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REGULATION OF THE ESCRT FUNCTION OF ALIX 

 

Sheng Sun, M.S. 

 

Advisory Professor: Jian Kuang, Ph.D. 

 

The ESCRT (endosomal sorting complex required for transport) is an 

evolutionary conserved membrane remodeling machinery that performs membrane 

invagination and abscission. ALIX is a widely expressed adaptor protein that is critically 

involved in three classical ESCRT-mediated processes, including MVB (multivesicular 

body) sorting, cytokinetic abscission and retroviral budding. Previous studies have 

demonstrated that ALIX involvement in these ESCRT-mediated processes requires 

ALIX interaction with the ESCRT-III component CHMP4 as well as a cargo protein. 

However, the native form of ALIX contains a default intramolecular interaction between 

N-terminal Bro1 domain and C-terminal PRD (proline-rich domain), leading to a closed 

conformation of ALIX that cannot interact with CHMP4. This predicts that ALIX 

involvement in ESCRT-mediated processes requires an activation step that relieves the 

intramolecular interaction of ALIX.  

The objective of my dissertation research is to identify the regulatory 

mechanisms that activate the ESCRT function of ALIX in the three classical ESCRT-

mediated processes. Whether ALIX is critically involved in MVB sorting of ubiquitinated 

receptors has been controversial. By examining the effects of ALIX on the level of 

activated EGFR in the lumen of MVB and the level of EGF-induced phosphorylated 

ERK1/2, which is the downstream signaling of activated EGFR, I showed that CHMP4-
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bound ALIX dimer plays an essential role in MVB sorting and silencing of activated 

EGFR. However, MVB sorting of activated EGFR is not required for its degradation. My 

studies thus identify ALIX as an important regulator for signaling output of the activated 

EGFR. I further demonstrated that ALG-2 (apoptosis-linked gene 2 product) is 

responsible for generating ALIX in open conformation that supports MVB sorting and 

timely silencing of activated EGFR. My studies thus identify ALG-2 as a potential 

negative regulator for the signaling transduction of activated EGFR and provide a new 

understanding for the role of ALG-2 in apoptotic induction.  

While ALG-2 is important for ALIX-mediated MVB sorting, I found that ALG-2 is 

not important for ALIX-mediated cytokinetic abscission or retroviral budding. Thus, I 

further identified mechanism that activates ALIX in these two ESCRT-mediated 

processes. By studying mitotic phosphorylation of ALIX, I found that phosphorylation at 

S718 and S721 residues in the PRD domain of ALIX relieves the intramolecular 

interaction of ALIX. This mechanism is required for generating ALIX in open 

conformation that supports cytokinetic abscission and retroviral budding. These 

findings provide a new understanding for the regulation of cytokinesis and retroviral 

budding and may provide new strategies for inhibiting cell division and retroviral 

budding.  

In summary, my dissertation studies have identified two regulatory mechanisms 

that relieve the intramolecular interaction of ALIX in the three classical ESCRT-

mediated membrane remodeling processes. These studies provide insights into the 

regulation of ESCRT-mediated membrane remodeling processes and suggest that 

ALIX may be a potential target for anti-cancer and anti-viral therapy. 
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Chapter 1: Introduction 

 

1.1. Endolysosomal trafficking of cell surface receptors 

Ligand binding to cell surface receptors induces the activation of receptors, 

which then induces the internalization of these activated receptors in membrane-

bounded vesicles through a plasma membrane invagination process, called 

endocytosis (Marsh and McMahon, 1999). These receptor-containing vesicles are then 

fused with early endosome.   

From early endosome, there are three fates for these receptors. First, receptors 

can recycle back to cell surface. During the recycling process, these receptors still have 

signaling function, activating the downstream signaling pathways. Second, receptors 

can stay on the membrane of early endosome. This portion of receptors also keeps 

their signaling function. The third fate is to be sorted into the lumen of early endosome 

through an endosome membrane invagination and abscission process, called MVB 

(multivesicular body) sorting.  

MVB sorting terminates the signaling function of the activated receptors and it is 

a very quick process, happening in ~30 min after ligand binding. Although the receptors 

both on the membrane and in the lumen of early endosome will be trafficked to late 

endosome and then lysosome for degradation, receptors staying on the endosome 

membrane will keep on sending signals to the downstream pathways during the 

trafficking process, which takes several hours. Thus, if activated receptors are not 

properly sorted into endosome through MVB sorting, the duration of the downstream 

signaling will be prolonged and it may lead to uncontrolled cell proliferation. Thus, MVB 
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sorting is an important process that functions as a negative regulator of activated 

receptors. 

The whole process initiating from endocytosis of the activated receptors until to 

lysosome-dependent degradation of these receptors is called endolysosomal trafficking 

(Feyder et al., 2015; Goh and Sorkin, 2013; Mellman, 1996; Scott et al., 2014; Sorkin 

and Goh, 2009; Wegner et al., 2011) (Fig. 1).  
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Figure 1. Endolysosomal trafficking of cell surface receptors. Endolysosomal 

trafficking initiates from the receptor activation-induced endocytosis.  The endocytosed 

receptors either recycle back to cell surface (1), stay on the membrane of early 

endosome (2) or are sorted into the lumen of early endosome (MVB sorting) (3). Then, 

MVB will be fused with lysosome to deliver receptors for lysosome-dependent 

degradation.  
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1.2. Discovery of ESCRT and its MVB sorting function 

MVB sorting is in the opposite topology of endocytosis. While endocytosis 

involves budding of vesicles into cytoplasm, MVB sorting involves budding of vesicles 

away from cytoplasm (Fig. 1). Thus, the mechanism underlining endocytosis does not 

apply to MVB sorting. Therefore, it is important to have a powerful model system to 

study the mechanism underlining MVB sorting. The researchers found that yeast 

Saccharomyces cerevisiae is the most powerful model system for studying MVB sorting 

for several reasons. First, MVB sorting pathway is conserved from yeast to human. In 

yeast cells, membrane proteins also go through MVB sorting to vacuole, the 

intracellular organelle sharing functional characteristics with mammalian lysosome 

(Banta et al., 1988; Henne et al., 2013). Second, it is convenient to perform genetic 

screen in yeast to search for the genes, whose products are involved in MVB sorting. 

Plasmids with no gene-specific sequences can be delivered into yeast cells and these 

sequences can integrate randomly throughout the genome and randomly disrupt the 

genes to generate various mutant yeast strains. Through observing the expected 

phenotypes, which are the abnormal morphology of endosome and the defective 

sorting of GFP-labelled vacuole enzyme, carboxypeptidase S (CPS), the researchers 

could identify the genes that are required for normal MVB sorting pathway (Banta et al., 

1988; Forsburg, 2001). Third, the phenotypes induced by defective MVB sorting can be 

easily observed under microscope (Banta et al., 1988; Raymond et al., 1992; Robinson 

et al., 1988).   

By using yeast as the model system, Emr and Stevens groups found that loss of 

several genes in yeast led to exaggerated endosome-like compartment (the class E 

compartment) and defective sorting of vacuole enzyme. They named this type of genes, 
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which is required for MVB sorting, as Class E Vps (vacuolar protein sorting) (Banta et 

al., 1988; Raymond et al., 1992; Robinson et al., 1988).   

Further biochemical and cellular studies from Emr group found that products of 

Class E genes Vps23, Vps28, and Vps37 form a protein complex, which binds the 

ubiquitinated sorting receptors in yeast. They named this protein complex as ESCRT-I 

(endosomal sorting complex required for transport-I) (Katzmann et al., 2001). Then, 

they found that products of Class E genes Vps2, Vps20, Vps24, and Snf7 form a 

protein complex, which have direct effects on MVB sorting activity in yeast. They 

named this protein complex as ESCRT-III (Babst et al., 2002a). They also found that 

products of Class E genes Vps22, Vps25, and Vps36 form a protein complex, which 

also binds ubiquitinated sorting proteins, associates with endosome membrane and 

interacts with ESCRT-III and promotes its assembly. They named this protein complex 

as ESCRT-II (Babst et al., 2002b). 

Further studies in mammalian cells revealed that these Class E gene products 

are conserved from yeast to human. Mammalian cells contain the orthologs of all these 

yeast Class E gene products, which also constitute ESCRT-I, II, and III (Henne et al., 

2013; Hurley, 2010) (Table 1 and Fig. 2). The studies in mammalian cells also identified 

a protein complex consisting of STAM (signal-transducing adaptor molecule) and Hrs 

(hepatocyte growth factor-regulated tyrosine kinase substrate). This protein complex, 

which was shown to bind ubiquitinated sorting receptors, associate with endosome 

membrane and is involved in MVB sorting, was named as ESCRT-0 (Table 1 and Fig. 

2). Then, the genetic screen in yeast also identified two Class E Vps genes (Hes1 and 

Vps27), whose products are orthlogs of mammalian Hrs and STAM, respectively 

(Bilodeau et al., 2002; Katzmann et al., 2003) (Table 1). 
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The essence of MVB sorting is linking receptor recognition and endosome 

membrane abscission. ESCRT machinery is anchored on the endosome membrane 

through direct interaction between ESCRTs-0/-II components and endosome 

membrane-associated PtdIns(3)P lipid. ESCRT-0, -I, and -II function as a stable hetero-

oligomers to recognize and concentrate ubiquitinated receptors through the ubiquitin-

binding motifs in the components of these three ESCRTs (Fig. 2). ESCRT-II initiates 

the sequential activation and assembly of ESCRT-III, which, in default condition, exists 

as autoinhibited monomers in the cytoplasm. The formed oligomerized ESCRT-III 

filaments localize around the neck of the budding vesicle and perform the membrane 

abscission. AAA ATPase Vps4 interacts with ESCRT-III and provides energy to 

dissemble the ESCRT-III after MVB sorting (Babst et al., 1998; Boura et al., 2012; 

Caillat et al., 2015; Henne et al., 2012; McCullough et al., 2015; Teis et al., 2008; Yang 

et al., 2015) (Fig. 2). Thus, ESCRT is evolutionary conserved membrane remolding 

machinery that execute MVB sorting pathway.   

1.3. MVB sorting-related functions of ESCRT 

Besides MVB sorting, the second identified function of ESCRT is retroviral 

budding. ESCRTs were found to be hijacked by retroviruses for their budding away 

from the host cells. Retrovirus, such as HIV-1 and EIAV (equine infectious anemia 

virus), recruits ESCRT-III to the budding site through direct interaction between 

retroviral Gag protein and ESCRT-associated protein (Beata MierzwaVotteler and 

Sundquist, 2013; Martin-Serrano and Neil, 2011; Strack et al., 2003; von Schwedler et 

al., 2003). The studies by using siRNA knockdown and rescuing experiments indicated 

that among the ESCRT-III components, only CHMP4 (charged multivesicular body 

protein 4) and CHMP2 are critically involved in HIV-1 and EIAV budding. CHMP4 
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filaments are assembled in circular arrays that bend the plasma membrane away from 

the cytoplasm. Then, CHMP4 filaments are “capped” by recruiting CHMP2 subcomplex, 

which subsequently binds and recruits Vps4 (Sandrin and Sundquist, 2013).  

The third identified function of ESCRT is cytokinetic abscission, the final step of 

cell division where daughter cells are physically separated (Carlton et al., 2008; Carlton 

and Martin-Serrano, 2007; Morita et al., 2007). The essential event in cytokinetic 

abscission is the recruitment of ESCRT-III to the midbody area and its assembly to 

oligomerized filaments, which perform the membrane abscission (Carlton et al., 2008; 

Carlton and Martin-Serrano, 2007; Morita et al., 2007). Three models have been 

proposed for how ESCRT-III filaments promote membrane abscission. One is “spiral-

ingression” model, in which ESCRT-III forms filaments at the midbody and the spiral 

filaments wind from the midbody and the end of the narrowing spirals is the abscission 

zone. Another one is “sliding spiral” model, in which ESCRT-III forms filaments at the 

midbody and the spiral filaments slide along the intracellular bridge to form an 

abscission site ∼1 μm from the midbody. The third one is “vesicle-mediated ingression” 

model, in which intracellular vesicles derived from recycling endosomes form the 

abscission zone by narrowing the intercellular bridge through fusion with the plasma 

membrane (Henne et al., 2013).  

MVB sorting, cytokinetic abscission and retroviral budding are three best-

characterized ESCRT-mediated processes with the same topology. Therefore, these 

three processes are called classical ESCRT-mediated processes (Fig. 3). Besides 

these three classical ESCRT-mediated processes, multiple novel functions of ESCRT 

have been reported recently, including exosome biogenesis (Baietti et al., 2012), 

plasma membrane wound repair (Jimenez et al., 2014; Scheffer et al., 2014), 
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autophagy (Murrow et al., 2015) and nuclear envelope reformation (Olmos et al., 2015; 

Vietri et al., 2015). These novel functions reveal remarkably widespread roles of 

ESCRTs in cellular processes.  
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Table 1. ESCRT proteins in yeast and mammalian cells 

 Yeast Human 

ESCRT-0 Vps27 Hrs 

 Hes1 STAM1/2 

ESCRT-I Vps23 TSG101 

 Vps28 Vps28 

 Vps37 Vps37 

 Mvb12 hMvb12 

ESCRT-II Vps36 EAP45 

 Vps22 EAP30 

 Vps25 EAP20 

ESCRT-III Vps20 CHMP6 

 Snf7 CHMP4 

 Vps24 CHMP3 

 Vps2 CHMP2 
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Figure 2. Illustration of ESCRT machinery in mammalian cells.  The subunits of 

each ESCRT complex and Vps4 are shown. ESCRT-0 component STAM (signal-

transducing adaptor molecule), ESCRT-I component TSG101 (tumor susceptibility 

gene 101) and ESCRT-II component EAP45 contain ubiquitin binding motifs that 

recognize ubiquitinated cargo proteins. 
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Figure 3. Three classical ESCRT-mediated processes. MVB sorting of internalized 

receptors, cytokinetic abscission and retroviral budding are three classical ESCRT-

mediated processes, having the same topology (budding away from cytoplasm) and 

sharing the mechanism for membrane invagination and abscission (requiring ESCRTs). 
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1.4. ESCRT-associated protein: ALIX 

Through the genetic screen of the mutant class E Vps genes leading to defective 

MVB sorting of GFP-Labelled CPS in yeast, Emr and his colleagues identified that 

product of BRO1 (BCK1-like Resistance to Osmotic shock) gene is required for normal 

MVB sorting pathway (Odorizzi et al., 2003). BRO1 protein consists of three domains: 

an N-terminal Bro1 domain, a middle V letter-shape domain and a C-terminal proline-

rich domain (PRD) (Odorizzi, 2006; Odorizzi et al., 2003). BRO1 binds ubiquitinated 

receptors through its ubiquitin-binding motif in the V domain and this ubiquitin-binding 

activity is required for BRO1 to support MVB sorting pathway (Pashkova et al., 2013). 

BRO1 also interacts with ESCRT-III component Snf7 through its Bro1 domain and 

regulates the assembly and the membrane abscission capability of ESCRT-III filament 

(Odorizzi et al., 2003; Wemmer et al., 2011). Thus, BRO1 functions to link the receptor 

recognition and ESCRT-III mediated membrane abscission. 

ALIX (ALG-2 interacting protein X) (Missotten et al., 1999), also termed AIP1 

(Vito et al., 1999) was initially identified and cloned by two independent studies 

searching for partner proteins of ALG-2 (apoptosis-linked gene 2 product) in mouse. 

Structural studies of ALIX revealed that ALIX and BRO1 share structural organization. 

ALIX also consists of three domains: an N-terminal Bro1 domain, a middle V letter-

shaped domain and a C-terminal PRD (Fisher et al., 2007). The Bro1 domain of ALIX 

contains a binding site (hydrophobic Patch 1) for ESCRT-III component CHMP4 and a 

docking site (hydrophobic Patch 2) for Src (Kim et al., 2005; McCullough et al., 2008). 

The V domain of ALIX contains the ubiquitin-binding motifs for preferably interacting 

with Lys-63 polyubiquitin chain (Dowlatshahi et al., 2012; Keren-Kaplan et al., 2013) 

and a hydrophobic three dimensional interaction site (F676 pocket) for proteins 
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containing YPX(n)L motif, such as retroviral Gag proteins (Lee et al., 2007; Zhai et al., 

2008), syntenin (Baietti et al., 2012) and PAR1 (protease activated receptor 1) (Dores 

et al., 2012a; Dores et al., 2012b). The PRD of ALIX contains two linear docking sites 

(residues 717-720 and 852-855) for ESCRT-I component TSG101, an ALIX 

multimerization sequence and an ALG-2 binding site (residues 801-812) (Carlton et al., 

2008) (Fig. 4).  

As the ESCRT-associated protein, ALIX was first found to be involved in 

ESCRT-mediated retroviral budding, during which retroviral Gag proteins directly 

interact with the F676 pocket in the V domain of ALIX and through this interaction, 

retrovirus hijacks ESCRT-III of host cells to plasma membrane for membrane 

abscission (Strack et al., 2003; von Schwedler et al., 2003). Then, ALIX was 

demonstrated to be essential for ESCRT-mediated cytokinetic abscission, during which 

ALIX is recruited to the midbody through direct interaction with CEP55 (entrosomal 

protein of 55 kDa), which is recruited to midbody during cytokinesis. The midbody-

localized ALIX recruits CHMP4 to the midbody area and promotes the assembly of 

ESCRT-III filaments, which perform the membrane abscission at the midbody area 

(Carlton et al., 2008; Carlton and Martin-Serrano, 2007; Morita et al., 2007).  

