant to CAR T cells (97, 98). A panel of CARs have been 

generated by mix-and-matching VL and VH of four mAbs specific to CD123 

and tested their cytolytic efficacy in B-ALL and normal BM cells. 

I.9.B.Specific Aim#2:  Comparative evaluation of CD123-specific chimeric 

CARs containing CD28 or CD137 endo-domains for enhanced survival and 

 

anti-tumor efficacy in  AML.  The hypothesis of  this  aim  is  that  CAR T cells 

containing CD137 endo-domain will be superior to those  signaling through  

CD28  in  therapeutic  efficacy.  The rationale is i) Optimal CAR design 

enhances the persistence of CAR T cells ii) studies showed that CARs that 

incorporates CD137 has enhanced survival and anti- tumor efficacy 

compared to CARs with CD28 endo-domain iii) the clinical outcome of 

complete remission of CAR T cells correlated with long-term persistence 

of CAR T cells iv) CD123, the IL-3 receptor α- subunit has been reported to 

be overexpressed in AML. Two second-generation CD123- specific CARs were 

generated from chimeric scFv by fusing VH and VL from two mAbs specific 

to CD123 to CD3ζ and CD28 signaling domains 
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(designated CD123-CD28 CAR) and by fusing  the  same scFv  to CD3ζ and 

CD137 signaling domains  (designated  CD123-CD137  CAR).  Each CAR 

connect the scFv region to the endodomains via a modified hinge and Fc region 

from IgG4. The Sleeping Beaut y (SB) system was used for non- viral gene 

transfer to stably express CARs into T cells derived from peripheral blood 

mononuclear cells (PBMC). Two SB plasmids coding for transposons 

(CARs co-expressed with iCaspase9) and transposase (SB11) were 

electroporated into PBMC and numerically expanded on designer AaPCs 

(designated Clone 1-CD123) a genetically modified K562 cells co-

expressing co-stimulatory molecules (CD86 and  CD137L),  a membrane 

bound cytokine mIL15 (IL-15 fused to IL-15R) and the TAAs ROR1 CD19 

and CD123 supplemented with cytokines IL-2 and IL-21. Expanded T cells 

were monitored for CAR expression, counted to determine expansion kinetic 

s over a period of 4 to 5 weeks. At the end of 4 weeks of co-culture the 

surface and memory phenotype were determined. The effector function of 

CAR+ T cells were determined by assessing in vitro lysis of 

CD123+leukemic cell lines and primary AML patient samples. To evaluate 

in vivo tumor clearance CD123+ leukemia xenografts were established in 

NSG mice and treated with CAR T cells. 
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I.9.C Specific Aim#3: in vitro targeting of AML leukemic stem cells by CAR T 

cells specific to CD123. The hypothesis for this specific aim is to determine if 

CD123-specific CAR T cells can eliminate leukemic stem cells in AML. The 

rationale is i) The relapse in AML is due to minimal residual disease caused 

by small population of LSCs resistant to drugs  and  radiation   ii)   high   

expression  of   CD123   on LSCs compared with weak  or  no  detectable  

expression  on  HSCs presents an opportunity for selectively targeting AML-

LSCs iii) Antigen specific based adoptive immunotherapy will play a 

complimentary role in eradicating MRD by targeting TAAs expressed on 

LSCs. CD123 expression levels were determined in AML primary samples 

and phenotypically defined LSCs. The efficacy of CAR cells in elimination 

of LSCs and HSCs were determined in vitro by co-culture killing assays. 
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CHAPTER-II 
 
 
 
 

Redirecting specificity of T cells To Target CD123+ B-ALL 

Tumors 

 
 
 

II.1. Introduction 

 
CARs can empower T cells with an antibody-like specificity and is able to 

transmit signals leading to T cell activation, proliferation and its effector functions 

upon binding its specific antigen. The binding chemistry of CAR’s scFv with 

its cognate antigen is not well studied at present. Eshhar et.al demonstrated 

that the antigen binding site and idiotope for anti-2, 4, 6- trinitrophenyl (TNP) 

antibody (SP6) reside exclusively in VH region. In general, T cells expressing 

chimeric antigen receptors (CARs) are generated by combining the variable 

light (VL) and heavy (VH) chains of scFv derived from single mAb specific 

to targeted antigen (86). Examination of the contribution of VH and VL chains 

of scFvs specific to targeted antigen ma y help us to better understand the 

functionalit y of CARs and to derive CARs with different affinities to targeted 

antigen. One of the limiting factors in CAR T cell therapy is TAAs are not 

tumor “specific” but also expressed at low levels on normal cells and often 

associated with off tumor toxicities. Recent preclinical studies targeting EGFR 

and erbB2 with affinity lowered CAR T cells have demonstrated potent 

antitumor effect on tumors with high antigen density while sparing normal cells 

(87, 88). The present chapter describes a new approach for 
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generating CD123-specific CARs derived from a chimeric scFv that is made 

up of the VL and VH harvested from two mAbs that are each specific for 

CD123. The major hypothesis for this specific aim is that CARs generated 

by combining VL and VH chains from two different mAbs for CD123 will 

retain specificity for CD123. We hypothesize that the CARs can be selected 

for targeting CD123 overexpressing leukemia while sparing normal 

hematopoietic cells expressing CD123 at low levels for improved 

therapeutics. To test this hypothesis we have generated six CARs with 

chimeric scFvs by mix and matching VH and VL of four mAbs specific to 

CD123. CARs derived from VH and VL of original mAbs without mix and 

matching were used as control. We have chosen the one with least killing and 

effector functions in normal hematopoietic cells carried forward to target 

 B-ALL (described in present chapter) and AML (described in chapter III). 
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II.2.Results 
 

 

II.2.A. Generation of CD123+ Activating and Propagating Cells (AaPC) 

Activating and Propagating cells (AaPC) has been successfully shown to 

expand antigen specific CAR T cells ex vivo (45-49). Binding of T cells to its 

cognate antigen on APC cell surface results in CAR+ T cell clustering, 

phosphorylation of immune-receptor tyrosine-based activation motifs (ITAMs) 

there by activating T cells (89). K562 based AaPC-Clone 1 was previously 

made to expand CAR T cells co-express TAAs (CD19 and ROR1) co- 

stimulatory molecules (CD86 and CD137L), Fc receptors (endogenous CD32 

and transfected CD64) for loading of agonistic anti-CD3 antibod y OKT3 and 

IL-15 fusion protein (IL-15 fused to IL-15Rα) (Figure 4). However AaPC- 

Clone 1 do not express CD123. Therefore a new AaPC has been derived to 

expand CD123-specific CAR T cells by enforced expression of CD123 on 

AaPC-Clone 1 (designated as Clone1-CD123). The CD123 DNA sequence 

was synthesized and codon optimized by Gene Art (Regensburg, Germany) 

fused to hygromycin resistance gene through F2A peptide and sub cloned into 

a SB transposon plasmid (Figure 5A). AaPC-Clone 1 cells were co- 

electroporated with CD123 transposon and transposase SB11 and CD123+ 

positive cells were selected by hygromycin selection. Within 9 days after 

electroporation more than 98% of cells express CD123 (Figure 5B) 
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Figure 4. Surface phenotype of AaPC-Clone1. Surface expression of IL- 

15, CD64, CD86, CD137L, CD19 and ROR1 were analyzed by flow 

cytometry on parental K562 (deep grey histogram) and Clone1 (black 

histograms) and appropriate isotypes controls (light grey). 
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Figure 5.  Generation of Clone 1-CD123. 
 

A) Sleeping Beauty transposons expressing CD123 antigen. DNA plasmid vector maps 

for CD123 antigen IR/DR: Sleeping beauty Inverted Repeats/Direct Repeats, 

MNDU3/P: modified myeloproliferative sarcoma virus long terminal repeat enhancer– 

promoter (MNDU3) CD123: Human codon optimized CD123 antigen fused to 

hygromycin resistance gene through flag and F2A peptide. TK- codon optimized 

thimidine kinase gene BGH polyA; Bovine growth hormone polyadenylation sequence, 

ColE1: A minimal E.coliorigin of replication, Kanamycin (Kan/R): Bacterial selection 

gene encoding Kanamycin resistance, Kanamycin promoter (Kan/p); Prokaryotic 

promoter (B) Histograms showing CD123 expression after electroporation of CD123 

transposon and SB11 transposase into AaPC-Clone1 transfected with nucleofector 

solution without plasmids (blue) with plasmids on day 1 (green) with plasmids day 9 

(pink) 
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II.2.B. Chimeric CARs numerically expand on AaPC and 

stably express CAR 
 

 
 

5 second generation CARs with chimeric scFvs were generated by mix 

and matching VL and VH chains of mAbs 26292, 32701, 32703 and 32716 

specific to CD123 (CARs 5 to 9 Figure 6A right). All the scFvs except 

CAR-10 were fused in frame to CD3ζ and CD28 endo domains via CD8α 

hinge and CD8 transmembrane domain (TM) whereas IgG4 hinge and CD28 

TM were used for CAR-10. For simplicity these CARs are designated as 

“chimeric CARs” and CARs derived from regular scFvs of mAbs were used 

as positive control and called “Regular CARs” (CARs 1 to 4 Figure 6A left). 

These mAbs recognize different epitopes on CD123 with different binding 

affinities (96). A l l  CAR constructs were custom synthesized and cloned into 

Sleeping Beauty system. 

CAR plasmids (typical representation of CAR plasmid is given in Figure 

6B left) along with transposase SB11 (Figure 6B right) were electroporated 

into CD56+ NK cell depleted PBMC and expanded on Clone1- CD123 at 2:1 

AaPC:T cell ratio in presence of recombinant cytokines IL2 and IL-21. T cell 

cultures were stimmed with AaPC and surface phenotyped every 7 days 

 starting from day   one. CAR expression was detected with CD123 recombinant 

protein fused to Fc followed by serial staining with antibodies specific to Fc 

and CD3. Within 21 days chimeric contain more than 90% CD3 
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and CAR double positive cells like regular CAR cultures (Figure 7A). 

Cultures were devoid of NK cells though a small proportion of T cells express 

CD56, they do not express CD3 (data not shown). Chimeric CARs expanded 

at similar rates as regular CARs in sufficient amounts for clinic (Figure 7B 

and 7C). 
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Figure 6. CD123-specific CARs with chime ric s cFvs: (A) Left. Regular CARs (CARs 1 to 4) 

derived by fusing VH and VL chains of mAbs specific to CD123. Right. Chimeric CARs (CARs 

5 to 10) derived from chimeric scFvs of mAbs by mix and matching VH and VL chains (B) Left. 

