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ABSTRACT 

Regulation of the oxidative stress response by ARID1A 

  

Suet Yan Kwan, BSc 

 

Advisory Professor: Kwong-Kwok Wong, Ph.D. 

 

SWI/SNF is mutated in about 20% of all human cancers; in particular ARID1A is the 

most frequently mutated SWI/SNF subunit. ARID1A is a tumor suppressor gene, inactivating 

mutations in ARID1A are most frequently found in ovarian and endometrial cancers, specifically 

uterine corpus endometrioid carcinomas (UCEC), ovarian clear cell carcinomas (OCCC) and 

ovarian endometrioid carcinomas (OEC). The functional roles of ARID1A are not completely 

understood and there are limited therapeutic strategies that specifically target ARID1A-mutant 

cancers. Given that ARID1A expression is lost in cancer, ARID1A mutations cannot be targeted 

directly and novel therapeutic strategies are required to target ARID1A-mutant cancers.  

 In this study, drug responses between ARID1A-wildtype and ARID1A-mutant cell lines 

were compared using the ‘Genomics of Drug Sensitivities in Cancer’ database. From this 

analysis, I found that ARID1A-mutant cell lines are more sensitive to elesclomol, which is a 

reactive oxygen species (ROS)-inducing agent. This finding was validated using a panel of 

ovarian and endometrial cancer cell lines, where ARID1A-mutant cell lines exhibited lower IC50 

values and higher apoptotic rates when treated with elesclomol. Knockdown and re-expression 

of ARID1A in ovarian cancer cells showed that ARID1A is required to protect cancer cells from 
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oxidative stress. In the absence of ARID1A, intracellular ROS levels were increased, and this 

increase was required for increased cell growth upon ARID1A depletion.  

Next, I investigated the relationship between ARID1A and NRF2, the major regulator of 

the antioxidant response in the cell. I found that ARID1A negatively regulates the expression of 

NRF2. Knockdown of NRF2 in ovarian cancer cell lines revealed that NRF2 expression may be 

preferentially required for protection from oxidative stress and cell proliferation in ARID1A-

mutant cells.  Analysis using The Cancer Genome Atlas (TCGA) UCEC dataset revealed that 

ARID1A-mutant tumor samples have higher expression of NRF2 and NRF2-target genes.  

 In summary, this study revealed novel roles of ARID1A in protecting ovarian cancer 

cells against oxidative stress. In the absence of ARID1A, NRF2 is up-regulated and may be 

required to compensate for ARID1A deficiency. These findings suggest that ROS-inducing 

agents and NRF2 inhibitors may be used as therapeutic strategies in targeting ARID1A-mutant 

ovarian cancer cells.  
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CHAPTER 1: INTRODUCTION  

1.1 Ovarian cancer 

The most common type of ovarian cancer is epithelial ovarian cancer. The four major 

subtypes of epithelial ovarian cancers are high-grade serous ovarian carcinoma (HGSOC), 

ovarian mucinous carcinoma (OMC), ovarian endometrioid carcinoma (OEC) and ovarian clear 

cell carcinoma (OCCC). The pathogenesis of each subtype is different; each subtype is 

originated from a different type of cells, characterized by different genetic mutations and has 

different prognosis (see Table 1). Despite the pathological differences between each subtype, all 

ovarian cancer patients are treated with the same therapeutic regimen, i.e. surgical resection and 

platinum-based chemotherapy.  

The most common subtype of epithelial ovarian cancer is HGSOC, and the prognosis of 

this subtype is poor; 25% of HGSOCs recur as platinum-resistant tumors within 6 months [1]. In 

addition, most HGSOCs are presented at late stage and not confined to the ovary [2]. The 

prognosis of OCCCs is better than HGSOCs when presented at early stage [3]. However, at late 

stage and in recurring disease, OCCCs have a much worse prognosis than HGSOCs and are 

largely resistant to chemotherapy [3, 4]. Therefore, there is an urgent need to study the biology 

of OCCCs and develop therapeutic strategies that directly target OCCC-specific genetic 

aberrations.  
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Table 1. A description of the major subtypes of epithelial ovarian cancers.  

 

1.2 Endometriosis-associated ovarian cancers  

Endometriosis commonly affects women of reproductive age and causes pain, infertility, 

and dysmenorrhea [13-15].  Endometriosis is the dissemination of endometrial cells outside the 

uterus to other organs, such as the ovaries and the peritoneum [16]. The dissemination is 

frequently caused by retrograde menstruation, where menstrual tissue travels backwards through 

the fallopian tubes and into the peritoneum. The tissue then attaches at the new site and forms 

endometriotic lesions [17-19].  

Epithelial 

ovarian 

cancer 

subtype 

Percentage 

of all 

epithelial 

cancers 

Proposed 

origin 

Gene mutations Prognosis References 

High grade 

serous 

80-85 Fallopian tube TP53 (96%), 

BRCA1/2 (12% 

and 11%) 

Poor, due to most 

diseases present 

at late stage 

[5, 6] 

Mucinous 2-5 Cystadenoma-

boderline 

tumor-

carcinoma 

sequence 

KRAS (60%) Good  [7, 8] 

Clear cell 5-13 Endometriosis ARID1A (50%), 

PIK3CA (33%) 

Good at early 

stages, poor at 

late stage and in 

recurrent disease 

[9-11] 

Endometrioid 10 Endometriosis ARID1A (30%), 

PIK3CA (39%), 

PTEN (18%), 

CTNNB1 (53%) 

Good [12]  
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OCCCs and OECs are frequently associated with endometriosis [20]. The current 

hypothesis is that these two subtypes arise from endometriotic lesions [21]. A previous study 

found that a gene signature specific to OCCCs is induced by treating immortal ovarian surface 

epithelial cells with contents of the endometriotic cysts, suggesting that the tumor 

microenvironment may contribute to the initiation of OCCCs [22].   

Genetic aberrations found in OCCCs and OECs are very similar: the SWI/SNF subunit 

ARID1A is inactivated and the PI3K pathway is activated in both subtypes (see Table 1). 

However, some differences are noted between OCCCs and OECs, such as the frequency of 

ARID1A mutations is higher in OCCCs (50% in OCCCs vs 30% in OECs) [23]. In addition, 

CTNNB1 is frequently mutated in OECs [12], whereas recurrent mutations in genes of the Wnt 

pathway have not been reported in OCCCs. Differences in estrogen receptor (ER) and 

progesterone receptor (PR) expression are also found in OCCCs and OECs; ER and PR are 

expressed in OECs, but low expression of ER and PR is found in the OCCCs [24, 25].  

 

1.2 The chromatin remodeler SWI/SNF  

 Genes encoding the SWI/SNF subunits were originally identified in Saccharomyces 

cerevisiae. SWI stands for SWItch, because the yeast SWI genes are required for the activation 

of HO (homothallic switching endonuclease), which is important for mating-type switching [26, 

27]. SNF stands for Sucrose Non-Fermenting, because the yeast SNF genes are required for the 

expression of SUC2 (beta-fructofuranosidase SUC2) that is important for sucrose metabolism 

[28]. Early studies found that the SWI/SNF subunits interact with each other and form a multi-



 

 

4 

 

subunit complex [29-31]. In addition, recent studies have identified new subunits of SWI/SNF 

in mammalian cells that were not found in S. cerevisiae [32, 33].   

 SWI/SNF is conserved across different organisms, including S. cerevisiae, Drosophila 

Melanogaster and humans (reviewed in [34]). Mammalian SWI/SNF can be further divided into 

two major subclasses: the BRG1-associated factor (BAF) complex and the polybromo BRG1-

associated factor (PBAF) complex [35]. AT-rich interacting domain-containing protein 1A and 

1B (ARID1A and ARID1B) are exclusively found in the BAF complex, whereas BAF200, 

BAF180, and bromodomain-containing 7 (BRD7) are exclusively found in the PBAF complex 

[35]. In summary, the mammalian SWI/SNF is comprised of a catalytic ATPase subunit 

(mutually exclusively BRG1 or BRM), several core subunits (SNF5, BAF155, and BAF170) 

and variant subunits.  

The primary function of SWI/SNF is to remodel chromatin in an ATP-dependent 

manner. Generally, SWI/SNF disorders nucleosomes that were originally phased. SWI/SNF 

binds to nucleosomal DNA and disrupts histone-DNA interactions. A loop of DNA is created 

and propagates around the nucleosome, causing the nucleosome to slide or to be ejected. This 

provides a nucleosome free region for transcription factors to bind to their cognac sites and lead 

to the activation or repression of target genes [36, 37].  

 

1.2.1 Chromatin remodeling-independent functions of SWI/SNF  

Although SWI/SNF is well-known for regulating transcription through chromatin 

remodeling, several chromatin remodeling-independent roles of SWI/SNF have been discovered 

in recent studies. Dykhuizen, et al. found that the BAF complex is required for DNA 
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decatenation, i.e. the separation of newly replicated sister chromatids by topoisomerase IIa 

(TOP2A) at mitosis. Specifically, the BAF complex facilitates the binding of TOP2A across the 

genome, which requires the interaction of ARID1A with TOP2A and the ATPase activity of 

BRG1 [38]. A second study recently found that SWI/SNF is required for the formation of 

paraspeckles, which are nuclear bodies that are formed around the long non-coding RNA 

(lncRNA) nuclear paraspeckle assembly 1 (NEAT1) [39]. A third study has identified a BC 

motif in ARID1A and ARID1B. Consistent with the role of the BC motif to mediate binding of 

elongin C (EloC), ARID1B was found to bind to EloC, Cullin 2 (CUL2) and Roc1, forming an 

E3 ubiquitin ligase. ARID1B then mediates monoubiquitination on lysine 120 of histone H2B, 

which is an upstream event of H3K4me3 [40].  

 

1.2.2 Alterations of the SWI/SNF complex in cancer 

With the on-going efforts of The Cancer Genome Atlas (TCGA) project, it is 

increasingly clear that mutations in SWI/SNF are found in many if not all cancer types. 

Intriguingly, SWI/SNF subunits are mutated on average in 20% of all human cancers [33, 41]. 

The broad spectrum and frequency of mutations in SWI/SNF subunits are similar to mutations 

in TP53, the most frequently mutated gene in human cancers, indicating an extensive role of 

SWI/SNF mutations in human cancers [33]. Alterations found in SWI/SNF subunits are 

predominantly inactivating mutations (nonsense mutations, frame shift mutations and deletions) 

[41] , but gene translocation and protein methylation of SWI/SNF are also found in some cancer 

types, which were found to alter the composition of SWI/SNF and SWI/SNF-directed gene 
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targeting [32, 42]. In addition, in the case of BRG1 and ARID1A, loss of one of these SWI/SNF 

subunits resulted in dependence on BRM and ARID1B [43-46]. 

Previous studies have identified SWI/SNF mutations as prominent ‘drivers’ in 

tumorigenesis. Conditional knockout of SNF5 in mice led to 100% penetrance in tumor 

formation, with a median onset of only 11 weeks [47]. Although loss of ARID1A alone does not 

result in tumor formation, mice formed OECs and OCCCs when inactivation of ARID1A was 

combined with PIK3CA mutation or inactivation of PTEN [48, 49].  Intriguingly, several studies 

found that SWI/SNF mutations are the only recurrent mutations in certain types of cancer [50-

53]. These cancer types are often aggressive and associated with poor prognosis [54, 55], 

therefore, there is an urgent need to devise therapeutic strategies against SWI/SNF mutations. 

The following section highlights some SWI/SNF subunits that are frequently mutated in cancer 

and recent discoveries in the mechanism of how SWI/SNF mutations contribute to 

tumorigenesis. 

 

ARID1A 

 ARID1A is the most frequently mutated SWI/SNF subunit in human cancers [33]. In 

early studies, due to the tumor suppressive role of SNF5 in human cancers, expression of other 

SWI/SNF subunits were screened in cDNA tissue arrays and panels of cancer cell lines. 

ARID1A expression was found to be absent in about 30% of renal cancers and 10% of breast 

cancers [56, 57] . In 2010, recurrent mutations in ARID1A were identified using whole-genome 

sequencing in endometriosis-associated ovarian cancers [9, 23]. The initial observations that the 

majority of mutations in ARID1A were inactivating and non-recurrent mutations led to the 
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hypothesis that ARID1A is a tumor suppressor gene. Since then, mutations in ARID1A were also 

discovered in other types of cancer, including endometrial cancer and gastric cancer [10, 58]. 

OCCCs have the most frequent ARID1A mutations in human cancers; ARID1A is mutated in 

about 50% of OCCCs [9, 23, 33]. More details of the tumor suppressive roles of ARID1A are 

discussed in chapter 1.3.  

 

BRG1 

 BRG1 expression is lost in lung cancers [59, 60], medulloblastoma [61, 62], and Burkitt 

lymphoma [63] through truncating mutations and unknown epigenetic modifications. Using 

whole-genome sequencing approaches, three separate groups recently reported germline and 

somatic BRG1 mutations and subsequently loss of BRG1 protein expression in almost all cases 

of small cell carcinoma of ovarian cancer, hypercalcemic type (SCCOHT) [50, 52, 53]. 

SCCOHT is a rare and aggressive form of ovarian cancer that more than half of the patients die 

within 1-2 years of diagnosis [55]. Intriguingly, SMARCA4 (gene encoding BRG1) is the only 

recurrently mutated gene identified in SCCOHT, suggesting that BRG1 plays an important role 

in this cancer type [50, 52, 53].   

BRG1 and BRM are mutually exclusive ATPase subunits in the SWI/SNF. Several 

groups reported that BRG1-deficient cell lines are dependent on the expression of BRM [43-45]. 

In the absence of BRG1, BRM is incorporated into SWI/SNF to compensate for BRG1 loss. 

Interestingly, loss of BRM in BRG1-deficienct cell lines does not affect the assembly of 

SWI/SNF complexes, with the exception of loss of BAF53 binding [44, 45]. These findings 
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show that there is a redundancy between subunits in SWI/SNF and the composition of SWI/SNF 

may be altered in the absence of one subunit. 

 

BAF155 

Wang et al. discovered that BAF155 is a substrate of Coactivator-associated arginine 

methyltransferase 1 (CARM1) and is methylated at the amino acid residue R1064 by CARM1 in 

breast cancer. Methylated BAF155 forms a subcomplex that lacks BRG1 and BAF53, which 

causes alterations to its targeting in the genome and changes in gene expression. Specifically, 

methylated BAF155 enhances the expression of c-myc pathway genes, which ultimately 

promotes cell proliferation, cell migration, metastasis, and tumor recurrence [42].  

 

SNF5 

SNF5/SMARCB1 is one of the earliest identified SWI/SNF subunit that is mutated in 

cancer. Homozygous inactivation of SNF5 is found in malignant rhabdoid tumors, an aggressive 

and lethal cancer found in young children [51]. Conditional knockout of SNF5 in mice led to 

100% penetrance in tumor formation, with a median onset of only 11 weeks [47]. 

 

SS18 

Although SWI/SNF mutations found in cancer are predominantly inactivating mutations, 

a recent study found that the SWI/SNF subunit SS18 is altered by gene translocation in synovial 

sarcomas. Initially, it was observed that an in-frame translocation of SS18 and one of the three 

SSX genes (SSX1, SSX2, and SSX4) is found in nearly all synovial sarcomas, and SS18-SSX 
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translocations are often the only cytogenetic abnormality in synovial sarcomas [64, 65]. These 

findings suggest that SS18-SSX translocation is likely a driver mutation in synovial sarcomas. 