As the mammalian ortholog of yeast BRO1, ALIX was predicted to be involved in 

MVB sorting of ubiquitinated receptors in mammalian cells, just as BRO1 does in yeast 

(Pashkova et al., 2013). However, by using EGFR as the model molecule, multiple 

previous studies generated negative results by showing that knockdown of ALIX 

produced no or only a minor inhibitory effect on degradation of activated EGFR in HeLa 

cells (Bowers et al., 2006; Cabezas et al., 2005; Doyotte et al., 2008; Schmidt et al., 

2004). Since MVB sorting is generally thought to be required for lysosome-dependent 
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degradation of activated EGFR, these results led to a widely held notion that ALIX does 

not play a critical role in ESCRT-mediated MVB sorting of ubiquitinated membrane 

receptor in mammalian cells. However, two independent studies reported that inhibition 

of MVB sorting of activated EGFR by treating cells with PI3-kinase inhibitor wortmannin 

or by knocking down annexin 1 only generated a minor inhibitory effect on degradation 

of activated EGFR (Futter et al., 2001; White et al., 2006), indicating that MVB sorting 

may not be necessary for lysosome-dependent degradation of ubiquitinated receptors 

in mammalian cells. Thus, the lysosome-dependent degradation of activated EGFR 

may not be the reliable indication for MVB sorting of activated EGFR in mammalian 

cells. Moreover, both mammalian ALIX and yeast BRO1 contain ubiquitin binding 

motifs that interact with Lys63 poly-ubiquitin chain (Dowlatshahi et al., 2012; Pashkova 

et al., 2013), indicating that ALIX is probably able to recognize and interact with 

ubiquitinated receptors, such as activated EGFR, which requires Lys63 

polyubiquitination for its lysosome-dependent degradation (Huang et al., 2013). 

Therefore, whether ALIX is critically involved in MVB sorting of activated EGFR has 

been controversial. 

Since MVB sorting of activated receptor tyrosine kinases, such as EGFR, is 

involved in timely terminating the signaling function of these receptors (~30 min) before 

these receptors are delivered to lysosome for degradation (several hours), thus MVB 

sorting is an important regulatory mechanism that prevents uncontrolled cell 

proliferation induced by over-activation of receptor tyrosine kinases. Investigating the 

role of ALIX in MVB sorting of ubiquitinated receptors will provide great insights into the 

regulation of such an important process.  
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Figure 4. Schematic diagram depicting the domain organization of ALIX and 

BRO1. Mammalian ALIX contains 868 amino acids and yeast BRO1 contains 844 

amino acids. In ALIX, Bro1 domain binds ESCRT-III component CHMP4, V domain 

binds Lys63 poly-ubiquitinated proteins and PRD binds ESCRT-I component TSG101 

and ALG-2. In BRO1, Bro1 domain binds ESCRT-III component Snf7, which is yeast 

homolog of CHMP4 and V domain also binds Lys63 poly-ubiquitinated proteins. 
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1.5. Diverse cellular functions of ALIX 

Besides ESCRT-mediated processes, ALIX has also been reported to be 

involved in diverse cellular processes that do not need involvement of ESCRT. Studies 

from Bögler group found that ALIX interacts with focal adhesion kinase (FAK) and 

proline rich tyrosine kinase 2 (PYK-2) and through these interactions, ALIX regulates 

cell adhesion (Schmidt et al., 2003). Then, studies from our group found that ALIX 

directly interacts with F-actin and promotes actin cytoskeleton assembly. We also found 

that sub-population of ALIX can be secreted outside of the cells and the extracellular 

ALIX is involved in regulating integrin-mediated cell adhesion and extracellular matrix 

assembly (Pan et al., 2008; Pan et al., 2006). An important question is what decides 

ALIX to function in ESCRT-mediated cellular processes or in ESCRT-independent 

cellular processes. 

1.6. The default intramolecular interaction of ALIX 

Native form of ALIX contains a default intramolecular interaction between Patch 

2 in Bro 1 domain and one of the TSG101 docking site (TSD: residues 717-720) in 

PRD (Fig. 5). This intramolecular interaction renders ALIX a closed conformation, 

which prohibits ALIX interaction with ESCRT-III component CHMP4 (Zhou et al., 2009; 

Zhou et al., 2008; Zhou et al., 2010). Thus, native form of ALIX cannot perform its 

ESCRT function. Also, ALIX in the closed conformation exists as the monomer in the 

cytosol. ALIX in the open conformation can dimerize through its V domain in an anti-

parallel manner and this dimerization was proposed to promote the assembly of 

CHMP4 filament and required for retroviral budding (Pires et al., 2009; Zhai et al., 

2008). Since ALIX is an essential mediator for linking the upstream initiator and the 

downstream executor of ESCRT-mediated processes, investigating the regulatory 



17 
 

mechanisms that relieve the intramolecular interaction of ALIX will lead to a better 

understanding for ESCRT-mediated processes. 

Based on the studies from previous graduate student in our group, three 

potential regulatory mechanisms that relieve the intramolecular interaction of ALIX were 

proposed. One is the partner protein interaction-induced conformational change. 

Another one is the competitive binding-induced disruption of intramolecular interaction. 

The third one is posttranslational modification-induced disruption of intramolecular 

interaction (Zhou et al., 2010).  
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Figure 5. Model depicting ALIX transforming from closed conformation to open 

conformation. Native form of ALIX contains a default intramolecular interaction 

between Patch 2 in Bro1 domain and TDS in N-terminal portion of PRD, rendering a 

closed conformation of ALIX and blocking its ESCRT-functions. The activation of ALIX 

initiates from the dissociation of Bro1 domain and PRD. Then, the V domain of ALIX is 

open followed by V-domain-mediated anti-parallel dimerization.  
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1.7. The objective of the dissertation 

The default intramolecular interaction of ALIX has to be relieved to activate 

ESCRT functions of ALIX. Thus, the objective of my dissertation research is to identify 

the regulatory mechanisms that activate the ESCRT functions of ALIX in the three 

classical ESCRT-mediated processes. To accomplish this objective, I performed three 

parts of studies. 

First, I comprehensively investigated the role of ALIX in binding, MVB sorting, 

silencing and degradation of activated EGFR in HEK293 and HeLa cells. My studies 

demonstrate that ALIX binds activated and ubiquitinated EGFR and plays an essential 

role in MVB sorting and timely silencing of activated EGFR. However, ALIX does not 

play an important role in trafficking of activated EGFR to lysosome for degradation. My 

studies thus identify ALIX as an important regulator for the signaling output of activated 

EGFR and possibly other receptor tyrosine kinases. 

Then, I explored the mechanism that relieves the default intramolecular 

interaction of ALIX in MVB sorting process. My studies demonstrate that calcium-

dependent ALG-2 interaction with ALIX induces a conformational change of ALIX that 

relieves its intramolecular interaction. ALG-2-supported activation of ALIX is required 

for ALIX to associate with membrane-bound CHMP4 and function in MVB sorting of 

activated EGFR. In contrast, ALG-2-supported activation of ALIX is not required for 

cytokinetic abscission or retroviral budding. My studies thus identify ALG-2 as a 

potential negative regulator of signaling transduction of activated EGFR and provide a 

new understanding for apoptotic induction effect of ALG-2. My studies also indicate that 

there should be other mechanisms that activate ESCRT function of ALIX in cytokinetic 

abscission and retroviral budding. 
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Further exploration demonstrate that ALIX is phosphorylated at the S718 and 

S721 residues, which locate at or near one of the intramolecular interaction sites, 

during mitotic entry and that this phosphorylation relieves the intramolecular interaction 

of ALIX in mitotic cells. This activating phosphorylation is required for inducing ALIX in 

open conformation that recruits CHMP4 to the midbody area and therefore essential for 

ALIX to support cytokinetic abscission. This activating phosphorylation also induces 

ALIX in open conformation that interacts with retroviral Gag proteins and therefore 

supports ALIX function in retroviral budding. In contrast, this phosphorylation is not 

important for MVB sorting function of ALIX. These findings provide a new 

understanding for the regulation of cytokinesis and retroviral budding and may provide 

new strategies for inhibiting cell division and retroviral budding.  
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Chapter 2: ALIX plays an essential role in MVB sorting of activated EGFR 

 

Contents of this chapter are based on Sun, S., Zhou, X., Zhang, W., Gallick, G.E., 

Kuang, J. Unravelling the pivotal role of Alix in MVB sorting and silencing of the 

activated EGFR. Biochem J. 2015;466(3):475-87. doi: 10.1042/BJ20141156. 

 

Copyright permission is not required. Portland Press policy states “As long as the 

original article, or portion of the article, is properly cited, and a link to the article is 

included, Authors retain the following non-exclusive rights: To include their article in 

whole or in part in their own dissertation or thesis in print or electronic format provided 

that the full-text article is not then shared in an open repository unless it is published via 

the Gold Open Access route.” 

 

Background 

 

EGFR is the model molecule for the study of ubiquitination-dependent 

endolysosomal trafficking of membrane receptors. EGF binding to plasma membrane 

EGFR induces the activation of EGFR, which is phosphorylated and ubiquitinated. The 

activated EGFR is internalized into cytoplasm through endocytosis and during this 

process, activated EGFR keeps on sending signals to its downstream pathways, such 

as ERK1/2. Then, the internalized EGFR is sorted into the ILVs of MVBs through MVB 

sorting. MVB sorting of activated EGFR is involved in timely terminating the signaling 

function of activated EGFR and delivering EGFR to lysosome for degradation 

(Gruenberg and Stenmark, 2004; Katzmann et al., 2002; Wegner et al., 2011). 

MVB sorting of activated EGFR is performed by ESCRTs and their associated 

http://www.biochemj.org/content/466/3/475
http://www.biochemj.org/content/466/3/475
http://www.biochemj.org/content/466/3/475
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proteins. The ubiquitinated receptors are recognized and clustered by ESCRTs -0, -I, 

and -II. ESCRT-0 binds ubiquitinated receptors through both subunits, Hrs (HGF-

regulated tyrosine kinase substrate) and STAM1/2. ESCRT-I subunit TSG101 and 

ESCRT-II subunit hMvb12 are able to bind ubiquitinated receptors through their 

ubiquitin binding domain (UBD). The coordination of receptors recognition and 

membrane remodeling is achieved by the ability of ESCRT-II to both recognize the 

ubiquitinated receptors and initiate the assembly of highly oligomerized ESCRT-III 

complex. ESCRT-III subunit CHMP4 assembles into highly flexible filament that forms 

spirals at the surface of endosome membranes. CHMP4 spirals can deform under 

lateral compression and the relaxation of compressed CHMP4 spirals induces 

membrane deformation. Thus, ESCRT-III is the core machinery that performs the 

membrane scission at the budding site. ESCRT-III is timely disassembled by Vps4 

(Henne et al., 2011; Henne et al., 2013; Hurley and Hanson, 2010; Lata et al., 2009).  

Promoted by the previous reports that BRO1 plays a positive role in MVB sorting 

of ubiquitinated receptors in yeast (Pashkova et al., 2013) and that ALIX contains 

ubiquitin binding motifs, just as BRO1 does (Dowlatshahi et al., 2012; Pashkova et al., 

2013), I hypothesized that ALIX may be critically involved in MVB sorting of activated 

EGFR in mammalian cells.  

To test this hypothesis, I comprehensively study the role of ALIX in binding, MVB 

sorting, silencing and degradation of activated EGFR in mammalian cell lines. The 

results demonstrate that ALIX recognizes activated and ubiquitinated EGFR through its 

V domain and plays an essential role in MVB sorting and silencing of activated EGFR. 

However, ALIX does not have an essential role in lysosome-dependent degradation of 

activated EGFR. These findings identify ALIX as an important regulator of the signaling 
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output of activated EGFR and possibly other growth factor receptors. 

Results 

2.1.    ALIX interacts with activated and ubiquitinated EGFR through the V domain  

To determine whether ALIX recognizes ubiquitinated EGFR, I ectopically 

expressed GFP or GFP-ALIX in HEK293 cells, which were then mock-treated or 

stimulated with EGF, and examined the GFP-ALIX interaction with EGFR by using co-

immunoprecipitation (co-IP). Cell lysates were prepared from mock-treated and EGF-

stimulated cells with the membrane solubilizing lysis buffer containing 1% Triton X-100 

in the presence or absence of the deubiquitinase inhibitor N-ethylmaleimide (NEM). 

Cell lysates were immunoprecipitated with negative control mouse IgG or anti-GFP 

antibody, and the immunocomplexes were immunoblotted to visualize EGFR, 

ubiquitinated EGFR, GFP-ALIX and CHMP4B. As shown in Fig. 6A-B, in the presence 

of NEM, EGF stimulation increased the association of GFP-ALIX with EGFR by ~4 fold, 

and the ubiquitination of EGFR was confirmed by immunoblotting with anti-ubiquitin 

antibodies. However, in the absence of NEM, there is only basal level of association of 

GFP-ALIX with non-ubiquitinated EGFR, even with EGF stimulation. In contrast, the 

association of GFP-ALIX with CHMP4B had no change under all conditions. In contrast 

to GFP-ALIX, ectopically expressed GFP did not interact with EGFR, demonstrating 

that the association of GFP-ALIX with EGFR is a specific event (Fig. 6C).  These 

results identify two modes of interaction between ALIX and EGFR:  a high level of EGF-

induced and ubiquitination-dependent interaction and a low level of constitutive 

interaction. 
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Figure 6. ALIX interacts with activated and ubiquitinated EGFR. (A&B) HEK293 

cells were transfected with GFP-ALIX, serum starved for 12 h and stimulated with 100 

ng/ml EGF for indicated minutes. Crude cell lysates were extracted in the presence or 

absence of NEM.  (A) These cell lysates were directly immunoblotted to visualize 

EGFR, GFP-ALIX and CHMP4B. (B) These cell lysates were immunoprecipitated with 

anti-GFP antibody or mouse IgG followed by immunoblotting to visualize EGFR, 

ubiquitinated EGFR, GFP-ALIX and CHMP4b. Results represent two independent 

experiments. (C) HEK293 cells were transfected with GFP or GFP-ALIX, serum starved 

for 12 h and stimulated with 100 ng/ml EGF for indicated minutes. Crude cell lysates 

were prepared in the presence or absence of NEM and immunoprecipitated with anti-

GFP antibody. Input cell lysates and immunocomplexes were immunoblotted with 

indicated antibodies to visualize GFP, GFP-ALIX, EGFR and ubiquitinated EGFR. 

 



25 
 

To identify which domain of ALIX is responsible for ALIX interaction with EGFR, 

HEK293 cells were transfected with FLAG-ALIXBro1 or HA-ALIXV, and co-IP was 

performed to examine their interactions with EGFR. Cell lysates were prepared from 

mock-treated and EGF-stimulated cells with the membrane solubilizing lysis buffer in 

the presence of NEM. As shown in Fig. 7A, FLAG-ALIXBro1 only had low level of 

constitutive interaction with EGFR irrespective of EGF stimulation. In contrast, HA-

ALIXV had a high level of interaction with ubiquitinated EGFR in EGF-stimulated cells 

(Fig. 7B). These results indicate that ALIXBro1 is responsible for constitutive ALIX 

interaction with EGFR and that ALIXV is responsible for EGF-induced and 

ubiquitination-dependent ALIX interaction with EGFR. The membrane proteins from 

mock-treated or EGF-stimulated HEK293 cells were then extracted in the presence of 

NEM and GST pull-down was performed by using GST-ALIXBro1 or GST-ALIXV to 

examine their interactions with membrane-associated EGFR. As shown in Fig. 7C and 

Fig. 7D, although GST-ALIXBro1 could not pull down detectable EGFR, GST-ALIXV 

preferentially pulled down EGFR from EGF-stimulated cells. These results further 

support the conclusion that ALIXV mediates ALIX interaction with ubiquitinated EGFR in 

EGF-stimulated cells.  
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Figure 7. ALIX V domain interacts with activated and ubiquitinated EGFR. (A&B) 

HEK293 cells were transfected with FLAG-ALIXBro1 (A) or HA-ALIXV (B) and stimulated 

with 100 ng/ml EGF for indicated minutes. Cell lysates were prepared in the presence 

of NEM and immunoprecipitated with anti-FLAG antibody and mouse IgG (A) or anti-

HA antibody and mouse IgG (B). Cell lysates and immunocomplexes were 

immunoblotted to visualize EGFR and FLAG-ALIXBro1 in (A) or EGFR, ubiquitinated 

EGFR, and HA-ALIXV in (B). (C&D) Membrane proteins from HEK293 cells stimulated 

with 100 ng/ml EGF for indicated minutes were isolated and solubilized in the presence 

of NEM and incubated with immobilized GST and GST-ALIXBro1 in (C) or GST and 

GST-ALIXV in (D). Input and bound membrane proteins were immunoblotted to 

visualize EGFR, GST and GST-ALIXBro1 in (C) or EGFR, GST and GST-ALIXV in (D). 

