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Developing and using methyl-specific antibodies to study 

the biological roles of arginine methylation 

Vidyasiri Vemulapalli, Ph.D. 

Supervisory Professor: Mark T. Bedford, Ph.D. 

 

Arginine residues can be modified in three different ways to produce asymmetric 

dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and monomethylarginine 

(MMA). These modifications are catalyzed by a family of nine protein arginine 

methyltransferases (PRMT1-9), which are of three types (I, II, and III). The majority of Type I 

enzymes asymmetrically dimethylate Glycine- and Arginine-rich (GAR) motifs, except for 

PRMT4, which methylates Proline-, Glycine-, and Methionine-rich (PGM) motifs. The same 

substrates (GAR or PGM motifs) can also be dimethylated by PRMT5 in a symmetric fashion. 

However, it is not clear whether there are dedicated residues within these motifs for ADMA 

and SDMA, or if the two enzyme types (I and II) compete for the same arginine residue. In 

addition, very little is known about MMA, which commonly occurs as an intermediate in the 

pathway to ADMA and SDMA generation. But, occasionally some substrates are solely 

monomethylated due to the Type III activity of PRMT7. This project aimed at clarifying the 

dynamics of different methylation types using methylarginine-specific antibodies and PRMT 

null cell lines. By performing methyl-specific antibody Western and amino acid analysis, we 

were able to show that loss of PRMT1, which removes 90% of ADMA, causes a global rise in 

MMA and SDMA levels. Hence, we concluded that there is a dynamic interplay among the 

three types of methylation, and that ADMA acts as a dominant mark preventing the occurrence 

of MMA and SDMA on the same substrates.  

The second project also involved methyl-specific antibodies, however, it was aimed at 

discovering novel PRMT4 substrates. PRMT4, also referred as coactivator-associated 

arginine methyltransferase (CARM1), functions as a regulator of transcription and splicing by 
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methylating a diverse array of substrates. In order to broaden our understanding of CARM1’s 

mechanistic actions, we generated CARM1 substrate motif antibodies, and used 

immunoprecipitation coupled with mass spectrometry to identify novel cellular targets for 

CARM1, including Mediator Complex Subunit 12 (MED12) and the lysine methyltransferase 

KMT2D/MLL2. Both of these proteins are implicated in enhancer function. We identified the 

primary CARM1-mediated MED12 methylation site as arginine 1899. Using methyl-specific 

antibodies to this site, we found that MED12 methylation positively correlates with CARM1 

levels. ChIP-seq studies reveal that CARM1 and its activity are tightly associated with ERα-

specific enhancers and positively modulate transcription of estrogen (E2)-regulated genes. 

Using a cell-free biotinylated DNA pulldown assay, we demonstrated that CARM1 and MED12 

are co-recruited to a GREB1 estrogen response element (ERE), and in cells, methylated 

MED12 efficiently assembles on a multicopy engineered ERE array in response to E2 

treatment. Additionally, we show that MED12 interacts with the Tudor domain-containing 

effector molecule, TDRD3, in a CARM1-dependent fashion. These findings reveal an arginine 

methylation regulatory node on the Mediator complex that may facilitate the communication 

between DNA-bound transcription factors and RNA polymerase II. 
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Chapter 1: Introduction 

 

1.1 Protein arginine methylation 

Proteins acquire functional diversity from a limited repertoire of polypeptides by 

undergoing post-translational modifications (PTMs). These modifications regulate the stability, 

activity, localization, and binding ability of proteins with its interactors (Deribe et al, 2010). 

Protein arginine methylation is a post-translational modification that modulates important 

cellular functions like transcription, splicing, signal transduction, and DNA repair (Bedford & 

Clarke, 2009). It is catalyzed by a family of enzymes called protein arginine 

methyltransferases (PRMTs), which methylate about 0.5% of total arginine residues in 

mammalian cells, making it a prevalent modification (Dhar et al, 2013). PRMTs transfer methyl 

group(s) (CH3-) from S-adenosyl-L-methionine (SAM) to the terminal nitrogen(s) of the 

guanidino group of an arginine residue, giving rise to a methylated protein and the byproduct, 

S-adenosyl-L-homocysteine (SAH) (Bedford & Clarke, 2009). Methylation of an arginine 

residue does not affect its positive charge, but it changes its shape, increases bulkiness and 

hydrophobicity, which in turn affects its protein-protein interactions, both positively and 

negatively. For example, methylation of histone H3 tail promotes its interaction with the Tudor 

domain of TDRD3 (Yang et al, 2010), whereas methylation of the Sam68 proline-rich motifs 

inhibits its interaction with the SH3 domain of p59fyn and PLCγ-1 (Bedford et al, 2000).  

 

1.1.1 Arginine methylation types and the PRMT family 

There are three types of methyl-arginine species in cells (Figure 1). ω-NG,NG-

asymmetric dimethylarginine (ADMA) is the most prevalent type. Here, two methyl groups 
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Figure 1: Types of arginine methylation. 

The three types of methyl-arginine species occurring in cells are ω-NG-monomethyl arginine 

(MMA), ω-NG,NG-asymmetric dimethylarginine (ADMA), and ω-NG,N’G-symmetric 

dimethylarginine (SDMA). 

Figure 1 is adapted from Yang Y, Bedford MT (2013) Protein arginine methyltransferases and 

cancer. Nat Rev Cancer 13: 37-50. 

Permission has been acquired from the journal to use this figure. 
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Figure 2: The protein arginine methyltransferase family 

The mammalian genome contains nine PRMT genes. All enzymes harbor five signature motifs 

(indicated by dark blue vertical lines, a-e. ‘a’ stands for Motif I: VLD/EVGXGXG; ‘b’ stands for 

Post I: V/IXG/AXD/E; ‘c’ stands for Motif II: F/I/VDI/L/K; ‘d’ stands for Motif III: LR/KXXG; ‘e’ 

stands for THW loop. The red vertical lines b, d, and e in PRMT9 are motifs with poor 

sequence similarity with the indicated PRMT motifs. TPR stands for tetratricopeptide repeats. 

The fourth member of the PRMT family, PRMT4, is otherwise called as co-activator associated 

arginine methyltransferase (CARM1). 

Figure 2 is adapted from Yang Y, Bedford MT (2013) Protein arginine methyltransferases and 

cancer. Nat Rev Cancer 13: 37-50. 

Permission has been acquired from the journal to use this figure. 
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are added to one of the terminal nitrogen atoms of the guanidium group. The other two types 

occur less commonly in cells. They are ω-NG,N’G-symmetric dimethylarginine (SDMA), where 

two methyl groups are added to each of the terminal nitrogen atoms of the guanidine group, 

and ω-NG-monomethyl arginine (MMA), which has a single methyl group on one of the 

terminal nitrogen atoms. The mammalian genome encodes a family of nine PRMT enzymes 

(Figure 2), which can be classified into three types: Type I enzymes (PRMT1, 2, 3, 4, 6 and 

8) generate ADMA, Type II enzymes (PRMT5 and 9) generate SDMA and the Type III 

(PRMT7) enzyme forms MMA residues in mammalian cells. All PRMTs harbor five signature 

motifs that are responsible for their methyltransferase activity, and a few additional features 

to facilitate their unique functions. For example, protein domains like SH3, Zn finger, proline-

rich motif and TPRs, in PRMT2, 3, 8 and 9 enzymes, respectively, aid in substrate recognition; 

the myristoyl group at the N-terminus of PRMT8 regulates its subcellular localization.  

All PRMTs are ubiquitously expressed, except for PRMT8, which is only expressed in 

brain (Lee et al, 2005a). However, they also undergo alternative splicing to produce tissue-

specific isoforms. Knockout mice were generated for PRMT1-8 and they show dramatic and 

lethal phenotypes, indicating their essential roles in the organism’s development and survival. 

Prmt1- and Prmt5-knockout mice die very early during development; Carm1-knockout mice 

die at birth and show differentiation defects among many cell types, whereas Prmt2-, Prmt3-, 

Prmt6-, Prmt7- and Prmt8-knockout mice are viable with a few abnormalities (refer to Table 

1). Additionally, all knockout mice display hypomethylation of their respective substrates, 

indicating the non-redundant nature of these PRMTs (Yang & Bedford, 2013).  
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Prmt Knockout mouse phenotype References 

Prmt1 Embryonic lethal by E6.5. Required for 
post-implantation development. 

(Pawlak et al, 2000; Yu et 
al, 2009) 

Prmt2 Viable. Null MEFs have increased NF-κB 
activity and are more resistant to 
apoptosis. 

(Yoshimoto et al, 2006) 

Prmt3 Viable. Embryos are smaller, but attain 
normal size in adulthood. 

(Swiercz et al, 2007) 

Carm1 Perinatal lethality. Embryos are smaller 
and have differentiation defects in T-cells, 
adipocytes, chondrocytes, muscle and 
lungs. The enzyme-dead knock-in 
phenocopies the null. 

(Dacwag et al, 2009; Ito et 
al, 2009; Kawabe et al, 
2012; Kim et al, 2004; 
O'Brien et al, 2010; Yadav 
et al, 2008; Yadav et al, 
2003) 

Prmt5 Embryonic lethal by E6.5. Required for 
embryonic epiblast cell differentiation. 

(Tee et al, 2010) 

Prmt6 Viable. Primary knockout MEFs undergo 
rapid senescence. 

(Neault et al, 2012) 

Prmt7 B cell-specific knockout mice are viable 
and fertile. Impaired splenic B-cell 
development and decreased IgG1 and IgA 
production. 

(Ying et al, 2015) 

Prmt8 Viable. Abnormal motor behaviors such as 
hindlimb clasping and hyperactivity. 
Altered cerebellar structure and stunted 
growth of Purkinje cell dendrites. 

(Kim et al, 2015) 

 

Table 1: List of phenotypes for mice lacking prmt1-8 genes. 

Adapted and modified from Yang Y, Bedford MT (2013) Protein arginine methyltransferases 

and cancer. Nat Rev Cancer 13: 37-50. 

Permission has been acquired from the journal to use this figure. 
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1.1.2 Regulation of PRMTs 

The activity of PRMTs can be regulated through various mechanisms. Certain PTMs 

have been shown to regulate PRMT activity. CARM1 undergoes phosphorylation during 

mitosis, which prevents dimerization and blocks its enzymatic activity (Feng et al, 2009). 

PRMT5 undergoes a pathological phosphorylation, as seen in patients with myeloproliferative 

disease, which disrupts its interaction with MEP50 and abolishes its activity (Liu et al, 2011). 

PRMT1, CARM1, PRMT6 and PRMT8 are auto-arginine methylated, although the functional 

significance of this methylation remains unknown (Dillon et al, 2013; Frankel et al, 2002; Gui 

et al, 2011; Kuhn et al, 2011; Sayegh et al, 2007). N-terminal myristoylation was shown to 

target PRMT8 to the plasma membrane (Lee et al, 2005a). Secondly, PTMs on histone tails 

can block or promote methylation of neighboring arginine residues. For example, histone 

H3K18 acetylation by CBP primes the H3 tail for R17 dimethylation by CARM1 (Daujat et al, 

2002). H3K9 acetylation blocks H3R8 dimethylation by PRMT5 (Pal et al, 2004). The presence 

of H3R8me2a or me2s mark in turn prevents H3K9 methylation by G9a (Rathert et al, 2008). 

Another mode of regulation is through protein-protein interactions. Interaction between 

PRMT5 and MEP50 is required for the methyltransferase activity of PRMT5 (Friesen et al, 

2002). PRMT3 interaction with the tumor suppressor, DAL-1, inhibits its activity (Singh et al, 

2004). MicroRNA-mediated expression control is another mode of regulation for PRMTs. For 

example, the expression of PRMT5 is inhibited by miR-25, -32, -92, and -92B (Pal et al, 2007; 

Wang et al, 2008). In addition, PRMTs also regulate the expression of microRNAs (Mallappa 

et al, 2011). Lastly, PRMT activity can be indirectly modulated by the actions of enzymes that 

could reverse arginine methylation on proteins. One such enzyme, Jumonji-domain containing 

6 (JMJD6), was shown to demethylate H3R2me2 and H4R3me2 marks (Chang et al, 2007; 

Gao et al, 2015). However, later studies could not reproduce this work, which makes arginine 

demethylation a controversial topic (Webby et al, 2009). If arginine demethylases do exist, 
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their discovery would help us better understand and appreciate the dynamic and regulatory 

nature of arginine methylation.  

 

1.1.3 Arginine methylation in human disease 

The deregulation of PRMTs is observed in many diseases. PRMT1 and CARM1 are 

elevated in breast, prostate, and colon cancers (Cheung et al, 2007; El Messaoudi et al, 2006; 

Hong et al, 2004; Kim et al, 2010b; Majumder et al, 2006). PRMT1 is also involved in blood 

cancers, by interacting with AML1-ETO and promoting its transcriptional activation (Shia et al, 

2012). CARM1 functions by methylating the oncogenic protein AIB1, which stabilizes and 

enhances its activity (El Messaoudi et al, 2006; Lahusen et al, 2009). PRMT5 is 

overexpressed in gastric cancers, lymphomas and leukemias (Kim et al, 2005; Pal et al, 2007; 

Wang et al, 2008; Wei et al, 2012). PRMT5 co-operates with SNAIL to downregulate the 

expression of E-cadherin, an adhesion molecule lost during the epithelial-mesenchymal 

transition (EMT) process in metastatic cancers (Hou et al, 2008). Deregulated arginine 

methylation is also implicated in cardiovascular diseases. Nitric oxide (NO) is an important 

signaling molecule in cardiovascular, immune, and nervous systems. Nitric oxide synthase 

(NOS) catalyzes the generation of NO from L-arginine. The free methylarginine species 

(produced by the proteolysis of methylated proteins), MMA and ADMA, but not SDMA, were 

shown to inhibit NOS activity (Stuhlinger et al, 2001). The enzyme dimethylarginine 

dimethylaminohydrolase (DDAH) converts MMA/ADMA to citrulline and 

monomethylamine/dimethylamine, and maintains their intracellular pool size. Deregulation of 

PRMT or DDAH enzymes may cause a reduction in NO levels, resulting in endothelial 

dysfunction and atherosclerosis. In fact, PRMT1 was shown to be overexpressed in the hearts 

of coronary heart disease patients (Chen et al, 2006). The significance of arginine methylation 

in viral pathogenesis is evident from the fact that a large number of viral proteins are PRMT 
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substrates (E.g. HIV proteins Rev, Tat, nucleocapsid; HSV protein ICP27; HCV protein NS3 

and EBNA2) (Boulanger et al, 2005; Kwak et al, 2003). In the HIV cell culture model, 

methylation of the viral proteins was shown to increase the virus infectivity (Kwak et al, 2003). 

Arginine methylation may function by increasing the interactions between viral and host 

proteins, and possibly disrupting host cellular functions.    

 

Section 1.2 serves as the background for Chapter 3  

1.2 PRMT1 

PRMT1 is the major Type I enzyme, accounting for about 90% of global arginine 

methylation in mammalian cells (Tang et al, 2000a). It is involved in a multitude of biological 

processes like RNA processing, protein trafficking, signaling, transcriptional activation and 

DNA repair (Bedford & Clarke, 2009). These versatile functions of PRMT1 are achieved 

through its ability to methylate multiple classes of cellular proteins (Nicholson et al, 2009). The 

major class of proteins methylated by PRMT1 is RNA-binding proteins, which include 

hnRNPs, fibrillarin, nucleolin, PABPII, Sam68, SLM-1, SLM-2, QKI-5, GRP33, and TAF15 

(Bedford & Richard, 2005). Methylation of these proteins seems to be required for their proper 

localization and RNA processing ability (Cote et al, 2003). Many signaling pathways are also 

influenced by PRMT1-mediated methylation. Insulin treatment of myotubes was shown to 

translocate PRMT1 to the plasma membrane, where it methylates several membrane-

associated proteins (Iwasaki & Yada, 2007). PRMT1 synergizes with CARM1 and GRIP1 to 

enhance Nuclear hormone receptor (NR) -mediated transcription. It methylates the histone 

H4 (at Arg3), which further enables H4 acetylation by p300 to enhance transcriptional 

activation by NRs (Wang et al, 2001). ERα is also methylated by PRMT1, which is required 

for its interaction with PI3K, Src, and FAK (Le Romancer et al, 2008). PPARγ coactivator 

(PGC-1α) methylation by PRMT1 induces its target genes (Teyssier et al, 2005). The 
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transcription factors, YY1, p53 and NF-κB, associate with and recruit PRMT1 to their target 

promoters to methylate the histone H4 tail (at Arg3), suggesting that H4R3me2a is not a 

random event and it functions in activating specific gene programs (An et al, 2004; Hassa et 

al, 2008; Rezai-Zadeh et al, 2003). PRMT1 also methylates SPT5, which then decreases its 

interaction with RNA polymerase II to regulate transcription elongation, in response to viral 

and cellular factors (Kwak et al, 2003). The activity of PRMT1 is tightly regulated, which 

happens mainly through association with various proteins. The binding of PRMT1 with BTG1, 

BTG2, IFNAR1, ILF3 and hCAF1 promotes its methyltransferase activity (Abramovich et al, 

1997; Lin et al, 1996; Miyata et al, 2008; Robin-Lespinasse et al, 2007; Tang et al, 2000b), 

whereas binding with the orphan nuclear receptor TR3 inhibits its activity (Lei et al, 2009). 

Interaction with the pregnane X receptor (PXR) results in nuclear accumulation of PRMT1 (Xie 

et al, 2009).  

To study the in vivo functions of PRMT1, a Prmt1 null allele was generated in mice, 

which resulted in embryonic lethality (at E6.5) (Pawlak et al, 2000; Yu et al, 2009). MEFs 

deficient in PRMT1 showed a delay in cell cycle progression, spontaneous DNA damage, 

checkpoint defects, aneuploidy, and polyploidy (Yu et al, 2009). The knockout cells also 

displayed hypomethylation of PRMT1 substrates including Sam68 and MRE11 (Yu et al, 

2009). Hypomethylation of MRE11 impairs its exonuclease activity, but does not affect 

complex formation with RAD50 and NBS1 (Boisvert et al, 2005a). Additionally, the recruitment 

of HR protein, Rad51, to DNA damage foci is also reduced upon PRMT1 loss (Yu et al, 2009). 

Another DNA damage response protein, 53BP1, which promotes NHEJ-mediated repair, is 

also methylated by PRMT1 at the GAR motif and this methylation regulates its oligomerization 

and interaction with DNA (Boisvert et al, 2005b). These findings underscore the importance 

of PRMT1 in genome maintenance and DNA damage response pathway. 

The crystal structure of the rat PRMT1 enzyme has been solved and it revealed that 

the dimerization of this enzyme is required for AdoMet binding and enzymatic activity (Zhang 
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& Cheng, 2003). It also showed that the enzyme has three peptide binding channels, which 

may explain how PRMT1 can methylate arginine residues within various sequence contexts 

(E.g. RG, RGG, RXR, and other non-GAR motifs) and possess such a wide spectrum of 

substrates. Indeed, surface-scanning mutational analysis identified differential enzymatic 

activity towards different substrates (E.g. H4 versus GAR) (Lee et al, 2007).  

 Most of the Type I and Type II PRMTs are known to catalyze substrates in a distributive 

manner i.e. they transfer the first methyl group to the substrate and release it before rebinding 

to the monomethylated substrate to facilitate the addition of the second methyl group 

(Antonysamy et al, 2012; Kolbel et al, 2009; Lakowski & Frankel, 2008; Wang et al, 2014b). 