Typical representation of Sleeping Beauty transposon plasmid containing CD123-specific CAR 

with CD28 co-stimulatory domain. IR/DR: Sleeping Beauty Inverted Repeat/Direct repeats, ColE1: 

A minimal E.coli origin of replication, Kanamycin (Kan/R): Bacterial selection gene encoding 

Kanamycin resistance, Kanamycin promoter (Kan/p); Prokaryotic promoter. hEF-1alpha/p: human 

Elongation  Factor-1 alpha region hybrid promoter; CD123-CD28 CAR: 
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Human codon optimized CD123-specific CAR with CD28 co-stimulatory domain; BGH polyA; 

Bovine growth hormone poly adenylation sequence, (right) SB11 transposase; CMV promoter 

(Cytomegalovirus  promoter) SV40 PolyA (Simian Virus 40 PolyA). 
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Figure 7.  Expression and expansion kinetics of chimeric CARs 
 

CAR expression and expansion kinetics following electroporation and xpansion on Clone 

1-CD123 in presence of IL-2 and IL-2 (A)CAR expression on Day21 after electroporation detected 

by CD123 recombinant protein fused to Fc followed by serial staining with Fc and CD3 antibodies. 

PBMC electroporated with nucleofector solution without CAR plasmids (CARneg) used as negative 

control (B) Expansion kinetics of CARs 1 to 4 (C) CARs 5-10 over a period of 28 days and data 

pooled from 3 donors mean + SD 
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II.2.C. Chimeric CARs maintain specificity to CD123 
 

Before testing in vitro efficac y of chimeric CARs several leukemic cell 

lines including pre-B-ALL cell line Nalm6 and AML cell line TF1 and human 

embryonic kidney cell line 293T (Figure 8).  To test chimeric CAR T cells 

demonstrate  effective  specific  lysis  of  CD123
+  

tumor  cells  in  vitro, 
 

 

a chromium-51  labeled target cell lines were co-cultured with  CAR T cells in 

a standard 4 hour chromium  release assay effector: target (E:T) ratio 20:1 . 

CD123+ pre B-ALL cell line  Nalm6, and AML cell line TF1 were used as 

positive   controls  and  293T  human  embryonic kidney  cell  line   used  as 

negative control.  CAR T cells able to lyse CD123+   B-ALL tumor cell lines 

(Figure 9A) but not CD123neg   cell line 293T (Figure 9B). To further verify 

killing by CAR T cells we co-cultured CARneg   with target cell lines in 20:1 

they fail to kill CD123+  ALL cell lines.  To test antigen-specific lysis 293T cells 

CAR T cells were co-cultured with 293T cells CAR T cells and 293T cells 

transfected with CD123.  CAR T cells lysed transfected cells but not CD123neg  

293T (Figure 9A).  This data suggests   that chimeric CARs recognize the CD123 

antigen and execute antigen specific killing. 
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Figure 8. CD123 e xpre ssion on leukemic cell lines and 293T 

cells CARs. CD123 expression assessed by flowcytometry in 

CD123+ Leukemic cell lines NALM6, TF1, CD123neg human 

embryonic kidney cell line, and 293T transfected with CD123. 
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Figure 9. Spe cific cytolysis of chime ric CAR T ce lls (A) Left. in vitro efficacy of 

CAR T cells in established CD123+ pre B-ALL cell line Nalm6 and CD123+ AML cell line 

TF1 with E:T ratio 20:1 (B) Right. Antigen specific cytolysis in CD123neg human embryonic 

kidney cell line 293T and 293T cells stably transfected with CD123 antigen E:T ratio 20:1 

(C) Cytolysis by CARneg T cells in NALM6, TF1, 293T and 293T-CD123, E:T ratio 20:1. 

All data are mean + SD of triplicate measurements in CRA. 
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II.2.D. IFN-γ production by chimeric CARs in response to 

CD123 antigen 

 
 
 

In order to assess antigen-specific effector function of chimeric CARs 

IFN-γ production was assessed in CD123+ Nalm6 cells. 293T cells used as 

negative control. T cells on Day 21 after electroporation were incubated with 

Nalm6 and 293T cells in E:T ratio 2:1 for 48 hours. T cells without targets 

used to see the difference with and without targets. Nalm6 stimulated chimeric 

CAR T cells produced IFN-γ in significant amounts compared to CAR T cells 

treated with 293T and T cells alone (Figure 10). These data established the 

effector function and functionality of chimeric CARs in response to antigen. 
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Figure 10. IFN-γ production by chimeric CARs in response to 

CD123 antigen. T cells on Day 21 after electroporation were 

incubated with Nalm-6 and 293T cells in E:T ratio 2:1 for 48 hours. 

IFN-γ production was assessed by cytokine capture beads by 

LEGEND plex TM Human Th1 panel kit (Biolegend). Samples were run 

in iQue Screener Systems (intellicyt) and analyzed by LEGEND 

plexTM software provided with the kit. 
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II.2.E. in vitro toxicity of chimeric CAR T cells in normal 

hematopoietic cells 
 

 
 

Many studies explored the expression of CD123 indicate that part of 

hematopoietic progenitors from human cord blood, bone marrow, peripheral 

blood and fetal liver express CD123 while primitive population of HSCs 

express at low levels or absent (157). Though the antibody based CD123- 

targeting therapies in AML reported to be well tolerated sparing normal 

hematopoietic cells, recent pre-clinical studies employing CD123-specific CAR 

T cells resulted in eradication of normal human myelopoiesis (161). 

 
 
 

To test the in vitro toxicity of chimeric CARs for normal hematopoietic 

cells, we isolated lineage+ and HSCs enriched lineageneg fractions from normal BM 

cells and labeled with PKH-26. CAR T cells co-cultured with PKH-26 labeled 

cells for 48 hours with E: T ratio 2:1.CD19 CAR T cells used as control. Cells were 

stained with 7AAD and live/dead cells were enumerated by 7AAD exclusion.  

CAR T cells are apparently lysed both lineage+   and lineageneg hematopoietic cells 

(Figure 11A). CD19 is expressed on differentiated cells but not expressed on 

HSCs.  This is apparent by minimal lysis in lineageneg population than lineage+ 

population.  These data raises concern that CD123- specific CAR therapy can be 

detrimental to normal hematopoiesis. However IgG4 hinge based CAR-10  

showed  less cytotoxicity to normal hematopoietic cells when compared to its 

counterparts with CD8α hinge (CARs 5-9) (Figure 11B). 
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We have chosen CAR-10 (referred as CD123- IgG4 CAR rest of the chapter) 

to take forward to generate preclinical data in support of clinical trials in B-

ALL (Chapter-II) and AML (Chapter-III). Before moving to forward for testing 

the in vivo efficacy of CD123-IgG4 CAR T cells in NSG mice in B-ALL, 

we reconfirmed in vitro efficacy in additional cell lines. CD123 expression 

was assessed in CD123+ B-ALL tumor cell lines RCH-ACV, kasumi-2 and 

CD123neg cell lines OCI-Ly19and EL4 (Figure 11C). CAR T cells were co-

cultured with 51 chromium labeled target cells in different ratios in 4 hour 

chromium release assay. CAR T cells able to lyse CD123+ B-ALL tumor cell 

lines, but not OCI-Ly19. Antigen specific killing was determined by using EL4 

and EL4 transfected with CD123 where CAR T cells able to lyse EL4-

CD123 but not EL4-parental (Figure 11D). 
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Figure 11. Anti-tumor efficacy of chimeric CARs (CAR-10) 
 

A) in vitro lysis of normal hematopoietic cells by chimeric CARs. (A)Mononuclear 

cells isolated from normal BM samples and separated into lineage+ and lineageneg 

cells labeled with PKH-26 and co-cultured with CAR T cells at E:T ratio 1:1 

for 48 hours. 7-AAD added to distinguish live and dead cells to assess killing. 

B) In vitro lysis of  TF1 tumor cells vs Normal BM cells by chimeric CARs 

Reduced cytolytic activity of CAR-10 compared to CARs 1-9 shown inbox 

 C) Flow analysis of CD123 expression on B-ALL cell lines RCH-ACV, KASUMI-2, 

Nalm6 and B-cell lymphoma OCI-Ly19. D) in vitro efficacy of CD123-chimeric 

CAR (CAR-10) specific CAR+ T cells in B-ALL cell lines in a standard 4 hour 

chromium release assay. CD123neg mouse T cell lymphoma cell line EL4 was 

transfected with CD123 antigen to determine antigen specific killing. Data was 

reported as mean ± SD 
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II.2.F. in vivo clearance of B-ALL tumors by CD123-specific T cells 

 
 
 
 

In order to test in vivo efficacy of CAR T cells, B-ALL cell line RCH- 

ACV was transduced with lentiviral vector pLVU3G effluc T2A mKateS158A 

(Figure 12A) and mKate+ cells were Fluorescence-activated cell (FACS) 

sorted and the clones from single cells were developed for uniform mKate 

expression for bioluminescent imaging (BLI). RCH-ACV cells expressed 

luciferase confirmed by standard luciferase assay (****p<0.0001) (Figure 

12B). On Day 0 and day1 mice were intravenously treated with tumor cells 

and CAR T cells respectively. 3 more infusions of CAR T cells were given on 

day 7, 14 and 21 followed by intraperitoneal treatment of IL2 (60000 

units/mice). Untreated group did not receive CAR T cells (Figure 13A). CAR 

treated group showed reduced tumor burden quantified by BLI (Figure 13B) 

and flux activity (****p<0.0001 (Figure 13C) and significant improvement in 

survival (**p<0.01 (Figure 13D) compared to control mice. These data 

suggests that CD123 provides additional approach to treat B-ALL through 

chimeric antigen receptors in addition to targeting CD19. 
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Figure 12.  Expressing firefly luciferase on RCH-ACV 
 

(A) Lentiviral  vector pLVU3G  effluc  T2A  mKateS158A transduced to 

genetically  modify  RCH-ACV to express mKate  red fluorescence protein and 

firefly luciferase (ffLuc; bioluminescence reporter) for non-invasive 

bioluminescence imaging (BLI) of tumor burden in vivo (B) Flux  activity in B- 

ALL cell  line  RCH-ACV  transduced  with lenti-viral  vector  expressing 

firefly luciferase compared  to  efflucneg control (****p<0.0001  unpaired t- 

test) 
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Figure 13. Anti-leuke mic effects of CD123-IgG4 CAR T cells in B-ALL. (A) 

Experimental plan. RCH-ACV a pre B-ALL cells were infused intravenously on 

day 0 followed by 4 infusions of CD123-specific CAR T cells along with IL-2. 

(B) Graphic images of BLI of CAR treated and Control group on day 7, 14,21and 

28 (C) Flux activity measured by BLI in CAR treated group in comparison to 

untreated group. Statistical analysis by two way ANOVA (****p<0.0001) (D) 

CAR treated mice (gre y) showed significant survival in comparison to untreated 

group (black). Log-rank (Mantel-Cox) test was used for statistical analysis. 