Indeed, a recent study by Kadoch and Crabtree found that the SS18-SSX protein is integrated 

into the SWI/SNF complex and leads to the displacement of SNF5 from the complex. The 

altered SWI/SNF complex then localizes at the oncogene SOX2 locus and activates SOX2 gene 

expression, which is required for synovial sarcoma cell proliferation [32].  

 

1.3 Tumor suppressive roles of ARID1A 

The ARID1A gene is located on 1p36.11 and is translated into two transcripts (isoforms 

A and B). Isoform A (NM_006015.4) is the longer isoform, it has 20 exons and encodes a 

242kDa protein. The ARID1A protein has an ARID DNA binding domain, a hypermethylated in 

cancer 1 (HIC1) binding domain and several leucine-rich LXXLL steroid receptor binding 

motifs. The following sections discuss the diverse roles of ARID1A in tumorigenesis. 

 

1.3.1 ARID1A and the cell cycle 

The cell cycle is often aberrantly regulated in cancer cells. Interestingly, before ARID1A 

was identified as a tumor suppressor, it was found that ARID1A regulates the cell cycle. 

ARID1A is required for differentiation-associated cell cycle arrest in non-transformed MC3T3-

E1 preosteoblast cells by inducing p21 expression and the repression of E2F-responsive genes 

[66]. A subsequent study demonstrated that ARID1A does not induce p21 expression by binding 

to the p21 promoter, but instead represses the expression of c-myc, which is a repressor of p21 
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[67]. A later study found that ARID1A associates with different co-activators and co-repressors, 

such histone deacetylases (HDACs) and the E2F family [68]. 

 

1.3.2 ARID1A and p53 

 Guan et al. found that ARID1A interacts directly with p53 and regulates several 

downstream targets of p53, such as p21 and SMAD3. The authors further show that  ARID1A 

and TP53 mutations are mutually exclusive in endometriosis-associated ovarian cancers, 

suggesting that ARID1A and p53 may regulate the same set of genes, and either ARID1A or 

TP53 mutations will disrupt the regulation of these genes [69]. 

 

1.3.3 ARID1A and the PI3K pathway 

ARID1A and PIK3CA are frequently co-mutated in cancer; co-mutations are most 

frequently found in OCCCs, followed by uterine corpus endometrial carcinomas (UCEC) [48]. 

Strikingly, inactivation of ARID1A alone is not sufficient for tumor formation in mice, whereas 

combined ARID1A loss and PIK3CA mutation leads to tumor formation of OCCC histology. 

The authors found that the co-occurrence of ARID1A inactivation and PIK3CA mutation was 

required to promote cytokine signaling, specifically, the up-regulation of IL-6 [48]. A similar 

finding was published by Guan et al., this study showed that tumor formation in mice only 

occurred when ARID1A and PTEN were both inactivated in the mouse ovarian surface 

epithelium. Consistent with the finding that ARID1A and PTEN are frequently mutated in OECs, 

gene expression analysis of the mice tumors found that the tumors were most similar to human 

OECs than other types of ovarian cancer [49].   
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Although these two studies showed that ARID1A inactivation co-operate with PI3K 

pathway activation to initiate tumor formation, other studies found that inactivation of ARID1A 

alone can activate the PI3K pathway. Reverse phase protein array (RPPA) analysis of UCECs 

found that ARID1A-mutated samples showed increased phosphorylation of AKT and p70S6K 

compared to ARID1A-wildtype samples even in the absence of PIK3CA and PTEN mutations. 

Consistent with this finding, knockdown of ARID1A using siRNA in endometrial cancer cell 

lines resulted in increased phosphorylation of AKT and p70S6K [70]. In a second study, 

knockdown of ARID1A using siRNA in MCF7 breast cancer cells and MRC5 primary cells 

resulted in increased phosphorylation of AKT and increased sensitivity to PI3K and AKT 

inhibitors [71]. In a third study, it was found that PIK3IP1, a negative regulator of the PI3K 

pathway, is a direct target activated by ARID1A. In the absence of ARID1A, PIK3IP1 is not 

expressed and leads to up-regulation of the PI3K pathway [72].  

 

1.3.4 ARID1A and EZH2  

 The Polycomb complex is an epigenetic regulator that represses gene expression [73]. 

Increasing evidence shows that the Polycomb complex, in particular the PRC2 subunit EZH2, is 

overexpressed and has oncogenic functions in cancer [74]. Antagonism between SWI/SNF and 

the Polycomb complex was first described in Drosophila, where SWI/SNF mutations were 

found to suppress developmental defects mediated by mutations in the Polycomb complex [75]. 

Specifically, this was due to the differential regulation of HOX genes during embryogenesis, 

where SWI/SNF mediates the activation and the Polycomb complex suppresses the expression 

of HOX genes [76]. The antagonism between SWI/SNF and EZH2 is conserved in the 
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mammalian system. Re-expression of the SWI/SNF subunit SNF5 in SNF5-deficient human 

malignant rhabdoid tumor cells caused eviction of the polycomb complex for the p16
INK4a 

locus 

and activation of p16
INK4a

 expression [77]. In addition, loss of SNF5 leads to up-regulation of 

EZH2 expression and aberrant activation of a stem cell-associated program that is dependent on 

EZH2 [78]. A recent study reported that antagonism also exist between ARID1A and EZH2 in 

OCCCs. By screening 15 small molecules that inhibit epigenetic regulators, Bitler et al. found that 

inhibition of EZH2 and ARID1A deficiency are synthetically lethal. Although unlike SNF5, 

ARID1A did not regulate EZH2 expression, the authors found that the gene PIK3IP1 is co-regulated 

by ARID1A and EZH2. PIK3IP1 is not expressed in ARID1A-mutant OCCCs, but inhibition of 

EZH2 caused re-expression of PIK3IP1 and ultimate led to cell death [72].  

 

1.3.5 ARID1A and DNA repair  

It has been well characterized that the SWI/SNF is required for DNA repair, specifically, 

the repair of DNA double-strand breaks (DSBs) [79]. A previous study found that ARID1A is 

required for non-homologous end joining (NHEJ) [80]. In addition, a recent study by Shen et al. 

found that ARID1A is recruited to DSBs by Ataxia telangiectasia and RAD3-related protein 

(ATR). In the presence of DSBs, ARID1A is required for the phosphorylating and activating of 

ATR, sustaining DNA damage signaling and repairing DSBs by homologous recombination 

[81]. It has been well known that BRCA1/2 deficiency or DSBs repair deficiency leads to 

increase sensitivity to PARP inhibitors [82, 83]. Similarly, the author found that ARID1A-

mutant cells were more sensitive to PARP inhibition [81] .  
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1.3.6 ARID1A and epithelial-mesenchymal transition 

In gastric cancer cells, loss of ARID1A leads to increased cell migration and cell 

invasion by down-regulating E-cadherin. Loss of ARID1A also leads to nuclear and cytoplasmic 

relocation of β-catenin from the cell membrane and induces epithelial-mesenchymal transition 

(EMT) [84]. 

 

1.3.7 Therapeutic targets for ARID1A-deficient cancers 

Several therapeutic targets for ARID1A-mutant cancers have been described.  As 

mentioned before in chapters 1.3.3, 1.3.4 and 1.3.5, PI3K, EZH2 and PARP inhibitors can be 

used to target ARID1A-mutant cancer cells. Recently, a synthetic lethal relationship between 

ARID1A and ARID1B was also described. ARID1B is a homolog of ARID1A, which is found 

mutually exclusive to ARID1A in the SWI/SNF complex. Similar to the finding that the 

concomitant loss of BRG1 and BRM is synthetically lethal [43-45], Helming et al. found that 

the combined deficiency of ARID1A and ARID1B is synthetically lethal. Loss of both ARID1A 

and ARID1B leads to destabilization of the SWI/SNF complex and ultimately lead to inhibition 

of cell growth [46].   

 

1.4 Reactive oxygen species  

1.4.1 ROS production 

 In the cell, ROS are produced as a byproduct of metabolic activity. The mitochondrial 

electron transport chain (ETC), the endoplasmic reticulum (ER) and the NADPH oxidases 

(NOX) are the major sources that produce ROS in the cell.  
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In the mitochondria, O2 is reduced to water during the generation of ATP. Superoxide is 

produced by the one-electron reduction of O2 and then converted to hydrogen peroxide (H2O2) 

by superoxide dismutase (SOD) [85, 86]. H2O2 then diffuses out of the mitochondria into the 

cytoplasm, which forms a reactive hydroxyl radical via the Fenton reaction in the presence of 

iron [87].  

In the cell, the ER is important for protein folding. The ER favors the formation of 

disulfide bonds by providing an oxidizing-folding environment. ROS is produced when cysteine 

residues are oxidized during the formation of disulfide bonds. The formation of a disulfide 

bonds is catalyzed by protein disulfide isomerase (PDI) and ER oxidoreductase 1 (ERO1) [88]. 

The presence of misfolded protein causes the activation the unfolded protein response (UPR) 

and oxidative stress, which can subsequently lead to apoptosis [89].  

The NOX enzyme NOX2 was first described in neutrophils. Since the discovery of 

NOX2, which is specific for phagocytes, other NOX enzymes have been described (NOX1, 

NOX3, NOX4, NOX5, DUOX1, and DUOX2) [90]. The NOX enzymes are transmembrane 

proteins that catalyze the transfer of electrons across membranes. Specifically, superoxide is 

produced by electrons transported from NADPH to O2 by a flavin- and heme-containing protein 

complex [91-93].  

Other sources of ROS production in the cell have also been described. These include 

lipoxygenase, xanthine oxidase, cytochrome P450 monooxygenase, nitric oxide synthase and 

the peroxisome [94-98].  
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1.4.2 ROS detoxification 

There are three main pathways that mediate ROS detoxification in the cell: reduced 

glutathione (GSH), thioredoxin (TXN) and catalase (Figure 1).  

The most abundant antioxidant in the cell is GSH [99]. XCT (encoded by SLC7A11) and 

CD44 mediate the export of glutamate from the cell, in exchange with the import of cystine into 

the cell [100]. Cystine is reduced into cysteine in a NADPH-dependent manner. Glutamate is 

produced by glutaminase 1 (GLS1) and GLS2 from glutamine. GSH is produced from cysteine 

and glutamine by the glutamate cysteine ligase (GCL), which is formed by the GCL catalytic 

(GCLC) and GCL modifier (GCLM) subunits. GSH can also be generated from NADPH by 

glutathione reductase (GSR). Glutathione peroxidase (GPX) and glutathione S-transferase 

(GST) catalyzes the formation of oxidized glutathione (GSSG) from 2 GSH molecules [101].   

In cells depleted of GSH, the activity of the TXN pathway is increased and can 

effectively reduce ROS levels [102]. Reduced TXN is regenerated from oxidized TXN by 

thioredoxin reductase (TXNRD) using NADPH [99]. Catalase is a heme-containing protein 

found predominantly in peroxisomes and catalyzes the conversion of hydrogen peroxide to 

water and O2.  
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Figure 1. Schematic diagram of formation of GSH.   

 

1.5 ROS and cancer  

1.5.1 Mechanisms that lead to elevation of ROS in cancer cells 

Previous studies have found that cancer cells of different cancer types have higher ROS 

than normal cells. The increase of ROS in cancer cells is caused by several reasons, including 

increased metabolic activity, genetic aberrations, mitochondrial dysfunction and the tumor 

microenvironment.  

Aberrations in tumor suppressors and oncogenes have been found to alter intracellular 

ROS levels. Loss of tumor suppressors can cause an increase in ROS levels. Loss of p53 has 

been found to lead to in an increase of oxidative stress in different cell types. p53 suppresses 

ROS levels in the cell by regulating the transcription of pro-oxidant and antioxidant genes, such 

as TIGAR and SESN2 [103]. Loss of BRCA1 has also been found to increase ROS, protein 
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nitration and 8-OHdG lesions [104]. Mechanistically, BRCA1 interacts with NRF2, promoting 

its stability and activation [105]. The FOXO transcription factors have been demonstrated to 

protect cells from oxidative stress by inducing the expression of manganese superoxide 

dismutase (SOD2) [106]. Oncogenes have also been found to up-regulate ROS. Activating 

mutations in the RAS family oncogenes have been well documented to up-regulate ROS. 

Mutant HRAS has been found to up-regulate ROS by up-regulating NOX4 expression [107, 

108], whereas mutant KRAS has been found to up-regulate NOX1 activity by promoting 

activation of the NOX1 cytosolic subunit p47
phox

 [109]. In multiple myeloma cells, 

overexpression of c-myc has been found to increase ROS levels by down-regulating genes 

involved in the GSH and TXN antioxidant pathways [110] .   

Mitochondrial dysfunction can be caused by mutations in genes of the tricarboxylic acid 

(TCA) cycle. Hereditary kidney cancers are characterized by inactivating mutations in fumarate 

hydratase (FH) and succinate dehydrogenase (SDH). Loss of these enzymes leads to increased 

aerobic glycolysis and elevation in ROS production [111, 112].   

A hypoxic tumor environment has been found to enhance the generation of 

mitochondrial ROS. During hypoxia, ROS released from the complex III of the ETC to the 

intermembrane space is increased [113]. However, the specific mechanisms have not been 

described.  

 

1.5.2 Effects of ROS in cancer cells 

ROS can exert opposite effects in the cell depending on its level. Low levels of ROS can 

have oncogenic effects by promoting cell growth and survival. ROS has been found to activate 
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several cell signaling pathways important in cancer, including the PI3K and EGFR pathway, by 

inactivating protein tyrosine phosphatases. Protein tyrosine phosphatases are important negative 

regulators of signaling pathways. Specifically, a cysteine residue is found in the active sites of 

all protein tyrosine phosphatases. This cysteine residue is vulnerable to oxidation by H2O2 due 

to its low pKa value [114]. Oxidation and disulphide bond formation of the active site cysteine 

residue leads to inactivation of the protein tyrosine phosphatases. One such example is PTEN, a 

well-known negative regulator of PI3K/AKT signaling. During oxidation by H2O2, the Cys
124 

reside in the active site of PTEN forms a disulfide bond with the Cys
71

 residue [115]. Another 

example is PTP1B, which negatively regulates EGF signaling by dephosphorylating tyrosine 

residues on EGFR. Oxidation of the Cys
215 

residue was found to cause the inactivation of 

PTP1B [116]. Some transcription factors were also found to be responsive to ROS. The 

activation of the transcription factor NF-κB by H2O2 has been studied extensively. The 

transcription HIF-1α is important for angiogenesis, glycolysis and cell survival in cancer. 

Addition of the oxidants H2O2 and menadione has been found to prevent the degradation and 

enhance the transcriptional activity of HIF-1α in an AMPK-dependent manner [117].  

At moderate levels, ROS can oxidize DNA, thereby promoting mutagenesis and genetic 

instability. Depletion of p53 has been shown to increase oxidative DNA damage, karyotype 

instability and lymphomagenesis, which could be reversed by the antioxidant NAC [103]. 

However, high levels of ROS can cause oxidative damage to macromolecules (lipid, protein, 

and DNA), leading to senescence and cell death (see chapter 1.5.4).  

One study demonstrates the opposite effects of ROS by expressing the activated form of 

HRAS (HRAS-G12V) in normal human fibroblasts. It has been well characterized that HRAS-
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G12V expression initially leads to hyperproliferation, but eventually leads to senescence [118, 

119].  This study found that expression of HRAS-G12V leads to the accumulation of ROS, and 

this increase in ROS was required for HRAS-G12V mediated hyperproliferation. However, the 

increase of ROS also activated the DNA damage response and the cells undergo senescence 

[107].  