On the contrary, a processive enzyme maintains the interaction with its substrate until both 

mono- and dimethylation events occur. However, PRMT1 catalyzes by neither of these 

mechanisms. If it works in a fully processive manner, ADMA generation is obligatory i.e. the 

concentration of the monomethyl intermediate should not rise above the concentration of the 

enzyme. However, the reaction contained equimolar amounts of MMA and ADMA products 

even in the presence of excess unmodified substrate (Osborne et al, 2007). If it functions in a 

distributive fashion, the monomethyl intermediate should have a much higher affinity for 

PRMT1 than an unmodified substrate. Nevertheless, this is not the case (Osborne et al, 2007). 

By performing initial velocity, product inhibition and dead-end inhibition studies, Thompson 

and Zheng groups confirmed that PRMT1 functions in a partially processive fashion by utilizing 

a rapid equilibrium random (RER) mechanism (explained in Figure 3) (Feng et al, 2011; 

Obianyo et al, 2008).  
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Figure 3: Kinetic mechanism for PRMT1 catalysis. 

RER is a type of kinetic mechanism for bisubstrate enzyme reactions where substrates 

(denoted by A and B) and products (denoted by P and Q) bind to and dissociate from enzyme 

(E) very rapidly. In the first step, PRMT1 (E) binds to AcH4-21 peptide (A) and SAM (B) to 

catalyze the first methyl transfer (EAB  EPQ’, P = SAH and Q’ = MMA). In the next step, 

either SAH dissociates prior to MMA release, which allows binding of second SAM to the 

original E-MMA complex and formation of ADMA product (EAB  EPQ sequentially, Q = 

ADMA), or, MMA dissociates prior to SAH release, which then rebinds with a new EB complex 

to undergo the second methylation event (EAB  EPQ’, EBQ’  EPQ). This explains the 

presence of monomethyl intermediates in the PRMT1 methylation reactions.  

Figure 3 is adapted from Obianyo O, Osborne TC, Thompson PR (2008) Kinetic mechanism 

of protein arginine methyltransferase 1. Biochemistry 47: 10420-10427 

Permission has been acquired from the journal to use this figure. 
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Sections 1.3 and 1.4 serve as the background for Chapter 4 

1.3 CARM1 

CARM1, also known as PRMT4, was first identified in a yeast two-hybrid screen for 

GRIP1-binding proteins (Chen et al, 1999). GRIP1/SRC-2 belongs to the p160 family of co-

activators (SRC-1, SRC-2, and SRC-3), which facilitate nuclear hormone receptor-mediated 

transcription. Upon hormone stimulation, nuclear hormone receptors (NRs) homodimerize, 

bind to their cognate hormone response elements (HREs) and recruit p160 co-activators, 

which further bring in p300/CBP and pCAF to acetylate histones. Acetylated histones then 

recruit SWI/SNF chromatin remodeler complex to increase the accessibility of local chromatin. 

NRs also recruit Mediator complex, which communicates with the basal transcription 

machinery to facilitate transcription initiation (Stallcup et al, 2003). By using Luciferase 

reporter assays, Stallcup group showed that the co-expression of CARM1 along with GRIP1 

significantly enhanced HRE-driven reporter gene expression (Figure 4A). They also showed 

that mutating CARM1 to disrupt its methyltransferase activity substantially reduced reporter 

gene expression (Figure 4A), indicating that CARM1 may function as a secondary co-activator 

by methylating its substrates (Chen et al, 1999). Further studies demonstrated that CARM1 

methylates p160 coactivators (Feng et al, 2006), the histone acetyltransferases (p300/CBP) 

(Daujat et al, 2002; Xu et al, 2001), and the histone H3 (H3R17me2a) (Chen et al, 1999), and 

these methylation events influenced NR-mediated transcription positively (Figure 4B). On the 

other hand, CARM1 methylation of CBP/p300 disables its interaction with CREB, thereby 

preventing CREB-dependent gene activation (Xu et al, 2001). In this context, CARM1 

indirectly acts as a transcriptional co-repressor. Aside from this, CARM1 was shown to 

coactivate NF-κB, p53, β-catenin and Sox2 transcription factors (An et al, 2004; Covic et al, 

2005; Ou et al, 2011; Zhao et al, 2011). Furthermore, ChIP studies using H3R17me2a (a 

CARM1 deposited mark) antibody showed elevated  
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Figure 4: CARM1 coactivates NR-dependent gene expression 

(A) CV-1 cells were transiently transfected with nuclear hormone receptor (NR) (i.e. androgen 

receptor (AR), thyroid hormone receptor β1 (TR) or, estrogen receptor (ER)), GRIP1, CARM1, 

VLD, and luciferase reporter gene expressing vectors and grown in charcoal-stripped serum 

before activating with dihydrotestosterone for AR, triiodothyronine for TR, and estradiol for 

ER. Luciferase activities were enhanced 2- to 27-fold by coexpression of GRIP1 with NR, and 

further enhanced 2- to 4-fold by coexpression of CARM1 with GRIP1 and NR.  

(B) Ligand-activated nuclear receptors, through a p160 scaffold, recruit CARM1, which 

partially stimulates transcription by remodeling chromatin (H3R17me2a) in the vicinity of the 

gene as well as by modifying non-chromatin substrates (SRC-1, SRC-2, SRC-3 and 

p300/CBP). This methylation is interpreted by effector molecules (E.g. TDRD3 ‘reads’ 

H3R17me2a) that help promote the coactivator function of CARM1.  

Figure 4A is adapted from Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad 

DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 

284: 2174-2177 

Permission has been acquired from the journal to use this figure. 
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levels at a number of gene promoters including pS2, E2F1, CCNE1, aP2, Oct 4, Sox2, 

CITED2, and Scn3b (Bauer et al, 2002; Carascossa et al, 2010; El Messaoudi et al, 2006; 

Frietze et al, 2008; Kleinschmidt et al, 2008; O'Brien et al, 2010; Wu et al, 2009; Yadav et al, 

2008). Therefore, CARM1 functions as a general transcriptional coactivator.  

Gene ablation studies in mice revealed that CARM1 is vital for existence (Yadav et al, 

2003). Although the knockout embryos are outwardly developmentally normal (except for their 

smaller size), they display a number of cellular differentiation defects such as a partial block 

in T-cell development (Kim et al, 2004) and improper differentiation of lung alveolar cells 

(O'Brien et al, 2010) and adipocytes (Yadav et al, 2008). Enzyme-dead CARM1 knock-in mice 

phenocopy the null mice, indicating that CARM1’s enzymatic activity is required for most of its 

in vivo functions (Kim et al, 2010a). Thus a detailed knowledge of the spectrum of proteins 

that are methylated by CARM1 is critical for an in-depth understanding of how this enzyme 

functions in these different settings. 

 

1.3.1 Identification of CARM1 substrates 

Multiple strategies have been used to identify CARM1 substrates including in vitro 

substrate screens, candidate approaches, modification-specific antibodies and MS-based 

proteomic approaches. The classification of CARM1 substrates based on the functions as well 

as screening strategies is shown in Figure 5. The first in vitro screen utilized high-density 

protein macroarrays to identify CARM1 substrates. To prepare high-density protein 

macroarrays, a human fetal brain cDNA library was cloned into a His-tagged bacterial 

expression vector and transformed into E. Coli. The transformants were gridded onto PVDF 

filters in a duplicate pattern, grown on agar plates overnight, and induced with IPTG for protein 

expression. The filters containing cells were then treated with sodium hydroxide and sodium 

chloride solutions, which break open the bacteria and release the protein onto the filter. The 

filters (containing 10,000 his-tagged proteins in duplicates) were then incubated  
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Figure 5: Classification of CARM1 substrates. 

Proteins methylated by CARM1 can be functionally divided into three classes. Transcription 

factors (class I) and chromatin regulators (class II) were identified by candidate approaches, 

whereas most of the RNA binding substrates (class III) were revealed by macroarray and 

small pool screening strategies. In this current study, we aimed at identifying novel substrates 

for CARM1 using substrate motif antibodies. 
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with recombinant CARM1 and radioactively labeled S-adenosyl-L-methionine ([3H]AdoMet), 

washed and exposed to film overnight. This large-scale in situ methylation screen identified 

thymocyte cAMP-regulated phosphoprotein (TARPP), polyA binding protein (PABP1), and 

CARM1 substrate 3 (CAS3) as CARM1 substrates (Lee & Bedford, 2002). CARM1 knockout 

mice undergo a partial developmental block in the early thymocyte progenitors (DN1 to DN2 

transition) (Kim et al, 2004; Li et al, 2013). It is speculated that the arginine methylation of 

TARPP, whose expression is initiated at the DN2 stage, may contribute to the maturation of 

thymocyte progenitors. PABP1 binds the mRNA 3’ polyA tail and the translation initiation factor 

to form a closed loop structure that promotes mRNA translation and regulates stability. CAS3 

is an uncharacterized protein and is the product of the BC043098 cDNA clone. The functions 

of methylation on PABP1 and CAS3 are yet to be identified.  

The second approach was a small pool expression screening, modified to identify 

CARM1 substrates. Here, a plasmid cDNA library from a mouse B-cell hybridoma (containing 

14,000 clones) was generated and divided into pools, each containing ten clones. In vitro 

transcription/translation (IVTT) reactions were performed on these plasmid pools using 

reticulocyte lysate. Besides the transcription/translation machinery, the lysate also contains 

arginine methyltransferases. Hence, addition of radioactively labeled methyl donor, S-

adenosyl-L-methionine ([3H]AdoMet) to the IVTT reactions, would label the methyl-accepting 

protein products. As expected, the IVTT screen generated labeled proteins, which were 

visualized by fluorography. To identify the methylated proteins, the plasmid pools were 

deconvoluted and single plasmids were sequenced. This approach identified eleven 

methylated proteins, which were further characterized by in vitro methylation reactions using 

recombinant PRMTs to determine the specific enzymes responsible for methylating each 

substrate. Of the eleven identified substrates, four were CARM1 substrates – snRNP core 

protein (SmB), splicing factor 3B subunit 4 (SF3B4/SAP49), U1 snRNP protein (U1C), and 

transcription elongation regulator 1 (TCERG1/CA150). The ability of CARM1 to methylate 
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several splicing factors and RNA binding proteins underscores its importance in RNA 

processing and splicing. In fact, CARM1-mediated methylation of CA150 was shown to 

regulate alternative splicing by promoting exon skipping (Cheng et al, 2007).  

Most PRMTs (PRMT1, 3, 5, 6 and 8) recognize and methylate a GAR (Glycine and 

Arginine-rich) motif (Yang & Bedford, 2013), which has facilitated the development of 

methylarginine-specific antibodies that can be used to identify and help characterize 

substrates for this class of PRMTs. The first methyl-GAR motif antibodies (ADMA and SDMA) 

were developed by Stephane Richard’s group, and used in immunoprecipitation-coupled 

mass spectrometry (IP-MS) experiments to identify novel methylated proteins (Boisvert et al, 

2003). This approach has recently been expanded upon with the development of additional 

antibodies that recognize MMA and ADMA motifs using redundant peptide libraries with fixed 

methylarginine residues as antigens (Guo et al, 2014). A screen for CARM1 substrates using 

one of these ADMA-specific antibodies identified the chromatin-remodeling factor, BAF155, 

as methylated by CARM1. Arginine methylation of BAF155 targets it to genes of the c-myc 

pathway, and enhances breast cancer progression and metastasis (Wang et al, 2014a).  

An alternative (antibody independent) approach to identifying methylated proteins is 

based on a modification of the “stable isotope labeling by amino acids in cell culture” (SILAC) 

technique, called heavy methyl SILAC (Ong et al, 2004a). Heavy methyl SILAC exploits the 

fact that methionine is taken up by the cell and converted to the sole biological methyl donor, 

AdoMet. Thus, if [13CD3]methionine is used in these experiments, heavy methyl groups are 

incorporated into in vivo methylated proteins. Using this approach, in combination with 

methylarginine enrichment techniques, a large number of PRMT substrates have recently 

been identified (Geoghegan et al, 2015; Uhlmann et al, 2012), which comprised the novel 

CARM1 substrates found in the current study such as MED12, MLL2 and GPS2. 

Other known CARM1 substrates were identified by candidate approaches. HuR and 

HuD are RNA-binding proteins that bind AU-rich elements (AREs) of labile mRNAs to stabilize 
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them. CARM1 methylates HuD to inhibit its ability to stabilize p21 mRNA, thereby maintaining 

the PC12 cells in a proliferative state and preventing neuronal differentiation (Fujiwara et al, 

2006). CARM1 methylates HuR and enhances its ability to regulate the turnover of cyclin A, 

cyclin B1, c-fos, SIRT1 and p16 mRNAs, thereby regulating replicative senescence (Li et al, 

2002; Pang et al, 2013). CARM1 was also shown to regulate muscle differentiation. During 

muscle regeneration, satellite stem cells differentiate into Myf5+ satellite myogenic cells and 

fuse into myofibers. The expression of Myf5 requires the activation of the transcription factor, 

Pax7. CARM1 interacts with and methylates Pax7, which then binds MLL1/MLL2 proteins of 

the MLL/ASH2L HMT complex and recruits it to the Myf5 promoter to induce its expression 

(Kawabe et al, 2012). CARM1 also methylates the C-terminal domain of RNA polymerase II. 

Mutation disrupting this methyl site causes misexpression of snRNAs and snoRNAs, 

suggesting that CARM1 methylation of CTD facilitates the transcription of select RNAs (Sims 

et al, 2011).  

CARM1 has unique substrate specificity, and it does not methylate GAR motifs (Cheng 

et al, 2007; Lee & Bedford, 2002). Thus, to facilitate the rapid identification of new CARM1 

substrates, we developed CARM1-motif antibody screening strategies to enrich for CARM1-

methylated proteins. The H3R17me2a antibody (Millipore) was raised against the asymmetric 

dimethylarginine 17 mark on histone H3. Immunoblotting protein extracts with this antibody, 

however, detected many differentially recognized proteins between wild-type and CARM1 

knockout embryos (Cheng et al, 2012; Yadav et al, 2003). These proteins were further 

confirmed to be CARM1 substrates (Cheng et al, 2007). Hence, we speculated that CARM1-

methylated motifs, have a rather loose consensus sequence, and can be used to raise pan 

antibodies that would potentially recognize unknown CARM1 substrates. Using a cocktail of 

CARM1 methylated motifs as an antigen, we demonstrated that pan CARM1-  
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Figure 6: Basic function and modular structure of the Mediator complex. 

(A) Mediator is a highly conserved, multi-subunit, coregulator complex required for RNA 

polymerase II-dependent transcription. It functions by relaying signals from enhancer-bound 

transcription factors to the basal transcription machinery.  

(B) The 30 subunits of Mediator exist in four modules: head, middle, tail, and kinase. The 

head, middle, and tail modules form the stable core structure, whereas the kinase module is 

dissociable from the Mediator complex.  

Figure 6 is adapted from Malik S, Roeder RG (2010) The metazoan Mediator co-activator 

complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11: 761-772. 

Permission has been acquired from the journal to use this figure. 
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motif antibodies can be developed. Furthermore, we identified MED12, MLL2, GPS2 and 

SLM2 as novel CARM1 substrates, as well as a number of previously characterized CARM1 

substrates.  

 

1.4 Mediator Complex 

Eukaryotic gene expression is largely dependent on transcription factors (TFs), which 

bind to the proximal promoter or the distal enhancer regions of the genes through their DNA 

binding domains. Through their activation domains, TFs bind the Mediator complex, which 

relays regulatory signals directly to RNA polymerase II (RNAPII) (Figure 6A). Mediator is a 

large, multi-subunit complex that is conserved from yeast to humans. In addition to gene 

activation, Mediator also regulates chromatin architecture, transcription elongation and 

repression. Genetic, biochemical and structural studies have identified that the mammalian 

Mediator complex comprises 30 individual subunits that are arranged in four modules – head, 

middle, tail and kinase (Figure 6B). Head, middle and tail modules form the stable core 

structure, henceforth referred as “core Mediator”. The head and middle modules mainly 

associate with the RNAPII machinery, whereas the tail module binds with activator proteins 

and regulates various transcriptional programmes (Malik & Roeder, 2010). For example, 

MED1 associates with the ligand-inducible nuclear receptors (NRs) such as Thyroid, 

Estrogen, Glucocorticoid and PPARɣ receptors (Ge et al, 2008; Ge et al, 2002; Hittelman et 

al, 1999; Kang et al, 2002; Malik et al, 2002; Rachez et al, 1999). Studies on Med1-/- cells 

highlighted the importance of MED1 in PPARɣ-mediated adipogenesis, GR-mediated 

steatosis, TR∝-mediated thermogenesis etc. Similarly, MED23 was shown to interact with 

MAPK-regulated factor, ELK1 (Wang et al, 2005). Therefore, Med23-/- MEFs cannot induce 

ELK1 target genes (such as Egr2) and consequently fail to undergo insulin-triggered 

adipogenesis (Wang et al, 2005). Another tail module subunit, MED15, interacts with SREBP1 
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and modulates lipid metabolism (Yang et al, 2006). The kinase module associates in a 

reversible manner with the core Mediator to form “CDK-Mediator”. Structural and biochemical 

studies suggest that the kinase module binds core Mediator at the same surface, as does 

RNAPII, thereby preventing the formation of Mediator-RNAPII holoenzyme (Tsai et al, 2013). 

Therefore, the kinase module has been attributed a repressive role in transcription, however, 

studies on individual kinase subunits, which include MED13, MED12, CDK8 and Cyclin C, 

proved that they function both in transcription activation and repression (Taatjes, 2010). The 

dissociation of the kinase module is regulated by the FBW7-mediated proteosomal turnover 

of MED13, the subunit that physically links the kinase to the core Mediator (Davis et al, 2013). 

Apart from this scaffolding function, MED13 is also involved in developmental gene regulation. 

It was shown to repress Wnt- and Notch-target genes in many metazoan model systems 

including C. elegans, D. melanogaster and D. rerio (Carrera et al, 2008; Janody & Treisman, 

2011). CDK8 functions through multiple mechanisms to regulate transcription, both positively 

and negatively. CDK8 phosphorylates TFIIH, which in turn inhibits its kinase activity towards 

CTD of RNAPII and represses transcription (Akoulitchev et al, 2000). CDK8 phosphorylates 

histone H3 (at Ser 10), which inhibits methylation at H3K9, thereby preventing recruitment of 

HP1 to chromatin for epigenetic silencing (Fischle et al, 2005). CDK8 promotes transcription 

by enhancing co-activator recruitment. SMAD proteins activated by ligand-induced TGFβ and 

BMP receptors are recruited to the target gene enhancers and are phosphorylated by CDK8, 

which then recruit YAP protein to facilitate efficient transcription. After transcription, the same 

phospho mark on SMAD proteins is recognized by the ubiquitin ligases to facilitate their 

degradation (Alarcon et al, 2009). CDK8 positively regulates serum-responsive and hypoxia-

related genes by stimulating RNAPII elongation through recruitment of pTEFb (Donner et al, 

2010; Galbraith et al, 2013). Additionally, target genes for p53, Thyroid receptor and phospho-

C/EBPβ are positively regulated by CDK8 (Belakavadi & Fondell, 2010; Donner et al, 2007; 

Mo et al, 2004). CDK8 also represses genes by phosphorylating and inactivating TFs (E.g. 
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E2F1, SREBP1) (Morris et al, 2008; Zhao et al, 2012). It also phosphorylates other TFs (E.g. 