**p<0.01 
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II.3. Discusssion 

 
Cell-based immunotherapies have demonstrated efficacious results in cancer 

treatment modalities. This dissertation aimed to develop pre-clinical data to 

support a clinical trial of CD123-specific CAR T cell treatments for CD123+ 

B-A LL and AML malignancies. We used existing platforms, Sleeping Beauty 

system non-viral gene transfer and AaPC for expanding genetically modified  

T cells with CARs (45-49, 55). 

 
 
 

Traditional CARs have been generated using single-chain variable 

fragments (scFv), often derived from a single mAb. Here we described a novel 

approach for making CARs using chimeric scFvs deriving by assembling VH 

and VL chains from two mAbs specific to CD123. Six CARs were generated 

by mix and matching of VH and VL chains mAbs 26292, 32701, 32703 and 

32716 specific to CD123. The CARs with chimeric scFvs were expressed, 

expanded and mediated target cell lysis in vitro in similar fashion as CARs 

derived from regular scFvs of mAbs. This approach may allow us to design 

affinity tuned CARs with chimeric scFvs by mix and matching of VL and VH 

chains of mAbs of various affinities. Clinical outcome of CAR T cells attributes 

to several factors including CAR design, affinity of scFv to targeted antigen, 

density of targeted molecule on tumor cells age and strength of immune system 

of blood donor used for manufacturing T cells. 
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CD123 is over expressed in more than 95% of B-ALL patients while it is absent 

in normal early B-cell precursors and weakly expressed on intermediate and 

mature normal B cells. CD123 expression is correlated with hyper diploid 

genotype a frequent genetic abnormality in childhood ALLs. In contrast B- 

ALLs associated with other genetic abnormalities such as chromosomal 

translocations or normal karyotype do not express CD123 (99, 100). The 

overexpression of CD123 expression on B-ALL compared to normal B cells 

and correlated expression in hyper diploid B-ALL, provide s an opportunity to 

therapeutically target B-ALL through chimeric antigen receptors. 

Relapse is the main reason for treatment failure in ALL patients, 

minimal residual disease (MRD) has significant prognostic value in pediatric 

and adult ALL (101-107). Leukemic stem cells are well documented in AML, 

their existence and relevance in ALL is less clear. However, several reports 

suggested that, a majority of leukemic populations with primitive stem-like 

phenotype can propagate leukemia in the appropriate experimental setting and 

their hierarchial organization is less strict like LSCs in AML (158). As reported 

by several groups TEL/AML1-positive CD34+ cells that carried no lineage 

markers specific to lymphoid differentiation (CD19 or CD10) were capable of 

engraftment and propagating leukemia and even engraft secondary recipients 

(159-160). These findings corroborate recent clinical findings by June et.al 

while targeting B-ALL by CAR T cells specific to CD19. In their studies though 

CD19 CAR+ T cells have been shown to induce potent anti- 
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tumor activity against B-ALL tumors, some of the CD19 CAR treated B-ALL 

relapsed patients exhibited phenotype that were negative for CD19 but 

expressed D123 (108). It appears that, employing CD123-specific CAR T cells 

for relapsed patients after CD19 CAR therapy feasible strategy to prevent 

relapse and improved survival. 

One of the limiting factors in CAR T cell therapy is TAAs are not tumor 

“specific” but also expressed at low levels on normal cells often associated with 

off tumor toxicities. This is a considerable concern since CD123+B-ALL antigen 

targeted therapies results in elimination of HSCs along with leukemic cells. 

Though the effect of antigen density for CAR therapy is not well defined yet it 

appears that CAR T cells preferably target tumors with high antigen density 

while the ones with lower density are resistant to therapy (97, 98). Recent 

preclinical studies with CAR T cells with lowered affinity targeting EGFR and 

erbB2 showed potent antitumor effect on tumors with high antigen density while 

sparing normal cells (87, 88). 

Though CARs typically are identified by their endo-domains and scFv, 

the other components of CARs, including the hinge/spacer region, also play 

a crucial role in their function and clinical efficacy. The constant region of 

IgG4 and CD8α re frequently used extracellular (stalk) hinge regions, though 

the Fc region has been reported to engage Fc receptors and activate innate 

immune cells (137). To avoid off target activation of CARs and unwanted 

 immune responses we have generated a CD123 specific CAR construct by 

introducing  L235E and N297Q mutations in the CH2 region of IgG4-Fc spacer.  
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 We showed that CAR constructs using CD8α-derived hinge provide  

highly effective cytolysis in our CD123-specific constructs. Interestingly, 

the choice of spacer had a much greater impact on target cytolysis than 

expected, with a CAR utilizing a CD8-derived spacer achieving much 

better cytolysis than the same scFv using an IgG4-derived spacer. 

Importantly CAR-10 with IgG4 hinge showed minimal lysis in normal 

BM cells compared to CAR-6 with same scFv with CD8α hinge (Figure 

6A). This observation requires further investigation in future models. 

By choosing different sources of VH and VL chains and perhaps 

different hinge regions, we may be able to tune the activation threshold 

for CAR T cells further, especially if a wider range of antibody 

affinities is used than was chosen for these studies. This finding may allow 

us to generate CARs with low affinity to selectively target high antigen 

density tumors while sparing normal hematopoiesis. 

 

 

 

 

 

 

 

 

45 



CHPTER-III 

 

Comparative evaluation of co-stimulatory signals in targeting AML 

with CD123-specific T cells 

  
 
  

 

III.1.Introduction 
 

 

Acute myeloid leukemia (AML) is a clonal proliferation of 

malignant myeloid blast cells in the BM with impaired normal hematopoiesis.  

Despite many advances AML remains a lethal disease. Standard treatment 

regimens chemotherapy and radiation ensure long-term remission only in 30 to 

50% of patients with a low survival probability resulting in resistance and 

relapse (109-111). CARs have demonstrated clinical efficacy in treating 

leukemia in preclinical models and are being tested in several clinical trials and 

emerging as powerful tools for adoptive immunotherapy (115). CD123, the IL- 

3 receptor α- Sub unit has been reported to be overexpressed on up to 95% 

of leukemic in AML with weak on normal HSCs and absent on cells outside 

hematopoietic lineage (120-124). Phage1 clinical trials targeting CD123 in 

AML using neutralizing mAbs and cytotoxic protein fused to IL-3 cytokine 

showed limited therapeutic efficacy pressing the need for more novel 

efficacious treatments (125, 126). Several pre-clinical and animal models 

have demonstrated that CAR T cells including CD28 or CD137 co- 

stimulatory domains as a built in source of signal 2 have improved persistence 

compared with those containing the CD3ζ signaling domain alone 

(119,196,197). However, the anti-tumor efficacy of one over the other 

costimulatory domain has not been investigated in depth. 
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An additional challenge in developing CAR T cells for immunotherapy is the 

management of toxicities, especially those related to excess activation of 

infused cells or targeting of TAA expressed on normal tissues (195). To 

address these questions, we engineered constructs in which the CAR10 

CD123-specific second generation CAR was fused to either the CD28 

(designated as CD123-CD28 CAR) or CD137 (designated as CD123- CD137 

CAR) co-stimulatory domains. To reduce off-target toxicities, the utility of 

the inducible suicide switch iCaspase9 has been evaluated in this context. 

The main goal of this study is comparative functional evaluation of two 

CD123- specific CARs with CD28 or CD137 co-stimulatory domains. The 

hypothesis of this aim is that T cells expressing CD123-specific CARs will 

re-direct the specificity of T cells to target CD123+ AML and CARs  

containing CD137 endo-domain will be superior to those signaling through 

CD28 in therapeutic efficacy. The rationale is i) Optimal CAR design 

enhances the persistence   of CAR T cells  ii) studies showed 

that  CARs   that incorporates   CD137   has   enhanced   survival   and

 anti-tumor  efficacy compared to CARs  with CD28 endo-domain 

iii) the clinical outcome of complete remission of CAR T cells correlated 

with long-term persistence of CAR T iv) CD1 23, the IL-3 receptor α - 

subunit has has reported to be overexpressed  in  AML v)  evidence  that 

complete remissions (CR) were observed in B-ALL and CLL patients treated 

with CD19 CAR T cells. 
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III.2. RESULTS 
 

 

III.2.A. Construction of CD123-specific CAR SB plasmids 
 
 
 

Two codon-optimized Sleeping Beauty transposons encoding CD123- 

specific second generation CARs fused to suicide gene iCaspase9 with CD28 

(Figure 14A) or CD137 (Figure 14B) co-stimulator y domains were swapped 

into previously made iCaspase 9 co-expressing CD19 CARs in SB system. 

Swapping replaces CD19-specific scFv sequence with CD123-specific scFv 

keeping rest of the plasmid intact. The CAR plasmids were constructed in the 

following order: human elongation factor-α (hEF-α) promoter was used to drive 

expression of CARs. Following promoter, 5’ to3’ CAR open reading frame 

(ORF) consisting of signal peptide, scFv, whitlow linker, modified IgG4 hinge, 

CD28 transmembrane domain, CD28 or C D 137 endo-domain and CD3ζ 

signaling domain. The scFv is derived from V L of mAb 26292 and VH of mAb 

32703 specific to CD123 (Figure 6A, CAR- 10 Chapter II). To distinguish 

CARs with CD28 and CD137 endo-domains by PCR in cells isolated from 

in vivo studies a unique oligonucleotides SIM for CD123- CD28 CAR and 

FRA for CD123-CD137 CAR were interspersed between stop codon of 

CAR and BGH polyA tail. Upon electroporation the indirect repeats (IR) of 

SB system flanking 5’ end of hEF-α promoter and 3’ end of Poly A tail is 

cut by SB11 transposase and integrates within the TA repeats in human T cell 

genome. Kanamycin resistance gene will allow to amplify the SB plasmids in 

large numbers in bacteria. 
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Figure 14: CD123-specific CAR plasmids. DNA plasmid vector maps 

for (a) CD123-CD28 C A R and (b) C D 1 2 3 - CD137 CAR. Abbreviations 

are as follows, IR/DR: Sleeping Beaut y Direct repeats/Inverted Repeat, ColE1: 

A minimal E.coli origin of replication, Kanamycin (Kan/R): Bacterial selection 

gene encoding Kanamycin resistance, Kanamycin promoter (Kan/p); p 

rokaryotic promoter. hEF-1alpha/p: human elongation factor-1 alpha region 

hybrid promoter iCaspase 9; induced caspase 9 suicide gene. CD123-CD28 

CAR: human codon optimized CD123-specific scFv fused to Fc, CD28 endo- 

domain and CD3 zeta chimeric antigen receptor, CD123-CD137CAR: human 

codon optimized CD123-specific scFv fused to Fc, CD137 endo- domain and 

CD3 zeta chimeric antigen receptor SIM: “SIM” PCR tracking oligonucleotides, 

FRA: “FRA” PCR tracking oligonucleotides, BGH poly A; B ovine growth 

hormone poly adeny lation sequence, 
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III.2.B. SB modified T cells stably co-express CD123-specific CAR and 

iCaspase9 
 

 
 

PBMC from normal donors were co-electroporated with CD123-CD28 or 

CD123-CD137 transposon and SB11 transposase co-cultured with CD123+ 

AaPC (designated as clone1-CD123) for 4 to 5 weeks. PBMC electroporated 

with nucleofector solution without CAR plasmids used as negative control (“NO 

DNA” CARneg T cells) were expanded on OKT3 loaded Clone1- CD123. By 

da y 35 more than 95% of T cells expressed CAR (Figure 15A) and CD3 

(Both CARs expanded at similar rates as noted by total number of cells 

counted at the end of culture (p=0.14) Two-way ANOVA) (Figure 16). 