 

1.5.3 Oxidative stress adaptation in cancer cells  

As mentioned in chapters 1.5.1 and 1.5.2, cancer cells have high basal level of ROS, but 

high levels of ROS have detrimental effects on the cell. Therefore, mutations and adaptation in 

cancer cells are required to up-regulate the cells’ antioxidant system to maintain ROS from 

reaching toxic levels.  

Since the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is the 

major regulator of the antioxidant response in the cell, it is not surprising that cancer cells 

harbor mutations in NFE2L2 (gene encoding NRF2) and its negative regulator KEAP1, which 

result in increased activity of NRF2. NFE2L2 and KEAP1 are most frequently mutated in lung 

cancers, although different lung cancer subtypes display different mutation frequencies in these 

two genes. Sequencing results from the TCGA database found that NFE2L2 is altered in 4% of 

lung adenocarcinomas and 19% of lung squamous cell carcinomas, whereas KEAP1 is altered in 

17% of lung adenocarcinomas and 12% of lung squamous cell carcinomas [120, 121].  

NFE2L2 mutations have been identified in the DLG and ETGE motifs, which are 

important for facilitating binding to KEAP1. Characterization of three NFE2L2 mutations 

(E79K, T80K and L30F) identified in patient samples found that these mutations enhanced 



 

 

20 

 

NRF2 stability and transcriptional activity [122]. KEAP1 mutations found in lung squamous cell 

carcinomas are predominantly missense mutations. Characterization of KEAP1 mutants found 

that some mutants were only able to partially suppress NRF2 activity. Intriguingly, a subset of 

some KEAP1 mutants can lead to enhance NRF2 stability, despite these mutants are still able to 

bind to NRF2 and facilitate NRF2 ubiquitination [123]. In addition, loss-of-function mutations 

and homozygous deletion of the ubiquitin ligase CUL3, which ubiquitinates NRF2, were 

identified in some cancer types, including lung squamous cell carcinomas and papillary renal 

cell carcinomas [120, 124]. Depletion of CUL3 was found to enhance NRF2 protein levels and 

transcriptional activity [124, 125].  

In some instances, increased NRF2 activity is still observed in the absence of mutations 

within the NRF2-KEAP1-CUL3 complex. This can be due to alterations in genes encoding 

binding partners of KEAP1. For example, dipeptidyl peptidase 3 (DPP3) is amplified, 

overexpressed and positively correlated to NRF2 activity in lung squamous cell carcinoma. 

Mechanistically, DPP3 competes with NRF2 for binding of KEAP1, thus preventing KEAP1 

from binding NRF2 and facilitating NRF2 ubiquitination [126]. Another example is the 

regulation of NRF2 by ABL1. As mentioned in chapter 1.5.1, FH deficiency leads to an 

accumulation of fumarate in the mitochondria and subsequently high oxidative stress. In FH-

deficient hereditary leiomyomatosis and renal cell carcinoma (HLRCC), the activity of the 

oncogene ABL1 is up-regulated and stimulates the nuclear translocation and transcriptional 

activity of NRF2. NRF2 subsequently activates its target antioxidant genes NQO1 and HMOX1 

to protect the cell from FH-mediated oxidative stress [127].  
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In summary, although cancer cells generate high levels of ROS, the antioxidant system 

in cancer cells is up-regulated to prevent ROS from reaching a level that becomes toxic to the 

cells.  This forms the basis of targeting the redox balance in cancer cells; by further increasing 

ROS levels or inactivating the antioxidant system.  

 

1.5.4 Enhancing ROS as a therapeutic strategy for cancer treatment 

As mentioned in chapter 1.5.2, intracellular ROS have both tumor promoting and anti-

tumor properties depending on the level. Due to the tumor promoting effects of ROS, it has been 

of interest to use antioxidants as cancer treatments, but the results have been inconsistent.  In 

fact, a recent study found that the antioxidants N-acetyl-cysteine (NAC) and vitamin E 

enhanced cell proliferation of KRAS/BRAF-mutant lung cancer cells. Specifically, the 

antioxidants promoted proliferation by suppressing ROS levels, reducing ROS-induced DNA 

damage and p53 expression [128]. This study aligns with previous findings that cancer cells 

produce excessive ROS and are dependent on antioxidants to counteract the detrimental effects 

of ROS. Therefore, enhancing oxidative stress rather than decreasing oxidative stress is a more 

promising therapeutic strategy. A variety of small molecule inhibitors have been developed to 

enhance oxidative stress either by inhibiting the antioxidant system or increasing ROS 

production. Several studies have yielded promising results using these small molecule 

inhibitors.  

A study published by Harris et al. demonstrated that the antioxidant GSH and TXN 

pathways are required for tumor initiation and progression. The authors investigated the effects 

of inhibiting the antioxidant GSH and TXN pathways using gene knockout and small molecules 
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(Buthionine-[S,R]-sulfoximine, sulfasalazine and auranofin) in a mice model that develops 

spontaneous mammary tumors. The authors found that cancer initiation requires synthesis of the 

antioxidant GSH, which suggests that increased oxidative stress is detrimental to the onset of 

cancer. However, inhibiting GSH synthesis has no anti-tumor effects in established tumors, 

because the alternative antioxidant TXN pathway is activated and compensates for the loss of 

GSH. Although single inhibition of the antioxidant GSH or TXN pathways does not have anti-

tumor effects in cancer cells, the combined inhibition of the GSH and TXN antioxidant 

pathways was able to induce cell death [102]. 

In multiple myeloma, a subset of cells overexpresses MYC, leading to increased 

oxidative stress and subsequently DNA damage. These myc-overexpressing cells were found to 

be sensitive to the ROS-inducer piperlongumine, which exacerbates oxidative stress and DNA 

damage, ultimately leading to apoptosis [110].  

Together, these studies have demonstrated that 1) maintaining intracellular ROS levels 

below a toxic threshold is crucial for cancer cell survival, and 2) augmenting oxidative stress in 

cancer cells is a promising and feasible therapeutic strategy.  

 

1.5.5 Elesclomol 

 Elesclomol, formerly known as STA-4783, is a small molecule that potently induces 

oxidative stress in the cell. Using microarray analysis, it was found that treatment of elesclomol 

induces an oxidative stress gene expression signature. This gene expression signature includes 

heat shock proteins (e.g. HSP70, HSPH1, and HSP40), metallothioneins (e.g. MT1F, MT1H, 
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MT1G) and antioxidant genes (HMOX1). The induction of oxidative stress by elesclomol 

ultimately leads to apoptosis, which is reversed by the addition of the antioxidant NAC [129].  

 Elesclomol requires copper for drug action. Upon binding of copper ions to elesclomol, 

the conformation of elesclomol is changed. This facilitates the uptake of elesclomol into the 

cell, and elesclomol generates ROS in the cell by undergoing redox cycling of Cu(II) to Cu(I) 

[130, 131]. Interestingly, the mechanism of action of elesclomol is not mediated through a 

specific protein target, but rather through disrupting the election transport chain in the 

mitochondria [132].  

 In preclinical studies, elesclomol has modest clinical activity when used as a single agent 

in, but has synergistic activities when used in combination with paclitaxel [133]. However, 

when elesclomol was used in combination with paclitaxel in a Phase III clinical trial for 

unselected stage IV metastatic melanoma patients, there was no significant improvement in 

progression free survival [134].  

 

1.5.6 Piperlongumine 

 Piperlongumine is a small molecule that was first identified as a potent inducer of 

apoptosis in cancer cells but not normal cells, which is due to the ability of piperlongumine to 

increase ROS selectively in cancer cells [135]. In the study by Raj et al., the authors found that 

piperlongumine induces p53 expression, but also induces the pro-apoptotic p53 target BCL2 

binding component 3 (PUMA) in the absence of p53. In contrast to elesclomol’s mechanism of 

action, piperlongumine potentiates its effects by interacting with several proteins that are known 

to regulate oxidative stress, these include glutathione S-transferase pi 1 (GSTP1) and carbonyl 
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reductase 1 (CBR1). In particular, it was demonstrated that piperlongumine binds directly to 

GSTP1 and inhibits its activity.  Interestingly, oncogenic transformation of normal cells resulted 

in increased expression of GSTP1 and CBR1, which may be required to protect transformed 

cells from transformation-induced oxidative stress. Overexpression of GSTP1 and/or CBR1 was 

able to partially rescue cells from piperlongumine-induced ROS levels and cell death [135].  

 

1.5 SWI/SNF and oxidative stress  

 Given that SWI/SNF is conserved across species, it is not surprising that studies have 

found that SWI/SNF is required to mediate resistance to oxidative stress in different model 

organisms. 

 In S. cerevisiae, an unbiased genetic screen found that deletion of several SWI/SNF 

subunits (yeast orthologs SNF2, SNF5, SNF6, and SWI3) resulted in increased sensitivity to 

oxidative stress [136].  

In C. elegans, the DAF-2/DAF-16 axis is a master regulator of stress resistance and 

longevity. Riedel et al. recently discovered the BAF sub-class of SWI/SNF, but not the PBAF 

sub-class, is a cofactor for DAF-16, and is essential for DAF-16 mediated dauer formation, 

stress resistance and longevity. This study found that SWI/SNF is recruited by DAF-16 to DAF-

16 target genes and activate transcription. Depletion of SWI/SNF fully suppressed the enhanced 

resistance of DAF-2 mutants in the presence of oxidative stress. Gene expression analysis found 

that genes co-dependent on SWSN-1 and DAF-2 for expression were enriched in GO-terms 

‘defense response’ and ‘oxidative reduction’ [137].  
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In humans, oxidative stress activates the nuclear translocation of the transcription factor 

NRF2 and NRF2 activates cytoprotective genes, including the antioxidant heme oxygenase 1 

(HMOX1). Zhang et al. found that BRG1 was required to activate HMOX1 expression after 

treatment with diethylmaleate, a glutathione depleting compound. They found that NRF2 

recruits BRG1 to the HMOX1 promoter, BRG1 facilitates Z-DNA formation and recruits RNA 

polymerase II, thereby activating HMOX1 gene expression [138]. BRG1 not only regulate the 

expression of antioxidant genes, it can also protect the cell from oxidative stress damage by a 

distinct mechanism. Du et al. found that in the presence of oxidative stress, BRG1 forms a 

complex with Fanconi anemia (FA) proteins at the promoter of antioxidant genes, and protects 

the promoters from oxidative DNA damage. They also found that depletion of BRG1 resulted in 

increased sensitivity to H2O2 [139]. 

1.6 Implications of oxidative stress in the pathogenesis of endometriosis-associated ovarian 

cancers 

Although the tumor progression of CCCs and OECs not completely clear, previous 

findings suggest that a microenvironment of persistent oxidative stress may contribute to the 

initiation OCCCs and OECs. As mentioned in chapter 1.2, previous findings suggest that 

OCCCs and OECs arise from endometriosis. Endometriotic cysts that develop from 

endometriosis accumulate hemorrhagic blood during the menstrual cycle. When compared with 

non-endometriotic cysts, the concentration of free iron (iron ions) and the expression of 

oxidative stress-related markers, such as lactose dehydrogenase, potential antioxidant, lipid 

peroxide, and 8-OHdG, were much higher in endometriotic cysts [140]. This is likely due to the 

production of ROS by free iron via the Fenton reaction. Indeed, in vitro studies found that when 
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cells were treated with the contents of the endometriotic cysts, cellular ROS was increased. In 

addition, the DNA mutation rate of cells treated with contents of endometriotic cysts. Consistent 

with these findings, endometriosis-associated ovarian cancers (OCCCs and OECs) had higher 

concentration of free iron and expression of oxidative stress-related markers compared to 

ovarian cancer not associated with endometriosis (HGSOCs and OMCs) [140]. 

 One mechanism that OCCCs can adapt to a high oxidative stress microenvironment is 

through HNF1β overexpression. The promoter of HNF1B is frequently hypomethylated in 

OCCCs and as a result, HNF1β is frequently overexpressed in this ovarian cancer subtype [141]. 

A recent study found that HNF1β enhances intracellular GSH levels by increasing the cystine 

transporter rBAT expression, leading to lower intracellular ROS levels and increasing cell 

survival in the presence of stress, such as hypoxia and oxidative stress. HNF1β also alters 

cellular metabolism by shifting from oxidative phosphorylation to aerobic glycolysis, which 

may lead to lower intracellular ROS production, as oxidative phosphorylation is the main source 

of ROS generation in the cell [142]. However, the roles of other genes that are frequently 

mutated in OCCCs and OECs in the oxidative stress response are unknown.  

 

1.7 Hypothesis and specific aims 

Hypothesis: ARID1A deficiency leads to sensitivity to oxidative stress. In the absence of 

ARID1A, other compensatory antioxidant pathways are up-regulated. 
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Specific aim 1: Investigation of whether ARID1A mediates resistance to oxidative stress 

As mentioned in chapter 1.5, previous studies found that SWI/SNF mediates resistance 

to oxidative stress in S. cerevisiae and C. elegans. However, the relationship between SWI/SNF 

and oxidative stress resistance is unclear in mammalian cells. Given that SWI/SNF is conserved 

across different species, ARID1A may be required for resistance to oxidative stress in 

mammalian cells. As ARID1A is frequently inactivated in various cancer types, targeting 

ARID1A-deficient cancer cells with ROS-inducing agents may be a feasible therapeutic 

strategy. In this aim, first, drug sensitivities of ARID1A-wildtype were compared with 

ARID1A-mutant cancer cell lines using the Genomics of Drug Sensitivity in Cancer (GDSC) 

database. Then, ovarian cancer cells were used to investigate the effects of depleting and re-

expressing ARID1A on oxidative stress resistance.   

 

Specific aim 2: Investigation of the relationship between ARID1A and NRF2  

As mentioned in chapter 1.5.3, the transcription factor NRF2 is the major regulator of 

the antioxidant response in the cell. Mutations and up-regulation of NRF2 were found in several 

cancer types, leading to aberrant activation of NRF2 and NRF2-target genes. Several studies 

have found that NRF2 has oncogenic functions in cancer, such as promoting cell proliferation. 

A previous study found that the SWI/SNF subunit BRG1 was found to interact with NRF2 and 

increase NRF2 transcriptional activity. However, whether ARID1A also regulates NRF2 

activity is unknown. In addition, whether NRF2 activity is de-regulated in ovarian cancer is also 

unknown. This aim sought to determine the relationship between ARID1A and NRF2 activity in 

ovarian cancer cells.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Analysis of drug sensitivity in ARID1A-mutant cell lines using the Genomics of Drug 

Sensitivity database 

Drug sensitivities of cell lines (release 4, March 2013) were obtained from the Genomics 

of Drug Sensitivity in Cancer (GDSC) database [143]. Mutational status and copy number of 

ARID1A in cancer cell lines were obtained from the Cancer Cell Line Encyclopedia (CCLE) 

using the cBioPortal for Cancer Genomics [144]. Cell lines that had no mutation and copy 

number alteration data were removed from further analysis. Based on ARID1A mutational 

status, cell lines were grouped into ARID1A-wildtype (no detectable ARID1A mutations, n = 

347) or ARID1A-mutant (nonsense mutations, frameshift mutations, or deep deletion, n = 74). 

Cells lines with missense mutations, in-frame insertion/deletion, or splicing mutations in 

ARID1A were removed from further analysis, because the effects of these mutations on 

ARID1A expression and function are unclear. 