Notch ICD, Gcn4, and Msn2) subjecting them to ubiquitin-mediated proteosomal degradation 

(Fryer et al, 2004; Rawal et al, 2014).  

 

1.4.1 MED12 

The kinase module gene, MED12, is located on X-chromosome (at Xq13) and encodes 

a 2212 aa (240kDa sized) protein. This protein can be divided into four distinct domains: 

leucine-rich (L) domain, leucine-serine-rich (LS) domain, proline-glutamine-leucine-rich (PQL) 

domain and a poly-glutamine (Opa) domain (Figure 7). MED12 is highly conserved among 

eukaryotes, particularly in mammals, with 96% identity between mouse and human amino 

acid sequences (Philibert & Madan, 2007). Med12 gene is essential for early mouse 

development. The null embryos are arrested at the head-fold stage (E7.5), since they cannot 

induce mesoderm formation (Rocha et al, 2010). The hypomorphic mutants expressing less 

than 10% MED12 protein die at E10.5 and have defects in neural tube closure, axis 

elongation, somitogenesis and heart formation. Both canonical Wnt/ -catenin and non-

canonical Wnt/PCP pathways are disrupted in these hypomorphic mutants. This is expected 

as MED12 physically interacts with β-catenin to activate the transcription of Wnt-responsive 

genes (Kim et al, 2006). MED12 was also reported to interact with Nanog and coregulates its 

target genes. RNAi-mediated Med12 knockdown was shown to reduce the expression of 

Nanog and its target genes in embryonic stem (ES) cells, which then start the differentiation 

process (Tutter et al, 2009). In contrast to this, Med12+/+, Med12-/- and Med12hypo ES cells 

showed unaltered expression of Nanog and its target genes, suggesting that MED12 is not 

required for ES cell pluripotency (Rocha et al, 2010). Nevertheless, MED12 is involved in the 

transcriptional regulation of many signaling pathways. Indeed, the C. elegans ortholog of  
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Figure 7: Domain structure of MED12. 

L  Leucine-rich domain, LS  Leucine- and Serine-rich domain, PQL  Proline-, 

Glutamine- and Leucine-rich domain, Opa  Opposite paired domain. FG- (R961W) and 

Lujan-related (N1007S) mutations are found in LS domain, the most common uterine 

leiomyoma-linked (G44D) mutation is found in the L domain. The methylation site (R1862) 

associated with cancer drug sensitivity is present in the PQL domain. The methylation site 

(R1899) identified in the current study is also present in the PQL domain. All known interactors 

bind MED12 at its PQL domain. 
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MED12, dpy-22, was identified to be one of the six highly connected ‘hub’ genes (all of which 

encode chromatin regulators) that interact with numerous components of diverse signaling 

pathways and serve as modifier genes in multiple mechanistically unrelated genetic diseases 

(Lehner et al, 2006). Sox10 is a transcription factor required for terminal differentiation of 

myelinating glia. MED12 interacts with Sox10 and induces genes necessary to drive the 

myelination of neurons. Glia-specific deletion of Med12 in mice showed defects in terminal 

differentiation and myelin gene expression of both Schwann cells and Oligodendrocytes (Vogl 

et al, 2013). Amyloid precursor protein (APP), a transmembrane protein associated with 

Alzheimer’s disease, is cleaved by γ-secretase to produce amyloid-β (Aβ) peptide and APP 

intracellular domain (AICD). Although the events of amyloid-β plaque formation and 

consequent neuronal death have been well studied, little is known about the mechanism by 

which AICD activates its target genes, which are associated with disease pathology. AICD 

was shown to recruit Mediator complex via interaction with MED12 to activate its target genes. 

Disruption of this interaction abrogates the transactivation potential of AICD, suggesting that 

MED12 plays a crucial role in the pathophysiology of Alzheimer’s disease (Xu et al, 2011). In 

addition to this, MED12 is implicated in a number of neurological disorders. Exonic 

polymorphisms have been associated with neuropsychiatric diseases including schizophrenia 

and psychosis (Philibert, 2006; Sandhu et al, 2003). Recurrent missense mutations in MED12 

have been shown to cause X-linked intellectual disability (XLID) syndromes such as Optiz-

Kaveggia (or FG) syndrome and Lujan-Fryns (or Lujan) syndrome (Graham & Schwartz, 2013; 

Risheg et al, 2007; Schwartz et al, 2007). In addition to mental retardation, these two 

syndromes share many overlapping characteristics like macrocephaly, dysgenesis of corpus 

callosum, hypotonia, craniofacial dysmorphisms, seizures and behavioural problems. To 

understand the molecular mechanisms by which R961W (FG) and N1007S (Lujan) mutations 

could contribute to XLID phenotypes, Boyer group identified MED12 binding partners and 

studied the biological significance of these interactions. Sonic hedgehog (Shh) acts like a 



 27 

morphogen that controls the left-right, dorso-ventral axes patterning, limb patterning and 

development of brain, spinal cord and most other organs. The Boyer group showed that Shh-

activated Gli3 recruits Mediator complex via interaction with MED12, wherein enzymatically 

active CDK8 suppresses Gli3 transactivation activity. R961W and N1007S mutations in 

MED12 prevent recruitment of CDK-Mediator to the target gene promoters, thereby 

hyperactivating Gli3-dependent Shh signaling that may possibly contribute to XLID 

phenotypes (Zhou et al, 2006; Zhou et al, 2012). Repressor element-1 binding factor (REST) 

is a transcription factor that represses the expression of neuron-specific genes in terminally 

differentiated non-neural tissues or undifferentiated neural precursors. RE1-bound REST 

recruits Mediator complex via interactions with MED19 and MED26, wherein MED12 acts as 

a direct interface for G9a recruitment and H3K9 dimethylation, leading to epigenetic silencing 

of REST-target genes. FG- and Lujan-related MED12 mutations disrupt the epigenetic 

restrictions imposed by REST, possibly contributing to XLID phenotypes (Ding et al, 2009; 

Ding et al, 2008). Studies by Sheikattar group showed that Mediator interacts with ncRNA-

activating (ncRNA-a), a novel class of lncRNAs that activate their neighboring genes using a 

cis-mediated mechanism. NcRNA-a3 and -a7 interact with MED12 to recruit Mediator and 

deposit CDK8-mediated H3S10 phosphorylation at the promoters of a3 and a7 target genes 

(SNAI1, AURKA, and TAL1) for transcriptional activation. They also showed that FG-related 

MED12 mutations significantly diminish interactions with ncRNA-a, which may possibly 

contribute to XLID (Lai et al, 2013). In addition to neurological disorders, MED12 is also 

frequently mutated in human cancers like uterine leiomyomas, breast and prostate cancers 

(Schiano et al, 2014). Uterine leiomyoma-linked mutations in MED12 were shown to disrupt 

its interaction with Cyclin C-CDK8 resulting in loss of Mediator-associated kinase activity 

(Turunen et al, 2014). Furthermore, MED12 is linked to drug resistance in different cancer 

types. Cytoplasmic MED12, independent of the Mediator complex, was shown to interact with 

the immature form of TGFβR2 and prevent it from undergoing glycosylation and plasma 
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membrane association. Therefore, loss of MED12 activates TGFβ signaling that further 

causes MEK/ERK activation, which is sufficient to confer multidrug resistance in colon and 

lung cancers (Huang et al, 2012). Using genome-scale CRISPR-Cas9 knockout (GeCKO) 

library screening, another group identified MED12 as the top hit among genes whose loss 

results in drug resistance in melanoma cells (Shalem et al, 2014).   
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Chapter 2: Materials and Methods 

 

Contents of this chapter are partially based on Dhar S*, Vemulapalli V*, Patananan AN, Huang 

GL, Di Lorenzo A, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT (2013) Loss of the 

major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other 

PRMTs. Sci Rep 3: 1311. (* indicates equal contribution authors) 

According to Nature Scientific Reports, the author retains the ownership of copyright to 

reproduce the contribution or extracts from the original article.  

 

2.1 Antibodies  

The details of all the antibodies used in this study are described in tables 2 and 3. 

 

2.2 Plasmids and peptides 

The generation of GFP-PRMT1, GFP-PRMT2, GFP-PRMT3, GFP-CARM1, GFP-

PRMT5, GFP-PRMT6 (Frankel et al., 2002) and GFP-PRMT8 (Lee et al., 2005) constructs 

has been described previously. GFP-PRMT7 and GFP-PRMT9 constructs were generated by 

cloning the human PRMT7 or PRMT9 cDNA into pEGFP-C1 (Clontech) vector. GST-PABP1 

(Lee and Bedford, 2002), GST-CARM1 (Frankel et al., 2002), FLAG-CA150 (Cheng and 

Bedford, 2006), GST-Tudor (TDRD3) (Yang and Bedford, 2010), and GST-Tudor (SMN) (Kim 

et al., 2006) have been described previously. The other GST-Tudor constructs used in the 

pull-down experiments were generated by cloning the Tudor domains of SPF30, SPIN1, 

SND1,, and TDRKH, separately, into a pGEX-6p-1 vector (Biomatik). Recombinant H3 protein 

used in the in vitro methylation assay was purchased from New England Biolabs. The 

p3XFLAG-MED12 plasmid was a gift from Thomas Boyer (University of Texas Health Science 

Center at San Antonio). The MLL2a fragment (3619-4285 aa) was amplified from human cDNA 
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using gene-specific primers and subcloned into a p3XFLAG-CMV-7.1 vector. FLAG-GPS2 

was a gift from Darryl Zeldin (NIEHS). SLM2 plasmid was a gift from Stéphane Richard (McGill 

University). FLAG-PABP1 and FLAG-SF3B4 were generated by cloning the cDNAs from 

GST-PABP1, and His-SF3B4 (Cheng et al, 2007; Lee & Bedford, 2002). SRC-1, SRC-2, and 

SRC-3 constructs were kindly provided by Bert O’Malley (Baylor College of Medicine). FLAG-

MED12-R1899K and FLAG-MLL2a-R3727K mutants were generated using a QuikChange II 

XL Site-Directed Mutagenesis Kit, Agilent Technologies. Biotinylated peptides encompassing 

residues 1891-1907 of the MED12 protein with unmodified- or asymmetrically dimethylated-

Arg1899 were purchased from CPC Scientific. 

 

2.3 Cell lines 

The generation of Carm1+/+ and Carm1-/- MEF lines has been described previously 

(Yadav et al., 2003). The tamoxifen-inducible Prmt1fl/- ER-Cre MEF line was a gift from 

Stephane Richard (McGill University). These MEFs were treated with 2µM 4-

hydroxytamoxifen, which stabilizes ER*-Cre (A fusion protein between the estrogen receptor 

ligand-binding domain and the Cre recombinase) and translocates it to the nucleus, which 

then excises the floxed Prmt1 allele to generate PRMT1 knockout MEFs. The generation of 

Prmt3+/+ and Prmt3-/- MEF lines has been described previously (Swiercz et al., 2005). Prmt6+/+ 

and Prmt6-/- MEF lines were created by immortalizing MEFs from PRMT6 WT and KO mice, 

according to standard 3T3 protocol. PRMT6 KO mouse was a gift from Stephane Richard 

(McGill University). HeLa-shPRMT5 cell lines were a gift from Sharon Dent (UT MD Anderson 

Cancer Center). The tetracycline-inducible T-REx-CARM1-293 cell line  
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Table 2: Antibodies used in the first study. 
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Table 3: Antibodies used in the second study. 
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(Cheng et al, 2007) has been described previously. The MCF-7-Tet-on-shCARM1 cell line 

was a gift from Wei Xu (University of Wisconson, Madison). MCF-7, HeLa and HEK293T cell 

lines were obtained from ATCC. All cell lines were maintained in Dulbecco modified Eagle 

medium containing 10% fetal bovine serum. PRMT1 MEFs were supplemented with 3µg/ml 

blasticidin and PRMT5 KD cells were supplemented with 5µg/ml puromycin. 

 

2.4 Amino acid analysis 

 35–180 mg of wet weight packed MEFs and 100 µL of 6 N HCl were added to a 6 x 

50-mm glass tube. Hydrolysis was carried out in a Waters Pico-Tag Vapor-Phase apparatus 

in a vacuum vial with an additional 200 µL of 6 N HCl for 18 h at 110°C. After hydrolysates 

were vacuum dried, resuspended in 100 µL of water, and centrifuged to remove any debris, 

75 µL was added to 250 µL of citrate buffer (0.2 M Na+, pH 2.2) and loaded onto a 0.9 x 8 cm 

column of PA-35 sulfonated polystyrene beads (6–12 µm, Benson Polymeric Inc., Sparks, 

NV). The column was equilibrated and eluted with citrate buffer (0.35 M Na+, pH 5.27) at 55°C 

and a flow rate of 1 mL/min. Individual fractions from 50 to 80 min that included the known 

elution positions of ADMA, SDMA, MMA, and arginine were then derivatized with OPA for 

fluorescence detection after separation on reverse-phase HPLC. 

Amino acids were labeled with OPA by mixing 60 µL of 1 mL cation exchange column 

fraction with 20 µL of 0.4 Mpotassium borate (pH 10.3), and 10 µL of OPA reagent (10 mg/mL 

OPA powder (Sigma, P0657) in 900 µL methanol, 100 µL 0.4 M potassium borate (pH 10.3), 

and 10 µL b-mercaptoethanol). After incubating the mixture at room temperature for 200 s, 5 

µL of 0.75 M HCl was added and the sample was vortexed by hand for 5 s. The resulting 

fluorescent isoindole derivatives were separated and quantified using reverse-phase HPLC 

(HP 1090 II liquid chromatograph coupled to a Gilson Model 121 fluorometer with excitation 

and emission filters of 305–395 nm and 430–470 nm, respectively, and a setting of 0.01 RFU). 
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An Alltech Adsorbosphere OPA HR (5 mm, 4.6-mm inner diameter, 250-mm length) was used 

with 90 µL sample injection volumes at room temperature and a flow rate of 1.5 ml/min. 

Solvent A consisted of 50 mM sodium acetate, pH 7.0, and solvent B of 100% methanol. Two 

HPLC gradients were used to optimize the quantification of MMA, ADMA, and SDMA (Figure 

14). In situations where the fluorometer was overloaded with too much sample, such as in the 

case of some fractions associated with the arginine peak, a 1000-fold dilution of the cation 

exchange fraction was made in pH 5.27 sodium citrate buffer. Methylated arginine species 

were detected based on the HPLC retention time for standards and were confirmed by spiking 

the appropriate standard to the sample. Graphpad was used to calculate the area under the 

curve for the amino acid of interest. The total amount of a certain amino acid was calculated 

by summing every cation exchange fraction’s HPLC run that had the appropriate peak 

present. 

 

2.5 Antibody binding assay 

CARM1 substrate antibodies were incubated with histone peptide arrays for 90–180 

min at 4°C and washed with PBS. Arrays were then probed with the Alexa Fluor 647 labeled 

secondary antibody (Invitrogen) for 30–60 min at 4°C, washed with PBS, dried and scanned 

using a Typhoon TRIO+ imager (GE Healthcare). Binding intensities were measured using 

ImageQuant array software (GE Healthcare). 

 

2.6 In vitro methylation assay 

The in vitro methylation reactions contained 1 μg substrate (PABP1, H3 or MED12 

peptides), 1 μg recombinant GST-CARM1, 1 μl S-adenosyl-L-[methyl-3H] methionine (81.7 

Ci/mmol from a 6.7 μM stock solution, Perkin Elmer, NET155001MC) in a final volume of 30 

μl PBS. The reactions were incubated at 30°C for 1.5 h, and boiled in protein loading buffer 
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for 5 min. The samples were resolved by SDS-PAGE, transferred onto PVDF membranes, 

treated with En3hance (Perkin Elmer, 6NE970C), and exposed to film for 1-3 days at -80°C.  

 

2.7 In vitro phosphorylation assay 

The in vitro phosphorylation reactions were performed by incubating 1 μg recombinant 

H3 protein, MED12 or CDK8 immunoprecipitated protein A/G beads (from a 10 cm plate), 1 

μl non-radiolabelled 10mM ATP in a final volume of 50 μl PBS at 37°C for 1.5 h. The reactions 

were stopped by adding protein loading buffer and boiling for 5 min. The samples were 

analyzed by Western blotting.  

 

2.8 Peptide pull-down assay 

Biotinylated MED12 peptides (20 μg) were immobilized on 20 μl streptavidin agarose 

beads (Millipore, 16-126) in 500 μl of mild lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 

0.1% Nonidet P-40, 5 mM EDTA, 5 mM EGTA and 15 mM MgCl2) at 4°C for 2 h. The beads 

were washed three times with Co-IP buffer and incubated with 4 μg of GST-Tudor protein in 

500 μl mild lysis buffer at 4°C for 2 h. After three washes with Co-IP buffer, the beads were 

boiled in protein loading buffer and subjected to western blot analysis using αGST antibody.  

 

2.9 Immunoprecipitation and Coimmunoprecipitation assays 

For screening CARM1 substrates, HEK293T cells (90% confluent) were transiently 

transfected with expression vectors encoding FLAG-tagged putative CARM1 substrates using 

Lipofectamine 2000 (Invitrogen). Cells (10 cm plate) were harvested after 24 h, washed with 

ice-cold PBS and lysed in 1 ml of RIPA lysis buffer (25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 

1% Nonidet P-40, 1% Sodium deoxycholate, 0.1% Sodium dodecyl sulfate, 2 mM EDTA) with 
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protease inhibitor cocktail (Roche). The lysates were incubated with 40 μl of anti-FLAG M2 

affinity gel (Sigma Aldrich, A2220) for 1 h. The beads were washed three times with RIPA 

buffer, eluted in protein loading buffer. 

For the co-IP assays, cells (10 cm plate) were transiently transfected with expression 

vectors using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. 

Cells were harvested 30h after transfection and lysed in 1 ml of mild lysis buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 0.1% Nonidet P-40, 5 mM EDTA, 5 mM EGTA and 15 mM MgCl2) 

and immunoprecipitated with the specified antibodies.  

For the TDRD3-MED12 co-IP experiment, MCF7-tet-on-shCARM1 cells (Yang et al, 

2010) were treated with 1 μg/ml of Doxycycline for 6 days to knockdown endogenous CARM1 

expression. Untreated parental cells were used as controls. Cells were lysed in buffer A (10 

mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.05%NP40, pH 7.9) supplemented 

with cocktails of protease inhibitor and phosphatase inhibitor (Pierce) for 10 min on ice. After 

centrifuging at 4o C at 3000 rpm for 10 min, the supernatant was removed and the pellet was 

resuspended in 387 μl of buffer B (5 mM HEPES, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM 

DTT, 26% glycerol (v/v), pH7.9) supplemented with 13 μl of 4.6M NaCl to give 150mM NaCl. 

After lysing on ice for 10 min, brief sonication was applied to dissolve the pellet. Cell lysates 

were kept on ice for additional 30 min. After centrifuge at 24,000 g for 20 min at 4o C, the 

supernatant was collected as nuclear extract for immunoprecipitation using anti-TDRD3 

antibody.  

The immunoprecipitated samples or cell extracts were separated by SDS-PAGE and 

transferred onto PVDF membranes. Blots were blocked in PBS-Tween 20 containing 5% 

nonfat dry milk and then incubated with the appropriate primary antibody in the blocking buffer 

overnight at 4°C. The blots were then washed, probed with an HRP-labeled secondary 

antibody and detected using enhanced chemiluminescence (Amersham). 
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2.10 Oligonucleotide pull down assay 

A 364 bp doubly biotinylated fragment from the human GREB1 gene was made by 

PCR using pCR4-Topo-GREB or pCR4-Topo-GREB ERE mut as a template and purified by 

centrifugation through PCR Kleen Spin Columns (Bio-Rad) as detailed in Foulds, C.E. et al. 