Results represent two independent experiments.   
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2.2.   EGF-induced EGFR activation promotes ALIX interaction with membrane-

bound CHMP4  

ALIX involvement in all ESCRT-mediated processes requires ALIX interaction 

with membrane-bound CHMP4. Thus, to define the role of ALIX in MVB sorting of 

activated EGFR, I examined the interaction between ALIX and membrane-bound 

CHMP4. To this end, I fractionated post-nuclear supernatant (PNS) from mock-treated 

or EGF-stimulated HEK293 cells by using membrane flotation centrifugation. This 

established method utilized sucrose gradients (73%, 65% and 10%) to separate 

membrane vesicles (M) from soluble proteins (S) based on the density of membrane 

vesicles (Ono and Freed, 1999; Spearman et al., 1997). After ultracentrifugation, the 

membrane vesicles float at the interface between the layer of 65% sucrose and the 

layer of 10% sucrose, while the soluble proteins stay at the bottom.  As shown in Fig. 

8A, in mock-treated cells, ~13% of endogenous ALIX was membrane associated, and 

EGF stimulation increased the percentage of membrane associated ALIX to ~33%. 

Ectopically expressing wild type (WT) GFP-ALIX had the similar distribution as 

endogenous ALIX between M and S fraction in mock-treated and EGF-stimulated cells 

(Fig. 8B). However, only ~3% of CHMP4 interaction-defective mutant I212D GFP-ALIX 

associated with membrane in either mock-treated cells or EGF-stimulated cells (Fig. 

8B). These results demonstrate that EGF-induced EGFR activation promotes ALIX 

interaction with membrane bound CHMP4. 

ALIX can dimerize through the V domain in an antiparallel manner. This 

dimerization has been shown to promote assembly of CHMP4 filaments in vitro and be 

required for ALIX to support ESCRT-III-mediated retroviral budding (Pires et al., 2009). 

To determine whether membrane associated ALIX can dimerize through its V domain, I 
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first examined the dimerization of ALIX in whole cell lysates from HEK293 cells 

transfected with GFP-ALIX by using co-IP. The 1A3 anti-ALIX antibody, which 

recognizes both ALIX and HD-PTP (Zhou et al., 2009), was used for immunoblotting of 

input proteins and immunocomplexes. As shown in Fig. 8C, ectopically expressed 

GFP-ALIX interacted with endogenous ALIX, but not with detectable level of 

endogenous HD-PTP. I also performed co-IP of ectopically expressed GFP-ALIX and 

FLAG-ALIX to further examine the dimerization of ALIX (Fig. 8D-E). The results from 

this reciprocal co-IP further supported the conclusion. Together, these results 

demonstrate that membrane-associated ALIX can form a dimer through the interaction 

between the V domains.  
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Figure 8. EGF-induced EGFR activation promotes ALIX interaction with 

membrane-bound CHMP4. (A) HEK293 cells were serum starved for 12 h and either 

mock-treated or stimulated with 100 ng/ml EGF for 1 h. The PNS was fractionated by 

membrane flotation centrifugation and 10 fractions were taken by pipette for each 

sample. The same volume of aliquot from each fraction was taken and immunoblotted 

with indicated antibodies to visualize EEA1, ALIX and CHMP4b. (B) HEK293 cells were 

transfected with WT or I212D GFP-ALIX and serum starved for 12 h before being 

processed as described for (A). (C) HEK293 cells were transfected with GFP or GFP-
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ALIX. Lysates of the transfected cells were immunoprecipitated with IgG or anti-GFP 

antibody, and immunocomplexes were immunoblotted with indicated antibodies to 

visualize GFP and GFP-ALIX (top panel) and endogenous ALIX, GFP-ALIX and 

endogenous HD-PTP (lower panel). (D) HEK293 cells were transfected with FLAG-

ALIX and either GFP or GFP-ALIX. The crude cell lysates were immunoprecipitated 

with anti-GFP antibody or IgG. Input cell lysates and immunocomplexes were then 

immunoblotted with indicated antibodies to visualize GFP, GFP-ALIX and FLAG-ALIX. 

(D) HEK293 were transfected with GFP-ALIX and either FLAG or FLAG-ALIX. The 

crude cell lysates were immunoprecipitated with anti-FLAG antibody or IgG. Input cell 

lysates were immunocomplexes were then immunoblotted with indicated antibodies to 

visualize GFP-ALIX and FLAG-ALIX. 
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2.3.     ALIX plays a pivotal role in MVB sorting of activated EGFR  

The previous results showing that ALIX binds activated and ubiquitinated EGFR 

and that EGFR activation promotes ALIX association with membrane-bound CHMP4 

generated a hypothesis that ALIX is positively involved in MVB sorting of activated 

EGFR. To test this hypothesis, I first examined MVB sorting of activated EGFR by 

using proteinase K protection assay, which involves isolation of intracellular membrane 

vesicles after the plasma membrane is specifically dissolved by digitonin treatment. 

The membrane vesicles were digested by proteinase K in the presence or absence of 

0.1% Triton X-100. Since proteinase K cannot digest the EGFR that localizes within the 

lumen of the intact endosome, the percentage of proteinase K-insensitive EGFR in the 

absence of 0.1% Triton X-100 indicates the percentage of activated EGFR that is 

sorted into ILVs of MVB (Dores et al., 2012a; Malerod et al., 2007). As shown in Fig. 9A, 

after EGF stimulation for 30 min, the percentage of proteinase K-insensitive EGFR 

increased from ~5% to ~60%. EEA1, which is the peripheral endosome membrane 

protein, was used to demonstrate the efficient digestion by proteinase K.  

To determine whether ALIX interaction with CHMP4 is required to support MVB 

sorting of activated EGFR under EGF continuous stimulation condition, I transfected 

HEK293 cells with FLAG-ALIXBro1 to compete with endogenous ALIX in binding CHMP4 

and examined the effect on MVB sorting of activated EGFR. As shown in Fig. 9B, 

ectopically expressing WT FLAG-ALIXBro1, but not I212D FLAG-ALIXBro1, dramatically 

reduced the percentage of proteinase K-insensitive EGFR from ~60% to ~5%. The 

results demonstrate that ALIX interaction with CHMP4 plays an essential role in MVB 

sorting of activated EGFR. 
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To determine whether V domain-mediated ALIX dimerization is required to 

support MVB sorting of activated EGFR under EGF continuous stimulation condition, I 

transfected HEK293 cells with HA-ALIXV to compete with endogenous ALIX in 

dimerization and examined the effects on MVB sorting of activated EGFR. As shown in 

Fig. 9C, ectopically expressing WT HA-ALIXV, but not dimerization mutated (DM) HA-

ALIXV, dramatically reduced the percentage of proteinase K-insensitive EGFR from ~60% 

to ~5%. Co-IP assay demonstrated that ectopically expressing WT HA-ALIXV interacts 

with ALIX, but not HD-PTP, excluding the possibility that the inhibitory effects of WT 

HA-ALIXV is due to the interaction with HD-PTP (Fig. 9D). The results demonstrate that 

V domain-mediated ALIX dimerization is required for ALIX to support MVB sorting of 

activated EGFR. 

To further determine the role of ALIX in MVB sorting of activated EGFR under 

EGF continuous stimulation condition, I transfected HEK293 cells with ALIX targeting 

siRNA (si-ALIX) with or without co-expressing siRNA-insensitive GFP-ALIX (GFP-ALIX*) 

and examined the effects on MVB sorting of activated EGFR. As shown in Fig. 9E, 

knockdown of ALIX decreased the percentage of proteinase K-insensitive EGFR from 

~50% to ~15%. While ectopic expression of WT GFP-ALIX* rescued the inhibitory 

effects of ALIX knockdown, ectopic expression of I212D GFP-ALIX* or DM GFP-ALIX* 

did not have this rescuing effect. These results further demonstrate that CHMP4-bound 

ALIX dimer plays an essential role in MVB sorting of activated EGFR. 

Multiple previous studies used EGF pulse-chase condition to study the role of 

ALIX in degradation of activation of EGFR. Here, I examined the role of CHMP-4 bound 

ALIX dimer in MVB sorting of activated EGFR under EGF pulse-chase condition. 

Serum-starved cells were incubated with EGF at 4C for 30 min (EGF pulse) and then 
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cultured at 37C in the absence of EGF (chase) for indicated lengths of time. As shown 

in Fig. 9F, ectopic expression of WT HA-ALIXV or FLAG-ALIXBro1, or knockdown of 

ALIX decreased percentage of protected EGFR from ~40% to <10% under EGF pulse-

chase condition. 

Together, these results demonstrate that CHMP4-bound ALIX dimer plays an 

essential role in MVB sorting of activated EGFR under both EGF continuous stimulation 

condition and EGF pulse-chase condition.  
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Figure 9. ALIX plays a pivotal role in MVB sorting of activated EGFR. (A) HEK 293 

cells were mock-treated or EGF stimulated for 30 min. The proteinase K protection 

assay was performed to determine the percentage of proteinase K-insensitive EGFR. 

(B) HEK293 cells were transfected with FLAG, FLAG-ALIXBro1 or I212D FLAG-ALIXBro1. 

The proteinase K protection assay was performed to determine the percentage of 

proteinase K-insensitive EGFR. (C) HEK293 cells were transfected with HA, WT HA-

ALIXV, or DM HA-ALIXV. The proteinase K protection assay was performed to 

determine the percentage of proteinase K-insensitive EGFR. (D) HEK293 cells were 

transfected with HA-ALIXV, and the cell lysates were immunoprecipitated with anti-HA 

antibody or IgG. Input and immunocomplexes were immunoblotted with indicated 
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antibodies to visualize endogenous ALIX, endogenous HD-PTP and HA-ALIXV. (E) 

HEK293 cells were first transfected with si-NC or si-ALIX and cultured for 48 h. These 

cells were then transfected with constructs for indicated proteins and cultured for 

another 24 h. The proteinase K protection assay was performed to determine the 

percentage of proteinase K-insensitive EGFR. (F) HEK293 cells were transfected as 

indicated and stimulated with 100 ng/ml EGF under pulse-chase condition. The 

proteinase K protection assay was performed to determine the percentage of 

proteinase K-insensitive EGFR. 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

2.4.   ALIX plays an important role in terminating the downstream signaling of 

activated EGFR         

ERK1/2 is the major downstream signaling of activated EGFR, and EGF-induced 

ERK1/2 activation is a highly transient event (Xu et al., 2012), due to the rapid silencing 

of activated EGFR by MVB sorting and the dephosphorylation by phosphatase.  

To further support the conclusion that ALIX plays an essential role in MVB 

sorting of activated EGFR, I examined the roles of ALIX interaction with membrane-

bound CHMP4 in terminating the downstream signaling of activated EGFR. For this 

purpose, HEK293 cells were transfected with Y319F FLAG-ALIXBro1 and the effects on 

the kinetics of EGF-induced ERK1/2 activation were examined under EGF continuous 

stimulation condition. The construct contains Y319F mutation to eliminate its interaction 

with Src (Schmidt et al., 2005). As shown in Fig. 10A, under EGF continuous 

stimulation condition, ERK1/2 activation was highly transient in mock-transfected cells, 

reaching to the peak level at 10 min and then decreasing dramatically to the basal level 

at 30 min. The ERK1/2 activation continued decreasing afterward to nearly 

undetectable level from 1 h to 3 h. In contrast, ectopic expression of Y319F FLAG-

ALIXBro1 inhibited the decrease of ERK1/2 activation and prolonged the duration of 

ERK1/2 activation up to 3 h.   

To determine whether V domain-mediated ALIX dimerization plays an important 

role in terminating the downstream signaling of activated EGFR, HEK293 cells were 

transfected with HA-ALIXV and the effects on the kinetics of EGF-induced ERK1/2 

activation were examined under EGF continuous stimulation condition. Similar to the 

ectopic expression of Y319F FLAG-ALIXBro1, ectopic expression of HA-ALIXV also 

prolonged the duration of ERK1/2 activation up to 3 h (Fig. 10B).  
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To further determine the role of ALIX in terminating the downstream signaling of 

activated EGFR, HEK293 cells were transfected with control siRNA or si-ALIX and the 

effects on the kinetics of EGF-induced ERK1/2 activation were examined under EGF 

continuous stimulation condition. Similarly, knockdown of ALIX prolonged the duration 

of ERK1/2 activation up to 3 h (Fig. 10C).  
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Figure 10. ALIX plays an important role in terminating the downstream signaling 

of activated EGFR under EGF continuous stimulation condition. (A) HEK293 cells 

were transfected with FLAG or Y319F FLAG-ALIXBro1 and were stimulated with 100 

ng/ml EGF for indicated minutes (left panel) or hours (right panel). Cell lysates were 

immunoblotted with indicated antibodies to visualize phosphorylated ERK1/2 (p-

ERK1/2), ERK1/2, FLAG-ALIXBro1 and actin. (B) HEK293 cells were transfected with 

HA or HA-ALIXV and were stimulated with 100 ng/ml EGF for indicated minutes (left 

panel) or hours (right panel). Cell lysates were immunoblotted with indicated antibodies 

to visualize p-ERK1/2, ERK1/2, HA-ALIXV and actin. (C) HEK293 cells were transfected 

with indicated siRNAs and stimulated with 100 ng/ml EGF for indicated minutes (left 
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panel) or hours (right panel). Cell lysates were immunoblotted with indicated antibodies 

to visualize p-ERK1/2, ERK1/2, ALIX and actin. 
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Then, I further determined whether ALIX plays an important role in terminating 

the downstream signaling of activated EGFR under EGF pulse-chase condition. Similar 

to the results obtained under EGF continuous stimulation condition, EGF-induced 

ERK1/2 activation decreased to nearly undetectable level from 1 h to 3 h. Ectopic 

expression of FLAG-ALIXBro1 or HA-ALIXV, or transfection of si-ALIX inhibited the 

decrease and prolonged the duration of ERK1/2 activation up to 3 h (Fig. 11A-C).  

Together, these results demonstrate that CHMP4-bound ALIX dimer plays an 

important role in rapidly terminating the downstream signaling of activated EGFR under 

both EGF continuous stimulation and pulse-chase conditions and further support the 

essential role of CHMP4-bound ALIX dimer in MVB sorting of activated EGFR. 
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Figure 11. ALIX plays an important role in terminating the downstream signaling 

of activated EGFR under EGF pulse-chase condition. (A) HEK293 cells were 

transfected with FLAG or Y319F FLAG-ALIXBro1 and stimulated with 100 ng/ml EGF for 

30 min (pulse) followed by incubation for indicated hours (chase). Cell lysates were 

immunoblotted with indicated antibodies to visualize p-ERK1/2, ERK1/2, FLAG-ALIXBro1 

and actin. (B) HEK293 cells were transfected with HA or HA-ALIXV and stimulated with 

100 ng/ml EGF for 30 min (pulse) followed by incubation for indicated hours (chase). 

Cell lysates were immunoblotted with indicated antibodies to visualize p-ERK1/2, 

ERK1/2, HA-ALIXV and actin. (C) HEK293 cells were transfected with indicated siRNAs 

and stimulated with 100 ng/ml EGF for 30 min (pulse) followed by incubation for 

indicated hours (chase).  Cell lysates were immunoblotted with indicated antibodies to 

visualize p-ERK1/2, ERK1/2, ALIX and actin. 
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2.5.   Depleting the CHMP4-bound ALIX dimer retards EGF-induced degradation 

of activated EGFR 

To determine whether ALIX-supported MVB sorting is required for EGF-induced 

degradation of activated EGFR, I examined the effects of depleting CHMP4-bound 

ALIX dimer on the kinetics of EGF-induced EGFR degradation under both EGF 

continuous stimulation and EGF pulse-chase conditions. 

To determine whether ALIX interaction with membrane-bound CHMP4 plays a 

role in degradation of activated EGFR under EGF continuous stimulation condition, 

HEK293 cells were transfected with FLAG, Y319F FLAG-ALIXBro1 or Y319F-I212D 

FLAG-ALIXBro1 and stimulated with EGF for different time points. EGF stimulation 

induced progressive reduction in EGFR protein level in mock-transfected and Y319F-

I212D FLAG-ALIXBro1 transfected cells. In contrast, ectopic expression of Y319F FLAG-

ALIXBro1 inhibited EGFR degradation and increased the percentages of remaining 

EGFR at 1, 2, 3 and 4 h (Fig. 12A).  

To determine whether V domain-mediated ALIX dimerization plays a role in the 

degradation of activated EGFR under EGF continuous stimulation condition, HEK293 

cells were transfected with HA, WT HA-ALIXV or DM HA-ALIXV and stimulated with 

EGF for different time points. Similar to the results of ectopic expression of FLAG-

ALIXBro1, ectopic expression of WT HA-ALIXV, but not DM HA-ALIXV, increased the 

percentages of remaining EGFR at 30 min, 1, 2, 3 and 4 h (Fig. 12B). 

To further determine the role of CHMP-4 bound ALIX dimer in the degradation of 

activated EGFR under EGF continuous stimulation condition, HEK293 cells were 

transfected with si-ALIX with or without co-transfection of indicated forms of GFP-ALIX* 
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and the effects on degradation of activated EGFR were examined. As shown in Fig. 