To detect differences in drug sensitivity between ARID1A-mutant and ARID1A-wildtype 

cell lines, we performed permutation tests using the “marker selection” function of GENE-E 

(www.broadinstitute.org/cancer/software/GENE-E/). For each drug, a test statistic was 

calculated to assess the difference in drug response between the ARID1A-mutant and ARID1A-

wildtype groups; next, the significance of the test score was estimated with 1000 permutations; 

then, multiple hypotheses testing was corrected by computing both the false discovery rate 

(FDR) and the family-wise error rate (FWER). Two-tailed t-test (T) was used to calculate 

significance. Negative T-values plus significant p-values show that ARID1A-mutant cell line are 

more sensitive to the corresponding drug than ARID1A-wildtype cell lines. 
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2.2 Cell culture  

All cell lines were cultured in RPMI-1640 medium, supplemented with 10% FBS and 

1% penicillin/streptomycin unless otherwise stated. Ovarian cancer RMG1, TOV21G, ES2, and 

endometrial cancer HEC-1A cells were purchased from American Type Culture Collection 

(ATCC). HEC-1A cells were cultured in McCoy’s 5A medium. Ovarian cancer MDA2774 cells 

were gifts from Dr. Ralph Freeman (MD Anderson Cancer Center, USA) [145]. Ovarian cancer 

OVCA420 and OVCA432 cells were a gift from Dr. Robert Bast (MD Anderson Cancer Center, 

USA) [146]. Endometrial cancer AN3CA cells were purchased from the MD Anderson Cancer 

Center’s Characterized Cell Line Core Facility and cultured in Eagle’s Minimum Essential 

Medium (MEM). Ovarian cancer A2780 [147], COV318, COV362 [148] cells and endometrial 

cancer MFE-280 cells were purchased from European Collection of Cell Cultures (ECACC). 

COV318 and COV362 cells were cultured in DMEM medium supplemented with 2mM L-

glutamine. MFE-280 cells were cultured in 40% RPMI-1640 medium and 40% MEM (with 

Earle’s salts) supplemented with 2mM L-glutamine, 20% FBS, and 1X insulin-transferrin-

sodium selenite. Ovarian cancer SMOV2 [149] and KOC7C cells were gifts from Dr. Hiroaki 

Itamochi (Tottori University, Japan). Ovarian cancer IGROV1 cells were gifts from Dr. Susan 

Holbeck (National Cancer Institute, USA) [150]. All Cell lines were cultured at 37
o
C in 5% CO2 

and were tested negative for mycoplasma. Cell lines were maintained for 20-30 passages.  

 

2.3 PCR amplification of ARID1A 

Genomic DNA was harvested from cells using the PureLink Genomic DNA mini kit 

(Life Technologies) following the manufacturer’s protocol. The sequences of PCR primers and 
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the PCR cycling conditions used to amplify ARID1A exons 1-20 were previously published [9]. 

PCR was performed in 50μL reactions containing 1X MyTaq Red Mix (Bioline), 1.5μM of 

forward primer, 1.5μM of reverse primer, 6% DMSO and 20ng of DNA. PCR reactions were 

purified using the PureLink PCR purification kit (Life Technologies). Purified PCR products 

were sent to the MD Anderson Cancer Center Sequencing and Microarray Facility for Sanger 

sequencing. 

 

2.4 Western blot 

Cells were washed twice in ice-cold PBS and scraped on ice in ice-cold RIPA buffer 

(Sigma Aldrich) supplemented with protease inhibitor cocktail (Sigma Aldrich). Protein lysate 

was collected after centrifuging the cells at 13,000 rpm for 10 mins at 4
o
C.  Protein 

concentration was determined using the Bio-rad protein assay that is based on the Bradford 

assay. For each sample, 25μg of protein was loaded onto a SDS-PAGE gel. Protein on the gel 

was transferred to a nitrocellulose membrane at 15V for 1 h, The membrane was blocked with 

5% non-fat milk for 1 h, then incubated with primary antibody overnight at 4
o
C. Primary 

antibodies used were: anti-ARID1A (Sigma Aldrich), anti-BRG1 (Cell Signaling Technology), 

SNF5 (Cell Signaling Technology), anti-NRF2 (Cell Signaling Technology), and anti-vinculin 

(Cell Signaling Technology). Afterwards, the membrane was washed twice in PBST and 

incubated with anti-rabbit (1:3000, Cell Signaling Technology) or anti-mouse (1:5000, Santa 

Cruz) horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h at room 

temperature. The bands were visualized using the ECL plus western blotting reagent 

(Amersham Biosciences). Vinculin was used as a loading control. 
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2.5 Chemicals and inhibitors  

Elesclomol and piperlongumine were purchased from Selleck Chemicals. N-acetyl-L-

cysteine (NAC) and H2O2 were purchased from Sigma Aldrich. Cisplatin and paclitaxel were 

purchased from MD Anderson Cancer Center. Brustatol was purchased from Carbosynth. 

Working solutions were made fresh before each experiment. 

 

2.6 Cell growth assay  

Cells were seeded in 96-well plates for 24 h before addition of drugs. After 72 h of drug 

treatment, cell growth was determined using the WST-1 assay (Roche) according to the 

manufacturer’s instructions. To determine sensitivity to elesclomol in the ovarian and 

endometrial cancer cell line panel, data was presented as the mean of 6 replicate wells. For 

siRNA transfected cells, data was represented as the mean of 3 replicate wells of 3 independent 

experiments. Dose-response curves were constructed using GraphPad Prism version 6 

(Graphpad Software) and IC50 values were interpolated from the graphs. 

 

2.7 Annexin V staining 

Cells were treated with the indicated drugs for 72 h. Floating cells were collected and 

adherent cells were harvested by trypzinisation. Cells were centrifuged at 1000 rpm for 5 mins 

at 4
o
C and washed once in ice-cold PBS. Cells were resuspended in 1X annexin binding buffer 

(50mM HEPES, 700mM NaCl, 12.5mM CaCl2, pH7.4) (Life Technologies) and counted using 

an automated cell counter. 1 x 10
5
 cells were stained in 100μL of 1X annexin binding buffer 

(Life Technologies) with 5µl annexin V-APC (BD Pharmingen) for 15 mins at room 
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temperature in the dark. Prior to analysis, 400μL of 1X annexin binding buffer and 2μg/mL of 

propidium iodide (Life Technologies) were added to each sample. For each sample, at least 

10,000 cells were analyzed using a FACS Gallios Flow Cytometer (Beckman Coulter). Cells 

were gated to include single cells only. Data analysis was performed using the Kaluza Analysis 

Software (version 1.3, Beckman Coulter). Percentage of annexin V-positive cells included both 

annexin V/PI double-positive and annexin V-positive/PI-negative cell populations.  

 

2.8 siRNA transfections 

Cells were seeded for 24 h, then transfected with 20nM of siGENOME smartpool 

ARID1A (M-017263-01), BRG1 (M-010431-00), SNF5 (M-010536-01) and NRF2 (M-003755-

02) siRNA (Dharmacon) and lipofectamine RNAiMAX (Life Technologies) in opti-mem 

reduced serum (Life Technologies) according to the manufacturer’s instructions. Control cells 

were transfected with non-targeting siRNA pool #2 (Dharmacon).  

 

2.9 Re-expression of ARID1A 

The pCI-neo-ARID1A plasmid was a gift from Dr. Weidong Wang [151]. The pCI-neo 

mammalian expression plasmid is a product of Promega and the map of the vector is shown in 

Figure 2. The pCI-neo-ARID1A plasmid received from Dr. Weidong Wang originally harbored 

three non-silent mutations in the ARID1A open reading frame (ORF), therefore the ARID1A 

ORF was reconstructed back to wildtype by mutagenesis. Mutagenesis was carried out by Dr. 

Oskar Laur at Custom Cloning Core Facility at Emory University. Sanger sequencing using 

primers listed in Table 2 was used to confirm that the sequence of ARID1A was wildtype. The 
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control plasmid without the ARID1A ORF (pCI-neo) was generated by digesting the pCI-neo-

ARID1A plasmid with restriction enzymes Xho1 and Sal1, followed by re-ligation using T4 

DNA ligase (Promega). The absence of the ARID1A ORF was confirmed by sequencing the re-

ligated vector using the T7 EEV promoter primer. 

For transient transfection, ARID1A-deficient TOV21G cells were plated onto a 6-well 

plate and transfected with pCI-neo or pCI-neo-ARID1A vector. Briefly, 2µg of plasmid DNA, 

4μL of p3000 reagent and 3.75µL of Lipofectamine 3000 (Life Technologies) were diluted in 

250μL Opti-mem reduced serum (Life Technologies) and incubated for 30 mins. The cells were 

transfected for 24 h before being trypsinized, counted and re-plated for subsequent experiments. 

 

Primer  Sequence (5’ – 3’) 

T7 EEV F1 AAGGCTAGAGTACTTAATACGA 

T7 EEV R1 TGGTTTGTCCAAACTCATCA 

BAF250a F1 CAGCAGAACTCTCACGACCA  

BAF250a F2 AACCCATACTCGCAGCAACA  

BAF250a F3 TTTCCAGCAGCCAAGGAGAG  

BAF250a F4 AATCAAGGGGGCATGATGGG  

BAF250a F5 AGGCATGAGCAGGAGCAATT 

BAF250a F6 TGGCAATCAGTTCTCCACCC  

BAF250a F7 CAATGGAGAACCGCACCTCT 

BAF250a F8 TGGAGGGTGGGGAAGAAGAA 

BAF250a R9 CCCGTTCGAGTTCTTCAGGT 

 

Table 2. Primers used to sequence the pCI-neo-ARID1A vector.  
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Figure 2. Vector map of pCI-neo vector. 

 

2.10 Cellular ROS assay 

Cells were harvested by trypzinisation and collected by centrifugation at 1000 rpm for 5 

mins at 4
o
C. The cells were washed once with ice-cold PBS and counted using an automated 

cell counter. For each sample, 5 x 10
5 

cells were stained with 10μM of 2’, 7’-dichlorofluorescin 

diacetate (DCFDA, Sigma Aldrich) in 1mL of PBS and incubated for 30 mins at 37
o
C in the 

dark. The cells were gently mixed every 10 mins to prevent the cells from setting at the bottom. 

Stained cells were collected by centrifugation and resuspended in 500μL of PBS. Prior to 

analysis, 2μg/mL of DAPI was added to each sample. For each sample, at least 20,000 cells 

were analyzed using a FACS Gallios Flow Cytometer (Beckman Coulter) and the cells were 

gated to include live and single cells only. The Kaluza Anlaysis Software (version 1.3, Beckman 

Coulter) was used to analyze the mean fluorescence. 
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2.11 qPCR  

RNA was harvested using the PureLink RNA mini kit (Life Technologies) according to 

the manufacturer’s protocol. DNA was removed using on-column DNase digestion (Life 

Technologies) according to the manufacturer’s protocol. For each sample, cDNA was 

synthesized from 1μg of RNA using the high-capacity cDNA reverse transcription kit (Life 

Technologies) according to the manufacturer’s protocol. Primers used for qPCR were purchased 

from Life Technologies. The following qPCR primers used were:  ARID1A (Hs00195664_m1), 

NRF2 (Hs00975961_g1), HMOX1 (Hs01110250_m1), NQO1 (Hs02512143_s1), GCLM 

(Hs00157694_m1) and BID (Hs00609632_m1). Gene expression was normalized against beta 

glucuronidase (GUSB) RNA levels.  

 

2.12 Colony formation assay 

Cells were plated at a cell density of 1500 (TOV21G and IGROV1) or 3000 cells 

(RMG1) per well in a 6-well plate. Cells were transfected with non-target and NRF2 siRNA the 

next day. For cells treated with brusatol, media containing brusatol was replaced every 4 days. 

After 2 weeks, cells were washed twice with PBS and cell colonies were stained with crystal 

violet for 1 h at room temperature. Afterwards, the crystal violet staining solution was removed 

and the wells were washed with water to remove excess stain.  

 

2.13 TCGA analysis 

RNA expression (RNA seq V2 RSEM) of genes of interest was downloaded from the 

cBioPortal for Cancer Genomics (www.cbioportal.org). The Uterine Corpus Endometrioid 

http://www.cbioportal.org/
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Carcinoma (UCEC) dataset was published previously and was used for this analysis [152]. 

Tumors with alterations in NFE2L2 (n = 17) were removed from further analysis. Then, based 

on ARID1A mutational status, tumor samples were grouped into ARID1A-wildtype (no 

detectable ARID1A mutations, n=141) or ARID1A-mutant (nonsense or frameshift mutations, 

n=66). Tumor samples with other ARID1A mutations (missense mutations, in-frame 

insertion/deletion, splicing mutations, or amplification) were removed from further analysis, 

because the effects of these mutations on ARID1A expression and function are unclear. 

  

2.14 Statistical analysis   

Values are presented as means. Unless otherwise stated, p-value was determined using 

Student’s t-test. P-values of less than 0.05 were considered significant. Error bars represent the 

standard deviation.  

 

2.15 mRNA expression profiling 

RMG1 cells were transfected with non-target and ARID1A siRNA for 72 h. RNA was 

harvested using the mirVana miRNA isolation kit (Life Technologies) according to the 

manufacturer’s protocol. The MessageAmp premier RNA Amplification kit (Life Technologies) 

was used for RNA amplification and 500ng of total RNA was used to make aRNA according to 

the manufacturer’s protocol. Fragmented aRNA was hybridized to Human Genome U133 plus 

2.0 Array (Affymetrix) according to the manufacturer’s protocol. The array was scanned by the 

MD Anderson Cancer Center’s Sequencing and Microarray Facility using the GeneChip 

Scanner 7000G (Affymetrix). Raw images were processed using the GeneSpring software 
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(Agilent Technologies). Differentially expressed genes were identified using Ingenuity Pathway 

analysis (Ingenuity Systems). The GO terms that were enriched in significant differentially 

expressed genes were analyzed using Panther.  
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CHAPTER 3: ARID1A MEDIATES RESISTANCE TO OXIDATIVE 

STRESS 

Specific aim 1: Investigation of whether ARID1A mediates resistance to oxidative stress 

1.1 Identification and validation of drug sensitivities in ARID1A-deficient cancer cell lines  

1.2 Investigation of the effects of knockdown and re-expression of ARID1A on sensitivity 

to ROS-inducing agents 

1.3 Investigation of the effects of ARID1A on intracellular ROS levels 

 

3.1 ARID1A-mutant cancer cell lines are more sensitive to the ROS-inducing agent 

elesclomol 

 To identify drug targets in ARID1A-mutant cancers, we analyzed the publically available 

drug database ‘Genomics of Drug Sensitivity in Cancer (GDSC)’ [143]. The GDSC database 

consists of drug responses of about 140 drugs in more than 700 cancer cell lines of a large 

variety of cancer types. First, we determined the mutation statuses of ARID1A of the cancer cell 

lines using the Cancer Cell Line Encyclopedia database [144]. We excluded cell lines with no 

mutation or copy number alteration data were from further analysis. We placed the remaining 

cell lines into ARID1A-wildtype (no detectable ARID1A mutations, n = 347) and ARID1A-

mutant (ARID1A nonsense mutations, frameshift mutations, or deep deletions, n = 74) groups. 