Mol Cell 2013. Two micrograms of this fragment were bound to 40 μl Dynabeads® M280 

streptavidin (Invitrogen) in 150 μl D-PBS as detailed in Foulds, C.E. et al. Mol Cell 2013. MCF-

7 nuclear extract (NE) was prepared as detailed in Foulds, C.E. et al. Mol Cell 2013. We added 

clarified NE (1 mg) to resuspend beads, 100 nM water-soluble E2 (Sigma), and a 1 mM 

EDTA/EGTA mix. Reactions were rotated at 4°C for 1.5 hr. Beads were washed two times in 

NETN and once in D-PBS as detailed in Foulds, C.E. et al. Mol Cell 2013. After PBS removal, 

the final washed endogenous ER-coregulator complexes were resuspended in 20 μl 2x SDS 

sample buffer (Pierce) and 9 μl samples were loaded on a 4–15% Mini-PROTEAN® TGX™ 

Precast gel (Bio-Rad) for immunoblotting using an ECL Plus kit (Pierce) and X-ray film as 

detailed in Foulds, C.E. et al. Mol Cell 2013. Sources of primary antibodies were the following: 

ERα (sc-543, Santa Cruz Biotechnology), MED12 (A300-774A, Bethyl Laboratories), 

meMED12 (Bedford lab rabbit polyclonal), and CARM1 (A300-421A, Bethyl Laboratories). 

 

2.11 Chromatin Immunoprecipitation and quantitative PCR (ChIP-qPCR) 

Chromatin was harvested from MCF-7 cells as described previously (Iberg et al, 2008) 

and ChIP was performed using CARM1, MED12, and H3R17me2a antibodies. Using 2 μl of 

ChIP DNA as the template, qPCR was performed on the ABI 7900 HT Fast Real Time PCR 

System (ABI) with primer sets against the specified genes (Table 4). Data was analyzed using 

the Sequence Detection System software (ABI). The experimental cycle threshold (Ct) was 

calibrated against the input product.  
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2.12 ChIP-seq analysis 

2.12.1 Mapping of Reads 

Sequenced DNA reads were mapped to human genome hg19 using bowtie (version 

0.12.8) [1] and only the reads that were mapped to unique position were retained. 31-63 

million reads were generated per sample. 80-97% reads were mapped to human genome, 

with 59-71% uniquely mapped. To avoid PCR bias, for multiple reads that were mapped to 

the same genomic position, only one copy was retained for further analysis. In the final, 22-

41 million reads were used in peak calling and downstream analyses. 

 

2.12.2 Peak calling and gene annotation 

The original peak calling for CARM1/MED12/R17 was done by MACS (version 1.4.2) 

[2] using total input DNA as control. The window size was set as 300 bp and the p-value cutoff 

was 1e-6. The peaks overlapping DAC Blacklisted Regions and Duke Excluded Regions 

downloaded from UCSC genome browser (http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeMapability) were removed. Then the peaks from the 

three factors were merged (allowing at least 1bp overlap) to form a highly confident superset 

of peaks. For each peak from the superset, if it overlapped the peaks of one of the factors 

called at p-value 1e-4, it was marked as occupied by the corresponding factor. For ERa, the 

peaks were called by MACS with no control used. The window size was set as 300 bp and 

the p-value cutoff was 1e-10. The peaks overlapping blacklisted regions were removed. For 

public CARM1 data, the peaks were called by MACS by comparing CARM1 E2 treated to both 

CARM1 EtOH treated and total input. The window size was set as 300 bp and the p-value 

cutoff was 1e-6. Only peaks that were called by comparing to both controls and didn’t overlap 

blacklisted regions were kept. For venn diagram of public CARM1 vs. our CARM1, the peaks 

(at p-value 1e-6) from both were merged (allowing at least 1bp overlap). For each of the 
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merged peaks, if it overlapped the peaks of one of the CARM1 datasets called at p-value 1e-

4, it was counted as called in the corresponding dataset. Each peak in the superset was 

assigned to the gene that has the closest transcription start site (TSS) to it. Then the peak 

was classified by its location to the gene: upstream (-50k to -5k from TSS), promoter (-5k to 

+0.5k from TSS), exon, intron, TES (-0.5k to +5k from TES) and downstream (+5k to +50k 

from TES). The gene list used to annotate the peaks is GENCODE release 19 [3]. 

 

2.12.3 Landscape of ChIP-Seq Signal 

Each read was extended by 150bp to its 3’ end. The number of reads on each genomic 

position was rescaled to normalize the total number of mapped reads to 10M and averaged 

over every 10bp window. The normalized values were displayed in UCSC genome browser 

(http://genome.ucsc.edu/). 

 

2.12.4 Heatmap and Average Profile of ChIP-Seq Signal around peak center 

10kbp upstream and 10kbp downstream from the center of each peak were subdivided 

into 250 bp bins. For each ChIP-Seq sample, the rpkm (reads per million reads per kilobase) 

values for each bin were calculated and normalized through z-score transformation to 

minimize the potential batch effect. The values were then averaged over all peaks to generate 

average profile or plotted in heatmap by R function heatmap.2. 

 

2.13 Quantitative Reverse Transcription PCR (RT-qPCR) 

MCF-7-Tet-on-shCARM1 cells were untreated or treated with doxycycline (1 μg/ml) for 

5 days. The cells were then gently washed with PBS and transferred to phenol red-free DMEM 

supplemented with 10% charcoal dextran-stripped FBS. The cells were maintained in this 

http://genome.ucsc.edu/
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media with or without doxycycline for 3 days. On the 9th day, cells were treated with 50nM E2 

for 45 min. Total RNA was extracted using RNeasy Mini kit (74104, Qiagen) and cDNA was 

synthesized using Superscript III First-Strand Synthesis system (18080-051, Invitrogen). 

qPCR was then performed using primer sets against the specified genes (Table 5). Data was 

analyzed using the Sequence Detection System software (ABI). The experimental cycle 

threshold (Ct) was calibrated against the β-actin control product, and the amount of sample 

product from Dox-treated cells relative to that of the control cells was determined using the 

DDCt method (1-fold, 100%).  

 

2.14 Immunofluorescence and Image Analysis 

Immunofluorescence experiments were performed as previously described (Bolt et al, 

2013). Briefly, cells were fixed in 4% formaldehyde in PEM buffer (80 mM potassium PIPES 

[pH 6.8], 5 mM EGTA, and 2 mM MgCl2), quenched with 0.1 M ammonium chloride, 

permeabilized with 0.5% Triton X-100, non-specific sites were blocked with blotto (5% milk in 

Tris-buffered saline/Tween 20), and then specific antibodies were added overnight at 4C prior 

to 30 min of secondary antibody (Alexa conjugates; Molecular Probes) and DAPI staining. 

Automated imaging was carried out using an IC-200 high throughput microscope (Vala 

Sciences). Image fields were acquired with a sCMOS 5.5 megapixel camera through a Nikon 

S Fluor 40x/0.90 NA objective. Z-stacks were imaged at 1 µm intervals. Nuclear array 

segmentation and signal quantification were performed using PipelinePilot image analysis 

software (Biovia) as previously described (Ashcroft et al, 2011; Bolt et al, 2013). Aggregated 

cells, mitotic cells, and apoptotic cells were removed using filters based on nuclear size, 

nuclear shape, and nuclear intensity.   
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Gene Name Forward Primer Reverse Primer 

GREB1 No peak TTTGCATGGACAGGCCTTGA GCCCAAACCTTGGCACTTTC 

GREB1 peak1 GAGAGGGTGGTGACACTTGG CTGCAGCTGACAGAGGAGAC 

GREB1 peak2 CTGGCTGCTTCCTGAGTGG GCGTCAAGCAACTACACTCC 

GREB1 peak3 TGAGCAAAAGCCACAAAGTAGT TGCTGCGGCAATCAGAAGTA 

GREB1 peak4 GGCTCCAGTCCAAGTACACA AAATGCCACCGTTTCGTGT 

FKBP4 No peak CTTCTCAGTAAGCCTGCGGT GACTATCTGCCGAACCAGGG 

FKBP4 peak CTCTGCTGTGGAGCCTGC TCTCTGATTCTCCCTGGAACCT 

IGFBP4 No peak TTTTGGGTCTGGGTGTGTGT CAGCACCTGAGGAGTGCC 

IGFBP4 peak AGGGTTGGGCAAGGAAAAGT CATGCACTTGGGCACTCTGA 

TFF1 No peak CCAGGGCCACCGAGAAC CATTCTCGGGGTCAGCACC 

TFF1 peak 1 ACATTTGCCTAAGGAGGCCC ACCTCACCACATGTCGTCTC 

TFF1 peak 2 ATTTCTTCTCCACGCCCTGT GACAGCTGCCAGGTACGG 

 

Table 4: Primers used for ChIP-qPCR assays. 
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Gene Name Forward Primer Reverse Primer 

CARM1 CCAGGGTGATGATGAAGGAC GGGCATCGCCCTCTACA 

FKBP4 CTATCGTGGAGGTTGCACTG CCATAAGGCAGATCCAGGTT 

GREB1 CTGTCCAGAGGGTGACATTG CAGGGATGCTGCTTTAGTGA 

IGFBP4 AGGGGCTGAAGCTGTTGTT CCTGCACACACTGATGCAC 

NOB1 TTGGAAGCAGAGTTTGTTGG ATGTGCAGAGGTGTTTCTGG 

TFF1 TCCCTCCAGAAGAGGAGTGT CAGAAGCGTGTCTGAGGTGT 

WWP2 GAAAATTGTCAGCTCTCCGC GTCTTGAAGAACAATGGGGG 

GAPDH AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC 

 

Table 5: Primers used for RT-qPCR assays. 
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Chapter 3: Loss of PRMT1 causes substrate scavenging by other PRMTs 
 

3.1 Mono-methyl arginine antibodies reveal methylation type switching with PRMT1 

loss 

A panel of five different rabbit monoclonal antibodies (MMA1-5) was generated to 

recognize endogenous proteins when monomethylated at arginine residues. MMA1 was 

raised against the arginine-glycine-glycine motif, mono-methylated at arginine residue (Rme1-

G-G) and MMA2-5 antibodies were generated against a synthetic peptide library containing 

mono-methyl arginine flanked by degenerate amino acids (XXXXXRme1XXXXX). To validate 

these antibodies, we tested them on wild-type and PRMT1-deficient cells. Since PRMT1 is 

essential for cell viability, we used an inducible-knockout cell line. The MEF cell line, 

heterozygous for the floxed Prmt1 allele, was stably transfected with ER*-Cre (Cre 

recombinase fused to the ligand-binding domain of the mouse estrogen receptor (ER)) (Yu et 

al, 2009). This Prmt1fl/- ER-Cre MEF line can be treated with 4-hydroxytamoxifen (OHT), which 

stabilizes ER*-Cre and translocates it to the nucleus, which then excises the floxed Prmt1 

allele to generate PRMT1 KO MEFs. These cells were treated for 8 days with OHT, which is 

a few days (2-4 days) prior to cell death, before harvesting cell extracts. PRMT1 has been 

known to generate MMA and ADMA marks in vitro. We expected that PRMT1 will mono- and 

di-methylate proteins in cells and the loss of this enzyme will lead to the depletion of both 

types of methylation. Surprisingly, we found an increase in immunoreactivity with all five MMA 

antibodies upon PRMT1 removal (Figure 8A). Additionally, we tested the antibodies on 

HCT116 cells untreated or treated with AdOx for 2 days. Adenosine dialdehyde (AdOx) is a 

global methylation inhibitor. It functions by inhibiting S-adenosylhomocysteine (SAH) 

hydrolase, which leads to the accumulation of intracellular SAH levels. This increase in SAH 

levels results in the feedback inhibition for most methyltransferase reactions. Hence, AdOx 

treatment should deplete all types of methylation  
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Figure 8: Loss of PRMT1 or inhibition of global methylation by AdOx reveals an  

accumulation of monomethylated substrates. 

(A) PRMT1fl/- ER-Cre MEFs were untreated or treated with 4-hydroxytamoxifen (OHT, 2 μM) 

for 8 days. Whole cell lysates were prepared and immunoblotted with αMMA1-5, αADMA, and 

αPRMT1 antibodies. Arrow indicates the position of the PRMT1 protein. β-actin serves as a 

loading control.  

(B) HCT116 cells were treated with AdOx (20 μM) for 48 h and whole cell lysates were 

immunoblotted with αMMA1 and a pool of αMMA2-5 antibodies.  

Experiment for figure 8B was performed by Cell Signaling Technology. 
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Figure 9: Loss of other Type I enzymes (PRMT3, 4, and 6) or reduction of Type II  

enzyme (PRMT5) has no effect on global MMA levels. 

Whole cell extracts of wild-type (+/+) and PRMT3 (A), CARM1 (B) or PRMT6 (C) knockout (-

/-) MEFs were immunoblotted with αMMA1-5, αADMA, and αH3R17me2a (Millipore) 

antibodies. (D) HeLa-shControl (C) and HeLa-shPRMT5 (kd1 and kd2) cell extracts were 

immunoblotted with αMMA1-5, αSDMA, and αADMA antibodies. All knockout and knockdown 

cell lines were validated by immunoblotting with their respective αPRMT antibodies. Arrows 

indicate the position of the PRMTs. β-actin serves as a loading control.  
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from cellular proteins. However, AdOx-treated cells showed an increased mono-methylation 

signal relative to the untreated cells (Figure 8B). Perhaps, AdOx induces MMA accumulation 

by partially inhibiting PRMT1 activity. Next, we wanted to determine if this phenomenon holds 

true with the removal of other PRMTs. The loss of PRMT3, 4, 6 or the knockdown of PRMT5 

did not cause an accumulation of mono-methylated substrates (Figure 9A-D). However, one 

protein that migrates at 25 kDa, was mono-methylated upon PRMT5 knockdown (indicated 

by solid white arrows in Figure 9D). From these data, we can conclude that the loss of PRMT1 

seems unique in its ability to generate mono-methylated substrates. It is also noteworthy that 

these antibodies can be used as tools for identifying novel PRMT1 substrates by IP-MS 

approaches.  

 

3.2 MMA and SDMA levels reach a maximum within 4-6 days after PRMT1 loss 

Next, we wanted to study the dynamics of different types of arginine methylation upon 

the gradual loss of PRMT1. This experiment is possible due to the availability of the inducible-

knockout PRMT1 cell line (PRMT1fl/- ER-Cre MEFs). These cells were treated with 4-

hydroxytamoxifen (OHT) and harvested after various time points (0-10 days). Two days post 

treatment, 90% of the PRMT1 protein is lost and by 4 days, the cells are completed devoid of 

the enzyme (Figure 10D). Concomitant with PRMT1 loss, we observed an increase in MMA 

signal (Figure 10A). When tested with ADMA antibody, we observed an initial loss of 

methylation among some substrates (Figure 10B – lower molecular weight bands in 2 d and 

4 d lanes), which reappeared later (Figure 10B – 6 d to 10 d lanes). We speculated that the 

cells could be compensating the loss of PRMT1 by over-expressing other PRMTs. Hence, we 

tested the expression of various PRMTs at 4 and 8 days after OHT treatment (Figure 11). At 

8-day time-point, we observed an increase in PRMT6 and  
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Figure 10: Arginine methylation trends in inducible PRMT1-knockout MEFs. 

Prmt1fl/- ER-Cre MEFs were untreated or treated with 4-hydroxytamoxifen (OHT, 2 μM) and 

harvested after 0, 2, 4, 6, 7, 8, 9, and 10 days. Whole cell lysates were immunoblotted with 

αMMA2 (A), αADMA (B), αSDMA (C) and αPRMT1 (D) antibodies. β-actin serves as a loading 

control.  

Experiment for figure 10 was performed by Dr. Surbhi Dhar (a previous post-doc from Dr. 

Mark Bedford’s lab, UT M.D. Anderson Cancer Center)  
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Figure 11: Expression analysis of PRMTs in the absence of PRMT1. 

Prmt1fl/- ER-Cre MEFs were untreated or treated with 4-hydroxytamoxifen (OHT, 2 μM) and 

harvested after 0, 4, and 8 days. Whole cell extracts were subjected to Western analysis with 

αPRMT1, αPRMT3, αCARM1, αPRMT5, αPRMT6, αPRMT7 and αMMA1 antibodies.  

Experiment for figure 11 was performed by Dr. Surbhi Dhar (a previous post-doc from Dr. 

Mark Bedford’s lab, UT M.D. Anderson Cancer Center)  
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PRMT7 expression levels, suggesting that the cells compensated PRMT1 loss by expressing 

these 2 enzymes. Additionally, we also noticed streaking of CARM1 by Western analysis, 

which could imply hyper protein modification (Figure 11). However, at 4-day time-point, the 

cells showed equal expression of PRMT3, 4, 5, 6, and 7 enzymes. This suggests that the 

increase in MMA levels upon 4 days of OHT treatment is not due to over-expression of 

PRMTs. We also evaluated the dynamics of symmetric di-methylation upon PRMT1 gradual 

loss. Like MMA, SDMA levels have also increased with PRMT1 loss (Figure 10C).   

 

3.3 Amino acid analysis confirms the global accumulation of MMA and SDMA levels 

with PRMT1 loss 

To confirm the above findings using an antibody-independent approach, we performed 

amino acid analysis for wild-type and PRMT1 knockout MEFs. To do this, we untreated or 

treated Prmt1fl/- ER-Cre MEFs with 4-hydroxytamoxifen (OHT) for 7 days, harvested whole 

cell lysates and acid hydrolyzed proteins to obtain amino acids. To quantify methylated 

arginine residues, we have developed a novel two-dimensional approach that takes 

advantage of the high-resolution of cation-exchange and reverse-phase columns coupled to 

the sensitivity of the fluorescent labeling (Figures 12 and 13). PRMT1 wild-type or knockout 

acid hydrolysates were first separated by high-resolution cation exchange chromatography. 

The fractions obtained were then labeled with o-phthaldialdehyde (OPA) to enable the 

detection of picomole levels of amino acids after a second step of separation using two 

conditions of reverse-phase HPLC to quantitate MMA, SDMA, and ADMA relative to the level 

of arginine (Figure 14). From this study, we were able to measure the changes in different 

types of arginine methylation upon PRMT1 loss accurately (Table 2). The loss of PRMT1 has 

caused a five-fold increase in MMA levels, a three-fold increase in SDMA levels, and a 50% 

reduction in ADMA levels. Consistent with the above antibody studies, amino  
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Figure 12: Quantification of MMA, ADMA, SDMA and arginine levels in protein 

hydrolysates of wild-type and PRMT1-knockout MEFs. 

Cell pellets from wild-type and PRMT1 knockout MEFs were acid hydrolyzed and the resulting 

amino acids were separated by high-resolution cation exchange chromatography. (A) Control 

chromatograph showing the standards (1 μmol) of ADMA, SDMA and MMA/arginine with 

ninhydrin detection. Cell hydrolysates were then chromatographed without standard amino 

acids and fractions analyzed by reverse-phase HPLC after derivatization with OPA for 

fluorescence quantification as described in "Methods". HPLC conditions were optimized to 

separate the large pool of arginine from ADMA and SDMA in wild-type (B) and PRMT1 

knockout (C) and from MMA in wild-type (D) and PRMT1 knockout (E) samples. The total 

amount of a given species was quantified by summing the integrated area under the curve for 

all HPLC fractions containing the respective species that are consistent with the migration on 

the cation-exchange column.   