12C-E, EGF continuous stimulation induced a progressive reduction in EGFR protein 

level in mock-transfected cells. In contrast, knockdown of ALIX increased the 

percentages of remaining EGFR at 1, 2, 3 and 4 h. Although ectopic expression of WT 

GFP-ALIX* could rescue the effects of ALIX knockdown, ectopic expression of I212D 

GFP-ALIX* or DM GFP-ALIX* did not have the rescuing effects.  
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Figure 12. Depletion of the CHMP4-bound ALIX dimer retards EGF-induced 

degradation of activated EGFR under EGF continuous stimulation condition. (A) 

HEK293 cells were transfected with FLAG and indicated forms of FLAG-ALIXBro1 and 
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stimulated with 100 ng/ml EGF for indicated hours. Cell lysates were immunoblotted 

with indicated antibodies to visualize EGFR, FLAG-ALIXBro1 and actin. (B) HEK293 

cells were transfected with HA and indicated forms of HA-ALIXV expressing cells and 

stimulated with 100 ng/ml EGF for indicated hours. Cell lysates were immunoblotted 

with indicated antibodies to visualize EGFR, HA-ALIXV and actin. (C-E) HEK293 cells 

transfected with indicated siRNA and indicated siRNA-insensitive constructs were 

stimulated with 100 ng/ml EGF for indicated hours. Cell lysates were immunoblotted 

with indicated antibodies to visualize EGFR, ALIX, GFP-ALIX and actin.  
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To determine the role of CHMP4-bound ALIX dimer in the degradation of 

activated EGFR under EGF pulse-chase condition, the effects of ectopic expression of 

Y319F FLAG-ALIXBo1 or HA-ALIXV or knockdown of ALIX on degradation of activated 

EGFR were examined. As shown in Fig. 13, EGF pulse-chase stimulation induced a 

progressive reduction in EGFR protein level in mock-transfected cells. Ectopic 

expression of Y319F FLAG-ALIXBo1 or HA-ALIXV increased the percentages of 

remaining EGFR at 1 and 2 h. Knockdown of ALIX only increased the percentage of 

remaining EGFR at 1 h.  

All these results demonstrate that ALIX-supported MVB sorting of activated 

EGFR is not essential for trafficking of activated EGFR to lysosomes for degradation. 
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Figure 13. Depletion of the CHMP4-bound ALIX dimer retards EGF-induced 

degradation of activated EGFR under EGF pulse-chase condition. (A) HEK293 

cells were mock-transfected or transfected with Y319F FLAG-ALIXBro1 or HA-ALIXV and 

stimulated with 100 ng/ml EGF for 30 min (pulse) followed by incubation for indicated 

hours (chase). Cell lysates were immunoblotted with indicated antibodies to visualize 

EGFR, FLAG-ALIXBro1 HA-ALIXV and actin. (B) HEK293 cells were transfected with 

indicated siRNAs and stimulated with 100 ng/ml EGF for 30 min (pulse) followed by 

incubation for indicated hours (chase).  Cell lysates were immunoblotted with indicated 

antibodies to visualize EGFR, ALIX and actin. 
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Discussion 

Although my current study clearly demonstrate that the CHMP4-bound ALIX 

dimer plays an essential role in MVB sorting and silencing of activated EGFR under 

both EGF continuous stimulation and pulse-chase conditions, multiple previous studies 

led to a widely held notion that ALIX is not critically involved in ESCRT-mediated MVB 

sorting of ubiquitinated receptors due to the obtained negative results that ALIX 

knockdown had no or only a minor inhibitory effect on trafficking of activated EGFR to 

lysosomes for degradation under the EGF pulse-chase stimulation condition (Bowers et 

al., 2006; Cabezas et al., 2005; Doyotte et al., 2008; Schmidt et al., 2004). In this study, 

I demonstrate the validity of the previous observations that ALIX is not essential for 

lysosome-dependent degradation of activated EGFR. However, the previous studies 

did not directly examine the effects of ALIX knockdown on MVB sorting of activated 

EGFR; instead, they used lysosome-dependent degradation of activated EGFR as the 

indicator of MVB sorting because of a widely held notion that MVB sorting is required 

for trafficking activated EGFR to lysosome for degradation. However, multiple studies 

showed that even the MVB sorting process is inhibited, cell surface receptors can still 

be delivered to lysosome for degradation, although at a slower rate (Futter et al., 2001; 

White et al., 2006). These studies, together with my current studies, support a logical 

explanation that trafficking of activated EGFR to lysosomes for degradation in 

mammalian cells can be achieved through both MVB sorting-dependent and -

independent mechanism and that ALIX is only involved in the MVB sorting-dependent 

mechanism.   

Although MVB sorting is not required for trafficking of activated EGFR to 

lysosome for degradation in mammalian cells, it can work with a tyrosine phosphatase 
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to terminate the downstream signaling of activated EGFR much earlier than EGFR 

degradation. My results show that under both EGF continuous and pulse-chase 

stimulation conditions, inhibition of the ALIX-supported MVB sorting of activated EGFR 

prolong the duration of EGF-induced activation of ERK1/2 from <20 min to >2 h. These 

results indicate that ALIX-supported MVB sorting is one of the major players in rapidly 

silencing the signaling function of activated EGFR and predict that cells may regulate 

the signaling output of activated EGFR or possibly other receptor tyrosine kinases 

through regulating whether activated receptor is degraded through MVB sorting 

pathway or the alternative pathway.  
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Chapter 3: The mechanism that activates ESCRT function of ALIX in MVB sorting 

of activated EGFR 

 

Contents of this chapter are based on Sun, S., Zhou, X., Corvera, J., Gallick, G.E., Lin, 

S., Kuang, J. ALG-2 activates the MVB sorting function of ALIX through relieving its 

intramolecular interaction. Cell Discovery 2015; 1,15018. doi:10.1038/celldisc.2015.18 

 

Copyright permission is not required. Nature Publishing Group policy states “You may 

reuse this material without obtaining permission from Nature Publishing Group, 

providing that the author and the original source of publication are fully acknowledged, 

as per the terms of the license.” 

 

Background 

 

The studies from the previous chapter demonstrate the essential role of ALIX in 

ESCRT-mediated MVB sorting of activated EGFR. ALIX involvement in ESCRT-

mediated processes requires ALIX interaction with CHMP4. However, the native form 

of ALIX contains a default intramolecular interaction, which renders a closed 

conformation of ALIX and prohibits ALIX interaction with CHMP4 (Zhou et al., 2009; 

Zhou et al., 2010). This predicts that ALIX involvement in ESCRT-mediated processes 

requires an activation step that relieves the intramolecular interaction of ALIX.  

ALG-2 was originally identified through a functional screen of genes critical for T-

cell receptor (TCR)-induced programmed cell death in T cell hybridoma (Vito et al., 

http://www.nature.com/articles/celldisc201518
http://www.nature.com/articles/celldisc201518
http://www.nature.com/articles/celldisc201518
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1996). ALG-2 is a 22 kDa calcium-binding protein that interacts with ALIX in a calcium-

dependent manner (Missotten et al., 1999; Vito et al., 1999). ALG-2 possesses two 

high-affinity calcium-binding sites (Lo et al., 1999) and mutation of the Glu47 and Glu114 

residues to Ala (E47A/E114A) within both calcium-binding sites completely disrupts the 

calcium-binding capacity of ALG-2 (Lo et al., 1999). Calcium binding induces 

conformational change of ALG-2 and enables ALG-2 to bind four consecutive PxY 

motifs (PPYPTYPGYPGY at 802-813) near the C-terminus of ALIX (Missotten 

MTrioulier et al., 2004; Shibata et al., 2004). There is a spliced form of ALG-2, named 

as ALG-2.1, which lacks the amino acid residues Gly121 and Phe122. Although ALG-2.1 

is still able to bind to calcium, it cannot interact with ALIX (Marsh and McMahon, 1999). 

The ALG-2 binding region in ALIX (802-813) is outside the region that forms 

intramolecular interaction (1-746). Thus, the intramolecular interaction of ALIX should 

not block ALIX interaction with ALG-2. Indeed, ALG-2 has been shown to be able to 

bind native form of recombinant ALIX in a calcium-dependent manner (Missotten et al., 

1999; Vito et al., 1999). Moreover, inhibiting ALX interaction with ALG-2 by ectopic 

expression of a C-terminal fragment of ALIX or mutation of the ALG-2 binding site in 

ALIX attenuated the ability of ALIX in apoptotic induction (Mahul-Mellier et al., 2006; 

Mahul-Mellier et al., 2008), indicating that ALG-2 may be the regulator of the functions 

of ALIX. Due to its characteristics of calcium-binding, ALG-2 belongs to calmodulin 

superfamily, and the calmodulin has been demonstrated to regulate the conformational 

change of its partner proteins through relieving the intramolecular interaction of these 

partner proteins (Hoffman et al., 2011), indicating that ALG-2 may be able to regulate 

ALIX through similar mechanisms.  Endocytosis of activated receptor tyrosine kinases, 

which precedes MVB sorting, induces a rapid increase of calcium concentration in the 
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vicinity of endosome (Gerasimenko et al., 1998; Gerasimenko and Tepikin, 2005), 

indicating that internalization of activated EGFR may be linked to ALG-2 conformational 

change and its interaction with ALIX. Moreover, the studies from the previous graduate 

student in our group, Xi Zhou, showed that knockdown of ALG-2 retarded degradation 

of ectopically expressed EGFR in HEK293 cells. 

All these observations predict that calcium-dependent ALG-2 interaction with 

ALIX may be one of the mechanisms by which the intramolecular interaction of ALIX is 

relieved and the ESCRT functions of ALIX are activated. The preliminary data from the 

previous graduate student in our group also indicated that calcium-dependent ALG-2 

interaction with ALIX may induce the open conformation of ALIX. To further test this 

prediction, a series of conformation-sensitive and -insensitive anti-ALIX monoclonal 

antibodies, which were produced in our previous studies (Zhou et al., 2009; Zhou et al., 

2008), were used to examine the conformational change of ALIX. Conformation-

sensitive anti-ALIX antibodies 1A3 and 2H12 recognize Patch 2/Src binding site and 

F676 pocket/Viral Gag binding site, respectively. In contrast, conformation-insensitive 

anti-ALIX antibodies 1A12 and 3A9 recognize the epitope in the V domain that is not 

blocked by intramolecular interaction. Thus, the 1A3 and 2H12 antibodies only 

immunoprecipitate ALIX in its open conformation; the 1A12 and 3A9 antibodies 

immunoprecipitate ALIX in both open and closed conformations.  

My study demonstrates that calcium-dependent ALG-2 interaction with ALIX 

relieves the intramolecular interaction of ALIX and specifically activates the MVB 

sorting function of ALIX. 

 

Results 
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3.1.  Calcium-dependent ALG-2 interaction with ALIX transforms ALIX from 

closed conformation to open conformation 

I first verified the calcium-dependent ALG-2 interaction with ALIX in our 

experimental system by using GST pull-down. In the presence of 10 µM CaCl2 but 

absence of EGTA, GST-ALG-2 pulled down ALIX from HEK293 cytosolic proteins 

prepared without detergent. In the presence of EGTA but absence of CaCl2, GST-ALG-

2 did not pull down detectable level of ALIX. In the absence of CaCl2 and EGTA, GST-

ALG-2 still pulled down detectable level of ALIX, although the level is much less than 

that in the presence of CaCl2,  possibly due to the endogenous calcium in the cytosolic 

protein lysate (Fig. 14A). I also verified that WT GST-ALG-2, but not E47A/E114A (Mut) 

GST-ALG-2, pulled down ALIX from HEK293 cytosolic proteins in the presence of 10 

µM CaCl2 (Fig. 14B). 

To determine whether calcium-dependent ALG-2 interaction with ALIX relieves 

the intramolecular interaction of ALIX, I added GST or GST-ALG-2 to the cytosolic 

fraction of HEK293 cells and immunoprecipitated ALIX with the 2H12 or 1A12 

antibodies in the absence of detergent. Due to the background level of calcium in the 

cytosolic fraction, which may activate a small portion of GST-ALG-2, the 2H12 antibody 

immunoprecipitated a low level of ALIX from cytosolic fraction incubated with GST-

ALG-2. As a positive control, the 1A12 antibody immunoprecipitated similar level of 

ALIX from cytosolic fraction incubated with GST or GST-ALG-2 (Fig. 14C). 

Since the intramolecular interaction of ALIX prohibits ALIX interaction with its 

partner proteins, such as CHMP4 and TSG101, I further determined the effects of 

calcium-dependent ALG-2 interaction with ALIX on the conformational change of ALIX 

by examining the co-IP of ALIX and its partner proteins. For this purpose, I added 
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noting, CaCl2, or CaCl2 plus GST-ALG-2 to the cytosolic fraction of HEK293 cells 

ectopically expressing FLAG-CHMP4b or FLAG-TSG101 and immunoprecipitated 

FLAG-CHMP4b or FLAG-TSG101 with an anti-FLAG antibody in the absence of 

detergent. The results showed that cytosolic ALIX did not immunoprecipitate with 

FLAG-CHMP4b or FLAG-TSG101 in control cells. In the presence of CaCl2, detectable 

level of ALIX was immunoprecipitated with FLAG-CHMP4b or FLAG-TSG101. In the 

presence of CaCl2 and GST-ALG-2, much higher level of ALIX was immunoprecipitated 

with FLAG-CHMP4b or FLAG-TSG101 (Fig. 14D-E). These results demonstrate that 

calcium-dependent ALG-2 interaction with cytosolic ALIX relieves the intramolecular 

interaction of ALIX and transforms ALIX from closed conformation to open 

conformation.  

To determine whether ALG-2-induced open formation of ALIX is reversible, I first 

induced the open conformation ALIX by adding CaCl2 plus GST-ALG-2 to cytosolic 

fractions of HEK293 cells and then dissociated GST-ALG-2 by adding EGTA to 

cytosolic fractions of the cells. As shown in Fig. 14F-G, adding CaCl2 plus GST-ALG-2 

relieved the intramolecular interaction of cytosolic ALIX, as demonstrated by 

immunoprecipitation with the 1A3 antibody. Adding EGTA reversed the conformational 

change of ALIX. However, if the cytosolic fractions contained ectopic expressing FLAG-

TSG101, GST-p6 or GST-p9 before adding EGTA, then EGTA treatment only partially 

reversed the conformational change of ALIX. These results demonstrate that ALG-2-

induced conformational change of ALIX is a reversible event and that occupation by 

partner proteins partially maintains the open conformation of ALIX.  

Altogether, these results demonstrate that calcium-dependent ALG-2 interaction 

with ALIX relieves the intramolecular interaction of ALIX and induces an open 
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conformation of ALIX and that the open conformation of ALIX can be partially 

maintained by newly recruited partner proteins after ALG-2 dissociation. 
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Figure 14. Calcium-dependent ALG-2 interaction with ALIX transforms ALIX from 

closed conformation to open conformation. (A&B) GST, WT GST-ALG-2 or Mut 

GST-ALG-2 was immobilized onto GSH beads, which were then incubated with the 

cytosolic fraction of HEK293 cell lysates containing CaCl2 or EGTA. Input proteins and 

bound proteins were immunoblotted with indicated antibodies to visualize ALIX, GST 

and GST-ALG-2. (C) GST or GST-ALG-2 was added into cytosolic proteins of HEK293 

cells, which were then immunoprecipitated with indicated antibodies. Input and 

immunocomplexes were immunoblotted with indicated antibodies to visualize ALIX, 

GST and GST-ALG-2. (D&E) HEK293 cells were transfected with FLAG-CHMP4B (D) 

or FLAG-TSG101 (E) and cytosolic proteins of the transfected cells were incubated 
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with CaCl2 or CaCl2 plus GST-ALG-2. These cytosolic proteins were 

immunoprecipitated followed by immunoblotting with indicated antibodies. (F) GST-

ALG-2 plus CaCl2 and GST or GST-p6 were added into cytosolic proteins extracted 

from HEK293 cells and incubated for 30 min. Then, the samples were treated with or 

without EGTA for 30 min before being immunoprecipitated with the 1A3 antibody. Input 

and immunocomplexes were immunoblotted with indicated antibodies to visualize ALIX, 

GST-ALG-2 and GST-p6. (G) The assay was performed as described for (F), except 

that GST-p6 was changed to GST-p9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

3.2.   Calcium-dependent ALG-2 interaction with ALIX is essential for CHMP4-

dependent ALIX membrane association 

I first determined whether ALIX association with the membrane is dependent on 

interaction with CHMP4 by using membrane flotation centrifugation. HEK293 cells were 

transfected with si-NC or a combination of two pairs of si-CHMP4B, and the distribution 

of ALIX in M fraction was examined. As shown in Fig. 15A, transfection of si-CHMP4B 

knocked down CHMP4B by ~70% and decreased the percentage of membrane 

associated ALIX from ~13% to ~5%. EEA1 and actin were used as internal control for 

membrane proteins and soluble proteins, respectively in order to eliminate the 

possibility of contamination. The results demonstrate that ALIX association with the 

membrane is dependent on CHMP4. 

To determine the effects of calcium-dependent ALG-2 interaction with ALIX on 

ALIX membrane association, HEK293 cells were transfected with FLAG or FLAG-ALG-

2 and the PNSs were fractionated by using membrane flotation centrifugation. If the 

cells were briefly treated with calcium ionophore A23187 before collection, ectopic 

expression of FLAG-ALG-2 increased the percentage of membrane associated ALIX 

from ~11% to ~53%. However, ectopic expression of FLAG-ALG-2 alone did not 

significantly increase the percentage of membrane associated ALIX (Fig. 15B-C).  

These results demonstrate that calcium-dependent ALG-2 interaction with ALIX 

promotes ALIX association with membrane. 