Genomic DNA from Day 35 CAR T cells amplified by using primers and 

probes specific to IgG4-Fc and CD28 transmembrane domains showed on an 

average integration of 1 copy of CAR transgene per cell. Jurkat clone1 of 

known copy number per cell used as positive control and NO DNA cells used 

as negative control (Figure 15B). Thus SB transposition of CAR into PBMC 

and selective propagation on AaPC, Clone 1-CD123 resulted in generation of 

CAR T cells to clinically sufficient numbers with high CAR expression. 
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Figure 15. CAR Expression and copy number in CD123-specific CARs. 
 

(A) CAR Expression in CD123-CD28 (middle) and CD123-CD137 (right) T 

cells on da y1and 35after electroporation and co- culture on AaPC Clone 1-

CD123 where C A R n e g T cells (left) were used as negative controls. T cells 

were detected with CD3 antibody and CAR expression with Fc-specific antibody 

against IgG4 (B) CAR copy number was determined on day 28 using primers 

and probes specific for CD28 transmembrane and IgG4 hinge region. CARneg 

and Jurkat cells were used as negative and positive controls respectively. 
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Figure 16. Expansion kinetics of CD123-specific CARs. 

Expansion of CD3+ and CD3+CAR+ T cells over a period of 35 

days after electroporation in CD123-CD28 and CD123-CD137 

CAR T cells as noted by total number of cells counted at the end 

of culture  (p=0.14) Two-way ANOVA (CD3+ and CD3+ CAR
+
 

T cells). 
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III.2.C. Immuno-phenotype of CD123-specific CAR T cells 
 
 
 
 

The immunophenotypic analysis of CAR T cells by flow c ytometry 

shows > 95% T cells co-expressing CD3 and CAR with a mixure of CD8+ 

and CD4+ T cells. (Figure 17A right). Establishment of long term memor y 

and survival is the key for improving anti-tumor efficac y of CAR T cells in 

clinical setting. Terminally differentiated effector memory (TEM) T cells lose 

their capacity to expand and persist after adoptive transfer. On the contrary, 

less differentiated and minimally manipulated T cells with central memory 

phenotype (TCM) can further expand, differentiate and self-renew with superior 

clinical response. To date, adoptively transferred CAR+ T cells have 

demonstrated minimal in vivo expansion and antitumor efficacy in clinical trials 

(130-132). Though IL-2 is routinely used for T cell expansion recent reports 

suggests that other common gamma chain cytokines such as IL-15 and IL-21 

more usefully suppress differentiation of naïve T cells into effector T cells 

(133). 

SB transposition and expansion on mIL15+AaPC in presence of IL-2 

and IL-21 resulted in outgrowth of T cells with less differentiated phenotype 

and memory associated markers CD45RA, CD45RO, CD62L, CCR7, CD27, 

CD28, and no detectable expression of exhaustion markers CD57 and PD-1. 

Few cells express BM homing receptor CXCR4. (Figure 17B). 
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CAR+ T cells belonged to less differentiated phenotype primarily compose d 

of few naïve (TN) defined by CD45RA+CD62L+CD95neg CCR7+, TEMRA 

(CD45RA+CD62LnegCD95neg    CCR7neg), TEM  (CD45RAnegCD62LnegCD95+
 

CCR7neg) and TCM (CD45RAnegCD62L+CD95+ CCR7+) and co-express CD27 

and CD28 to engage co-stimulatory ligands for long term survival (Figure 17A 

and 17B). 
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Figure 17. Immunophenotype of CD123-specific CAR T cells (A) Flow analysis 

of memory markers on CD3+Fc+ gated T cells. Representation of one donor of total 3 donors 

actually used in the experiment (left) and selective surface markers CD4, CD8, and CD56 

(right) (B) memory and exhaustion markers CD57 and PD1 expressed (n=3) on CD123- 

CD28 and CD123-CD137 CAR+T cells.  Paired Student’s two-tailed t- test was used 
 

*p<0.05 (C) T cell  differentiation  subsets  gated on  CD3+Fc+ population ,  histograms 

depicting cell percentage in  each  subset, TNaive CD45RA+CD62L+CD95neg CCR7+, 

TEMRA (CD45RA+CD62LnegCD95negCCR7neg), TEM 
 

(CD45RAnegCD62LnegCD95+ CCR7neg) and   TCM (CD45RAnegCD62L+CD95+ 
 

CCR7+) in CD123-CD28 CAR+ T cells (Black bars) and CD123-CD137 CAR+ T cells 

(Grey bars) (n=3). Statistical analysis by Student’s t test or nonparametric Mann–whitney 

 

Method. 
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III.2.D. Transcriptional profile of CD123-specific CAR T cells 
 

 

Transcriptional profile of CAR T cells was assessed by nanostring digital 

multiplex array of mRNA showed expression of T cell activation markers 

CD69, CD44, TIM3, co-stimulatory molecules CD40L, CD27 CD28 and no 

expression of exhaustion and terminal differentiation markers above detectable 

levels B3GAT1 (Beta-1, 3-Glucuronyltransferase-1; CD57) and KLRG1 

(KLRG1) by CAR T cells shows they are fully activated and has the potential 

for persistence after adoptive transfer (Figure 18A).  Concurrent expression 

of transcription factors associated with less differentiate d phenotype i.e ID2 

(Inhibitor of DNA Binding-2), KLF2 (Kruppel-like Factor-2), FOXO1 (Forkhead 

Box-O1), CTNNB1 (β-Catenin), BACH2 (BTB and CNC Homology-2), GFI1 

(Growth Factor Independence-1), LEF1 (Lymphoid Enhancer Binding Factor-

1) and later memory stages, i.e BCL6 (B-cell Lymohoma-6), PRDM1 

(BLIMP-1), and TBX21 (T-bet), suggests that the expanded CAR+ T cells 

were heterogeneous in memory regulation (Figure 18B). Expression of 

cytokine receptors e.g., IL2RA (IL-2-Receptor- α; CD25), IL2RB (IL-2-

Receptor-β; CD122), IL2RG (IL-2-Receptor-γ;CD132), IL7R (IL-7-Receptor-

α; CD127), and IL15RA (IL-15-Receptor-α), suggests that CAR T cells has 

potential for continuous survival and persistence after adoptive transfer. CAR 

T cells express molecules associated with T cell effector (Granzyme A, 

Granzyme  B, Perforin 1, Granulysin, IFN- γ and TNF) memory and  trafficking 

(SELL (L-Selectin; CD62L), CD95, 

56 



 

 

CCR7) predicts homing, persistence and therapeutic efficiency of CAR T cells 

(Figure 18C). In summary APC expanded, IL2/IL21 supplemented CAR T 

cells contain sub-populations with desirable phenotype and gene expression 

patterns predictive of therapeutic efficacy after adoptive transfer. 
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Figure 18. Transcriptional profile of CD123-specific CARs 
 

mRNA transcripts of lymphocyte  genes expressed on CAR T cells analyzed by non- 

enzymatic digital multiplex  array of  (A) Transcriptional profile of activation, co- 

stimulation and exhaustion  (B) Transcription factors associated with less differentiated 

phenotype and late memory stages (C) Cytokine receptors for survival and markers 

associated with effector function 
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III.2.E. in vitro functionality of CD123-specific CAR T cells 
 

 

Before testing functionality of CAR T cells, CD123 expression was evaluated 

on AML cell lines MV4-11, TF1, Molm-13, OCI-AML3 and mouse T cell 

lymphoma cell line CD123neg EL4-parental (EL4-P) and EL4-P transfected 

with CD123 antigen. All the cell lines tested were positive for CD123 except 

EL4-P cells and OCI-Ly19 (Figure 19A). To evaluate functionality of CD123- 

specific CAR+ T cells in vitro, we used 4 hour chromium release assay for 

AML cell lines and flow-cytometry based killing assay for AML primary 

cells. CD123- specific T cells were able to lyse CD123+ AML cell lines but 

did not kill CD123neg B-cell lymphoma cell line OCI-Ly19. To provide further 

evidence that CD123-specific C A R T cells specifically target CD123+ tumors 

we genetically modified EL4 parental cell line to enforce CD123 expression. 

CD123-specific T cells efficiently killed EL4-CD123 but not EL4 parental cells 

(Figure 19B). 

In order to assess killing efficacy in primary patient samples, CD123 

expression was analyzed on primary samples by flow cytometr y (Figure 20A). 

All 4 primary samples do not express CD19 (data not shown). CAR T cells 

were co-cultured with PKH-26 labeled CD123+ primary AML cells in E:T 

ratio 2:1 for 72 hours and CD19 CAR T cells used as negative control. CD123- 

specific T cells recognized and killed CD123+ AML primary cells but not in 

CD19neg   AML primary cells co-cultured with CD19 CAR T cells 
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(Figure 20B). iCaspase 9 expression on CAR T cells was assessed by flow 

 
cytometry (Figure 21A) and in vitro functionalit y of iCasp9 was assessed by 

treating CAR T cells with 1 µM chemical inducer of dimerization  (CID) a 

synthetic homo-dimerizer  AP20187 for 24 hours. Untreated CAR T cells used 

as negative control. Within 24 hours the dimerizer drug rapidly eliminate d 

CAR T cells in CID treated group (Figure 21B) compared to untreated 

control.  In summary CD123-specific CAR T cells demonstrated anti-tumor 

efficac y in CD123+ cell lines and primary tumors, and conditionally ablated 

CAR T cells. 
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Figure 19. in vitro lysis of CD123-specific CARs in AML 
 

A) Flow cytometric analysis of CD123 expression on AML cell lines MV4-11, 

Molm-13, TF1, OCI-AML3, EL4-Parental and EL4-Parental cells transfected with 

CD123. Percentage of CD123 positive cells (gre y filled) over isotype controls (not 

filled) are indicated in each histogram (B) Specific lysis of CD123- CD28 and 

CD123-CD137 CAR+ T cells against AML cell lines MV4-11, Molm- 13, 

TF1,OCI-AML3, CD123neg OCI-Ly19, EL4 and EL4 transfected with CD123 in a 

4 hour chromium release assay, Data are mean ± SD n=3 
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Figure 20. in vitro lysis of CD123-specific CAR T cells in AML primary 

samples (A) Flow cytometric analysis of CD123 expression on primary 

AML samples used in co-culture assay (B) PKH-26 labeled Primary AML 

primary cells were co-cultured with CD123-CD28 and CD123-CD137 CAR 

T cells at 1:1 ratio for 72 hours.CD19-CD28 was used as negative control. 