We excluded cell lines with ARID1A missense mutations, in-frame insertions/deletions, or 

splicing mutations from further analysis because the effect of these mutations on ARID1A 

protein expression and function is unclear.  
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In this analysis, the drugs that exhibited significant differences (P < 0.05) in sensitivity 

between ARID1A-mutant and ARID1A-wildtype cancer cell lines were enriched in 1) inhibitors 

of the PI3K pathway (AZD8055, NVP-BEZ235, MK-2206, and GDC-0941) or 2) agents that 

induce DNA damage or inhibit the DNA damage response (cisplatin, KU-55933, and NU-7441) 

(Table 3). The finding that ARID1A-mutant cell lines are more sensitive to PI3K pathway 

inhibitors is consistent with previously published data. A previous study found that knockdown 

of ARID1A in breast cancer cell line MCF7 and primary fibroblast cell line MRC5 resulted in 

increased sensitivity to PI3K Buparlisib and AKT inhibitors MK2206 and Perifosine [71]. 

Furthermore, ARID1A mutations frequently co-occur in PIK3CA mutations in patient samples 

[9, 33], and the presence of PIK3CA mutations is a predictor of sensitivity to PI3K inhibitors 

[153]. The finding that ARID1A-mutant cell lines are more sensitive to inhibitors that induce 

DNA damage or inhibit the DNA damage response is also consistent with previously published 

data. Previous studies have found that SWI/SNF is required for DSB repair [80, 81]. Consistent 

with the roles of ARID1A in the DNA damage response, knockdown of ARID1A in U2OS cells 

resulted in increased sensitivity to cisplatin and irradiation [80].  

Surprisingly, elesclomol appeared as the top ranking drug that showed differential 

sensitivity between ARID1A-mutant and ARID1A-wildtype cell lines. Elesclomol is a potent 

inducer of ROS by disrupting the electron transport chain in the mitochondria [132]. Although it 

has been documented that the SWI/SNF is required oxidative stress resistance in S. cerevisiae 

and C. elegans [136, 137], whether this is also the case in mammalian cells is unclear. Based on 

these results, we decided to focus on elesclomol for further validation. 
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Rank Drug Drug target T-test P-value FDR (BH) 

1 Elesclomol Induced ROS accumulation -5.0349 0.001996 0.1317 

2 AZD8055 mTORC1/2 -4.9625 0.001996 0.1317 

3 NVP-BEZ235 

PI3K (class 1) and 

mTORC1/2 -3.4664 0.009980 0.2196 

4 EHT 1864 Rac GTPases -3.2140 0.003992 0.1756 

5 MK-2206 AKT1/2 -2.9551 0.007984 0.2196 

6 GW 441756 NTRK1 -2.9503 0.009980 0.2196 

7 KU-55933 ATM -2.8451 0.013970 0.2635 

8 NU-7441 DNAPK -2.6382 0.015970 0.2635 

9 GDC0941 PI3K (class 1) -2.6177 0.021960 0.3220 

10 Cisplatin DNA cross-linker -2.2678 0.037920 0.4172 

11 BIBW2992 EGFR and ERBB2 -2.2154 0.031940 0.3832 

 

Table 3. Drugs that exhibited significantly lower IC50 values in ARID1A-mutant cancer cell lines 

than ARID1A-wildtype cancer cell lines   
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3.2 Elesclomol inhibited cell growth and induced apoptosis more potently in ARID1A-

mutant cell lines than ARID1A-wildtype cell lines 

ARID1A is most frequently mutated in gynecologic cancers [9, 10, 23, 58, 152]. To 

validate the findings from our analysis of the GDSC database, we examined a panel of 14 

ovarian and endometrial cancer cell lines and determined whether ARID1A-mutant cell lines 

were more sensitive to treatment with elesclomol than were ARID1A-wildtype cell lines. First, 

we determined the ARID1A mutation statuses in these 14 cell lines using the Cancer Cell Line 

Encyclopedia database [144] and DNA sequencing. In addition, ARID1A protein expression 

was determined by western blot analysis. We identified ARID1A mutations and loss of ARID1A 

protein expression in eight of these cancer cell lines (ARID1A-mutant) and expression of the 

ARID1A protein in the remaining six cell lines (ARID1A-wildtype) (Figure 3 and Table 4) 

We found that the ARID1A-mutant cancer cell lines had significantly lower IC50s of 

elesclomol than did the ARID1A-wildtype cancer cell lines (P = 0.034, Figure 4). We also found 

that treatment with elesclomol (10 and 20 nM) induced apoptosis more potently in ARID1A-

mutant cancer cells than in ARID1A-wildtype cancer cells (P = 0.0227 and P = 0.0057 

respectively, Figure 5). 

To show that the anti-proliferative and apoptotic effects of elesclomol were mediated by 

ROS, we sought to determine whether the effects of elesclomol can be abrogated by 

antioxidants. We found that the antioxidant N-acetyl-L-cysteine (NAC) abrogated the growth-

inhibitory and apoptotic effects of elesclomol on ARID1A-mutant SMOV2 and IGROV1 ovarian 

cancer cells (Figure 6). Taken together, these results demonstrated that ARID1A-mutant cancer 
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cell lines are more sensitive to treatment with the ROS-inducing agent elesclomol than are 

ARID1A-wildtype cancer cell lines. 

 

 

Figure 3. Western blot showing basal expression of ARID1A in a panel of ovarian and 

endometrial cancer cell lines.  Vinculin was used as loading control. 
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Cell line Cancer type ARID1A mutation 

ARID1A protein 

expression 

A2780 Ovarian Q1430*
a
, R1721fs

a
 Absent 

IGROV1 Ovarian M274fs
a,b

, G1847fs
a,b

 Absent 

AN3CA Endometrial G1848fs
a
 Absent 

TOV21G Ovarian Q548fs
a,b

, N756fs
a,b

 Absent 

SMOV2 Ovarian G1740fs
b
 Absent 

HEC-1A Endometrial Q404H
a
, Q1761C

a
, Q1835*

a
, Q2115*

a
 Absent 

KOC7C Ovarian G276fs
b
, P1326fs

b
, A1517fs

b
 Absent 

MDA2774 Ovarian Q1947*
b
 Absent 

COV362 Ovarian Wild-type
a
 Present 

OVCA420 Ovarian ND Present 

COV318 Ovarian Wild-type
a
 Present 

OVCA432 Ovarian ND Present 

MFE-280 Endometrial Wild-type
a
 Present 

RMG1  Ovarian Wild-type
a,b

 Present 

 

Table 4. Summary of ARID1A mutation statuses and ARID1A protein expression in a panel of 

ovarian and endometrial cancer cell lines Abbreviation: 
a
Mutation status identified in the Cancer 

Cell Line Encyclopedia database. 
b
Mutation status identified in Sanger sequencing performed in 

this study. ND, not determined. Fs, frame-shift mutation. *, non-sense mutation.  
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Figure 4. ARID1A-mutant cancer cell lines are more sensitive to elesclomol than ARID1A-

wildtype cancer cell lines. Cells were treated with elesclomol for 72 h and cell growth was 

measured using the WST-1 assay. (A) Relative cell growth of treated cells was calculated as a 

percentage of DMSO control cells. Each cell line was repeated at least twice. (B) IC50 values of 

elesclomol in cell lines were calculated from (A) using GraphPad Prism.   
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Figure 5. Elesclomol treatment induces apoptosis more potently in ARID1A-mutant cancer cell 

lines than ARID1A-wildtype cancer cell lines.  Cells were treated elesclomol for 72 h. Induction 

of apoptosis was measured using annexin-V staining by flow cytometry. Changes in percentage 

of annexin-V positive cells in treated cells compared to DMSO control are shown. Each cell line 

was repeated twice. Red bars, ARID1A-mutant cancer cell lines. Grey bars, ARID1A-wildtype 

cell lines.  
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Figure 6. Elesclomol inhibits cell growth and induces apoptosis through increasing ROS.  (A 

and B) ARID1A-mutant IGROV1 and SMOV2 cells were treated with elesclomol in the 

presence or absence of NAC for 72 h. Cell growth was measured using the WST-1 assay (A) 

and apoptosis (B) was measured using annexin-V staining. Relative cell growth of treated cells 

was determined as a percentage of DMSO control cells. *P < 0.05, **P < 0.01. 
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3.3 Knockdown of ARID1A expression increases the sensitivity of ovarian cancer cells to 

treatment with ROS-inducing agents 

To show that loss of ARID1A expression is responsible for increased sensitivity of 

ovarian cancer cells to treatment with elesclomol, we depleted ARID1A in ARID1A-wildtype 

RMG1 ovarian cancer cells using siRNA. Although we found that RMG1 cells were 

intrinsically highly resistant to treatment with elesclomol, depletion of ARID1A sensitized the 

cells to elesclomol in the micro-molar range (Figure 7A). To show that this effect was not 

limited to elesclomol, we also examined the sensitivity of these cells to treatment with another 

ROS-inducing agent, piperlongumine [135]. We found that ARID1A depletion in RMG1 cells 

also led to sensitization of the cells to piperlongumine (Figure 7B).  In addition, we found that 

treatment with piperlongumine induced apoptosis more potently in ARID1A-knockdown cells 

than in non-target control cells (Figure 7C). Similar to elesclomol, we found that 

piperlongumine inhibited growth by increasing ROS as treatment with NAC reversed the anti-

proliferative effects of the drug (Figure 7D). 

As ARID1A is a subunit of SWI/SNF, we sought to determine whether the loss of other 

SWI/SNF subunits can also sensitize the cells to elesclomol. We found that knockdown of the 

core SWI/SNF subunits BRG1 and SNF5 also resulted in increased sensitivity to elesclomol 

(Figure 8A). We confirmed the down-regulation of ARID1A, BRG1 and SNF5 expression by 

siRNA in RMG1 cells using western blot (Figure 8B). 

 Previously, it has been demonstrated that ARID1A is required for DNA damage repair 

[80]. Therefore, as a positive control, we tested whether knockdown of ARID1A leads to 

increased sensitivity to the DNA cross-linker cisplatin. Similar to previous findings [80], 
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depletion of ARID1A led to increased sensitivity of these cells to treatment with cisplatin 

(Figure 9A). Depletion of ARID1A did not have a generalized effect on drug sensitivity, as 

knockdown of ARID1A did not affect the drug sensitivity of the microtubule toxin paclitaxel 

(Figure 9B). 
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Figure 7. Knockdown of ARID1A in ARID1A-wildtype RMG1 cells results in increased 

sensitivity to ROS-inducing agents.  (A-C) ARID1A-wildtype RMG1 cells were transfected with 

ARID1A and non-target siRNA for 24 h and treated with ROS-inducing agents elesclomol (A) 

and piperlongumine (B and C) for 72 h. (A and B) Cell growth was measured using the WST-1 

assay. (C) Cells were transfected and treated as in (B), apoptosis was measured using annexin-V 

staining. (D) RMG1 cells were transfected and treated as in (B) in the presence or absence of the 

antioxidant NAC. Cell growth was measured using the WST-1 assay. Relative cell growth of 

treated cells was determined as a percentage of DMSO control cells. *P < 0.05, **P < 0.01, 

***P < 0.001.  
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Figure 8. Knockdown of SWI/SNF core subunits SNF5 and BRG1 leads to increased sensitivity 

to elesclomol in RMG1 cells.  (A) RMG1 cells were transfected with SNF5, BRG1 and non-

target siRNA for 24 h and treated with elesclomol for 72 h. Cell growth was measured using the 

WST-1 assay. Relative cell growth of treated cells was determined as a percentage of DMSO 

control cells. (B) Western blot analysis showed the knockdown of ARID1A, BRG1 and SNF5 

using siRNA. *P < 0.05.  
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Figure 9. Knockdown of ARID1A leads to increased sensitivity to cisplatin but not paclitaxel.  

(A and B) RMG1 cells transfected with ARID1A and non-target control siRNA for 24 h were 

treated with cisplatin (A) and paclitaxel (B) for 72 h. Cell growth was measured using the WST-

1 assay. Relative cell growth of treated cells was determined as a percentage of untreated cells. 

*P < 0.05, ***P < 0.001. 

 

  

 

  



 

 

52 

 

3.4 Re-expression of ARID1A increases the resistance of ovarian cancer cells to treatment 

with elesclomol  

To complement the siRNA experiments, we investigated whether re-expression of 

ARID1A in ARID1A-mutant cells can promote resistance of the cells to treatment with 

elesclomol. To this end, we transiently re-expressed ARID1A in ARID1A-mutant TOV21G 

ovarian cancer cells and found that ARID1A re-expression resulted in increased resistance of 

the cells to treatment with elesclomol and piperlongumine (Figure 10A and B). In addition, the 

level of apoptosis induced by treatment with elesclomol was lower in TOV21G cells with 

ARID1A re-expression than in empty vector transfected control cells (Figure 10C). Western blot 

analysis confirmed that ARID1A was re-expressed in TOV21G after transfection with the pCI-

neo-ARID1A vector (Figure 10D).  
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Figure 10. Re-expression of ARID1A increases resistance to ROS-inducing agents. (A and B) 

ARID1A-mutant TOV21G cells were transfected with pCI-neo-ARID1A and pCI-neo control 

vectors for 48 h and treated with ROS-inducing agents elesclomol (A) and piperlongumine (B) 

for 72 h. Cell growth was measured using the WST-1 assay. Relative cell growth of treated cells 

was determined as a percentage of DMSO control cells. (C) Cells were transfected and treated 

as in (A), apoptosis was measured using annexin-V and PI staining. (D) Western blot analysis 

showed the re-expression of ARID1A. *P < 0.05, **P < 0.01.  
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3.5 Depletion of ARID1A leads to increased intracellular ROS level and cell growth 

Although a large increase of ROS in the cell causes oxidative stress and ultimately cell 

death, a moderate increase in ROS levels can act as mitogenic signaling to increase cell growth. 

Because the knockdown of ARID1A increases cell growth in ARID1A-wildtype RMG1 cells, we 

asked whether knockdown of ARID1A leads to an increase of oxidative stress and subsequently 

increased cell growth. 

To this end, we depleted ARID1A in RMG1 cells and measured intracellular ROS levels 

using 2’,7’-dichlorofluorescin diacetate (DCFDA). We found that depletion of ARID1A 

resulted in an increase in intracellular ROS levels (Figure 11A). Next, we asked whether this 

increase in intracellular ROS mediates cell growth in ARID1A-knockdown cells. After 

transfection of ARID1A siRNA, we treated the cells with the antioxidant NAC for three days 

and cell growth was measured. In RMG1 cells transfected with ARID1A, cell growth was 

increased by 23%. However, NAC abrogated this increase in cell growth to a level similar to 

non-target control cells treated with NAC (Figure 11B). These data suggests that ROS is 

required to mediate cell growth in ARID1A-depleted cells.  
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Figure 11. Depletion of ARID1A promotes cell growth by increasing intracellular ROS levels.  