Experiment for figure 12 was performed by Grace Huang and Dr. Alexander Patananan from 

Dr. Steven Clarke’s lab, UCLA. Wild-type and PRMT1 knockout MEF extracts for the amino 

acid analysis were provided by us. 
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Figure 13: Workflow for the two-dimensional quantification of MMA, ADMA, SDMA,  

and arginine in MEFs. 

Figure 13 flowchart was made by Dr. Steven Clarke’s lab, UCLA. 
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Figure 14: Reverse-phase HPLC methods optimized to quantify OPA-derivatives of  

arginine, MMA, ADMA, and SDMA. 

Experiment for figure 14 was performed by Grace Huang and Dr. Alexander Patananan from 

Dr. Steven Clarke’s lab, UCLA. 
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acid analysis showed that both MMA and SDMA levels rise with the loss of the major protein 

arginine methyltransferase. Additionally, these studies also demonstrate the prevalence of 

arginine methylation in MEFs. We found that about 0.4% of arginine residues are 

asymmetrically di-methylated, 0.01% of arginine residues are mono-methylated, and 0.03% 

of arginine residues are symmetrically di-methylated in MEFs (Table 2). Therefore, ADMA is 

the predominant mark of methylation in MEFs. We have enlisted here the MMA, ADMA, and 

SDMA levels in wild-type MEFs obtained from this study as well as those in rat brain and liver 

shown previously in the literature (Table 3). It is noteworthy that while ADMA and SDMA levels 

are comparable in MEFs and rat brain and liver, MMA levels are significantly lower in MEFs.  
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Table 6: Average fold change in MMA, ADMA and SDMA levels upon the loss of  

PRMT1. 

Table 6 was generated by Dr. Steven Clarke’s lab, UCLA. 
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Table 7: Comparison of the relative levels of MMA, ADMA, and SDMA in different 

mammalian cells. 

Values from rat brain and liver were taken from Matsuoka (1972)1 as translated by Paik and 

Kim (1980)2, and converted from μ mol per g protein assuming an average arginine residue 

content of 5% in proteins. 

 

References for table 7: 

1. Matsuoka, M. [Epsilon‐N‐methylated lysine and guanidine‐N‐methylated arginine of 

proteins. 3. Presence and distribution in nature and mammals]. Seikagaku 44, 364-70 (1972). 

2. Paik, W.K. & Kim, S. Natural occurrence of various methylated amino acid derivatives. (ed. 

Meister, A.) (John Wiley & sons, New York, 1980). 

Table 7 was generated by Dr. Steven Clarke’s lab, UCLA. 
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Chapter 4: CARM1 Methylates Mediator to Promote Estrogen Receptor-Regulated 

Transcription 

 

4.1 Developing and characterizing CARM1 Substrate antibodies 

Methyl-specific antibodies (both ADMA and SDMA) have previously been used to 

identify PRMT substrates (Boisvert et al, 2003; Guo et al, 2014). However, these antibodies 

cannot enrich CARM1 substrates because CARM1 does not methylate the glycine and 

arginine-rich (GAR) motifs. Indeed, the alignment of methylation motifs of known CARM1 

substrates does not create a consensus sequence that could be used for in silico prediction 

of additional candidate substrates, although the motif does seem to be proline-rich (Figure 

35). Thus, to facilitate the identification of CARM1 substrates, a peptide cocktail of six different 

CARM1-methylated motifs (Figure 15A) was used to immunize rabbits to obtain CARM1 

substrate antibodies, henceforth referred to as ADMACARM1 antibodies. The four polyclonal 

antibodies were affinity purified over a column containing the six peptides.  

To characterize ADMACARM1 antibodies, we performed Western analysis on the whole 

cell lysates from wild-type (WT) and CARM1 knockout (KO) mouse embryonic fibroblasts 

(MEFs) (Figure 15B). ADMA-1CARM1 and ADMA-2CARM1 recognized a slew of bands in the WT 

lane, but displayed minimal immunoreactivity in the KO lane. ADMA-3CARM1 showed the loss 

of one band, but also a slightly increased signal in the KO lane relative to the WT lane, 

suggesting that it might recognize proteins methylated by CARM1 and other Type I PRMTs, 

compensating the loss of CARM1 in KO cells. ADMA-4CARM1 seemed to be less 

immunoreactive than the other three antibodies, recognizing only a single CARM1 substrate. 

As anticipated, the H3R17me2a antibody cross-reacted with a number of proteins in WT cells, 

which are absent in CARM1 KO cells. Interestingly, some proteins were recognized in WT 

and KO cells at similar levels (indicated by asterisks). Next, we tested the antibodies on   
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Figure 15: Characterization of CARM1 substrate antibodies. 

(A) The list of peptides used to generate CARM1 Substrate antibodies. (B) Whole cell extracts 

from CARM1 wild-type (+/+) and knockout (-/-) MEFs were subjected to western analysis with 

αADMACARM1, αH3R17me2a and αCARM1 antibodies. The asterisks on the gels indicate the 

positions of the proteins present in both cell lines. Actin blot serves as a loading control. (C) 

Prmt1fl/- ER-Cre MEFs were untreated or treated with 4-hydroxytamoxifen (OHT, 2 μM) for 8 

days. Whole cell extracts were immunoblotted with αADMACARM1, αH3R17me2a and αPRMT1 

antibodies. The solid circles on the gels indicate the positions of the proteins specific to 

PRMT1 wild-type (OHT -) MEFs. The arrow points to the position of the PRMT1 protein. Actin 

blot serves as a loading control. (D) GST, PABP1 and H3 were methylated in vitro by 

recombinant CARM1 in the absence or presence of tritium-labeled AdoMet and subjected to 

western analysis with αADMA-2CARM1 antibody (top panel), fluorography (middle panel) and 

Coomassie Brilliant Blue staining (bottom panel). GST serves as a negative control.  

CARM1 substrate antibodies used in figures 15B-D were generated by Cell Signaling 

Technology. 
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WT and PRMT1-deficient MEFs. Most proteins were recognized at similar levels in both cell 

lines. However, some protein bands were specific to WT cells, not PRMT1-deficient cells 

(indicated by solid circles) (Figure 15C). It is noteworthy that these PRMT1-specific proteins 

migrated at the same positions as the non-specific proteins observed in CARM1 MEFs 

(asterisks in Figure 15B). This suggests that while the ADMACARM1 antibodies primarily 

recognize CARM1 substrates, they can also recognize a few PRMT1 substrates. We next 

tested the ability of some of the ADMACARM1 antibodies to recognize in vitro methylated 

CARM1 substrates. PABP1 and H3 were in vitro methylated by CARM1 in the absence or 

presence of tritium-labeled AdoMet. Methylation efficiency was monitored by fluorography 

(Figure 15D, middle panel), and duplicate blots were subjected to western blotting using the 

ADMACARM1 antibodies. We found that the ADMA-2CARM1 antibody recognized PABP1 and H3 

in a methyl-specific fashion (Figure 15D, top panel).  

The antibodies were also tested on peptide arrays that harbor a collection of histone 

tail modifications, including those deposited by CARM1, PRMT1, PRMT5 and PRMT6. This 

peptide microarray currently harbors over 300 modified histone tail peptides. The methylated 

arginine motifs include the H3R2, H3R8, H3R17, H3R26 and H4R3 sites. Peptides 

representing the mono- and di-methylated forms of these motifs are present on the array. The 

dimethyl-H3R17 antibody (Millipore) only recognizes H3R17me2a peptide on the array. 

ADMA-2CARM1 behaves very similarly to dimethyl-H3R17 antibody, in terms of site-specific 

recognition as well as overall signal intensity. ADMA-3CARM1 also recognizes H3R17me2a, but 

weakly (Figure 16). Although ADMA-1CARM1 and ADMA-4CARM1 did not recognize arginine 

methylated histone marks, they seemed to be effective in recognizing non-histone substrates 

(refer to Figure 17). All antibodies show low leveIs of non-specific recognition, as observed 

with H4 unmodified and H3K4me2/T6p peptides (highlighted in red and green, 

respectively). These results independently confirm the establishment of a panel of four. 
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Figure 16: Histone peptide array analysis of CARM1 substrate antibodies. 

The five CARM1 substrate antibodies were tested on peptide arrays that harbor a collection 

of over 300 histone tail modifications, including H3R2, H3R8, H3R17, H3R26 and H4R3 (Un-

, mono- and di-methylated forms) sites. X-axis shows the names of antibodies tested. Y-axis 

represents raw binding intensity of the histone peptides with each antibody. 

Experiment for figure 16 was performed by Dr. Scott Rothbart, a previous post-doc from Dr. 

Brian Strahl’s lab, UNC, Chapel Hill.  
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different rabbit polyclonal antibodies that recognize arginine methylated proteins that are 

specific to CARM1 

 

4.2 Using ADMACARM1 antibodies to identify CARM1 substrates 

A combined immunoprecipitation (IP) and mass spectrometric (MS) approach was 

employed to identify CARM1 substrates, using an approach developed for the identification 

of tyrosine phosphorylation sites (Rush et al, 2005). Briefly, proteins were extracted from WT 

MEFs and digested with trypsin. The resulting complex peptide mixture was partitioned into 

three fractions by reversed-phase solid-phase extraction, and each fraction was treated with 

one of the four ADMACARM1 antibodies, immobilized on agarose beads. After washing, 

peptides were eluted and analyzed by nanoflow LC-MS/MS. The resulting spectra were 

assigned to peptide sequences using the program Sequest. Lists of credible methylpeptide 

sequence assignments were generated. Using this approach, 112 different proteins were 

identified as putative CARM1 substrates. All the identified methylation sites have been 

submitted to the PhosphoSitePlus database (www.phosphosite.org). (We sent the WT MEF 

extracts to Dr. John Rush at Cell Signaling Technology, who performed the 

Immunoprecipitation-Mass Spectrometry experiments on those extracts using CARM1 

substrate antibodies.) We selected ten proteins for further evaluation based on the number of 

identified methylated peptides in the MS data, and the potential involvement of the candidate 

CARM1 substrates in different aspects of chromatin regulation, transcription and RNA 

processing (Figure 17A). Out of the ten identified substrates, PABP1 (Lee & Bedford, 2002), 

CA150/TCERG1 (Cheng et al, 2007) and SRC-3 (Feng et al, 2006) were described previously 

as in vivo CARM1 substrates, thus validating the approach. SF3B4 (Cheng et al, 2007), SRC-

1 (Feng et al, 2006) and SRC-2 (Feng et al, 2006) were shown to be methylated by CARM1 

in vitro. GPS2, KMT2D, SLM2 and MED12 were identified as  
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Figure 17: Identification of novel CARM1 substrates. 

(A) A table showing the list of CARM1 substrates, identified from the ADMACARM1 IP-MS 

screen, and their functions. The proteins, denoted by an asterisk, were identified as CARM1 

substrates for the first time in this study.  

(B) The positive hits obtained from the screen were transiently transfected into HEK293T cells 

and immunoprecipitated with αFLAG antibody. Western analysis was performed, first with 

αFLAG to gauge the expression of the FLAG-tagged proteins (indicated by solid circles), and 

then with the αADMACARM1 antibodies. KMT2Da (3619-4285 aa) and SRC-2a (1037-1295 aa) 

represent fragments of the full-length KMT2D and SRC-2 proteins.   
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potential CARM1 substrates for the first time in this study. GPS2 (G-protein Pathway 

Suppressor 2) is an integral component of the NCoR/SMRT/HDAC3 complex (Wong et al, 

2014b). The mixed-lineage leukemia 4 methyltransferase (KMT2D) is responsible for 

depositing histone H3K4me1/2 marks at enhancers (Ford & Dingwall, 2015; Lee et al, 2013). 

SLM2 is a KH domain containing protein that has been implicated in the regulation of 

alternative splicing (Traunmuller et al, 2014). To confirm that the identified proteins were 

indeed recognized by the methyl-specific antibodies that we developed and used in the 

screen, we FLAG-tagged the ten selected proteins, overexpressed them in HEK293T cells, 

and then immunoprecipitated them using an anti-FLAG antibody. Western analysis was 

performed on the immunoprecipitates, first with an anti-FLAG antibody to confirm the 

expression of FLAG-tagged proteins, and then with the ADMACARM1 antibodies (Figure 17B).  

Importantly, all ten proteins were recognized by at least one of the four different ADMACARM1 

antibodies, and no single antibody recognized all the tagged proteins. These results 

demonstrate that none of the four ADMACARM1 antibodies are totally pan CARM1 substrate 

antibodies, but they clearly recognize different subsets of CARM1 substrates. 

In Figure 15B, we demonstrated that the ADMACARM1 antibodies primarily recognize 

CARM1 substrates, but they are also able to engage a few PRMT1 substrates (Figure 15C). 

To be sure that the new methylated proteins that we identified are indeed CARM1 and not 

PRMT1 substrates, we performed further analysis in CARM1 knockout and knock-down cell 

lines that we had previously established (Yadav et al, 2003; Yang et al, 2010). We 

immunoprecipitated endogenous MED12 from CARM1 WT and KO MEFs, and then 

performed Western blot analysis using ADMACARM1 and H3R17me2a antibodies (Figure 18C). 

Both cell lines had the same amount of MED12, but only MED12 isolated from CARM1 

expressing cells was immunoreactive with the two methyl-specific antibodies. This indicates 

that arginine methylation of MED12 is CARM1-dependent. Additionally, we tested the 

antibodies on purified Mediator complex (Figure 18B), and found that they recognize two  
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Figure 18: Validation of CARM1 substrates. 

(A) Silver stained SDS-PAGE gel analysis of the purified Mediator complex (1 μg). (B) 

Western analysis of the purified Mediator complex (1 μg) using αADMA-1CARM1+αADMA-

3CARM1 antibodies. (C, G, H) Whole cell lysates from CARM1 wild-type (+/+) and knockout (-/-

) MEFs were immunoprecipitated with antibodies against MED12, SRC-1 or SRC-3 proteins, 

and the eluted samples were subjected to western blotting with αADMACARM1 and 

αH3R17me2a antibodies. αMED12, αSRC-1, and αSRC-3 blots (bottom panels) demonstrate 

equal expression of these proteins in CARM1 wild-type (+/+) and knockout (-/-) MEFs. (D, E 

and I) MCF-7-Tet-on-shCARM1 cells were untreated or treated with doxycycline (1 μg/ml) for 

8 days and transiently transfected with FLAG-KMT2D, -GPS2 and -SLM2, separately. Total 

cell lysates were immunoprecipitated with αFLAG antibody and the eluted samples were 

subjected to western blotting with αADMACARM1 and αFLAG antibodies. (F) HeLa cells were 

transiently transfected with FLAG control, FLAG-KMT2Da or FLAG-KMT2Da-R3727K. Total 

cell lysates were immunoprecipitated with αFLAG antibody and the eluted samples were 

subjected to western analysis with αADMACARM1 and αFLAG antibodies. αFLAG blot of the 

input samples (bottom panel) shows equal expression of the wild-type and mutant KMT2Da 

proteins. KMT2Da represents a fragment (3619-4285 aa) of the full-length KMT2D protein 

(NP_003473).  

Purified Mediator complex used in figures 18A and 18B was kindly provided by Dr. Cheng-

Ming Chiang, UT Southwestern. 
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proteins – one that migrates at the same position as MED12 and another at around 90kDa 

(which could be MED24 or MED16, presumed based on the silver stained complex (Figure 

18A)). This suggests that MED12 may not be the sole target for CARM1 in the Mediator 

complex. GPS2, KMT2D and SLM2 were not tested in this assay because we were unable to 

find specific antibodies that were able to immunoprecipitate the respective endogenous 

proteins. We thus overexpressed FLAG-GPS2 in control and CARM1-knockdown cells, and 

then performed Western blotting of the FLAG immunoprecipitates using ADMACARM1 

antibodies to show that GPS2 is specifically recognized in control cells, but not in CARM1-

knockdown cells (Figure 18D). In the case of KMT2D, owing to its large size (5537 aa), we 

cloned a fragment (3619-4285 aa) of the full-length KMT2D protein, which harbors the mass 

spectrometry identified methylation site (R3727). We also engineered a R3727K mutation at 

this site in the FLAG-KMT2Da construct (QuikChange II XL Site-Directed Mutagenesis Kit, 

Agilent Technologies), and found that the ADMACARM1 signal is significantly reduced in the 

R3727K-MLL2a mutant, relative to the wildtype-MLL2a protein, indicating that R3727 is a major 

site for CARM1 methylation (Figures 18E and 18F). Finally, we also confirmed that steroid 

receptor coactivators SRC-1 (Figure 18G) and SRC-3 (Figure 18H) are recognized in a 

CARM-dependent fashion by the ADMACARM1 antibodies. Interestingly, when SLM2 was tested 

in CARM1 knockdown cell lines, we did not observe a loss of methylation (Figure 18I), 

although this protein is recognized by a number of CARM1 substrate antibodies. Instead, we 

observed an increased signal with ADMA-3CARM1, which indicates overcompensation by 

another type I enzyme. Hence, SLM2 may be targeted by more than one PRMT. 

 

4.3 Mediator subunit 12 is methylated at Arginine 1899 by CARM1 in vivo 

The mass spectrometry studies identified MED12-R1899 as a major site of CARM1 

methylation. To characterize the methylation site in more detail, we raised two independent  
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Figure 19: Characterization of the meMED12 antibodies. 

(A) Whole cell extracts from CARM1 wild-type (+/+) and knockout (-/-) MEFs were subjected 

to western analysis with αmeMED12a, αmeMED12b and αMED12 antibodies. The arrow points 

to the position of the MED12 protein. Actin blot serves as a loading control. (B) CARM1 wild-

type (+/+) and knockout (-/-) MEFs were immunoprecipitated with αmeMED12a, αmeMED12b 

and αMED12 antibodies and the eluted samples were subjected to western blotting with 

αMED12 antibody. (C) HEK293T cells were transiently transfected with FLAG, FLAG-MED12 

or FLAG-MED12-R1899K (NP_005111). Total cell lysates were immunoprecipitated with 

αFLAG antibody and the eluted samples were subjected to western analysis with αmeMED12a 

and αFLAG antibodies. (D) T-REx-CARM1-293 cells were treated with tetracycline and 

harvested after 0, 4, 12, 24, and 48h. Whole cell extracts were immunoblotted with the 

indicated antibodies. β-actin blot serves as a loading control.  

Methyl-MED12 antibodies used in figures 19A-D were generated by Cell Signaling 

Technology. 
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antibodies against a MED12-R1899me2a peptide. Western blot analysis of CARM1 WT and 

KO MEF extracts showed that both antibodies detect a 240kDa protein (the size of MED12) 

and a few other potential substrates, in a CARM1-dependent manner (Figure 19A). 

MeMED12b was more selective and only recognized one additional band of about 200kDa. 

To confirm that the 240kDa protein is MED12, we immunoprecipitated methylated MED12 

from WT and CARM1 KO MEF lysates with the meMED12 antibodies and blotted with the 

MED12 (Bethyl) antibody. We found that both meMED12 antibodies selectively enriched 

MED12 protein from WT cells (Figure 19B). To confirm that the meMED12a antibodies are 

site-specific, we made a R1899K point mutation (QuikChange II XL Site-Directed Mutagenesis 

Kit, Agilent Technologies) in the full-length FLAG-MED12 construct, immunoprecipitated the 

wild-type and mutant forms from transiently expressing HEK293T cells and blotted with 

meMED12a antibody. The antibody detected the wild-type form of FLAG-MED12 strongly, but 

not the mutant form (Figure 19C). All these data clearly show that MED12 is methylated by 

CARM1 at R1899.  