At the end of the culture, cells were stained using anti- CD3 to distinguish 

between T cells and PKH-26 labeled tumor cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
62 



 
 

 
 

Figure 21. in vitro functionality  of  iCaspase  9 in CD123-specific CARs 
 

(A) ICaspase 9 expression on CAR T cells, assessed by flow cytometry 

(Figure 21A) and in vitro functionality of iCasp9 was assessed by treating 

CAR T cells with 1µM chemical inducer of dimerization (CID) a synthetic 

homodimerizer AP20187 for 24 hours which rapidly eliminated T cells in CID 

treated group. 
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III.2.F. in vivo efficacy of CD123-specific CAR T cells 

 
To evaluate antitumor activity of CAR T cells in vivo a xenograft model 

of AML was established in NSG mice transgenic for human interleukin-3 (IL- 

3), stem cell factor, and granulocyte macrophage colony-stimulating factor 

(NSGS). GMCSF dependent erythrocytic leukemia cell line TF1 was genetically 

modified with lentiviral particles to express mKate red fluorescent protein (RFP) 

and enhanced firefly luciferase (ffLuc) (Figure 22A) for allowing to track 

tumor burden by serial non-invasive bioluminescence imaging (BLI). On day 0 

mice were injected with 2.5x106 TF1-mKate-ffluc cells allowed to engraft for 

5 da ys. On day 5 tumor engraftment confirmed by BLI and 107 CD123-

CD28 or CD123-CD137 CAR+ T cells/mice were infused along with 

intraperitoneal injection of IL-2 (60,000  units/mice ).  Untreated mice served as 

control. 2 more infusion of T cells were given on day 11 and 20 and mice 

were imaged for tumor burden on day 20 and 28 (Figure 22B). Untreated 

mice showed continuous tumor growth evidence d by increase in 

bioluminescence flux in comparison to CAR T cells treated group (Figure 

22C). Both CD123-CD28 and CD123-CD137 CAR T cells treated groups were 

able to reduce tumor burden compared to untreated group as measured by 

tumor BLI flux p<0.01 (Figure 22D). Treatments with CD123-specific CAR 

T cells significantly prolonged survival of mice in both treated groups compared 

to control group (Figure 22E). However we did not observe any statistically 

significant difference in survival between mice treated with CD123- CD28 and 

CD123-CD137 CAR T cells (p value > 0.05). 
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In summary, preclinical data thus generated so far will allow us to test 

CD123-specific T cells in clinical setting to treat CD123+ malignancies in 

patients. 
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Figure 22. in vivo efficacy of CD123-specific CAR T cells in NSGS mice (A) 

AML cell line TF1 was genetically modified with lentivirus particles to express mKate 

red flourescent protein and enhanced firefly luciferase (effluc). Flux intensity in TF1 

cell line compared to non-transduced TF1 cells, measured by firefly luciferase assay 

(****p<0.0001) (B) Schematic of TF1 xenograft model. 2.5x10e6 TF1-effLuc-mKate 

cells were intravenously injected into NSGS mice on day 0. On Da y 5 tumor 

engraftment was quantified using Non- invasive bioluminescence imaging (BLI) and 

mice randomly divided into 3 groups and treated with 3 infusions of CD123-28 or 

CD123-CD137 CAR T cells and untreated group received no T cells followed by 

IL-2 treatment and BLI on day 5,11 and 20 (C) BLI images of mice showing tumor 

reduction in CD123-CD28 and CD123-CD137 CAR treated group compared to 

untreated group (**p<0.01 (D) Flux activity measured by BLI in CD123-CD28 or 

CD123- CD137 treated group in comparison to untreated group.  Statistical analysis by 

two way ANOVA (**p<0.01) 

(E) Survival of mice treated with CD123-CD28 CAR T cells compared to mice 

treated with CD123-CD137 CAR T cells. Log-rank (Mantel-Cox) test was used for 

statistical analysis. p>0.05 ns (not significant) 

 
 
 
 
 

66 



III.3. Discussion 
 
 

CARs that activate through chimeric CD28 or CD137 endo-domains have 

anti-tumor activity and durable remissions in clinical trials with pros and cons 

for each design. However the improved efficacy over the other is unknown at 

present. Preclinical data that supports targeting CD123 on AML using CARs 

with CD28 and CD137 co-stimulatory domains have been reported by two 

groups respectively (134, 135). In this study we described the head to head 

comparison of CD123-specific CARs with co-stimulator y domains CD28 or 

CD137 and have been evaluated in the lines of CD19- specific CAR T cells 

currently in clinical trials (NCT00968760). 

We have redirected the specificity of T cells using Sleeping Beauty 

system to stably express CARs and selectively propagated on Clone 1-CD123 

AaPC, co-expressing CD123, co-stimulatory molecules CD86 and CD137L and 

a membrane bound IL-15. Trans-presentation of mIL-15/IL-15Rα fusion 

protein expressed on Clone 1-CD123 support enhanced proliferation and 

survival of CAR T cells without altering T-cell activation patterns and global 

T-cell receptor (TCR) repertoire (136, 137). Unlike lentiviral and retroviral 

vectors SB transposition is cost effective gene transfer system requires less 

production cost for manufacturing clinical grade T cells. SB system doesn’t 

integrate at sites of active transcription, has been shown not to activate 

oncogenes (127-129). Establishment of long term memory and survival is the 

key for improving anti-tumor efficacy of CAR T cells in clinical setting. 
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Terminally differentiated effector memory (TEM) T cells lose their capacity 

 to  expand and persist after adoptive transfer. On the contrary, less 

differentiated and  minimally  manipulated   T    cells  with  central   memory 
 

phenotype (TCM) can further expand differentiate and self-renew with superior 

clinical response. To date, adoptively transferred CAR T cells have 

demonstrated minimal in vivo expansion and antitumor efficac y in clinical 

trials (130-132). Though IL-2 is routinely used for T cell expansion recent 

reports suggests that other common gamma chain cytokines such as IL-15 and 

IL-21 suppress differentiation  of naïve T cells into effector T cells (133). 

 

SB transposition and expansion on mIL15+AaPC in presence of IL-2 

and IL-21 resulted in outgrowth of T cells with less differentiated phenotype 

and memory associated markers CD45RA, CD45RO, CD62L, CCR7, CD27, 

CD28, with no detectable expression of exhaustion markers CD57 and PD1. 

Few cells express BM homing receptor CXCR4 (Figure 17B) which helps T 

cells to migrate to BM regions and clear leukemic cells. More than 95% of T 

cells express CAR and expanded to clinically relevant numbers with 

heterogeneous phenotype consistent with central memory T cells (TCM) and 

effector memory (TEM). Redirected specificity was established based on CAR- 

dependent T-cell effector function such as specific lysis of CD123+ leukemic 

cell lines and primary AML samples, but not CD123neg targets. Most of the 

tumor associated myeloid antigens are also expressed on normal hematopoietic 

cells. Recent studies by Gill et al reported that CD123-specific CAR T cells 

treated mice showed marked reduction in myelo-ablation in a preclinical 

xenograft model suggests that new approaches needed to mitigate 
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off-target toxicities (134). This raises concern for targeting CD123 in 

AML as it is expressed on normal hematopoietic cells. Our approach of using 

chimeric CARs with the combination of changing CAR hinge to IgG4 may 

enable us to generate low affinity CARs by minimal lysis of normal 

hematopoietic cells by CAR 10 (Figure 11A Chapte r II). Recent data have 

shown that mRNA modified T cells with transient CAR expression specific 

to CD19 and CD33 resulted in target specific killing (139). Identification of 

unique molecular abnormalities helps to develop targeted and personalized 

treatment options for AML patients. Flow cytometry and immuno- 

histochemical studies showed CD123-positive AML is most frequently 

encountered within the intermediate cytogenetic risk group and is associated 

with FLT3-ITD and NPM1 Mutations (140). These patients with FLT3-ITD 

and NPM1 Mutations can be benefited by CAR based therapy targeting 

CD123. Though CARs generated by viral vectors exhibit significant anti- tumor 

efficac y and in vivo persistence sometimes resulted in on-target and off-target 

cytotoxicities. Introduction of suicide genes such as iCapase 9 may mitigate the 

risks by conditional ablation of T cells off target toxicities evidenced by our 

in vitro data that addition of CID rapidly eliminated T cells in 24 hours at 1µM 

concentration. In summary, our data also shows that CARs activated through 

CD28 or CD137 showed similar efficacy in vitro and in vivo, and that inclusion 

of an iCasp9 domain in frame with a Furin/F2A domain does not impair 

CAR function and generates an effective suicide switch in CAR+ T cells. 
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                                                                                                                                                                  CHAPTER IV 
 

 
Targeting leuke mic stem cells by CD123-specific CAR T cells 

                         while sparing normal hematopoiesis 

 

IV.1. Introduction 
 

Leukemic stem cells (LSCs) are a rare population of cells resistant to conventional 

treatments and responsible for relapse and therapy failure. LSCs are pre-leukemic clonal 

population of HSCs arise by genetic and molecular alterations. This is evidenced by 

common features that LSCs share with HSCs including self- renewal, engraftment 

potential and are enriched in Lineageneg (Linneg)  fraction of blood cells with surface 

phenotype of CD34+CD38ne g. LSCs are capable of self- renewal and able to initiate 

leukemia when transplanted in SCID mice. CD123 is overexpressed on AML blasts, 

hematopoietic progenitors and LSCs compared to normal hematopoietic stem cells and 

confers growth advantage in AML (147-150). Overexpression of CD123 is associated 

with higher blast counts, poor prognosis and reduced survival in AML patients (147-

150). Phase-I clinical trials targeting CD123 by monoclonal antibodies had limited 

efficacy pressing the need for alternative and more potent treatments. (151, 152). 