To determine whether ALG-2-induced increase in ALIX membrane association is 

dependent on CHMP4, HEK293 cells were co-transfected with FLAG-ALG-2 and WT, 

I212D or ALG-2 binding site-deleted (∆PxY) GFP-ALIX and briefly treated with calcium 

ionophore A23187 before collection. The results of membrane flotation centrifugation 
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showed that ectopic expression of FLAG-ALG-2 in conjunction with a brief calcium 

ionophore A23187 treatment increased WT GFP-ALIX membrane association similarly 

as it did to the endogenous ALIX. However, I212D or ∆PxY mutation abolished GFP-

ALIX membrane association (Fig. 15D). These results demonstrate that ALG-2-induced 

ALIX association with membrane is dependent on ALIX interaction with CHMP4.  

To further determine the role of ALG-2 in ALIX association with the membrane, 

HEK293 cells were transfected with si-NC or si-ALG-2 and the effects on ALIX 

association with the membrane was determined by membrane flotation centrifugation. 

The results showed that knockdown of ALG-2 decreased the percentage of membrane 

associated ALIX from ~13% to ~2-3%, suggesting that ALG-2 plays a physiological role 

in ALIX association with membrane (Fig. 15E-F).  

Altogether, these results demonstrate that Ca2+-dependent ALG-2 interaction 

with ALIX plays a rate-limiting role in CHMP-4 dependent ALIX association with 

membrane. 
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Figure 15. Calcium-dependent ALG-2 interaction with ALIX is essential for 

CHMP4-dependent ALIX membrane association. (A) HEK293 cells were transfected 

with si-NC or si-CHMP4B. PNSs from the transfected cells were fractionated by 

membrane flotation centrifugation. M and S protein fractions were immunoblotted to 

visualize ALIX, CHMP4B, EEA1 and actin. (B) HEK293 cells were transfected with 

FLAG or FLAG-ALG-2. PNSs were prepared from these transfected cells treated with 

calcium ionophore A23187 and processed as described in (A). (C) HEK293 cells were 

transfected with FLAG or FLAG-ALG-2. PNSs were prepared from these transfected 

cells and processed as described in (A). (D) HEK293 cells were co-transfected with 

FLAG or FLAG-ALG-2 and indicated forms of GFP-ALIX. PNSs were prepared from 

these transfected cells treated with calcium ionophore A23187 and processed as 

described in (A). (E-F) HEK293 cells were transfected with si-NC or si-ALG-2.  PNSs 

were prepared from these transfected cells processed as described in (A). 
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3.3. EGF-induced EGFR activation increases ALIX association with the 

membrane through promoting ALG-2 interaction with ALIX  

To determine the effects of EGF-induced EGFR activation on ALIX and ALG-2 

association with the membrane, HEK293 cells were stimulated with or without 100 

ng/ml EGF for 1 h and PNSs were prepared for membrane flotation centrifugation. The 

results showed that EGF stimulation not only increased the percentage of membrane-

associated ALIX from ~12% to ~35%, but also increased the percentage of membrane-

associated ALG-2 from ~11% to ~44%.  In contrast, the even distribution of CHMP4B 

between M fraction and S fraction was not changed (Fig. 16A).  

To determine whether EGF stimulation promotes ALG-2 interaction with ALIX, 

HEK293 cells were stimulated with or without EGF and the cell lysates were prepared 

with 0.1% Triton X-100 to dissolve the membrane and 10 µM CaCl2. The results of co-

IP showed that EGF stimulation increased ALG-2 interaction with ALIX by ~3.5 fold 

(Fig.16B).  

Since ALG-2 interaction with ALIX is calcium-dependent and endocytosis of cell 

surface receptors induces a spike of calcium near endosomes, I then determined 

whether calcium is required for EGF-induced increase in ALIX association with the 

membrane.  For this purpose, HEK293 cells were mock-treated or treated with cell 

permeable calcium chelator BAPTA-AM before EGF stimulation and the effects of 

BAPTA-AM treatment on ALIX association with the membrane was examined. As 

shown in Fig. 16C, BAPTA-AM treatment inhibited EGF-induced increase in ALIX 

association with the membrane. All these results suggest that calcium-dependent ALG-

2 interaction with ALIX is required for EGF-induced increase of ALIX association with 

the membrane. 
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To further test this assumption, I knocked down endogenous ALG-2 or 

overexpressed FLAG-ALG-2 in HEK293 cells and examined the effects on EGF-

induced ALIX association with the membrane. As shown in Fig. 16D, knockdown of 

ALG-2 decreased the percentages of membrane-associated ALIX to barely detectable 

level in both mock-treated and EGF-stimulated cells. In contrast, overexpression of WT 

FLAG-ALG-2, but not Mut FLAG-ALG-2, in EGF-stimulated cells increased the 

percentage of membrane-associated ALIX from ~35% to ~53% (Fig. 16E-F). HEK293 

cells were then transfected with WT GFP-ALIX, PxY GFP-ALIX or I212D GFP-ALIX 

and then stimulated with or without EGF. The membrane association of GFP-ALIX was 

determined by using membrane flotation centrifugation. As shown in Fig. 16G, EGF 

stimulation increased the membrane association of WT GFP-ALIX. In contrast, PxY 

GFP-ALIX or I212D GFP-ALIX was barely detectable. These results support our 

assumption.  

Altogether, these results demonstrate that EGF stimulation increases ALIX 

association with the membrane through promoting Ca2+-dependent ALG-2 interaction 

with ALIX.  
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Figure 16. EGF-induced EGFR activation increases ALIX association with the 

membrane through promoting ALG-2 interaction with ALIX. (A) Serum starved 

HEK293 cells were stimulated with or without EGF for 1 h. PNSs were prepared for 

membrane flotation centrifugation. (B) Serum starved HEK293 cells were stimulated 

with or without EGF for 1 h. Cell lysates were prepared in the presence of 0.1% Triton 

X-100 and 10 µM CaCl2 and immunoprecipitated with the 3A9 antibody. Input proteins 

and immunocomplexes were immunoblotted to visualize ALIX and ALG-2. (C) Serum 

starved HEK293 cells were treated with BAPTA-AM starting 1 h before EGF stimulation. 

PNSs were prepared for membrane flotation centrifugation. (D) HEK293 cells were 

transfected with si-ALG-2(1) and serum starved for 12 h before mock-treated or 

stimulated with EGF for 1 h. PNSs were prepared for membrane flotation centrifugation.  

(E&F) HEK293 cells were transfected with FLAG or WT FLAG-ALG-2 (E) or Mut FLAG-

ALG-2 (F) and serum starved for 12 h before stimulated with EGF for 1 h. PNSs were 

prepared for membrane flotation centrifugation. (G) HEK293 cells were transfected with 

indicated forms of GFP-ALIX and serum starved for 12 h. These cells were stimulated 

with or without EGF for 1 h.  PNSs were prepared for membrane flotation centrifugation. 
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3.4.     Membrane-associated ALIX is in an open conformation 

To determine whether membrane-associated ALIX is in an open conformation, 

M fraction and S fraction were fractionated by membrane floatation centrifugation and 

the pooled M fraction proteins and pooled S fraction proteins were extracted with 0.1% 

Triton X-100, which dissolves the membrane vesicles and preserves the intramolecular 

interaction of ALIX, and then immunoprecipitated with anti-ALIX antibodies. 5×M 

fraction proteins were used to make the total protein level is comparable to that of 1×S 

fraction proteins.  Although conformation-sensitive 1A3 antibody immunoprecipitated 

ALIX from 5×M fraction, it did not immunoprecipitate ALIX from 1×S fraction. In contrast, 

conformation-insensitive 3A9 antibody immunoprecipitated comparable levels of ALIX 

from 5×M fraction and 1×S fraction (Fig. 17A).  

To determine whether ALG-2-induced membrane-associated ALIX is in an open 

conformation, PNSs of HEK293 cells ectopically expressing FLAG-ALG-2 and being 

treated with calcium ionophore A23187 were fractionated by membrane flotation 

centrifugation. Pooled M fraction and pooled S fraction proteins were extracted with 0.1% 

Triton X-100 for co-IP with the 3A9 antibody. Although FLAG-ALG-2, TSG101 and 

CHMP4B were co-immunoprecipitated with ALIX in M fraction, no detectable levels of 

any of these three proteins were co-immunoprecipitated with ALIX in S fraction, 

indicating that ALIX in M fraction of FLAG-ALG-2 expressing cells is in an open 

conformation (Fig. 17B).  

To determine whether EGF-induced membrane-associated ALIX is in an open 

conformation, PNSs of HEK293 cells stimulated with EGF were fractionated by 

membrane flotation centrifugation. 5×pooled M fraction and 1×pooled S fraction 

proteins were extracted with 0.1% Triton X-100 for co-IP with the 3A9 antibody. The 
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results showed that ALIX in M fraction, but not S fraction, was co-immunoprecipitated 

with endogenous ALG-2 and CHMP4B (Fig. 17C).  

Altogether, these results demonstrate that EGF-induced and ALG-2-dependent 

membrane-associated ALIX is in an open conformation and interacts with partner 

proteins.  
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Figure 17. Membrane-associated ALIX is in an open conformation. (A) PNSs 

extracted from HEK293 cells were fractionated by membrane flotation centrifugation. 

5×volumes of M fractions were pooled and 1×volume of S fraction was pooled. These 

pooled M and S fractions were immunoprecipitated with indicated antibodies. Input and 

immunocomplexes were immunoblotted to visualize ALIX and IgG. (B) HEK293 cells 

were transfected with FLAG-ALG-2. The transfected cells were treated with calcium 

ionophore A23187 for 15 min before collection. PNSs were fractionated by membrane 

flotation centrifugation. Pooled M fraction and S fractions were immunoprecipitated with 

the 3A9 antibody. Input and immunocomplexes were immunoblotted to visualize ALIX, 

FLAG-ALG-2, TSG101, and CHMP4B. (C) HEK293 cells were serum starved for 12 h 

and then stimulated with or without EGF for 1 h. 5×volumes of M fractions were pooled 
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and 1×volume of S fraction was pooled. These pooled M and S fractions were 

immunoprecipitated with the 3A9 antibody. Input and immunocomplexes were 

immunoblotted to visualize ALIX, ALG-2, and CHMP4B. 
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3.5.    ALG-2-induced activation of ALIX plays an essential role in MVB sorting of 

activated EGFR at early endosomes 

The data demonstrating that calcium-dependent ALG-2 interaction with ALIX is 

essential for EGF-induced ALIX association with membrane suggests that ALG-2 may 

play an essential role in MVB sorting of activated EGFR. To test this hypothesis, I first 

examined whether knockdown of ALG-2 affects MVB sorting of activated EGFR by 

using proteinase K protection assay.  HEK293 cells were first transfected with si-NC or 

si-ALG-2 and then transfected with WT or Mut FLAG-ALG-2* and the effects on MVB 

sorting of activated EGFR were examined. The results showed that knockdown of ALG-

2 decreased the percentage of the proteinase K-insensitive EGFR from ~60% to ~17%.  

Ectopically expressing WT FLAG-ALG-2* rescued the percentage of the proteinase K-

insensitive EGFR to near control level. In contrast, ectopically expressing Mut FLAG-

ALG-2* only slightly rescued the defect in MVB sorting of activated EGFR (Fig. 18A).  

These results demonstrate that ALG-2 interaction with ALIX plays an essential role in 

MVB sorting of activated EGFR.  

To further test this hypothesis, HEK293 cells were first transfected with si-ALIX 

and then transfected with WT or PxY GFP-ALIX* and the effects on MVB sorting of 

activated EGFR were examined. Knockdown of ALIX decreased the percentage of the 

proteinase K-insensitive EGFR from ~60% to ~14%. Ectopically expressing WT GFP-

ALIX*, but not PxY GFP-ALIX*, rescued the defect in MVB sorting of activated EGFR 

(Fig. 18B). These results support our conclusion. 

I already demonstrated that ALIX-supported MVB sorting of activated EGFR is 

essential for rapidly terminating the downstream signaling of activated EGFR. Thus, I 

further examined the effects of ALG-2 on the kinetics of EGF-induced ERK1/2 
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activation under EGF continuous stimulation condition. As shown in Fig. 18C, EGF 

stimulation for 10 min induced the peak level of ERK1/2 activation and the activation of 

ERK1/2 dramatically decreased to basal level after 30 min of EGF stimulation. The 

level of ERK1/2 activation continued decreasing to nearly undetectable level from 1 h to 

3 h of EGF stimulation. Knockdown of ALG-2 prevented the decrease of ERK1/2 

activation in 1 h of EGF stimulation and promoted the sustained ERK1/2 activation from 

1 h to 3 h of EGF stimulation. These results demonstrate that ALG-2 plays an important 

role in regulating the downstream signaling of activated EGFR and also further support 

our conclusion that ALG-2 is required for ALIX-supported MVB sorting of activated 

EGFR.  
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Figure 18. ALG-2-induced activation of ALIX plays an essential role in MVB 

sorting of activated EGFR. (A) HEK293 cells were first transfected with si-NC or si-

ALG-2 and then mock-transfected or transfected with indicated forms of FLAG-ALG-2*. 

These cells were serum starved for 12 h and stimulated with EGF for 30 min before 

being measured by the proteinase K protection assay. (B) HEK293 cells were first 

transfected with si-NC or si-ALIX and then mock-transfected or transfected with 

indicated forms of GFP-ALIX*. These cells were serum starved for 12 h and stimulated 

with EGF for 30 min before being measured by the proteinase K protection assay. 

(C&D) HEK293 cells were transfected with si-NC or si-ALG-2 and serum starved for 12 

h before being stimulated with EGF for indicated minutes (C) or hours (D). Cell lysates 

were immunoblotted to visualize p-ERK1/2, ERK1/2 and actin. 
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Since endocytosis of activated EGFR is prerequisite for MVB sorting of activated 

EGFR, thus it is possible that the inhibitory effects of ALG-2 or ALIX knockdown on 

MVB sorting of activated EGFR is from the inhibitory effects on endocytosis. To test 

this possibility, I knocked down ALIX or ALG-2 in HEK293 cells and stimulated the 

serum-starved cells with EGF for indicated time points. Then, the levels of cell surface 

EGFR were examined by biotinylation of cell surface proteins followed by pull-down of 

these biotynlated proteins by streptavidin beads. Immunoblotting with anti-EGFR 

antibody showed that knockdown of ALIX only slightly decreased the percentage of cell 

surface EGFR at the time point of 10 min (Fig. 19A). Knockdown of ALG-2 did not 

affect the levels of cell surface EGFR before and after EGF stimulation (Fig. 19B). 

These results eliminate the possibility that endocytosis of activated EGFR plays any 

roles in ALG-2-ALIX-dependent MVB sorting of activated EGFR. 

To determine whether ALG-2/ALIX regulates MVB sorting of activated EGFR at 

early endosome or late endosome, I transfected HeLa cells with GFP-Rab5 (Q79L), 

which generates enlarged early endosome that can be observed by fluorescent 

microscope (Brankatschk et al., 2012; Raiborg et al., 2002), stimulated the serum-

starved cells with EGF for 30 min and examined the localization of EGFR by using 

immunostaining with an anti-EGFR antibody. In control knockdown cells, ~60% of 

EGFR localized within the GFP-labelled early endosomes. Knockdown of ALIX or ALG-

2 decreased the percentage of intraluminal EGFR to ~20% (Fig. 19C). These results 

support the role of ALG-2/ALIX in promoting MVB sorting of activated EGFR at early 

endosomes.  

To further test this conclusion, I treated HEK293 cells with microtubule poison 

nocodazole to block early to late endosome trafficking (Abrami et al., 2004) and 
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examined whether the inhibitory effects of ALG-2 knockdown on MVB sorting of 

activated EGFR was affected. The results of proteinase K protection assay showed that 

treatment with nocodazole did not affect the inhibitory effects of ALG-2 knockdown on 

MVB sorting of activated EGFR (Fig. 19D), further supporting our conclusion. 

Taken together, these results demonstrate that ALG-2 induced activation of 

ALIX promotes MVB sorting of activated EGFR at early endosome.  
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Figure 19. ALG-2/ALIX plays an essential role in MVB sorting of activated EGFR 

at early endosome. (A&B) HEK293 cells were transfected with si-NC or si-ALIX (A) or 

si-ALG-2 (B) and serum starved for 12 h before being stimulated with EGF for indicated 
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minutes. These cells were biotinylated and cell lysates extracted from these cells were 

incubated with streptavidin beads for pull-down of biotinylated cell surface proteins. 