To further characterize the binding specificity of meMED12 antibodies, we tested them 

on the Oriented Peptide Array Library (OPAL). In this oriented KGXXXXRme2aXXXXGK-

biotin peptide library, X denotes degenerate position and central-R is asymmetrically 

dimethylated (Figure 20A). For example, the position P-4 is fixed (Z) in the 

KGZXXXRXXXXGK-biotin library, 19 different libraries will be synthesized, and each library 

will have one of the 19 amino acids (excluding cysteine) fixed at position Z. For the next row, 

the Z position moves to P-3 (three residues up from the fixed arginine), and again 19 different 

libraries are synthesized. A total of 152 (19 amino acids x 8 positions) library pools were 

synthesized and printed onto a streptavidin-coated glass slide. When meMED12 antibody is 

incubated with this OPAL, we observed strong binding at P+1 and P+2 positions, where 

Glutamine (Q) was selected (Figure 20B). Tyrosine (Y) was preferred strongly at P-1 position, 

and Phenylalanine (F) weakly. Weaker binding was also observed at P-3 position,  
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Figure 20: Binding specificity of methyl-MED12 antibody determined by OPAL. 

(A) Degenerate peptide sequence used to synthesize OPAL peptide array library. (B) The 

OPAL library, containing 152 peptide (KGXXXXRme2aXXXXGK) pools, is incubated with 

αmeMED12(a&b) antibodies and detected using a fluorescently labeled secondary antibody. X 

represents random amino acids (except cysteine). (C) Alignment showing high conservation 

of MED12 methylation motif (SVYRQQQ) among vertebrates. 

Figure 20B – Experiment performed and figure organized by EpiCypher, NC  
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where Serine (S) was selected. The motif preferred by the meMED12 antibody (S-X-Y/F-

Rme2a-Q-Q-X) is highly comparable with the MED12 methylation motif (S-V-Y-Rme2a-Q-Q-

Q), hence confirming the antibody’s binding specificity. We also aligned the Human MED12 

methylation motif with the MED12 sequences of various vertebrates and found that R1899 is 

highly conserved among these species (highlighted in black) (Figure 20C).  R1899 flanking 

amino acids recognized by the meMED12 antibody (highlighted in grey) were also conserved. 

CARM1 occasionally interacts with its substrates (Feng et al, 2006; Kowenz-Leutz et 

al, 2010; Wang et al, 2014a). To determine if CARM1 interacts with the Mediator complex, we 

performed reciprocal co-immunoprecipitation experiments between CARM1 and Mediator 

subunits (MED12, MED4, MED30, and CDK8) from HeLa cells. We found that CARM1 does 

not interact with the Mediator complex (Figure 21A). Thus, CARM1 and MED12 are likely 

transiently engaged. We also tested if MED12 methylation has a role in Mediator complex 

assembly. Co-immunoprecipitations were performed between MED12 and other Mediator 

subunits in WT and CARM1 KO MEFs. We found that the MED12 antibody co-

immunoprecipitated Mediator subunits (MED4, MED30, and CDK8) from WT and KO cells at 

similar levels. This suggests that MED12 is incorporated into the Mediator complex, 

irrespective of its methylation status (Figure 21B). 

Since MED12 belongs to the CDK8 module, we wanted to determine if R1899 

methylation of MED12 affects the kinase activity of CDK8. So, we immunoprecipitated the 

CDK8 subcomplex using CDK8 or MED12 antibodies from wild-type versus CARM1 knockout 

cells and used as an enzyme source to perform in vitro phosphorylation of recombinant 

histone H3. Immunoprecipitates (MED12 or CDK8) from both wild-type and CARM1 knockout 

cells phosphorylated the histone H3 (at S10) at similar levels, as observed by the pH3S10 

immunoblot (Figure 22). This suggests that MED12 methylation has no effect on CDK8 kinase 

activity towards H3. 
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Figure 21: CARM1 - Mediator interactions 

(A) HeLa whole cell lysates were subjected to immunoprecipitation using IgG or antibodies 

specific for MED12, CDK8, MED4, MED30 and CARM1. Western blotting was performed on 

the immunoprecipitates using antibodies against CARM1 or the indicated Mediator subunits. 

(B) Whole cell extracts from CARM1 wild-type (+/+) and knockout (-/-) MEFs were 

immunoprecipitated with αMED12 antibody and subjected to western analysis using 

antibodies specific for the indicated mediator subunits.  
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Figure 22: MED12 methylation does not affect CDK8 kinase activity. 

Recombinant H3 protein is in vitro phosphorylated using MED12 or CDK8 immunoprecipitates 

from wild-type (+/+) or CARM1 knockout (-/-) MEFs in the presence of the phosphate donor, 

adenosine-5’-triphosphate, and immunoblotted with αpH3S10, αCDK8 and αMED12 

antibodies. Ponceau stained blot shows equal loading of H3 protein.  
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Arginine methylated proteins, PABP1 and SAP145, are thought to be fully methylated 

in cells (Yang et al, 2015; Zeng et al, 2013), suggesting that these are not regulatable signaling 

nodes. To test if MED12 is fully methylated in cells, we employed the tetracycline-inducible 

CARM1-Flp-In HEK293 cell system (Cheng et al, 2007). Upon the induction of CARM1 

expression, we observed an increase in MED12 methylation levels, as detected by the 

meMED12a antibody (Figure 19D). On the other hand, methylated PABP1 levels did not 

change with CARM1 induction, as expected. Therefore, MED12 is not fully methylated in cells, 

and the dynamic changes in methylation levels upon CARM1 expression point toward a 

regulatory role for this R1899 methylation. Thus, transient association of CARM1 with MED12 

at enhancer elements may induce local methylation of the R1899 site to facilitate the docking 

of an effector molecule. 

 

4.4 Methylated MED12 interacts with the effector molecule TDRD3 

Effector molecules for both ADMA and SDMA motifs are Tudor-domain containing 

proteins (Cote & Richard, 2005; Gayatri & Bedford, 2014). For example, the Tudor domain of 

SMN binds spliceosomal proteins like SmB (Brahms et al, 2001; Friesen et al, 2001) and 

SAP145 (Yang et al, 2015), and TDRD3 was shown to bind the CARM1 histone code mark, 

H3R17me2a (Yang et al, 2010). To determine if MED12 interacts with any of the known 

methylarginine “reading” Tudor domain-containing proteins, we synthesized biotin-tagged, 

unmodified and methylated, MED12 peptides and validated them by an in vitro methylation 

assay. As expected, recombinant CARM1 methylated the unmodified MED12 peptide in vitro 

but not the methylated peptide, which has no methyl-acceptor position (Figure 23A). This 

experiment also independently confirms that the MED12 R1899 site is a good CARM1 

methylation motif. These peptides were then used to pull-down GST-fused Tudor domains  



 76 

 

Figure 23: MED12 - TDRD3 interactions 

(A) Fluorograph (top panel) and Coomassie Brilliant Blue staining (bottom panel) of the 

peptides in vitro methylated by recombinant CARM1 in the presence of tritium-labeled 

AdoMet. (B) The peptides were used to pull down tudor domains of the indicated proteins. 

The input samples and the eluted samples were immunoblotted with αGST antibody. 

Streptavidin HRP blot serves as a peptide loading control. (C) MCF-7-Tet-on-shCARM1 cells 

were untreated or treated with doxycycline (1 μg/ml) for 8 days. Nuclear extracts were 

subjected to immunoprecipitation with αTDRD3 antibody and the eluted samples were 

detected by western blotting with αMED12 and αTDRD3. The input samples were 

immunoblotted with αTDRD3, αMED12, αmeMED12a and αCARM1. 

Figure 23C – Experiment performed and figure organized by Dr. Yanzhong Yang, a previous 

post-doc from Bedford lab, UT M.D. Anderson Cancer Center. 
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of TDRD3, SMN, SPF30, TDRKH, SPIN1 and SND1, the six best-characterized 

methylarginine “reading” Tudor domain-containing proteins (Gayatri & Bedford, 2014). Pull- 

down experiments demonstrated that the Tudor domains of TDRD3 bound strongly to the 

methylated form of the MED12 peptide, and SMN bound weakly (Figure 23B). Next, we 

endeavored to confirm that MED12 interacts with TDRD3 in cells, and that this interaction is 

CARM1-dependent. To do this, we used CARM-inducible knockdown cells, and 

immunoprecipitated TDRD3 from CARM1 WT and KD cells. TDRD3 co-immunoprecipitated 

MED12 from WT but not KD cells (Figure 23C). Input controls show that CARM1 was 

efficiently knocked-down and that MED12 methylation levels were decreased. These data 

establish that TDRD3 interacts with MED12 in a CARM1-dependent manner.  
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Figure 24: MED12 methylation status in breast cancer subtypes. 

Western analysis was performed on a panel of 14 breast cancer cell lines using (A) αERα, 

αmeMED12-1 (also called meMED12a), αMED12, (B) αCARM1 and αPRMT1 antibodies. β-

actin blots serve as loading controls. 
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4.5 Genome-wide analysis of CARM1, MED12 and H3R17me2a in MCF-7 cells 

To perform methyl-MED12 ChIP-seq studies, we wanted to choose a cell line with 

relatively high levels of MED12 methylation. Hence, we obtained whole cell extracts for a 

panel of 14 breast cancer subtypes (obtained from MD Anderson characterized cell line core 

facility) and tested for total- and methylated-MED12 levels. We found that MED12 is variably 

expressed across different cell lines, and it is highly methylated in the ERα positive MCF-7 

cell line (Figure 24A). However, we did not observe any correlation between R1899 

methylation levels and CARM1 expression levels or the hormone receptor status (Figure 24B). 

In order to determine the chromatin distribution of methylated MED12 in MCF-7 cells, 

we developed two methyl-specific MED12 antibodies (meMED12a&b). In addition to methylated 

MED12, the antibodies recognized at least one other CARM1 substrate (Figure 19A). Owing 

to their non-specific nature, ChIP-seq experiments for the methylated form of MED12 could 

not be attempted with these antibodies. Hence, to indirectly define methylated MED12 

chromatin associated regions, we performed ChIP-seq analysis using MED12 (total), CARM1, 

and H3R17me2a antibodies. The H3R17me2a antibody (Millipore) recognizes a number of 

different CARM1 substrates, including MED12 (Figure 18C), SRC-3 (Figure 18H), CA150 

(Cheng et al, 2007), and SmB (Cheng et al, 2007). The H3R17me2a antibody is not totally 

pan, because it does not recognize the methyl-motifs on KMT2D and SRC2 (Figure 17B). 

Therefore, ChIP-seq with this antibody provides a genomic readout for most CARM1 activity, 

not just for the histone mark alone. From the ChIP-seq data, we detected 992 MED12 binding 

sites, 743 CARM1 binding sites, and 726 peaks enriched for CARM1 activity in proliferating 

MCF-7 cells, grown in phenol red-containing media. We observed a 33% (410 out of total 

1234 binding sites) overlap of the CARM1, MED12, and CARM1 activity profiles (Figure 25A). 

Analysis of the overlapping peaks identified a number of estrogen-regulated genes. We then 

compared our ChIP-seq data with the binding profiles  
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Figure 25: ChIP-seq analysis of CARM1, MED12, and H3R17me2a in MCF-7 cells. 

(A) Venn diagram showing an overlap between CARM1-, MED12- and H3R17me2a-binding 

sites on the MCF-7 genome. (B & C) Heatmap and distribution figures depict profiles for 

genome-wide localization of CARM1, MED12, H3R17me2a, ERα, enhancer (H3K4me1 & 

H3K27ac), promoter (H3K4me3) and repressor (H3K27me3) marks. Categories: YYY – peaks 

co-occupied by CARM1, MED12 and H3R17me2a, YYN – peaks co-occupied by CARM1 and 

MED12, YNY – peaks co-occupied by CARM1 and H3R17me2a, NYY – peaks co-occupied 

by MED12 and H3R17me2a, YNN, NYN and NNY – peaks occupied by CARM1, MED12, and 

H3R17me2a, respectively. (D) Comparison of the binding motifs for MED12, CARM1, 

H3R17me2a, and ERα. Motif analysis was done using MEME suite. 

Figure 25A-D – ChIP-seq experiments were performed by Dr. Donghang Cheng from The 

University of Texas MD Anderson Cancer Center. ChIP-seq data analysis was performed by 

Dr. Yue Lu from The University of Texas MD Anderson Cancer Center. 
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Figure 26: Overlap between ER peaks and promoter peaks 

(A) Percentage of peaks overlapping ERα binding sites and percentage of peaks in promoter; 

ER∝ peaks were called by MACS at p-value 1e-10. Promoter was defined as -5000bp to 

+500bp from transcription start site (TSS).  

(B) Comparison between the binding motifs of SP1 and YYN+YNN peaks. 

Figure 26 was generated by Dr. Yue Lu from The University of Texas MD Anderson Cancer 

Center. 
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of ERα and various histone modifications associated with enhancer (H3K4me1 and 

H3K27ac), promoter (H3K4me3) and repressed (H3K27me3) regions (Figure 25B). ChIP-seq 

peaks from all these experiments correlate highly with functional enhancers, moderately with 

active promoters, but show no overlap with the repressed regions. In addition, our ChIP-seq 

data also displayed good overlap between H3R17me2a, active enhancer marks and the 

enhancer-bound protein, MED12, which confirms the ChIP-on-chip studies performed by the 

Miles Brown group that reported CARM1 activity predominantly at enhancer regions in MCF-

7 cells (Lupien et al, 2009). Importantly, 60% of the peaks co-occupied by CARM1, MED12 

and H3R17me2a (Category YYY) overlap with ERα peaks, indicating that these Mediator-

bound regions targeted by CARM1 are ERα-specific enhancers. The H3K27ac and H3K4me1 

marks decorate the edges of active enhancers, creating a trough where the TFs and 

coregulators are enriched. It is in this trough that we see CARM1, MED12, CARM1 activity 

and ERα signals (Figure 25C). In addition, motif analysis of CARM1, MED12 and CARM1 

activity peaks revealed a consensus sequence that is almost identical to the ERα-binding motif 

(Figure 25D). It is noteworthy that a subset of peaks, which are weak in ERα and H3R17me2a 

signal, associated with active promoters (i.e. Categories YYN and YNN overlap well with 

H3K4me3 signal) (Figure 25B & 26A). We speculate that these peaks may constitute a distinct 

class of CARM1-regulated genes that do not associate with ERα. Indeed, Motif analysis under 

this subset of H3K4me3 peaks identified a binding motif for SP1 (Figure 26B), suggesting that 

this basal transcription factor may also make use of CARM1’s coactivator activity. 

To highlight the degree of co-occupancy of CARM1, MED12, and CARM1 activity at 

EREs, we focused on the well-characterized ERα target, GREB1, which has four well-defined 

EREs (Carroll et al, 2006) (Figure 27A). Similar tight overlap of these three ChIP-seq profiles 

are also seen at the TFF1, IGFBP4, and FKBP4 loci (Figures 28A-C). The peak  
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Figure 27: Regulation of ChIP-seq target genes by MED12 methylation. 

(A) ChIP-seq peaks demonstrating the enrichment of MED12, CARM1, and H3R17me2a 

signals at the GREB1 gene locus. (B) ChIP-qPCR analysis of the association of MED12, 

CARM1, and H3R17me2a with GREB1 gene. (C) MCF-7-Tet-on-shCARM1 cells were 

untreated or treated with doxycycline (1 μg/ml) for 8 days. Total RNA was extracted and RT-

PCR was performed using primers specific for the genes shown. GAPDH acts as a negative 

control. Target gene expression was normalized to Actin. Error bars represent standard 

deviation based on three independent experiments. * (p<0.05), ** (p<0.01) and *** (p<0.001). 

Figure 27 – Experiments were performed by Dr. Donghang Cheng from The University of 

Texas MD Anderson Cancer Center. 
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Figure 28: Confirmation of ChIP-seq peaks for the target genes. 

ChIP-seq peaks and qPCR analysis demonstrating the enrichment of MED12, CARM1, and 

H3R17me2a signals at TFF1 (A), IGFBP4 (B), and FKBP4 (C) gene loci in MCF-7 cells. 

Figure 27 – Experiments were performed by Dr. Donghang Cheng from The University of 

Texas MD Anderson Cancer Center. 
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Figure 29: MED12 methylation levels do not correlate with ER levels. 

MCF-7 cells were untreated or treated with Fulvestrant (100 nM) for 4 h. Whole cell, 

cytoplasmic and nuclear extracts were harvested and immunoblotted with αmeMED12a, 

αMED12, αERα antibodies. LDH, Lamin A/C, and β-actin blots serve as loading controls. 
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correlation between CARM1, MED12 and H3R17me2a was confirmed by ChIP-qPCR (Figure 

27B & 28). Next, six target genes that displayed strong overlap of all three ChIP-seq profiles 

(GREB1, TFF1, IGFBP4, FKBP4, NOB1 and WWP2), were tested for their dependency on 

CARM1 for optimal E2-induced expression.  To do this, a Tet-inducible CARM1 shRNA-

knockdown cell line was used. CARM1 knockdown significantly reduced the expression of all 

six tested genes (Figure 27C). Since MED12 occupancy and CARM1 activity is prominent at 

EREs, we speculated that MED12 methylation may be triggered through the ERα pathway. 

To address this question, we treated MCF-7 breast cancer cells with an ERα antagonist, 

Fulvestrant. With the reduction of ERα levels, we found that MED12 methylation remained 

stable (Figure 29), indicating that this methylation event is not downstream of the ERα 

pathway. 

 

4.6 The dynamics of CARM1 and MED12 recruitment to EREs 

It is well established that ERα orchestrates the ordered and cyclical assembly of 

transcriptional coactivators and chromatin remodelers at EREs (Metivier et al, 2003). The first 

cycle of transcription, which is established within 15 minutes of E2-treatment, involves the 

recruitment of PRMT1, but not CARM1. Mediator is not part of this first round either. 

Subsequent cycles of transcription initiation that have an interval of about 40 minutes recruit 

CARM1 preferentially over PRMT1. To gain an understanding of the dynamics of CARM1 and 

MED12 subcellular localization after MCF7 cells were treated with estrogen, we investigated 

the timing of nuclear accumulation of these factors, and potential alterations in the modified 

state of MED12. ERα rapidly translocates into the nucleus in response to E2 (Figure 30A), as 

expected. Interestingly, and previously unreported, the pool of nuclear CARM1 increases after 

1 hour of E2-treatment, perhaps to support the “productive” cycles of transcription, which 

seem to favor the use of CARM1 over PRMT1 (Metivier et al, 2003). Nuclear MED12 levels 
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do not fluctuate after E2-treatment, and no dramatic increase in nuclear MED12 methylation 

is observed during this time course (Figure 30A). Next, we asked if methylated MED12 was 

recruited to EREs. Again, using the four GREB-linked EREs we find that methylated MED12 

recruitment peaks at 1-hour after E2-treatment (Figure 30B), which is the same timing as 

Mediator recruitment (Metivier et al, 2003). The same holds true for TFF1, TGFBP4, and 

FKBP4 (Figure 31A-C). Also, using a biotin-DNA pull-down assay (Foulds et al, 2013), we can 

demonstrate the in vitro assembly of an ERα/CARM1/MED12 complex on wild-type ERE 

(Figure 30C). Finally, we wanted to attempt to determine whether un-methylated MED12 is 

recruited to ERE, and subsequently becomes methylated due to the co-recruitment of 

CARM1. To do this, we chose to use a reporter/imaging system that allows the quantification 

of both ERα and co-regulator recruitment to an ERE array (Bolt et al, 2013). This system 

makes use of a HeLa cell line that has an array of EREs (over 100 copies) from the rat 

prolactin (PRL) gene integrated into a single genomic locus, and also stably express GFP-

ERα. When these cells are E2-treated you observe the rapid recruitment of GFP-ERα to a 

single spot within the nucleus – the PRL array. Immunofluorescence can be used to establish 

the recruitment dynamics of co-regulators to this array. We found that MED12 is recruited to 

the PRL array (Figure 30D), allowing us to use this approach. We compared the recruitment 

dynamics of ERα, total MED12 and methylated MED12. The timing of the recruitment of both 

MED12 and methylated MED12 is very similar to that of ERα, suggesting that either MED12 

is recruited in the methylated state, or that methylation occurs concomitantly with recruitment. 
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Figure 30: E2-dependent recruitment of methylated MED12 to the ER-target gene,  

GREB1. 