However most of the tumor associated myeloid antigens that are expressed on LSCs 

are also expressed on normal hematopoietic stem cells and its progenitors. Tumor 

targeted immune therapies that damage normal hematopoietic stem cells are often 

associated with irreversible and reversible side effects. Clinical trials targeting CD33 

antigen in AML using gemtuzumab ozogamicin (GO) antibody conjugated to a 

cytotoxic agent have been shown to have proplonged cytopenia though exhibited potent 

anti-tumor effect (139). Recent report by Casucci et al suggests though CARs targeting 

CD44v6+ AML effective in eliminating AML, but associated with reversible 

monocytopenia upon contraction of 
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T cells in vivo (145). Gill et.al reported off-target cytotoxicity to   myeloid progenitors 

in CAR directed immunotherapy for CD123+ AML (146). Hence targeting 

AML can be myelo-toxic, careful study of possible off-target cytotoxicity is an 
 

important concern while designing CAR therapies. In the present chapter we evaluated 

in vitro killing efficacy of CD123-specific chimeric CAR T cells targeting leukemic 

stem cells in AML and normal hematopoietic cells. 
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IV.2. Results 
 

 
 

IV.2.A. CD123 is frequently expressed in AML and Leukemic stem cells 
 

 
 

In order to decide whether CD123 is a suitable target for CAR therapy 

in AML we determined CD123 expression levels in 30 random primary AML 

patient samples. Peripheral blood samples of 30 patients were processed for 

mononuclear cells (MNCs) established protocols. Samples include treated non- 

treated and relapsed patients. FAB classification is not available for some of the 

patients. MNCs from each patient were stained with CD34, CD38 and CD123 

antibodies. CD123 expression levels were assessed on LSC enriched fraction 

(CD34+CD38neg) fraction (Figure 23A) and blasts (CD38+) population (Figure 

23B). In AML patients the percentages of total CD34+ cells, CD34+ CD38+ 

cells, and CD34+ CD38neg CD34negCD38+ cells within the MNC fraction was 

highly heterogeneous. However Consistent with previous reports CD123 is 

frequently expressed on more than 95% of AML samples (Figure 24). List of 

patients samples used in the study and total % of CD123 on each sample 

listed in table1. 
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Figure 23. CD123 expression analysis on LSCs and blasts in AML 

Mononuclear cells were isolated from peripheral blood from primary AML 

patients   and stained with antibodies specific to CD123 CD34 and CD38. 

(A) CD123  expression  g a t e d  o n  LS C s  ( phenotypically defined 

CD34+   and CD38neg)  a n d  ( B ) o n  b l a s t s ( phenotypicall y defined 

CD38+ fractions). Mean+ SD N=30 
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Table.1. CD123 expression in primary AML assessed by flowcytometry 
 

 

S.No 

 
1 

 

Patient 
 

FAB 
CD123+ 

(%) 

 

5480 
 

Relapsed 
 

92 

 

2 
 

3469 
 

Relapsed 
 

72 

3 2842 AML-TR 82 

4 5586 AML-MRC 45 

5 5812 AML-TR 97 

6 6280 AML 76 

7 6430 Relapsed 92 

8 3162 M4 90 

9 6542 AML 19 

10 3206 MRC treated 99 

11 3385 AML-TR 94 

12 5402 AML 40 

13 5595 M1 92 

14 6059 AML-M5a 86 

15 3515 N/A 91 

16 5703 M5a 46 

17 5757 AML-MRC 28 

18 6037 M5a 12 

19 3107 MRC 31 

20 1983 M2 92 

21 1929 M5 92 

22 2004 M4 94 

23 1592 N/A 78 

24 6246 AML-treated 86 

25 2842 relapsed 93 

26 AML-1 N/A 94 

27 AML-2 N/A 76 

28 AML-3 N/A 96 

29 AML-4 N/A 96 

30 AML-5 N/A 93 
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IV.2.B. Leukemic ste m cells express CD123 
 
 
 
 

To  determine  whether CD123  is  expressed on AML-LSCs  we have 

isolated  CD34+CD38neg  cells from linneg   fraction of primary AML samples 

HTB  numbers  5480,  6280,  6430,2842, 5586,5512.  We have chosen 4 

relapsed samples and 2 samples with high blast counts. Our analysis indicated 

that LSCs are enriched in relapsed patients (HTB2842, HTB5480, HTB6430 

and HTB6280).  Percentage of CD34+   CD38neg   cells are more in relapsed 

patients than the patients with higher blast count (HTB 5586 and HTB 5812). 

To isolate LSCs we isolated Linneg cells from MNCs of patient samples with 

CD34 diamond  isolation kit (Miltenyi), next FACS sorted into 

CD34+CD38neg population and stained with CD123 antibody with 

appropriate isotype controls. CD123 is expressed in all the samples tested 

(Figure 24). Contrary previous reports CD123 expression is no higher on 

phenotypically defined leukemic stem cells.  These results suggests that CD123 

is a therapeutic target in AML given its frequent expression on LSCs. 
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Figure 24. CD123 expression on AML isolated leukemic stemcells 
 

linneg cells from MNCs of patient samples were isolated and FACS sorted 

into CD34+CD38neg population and stained with CD123 antibody with 

appropriate isotype controls. 
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IV.2.C. in vitro cytotoxicity of chimeric CAR T cells against 

AML-LSCs and normal hematopoietic cells 

 
Human HSCs express lineage associated genes during their differentiation 

into blood cells. However, HSCs are generally regarded as being devoid of 

lineage specific markers expressed by differentiated blood cells. Studies in mice 

indicate that well established myeloid lineage associated markers CD33, CD13, 

CD123 are expressed on long-te rm repopulating HSCs from cord blood and 

BM. This finding raises the concern that myeloid antigen targeted therapies 

has the potential of killing HSCs (155). To determine whether chimeric CARs 

target normal hematopoietic stem cells and progenitors we have isolated lineage 

positive and negative cells from normal BM samples, Lineage+ and HSCs 

(linneg CD34+CD38neg) from cord blood MNCs and co- cultured with chimeric 

CAR T cells in E:T ratio 1:1 for 48 hours. in vitro toxicity by CAR T cells was 

observed in lineage positive and lineage negative cells from BM (Figure 25A). 

However HSCs and lineage positive cells from cord blood showed minimal lysis 

by CAR T cells. (Figure 25B). Next we determined anti-tumor efficacy in 

freshly isolate d phenotypically defined linneg CD34+CD38neg AML-LSCs with 

similar co- culture conditions used for hematopoietic cells. 
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Figure 25. in vitro lysis of normal hematopoietic  cells by chimeric 

CARs. Isolated lineage positive and negative cells from normal BM 

samples, Lineage+ and HSCs (linneg CD34+CD38neg) from cord blood 

MNCs, labeled with PKH-26 and co-cultured with chimeric CAR T 

cells in E:T ratio 1:1 for 48 hours. 
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Figure 26. linneg CD34+CD38neg) from three AML patient 

samples labeled with PKH-26 and co-cultured 

with chimeric CAR T cells in E:T ratio 1:1 for 

48 hours. CD19 CAR T cells used as negative 

control. Cells were stained with 7-AAD to 

distinguish dead and live cells to assess killing 
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IV.2.D. Expansion of LSC under hypoxia 
 

Reports suggests that LSCs reside in hypoxic regions of bonemarrow  

micro environment in quiescent stage and resistant to conventional treatments. 

It has been demonstrated that intravenously injected AML-LSCs home to BM 

engraft and subsequently reside in endosteal regions. Therefore novel 

approached are needed to target LSCs in hypoxic regions of BM niche thereby 

preventing relapse and therapy failure (167). LSCs are rare and few in number 

in AML which limits the feasibility of cell-based assays. Current culture 

conditions do not prevent LSCs and HSCs from differentiation. It has been 

shown that Aryl hydrocarbon receptor (AHR) pathway is inactive in vivo and 

rapidly activated in vitro in HSCs and LSCs. Stem regenin1 (SR1) is an 

antagonist of the aryl hydrocarbon receptor that promotes the self- renewal of 

human HSCs and LSCs in culture supplemented by cytokines and prevents their 

differentiation (168,169). 

To expand LSCs under hypoxic conditions we isolated linneg 

CD34+CD38neg fraction from relapsed AML patients cultured at 1% oxygen 

and 5% CO2. Cells were cultured in serum free stemspan II media (stem cell 

technologies) in presence SR1 1µM/ml supplemented by cytokines stem cell 

factor (SCF), human FLT3 ligand, interleukin-3 for 7 days. SR1 non-treated 

cells used as control. All AML-LSCs treated with SR1 showed higher 

percentages of CD34+CD38neg fraction with relative CD123 expression after 
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a 7-day culture period compared to SR1 non treated controls (Figure 27). 

On day 7, LSCs were labeled  with  PKH26 and co-cultured  with  CD123- 

specific  chimeric  CAR T cells  in  1:1  ratio  for 48  hours  under  hypox ic 

conditions.  CD19 CAR T cells used as negative control. CD123-specific 

CAR T cells lysed LSCs expanded under hypoxia compared to CD19 CAR 

which exhibited minimal lysis (Figure 28). 
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Figure 27. Expansion of AML-LSCs under hypoxic conditions. linneg 

CD34+CD38neg fraction was isolated from relapsed AML patients  HTB- 5480, 

HTB-3469, HTB-6280 and cultured at 1% oxygen and 5% CO2. Cells were 

cultured in serum free stemspan II media (stem cell technologies) in presence 

SR1 1µM/ml supplemented by cytokines stem cell factor (SCF), human FLT3 

ligand, interleukin-3 for 7 days. SR1 non treated cells used as control. 
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Figure 28. in vitro lysis of LSCs by chimeric CAR T cells under 

hypoxia. linneg CD34+CD38neg fraction was isolated from relapsed AML 

patients cultured at 1% oxygen and 5% CO2 in presence SR1 supplemented 

by c ytokines stem cell factor (SCF), human FLT3 ligand, interleukin-3 for 

7 days. SR1 non treated cells used as control. On day 7, LSCs were labeled 

with PKH26 and co-cultured with CD123-specific chimeric CAR T cells in 

1:1 ratio for 48 hours under hypoxic conditions. CD19 CAR T cells used as 

negative control. 
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IV.3. Discussion 
 

LSCs has many features in common with HSCs including self- renewal and 

engraftment potential and are enriched in linneg fraction of blood cells. Initial studies 

suggests that LSC activity was restricted to LinnegCD34+CD38ne g fraction in 

NOD/SCID mice models (171). Later studies using refined mice models have 

demonstrated LSC activity is confined to more than one compartment and even more 

mature linnegCD34+CD38+ progenitor population of some of AML patients able to 

initiate leukemia (172). LSCs were well documented in AML though they are reported 

in other leuekemic groups. Studies in ALL suggests that, greater degree of plasticity 

is observed in LSC compartment with phenotype CD34ne gCD19+ and able to 

regenerate CD34+ progeny within transplanted leukemia. However the frequency of 

LSC is more in  linneg CD34+CD38neg fraction than linneg CD34+CD38+ progenitors 

(173). More recent data indicate that LSCs has phenotypically distinct subpopulations 

and may vary from patient to patient (190, 191). 