Input and bound proteins were immunoblotted to visualize EGFR, ALIX and actin. (C) 

HeLa cells were first transfected with si-NC, si-ALIX or si-ALG-2 and then transfected 

with GFP-Rab5 (Q79L) before serum starvation for 12 h. These cells were stimulated 

with EGF for 30 min, fixed and stained with an anti-EGFR antibody (red). Total and 

intra-luminal EGFR were scored for 10 GFP-labeled endosomes for each condition, 

and the percentages of intra-luminal EGFR were determined. (D) HEK293 cells were 

transfected with si-NC or si-ALG-2 and serum starved for 12 h. These cells were 

treated with 10 µM nocodazole for 2 h before and during EGF stimulation before being 

measured by proteinase K protection assay.   
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3.6.   ALG-2-induced activation of ALIX plays an important role in EGF-induced 

EGFR degradation 

The results in the previous chapter showed that knockdown of ALIX inhibited 

MVB sorting of activated EGFR and retarded the degradation of activated EGFR under 

EGF continuous stimulation condition. Since ALG-2 is required for ALIX to support 

MVB sorting of activated EGFR, I hypothesized that ALG-2-induced activation of ALIX 

plays an important role in EGF-induced EGFR degradation under EGF continuous 

stimulation condition. To test this hypothesis, I first knocked down ALG-2 and examined 

the effects on the kinetics of EGF-induced EGFR degradation under EGF continuous 

stimulation condition. As shown in Fig. 20A-B, knockdown of ALG-2 increased the 

percentage of remaining EGFR at 1, 2, 3 and 4 h, resulting in retardation of the 50% 

EGFR degradation from 1 h to 2-2.5 h. Ectopically expressing WT FLAG-ALG-2*, but 

not Mut FLAG-ALG-2*, rescued the defect in EGFR degradation induced by knockdown 

of ALG-2. Then, WT or Mut FLAG-ALG-2 was overexpressed in HEK293 cells and the 

effect on EGF-induced EGFR degradation was examined. As shown in Fig. 20C, 

overexpression of WT FLAG-ALG-2, but not Mut FLAG-ALG-2 decreased the 

percentage of remaining EGFR at 1, 2 and 3 h, accelerating the 50% EGFR 

degradation from 1 h to 0.5 h. To further test the hypothesis, I examined the rescuing 

effects of WT or ∆PxY GFP-ALIX* on EGF-induced EGFR degradation in ALIX 

knockdown cells. As shown in Fig. 12C and 20D, WT, but not ∆PxY GFP-ALIX*, 

rescued the defect in EGFR degradation in ALIX knockdown cells. 

Taken together, these results demonstrate that ALG-2 induced activation of 

ALIX plays an important role in EGF-induced EGFR degradation under EGF continuous 

stimulation condition. 
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Figure 20. ALG-2-induced activation of ALIX plays an important role in EGF-

induced EGFR degradation.  (A&B) HEK293 cells were first transfected with si-NC or 

si-ALG-2(1) and then transfected with WT FLAG-ALG-2* (A) or Mut FLAG-ALG-2* (B) 

before being serum starved for 12 h. These cells were then stimulated with EGF for 

indicated hours, and cell lysates were immunoblotted to visualize EGFR, ALG-2, FLAG-

ALG-2 and actin. (C) HEK293 cells were transfected with WT FLAG-ALG-2 or Mut 

FLAG-ALG-2 before being serum starved for 12 h. These cells were then stimulated 

with EGF for indicated hours, and cell lysates were immunoblotted to visualize EGFR, 

FLAG-ALG-2 and actin. (D) HEK293 cells were transfected with si-NC or si-ALIX(1) 

and then transfected with ∆PxY GFP-ALIX* before being serum starved for 12 h. These 
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cells were then stimulated with EGF for indicated hours, and cell lysates were 

immunoblotted to visualize EGFR, ALIX, GFP-ALIX and actin. 
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3.7.  ALG-2 is not required for supporting ALIX to function in cytokinetic 

abscission or retroviral budding  

Besides MVB sorting function, ALIX has been demonstrated to be critically 

involved in cytokinetic abscission and retroviral budding. Since all these ESCRT-

mediated processes require relieving the intramolecular interaction of ALIX, I examined 

whether ALG-2 is also required for supporting ALIX to function in cytokinetic abscission 

and retroviral budding. First, I examined whether ALG-2 is required to support 

cytokinetic abscission. The failure in cytokinetic abscission induces multinucleated cells 

and midbody-stage cells. As a positive control, knockdown of ALIX in HeLa cells 

increased the percentages of multinucleated and midbody-stage cells from ~5% to ~35% 

(Fig. 21A), consistent with the previous studies (Carlton and Martin-Serrano, 2007; 

Morita et al., 2007). In contrast, knockdown of ALG-2 did not significantly increase the 

percentages of multinucleated and midbody-stage cells (Fig. 21A), suggesting that 

ALG-2 is not important for cytokinetic abscission.  

Then, I examined whether ALG-2 is required to support retroviral budding. For 

this purpose, I first knocked down ALG-2 in HEK293 cells by using siRNA and then 

transfected the cells with pEV53B-EIAVGAG.  Virus-like particles (VLPs) were collected 

from culture medium by ultracentrifugation. The levels of VLPs were examined by 

immunoblotting of VLP lysates using anti-capsid (CA) antibodies. As a positive control, 

knockdown of ALIX significantly inhibited EIAV budding from infected HEK293 cells 

(Fig. 21B), consistent with the previous reports (Strack et al., 2003; von Schwedler et 

al., 2003).  In contrast, knockdown of ALG-2 did not inhibit EIAV budding (Fig. 21B), 

suggesting that ALG-2 is not important for EIAV budding. 
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Taken together, these results suggest that ALG-2 specifically generates 

functional ALIX in MVB sorting of activated EGFR and that there should be other 

mechanisms by which ALIX is activated to function in cytokinetic abscission and 

retroviral budding.  
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Figure 21. ALG-2 is not required for supporting ALIX to function in cytokinetic 

abscission or retroviral budding. (A&B) HeLa cells were transfected with si-NC, si-

ALIX or si-ALG-2, fixed and stained with anti-tubulin antibodies (red) and 

counterstained with DAPI (blue). (A) Hollow arrows indicate multinucleated or midbody- 

stage cells. Scale bar: 50 µm. (B) Average percentages of multinucleated and 

midbody-stage cells and SDs for each condition were determined from three 

independent experiments and plotted (lower panel). (C&D) HEK293 cells were first 

transfected with si-NC, si-ALIX(1) or si-ALIX(2) (C) or with si-NC, si-ALG-2(1) or si-

ALG-2(2) (D) and then transfected with EIAV pEV53B. Released VLPs were collected 

by using ultracentrifugation. Cell lysates and VLPs were immunoblotted with anti-CA 

antibodies.  
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Discussion 

Results from the previous chapter demonstrate the essential role of CHMP4-

bound ALIX dimer in MVB sorting and silencing of activated EGFR. However, the 

default intramolecular interaction of ALIX inhibits MVB sorting function of ALIX through 

prohibiting ALIX interaction with CHMP4. Here, my studies demonstrate that calcium-

dependent ALG-2 interaction with ALIX completely relieves the intramolecular 

interaction of ALIX and promotes ALIX association with membrane-bound CHMP4. 

Although this mechanism is essential for activating ESCRT function of ALIX in MVB 

sorting of activated EGFR, it is not involved in activating ESCRT function of ALIX in 

cytokinetic abscission and retroviral budding.  

In default condition, only ~10%-15% of ALIX is membrane associated and this 

membrane association is dependent on ALG-2, indicating that calcium is one of the 

rate-limiting factors in this regulatory mechanism. However, treating cells with calcium 

ionophore A23187 alone only slightly increased the level of ALIX in open conformation. 

Combination of overexpressing ALG-2 and adding calcium ionophore A23187 

significantly increased the level of ALIX in open conformation, indicating that ALG-2 

availability is also the rate-limiting factor in this regulatory mechanism. 

Activation of EGFR induces a calcium spike near endosomes (Gerasimenko et 

al., 1998; Gerasimenko and Tepikin, 2005). Consistent with this, our results showed 

that EGF stimulation promoted ALG-2 interaction with ALIX. However, there is possible 

that EGFR activation also increases the availability of ALG-2. Although the underlining 

mechanism is still unknown, I predict that EGFR activation may induce the 

phosphorylation of ALG-2, which increases the availability of ALG-2. This prediction 

needs to be examined in the future studies. 
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ALG-2 was originally identified as apoptotic induction protein (Vito et al., 1996). 

The studies exploring the mechanisms of the pro-apoptotic function of ALG-2 identified 

ALIX as the ALG-2 interacting proteins and this interaction is essential for apoptotic 

induction. The studies in this chapter lead us to hypothesize that ALG-2 may induce 

apoptosis through terminating the downstream signaling of activated receptor tyrosine 

kinases. 
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Chapter 4: The mechanism that activates ALIX function in cytokinetic abscission 

and retroviral budding 

The contents of this chapter are based on Sun, S., Sun, L., Zhou, X., Wu, C., Wang, R., 

Lin, S.H., Kuang, J. Phosphorylation-Dependent Activation of the ESCRT Function of 

ALIX in Cytokinetic Abscission and Retroviral Budding. Dev Cell. 2016;36(3):331-43. 

doi: 10.1016/j.devcel.2016.01.001. 

 

Copyright permission is required and obtained from Cell Press (License No.: 

3830440570477). 

 

Background 

 

The results from chapter 3 showing that ALG-2 is not important for ALIX-

mediated cytokinetic abscission or retroviral budding suggest that there should be other 

mechanisms that activate ESCRT functions of ALIX in these two processes.  

Cytokinesis initiates during early anaphase with a primary ingression of the 

cleavage furrow mediated by contraction of the actomyosin ring. As furrowing 

progresses, the spindle midzone, which is the structure formed during anaphase 

between the separating chromosomes by overlapping spindle microtubules, transforms 

into the intercellular bridge. Two daughter cells are connected by the intercellular 

bridge, at the middle of which is a dense structure termed the midbody. The midbody 

contains antiparallel arrays of microtubules that cross the Flemming body, which is the 

electron-dense structure that forms at the center of the midbody when the spindle 

http://www.sciencedirect.com/science/article/pii/S1534580716000356
http://www.sciencedirect.com/science/article/pii/S1534580716000356
http://www.sciencedirect.com/science/article/pii/S1534580716000356
http://www.sciencedirect.com/science/article/pii/S1534580716000356
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midzone’s microtubules are compacted after furrow ingression. The midbody provides 

the anchorage to the ingressed cleavage furrow and the platform for the recruitment 

and assembly of ESCRTs. Before abscission occurs, a secondary ingression forms and 

decreases the thickness of the intercellular bridge from 1.5-2 µm to 100-200 nm 

(Agromayor and Martin-Serrano, 2013; Mierzwa and Gerlich, 2014). During late 

telophase, FIP3 endosomes deliver p50RhoGAP and SCAMP2/3 to the intercellular 

bridge, where SCAMP2/3 and p50RhoGAP are involved in depolymerization of the 

cortical actin. The depolymerization of the cortical actin is required for successful 

completion of abscission. Knockdown of SCAMP2/3 or p50RhoGAP was shown to 

significantly decrease the percentage of cells with secondary ingression. FIP3, 

SCAM2/3 or p50RhoGAP was also shown to be required for ESCRT machinery to be 

recruited to the abscission site to perform the final cut (Schiel et al., 2012). 

Before cytokinetic abscission, Cep55 is recruited to the midbody through the 

direct interaction between Cep55 and midbody component MKLP1 (mitotic kinesin-like 

protein 1) (Bastos and Barr, 2010). Cep55 recruits ESCRT-associated protein ALIX to 

the midbody through the direct interaction. ALIX in turn recruits ESCRT-III component 

CHMP4 to the midbody area and promotes the assembly of 17-nm ESCRT-III filament. 

Membrane abscission occurs ∼1 μm away from the midbody where the microtubules 

are removed by microtubule-severing protein, spastin, enabling full constriction at the 

abscission site. ESCRT-III filaments assemble at both the midbody and membrane 

abscission site but appear to be discontinuous (Carlton et al., 2008; Guizetti et al., 2011; 

Morita et al., 2007).  

The budding of enveloped viruses away from the infected cells is the process in 

which the membrane is distorted away from the cytoplasm and ultimately wrapped 
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around the assembling viral particles followed by severing membrane connected the 

viral particles and cells to release the viral particles (Martin-Serrano and Neil, 2011; 

Votteler and Sundquist, 2013).  Retroviral assembly and budding is driven primarily by 

Gag, a polyprotein that contains all the necessary domains. Retroviruses hijack 

ESCRTs in host cells through direct interaction between YPXL motif in L domain of 

Gag protein and the F676 pocket in ALIX (Martin-Serrano and Neil, 2011; Strack et al., 

2003; von Schwedler et al., 2003; Votteler and Sundquist, 2013). 

Previous studies of the Xenopus ortholog of ALIX, Xp95, during meiotic 

maturation of Xenopus oocytes showed that Xp95 is phosphorylated both at the 

conserved tyrosine residue (Y318) within the Patch 2 of the Bro1 domain (Dejournett et 

al., 2007), and at multiple sites within N-terminal portion of PRD (nPRD) in M phase-

arrested mature oocytes (Dejournett et al., 2007). Alignment of the sequence of Xp95 

and ALIX showed that most of the phosphorylation sites within the Bro1 domain and 

nPRD are conserved. Since protein phosphorylation may disrupt the intramolecular 

interaction of a protein, we hypothesized that phosphorylation of one or both of the 

intramolecular interaction sites in ALIX relieves the intramolecular interaction of ALIX 

and transforms ALIX from closed to open conformation during M phase induction.  The 

preliminary data from a previous graduate student in our group, Xi Zhou, showed that 

ALIX transformed from closed conformation to open conformation in mitotic arrested 

HEK293 cells, suggesting that mitotic cells may be a good platform to study the 

possible role of phosphorylation in conformational change of ALIX. 

To test our hypothesis, I designed and performed this part of study. My study 

demonstrates that ALIX phosphorylation at the intramolecular interaction site within the 

nPRD relieves the default intramolecular interaction of cytosolic ALIX in mitotic cells 
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and that this activating phosphorylation of ALIX is required for ALIX to support 

cytokinetic abscission and EIAV budding but does not affect the function of ALIX in 

MVB sorting of activated EGFR.  

 

Results 

4.1. The intramolecular interaction of cytosolic ALIX is relieved in a 

phosphorylation-dependent manner during M phase entry 

To determine whether the intramolecular interaction of ALIX is relieved during M 

phase entry, conformation-sensitive anti-ALIX antibodies were used to 

immunoprecipitate cytosolic ALIX from asynchronously growing (>95% interphase cells) 

or mitotically arrested (>80% mitotic cells) HEK293 cells, which were extracted with the 

cell extraction buffer without detergent. The extraction buffer for mitotically arrested 

cells contains ATP and the PP1/PP2A inhibitor microcystin to stabilize the M phase 

status of the extracts. Immunoprecipitation of asynchronously growing cell lysates (IE) 

or mitotically arrested cell lysates (ME) showed that conformation-sensitive anti-ALIX 

antibodies, 1A3 and 2H12, specifically immunoprecipitated cytosolic ALIX from ME, 

indicating that cytosolic ALIX in ME is in an open conformation. In contrast, 

conformation-insensitive anti-ALIX antibodies, 1A12 and 3A9, immunoprecipitated 

comparable levels of cytosolic ALIX from both IE and ME (Fig. 22A). Immunoblotting of 

IE and ME with the mitotic phosphoprotein monoclonal antibody 2 (MPM-2) (Wu et al., 

2010) showed robust increase of the level of protein phosphorylation in mitotic cells, 

demonstrating the mitotic state of ME. Since the extraction buffer for mitotically 

arrested cells contains ATP and microcystin, there is a possibility that the added ATP 
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and microcystin induce the open conformation of ALIX. To test this possibility, I used 

the extraction buffer containing ATP and microcystin to prepare both IE and ME, and 

performed immunoprecipitation with the 2H12 and 3A9 antibodies. As shown in Fig. 

22B, although the 2H12 antibody immunoprecipitated detectable level of ALIX from IE, 

it immunoprecipitated much higher level of ALIX from ME as did the 3A9 antibody, 

indicating that the conformational change of ALIX in mitotic cells is not due to the buffer 

condition. These results demonstrate that the intramolecular interaction of ALIX is 

relieved to transform ALIX from closed conformation to open conformation during M 

phase induction. 

To further test the conclusion, I examined the interactions between cytosolic 

ALIX and some of its partner proteins, such as CHMP4, TSG101, and Src in IE and ME. 

These interactions are inhibited by the intramolecular interaction of ALIX. Ectopically 

expressing FLAG-CHMP4B or endogenous TSG101 was not co-immunoprecipitated 

with cytosolic ALIX in IE. In contrast, both of them were co-immunoprecipitated with 

cytosolic ALIX in ME (Fig. 22C-D). These results further support the conclusion. 

To determine whether the conformational change of ALIX during M phase entry 

is induced by mitotic phosphorylation, I treated ME with calf intestinal alkaline 

phosphatase (CIP) and examined the effect on ALIX conformational change.  As shown 

in Fig. 22E, the 1A3 antibody specifically immunoprecipitated cytosolic ALIX from ME, 

indicting the open conformation of ALIX in ME. Treatment of ME with CIP eliminated 

the 1A3 immunoprecipitability of ALIX in ME, indicating that mitotic phosphorylation is 

required for conformational change of ALIX. To determine whether the phosphorylation-

induced open conformation of ALIX is reversible event, purified protein GST-CHMP4B 

or in-vitro translated myc-TSG101 was added into ME before CIP treatment, it partially 
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rescued the 1A3 immunoprecipitability of ALIX (Fig. 21F-G), suggesting that partner 

protein interaction partially keeps the open conformation of ALIX. Immunoblotting of IE, 

ME and ME plus CIP with MPM2 demonstrated the mitotic state of ME and the efficacy 

of CIP treatment. 