(A) MCF-7 cells were cultured in phenol red-free DMEM supplemented with 10% charcoal 

dextran-stripped FBS for 3 days and treated with E2 (50 nM) for 0, 0.5, 1, 4, and 24 hours. 

Nuclear extracts were subjected to Western analysis using αmeMED12a, αMED12, αCARM1, 

αERα, and αLamin A/C antibodies. (B) MCF-7 cells were cultured in phenol red-free DMEM 

supplemented with 10% charcoal dextran-stripped FBS for 3 days and treated with E2 (50 

nM) for 0, 0.5, 1, 4, and 24 hours. ChIP experiments were performed with αmeMED12b 

antibody. Immunoprecipitated DNA was analyzed by qPCR using primers specific for the 

GREB1 gene. Data represent mean of three independent experiments. The y-axis is the fold 

change of mean values between peaks and no peak. The x-axis is the hours of E2 treatment. 

(C) Schematic showing the wild-type (WT) and mutated (MUT) ERE1 fragment (peak 3) of the 

GREB1 gene used for the pull-down experiment. The four nucleotides of the ERE1 fragment 

written in bold characters are mutated, which attenuates its binding to ERα. Biotinylated WT 
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and MUT fragments were used to pull down endogenous ER-coregulator complexes from the 

MCF-7 nuclear extracts. The input and the eluted samples were immunoblotted with 

αmeMED12b, αMED12, αCARM1, and αERα antibodies. (D) GFP-ER:HeLa:PRL cells were 

treated with 10 nM E2 for the indicated times. The recruitment of methylated MED12, total 

MED12, and ER to the PRL array was measured using αmeMED12b, αMED12, and αGFP 

antibodies. Image shows overlap between GFP-ER and meMED12b after 1 h of E2 treatment.  

Figure 30B – Experiment performed and figure organized by Dr. Donghang Cheng, UT M.D. 

Anderson Cancer Center 

Figure 30C – Experiment performed and figure organized by Dr. Charles Foulds from Dr. Bert 

O’Malley lab, Baylor College of Medicine 

Figure 30D – Experiment performed and figure organized by Dr. Fabio Stossi from Dr. Michael 

Mancini lab, Baylor College of Medicine 
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Figure 31: E2-dependent recruitment of methylated MED12 to TFF1, IGFBP4, and  

FKBP4 EREs. 

(A, B, and C) MCF-7 cells were cultured in phenol red-free DMEM supplemented with 10% 

charcoal dextran-stripped FBS for 3 days and treated with E2 (50nM) for 0, 0.5, 1, 4, and 24 

hours. ChIP experiments were performed with αmeMED12b antibody. Immunoprecipitated 

DNA was analyzed by qPCR using primers specific for TFF1, IGFBP4 and FKBP4 genes. 

Data represent mean of three independent experiments. The y-axis is the fold change of mean 

values between peaks and no peak. The x-axis is the hours of E2 treatment. 

Figure 31 – Experiment performed and figure organized by Dr. Donghang Cheng, UT M.D. 

Anderson Cancer Center 
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Chapter 5: Discussion 

 
Sections 5.1 – 5.3 serve as the discussion for Chapter 3 

5.1 Substrate specificity of PRMTs  

It is well established that arginine residues within RGG/RG sequences, termed 

Glycine- and Arginine-rich (GAR) motifs, are preferred sites of methylation for most PRMTs. 

Some of the examples include GAR1, hnRNPA1, hnRNPU, hnRNPK, fibrillarin and nucleolin 

(Thandapani et al, 2013b). Of the nine known PRMT enzymes, PRMT1, 3, 5, 6, and 8 

methylate arginines within GAR motifs, however, not exclusively, as they also have non-GAR 

substrates. These non-GAR substrates (E.g. PGCα, ER, FOXO, histones H3, and H4) are 

perhaps recognized by PRMTs based on their tertiary structure (Di Lorenzo & Bedford, 2011; 

Le Romancer et al, 2008; Teyssier et al, 2005; Yamagata et al, 2008). CARM1 is a unique 

enzyme, as it does not methylate GAR containing proteins, it rather methylates PGM (proline-

, glycine- and methionine-rich) motifs, which are mainly found in splicing factors (Bedford et 

al, 1998). It also methylates other substrates that have no obvious common recognition motif. 

(Cheng et al, 2007). Many CARM1 substrates (PABP1, SmB’, CA150, U1C, and SF3B4) are 

also symmetrically dimethylated by PRMT5 (Cheng et al, 2007). Similarly, many GAR and 

non-GAR substrates can also be common targets for Type I and Type II enzymes. For 

example, the GAR substrate, nucleolin, is methylated by PRMT1 and PRMT5 (Bedford & 

Richard, 2005; Teng et al, 2007). The non-GAR protein, histone H4 (at R3), is a common 

target for both Type I (PRMT1, 6,, and 8) and Type II (PRMT5) enzymes. H4R3me2a is 

associated with actively transcribed promoters, whereas the H4R3me2s mark colocalizes with 

repressive marks in ChIP analysis (An et al, 2004; Wang et al, 2001; Wang et al, 2008). This 

example clearly shows the existence of competition among PRMTs for the same substrates. 

But, how commonly this happens, especially in non-histone substrates, is unclear. In addition, 
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GAR and PGM motifs containing multiple arginine residues may also undergo dual 

modifications (ADMA and/or SDMA), which may attribute them different functions.  

 

5.2 Investigating the MMA mark  

PRMT7 is the only known Type III enzyme, which has the ability to exclusively 

monomethylate arginine residues within substrates (Zurita-Lopez et al, 2012). The enzyme 

purified from insect cells had robust activity and was able to methylate all core histones, 

preferentially H2B (at R29, 31 and 33) (Feng et al, 2013). This provided the first evidence that 

MMA is not only a precursor of ADMA and SDMA, but also a mark that could perhaps be read 

by effector molecules and have potential biological roles. However, the catalytic efficiency 

(Kcat/Km) of PRMT7 is around 1000 fold lower than those for other PRMTs (PRMT1, 3, 6) (Feng 

et al, 2013). This suggests two possible scenarios. One is that PRMT7 only methylates a 

select few substrates. Since PRMTs work in a distributive fashion, the other possibility is that 

PRMT7 may act as a priming enzyme by transferring the first methyl group to the substrate, 

which will then be taken over by another PRMT for asymmetric or symmetric dimethylation. 

This is perhaps the likely scenario because of the following reason. Fibrillarin, myelin basic 

protein, and SmD3 are proteins known to be dimethylated by PRMT1 and PRMT5. However, 

when these proteins are subjected to in vitro methylation by PRMT7, they undergo mono-

methylation (Zurita-Lopez et al, 2012). This suggests that PRMT7 may prime the substrates 

of PRMT1 or PRMT5 for dimethylation. There could also be a third possibility where PRMT7 

is a monomethylator as well as a priming enzyme. One of the ways to understand this issue 

is to measure the extent of total mono-methylation in wild-type and PRMT7-null cells. In 

addition, we also wanted to search for any possible PRMTs with Type III  
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Figure 32: Co-immunoprecipitation of GFP-PRMTs with endogenous PRMT1. 

HEK293 cells transiently expressing GFP or GFP-PRMTs (PRMT1-9) fusion proteins were 

immunoprecipitated with αGFP or αIgG antibodies and subjected to Western analysis with 

αPRMT1 (A) or αGFP (B) antibodies. Solid white dots indicate PRMT1 protein co-

immunoprecipitated by GFP-PRMT1 and GFP-PRMT8 (C) Western analysis of the input 

samples using αGFP antibody. Experiment for figure 32 was performed by Dr. Surbhi Dhar (a 

previous post-doc from Dr. Mark Bedford’s lab, UT M.D. Anderson Cancer Center)  
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Figure 33: Hyper-monomethylation of SmB/SmB' upon PRMT5 loss. 

Whole cell extracts from HeLa-shControl (C) and HeLa-shPRMT5 (kd1 and kd2) cells were 

immunoprecipitated with Y12 antibody. The input samples and the Y12 immunoprecipitates 

were subjected to Western analysis with αMMA5 antibody.  
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activity in addition to PRMT7. Furthermore, we wanted to study how the dynamics of three 

types of arginine methylation change upon the loss of major PRMTs (PRMT1 and PRMT5)? 

To address these questions, we generated pan antibodies that recognize monomethylated 

arginine residues within substrates and studied the methylation patterns in cell lines knocked 

out/down for various PRMTs.      

 

5.3 The dominant ADMA activity of PRMT1 keeps the global MMA and SDMA levels in 

check. 

The ratios of different arginine methylation types in a variety of cell types were 

estimated to be 1500:3:2:1 for Arg:ADMA:MMA:SDMA (Matsuoka, 1972). However, upon the 

loss of PRMT1, we found that there were global increases in MMA and SDMA levels (Figure 

34). Since PRMT1 constitutes for about 90% of total ADMA activity, the absence of it leaves 

a large number of substrates unmethylated, making them available for Type II and III 

enzymes. This highlights the extent of competition that exists among different methylation 

types. We speculated that PRMT1 may heterodimerize with PRMT7 or another PRMT, which 

may act as a priming enzyme for PRMT1 and it monomethylates substrates in the absence of 

PRMT1. To test this, we transfected HEK293T cells with GFP-PRMTs (PRMT1-9), performed 

a GFP immunoprecipitation followed by Western analysis with PRMT1 antibody. We found 

that PRMT1 interacted with itself and PRMT8, an enzyme only expressed in brain (Figure 32) 

(Lee et al, 2005a). Hence, we concluded that PRMT1 might not function in concert with a 

priming enzyme. Although, we did not observe major MMA changes in cell lines depleted for 

PRMT3, 4, 5, and 6, there was a specific doublet of bands that migrated at 25kDa in PRMT5 

KD cells that was absent in PRMT WT cells (Figure 9D). Based on the size, we speculated 

the doublet to be SmB/SmB’, which is a well-studied PRMT5 target (Pesiridis et al, 2009). 

Western analysis of SmB/SmB’ proteins immunoprecipitated from wild-type and PRMT5 
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knockdown cells confirmed that these proteins are indeed monomethylated upon PRMT5 

knockdown (Figure 32). Since PRMT5 knockdown does not completely deplete the cells of 

PRMT5, the remaining low levels of enzyme will transfer the first methyl group to the substrate 

and release, then the enzyme will likely find another unmethylated substrate (because of its 

large pool size), instead of binding with the already monomethylated substrate to convert to 

SDMA, thereby hyper-monomethylating the SmB/SmB’ proteins. However, this hypothesis 

does not hold true in the case of PRMT1 knockout cells for two reasons. First, PRMT1 is 

completely knocked out in these cells. Second, PRMT1 is a partially-processive enzyme 

(Obianyo et al, 2008), as opposed to PRMT5, which catalyzes in a distributive fashion 

(Antonysamy et al, 2012).   
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Figure 34:  Dynamic interplay between the three types of arginine methylation. 

Upon the loss of PRMT1, there are major increases in global MMA and SDMA levels, whereas 

ADMA levels were reduced. This is likely due to the fact that PRMT1 accounts for more than 

90% of ADMA activity and the loss of this enzyme could lead to the accumulation of a number 

of unmethylated substrates, which then become targets for Type II and Type III enzymes.  

Figure 34 is adapted and modified from Yang Y, Bedford MT (2013) Protein arginine 

methyltransferases and cancer. Nat Rev Cancer 13: 37-50. 

Permission has been acquired from the journal to use this figure. 
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Sections 5.4 – 5.6 serve as the discussion for Chapter 4 

 

5.4 CARM1 methylates a distinct motif 

Most PRMTs methylate glycine-arginine-rich (GAR) domains (Thandapani et al, 

2013a); CARM1 does not. The ill-defined nature of the CARM1 methylation motif can best be 

seen when a large number of different CARM1 methylation sites are aligned (Figure 35). 

There is clearly no obvious motif, except for the propensity for proline residues in the vicinity 

of the CARM1 methylation site. But even the proline residues are not at a fixed position from 

the methylated arginine, suggesting that all that is needed is a kink, on either side (or both 

sides) of the methylation site. Thus, even after the identification of a number of different 

CARM1 substrates, the methylation motif for this enzyme still remains rather nebulous. Co-

crystal structures of CARM1 with H3 and PABP1 peptides were resolved. While substrate 

arginine makes hydrogen bond interactions with certain key residues in CARM1, residues 

surrounding the arginine interact through their backbone atoms, suggesting that substrate 

recognition by CARM1 is largely sequence-independent. However, since the CARM1 

crystallization construct used in this study is truncated, it is possible that the missing domains 

may make additional interactions with the peptide that are necessary for substrate recognition. 

In addition, the length of the substrate peptides used may also play a role. In fact, long-range 

interactions between PRMT1 and histone H4 were shown to be critical for substrate binding 

and catalysis (Osborne et al, 2007). Interestingly, although it is difficult to predict a CARM1 

substrate, antibodies developed to one substrate often cross-react with other substrates – so 

antibodies are able to identify some structural similarity between CARM1 methylation motifs. 

This “semi-pan” nature of CARM1 substrate antibodies was first realized using the 

H3R17me2a antibody, which we have shown recognizes  
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CARM1 Substrate     Methylated motif             Reference 
BAF155 (R1064)  PPMPGNILGPRVPLTAPNGMY      (Wang et al, 2014a) 
CAS3 (R88)  NPYQTAVYPVRSAYPQQSPYA  (Lee & Bedford, 2002)                                                             
CBP (R714)  PNGPLSLPVNRMQVSQGMNSF  (Chevillard-Briet et al, 2002)   
CBP (R742)  VQLPQAPMGPRAASPMNHSVQ      (Chevillard-Briet et al, 2002) 
CBP (R768)  SVPGMAISPSRMPQPPNMMGA      (Chevillard-Briet et al, 2002) 
CTD (R1810)  TSPSYSPSSPRYTPQSPTYTP  (Sims et al, 2011)   
GPS2 (R312)*  GFAATSQPGPRLPFIQHSQNP  (Huang et al, 2015a)                                                  
GPS2 (R323)*  LPFIQHSQNPRFYHKXXXXXX  (Huang et al, 2015a; Jarmalavicius et al, 2010)                                                            
H3 (R17)  ARKSTGGKAPRKQLATKAARK      (Bauer et al, 2002; Chen et al, 1999) 
H3 (R26)  PRKQLATKAARKSAPATGGVK      (Chen et al, 1999; Schurter et al, 2001) 
HuD (R236)  YPGPLHHQAQRFRLDNLLNMA      (Fujiwara et al, 2006) 
HuR (R217)  FGGPVHHQAQRFRFSPMGVDH      (Li et al, 2002) 
MED12 (R1899)* EPSSYKTSVYRQQQPAVPQGQ  
MLL2 (R3727)* QERQLQLQQQRMQLAQKLQQQ  
p300 (R2142)  NMNPMQAGVQRAGLPQQQPQQ      (Lee et al, 2005b) 
p300 (580)  QWHEDITQDLRNHLVHKLVQA      (Xu et al, 2001) 
PABP1 (R455)  HPFQNMPGAIRPAAPRPPFST      (Lee & Bedford, 2002) 
PABP1 (R460)  MPGAIRPAAPRPPFSTMRPAS      (Lee & Bedford, 2002) 
Pax7 (R10)  XMAALPGTVPRMMRPAPGQNY      (Kawabe et al, 2012) 
Pax7 (R13)  ALPGTVPRMMRPAPGQNYPRT      (Kawabe et al, 2012) 
Pax7 (R22)  MRPAPGQNYPRTGFPLEVSTP      (Kawabe et al, 2012) 
Pax7 (R37)  LEVSTPLGQGRVNQLGGVFIN      (Kawabe et al, 2012) 
Sox2 (R113)  KEHPDYKYRPRRKTKTLMKKD      (Zhao et al, 2011) 
Sox9 (R152)  LWRLLNESEKRPFVEEAERLR  (Ito et al, 2009)                                                            
Sox9 (R74)  SEEDKFPVCIREAVSQVLKGY  (Ito et al, 2009)                                                            
SRC3 (R1171)  RPRTNTPKQLRMQLQQRLQGQ      (Feng et al, 2006) 
TARPP (R650)  QYPTSTSQQYRPLASVQYSAQ      (Kim et al, 2004) 

 

Figure 35: Alignment of CARM1-methylated motifs. 

A selection of CARM1-methylated motifs containing 20 amino acids surrounding the central 

arginine residue was aligned using the MegAlign software (DNASTAR, Inc). The central 

arginine and the neighboring prolines were highlighted in black and grey, respectively. 

Asterisk indicates methylation sites identified in this study. 
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SRC3 (Naeem et al, 2007) and CA150 (Cheng et al, 2007), and here we show also recognizes 

GPS2, SLM2, PABP1, SF3B4, SRC1 and MED12 (Figure 17B).  

The use of methyl-specific antibodies combined with MS-based proteomic analysis 

has led to the discovery of a number of arginine-methylated proteins (Boisvert et al, 2003; 

Guo et al, 2014; Ong et al, 2004b). However, these methyl-specific antibodies were raised 

against GAR-motifs, making them unsuitable for use in enriching CARM1 substrates. To 

address this issue, we developed antibodies against a mixture of CARM1-methylated motifs 

and identified over a 100 putative CARM1 substrates by IP-MS (Figures 15 & 17). The 

enrichment of known CARM1 substrates like SRC3, CA150, and SF3B4, whose methyl-motifs 

were not used in antibody generation, validates our strategy. The antibodies also enriched for 

a few known PRMT1 substrates including Sam68 (Cote et al, 2003), G3BP1 (Bikkavilli & 

Malbon, 2011) and DHX9 (Smith et al, 2004). Secondary screening was performed on a small 

subset of the identified proteins, using CARM1 knockdown and knockout cells (Figure 18), 

and we validated three novel CARM1 substrates – GPS2, KMT2D, and MED12. Interestingly, 

SLM2 methylation is not lost upon CARM1 knockdown (Figure 18I), although this protein is 

recognized by a number of CARM1 substrate motif antibodies.  