(A) ARID1A-wildtype RMG1 cells were transfected with ARID1A and non-target siRNA for 72 

h and intracellular ROS levels were measured using DCFDA. (B) RMG1 cells were transfected 

with ARID1A, BRG1, SNF5 and non-target siRNA for 24 h and treated with the antioxidant 

NAC for a further 72 h. Cell growth was measured using the WST-1 assay. Relative cell growth 

of ARID1A siRNA transfected cells was determined as a percentage of non-target control 

cells.*P < 0.05, **P < 0.01, ***P < 0.001.  
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3.6 Conclusion 

In the present study, by analyzing the GDSC database and subsequently validation using 

ovarian and endometrial cancer cell lines, we found that ARID1A-mutant cancer cell lines were 

more sensitive to treatment with the ROS-inducing agent elesclomol than were ARID1A-

wildtype cancer cell lines. Knockdown of ARID1A expression in ARID1A-wildtype RMG1 

cells sensitized the cells to treatment with ROS-inducing agents elesclomol and piperlongumine, 

whereas ARID1A re-expression in ARID1A-mutant TOV21G cells resulted in increased 

resistance to elesclomol. Subsequently, we found that depletion of ARID1A in RMG1 cells 

increased accumulation of intracellular ROS levels and led to increased cell growth.  
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CHAPTER 4: ARID1A IS A NEGATIVE REGULATOR OF NRF2  

Specific aim 2: Investigation of the relationship between ARID1A and NRF2 

2.1 Investigation of the effect of ROS on ARID1A expression 

2.2 Investigation of the effect of ARID1A on NRF2 expression and NRF2 transcriptional 

activity  

2.3 Investigation of the effects of NRF2 inhibition in ovarian clear cell carcinoma cells 

 

4.1 Piperlongumine induces ARID1A expression in a NRF2-dependent manner 

 Although the regulation of down-stream targets by ARID1A is often studied, the 

regulation of ARID1A expression remains unknown. Interestingly, piperlongumine induced 

ARID1A expression at the mRNA and protein level (Figure 12A and B). To demonstrate that 

piperlongumine induces ARID1A expression through ROS, NAC was added in combination 

with piperlongumine and was able to abrogate the effect of piperlongumine on ARID1A 

expression (Figure 12C). However, when we treated RMG1 cells with H2O2, we did not 

observe an induction of ARID1A (data not shown). This suggests that induction of ARID1A 

may be specific to piperlongumine. 

Because NRF2 is the major transcription factor activated during oxidative stress, we 

asked whether induction of ARID1A by piperlongumine was dependent on NRF2. NRF2 was 

depleted using siRNA in RMG1 cells and the cells were then treated with piperlongumine. As 

expected, oxidative stress induced NRF2 expression. Depletion of NRF2 abrogates the induction 

of ARID1A by piperlongumine (Figure 12D). These results suggest that piperlongumine may 

induce ARID1A expression through NRF2.  
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Figure 12. ROS increases ARID1A mRNA and protein expression  (A-C) RMG1 cells were 

treated with piperlongumine (PL) in the presence or absence of 1mM NAC for 6 h. ARID1A 

expression was measured using qPCR (A) and western blot analysis (B). (C) Western blot 

analysis of ARID1A expression in RMG1 treated with 7.5μM piperlongumine in the presence or 

absence of 1mM NAC for 6 hours. (D) Western blot analysis of RMG1 cells that were 

transfected with NRF2 siRNA for 48h and then treated with piperlongumine for 6 h.  

*, p<0.05, **, p<0.01.  
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4.2 ARID1A negatively regulates NRF2 expression 

Previously, it was found that knockdown of BRG1 positively regulates NRF2 

transcriptional activity [138]. However, the regulation of NRF2 by ARID1A is unknown.  First, 

we sought to determine whether ARID1A regulates the expression of NRF2. We transfected 

ARID1A-wildtype ES2 cells with ARID1A siRNA and treated the cells with H2O2 for 6 h to 

induce NRF2 expression. We found that knockdown of ARID1A resulted in an increase of 

NRF2 mRNA and protein expression at the basal level and in the presence of H2O2 (Figure 13A 

and B). We also depleted ARID1A in ARID1A-wildtype RMG1 cells and treated the cells with 

the ROS-inducing agent piperlongumine. Although NRF2 mRNA expression was similar in 

ARID1A-knockdown and non-target control cells, knockdown of ARID1A resulted in a greater 

induction of NRF2 at the protein level in the presence of piperlongumine (Figure 13C and D).  

As we found that ARID1A negatively regulate NRF2 expression in the presence of 

oxidative stress, we next investigated whether the expression of NRF2 downstream genes is 

increased upon ARID1A depletion. We transfected ARID1A-wildtype ES2 cells with ARID1A 

siRNA and treated the cells with H2O2 for 6 h to induce the expression of NRF2 downstream 

genes. We chose to examine the expression of HMOX1, NQO1, GCLM, and SLC7A11, as these 

genes are well characterized NRF2 targets [100, 154-156]. As expected, treatment with H2O2 

induced the expression of HMOX1, NQO1, GCLM, and SLC7A11 in a dose-dependent manner 

(Figure 14). We found that knockdown of ARID1A in ES2 cells resulted in a further induction 

of these genes, with the exception of NQO1 (Figure 14). Similarly, depletion of ARID1A in 

ARID1A-wildtype RMG1 cells resulted in a greater induction of HMOX1, GCLM, NQO1, and 

SLC7A11 in the presence of H2O2 (Figure 15).  
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To complement the siRNA knockdown experiments, we re-expressed ARID1A in 

ARID1A-mutant TOV21G cells and treated the cells with the ROS-inducing agent elesclomol. 

In the presence of oxidative stress, induction of HMOX1, NQO1, and GCLM mRNA expression 

was suppressed by re-expression of ARID1A, with the exception of NQO1, which for unknown 

reasons its expression did not increase in the presence of oxidative stress (Figure 16). Together, 

these results show that ARID1A negatively regulates NRF2 expression. 
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Figure 13. ARID1A negatively regulates NRF2 expression.  (A-B) AIRD1A-wildtype ES2 cells 

were transfected with ARID1A siRNA for 48 h and then treated with H2O2 for 6 h. NRF2 

mRNA and protein expression were measured using qPCR (A) and western blot (B). (C-D) 

ARID1A-wildtype RMG1 cells were transfected with ARID1A siRNA for 48 h and then treated 

with piperlongumine for 6 h. NRF2 mRNA and protein expression were measured using qPCR 

(C) and western blot (D). * P < 0.05.  
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Figure 14. Induction of NRF2-target genes is higher in the absence of ARID1A.  (A-D) 

ARID1A-wildtype ES2 cells were transfected with ARID1A and non-target siRNA for 48 h, 

then treated with H2O2 for 6 h. Expression of NRF2 targets HMOX1, NQO1, GCLM, and 

SLC7A11 were measured by qPCR. Relative fold change was measured relative to untreated 

non-target control cells. *P < 0.05, **P < 0.01, ***P < 0.001.  
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Figure 15. Induction of NRF2-target genes is higher in the absence of ARID1A.  (A-D) 

ARID1A-wildtype RMG1 cells were transfected with ARID1A and non-target siRNA for 48 h, 

then treated with H2O2 for 6 h. Expression of NRF2 targets HMOX1, NQO1, GCLM, and 

SLC7A11 were measured by qPCR. Relative fold change was measured relative to untreated 

non-target control cells.  
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Figure 16. Re-expression of ARID1A decreases the expression of NRF2-target genes. ARID1A-

mutant TOV21G cells were transfected with pCI-neo and pCI-neo-ARID1A vectors for 48 h, 

cells were then treated with elesclomol for 6 h. Expression of NRF2 targets HMOX1, NQO1 and 

GCLM were measured by qPCR. Relative fold change was measured relative to non-target 

control cells treated with DMSO.  
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4.3 NRF2 is required for protection from oxidative stress and cell growth in ARID1A-

mutant ovarian cancer cells 

Previous studies found that NRF2 promotes cell proliferation in several cancer types 

[157-160]. However, whether NRF2 is required for cell proliferation in ovarian cancer cells is 

unknown. Since we found that ARID1A negatively regulates NRF2, we asked whether NRF2 

has oncogenic functions in ARID1A-mutant ovarian cancer cells. We tested the effects of NRF2 

depletion on colony formation in ovarian cancer cells. We found that knockdown of NRF2 

selectively inhibits colony formation of ARID1A-mutant TOV21G and IGROV1 ovarian cancer 

cells, but not ARID1A-wildtype RMG1 cells (Figure 17A). Western blot showed that NRF2 

protein expression was down-regulated upon NRF2 depletion in both RMG1 and TOV21G cells 

(Figure 17B). In NRF2-depleted cells, mRNA expression of the NRF2 targets HMOX1, NQO1, 

and GCLM were also decreased in both RMG1 and TOV21G cells, with the exception of 

SLC7A11, which was only down-regulated in NRF2-depleted TOV21G cells (Figure 17C). As 

NRF2 is the major regulator of the anti-oxidant response in the cell, we sought to investigate 

whether NRF2 depletion affects intracellular ROS levels. We found that depletion of NRF2 

resulted in a similar increase in ROS level in both RMG1 and TOV21G cells as measured by 

DCFDA (Figure 17D). 

The small molecule brusatol has been identified as a NRF2 inhibitor [161]. Next, we 

investigated whether brusatol is able to inhibit colony formation similarly to NRF2 siRNA. We 

treated RMG1 and TOV21G cells with 10nM to 100nM of brusatol. We found that a higher 

dosage of brusatol was required to inhibit colony formation completely in RMG1 cells than 
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TOV21G cells (Figure 18). Together, these results suggest that NRF2 may be required 

specifically for growth of ARID1A-mutant cells. 
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Figure 17. Knockdown of NRF2 inhibited colony formation in ARID1A-mutant cells. (A) 

Colony formation assays of RMG1, TOV21G, and IGROV1 cells transfected with NRF2 and 

non-target control siRNA. (B) NRF2 expression after transfection with NRF2 and non-target 

siRNA was measured by western blot. (C) mRNA expression of NRF2 and NRF2-target genes 

after transfection with NRF2 and non-target siRNA was measured by qPCR. (D) TOV21G and 

RMG1 cells were transfected with NRF2 and non-target siRNA for 72 h. Intracellular ROS 

levels were measured by DCFDA. WT, ARID1A-wildtype. MUT, ARID1A-mutant.  
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Figure 18. NRF2 inhibitor brusatol inhibits colony formation in ovarian cancer cells. (A and B) 

Colony formation assays of RMG1 and TOV21G cells treated with brusatol.  
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4.4 NRF2 expression is higher in ARID1A-mutant than ARID1A-wildtype TCGA UCEC 

patient samples 

 Based on our findings that ARID1A negatively regulates NRF2, we sought to investigate 

the relationship between ARID1A mutation and NRF2 expression in patient samples by 

analyzing RNA-seq data available in the Cancer Genome Atlas (TCGA) project. As the TCGA 

ovarian cancer dataset only contains tumor samples of the serous subtype, which do not 

frequently harbor ARID1A mutations (<2%), we did not analyze this dataset. Instead, we 

analyzed the uterine corpus endometrioid carcinoma (UCEC) dataset that was previously 

published [152], because UCEC has the highest frequency of ARID1A mutations in the cancer 

types available in TCGA. In the UCEC dataset, we found that NFE2L2 is amplified and mutated 

in a small subset of tumor samples (n = 17). As alterations in NFE2L2 can affect the NRF2 

expression and transcriptional activity [122], we removed NFE2L2-altered tumor samples from 

further analysis. We placed the remaining tumor samples into ARID1A-wildtype (no detectable 

ARID1A mutations, n=141) or ARID1A-mutant (ARID1A nonsense or truncating mutations, 

n=66) (Table 6). We excluded tumor samples with ARID1A missense mutations, in-frame 

insertion/deletion, splicing mutations or amplification from further analysis, because the effect 

of these mutations on ARID1A expression and function is unclear. We found that mRNA 

expression of NFE2L2 is significantly higher in ARID1A-mutant tumors than ARID1A-wildtype 

tumors (Mann-Whitney U-test, P = 0.0196, Figure 19A). We also examined the expression of 

several NRF2 downstream targets, and found that the mRNA expression of NQO1, SLC7A11 

and IDH1 are significantly higher in ARID1A-mutant tumors than ARID1A-wildtype tumors 

(Mann-Whitney U-test, P = 0.0003, P = 0.012, and P = 0.037 respectively, Figure 19B-D).  
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Figure 19. mRNA expression of NRF2 and NRF2-target genes are higher in ARID1A-mutant 

than ARID1A-wildtype TCGA UCEC tumor samples.  (A-D) mRNA levels of NFE2L2, NQO1, 

SLC7A11 and IDH1 were compared in ARID1A-mutant (Mutant, n = 66) and ARID1A-wildtype 

(WT, n = 141) samples. Black lines represent the geometric mean. Mann-Whitney U-tests were 

used to calculate significance.   
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4.5 NRF2 is not required for serine biosynthesis in ARID1A-mutant cancer cells 

Although the antioxidant functions of NRF2 are well characterized, two recent studies 

have identified antioxidant-independent functions of NRF2 in metabolism [160, 162]. DeNicola 

et al. found that NRF2 regulates the serine/gylcine biosynthetic pathway in non-small cell lung 

cancer (NSCLC) by controlling the expression of PHGDH, PSAT1 and SHMT2 [163]. 

Interestingly, using microarray analysis, we found that PHGDH, PSAT1 and SHMT2 were up-

regulated in ARID1A-depleted RMG1 cells compared to non-target control cells. Therefore, we 

asked whether NRF2 is required for cell growth of ARID1A-mutant cancer cells by controlling 

serine/glycine biosynthesis. qPCR confirmed that mRNA expression of PHGDH, PSAT1 and 

SHMT2 were up-regulated in ARID1A-depleted RMG1 and ES2 cells compared to non-target 

control cells (Figure 20A). However, depletion of NRF2 in ARID1A-mutant TOV21G cells did 

not result in significant down-regulation of PHGDH, PSAT1, and SHMT2 expression (Figure 

20B). In addition, gene expression analysis using the TCGA UCEC dataset found that PHGDH, 

PSAT1, and SHMT2 mRNA expression were not up-regulated in ARID1A-mutant tumor samples 

compared to ARID1A-wildtype samples (Figure 20C). These results showed that NRF2 does not 

regulate the serine/glycine biosynthesis pathway in gynecologic cancers.  

Apart from regulating the serine/glycine biosynthetic pathway in NSCLC, another study 

found that NRF2 regulates anabolic metabolism [160]. To investigate whether NRF2 regulates 

anabolic metabolism in gynecologic cancers, we also queried the expression of NRF2-target 

genes that are involved in anabolic metabolism using the TCGA UECE dataset. We found that 

these genes were not up-regulated in ARID1A-mutant tumor samples compared to ARID1A-

wildtype samples (Figure 21).  



 

 

72 

 

 
 

Figure 20. NRF2 is not required for serine/glycine biosynthesis in ARID1A-mutant cancer cells.  

(A) ARID1A-wildtype RMG1 and ES2 cells were transfected with ARID1A and non-target 

control siRNA. qPCR was used to measure the mRNA levels of PHGDH, PSAT1 and SHMT2. 

(B) TOV21G cells were transfected with NRF2 and non-target siRNA. qPCR was used to 

measure mRNA levels as in (A). (C) mRNA levels of PHGDH, PSAT1 and SHMT2 were 

compared in ARID1A-mutant (Mutant, n = 66) and ARID1A-wildtype (WT, n = 141) TCGA 

UCEC samples. Black lines represent the geometric mean. Mann-Whitney U-tests were used to 

calculate significance.  
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Figure 21. Genes involved in anabolic metabolism are not up-regulated in ARID1A-mutant 

TCGA UCEC tumor samples compared to ARID1A-wildtype samples.  mRNA levels of G6PD, 

ME1, MTHFD2, TKT, PGD, PPAT, and TALDO1 were compared in ARID1A-mutant (Mutant, n 

= 66) and ARID1A-wildtype (WT, n = 141) TCGA UCEC samples. Black lines represent the 

geometric mean. Mann-Whitney U-tests were used to calculate significance.  
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4.6 Conclusion 

In the present study, we found that the tumor suppressor ARID1A negatively regulates 

NRF2 expression in ovarian cancer cells. We also found that ARID1A-mutant ovarian cancer 

cells are dependent on NRF2 expression for cell growth.  Furthermore, this finding is supported 

by analysis of TCGA UECE tumor samples, which we found that NRF2 expression and its 

target genes are higher in ARID1A-mutant than ARID1A-wildtype tumor samples. We found that 

NRF2 does not regulate metabolic pathways in ARID1A-mutant ovarian cancer cells, suggesting 

that NRF2 is primarily required for protection against oxidative stress.  
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CHAPTER 5: DISCUSSION 

5.1 Using ROS-inducing agents to target ARID1A-mutant cancer cells 

 Cancer cells have higher ROS levels than normal cells due a number of reasons as 

discussed in chapter 1. Although a moderate increase in ROS levels can promote cancer cell 

growth due to activation of signaling pathways and promotion of genomic instability, high 

levels of ROS lead to cell death and senescence.  Therefore, it is important for cancer cells to 

maintain intracellular ROS levels below a toxic threshold. Previous studies have found that 

enhancing ROS has anti-tumor effects in cancer cells [101], however, it is not completely clear 

what predicts sensitivity to these treatments.  