 
 
 

Ideally, therapeutic targets that specifically expressed on LSC but not on 

HSC need to be identified to spare HSCs from being targeted and to protect normal 

hematopoiesis in the patient. Therefore functionally defining LSCs and HSCs is crucial 

in identifying therapeutic targets that are specific to LSC (177-180). A detailed   LSC   

phenotype   have   been  described as LinnegCD34+CD38+CD90ne gCD96+CD45RAneg 

which distinguish them from normal myeloid stem cells and progenitors (174, 175). 

LSC have been shown to overexpress other myeloid markers such as CD13, CD33 

and CD123 which are weakly expressed on HSCs 
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(181). Recently several other markers have been shown to be expressed exclusively 

on LSC than normal HSC which include CLL1, CD32, CD45RA, TIM3, CD47 and 

CD25 (182-186). HSCs are generally regarded as being devoid of expressing markers 

specific to blood cell lineages. However recent studies suggests that HSCs 

promiscuously express lineage-specific genes prior to commitment including myeloid 

markers (171-175). This aspect has significant clinical importance since number of 

therapies targeting myeloid markers aim to selectively kill leukemic blasts while sparing 

normal HSCs. HSCs will be targeted along with leukemic cells if they also express 

myeloid markers along with leukemic blasts (177-181). For example, clinical trials of 

AML therapy targeting CD33 by gemtuzumab ozogamicin (GO) antibody conjugated 

to a cytotoxic agent have been shown to have prolonged cytopenia despite successful 

tumor clearance (177,182,183). This may be due to targeted killing of HSCs by GO 

and many patients have relapses since LSCs are resistant to the toxins (184). CD123 

expression was assessed on HSCs and progenitors in 3 normal bone marrow samples 

as described (185, 186). 

Our in vitro data indicate that CAR T cells showed toxicity to lineage positive 

and negative cells from however the HSCs from cord blood are minimally lysed. 

CAR T cells able to lyse LSCs which are phenotypically similar to HSCs shows the 

potential CAR therapy to eradicate leukemic stem cells which are responsible for 

relapse and therapy failure. Previous trials targeting CD123 with mAbs cytokine 

modalities did not report BM suppression. However pre-clinical studies targeting 

CD123 by CAR T cells showed myeloablation in mice. This may be the result of 

ability of CAR T cells to eliminate CD123dim population compared 
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to antibody therapies. These observations prompt us to develop careful risk free 

therapy for AML and using low affinity CARs may rescue hematopoiesis while 

successfully eliminating AML tumors. These in vitro data suggests that CAR 

therapy can be detrimental to normal hematopoiesis and CD123-specific CAR 

T cells need to be employed with rescue strategies such as myeloablation as 

conditioning regimen for HSC transplantation. 
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CHAPTER-V 
 
 
 

General Discussion and Future Directions 
 

 

The main aim of  this   dissertation   is to develop novel adaptive 

immunotherapies   for the  treatment   of  AML  and   B-ALL  patients  by 

redirecting  specificity of  T cells  by genetic  modification through chimeric 

antigen  receptors. This was tested in three different specific aims.  In first 

specific aim we have shown that CARs (chimeric CARs) can be generated by 

mix and matching VH and VL chains from different mAbs, which is a novel 

finding because traditional CARs derive their scFv  from a single  mAb. Chimeric 

CARs successfully expanded on AaPC, Clone 1-CD123 to large numbers 

needed for the clinic and stably co-expressed CAR and suicide gene iCaspase 9. 

Chimeric CARs executed effector functions, antigen-specific killing and 

IFN-γ production. Second specific aim enabled us head to head comparison of 

CD123- specific CARs with co-stimulatory domains CD28 and CD137. It was 

reported that CD19-specific CARs containing CD137 endo domain mediated 

enhanced survival of T cells and increased anti-leukemic activity in vivo 

compared to CARs with CD28 in clearing B-ALL tumors (41). Contrary to this 

in our head-to-head comparison of CD123-specific CARs with co-stimulatory 

domains CD28 and CD137, we observed similar rates of target lysis with both 

constructs in vitro, though there was a trend  

 

87 

 



 

towards better survival with the CD28-containing construct in our in vivo  

AML model.  However it is difficult to compare CARs across research groups  

since each group has different protocols, CARs vary in their design, expression 

on the T cells, culture conditions for propagating T cells, antigen density on 

tumor, affinity of scFv, CD4:CD8 ratio in T cell cultures, cytokine support for 

the infused T cells, lympho depleting strategy, disease targeted, and timing of 

CAR T-cell infusion with regard to standard therapy such as bone marrow 

transplantation (162).  These data supports the translation of preclinical methods 

into clinical trials for AML by targeting CD123. In the third specific aim we 

showed that in vitro targeting of LSCs, and normal hematopoietic cells by CAR 

T cells. Since CD123 is expressed on normal hematopoietic cells, careful 

planning is needed in clinical studies t o  prevent off target toxicities. The hinge 

is the least commented aspect of CARs though they make important 

contributions to the interaction of CAR with its cognate antigen, formation of 

immunological synapse and necessary interaction of CAR with other proteins for 

activation signal (162). Preclinical data suggests that the spacial location of 

epitope length and binding, flexibility and origin  of the hinge domain  are 

important variables  in the design  of CARs and has bigger impact  on CAR 

activity  than  variation  affinity  to  scFv  (163-166). The affinity of the scFv 

for antigen also affects the density of antigen required for efficient killing (87).   

Though the effect of antigen  
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density for CAR therapy is not yet well-defined, it appears that CAR T cells  

preferably target tumors with high antigen density, while cells with lower 

density are more resistant to CAR T cells (97,98).  Importantly our studies 

CAR-10 (Figure 6A) with IgG4 hinge showed minimal  lysis in  normal BM  

cells compared to CARs 6 with CD8α hinge with same scFv (Figure 11A). This 

finding has to be validated further in chimeric CARs other than CAR-10 in vitro 

and in vivo to generate low affinity CARs with various combination of hinge and 

chimeric scFvs to rescue normal hematopoiesis. Thus by choosing different 

source of VH and VL chains and perhaps different hinge regions, we may be 

able to tune the activation threshold for CAR T cells further, especially if a 

wider range of antibody affinities is used than was chosen for these studies. 
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Future Directions 

Though the CARs typically identified by their endo-domains, the other components 

of CAR also has crucial role in their function and clinical efficacy including hinge 

portion. Constant region of IgG4 and CD8α are frequently used hinge regions, 

however Fc region have been reported to engage Fc receptors and activate innate 

immune cells (137). To avoid off target activation of CARs and unwanted immune 

responses we have generated CD123 specific chimeric CARs by introducing L235E 

and N297Q mutations in the CH2 region of IgG4-Fc spacer or replacing IgG4-Fc 

hinge with CD8α. In our future studies these CARs will be evaluated in vivo for 

enhanced anti-tumor activity and persistence. Additional modifications to the ex vivo 

culture by reducing the number of stimulations (addition of AaPC) of γ- irradiated 

AaPC further improved persistence and anti-tumor effect in preclinical studies 

targeting CD19 (data not shown). Furthermore, clinical data involving CAR T cells 

have highlighted that the persistence of genetically modified T cells can be 

compromised in human applications due to recognition of the recipient’s immune system 

to mouse elements of the scFv used to derive specificit through the CAR architecture 

which can be resolved by using humanized scFvs.  CARs generated by lentiviral or 

retroviral vectors exhibit significant anti-tumor efficacy and in vivo persistence but 

sometimes results in on-target and off- target cyto-toxicities. Unlike lentiviral and  

retroviral vectors  SB transposition is cost effective gene transfer system requires less 

production cost for manufacturing clinical grade T cells. SB transfected genes doesn’t 

integrate at sites of active transcription, has been shown not to activate oncogenes  
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(144-149). The introduction of suicide genes such as iCapase9 may mitigate the risks 

by conditional ablation of T cells. However the efficacy of these strategies are limited 

by incomplete elimination of transferred T cells (138). In summary our data supports 

CARs can be derived from two or three mAbs specific to an antigen by combining 

VH and VL chains. This approach may allow us to derive affinity tuned CARs to 

target tumors with differential antigen density sparing normal cells expressing 

antigen at low levels. Recent studies demonstrated enhanced persistence for CARs 

with CD137 compared to those with CD28 endodomain, however our data shows that 

CARs activated through CD28 or CD137 showed similar efficacy in vitro and in 

vivo. 
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CHAPTER-VI 
 

 
 
 
 

Materials and Methods 
 

 
 

Primary samples and animal use 
 

All patient samples used for this study were obtained after written informed 

consent was granted in accordance with protocols established and approve d 

by the MD Anderson Cancer Center (MDACC) and Internal Review Board 

(IRB). The identities of all samples were kept private. Animals were handle d 

in accordance with the strict guidelines established by the MDACC Institutional 

Animal Care and Use Committee (IACUC). 

 
 
 

Generation of CD123 specific CARs with scFvs derived from two 

monoclonal antibodies 

To generate CARs specific for CD123, we generated scFv by assembling VH 

and VL chains from four monoclonal antibodies 26292, 32701, 32703 and 

32716 specific to CD123 (96) and then fused in frame to the human CD8 

spacer and transmembrane domain, then the CD3ζ and CD28 endodomains. 

Of the 12 possible scFvs that could have been made, we chose five at random 

for further testing. (Figure 6A). These five mix-and-match scFvs were 

spliced into the existing anti-CD19 CAR construct above to generate CARs 

5-9 (Figure 6A). CAR 10 has the same scFv as CAR 6, but uses the IgG4 

spacer and CD28 TM. CARs 1-4 has scFvs derived from 
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VH and VL single MAb. CAR constructs were custom synthesized and cloned 

into SB system constructs, as described previously for CD19 CARs (46). 

Construction of iCaspase 9 co-expressing CARs in SB transposons 
 

 
 

For experiments testing the relative contributions of CD28 vs. CD137 

signaling as the costimulation signal for CAR T cells, we chose the CAR10 

scFv described above (Figure 6A), since we have previously engineered CAR 

constructs using these costimulatory domains fused to the IgG4 

transmembrane domain. On the 5’ side of the resulting CAR sequence, there 

is an in-frame inducible caspase 9 sequence (iCasp9), followed by a Furin 

element and F2A peptide sequence, which together make an auto-cleavage 

site within the protein, resulting in two mature proteins from the single 

polypeptide sequence. The iCasp9 element creates a chemically inducible 

suicide switch in CAR+ T cells. The CAR constructs were custom 

synthesized and codon optimized by Geneart, (Invitrogen, Grand Island, NY) 

and cloned into SB vectors (Figure14). The sequence for both plasmids was 

verified by Sanger sequencing (DNA Sequencing Core, MD Anderson cancer 

center (MDACC). 
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Primary cells and cell lines. 
 