These results demonstrate that mitotic phosphorylation induces an open 

conformation of ALIX during M phase entry. 
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Figure 22. The intramolecular interaction of cytosolic ALIX is relieved in a 

phosphorylation-dependent manner during M phase entry. (A) IE and ME from 

HEK293 cells were prepared and immunoblotted with MPM-2 and the 3A9 antibody 

(left panel). IE and ME were immunoprecipitated with indicated conformation-sensitive 
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or conformation-insensitive anti-ALIX antibodies followed by immunoblotting. (B) IE and 

ME from HEK293 cells were prepared with the same extraction buffer containing ATP 

and microcystin and immunoblotted with MPM-2 and the 3A9 antibody (left panel). IE 

and ME were immunoprecipitated with indicated conformation-sensitive or 

conformation-insensitive anti-ALIX antibodies followed by immunoblotting. (C&D) IE 

and ME were immunoprecipitated with indicated antibodies, and immunocomplexes 

were immunoblotted to visualize ALIX and FLAG-CHMP4B (C) or ALIX and TSG101 

(D). (E) IE, ME and CIP-treated ME were immunoblotted with MPM-2. (F&G) ME was 

first incubated with GST or GST-CHMP4B (F) or myc or myc-TSG101 (G) at 4ºC for 2 h, 

and then treated with CIP. All the samples were immunoprecipitated with IgG or the 

1A3 antibody followed by immunoblotting. 
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4.2.   Phosphorylation of ALIXnPRD disrupts the interaction between ALIXBro1 and 

ALIXnPRD 

Since the intramolecular interaction of ALIX is achieved between Bro1 domain 

and nPRD (Fig. 23A), the next step is to determine phosphorylation of which domain is 

responsible for relieving the intramolecular interaction. For this purpose, I first treated 

in-vitro translated myc-ALIXnPRD with interphase-arrested Xenopus oocyte extracts 

(IOE), M phase-arrested Xenopus egg extracts (MEE) or MEE plus CIP and then 

incubated the treated myc-ALIXnPRD with immobilized GST-ALIXBro1. Immunoblotting of 

input proteins showed that MEE treatment induced a phosphorylation-dependent gel 

mobility shift. The results of GST pull-down showed that although IOE or MEE plus CIP 

treated myc-ALIXnPRD was pulled down by GST-ALIXBro1, MEE treated myc-ALIXnPRD 

could not be pulled down by GST-ALIXBro1 (Fig. 23B), suggesting that phosphorylation 

of ALIXnPRD by MEE disrupts the interaction between ALIXnPRD and ALIXBro1. Then, I 

treated GST-ALIXBro1 with IOE, MEE, or MEE plus CIP and immobilized treated GST-

ALIXBro1 onto GSH beads. Immunoblotting of washed GST-ALIXBro1 with anti-p-Tyr 

antibody demonstrated that ALIXBro1 was phosphorylated by MEE (Fig. 23C). The 

ability of washed GST-ALIXBro1 to interact with myc-ALIXnPRD was examined by GST 

pull-down. MEE-treated GST-ALIXBro1 still pulled down myc-ALIXnPRD, although its 

ability decreased by ~30% compared to IOE or MEE plus CIP treated GST-ALIXBro1 

(Fig. 23D). The results suggest that phosphorylation of ALIXBro1 by MEE only weakens 

the interaction between ALIXnPRD and ALIXBro1. 

Taken together, these results indicate that phosphorylation of ALIXnPRD plays a 

major role in relieving the intramolecular interaction of ALIX. 
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Figure 23. Phosphorylation of ALIXnPRD disrupts the interaction between ALIXBro1 

and ALIXnPRD. (A) Schematic illustration of ALIX and ALIX fragments used in this study. 

(B) The in vitro translated myc-ALIXnPRD was incubated with IOE, MEE, or MEE plus 

CIP. GST pull-down was used to examine the interaction between treated myc-

ALIXnPRD and immobilized GST-ALIXBro1. Input of the treated myc-ALIXnPRD was 

immunoblotted; the gel mobility shift of treated myc-ALIXnPRD was indicated (left panel); 

bound proteins from GST pull-down were immunoblotted (right panel). (C) GST or 

GST-ALIXBro1 was first incubated with IOE, MEE, or MEE plus CIP, and immobilized 

onto GSH beads. The beads was washed and immunoblotted with an anti-

phosphotyrosine (p-Tyr) antibody. (D) GST or GST-ALIXBro1 was first incubated with 
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IOE, MEE, or MEE plus CIP, and then immunoblized onto GSH beads. The beads were 

washed and then incubated with in-vitro translated myc-ALIXnPRD. GST pull-down was 

used to examine the interaction between treated myc-ALIXnPRD and myc-ALIXnPRD (left 

panel). The level of myc-ALIXnPRD pulled down by treated GST-ALIXBro1 was quantified 

and plotted (right panel). 
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4.3.  Phosphorylation of both S718 and S721 residues disrupts the interaction 

between ALIXnPRD and ALIXBro1 

Since the studies above demonstrate that phosphorylation of ALIXnPRD makes 

major contribution to disrupting the intramolecular interaction, I focused on ALIXnPRD in 

the following studies. Sequence alignment of ALIXnPRD and Xp95nPRD showed that two 

conserved residues, Ser718 (S718) and Ser721 (S721) in ALIXnPRD, locate at one of 

the intramolecular interaction site (residues 717-720: PSAP) (Fig. 24A). Since 

phosphorylation may disrupt the protein interaction, I hypothesized that phosphorylation 

at the S718 and S721 residues may be responsible for disrupting the interaction 

between ALIXBro1 and ALIXnPRD. To test this hypothesis, I first examined whether these 

two residues in ALIXnPRD are phosphorylated in our in-vitro experimental system.  

For this purpose, phospho-specific antibodies that recognize the phosphorylated 

S718 and S721 residues were needed. First, we found that the Phospho-(Ser/Thr) PKD 

Substrate Antibody from Cell Signaling Technology (Catalog number: #4381) detects 

peptides and proteins containing a phospho-S/T residue with arginine at the -3 position 

and leucine at the -5 position, preferring proline at the -1 position. Since the S718 

context fits these criteria, the #4381 antibody was used to determine whether the S718 

residue in ALIXnPRD is phosphorylated by MEE treatment. We also produced rabbit 

polyclonal antibodies against a synthetic ALIX peptide that is phosphorylated at both 

S718 and S721 residues. The antibody, which was named as anti-pS2 antibody, was 

also used in the following studies.   

As shown in Fig. 24B, the #4381 antibody recognized MEE-treated WT GST-

ALIXnPRD, but not mock-treated WT GST-ALIXnPRD or MEE-treated phosphodefective 

S718A-S721A (S2A) mutant form GST-ALIXnPRD. Immunoprecipitation with the #4381 
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antibody showed that the #4381 antibody specifically immunoprecipitated MEE-treated 

WT myc-ALIXnPRD, but not mock-treated WT myc-ALIXnPRD or MEE-treated S2A myc-

ALIXnPRD. These results suggest that the S718 residue in ALIXnPRD is phosphorylated 

by MEE treatment. As shown in Fig. 24C, the anti-pS2 antibody specifically recognized 

MEE-treated GST-ALIXnPRD, and also specifically immunoprecipitated MEE-treated 

myc-ALIXnPRD. These results further demonstrate that the S718 and S721 residues in 

ALIXnPRD are phosphorylated by MEE treatment. 

To determine whether phosphorylation at the S718 and S721 residues by MEE 

disrupts the interaction between ALIXnPRD and ALIXBro1, I further made constructs of 

myc-ALIXnPRD containing phosphomimetic mutations at the S718 and S721 residues 

(S718D-S721D, S2D) or phosphodefective mutations at the adjacent residues S712 

and S729 (S712A-S729A, S2A-). The S2A, S2D or S2A- myc-ALIXnPRD was treated 

with IOE, MEE or MEE plus CIP and pulled down by GST-ALIXBro1. As shown in Fig. 

24D, GST-ALIXBro1 pulled down S2A myc-ALIXnPRD under all three conditions, pulled 

down S2A- myc-ALIXnPRD only upon treatment with IOE or MEE plus CIP but did not 

pull down S2D myc-ALIXnPRD under any of the conditions. These results suggest that 

phosphorylation at the S718 and S721 residues are required to disrupt the interaction 

between ALIXBro1 and ALIXnPRD. 

To further determine whether the disruption of the interaction between ALIXBro1 

and ALIXnPRD is a direct effect from phosphorylation or an indirect effect from 

phosphorylation-dependent recruitment of cofactors, I examined this interaction by 

using GST pull-down in the absence of any treatment. As shown in Fig. 24E, GST-

ALIXBro1 pulled down comparable levels of WT, S2A or S2A- myc-ALIXnPRD, but an 

undetectable level of S2D myc-ALIXnPRD. The results indicate that phosphorylation at 
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S718 and S721 residues directly disrupts the interaction between ALIXBro1 and 

ALIXnPRD. 

The S718 residue localizes in a context that fits the phosphorylation consensus 

sequences for PLK1 and PKD. To determine whether PLK1 and PKD, both of which 

are active in mitosis (Golsteyn et al., 1995; Kienzle et al., 2013), are responsible for 

phosphorylating the S718 and S721 residues, I pre-treated MEE with DMSO, PKD 

inhibitor CID755673, PLK1 inhibitor BI-2536, combination of both inhibitors, and pan-

kinase inhibitor staurosporine. Then, the treated MEE was used to phosphorylate GST-

ALIXnPRD in the presence of these inhibitors. Immunoblotting with the anti-pS2 antibody 

showed that the pan kinase inhibitor significantly inhibited the phosphorylation of GST-

ALIXnPRD. However, the PKD and PLK1 inhibitors only reduced the phosphorylation of 

GST-ALIXnPRD by ~17% and ~35%, respectively, and together reduced the 

phosphorylation by ~41% (Fig. 24F).  These results suggest that PLK1 and PKD are 

among the multiple kinases in MEE that phosphorylate the S718 and S721 residues in 

ALIXnPRD. 
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Figure 24. Phosphorylation of both S718 and S721 residues disrupts the 

interaction between ALIXnPRD and ALIXBro1.  (A) Sequence alignment of ALIXnPRD 

and Xp95nPRD; conserved S/T residues are highlighted. (B) WT and S2A GST-ALIXnPRD 

were mock treated or incubated with MEE and immobilized onto GSH beads. The 

beads were washed and immunoblotted with the #4381 antibody (left panel). In-vitro 

translated myc-ALIXnPRD was mock-treated or incubated with MEE. The treated myc-

ALIXnPRD was immunoprecipitated under denaturing condition (dIP) with the #4381 

antibody followed by immunoblotting (right panel). (C) WT and S2A GST-ALIXnPRD were 

mock treated or incubated with MEE and immobilized onto GSH beads. The beads 

were washed and immunoblotted with the anti-pS2 antibody (left panle). In-vitro 

translated myc-ALIXnPRD was mock-treated or incubated with MEE. The treated myc-

ALIXnPRD was immunoprecipitated under denaturing condition (dIP) with the anti-pS2 
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antibody followed by immunoblotting (right panel). (D) In vitro translated products of 

indicated forms of myc-ALIXnPRD were incubated with IOE, MEE, or MEE plus CIP, and 

immunoblotted with anti-myc antibodies (left panel). The interaction between treated 

myc-ALIXnPRD and GST-ALIXBro1 was examined by GST pull-down (right panel). (E) In 

vitro translated products of indicated forms of myc-ALIXnPRD were incubated with 

immobilized GST or GST-ALIXBro1. Input and pull-down proteins were immunoblotted. 

(F) GST-ALIXnPRD was mock treated or incubated with MEE in the presence or absence 

of PKD inhibitor CID755673 (CID), PLK1 inhibitor BI-2536 (BI), both inhibitors (C+B) or 

pan-kinase inhibitor staurosporine (ST). Then, the treated GST-ALIXnPRD was 

immobilized onto GSH beads, which was washed after binding, and immunoblotted 

with the anti-pS2 antibody (left panel). Relative levels of phosphorylated GST-ALIXnPRD 

were determined and normalized against the level of total GST-ALIXnPRD (right panel).  
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4.4.  Phosphorylation of both S718 and S721 residues transforms ALIX from 

close conformation to open conformation in mitotic cells 

To determine whether the S718 and S721 residues are also phosphorylated in 

mitotic cells, I first performed denaturing immunoprecipitation (dIP) of IE and ME by 

using the #4381 antibody. The results showed that the #4381 antibody specifically 

immunoprecipitated ALIX from ME, indicating that the S718 residue is phosphorylated 

in mitotic cells. Then, I performed dIP of IE and ME by using the 3A9 antibody followed 

by immunoblotting of immunocomplex with the anti-pS2 antibody. The results showed 

that the anti-pS2 antibody specifically recognized ALIX in ME, indicating that both S718 

and S721 residues are phosphorylated in mitotic cells (Fig. 25A).  

To determine whether the recognition by two phospho-specific antibodies is due 

to the phosphorylation at the S718 and S721 residues, I transfected HEK293 cells with 

WT or S2A GFP-ALIX and performed dIP of IE and ME by using the #4381 antibody. 

The results showed that the #4381 antibody specifically immunoprecipitated WT GFP-

ALIX from ME, but not IE. The #4381 antibody did not immunoprecipitate S2A GFP-

ALIX from either IE or ME.  The dIP of IE and ME was also performed by using anti-

GFP antibody followed by immunoblotting of immunocomplex with the anti-pS2 

antibody. The results showed that the anti-pS2 antibody specifically recognized WT 

GFP-ALIX from ME, but not IE. Similar to the #4381 antibody, the anti-pS2 antibody 

also did not recognize S2A GFP-ALIX from either IE or ME (Fig. 25B-C). The results 

further demonstrate that the S718 and S721 residues are phosphorylated in mitotic 

cells.  

To determine whether phosphorylation at the S718 and S721 residues are 

responsible for relieving the intramolecular interaction of ALIX in mitotic cells, I 
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transfected HEK293 cells with WT, S2A, S2D or S2A- GFP-ALIX and performed 

immunoprecipitation of IE and ME with the 2H12 and 3A9 antibodies. As shown in Fig. 

25D, the 2H12 antibody only immunoprecipitated S2D GFP-ALIX from IE, indicating 

that only S2D GFP-ALIX is in the open conformation in IE. The 2H12 antibody 

immunoprecipitated WT, S2D and S2A- GFP-ALIX from ME. In contrast, the 2H12 

antibody did not immunoprecipitate S2A GFP-ALIX from either IE or ME, indicating that 

S2A GFP-ALIX could not transform to the open conformation in mitotic cells. The 2H12-

immnuprecipitable GFP-ALIX was also co-immunoprecipitated with CHMP4B and 

TSG101. These results demonstrate that phosphorylation at the S718 and S721 

residues are responsible for relieving the intramolecular interaction of ALIX and 

inducing the open conformation of ALIX in mitotic cells. 

To determine whether phosphorylation at both residues are required for relieving 

the intramolecular interaction of ALIX, I transfected HEK293 cells with WT, S718A, 

S721A or S2A GFP-ALIX and performed immunoprecipitation of ME with the 2H12 and 

3A9 antibodies. As shown in Fig. 25E, the levels of S718A GFP-ALIX and S721A GFP-

ALIX immunoprecipitated by the 2H12 antibody are ~40% and ~70% of the level of WT 

GFP-ALIX immunoprecipitated by the 2H12 antibody. These results suggest that 

complete relieve of the intramolecular interaction of ALIX requires phosphorylation at 

both S718 and S721 residues. Co-IP results showed that mutations at S718 and S721 

residues did not affect ALIX interaction with TSG101 (Fig. 25F). 

To determine whether PLK1 or/and PKD are also responsible for 

phosphorylating the S718 and S721 residues in mitotic cells, HEK293 cells were 

synchronized in mitosis in the presence or absence of the PLK1 inhibitor and/or the 

PKD inhibitor, or the pan kinase inhibitor, and determined the phosphorylation  of ALIX 
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with the anti-pS2 antibody. As shown in Fig. 25G-H, the immunoblotting of the whole 

cell lysates with MPM-2 showed that only the pan kinase inhibitor inhibited mitotic entry. 

The PKD inhibitor inhibited the phosphorylation of the S718 and S721 residues in ALIX 

by ~15%, the PLK1 inhibitor inhibited the phosphorylation by ~25% and the 

combination of two inhibitors inhibited the phosphorylation by ~39%. As anticipated, the 

pan kinase inhibitor completely inhibited the phosphorylation. These results suggest 

that PKD and PLK1 are among the multiple protein kinases that phosphorylate the 

S718 and S721 residues in ALIX in mitotic cells.  