The results in chapter 3 showed that ARID1A is required to mediate resistance to 

oxidative stress and ARID1A deficiency leads to sensitivity to ROS-inducing agents in ovarian 

cancer cells. This is in line with previous findings in S. cerevisiae and C. elegans that SWI/SNF 

is required to mediate resistance to oxidative stress [136, 137] (for details see chapter 1.5) and 

this dissertation provided evidence that SWI/SNF mediated oxidative stress resistance is also 

conserved in mammalian cells. However, this dissertation focuses on ARID1A in 

endometriosis-associated ovarian cancers only, which are the cancer types which have the most 

frequent mutations in ARID1A. Future studies should investigate whether other SWI/SNF 

subunits are also required for oxidative stress resistance in other cancer types. Cancer types that 

have frequent SWI/SNF mutations, such as SNF5 mutations in rhabdoid cancers and BRG1 

mutations in SCCOHT, are often aggressive and of poor prognosis. In addition, SWI/SNF 

mutations are frequently inactivating mutations and therefore, SWI/SNF mutations have to be 
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targeted indirectly using novel strategies. This dissertation provides a rationale of targeting 

SWI/SNF-mutant cancers with ROS-inducing agents.  

However, it should also be noted that the therapeutic implications of our results is 

limited by the lack of in vivo models. Future studies should use mice models to investigate 

whether ARID1A-mutant cancers are sensitive to ROS-inducing agents. Apart from using 

xenograft mice models, ARID1A-knockout mice models that form OCCCs and OECs [48, 49] 

can also be used for this purpose.  

 

5.2 Proposed mechanisms that lead to adaptation to oxidative stress in ARID1A-mutant 

OCCCs and OECs 

Although the results from chapter 3 found that ARID1A is required to mediate resistance 

to oxidative stress, this finding is somewhat unexpected in the context of OCCCs and OECs. 

This is because the contents of endometriotic cysts have abundant free iron and lead to high 

ROS production [140]. As OCCCs and OECs are thought to arise from endometriotic cysts and 

frequently associated with endometriosis, OCCC and OEC cancer cells are consistently exposed 

to high oxidative stress during tumor initiation and progression [21, 22]. How OCCC and OEC 

cells survive in a microenvironment of persistent oxidative stress in the absence of ARID1A is 

unclear.  

One possibility is that ARID1A deficiency in OCCCs is compensated for by HNF1β 

overexpression. As mentioned in chapter 1.6, HNF1β is overexpressed in OCCCs but not in 

other ovarian cancer subtypes [141]. A recent study found that HNF1β is required to mediate 

resistance to oxidative stress in OCCC cells [142]. To investigate whether HNF1β 
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overexpression can compensate for ARID1A deficiency in OCCCs, future studies should 

determine whether the depletion of HNF1β in ARID1A-mutant OCCCs can lead to further 

sensitivity to oxidative stress.  

However, oxidative stress adaptation by overexpression of HNF1β is likely to be 

specific to OCCCs only, because HNF1β is not overexpressed in other ovarian cancer subtypes 

including OECs [141].Therefore, OECs are likely to adapt to high oxidative stress using a 

HNF1β-independent mechanism in the absence of ARID1A. One possibility is through estrogen 

signaling. As mentioned in chapter 1.2, key differences in ER and PR expression are found in 

OCCCs and OECs; OCCCs do not express ER and PR, whereas OECs express ER and PR [24, 

25]. Although the mechanisms that lead to these differences are unknown, ER expression may 

compensate for absence of ARID1A in OECs. In ER+  immortalized mouse mammary epithelial 

cells (MECs) and ER+ human breast cancer MCF7 cells, estrogen stimulation was able to 

increase NRF2 protein expression and NRF-target gene expression [105]. Specifically, the 

activation of NRF2 by estrogen was found to be dependent on activation of PI3K signaling 

[164]. Therefore, in ER+/ARID1A- ovarian cancer, such as OECs, estrogen signaling may 

protect the cells from oxidative stress. Future studies should determine whether NRF2 is also 

activated by estrogen in OECs similar to ER+ breast cancer cells. If estrogen is able to activate 

NRF2 in OECs, then selected OECs patients with ARID1A mutations may benefit from anti-

hormonal therapy, as this should block NRF2 activity in ARID1A-mutant cells, thereby 

increasing intracellular ROS levels and ROS-induced cell death.  
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5.3 Negative regulation of NRF2 by ARID1A in ovarian cancers 

In cancer cells, the antioxidant response is up-regulated to avoid the detrimental effects 

of persistent oxidative stress. Aberrant activation of NRF2, the major regulator of the 

antioxidant response in the cell, has been identified in several cancer types. In ovarian cancer, 

NRF2 nuclear localization occurs more frequently in OCCCs than other epithelial ovarian 

cancer subtypes. Although KEAP1 mutations were identified in OCCC patient samples, they 

could not account completely for the occurrence of NRF2 nuclear localization [165]. In 

addition, although several studies have found that NRF2 has oncogenic functions in different 

cancer types, the functional roles of NRF2 in ovarian cancers are not clear.  

The results in chapter 4 identified a novel regulation between ARID1A and NRF2; 

ARID1A negatively regulates NRF2 expression and its downstream target genes. In addition, 

NRF2 inhibition by siRNA or the small molecule inhibitor brusatol were able to inhibit cell 

growth in ARID1A-mutant cells. These results suggest that ARID1A-mutant ovarian cancer 

cells may adapt to high oxidative stress by up-regulating NRF2 expression.  

However, it should be noted that our results are opposite to the findings of a previous 

study, that BRG1 positively regulates NRF2 activity [138]. Interestingly, in this previous study 

by Zhang et al., depletion of BRG1 also resulted in increased NRF2 expression in the presence 

of diethylmaleate (DEM), which is a glutathione-depleting compound. This finding is similar to 

our results that ARID1A negatively regulates NRF2 expression in the presence of oxidative 

stress. Some differences in the study by Zhang et al. and this dissertation should be noted: 1) In 

Zhang et al.’s study, although BRG1 enhanced NRF2 reporter activity, out of the NRF2-target 

genes that they tested (HMOX1, NQO1, GCSL, GCSH, and AKR1C1), only HMOX1 
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expression was positively regulated by BRG1, suggesting that BRG1-dependent regulation of 

HMOX1 may be a specific event and not applicable to other NRF2-target genes. However, the 

results in chapter 4 showed that ARID1A negatively regulates several NRF2-target genes. 2) In 

the study by Zhang et al., the authors did not investigate whether BRG1 expression was 

correlated with NRF2 expression in patient samples. In chapter 4, we analyzed TCGA UCEC 

tumor samples and found that ARID1A-mutant samples had higher NRF2 and NRF2-target gene 

expression compared to ARID1A-wildtype patient samples. This further supports the notion that 

ARID1A negatively regulates NRF2 expression. 3) Zhang et al.’s study used non-ovarian cancer 

cells, we focused on ovarian cancer cells. It may be possible that the regulation of NRF2 by 

SWI/SNF is context dependent. 4) It is also not clear whether loss of individual SWI/SNF 

subunits will result in the same phenotype, therefore, it is possible that other SWI/SNF subunits, 

such as BRG1, regulate NRF2 differently from ARID1A. 

Future studies should determine whether ARID1A also negatively regulates NRF2 in 

cancer types other than gynecologic cancers. In addition, since BRG1 mutations are also found 

in gynecologic cancers, future studies should also investigate whether BRG1 also negatively 

regulates NRF2 in these cancers.  

 

5.4 Combination therapy using NRF2 inhibitor and chemotherapy 

 NRF2 has not only been found to mediate resistance to oxidative stress, but also 

chemotherapy [161]. It has been well characterized that SWI/SNF is required to facilitate DNA 

repair, and ARID1A has been found to mediate resistance to cisplatin [80]. Paradoxically, 

OCCCs are characterized by a poor response to chemotherapy due to unknown reasons. It is 
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possible that up-regulation of NRF2 in the absence of ARID1A mediates resistance to 

chemotherapy in OCCCs. A previous study found that depletion of the NRF2 inhibitor KEAP1 

in ovarian cancer 36M2 cells leads to resistance to the cisplatin [165]. Therefore, future studies 

should investigate whether the use of NRF2 inhibitor can overcome resistance to chemotherapy 

in OCCCs. 

 

5.5 Possible antioxidant-independent functions of NRF2 in gynecologic cancers 

Although the antioxidant functions of NRF2 are well characterized, two recent studies 

have identified antioxidant-independent functions of NRF2 in metabolism [160, 162].  

The first study by Mitsuishi et al. [160] found that when the PI3K/AKT pathway is 

constitutively activated, nuclear accumulation of NRF2 is increased and NRF2 promotes 

anabolic metabolism that support cell proliferation. In addition, NRF2 activation also further 

activates PI3K/AKT signaling, creating a positive feedback loop. Given that 1) NRF2 is an 

oncogene, 2) inactivating ARID1A mutations frequently co-occur with activating PI3K pathway 

mutations in human cancers [33], and 3) tumors only form in mice that harbor both ARID1A and 

PIK3CA/PTEN mutations [48, 49], it may be possible that combined ARID1A loss and 

PI3K/AKT pathway activation can promote tumorigenesis by activating NRF2 activity and 

subsequently leading to metabolic reprogramming. Although there were no differences in 

expression of genes involved in anabolic metabolism in ARIDA-wildtype compared with 

ARID1A-mutant TCGA UCEC samples, the possibility that NRF2 regulates anabolic 

metabolism in gynecologic cancers cannot be fully excluded. This is because although ARID1A 

mutations frequently co-occur with PI3K pathway mutations, it is unclear whether all PI3K 
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pathway mutations will lead to activation of the PI3K/AKT pathway and to what degree of 

activation. Therefore, it may be useful to quantify PI3K pathway activation in TCGA UCEC 

samples using reverse phase protein array (RPPA) data and combine this data with ARID1A 

mutation status to improve sample stratification.  

In a second study by DeNicola et al., the authors found that NRF2 regulates the 

serine/glycine biosynthetic pathway by controlling the expression of PHGDH, PSAT1 and 

SHMT2 in non-small cell lung cancers (NSCLC) [162]. Although the results in chapter 4 found 

that ARID1A depletion resulted in increased expression of PHGDH, PSAT1 and SHMT2, the 

expression of these three genes were only slightly down-regulated upon depletion of NRF2, 

suggesting that NRF2 does not regulate the expression of these genes in ovarian cancer cells. 

We also observed no up-regulation of PHGDH, PSAT1 and SHMT2 expression in ARID1A-

mutant TCGA UCEC samples compared to ARID1A-wildtype samples. One possibility for this 

difference is the different expression of NRF2 partners in NSCLC and gynecologic cancers. In 

NSCLC, the regulation of serine/glycine biosynthesis genes by NRF2 was found to be 

dependent on the transcription factor ATF4 [162], whereas the relationship between NRF2 and 

ATF4 have not been investigated in gynecologic cancers.  

 

5.6 A NRF2-dependent cell death response to oxidative stress in ARID1A-mutant cancers? 

The results in chapter 4 showed that ARID1A negatively regulates NRF2. Theoretically, 

if NRF2 is up-regulated in ARID1A-mutant cells, it should mediate cytoprotection against 

oxidative stress. However, this is paradoxical to the findings in chapter 3 that loss of ARID1A 

leads to sensitivity to oxidative stress. This may be explained by a recent study which revealed 
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an unexpected and paradoxical role of NRF2 in the presence of excessive oxidative stress [166]. 

At low oxidative stress, NRF2 activates antioxidant genes and promote ROS detoxification. 

However, at high oxidative stress, the continuous accumulation of NRF2 leads to the 

transcriptional activation of KLF9. KLF9 in turn further increases ROS levels and promote cell 

death. Interestingly, KLF9 activation requires higher levels of NRF2 compared to NRF2-target 

antioxidant genes, such as HMOX1 and NQO1, showing that high levels NRF2 promote cell 

death instead of cytoprotection. As oxidative stress in ARID1A-mutant ovarian cancer cells 

results in high expression of NRF2, it is possible that the increased accumulation of NRF2 is 

detrimental to the cell by activating KLF9 and causing cell death. Future studies should 

investigate whether the depletion of ARID1A lowers the threshold of KLF9 expression in the 

presence of oxidative stress.  

 

5.7 Possible mechanisms on how ARID1A mediates oxidative stress resistance 

 How ARID1A mediates oxidative stress resistance is still unclear. In C. elegans, 

SWI/SNF is a co-factor for DAF16 (the ortholog of the human FOXO protein), is required for 

DAF16 transcriptional activity and DAF16 mediated oxidative stress resistance [137]. Although 

the FOXO protein is conserved in humans, it is unlikely that ARID1A promotes oxidative stress 

through FOXO in ovarian cancer. This is because ARID1A mutations are frequently with PI3K 

pathway mutations [33], hence activation of the PI3K pathway, which leads to phosphorylation 

of the FOXO protein and its sequestration in the cytoplasm [167].   