All four of these newly confirmed CARM1 substrates have biological activity on or near 

chromatin. Indeed, GPS2 is a dual-function protein that acts both as a corepressor and 

coactivator for various transcription factors (Wong et al, 2014a). It has been reported that 

GPS2 is methylated at R323 (one of the two methyl sites identified in our MS data). Recently, 

it was found that the H3R17me2a antibody recognizes GPS2 (Huang et al, 2015b), and that 

PRMT6 can methylate GPS2 in vitro, but CARM1 was never tested in this assay. In addition, 

the site of PRMT6 methylation on GPS2 was mapped to R323 and this methylation seems to 

be required for GPS2 protein stabilization. Thus, there may be two independent sites of 

methylation on GPS2 (R312 & R323), and both CARM1 and PRMT6 may compete for this 

substrate. KMT2D is a lysine methyltransferase, primarily responsible for mono-methylating 
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H3K4 at active enhancers (Guo et al, 2013; Hu et al, 2013; Lee et al, 2013). We report that 

KMT2D is arginine methylated at R3727 residue. The functional role of this methylation event 

is unclear, but it is interesting that KMT2D and CARM1 both have activity at enhancers, and 

may be “talking” to each other. The RNA-binding protein SLM2 was reported to be arginine 

methylated by PRMT1 (Cote et al, 2003). Here, we show that SLM2 is also recognized by 

CARM1 substrate antibodies, suggesting that PRMT1 may not be the sole methyltransferase 

for this protein. Finally, MED12 was previously identified as an arginine methylated protein in 

two independent studies. Using hydrophilic interaction liquid chromatography (an antibody-

independent approach) to enrich for tryptic peptides that contain methylated arginine residues, 

the Acuto group identified the same site that we did (R1899) as a prominent site of arginine 

methylation, although they did not determine the enzyme responsible for the methylation 

(Uhlmann et al, 2012). Subsequently, Xu group identified MED12 in a screen that used ADMA 

antibody raised to a redundant XXRme2aXX motif (Guo et al, 2014), to enrich for proteins that 

were methylated in CARM1 WT but not CARM1 KO breast cancer cell lines (Wang et al, 

2014a). Using in vitro binding assays, they were able to show that GST-CARM1 interacted 

with full-length MED12. However, we did not observe a co-immunoprecipitation between 

endogenous CARM1 and MED12 (Figure 21A). It is possible that the transient interaction 

needed to achieve methylation is what is detected in the in vitro binding assay. Using deletion 

analysis, they showed that MED12 is methylated at R1862, which is distinct from the site 

identified in the current study (R1899). Methylation at this site was shown to sensitize breast 

cancer cells to chemotherapy drugs by enhancing Mediator recruitment to p21 gene locus and 

suppressing its transcription. Consistent with these reported findings, using the more focused 

ADMACARM1 antibodies, we also identified MED12 as a methylated protein. We showed that 

MED12 is methylated by CARM1 and is recruited to the ER∝-specific enhancers. We propose 

that methylated MED12 functions in maximizing ER∝-mediated transcription, possibly by 

recruiting the coactivator, TDRD3.   
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5.5 CARM1 primarily associates with enhancers, but is also found at promoters 

By exploiting the pan nature of the H3R17me2a antibody, CARM1 activity was first 

mapped in a global fashion by the group of Myles Brown, using a ChIP-on-chip approach 

(Lupien et al, 2009). They found that the majority (70%) of ERα binding sites are associated 

with CARM1 activity. Most of the CARM1 activity mapped to intergenic and intronic regions, 

with less than 3% of this activity associated with proximal promoter regions. Our expanded 

H3R17me2a ChIP-seq data support these findings.  

The association of CARM1 itself with chromatin has been investigated using a reChIP-

on-chip approach (Coughlan et al, 2013). In this study from Joe Torchia’s group, a promoter 

array was used for the profiling, so they were not able to investigate enhancer enrichment of 

CARM1. However, the SRC3/CARM1 protein complex associated not only with promoter 

proximal EREs, but also with Sp1 and C/EBP1 binding motifs. Importantly, the Sp1 motif is 

enriched in the YYN and YNN clusters that are associated with CARM1 activity at promoters 

that are also marked with H3K4me3 signal (Figures 25B & 26B). The reChIP-on-chip 

experiment focused on identifying promoters that recruited CARM1 through its association 

with SRC3 (Coughlan et al, 2013). This is likely just a subset of promoters that are engaged 

by CARM1, because it can be recruited by other SRCs and also directly by other transcription 

factors themselves. Indeed, CARM1 interacts directly with ERα, and in an estrogen-

independent manner  in response to cAMP signaling (Carascossa et al, 2010), and also with 

c-Fos (Fauquier et al, 2008) and C/EBPβ (Kowenz-Leutz et al, 2010).  CARM1 not only binds, 

but also methylates C/EBPβ and inhibits the association of this transcription factor with the 

Mediator complex (Kowenz-Leutz et al, 2010). NF-κB is another transcription factor that 

directly interacts with CARM1 (Covic et al, 2005), and it was later reported that CARM1 is 

present at the promoter/enhancer looping joint of a NF-κB regulated gene (MCP-1) 

(Teferedegne et al, 2006). In this setting, CARM1 was not required for looping, but was 

required for efficient expression of MCP-1. CARM1 also binds directly to the Notch intracellular 
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domain (NICD), and can be detected at NICD-bound enhancer sites of a number of Notch 

target genes (Hein et al, 2015). Thus, CARM1 is not a dedicated ER coactivator, but is also 

recruited by other transcription factors to both proximal promoters and enhancer elements. 

CARM1 is not only recruited to chromatin by transcription factors, but also by ATP-

dependent remodeling complexes, including the SWI/SNF complex (Xu et al, 2004) and direct 

interactions with Mi2α and Mi2β, components of the NuRD complex (Streubel et al, 2013). 

Although NuRD is generally considered a transcriptional repressor complex, there is emerging 

evidence that it can also positively regulate gene expression, particularly in light of recent 

genomic localization studies that show its enrichment at active promoters and enhancers 

(Shimbo et al, 2013). 

At both enhancer elements and at some proximal promoters, CARM1 methylates a 

host of different proteins that are detected with the H3R17me2a antibody. However, it is clear 

that the H3R17me2a antibody does not recognize all CARM1 substrates (Figure 17B – 

KMT2D & SRC2). This is supported by our ChIP-seq data showing two categories (YYN & 

YNN) that display strong CARM1 recruitment but very little H3R17me2a antibody ChIP signals 

(Figure 25B). It is likely that CARM1 activity at these proximal promoter regions will be 

detected using a different CARM1 substrate antibody. These data support the idea of distinct 

methylarginine “fingerprints” on transcriptional coactivators, at different gene promoters and 

enhancers, which was first proposed by the Gronemeyer group (Ceschin et al, 2011). In that 

study, they showed that three methyl-specific antibodies, raised against different CARM1 

methylation sites on the CREB-binding protein (CBP), displayed dissimilar localization 

signatures at different EREs. 
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5.6 How does CARM1 methylation of MED12 regulate its function? 

CARM1 impacts gene expression pathways at multiple stages; it methylates the 

SWI/SNF chromatin remodeling protein, BAF155, to modulate chromatin structure at c-Myc-

regulated genes. It affects transcription initiation by methylating histone H3, SRCs, and 

p300/CBP. It also regulates mRNA splicing by methylating CA150 and other splicing factors. 

Furthermore, CARM1 modifies PABP1, HuR, and HuD to regulate post-splicing events, such 

as mRNA stability. We demonstrate here that methylation of MED12 provides an additional 

level of gene expression regulation governed by CARM1. While the Mediator complex broadly 

regulates transcription, the MED12 subunit is only partially methylated in cells (Figure 19D), 

suggesting that the Mediator complex targeted by CARM1 may regulate a specific set of 

transcriptional programs, as opposed to all RNAPII-dependent genes. From ChIP-seq 

experiments, we defined this specific set of genes to be ERα-dependent. We are currently 

performing gene expression studies to determine if MED12 methylation enhances the 

activation of these genes.  

Methylation of MED12 signals the recruitment of TDRD3, which may promote 

transcriptional activation because of TDRD3’s coactivator activity (Yang et al, 2010). TDRD3 

is in a tightly complex with the topoisomerase, TOP3B (Stoll et al, 2013; Yang et al, 2014). It 

has been shown that the TDRD3/TOP3B complex is recruited to active chromatin through the 

ability of the TDRD3 Tudor domain to interact with the H3R17me2a and H4R3me2a marks 

(Yang et al, 2014).  Here we report a third mark that is “read” by TDRD3:  MED12R1899me2a. 

The recruitment of the TDRD3/TOP3B complex could help resolve R-loops at sites of active 

transcription (Yang et al, 2014), or it could act on ncRNA molecules that are associated with 

the Mediator complex. Indeed, TOP3B was recently shown to possess both DNA and RNA 

topoisomerase activities (Xu et al, 2013; Yang et al, 2014). Importantly, Mediator has been 

shown to associate with at least two classes of non-coding RNAs; 1) activator RNAs (aRNAs, 

also called ncRNA-a) that increase the transcription of neighboring genes (Lai et al, 2013), 
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and 2) enhancer RNAs (eRNAs) that correlate with enhancer-promoter looping and gene 

activation (Hsieh et al, 2014). The recruitment of the TDRD3/TOP3B complex, and its dual 

topoisomerase activity, may be required for not only reducing R-loop formation in the wake of 

Pol II at active genes (though a H3R17me2a and H4R3me2a interactions), but also for the 

“untangling” and “correct” structural presentation of these RNA scaffolds at sites of enhancer-

promoter looping (though a MED12R1899me2a interaction) (Figure 30E). 
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Chapter 6: Future studies 
 

Currently, I am performing gene expression studies to determine if MED12 methylation 

regulates transcription of ER-target genes. This requires the generation of ER positive breast 

cancer cell lines depleted of endogenous MED12 and rescued with MED12 wildtype and 

R1899K constructs. Owing to its large size, overexpression of MED12 plasmid using chemical 

transfection methods proved difficult to achieve. In addition, RNAi-mediated knockdown of 

endogenous MED12 was only partially successful. To circumvent these issues, we planned 

to use lentiviral-mediated transduction method and generate five MCF-7 cell lines that express 

(i) Scramble shRNA and FLAG-empty (ii) MED12 shRNA and FLAG-empty (iii) MED12 shRNA 

and shRNA-resistant MED12 wild-type (iv) MED12 shRNA and shRNA-resistant MED12 

R1899K and (v) MED12 shRNA and shRNA-resistant MED12 R1862K vectors. These cells 

will be treated with Estrogen (50 nM, 1 h), validated by Western analysis and tested for gene 

expression changes by RT-qPCR. We hypothesized that MED12 R1899 methylation 

enhances ER-mediated transcription and hence, we expect to see reduced ER-target gene 

expression in mutant (R1899K) cells (iv) compared to their wild-type counterparts (iii). The cell 

line (v) will determine if the R1862 methylation, identified by the Xu group, is also important in 

mediating ER signaling (Wang et al, 2015). We do not expect that MED12 methylation will 

negatively regulate these target genes, for two reasons: CARM1 is a coactivator for nuclear 

hormone receptors (Chen et al, 1999) and MED12 knockdown reduces the expression of ER 

target genes and ESR1 gene itself (Prenzel et al, 2012). It is also possible that MED12 

methylation may function redundantly in recruiting TDRD3 to NR target gene loci and hence, 

may not produce a significant effect on transcription. In this unlikely, yet possible scenario, we 

will focus our efforts of  
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Figure 36: MED12 associates with activating ncRNAs in a CARM1-dependent manner. 

MCF-7-Tet-on-shCARM1 cells were untreated or treated with doxycycline (1 μg/ml) for 8 days. 

The cells were ultraviolet crosslinked at 254 nm (200 mJ/cm2) in 10 ml ice-cold PBS, lysed in 

mild buffer and immunoprecipitated with αMED12 antibody. Total RNA is then extracted from 

the immunoprecipitates, converted to cDNA and analyzed by RT-qPCR using primer sets 

specific for ncRNA-a1, -a3 and -a7 genes.  

Figure 36 – RIP experiment performed and figure organized by Dr. Donghang Cheng. I did 

validation of CARM1 KO and MED12 IP-WBs.  
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Figure 37: Mutant MED12 shows reduced interaction with activating ncRNAs. 

HEK293T cells were transiently transfected with FLAG-MED12-WT or FLAG-MED12-MUT 

constructs. The cells were ultraviolet crosslinked at 254 nm (200 mJ/cm2) in 10 ml ice-cold 

PBS, lysed in mild buffer and immunoprecipitated with αFLAG antibody. Total RNA is then 

extracted from the immunoprecipitates, converted to cDNA and analyzed by RT-qPCR using 

primer sets specific for ncRNA-a1, -a3 and -a7 genes.  

Figure 37 – RIP experiment performed and figure organized by Dr. Donghang Cheng. I did 

validation of MED12 WT and MUT protein expression.  
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Figure 38: MED12 associates with activating ncRNAs in a TDRD3-dependent manner. 

MCF-7-Tet-on-shTDRD3 cells were untreated or treated with doxycycline (1 μg/ml) for 8 days. 

The cells were ultraviolet crosslinked at 254 nm (200 mJ/cm2) in 10 ml ice-cold PBS, lysed in 

mild buffer and immunoprecipitated with αMED12 antibody. Total RNA is then extracted from 

the immunoprecipitates, converted to cDNA and analyzed by RT-qPCR using primer sets 

specific for ncRNA-a1, -a3 and -a7 genes.  

Figure 38 – RIP experiment performed and figure organized by Dr. Donghang Cheng. I did 

validation of TDRD3 KO and MED12 IP-WBs.  
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understanding the biological roles of MED12 methylation in the activating ncRNA (ncRNA-a) 

field. MED12 was shown to associate with activating ncRNA (a1, a3, and a7) (Lai et al, 2013). 

We performed RNA immunoprecipitation (RIP) experiments and found that MED12 associates 

with these ncRNAs in a CARM1-dependent manner in MCF-7 cells (Figure 36). We also 

overexpressed FLAG-MED12 wild-type and mutant (R1899K) in HEK293T cells and found 

that the methyl-mutant showed reduced association with the three ncRNAs when compared 

with the wild-type protein (Figure 37). In addition, we showed that methyl-MED12 antibody 

was able to pull down these ncRNAs in MCF-7 cells (data not shown). Furthermore, we 

showed that MED12 interaction with ncRNA-a7 is also dependent on TDRD3 (Figure 38). 

These findings led us to hypothesize that methyl-MED12-associated TDRD3 may act as an 

interface that links ncRNA-a with their target gene loci to promote their transcription. As a 

secondary confirmation, we will perform RIP-seq experiments using RNA isolated from 

MED12 immunoprecipitates of wild-type and CARM1- and TDRD3-knockdown cells. To test 

our hypothesis, the cell lines (i-iv) will be infected with a lentivirus expressing TK promoter-

driven luciferase reporter, which is fused to the ncRNA (a1, a3 or a7) gene driven by its natural 

promoter. The effect of MED12 methylation on ncRNA target gene activation can be measured 

by the changes in luciferase activity. In addition, the expression of ncRNA-a target genes 

(TAL1, STIL, SNAI1, UBE2V1, AURKA, and CSTF1) in cell lines (i-iv) will be also tested. 

These target genes were shown to be activated by CDK8-mediated phosphorylation of 

H3S10, a histone mark linked with transcriptional activation (Lai et al, 2013; Nowak & Corces, 

2004). We noted earlier that MED12 methylation does not have an effect on Mediator-

associated kinase activity (Figure 22) at the global level. However, there may be a MED12 

methylation-dependent CDK8 regulation at the gene specific level. Phospho-H3S10 chIP at 

these target gene loci in wild-type and methyl mutant cell lines will be performed. If the above 

studies hold true, chromosome conformation capture (3C) should be performed to confirm the 
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association of ncRNAs with their target gene promoters in MED12 wild-type versus methyl-

mutant cell lines. 
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Chapter 7: Significance 
 

In order to better understand PRMT functions in normal physiology as well as to 

develop therapeutic targets, many PRMT inhibitors have been identified and some of them 

have proven effective in ameliorating symptoms in animal disease models (Alinari et al, 2015; 

Chan-Penebre et al, 2015; Panfil et al, 2015; Sun et al, 2012). Bedford group identified the 

first class of small molecule inhibitors (AMI series) that specifically targeted PRMTs, but not 

other AdoMet-dependent methyltransferases (Cheng et al, 2004). AMI-1, which targets 

PRMT1, 3, 4, and 6, was shown to alleviate asthmatic symptoms in AIP1 (Ag-induced 

pulmonary inflammation) rat model (Sun et al, 2012). Later on, more selective inhibitors were 

identified. A PRMT5 inhibitor has been reported to have anti-tumor effects in Mantle cell 

lymphoma (MCL) xenograft model (Chan-Penebre et al, 2015). While the knowledge of PRMT 

crystal structures aided in identifying small molecule inhibitors, validating them requires 

additional tools. Methyl-specific antibodies are proving valuable in assessing the efficacy and 

selectivity of these PRMT small molecule inhibitors. For example, a pan-SDMA antibody was 

used to measure the loss of PRMT5 activity in PRMT5 inhibitor-treated MCL cell lines (Chan-

Penebre et al, 2015). A selective CARM1 inhibitor was also identified that inhibited methylation 

of CA150, PABP1, and SmB strongly, however H3 weakly, as detected by the antibodies 

specific for individual substrates (Cheng et al, 2011). Hence, there is a need for developing 

better CARM1 inhibitors and CARM1 substrate motif antibodies generated in this study will 

act as great tools for characterizing their selectivity. Similarly, MMA antibodies generated in 

the first study can be used to validate loss of PRMT1 activity, which is measured by the 

increase in monomethylation signal. Recently, we have tested a new set of PRMT inhibitors 

in our lab. As anticipated, PRMT1 inhibitor treated cells showed an increase in MMA signal 

and a decrease in ADMA signal (top and middle panels – Figure 39). However, the CARM1 

inhibitor did not prove effective in eliminating or  
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Figure 39: Testing the efficacy of PRMT inhibitors using methyl-specific antibodies. 

HeLa cells were treated with DMSO, PRMT1 (1 μM), PRMT4/CARM1 (2 μM) or PRMT5 (5μM) 

inhibitors for 4 days. Whole cell extracts were subjected to Western analysis using the 

specified antibodies.  

Figure 39 – Experiment performed and figure organized by Dr. Guozhen Guo  
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reducing the signal on CARM1 substrates, as detected by H3R17me2a antibody (middle 

panel – Figure 39). PRMT5 inhibitor showed a dramatic decrease in SDMA signal (bottom 

panel – Figure 39), proving its efficacy. The same held true for MLL-ENL leukemic cell lines 

treated with the three PRMT inhibitors (Collaboration with Santos group). In addition, anti-

proliferative effects were observed in PRMT5 inhibitor-treated MLL-ENL cell lines (data not 

shown).  

In addition to small molecule inhibitor validation, MMA antibodies can be used to 

identify novel PRMT1 and PRMT7 substrates. Wild-type, PRMT1 knockout, and PRMT7 

knockout MEF extracts can be immunoprecipitated with MMA antibodies and the eluates can 

be subjected to mass spectrometry to identify differentially recognized proteins.  

In the second study involving CARM1 substrate motif antibodies, we have only tested 

a small subset of the 112 MS-identified potential CARM1 substrates. IP-WB experiments may 

uncover more unknown substrates, in addition to GPS2, MLL2, and MED12. Unlike p300/CBP 

and the NCoA family, if methylated MED12 proves to be a dedicated coregulator of ERα 

signaling, an inhibitor targeting methylated MED12, but not unmodified MED12, may 

specifically impact ER pathway and possibly hold some therapeutic value. MLL2 (or KMT2D), 

another substrate identified in this study, is recurrently mutated in multiple cancers. Studying 

the biological role of MLL2 methylation may clarify its possible tumorigenic functions. It is 

notable that R3727 and R4198 sites, methylated by CARM1, were mutated in melanoma, lung 

and pancreatic cancers (TCGA database).  
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