 
The TF1 cell line was obtained from European collection cell cultures 

(ECACC). Molm13, MV411 and OCI-AML3 were kind gifts from Dr. Dean 

A. Lee (MDACC). EL4 cells were obtained from ATCC. RCH-ACV and 

Kasumi-2 were kind gifts from Jeffrey Tyner (Oregon Health Sciences 

University). OCI-Ly19 was a kind gift from Dr. Richard Eric Davis (MD 

ACC). K562-derived aAPC were obtained from Dr. Carl H. June (University 

of Pennsylvania) and further modified with mIL15 and TAAs ROR1 and 

CD123 (see below). The Nalm-6 cell line was obtained from Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ). PBMC for T 

cell transfections were obtained from healthy donors after informed consent 

and isolated by density gradient centrifugation using Ficoll-PaqueTM PLUS 

(GE Healthcare). All cell lines were maintained in complete RPMI media, 

10% FBS and 1X Glutamax-100. STR DNA Fingerprinting was done to 

confirm the identity of all cell lines at MD Anderson’s Cancer Center Support 

Grant (CCSG) supported facility “Characterized Cell Line Core.” 
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Generation of CD123+ Clone1-APC and EL4 
 

 
To generate activating and propagating cells (AaPC) to support expansion of 

CD123-specific CAR T cells, we modified K562-based AaPC originally 

obtained from Carl June (Clone 9) which express CD19, CD64, CD86, and 

CD137L, to express an IL15/IL15Rα fusion protein ROR1 and CD123 using 

the Sleeping Beauty (SB) gene transfer according to our published methods 

(46). This new AaPC line we termed Clone1-CD123. The same process was 

used to create EL4 cells expressing CD123. CD123+ cells were selected by 

hygromycin selection. 

 

 

Electroporation and propagation of CAR T cells. 
 

On day 0, 20 million PBMC were resuspended in 100 µL of Amaxa human T 

cell Nucleofector solution (Cat. no. VPA-1002; Lonza, Basel, Switzerla nd) 

mixed with 15 µg of transposon and 5 µg of transposase (pKan-CMV-SB11) 

and electroporated using Program U-14. The following day (da y1) cells were 

counted, surface stained for CAR expression by Fc antibody and stimulated 

with γ-irradiated (100 Gy) Clone 1-CD123 at 1:2 ratio of T cells to AaPCs. 

Cultures were supplemented with recombinant human IL-2 50 units/ml and 30 

ng/ml of recombinant human IL-21 (Pepro Tech). AaPCs added ever y 7 days 

and IL-2, IL-21 added monday-wednesday and friday schedule beginning of 

day1 of each 7 day T cell expansion cycle. T cell cultures were phenotyped 

every week to monitor CAR expression and outgrowth of NK cells 

(CD3negCD56+ population) usually occurred between 
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10 to 14 days after electroporation. If the percentage of NK cells exceeded 

approximately 10% total population, depletion of NK cells was carried out with 

CD56   beads   (cat.no.130-050-401,   Miltenyi   Biotech) according to 

manufacture instructions. As a control, 5x106 PBMC were mock transfected 

wit h nucleofector solution without CAR plasmid and were co-cultured 

 

on γ-irradiated (100 Gy) anti-CD3 (OKT3) loaded K562-aAPC clone #1 at a 

ratio of 1:1 in a 7-day stimulation  cycle  along  with  similar  concentrations 

of IL-2 and IL-21 as CAR T cells. 

 
 
 

Real time PCR to determine integrated CAR copy number 
 

The number of integrated copies of CD123-specific CAR transgene was 

determined by isolating genomic DNA using AllPrep DNA/RNA Mini Kit, 

(Qiagen cat # 80204) as described in (25 ). Briefly about 50-100 ng of DNA 

amplified using Steponeplus Real-time PCR system (Applied Biosystems), 

forward primer (5’-CAGCGACGGCAGCTTCTT-3’), reverse primer (5’- 

TGCATCACGGAGCTAAA-3’) and carboxyfluorescein (FAM)-labeled 

probe and ( 5’- AGAGCCGGTGGCAGG-3’). These primers hybridize to 

the CAR in IgG4 and CD28 transmembrane region. Genomic DNA from a 

genetically modified Jurkat T-cell (clone #12) containing 1 copy of CAR per 

cell from CoOpCD19RCD28/pSBSO DNA plasmid was used as positive 

control. No DNA (CARneg) T cells were used as negative control. Results 

were analyzed using GraphPad Prism software. 
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Immunophenotype of CAR+ T cells 
 

T cells were immunophenotyped using appropriate antibodies and isotype 

controls. Cells were stained for 30 minutes at 40C followed by 2 washes with 

FACS buffer (PBS, 2% FBS, 0.1% sodium azide). For intracellular staining 

cells were fixed and permeabilized for 20 minutes at 4oC with BD 

Cytofix/Cytoperm (BD Biosciences, San Diego, CA) followed by staining with 

appropriate antibodies. All samples were acquired on FACS Calibur (BD 

Bioscience) and analyzed with FlowJo software (version 7.6.3). 

 
 
 
 

Multiplex Ge ne Expression Analysis of CAR T cells 
 

On day 35 of co-culture of CAR T cells on AaPC about 105 were lysed in 17 

μl of RLT buffer (Qiagen) and frozen at -800C. Cell lysates were thawed and 

analyzed immediately using nCounter analysis System (NanoString 

Technologies, Seattle, WA) with “lymphoc yte codeset array” as described (26). 

Data was normalized to spike positive control RNA and housekeeping genes 

(ACTB, G6PD, OAZ1, POLR1B, POLR2A, RPL27, Rps13, and TBP) 

Where  2 normalization factors were calculated and applied to the raw counts. 

Each normalization factor was calculated from the average of sum of all 

samples divided by the sum of counts for an individual sample. Total counts 

for LCA genes described in CD123-specific CAR+ T cells were directly 

reported as normalized mRNA counts. Limit-of-detection (LOD) was calculated 

from the negative control counts and reported as the mean plus 
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two times the standard deviation (mean+2xSD) and shown as dashed lines in 

graphs of mRNA data. 

 

iCaspase 9 functional assay. 
 

CAR+ T cells with and without icaspase 9 were seeded in 24 well plate @ 106 

cells/well. 1µM of chemical inducer of dimerization (CID) (AP20187; Clontech) 

was added, cells were harvested after 24 hours and surface stained with CD3, 

FC followed by annexin-V and 7-amino-actinomycin D (7-AAD) for 15 

minutes according to the manufacturer's instructions (BD Pharmingen). Within 

1 hour after staining, cells were analyzed by flow cytometry using BD FACS 

caliber 

 

 
 

Chromium release assay. 
 

The cytolytic efficac y of CAR+ T cells with target cell lines was evaluated by 

4-hour chromium release assay as described in (20). Briefly 5x103 51Cr- 

labeled target cells were incubated with CD123 specific CAR+ T cells in 

complete medium or 0.1% Triton X-100 (company) to determine spontaneous 

and maximum 51Cr release, in a V-bottomed 96-well plate. The mean 

percentage of specific cytolysis of triplicate wells was calculated from the 

release of 51Cr using a Top Count NXT (Perkin-Elmer Life and Analytic al 

Sciences, Inc.) as 100 × (experimental release -  spontaneous release)/(maximal 

release - spontaneous release). Data was reported as mean ± SD 
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Flow cytometric killing assay 
 

For T cell killing assays, target cells were labeled with PKH-26 (Sigma, 

cat.no PKH26PCL) according to manufacture instructions and co-cultured with 

CAR+T cells at E:T ratio of 1:1 for 3 days without exogenous cytokines. 7-

AAD was added prior to flow cytometric analysis to exclude dead cells, viable 

cells phenotyped by CD3 and PKH-26. 

 

Cytokine production by CAR+ T cells. 
 

Effector cells were incubated with target cells at T cell to target ratio of 1:1 

for 24 hours. C ytokine production from CAR+ T cells in response to antige n 

was determined using LEGENDplex™ multi analyte flow assay kit (Biolegend, 

cat.no 790004) according to manufacture instructions. 

Mice studies 
 

 
The in vivo antitumor efficacy of CAR T cells in TF1 cells was assessed in 

NOD/SCID/IL- -/- (NSG) mice transgenic for human interleukin-3 (IL-3), 

stem cell factor (SCF), and granulocyte macrophage colony-stimulating 

factor (GM-CSF) obtained from Jackson Laboratories. For bioluminescent 

xenograft models, the TF1 cell line was genetically modified to express 

enhanced firefly luciferase (effLuc) (Figure S7) by transduction with a 

pLVU3G effLuc-T2A-mKateS158A lentivirus construct and sorting cells for 

uniform mKate expression. On day 0, 12 mice were injected intravenously 

(i.v) with 2.5 million TF1-effLuc cells, then divided into three groups of 4 

mice each. On day 5, mice were injected with 107 cells CD123- 
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CD28 (group 2), or CD123-41BB CAR T cells (group 3) per mouse, or were 

given no cells (group 1). Tumor engraftment was confirmed by 

bioluminescent imaging (BLI) before T cell infusion. Additional T cell 

infusions were administered on days 11 and 20, and the tumor burden was 

assessed serially by BLI. To test in vivo efficacy of CAR T cells in B-ALL 

model pre B-ALL cell line RCH-ACV was modified with enhanced firefly 

luciferase same way as TF1 and infused into NSG mice on day 0 and CAR T 

cells were infused on day 1, 7, 14 and 21 followed by BLI and IL-2 (60,000 

units/mice) infusion. The experiments were performed twice; one 

representative experiment is shown. 

 
 

Isolation of Lineage+ and Lineageneg cells from BM cells 
 

To determine CD123 expression on normal BM cells we have isolate d Lineage 

positive cells using biotin conjugated lineage antibody cocktail followed by 

positive selection with anti-biotin microbeads using LD Column unlabeled 

fraction collected lineage negative and labeled fraction lineage positive. 

 
 

Ethics statement 

 
All patient samples used for this study were obtained after written informed 

consent was obtained in accordance with protocols established and approved 

by the MD Anderson Cancer Center (MD Anderson) and Internal Review 

Board (IRB). The all samples were de-identified. Animals were handled in 

accordance with the strict guidelines established by the MD Anderson 

Institutional Animal Care and Use Committee (IACUC). 
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