 From the microarray analysis that compared gene expression between ARID1A-

knockdown and non-target control RMG1 cells, we found that several ROS detoxification genes 
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were down-regulated upon ARID1A depletion (Table 5). Further validation will be required to 

identify antioxidant genes that are dependent on ARID1A for activation and which genes are 

required for ARID1A mediated oxidative stress resistance. Apart from down-regulation ROS 

detoxification genes, the up-regulation of BID expression in ARID1A-knockdown cells may 

also be a potential candidate. BID is a proapoptotic BCL2 family protein that is cleaved and 

activated during various stress conditions. A previous study has found that truncated BID (tBID) 

induces waves of cytochrome c release at neighboring mitochondria through ROS [168]. Our 

preliminary data found that in the presence of oxidative stress, BID expression is up-regulated in 

ARID1A-knockdown RMG1 cells and down-regulated in TOV21G cells re-expressing ARID1A 

(Figure 22). Future studies should investigate whether BID expression is negatively regulated by 

ARID1A during oxidative stress and if BID repression is required for ARID1A mediated 

oxidative stress resistance. 
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Symbol Entrez Gene Name p-value 

Fold 

Change 

ALOX5 arachidonate 5-lipoxygenase 4.02E-03 -6.703 

GLRX glutaredoxin (thioltransferase) 5.18E-04 -4.701 

ACADSB acyl-CoA dehydrogenase, short/branched chain 5.62E-03 -3.205 

TBXAS1 thromboxane A synthase 1 (platelet) 1.60E-02 -2.522 

TP53I3 tumor protein p53 inducible protein 3 1.87E-03 -2.336 

COX6A1 cytochrome c oxidase subunit VIa polypeptide 1 2.62E-03 -2.154 

GFOD1 

glucose-fructose oxidoreductase domain containing 

1 2.91E-02 -2.080 

P4HA2 prolyl 4-hydroxylase, alpha polypeptide II 2.04E-02 -2.075 

ACSM3 

acyl-CoA synthetase medium-chain family member 

3 1.95E-02 -2.055 

PTGS1 

prostaglandin-endoperoxide synthase 1 

(prostaglandin G/H synthase and cyclooxygenase) 1.38E-02 -1.949 

NRXN3 neurexin 3 2.43E-02 -1.924 

MSRB1 methionine sulfoxide reductase B1 8.67E-03 -1.916 

ACSF2 acyl-CoA synthetase family member 2 2.90E-03 -1.914 

CDYL2 chromodomain protein, Y-like 2 4.37E-03 -1.907 

XDH xanthine dehydrogenase 4.68E-03 -1.894 

SOD2 superoxide dismutase 2, mitochondrial 1.10E-02 -1.804 

LOXL2 lysyl oxidase-like 2 2.03E-02 -1.688 

HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2 6.56E-03 -1.668 

GSTZ1 glutathione S-transferase zeta 1 4.29E-02 -1.629 

RRM2 ribonucleotide reductase M2 2.53E-02 -1.624 

CYP2C18 

cytochrome P450, family 2, subfamily C, 

polypeptide 18 4.20E-02 -1.612 

MSRB2 methionine sulfoxide reductase B2 3.81E-02 -1.598 

MGST3 microsomal glutathione S-transferase 3 3.12E-02 -1.597 

AKR1B1 

aldo-keto reductase family 1, member B1 (aldose 

reductase) 3.50E-03 -1.593 

BLVRA biliverdin reductase A 4.36E-02 -1.575 

CYB5R3 cytochrome b5 reductase 3 1.00E-02 -1.562 

CDYL chromodomain protein, Y-like 1.97E-02 -1.504 

 

Table 5. List of genes that were down-regulated (p < 0.05 and fold-change ≥ 1.5) in ARID1A-

knockdown RMG1 cells compared to non-target control cells.  Shown here are genes that were 

categorized as GO term ‘oxidative reduction’.  
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Figure 22. ARID1A negatively regulates BID expression.  (A) RMG1 cells were transfected 

with ARID1A and non-target control cells and then treated with piperlongumine for 6 h. BID 

expression was measured by qPCR. (B) TOV21G cells transfected with pCI-neo-ARID1A and 

pCI-neo empty vector control and then treated with elesclomol for 6 h. BID expression was 

measured by qPCR.  
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5.8 Translational significance 

ARID1A is a tumor suppressor, and its expression is lost in cancer. Therefore, it is not 

possible to directly target ARID1A itself, rather, specific vulnerabilities of ARID1A-mutant 

cancer cells must be discovered and targeted. Although several tumor suppressive functions of 

ARID1A have emerged, therapeutic targets for ARID1A-mutant cancer cells remained limited 

(for details see chapter 1.3.7). In chapter 3, we discovered that ARID1A is required for 

promoting resistance to oxidative stress and ARID1A-mutant ovarian cancer cells are more 

sensitive to the ROS-inducing agent elesclomol than ARID1A-wildtype ovarian cancer cells. In 

addition to elesclomol, which has been used in a phase III clinical trial, several ROS-inducing 

agents have been developed and are in different stages of development [101, 169]. Taken 

together, inducing ROS generation is a novel and feasible therapeutic strategy for targeting 

ARID1A-mutant ovarian cancer cells.  

An increasing number of studies have found that NRF2, the major regulator of the 

antioxidant response in the cell, is an oncogene in cancer. In chapter 4, we found that ARID1A 

negatively regulates NRF2 expression. Furthermore, we found that ARID1A-mutant ovarian 

cancer cells have more sensitive to NRF2 depletion than ARID1A-wildtype cells. Importantly, 

NRF2 is a druggable target and the compound brusatol has been previously found to inhibit 

NRF2 expression [161]. Taken together, these findings suggest that NRF2 is a novel and 

feasible therapeutic target in ARID1A-mutant ovarian cancer cells.  

As NRF2 is required for resistance to oxidative stress and our data suggests that NRF2 is 

required primarily for protection from oxidative stress in ARID1A-mutant ovarian cancer cells, it 
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is possible that the combination of NRF2 inhibitor and ROS-inducing agents may have a greater 

effect than using either agent alone. Future studies testing this combination are warranted.  
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APPENDIX 

Case ID ARID1A mutation 

TCGA-AP-A056-01  Y592*,R1989* 

TCGA-BS-A0U5-01  Y485Pfs*135 

TCGA-BS-A0UA-01  Y2254* 

TCGA-BG-A0MG-01  Y1324* 

TCGA-AP-A059-01  X751_splice,R750*,P2114L 

TCGA-B5-A0K0-01  W2048* 

TCGA-BG-A0LX-01  V1994Cfs*21 

TCGA-AP-A0LG-01  T783Kfs*50 

TCGA-BG-A0MT-01  T2138Hfs*62 

TCGA-B5-A11O-01  T1640Pfs*14 

TCGA-D1-A17C-01  T1514Pfs*14,G1317W 

TCGA-D1-A168-01  S674Ifs*68,P1353Rfs*123 

TCGA-D1-A17T-01  S2269*,R727Vfs*12 

TCGA-BK-A0CB-01  S1001Ffs*6,R693* 

TCGA-B5-A11W-01  R750* 

TCGA-AX-A062-01  R693* 

TCGA-B5-A0JV-01  R693* 

TCGA-D1-A176-01  R693* 

TCGA-BS-A0TG-01  R2236Afs*31,H415Pfs*205 

TCGA-D1-A0ZU-01  R2158*,R1989* 

TCGA-D1-A17H-01  R2158* 

TCGA-BS-A0TC-01  R1989* 

TCGA-D1-A16X-01  R1989* 

TCGA-D1-A17L-01  R1989* 

TCGA-B5-A11E-01 R1722*,S1090I,P1144S,R1989* 

TCGA-B5-A0JS-01  R1722* 

TCGA-D1-A160-01  R1528* 

TCGA-B5-A0K4-01  R1446* 

TCGA-A5-A0GI-01  R1335* 

TCGA-BG-A0M3-01  R1335* 

TCGA-BG-A2AE-01  R1335* 

TCGA-BG-A18A-01  R1276* 

TCGA-BG-A18B-01  Q557* 

TCGA-D1-A17A-01  Q543* 

TCGA-AX-A2HF-01  Q505Sfs*114 

TCGA-AP-A05N-01  Q479* 
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TCGA-AX-A0IS-01  Q425Rfs*8 

TCGA-A5-A0GB-01  Q405* 

TCGA-D1-A0ZS-01  Q2209Sfs*22 

TCGA-D1-A16O-01  Q2209Sfs*22 

TCGA-BG-A0VV-01  Q1473* 

TCGA-BG-A0YV-01  Q1409* 

TCGA-AX-A063-01  Q1334del,R1335* 

TCGA-D1-A16Q-01  Q1331* 

TCGA-A5-A0R8-01  Q1327* 

TCGA-BS-A0U8-01  Q1306* 

TCGA-B5-A121-01  Q1188* 

TCGA-D1-A17R-01  Q1172* 

TCGA-BG-A0M9-01  Q1131* 

TCGA-D1-A16B-01  M434Cfs*185 

TCGA-AX-A05Y-01  L2171dup 

TCGA-D1-A0ZO-01  K1953Rfs*3 

TCGA-A5-A0GQ-01  K1928Lfs*29,L2239P 

TCGA-AX-A0J0-01  I2135V,S1320Y,S995Ifs*12 

TCGA-AX-A05T-01  G1015Wfs*25 

TCGA-BS-A0UV-01  E992*,P1619L,R1989* 

TCGA-AX-A05Z-01  E672* 

TCGA-BS-A0V6-01  E2255Gfs*10,L2253Vfs*24 

TCGA-D1-A16D-01  E2047* 

TCGA-B5-A0JY-01  E1764*,G925*,L1713P 

TCGA-AP-A0LL-01  E1733* 

TCGA-AP-A0LE-01  D734Gfs*83 

TCGA-BK-A0CA-01  A1789Pfs*17 

TCGA-BS-A0TJ-01  A1628Pfs*15 

TCGA-A5-A0GM-01  A1589Gfs*19,M737Ifs*6 

TCGA-D1-A0ZN-01  A1119Vfs*43 

TCGA-A5-A0G5-01 WT 

TCGA-A5-A0GA-01 WT 

TCGA-A5-A0GE-01 WT 

TCGA-A5-A0GJ-01 WT 

TCGA-A5-A0GN-01 WT 

TCGA-A5-A0GU-01 WT 

TCGA-A5-A0GV-01 WT 

TCGA-A5-A0GX-01 WT 

TCGA-A5-A0R7-01 WT 
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TCGA-A5-A0R9-01 WT 

TCGA-A5-A0RA-01 WT 

TCGA-A5-A0VP-01 WT 

TCGA-A5-A0VQ-01 WT 

TCGA-AJ-A23M-01 WT 

TCGA-AP-A052-01 WT 

TCGA-AP-A053-01 WT 

TCGA-AP-A054-01 WT 

TCGA-AP-A05A-01 WT 

TCGA-AP-A05D-01 WT 

TCGA-AP-A05H-01 WT 

TCGA-AP-A05J-01 WT 

TCGA-AP-A05P-01 WT 

TCGA-AP-A0L8-01 WT 

TCGA-AP-A0L9-01 WT 

TCGA-AP-A0LD-01 WT 

TCGA-AP-A0LF-01 WT 

TCGA-AP-A0LH-01 WT 

TCGA-AP-A0LI-01 WT 

TCGA-AP-A0LJ-01 WT 

TCGA-AP-A0LN-01 WT 

TCGA-AP-A0LO-01 WT 

TCGA-AP-A0LP-01 WT 

TCGA-AP-A0LQ-01 WT 

TCGA-AP-A0LT-01 WT 

TCGA-AP-A0LV-01 WT 

TCGA-AX-A05S-01 WT 

TCGA-AX-A05U-01 WT 

TCGA-AX-A064-01 WT 

TCGA-AX-A06B-01 WT 

TCGA-AX-A06H-01 WT 

TCGA-AX-A06L-01 WT 

TCGA-AX-A0IW-01 WT 

TCGA-AX-A0J1-01 WT 

TCGA-AX-A1C7-01 WT 

TCGA-AX-A1C8-01 WT 

TCGA-AX-A1CP-01 WT 

TCGA-AX-A2H5-01 WT 

TCGA-B5-A0JN-01 WT 



 

 

91 

 

TCGA-B5-A0JR-01 WT 

TCGA-B5-A0JZ-01 WT 

TCGA-B5-A0K1-01 WT 

TCGA-B5-A0K2-01 WT 

TCGA-B5-A0K6-01 WT 

TCGA-B5-A0K7-01 WT 

TCGA-B5-A0K8-01 WT 

TCGA-B5-A0K9-01 WT 

TCGA-B5-A11F-01 WT 

TCGA-B5-A11G-01 WT 

TCGA-B5-A11H-01 WT 

TCGA-B5-A11I-01 WT 

TCGA-B5-A11J-01 WT 

TCGA-B5-A11N-01 WT 

TCGA-B5-A11Q-01 WT 

TCGA-B5-A11S-01 WT 

TCGA-B5-A11U-01 WT 

TCGA-B5-A11V-01 WT 

TCGA-B5-A11Z-01 WT 

TCGA-B5-A1MU-01 WT 

TCGA-B5-A1MY-01 WT 

TCGA-BG-A0LW-01 WT 

TCGA-BG-A0M0-01 WT 

TCGA-BG-A0M2-01 WT 

TCGA-BG-A0M6-01 WT 

TCGA-BG-A0M7-01 WT 

TCGA-BG-A0M8-01 WT 

TCGA-BG-A0MC-01 WT 

TCGA-BG-A0MI-01 WT 

TCGA-BG-A0MO-01 WT 

TCGA-BG-A0MQ-01 WT 

TCGA-BG-A0MS-01 WT 

TCGA-BG-A0MU-01 WT 

TCGA-BG-A0RY-01 WT 

TCGA-BG-A0VT-01 WT 

TCGA-BG-A0VW-01 WT 

TCGA-BG-A0VX-01 WT 

TCGA-BG-A0VZ-01 WT 

TCGA-BG-A0W1-01 WT 
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TCGA-BG-A0W2-01 WT 

TCGA-BG-A0YU-01 WT 

TCGA-BG-A186-01 WT 

TCGA-BG-A187-01 WT 

TCGA-BG-A18C-01 WT 

TCGA-BK-A0CC-01 WT 

TCGA-BK-A139-01 WT 

TCGA-BK-A13C-01 WT 

TCGA-BS-A0T9-01 WT 

TCGA-BS-A0TA-01 WT 

TCGA-BS-A0TD-01 WT 

TCGA-BS-A0TE-01 WT 

TCGA-BS-A0TI-01 WT 

TCGA-BS-A0U9-01 WT 

TCGA-BS-A0UF-01 WT 

TCGA-BS-A0UL-01 WT 

TCGA-BS-A0UT-01 WT 

TCGA-BS-A0V7-01 WT 

TCGA-BS-A0V8-01 WT 

TCGA-BS-A0WQ-01 WT 

TCGA-D1-A0ZP-01 WT 

TCGA-D1-A0ZQ-01 WT 

TCGA-D1-A0ZR-01 WT 

TCGA-D1-A0ZV-01 WT 

TCGA-D1-A0ZZ-01 WT 

TCGA-D1-A101-01 WT 

TCGA-D1-A102-01 WT 

TCGA-D1-A103-01 WT 

TCGA-D1-A15V-01 WT 

TCGA-D1-A15Z-01 WT 

TCGA-D1-A161-01 WT 

TCGA-D1-A163-01 WT 

TCGA-D1-A165-01 WT 

TCGA-D1-A169-01 WT 

TCGA-D1-A16G-01 WT 

TCGA-D1-A16I-01 WT 

TCGA-D1-A16J-01 WT 

TCGA-D1-A16N-01 WT 

TCGA-D1-A16S-01 WT 
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TCGA-D1-A16Y-01 WT 

TCGA-D1-A174-01 WT 

TCGA-D1-A177-01 WT 

TCGA-D1-A17B-01 WT 

TCGA-D1-A17D-01 WT 

TCGA-D1-A17F-01 WT 

TCGA-D1-A17K-01 WT 

TCGA-D1-A17M-01 WT 

TCGA-D1-A17N-01 WT 

TCGA-D1-A17S-01 WT 

TCGA-D1-A1NU-01 WT 

TCGA-D1-A1NX-01 WT 

TCGA-DI-A0WH-01 WT 

TCGA-DI-A1NN-01 WT 

TCGA-E6-A1LZ-01 WT 

TCGA-EO-A1Y5-01 WT 

TCGA-EO-A1Y8-01 WT 

TCGA-EY-A1GS-01 WT 

TCGA-EY-A212-01 WT 

TCGA-FI-A2EW-01 WT 

TCGA-FI-A2EX-01 WT 

 

 
Table 6. List of uterine corpus endometrioid carcinoma tumor samples from TCGA.  Database 

used was previously published [152]. WT, wildtype. *, non-sense mutation. Fs, frame-shift 

mutation. Splice, mutation at splice site.  
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