Taken together, these results demonstrate that the phosphorylation at the 718 

and S721 residues in mitotic cells completely relieves the intramolecular interaction of 

ALIX.  
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Figure 25. Phosphorylation of both S718 and S721 residues transforms ALIX 
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from close conformation to open conformation in mitotic cells. (A) IE and ME from 

HEK293 cells were immunoblotted with MPM2 (left panel). IE and ME were 

immunoprecipitated under denaturing condition (dIP) with the #4381 antibody followed 

by immunoblotting (middle panel). IE and ME were immunoprecipitated under 

denaturing condition (dIP) with the 3A9 antibody followed by immunoblotting with the 

3A9 antibody and anti-pS2 antibody (right panel). (B&C) HEK 293 cells were 

transfected with WT or S2A GFP-ALIX. IE and ME from these transfected cells were 

immunoprecipitated under denaturing condition (dIP) with the #4381 antibody followed 

by immunoblotting with an anti-GFP antibody (B), or with an anti-GFP antibody followed 

by immunoblotting with an anti-GFP antibody and the anti-pS2 antibody (C). (D) 

HEK293 cells were transfected with WT or indicated mutant forms of GFP-ALIX.  IE 

and ME these transfected cells were immunoblotted with indicated antibodies or 

immunoprecipitated with indicated anti-ALIX antibodies followed by immunoblotting. (E) 

HEK293 cells were transfected with WT or indicated mutant forms of GFP-ALIX. IE and 

ME from these transfected cells were immunoprecipitated with indicated anti-ALIX 

antibodies. Input proteins and immunocomplexes were immunoblotted with an anti-

GFP antibody. (F) HEK293 cells were co-transfected FLAG-TSG101 and GFP, WT, 

S2A, or S2D GFP-ALIX. IE from these transfected cells were immunoprecipitated with 

anti-FLAG antibodies in the presence of 1% Triton X-100. Input proteins and 

immunocomplexes were immunoblotted. (G&H) HEK293 cells were cultured in the 

presence of 2.5 mM TdR for 16 h. The cells were either cultured in the continued 

presence of TdR or in the presence of 100 ng/ml nocodazole (NC). At 5-6 h after NC 

block, when most of cells had not entered mitosis, DMSO, CID (3 µM), BI (100 nM), 

both inhibitors (CID+BI: 3 µM+100 nM) or ST (50 nM) were added to the culture 
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medium, and cells were further cultured for 2-3 h to be accumulated in mitosis. IE and 

ME from collected cells were immunoblotted with MPM2 (G) or immunoprecipitated 

under denaturing condition with the 3A9 antibody followed by immunoblotting with the 

3A9 antibody and anti-pS2 antibody. Relative levels of the phosphorylated ALIX were 

determined and normalized against the levels of total ALIX (H). 
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4.5.  The activating phosphorylation of ALIX is required for ALIX to recruit 

CHMP4 to the midbody 

ALIX has been demonstrated to be critically involved in ESCRT-mediated 

cytokinetic abscission. During cytokinetic abscission, ALIX and TSG101 were recruited 

to the midbody through direct interaction with Cep55. ALIX and TSG101 promoted 

ESCRT-III assembly at the midbody through recruiting CHMP4 (Carlton et al., 2008). 

Since the intramolecular interaction of ALIX prohibits ALIX interaction with CHMP4, I 

hypothesized that phosphorylation at the S718 and S721 residues that relieves the 

intramolecular interaction of ALIX is required for ALIX to support cytokinetic abscission. 

To test this hypothesis, I first determined whether ALIX is required for CHMP4 or 

TSG101 recruitment to the midbody. For this purpose, the ALIX knockdown HeLa cells 

were transfected with mCherry-CHMP4B or mCherry-TSG101, fixed and stained with 

anti-tubulin antibody. As shown in Fig. 26A, knockdown of ALIX inhibited the midbody 

localization of mCherry-CHMP4B in ~70% of the midbody-stage cells examined. In 

contrast, knockdown of ALIX did not affect the midbody localization of mCherry-

TSG101 (Fig. 26B). These results suggest that ALIX is important for the midbody 

localization of CHMP4.  

To further determine the role of the activating phosphorylation of ALIX in 

recruiting CHMP4 to the midbody, I ectopically expressed WT, S2A, or S2A- GFP-

ALIX* in the ALIX knockdown HeLa cells and examined the effects on the midbody 

localization of mCherry-CHMP4B. As shown in Fig. 26C, although WT or S2A- GFP-

ALIX* rescued the midbody localization of mCherry-CHMP4B to the near control level, 

S2A GFP-ALIX* did not have the rescuing effects. These results suggest that the 
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phosphorylation at the S718 and S721 residues are required for ALIX to recruit CHMP4 

to the midbody.  
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Figure 26. The activating phosphorylation of ALIX is required for ALIX to recruit 

CHMP4 to the midbody. (A&B) HeLa cells were transfected with mCherry-CHMP4B 

(A) or mCherry-TSG101 (B), fixed and stained with anti-tubulin antibody (green).  Cell 
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lysates were immunoblotted to visualize ALIX, mCherry-CHMP4b (A), mCherry-

TSG101 (B) and actin (left panel). The average percentages of mCherry positive cells 

with midbody localization of mCherry-CHMP4b and SDs (A) or mCherry-TSG101 (B) 

were determined from three independent experiments and plotted (left panel). 

Representative images are shown with the squares showing the 5× enlarged midbody 

areas. Solid and hollow arrowheads indicate the presence and absence of mCherry-

CHMP4b (A) or mCherry-TSG101 (B) at the midbody, respectively. Scale bar: 50 µm. 

(C) HeLa cells were transfected with indicated siRNAs for 72 h, and cell lysates were 

immunoblotted with indicated antibodies to visualize ALIX and actin. Fixed cells were 

immunostained with an anti-tubulin antibody (red), and counterstained with DAPI (blue). 

The average percentages of midbody-stage cells or multinucleated cells and SDs were 

determined from three independent experiments and plotted. Representative images 

are shown with solid and hollow arrows indicating mononucleated and multinucleated 

cells, respectively, and hollow arrowheads indicating midbodies between daughter cells. 

Scale bar: 50 µm.  
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4.6.  The activating phosphorylation of ALIX is required for ALIX to support 

cytokinetic abscission 

The midbody localization of CHMP4 is essential for cytokinetic abscission. Thus, 

I then determined whether the activating phosphorylation of ALIX is required for 

cytokinetic abscission. As shown in Fig. 27, knockdown of ALIX in HeLa cells increased 

the percentages of midbody-stage and multinucleated cells from <2% to ~14% and 

~17%, respectively. Ectopic expressing WT, S2A or S2A- GFP-ALIX* localized at the 

midbody in the ALIX knockdown cells. Although WT or S2A- GFP-ALIX* rescued the 

percentages of midbody-stage and multinucleated cells to the near control levels, S2A 

GFP-ALIX* did not have the rescuing effects. These results demonstrate that the 

phosphorylation at the S718 and S721 residues are important for ALIX to support 

cytokinetic abscission.  
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Figure 27. The activating phosphorylation of ALIX is required for ALIX to support 

cytokinetic abscission. HeLa cells were transfected with indicated siRNAs for 48 h 

and then transfected with indicated constructs for 24 h before fixation. The fixed cells 

were stained with an anti-tubulin antibody (red). Cell lysates were immunoblotted to 

visualize GFP-ALIX, ALIX and actin (left panel). The percentages of GFP-positive 

midbody-stage cells and multinucleated cells were scored and plotted (left panel). 

Representative images are shown with solid and hollow arrows indicating GFP-positive 

mononucleated and multinucleated/midbody-stage cells, respectively. Scale bar: 50 µM.  
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4.7.   The activating phosphorylation of ALIX is required for ALIX to support EIAV 

budding 

ALIX has been demonstrated to be critically involved in ESCRT-mediated EIAV 

budding, which is a model system for studying of retroviral budding. ALIX involvement 

in EIAV budding requires ALIX interaction with p9GAG and CHMP4 (Strack et al., 2003). 

Thus, I hypothesized that the activating phosphorylation of ALIX is important for it to 

support EIAV budding.  

To test this hypothesis, I first confirmed the previous reports that ALIX 

interaction with p9GAG needs opened ALIX by showing that GST-p9GAG specifically 

pulled down ALIX from ME, but not IE (Fig. 28A). Moreover, p9GAG interaction with 

opened ALIX could partially keep the open conformation of ALIX even after 

dephosphorylation of ALIX (Fig. 28B). 

To determine whether there is a conformational change of ALIX during EIAV 

budding, HEK293 cells were co-transfected with an infection-defective EIAV Gag 

(pEV53B-GagEIAV) and WT, S2A or S2A- GFP-ALIX, and the conformation of GFP-

ALIX was examined by immunoprecipitation with the 1A3 antibody. As shown in Fig. 

28C, expression of GagEIAV induced 1A3-immunoprecipitable WT or S2A- GFP-ALIX, 

suggesting that the activating phosphorylation is required for generating opened ALIX 

during EIAV budding.  

To determine whether the activating phosphorylation of ALIX is required for it to 

support EIAV budding, the ALIX knockdown HEK293 cells were co-transfected with 

pEV53B-GagEIAV and WT, S2A, or S2A- GFP-ALIX*, and the levels of VLPs were 

examined by collecting the VLPs through ultracentrifugation of culture medium followed 
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by immunoblotting with anti-CA antibody. As shown in Fig. 28D, knockdown of ALIX 

significantly inhibited the budding VLPs, consistent with the previous studies (Strack et 

al., 2003; von Schwedler et al., 2003). Ectopic expression of WT or S2A- GFP-ALIX*, 

but not S2A GFP-ALIX, rescued the defect in EIAV budding, suggesting that the 

phosphorylation at S718 and S721 residues are important for ALIX to support EIAV 

budding. Further studies showed that arresting cells in mitosis blocked EIAV budding 

and that arresting cells in interphase did not affect EIAV budding (Fig. 28E), suggesting 

that EIAV budding only happens in interphase.  
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Figure 28. The activating phosphorylation of ALIX is required for ALIX to support 

EIAV budding. (A) GST or GST-p9 was incubated with IE or ME from HEK293 cells. 

Input and bound proteins were immunoblotted to visualize ALIX, GST and GST-p9. (B) 

ME from HEK293 cells was incubated with GST or GST-p9 at 4ºC for 2 h, and then 

treated with CIP. The samples were immunoprecipitated with IgG or the 1A3 antibody, 

followed by immunoblotting to visualize ALIX, GST and GST-p9. (C) HEK293 cells 

were co-transfected with pEV53B EIAVGag and indicated forms of GFP-ALIX. IE from 

the transfected cells were immunoprecipitated with indicated anti-ALIX antibodies. Input 
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and immunocomplexes were immunoblotted to visualize GFP-ALIX, Gag and actin. (D-

F) HEK293 cells were processed as diagrammed. VLPs and cell lysates were 

immunoblotted with indicated antibodies. Relative levels of VLPs production and SDs 

were determined from three independent experiments and plotted.  
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4.8.    The activating phosphorylation of ALIX is not important for ALIX to support 

MVB sorting of activated EGFR 

ALIX has been demonstrated to be critically involved in ESCRT-III mediated 

MVB sorting of activated EGFR. Calcium-dependent ALG-2 interaction with ALIX 

activates the MVB sorting function of ALIX through relieving its intramolecular 

interaction.  To determine whether the activating phosphorylation collaborates with 

ALG-2 interaction to promote MVB sorting of activated EGFR, I first examined whether 

the activating phosphorylation is required for EGF-stimulated increase of ALIX 

association with the membrane by using membrane flotation centrifugation. As shown 

in Fig. 29A, EGF stimulation increased the percentage of membrane associated WT or 

S2A GFP-ALIX from ~10% to ~30%. In contrast, the membrane association of ∆PxY 

GFP-ALIX is dramatically decreased irrespective of EGF stimulation. These results 

suggest that the activating phosphorylation is not important for EGF-stimulated ALIX 

association with the membrane. 

I then determined whether the activating phosphorylation is required for ALIX to 

promote MVB sorting of activated EGFR by using proteinase K protection assay. As 

shown in Fig. 29B, after 30 min of EGF stimulation, the percentage of protected EGFR 

is ~60%, indicating that ~60% of EGFR was sorted into the lumen of MVB. Knockdown 

of ALIX decreased the percentage of protected EGFR from ~60% to ~15%. WT, S2A or 

S2A- GFP-ALIX similarly rescued the protected percentage of EGFR to the near control 

level, suggesting that the activating phosphorylation is not important for ALIX to support 

MVB sorting of activated EGFR.  Further, I determined the effects of the activating 

phosphorylation on the downstream signaling of activated EGFR by examining the 

levels of EGF-stimulated p-ERK1/2. As shown in Fig. 29C-D, knockdown of ALIX 
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prolonged the duration of p-ERK1/2 from 10 min to 60 min. WT or S2A GFP-ALIX* 

rescued the effect of ALIX knockdown, reducing the duration of p-ERK1/2 to 10 min. 

These results support our conclusion.  

Finally, I determined the effects of the activating phosphorylation on EGF-

induced EGFR degradation under EGF continuous stimulation condition. As shown in 

Fig. 29E-F, knockdown of ALIX retarded the 50% EGFR degradation from 1 h to 2 h. 

Although ∆PxY GFP-ALIX* did not rescue the retardation effect of ALIX knockdown on 

EGFR degradation, WT or S2A GFP-ALIX* could rescue the retardation effect, 

indicating that the activation phosphorylation of ALIX is not important for ALIX to 

function in the degradation of activated EGFR.  

Taken together, these results demonstrate that the phosphorylation at S718 and 

S721 residues is not important for ALIX to support MVB sorting of activated EGFR.  
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Figure 29. The activating phosphorylation of ALIX is not important for ALIX to 

support MVB sorting of activated EGFR. (A) HEK293 cells were transfected with 

indicated forms of GFP-ALIX and stimulated with or without EGF for 1 h. PNSs were 

fractionated by membrane flotation centrifugation. M and S fractions was determined by 

immunoblotting with an anti-GFP antibody. The average percentage of each GFP-ALIX 
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in the M fraction and SDs was determined and plotted. (B-F) HEK293 cells were 

transfected and serum-starved as diagrammed. (B) These cells were stimulated with 

EGF for 30 min before being assayed by the proteinase K protection assay. The 

average percentages of proteinase K-insensitive EGFR were determined and plotted. 

Error bars indicate the range of the data. (C&D) Cells were stimulated with EGF for 

indicated minutes, and cell lysates were immunoblotted to visualize p-ERK, ERK, GFP-

ALIX and ALIX. The relative levels of p-ERK at different time points were determined 

and normalized against the level of si-NC cells at 60 min. (E&F) Cells were stimulated 

with EGF for indicated hours, and cell lysates were immunoblotted to visualize EGFR, 

GFP-ALIX, ALIX and actin. The percentages of remaining EGFR at different time points 

were determined and plotted. 

 

 

 

 

 

 

 

 

 

 

 



121 
 

Discussion 

My results show that ALG-2 is not important for ALIX-mediated cytokinetic 

abscission or retroviral budding, suggesting that different mechanisms are required to 

activate ALIX in these two processes. Using mitotic cells as the platform, I discovered 

that phosphorylation of the S718 and S721 residues at or near the intramolecular 

interaction site within the nPRD of ALIX in mitotic cells relieves the intramolecular 

interaction of ALIX and that multiple protein kinases, including PLK1 and PKD, are 

responsible for this activating phosphorylation. The functional studies demonstrate that 

this activating phosphorylation is required for ALIX to support cytokinetic abscission 

and retroviral budding, but is not important for MVB sorting of activated EGFR.  

Cytokinetic abscission happens in early interphase when most of the mitotic 

kinases have been inactivated. How the mitotic phosphorylation-induced open 

conformation of ALIX can be maintained in interphase to support cytokinetic abscission? 

There are two possible explanations. One is that multiple mitotic kinase and 

phosphoproteins remain active at the midbody after mitotic exist. For example, the 

midbody was specifically recognized by the mitotic phosphoprotein monoclonal 

antibody MPM-2 (Sun et al., 2016; Vandre et al., 1986), by antibodies that recognize 

activated MEK, ERK and RSK (Sun et al., 2016; Willard and Crouch, 2001), by 

antibodies that recognize aurora B (Crosio et al., 2002; Sun et al., 2016), and by 

antibodies that recognize citron kinase and its activator RhoA (Madaule et al., 1998; 

Sun et al., 2016). Thus, it is possible that some of the kinases that catalyze the 

activating phosphorylation of ALIX in mitotic cells localize and remain active at the 

midbody and continue to catalyze the activating phosphorylation of ALIX. My results 

indicate that PLK1 and PKD are among the multiple mitotic kinases that catalyze the 
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activating phosphorylation of ALIX. Phosphorylation of Cep55 by PLK1 inhibits 

recruitment of Cep55 to the midbody (Bastos and Barr, 2010), making PLK1 less likely 

to be the candidate. However, immunostaining with anti-PKD substrate antibodies 

showed that the staining is barely detectable in interphase, very high and widespread in 

metaphase, decreased and concentrated in the spindle pole and midzone in anaphase 

and early telophase, and specifically lingered in the midbody area in late telophase and 

the midbody stage after most of the staining disappeared. There also may be 

unidentified kinases that remain active in the midbody area. The other explanation is 

that opened ALIX recruits CHMP4 and interacts with TSG101 and that the occupation 

of these partner proteins keeps the open conformation of ALIX even if ALIX is 

dephosphorylated at the midbody. My results indicate that increased occupation by 

partner proteins partially maintain the open conformation of ALIX. These two 

mechanisms may function together to keep a pool of opened ALIX in the midbody area 

to support cytokinetic abscission. The failure of cytokinetic abscission induces 

multinucleated cell. Proliferating multinucleated cells are genetically unstable and can 

promote tumorigenesis. 

Retroviral budding does not expect to happen in mitosis; actually, if the cells are 

arrested in mitosis, the retroviral budding is significantly inhibited. Then, how 

phosphorylation at the S718 and S721 residues affects retroviral budding? There are 

two possible explanations. One possibility is that the infection of retrovirus induces the 

activity of certain kinases that catalyze the phosphorylation of ALIX. However, I could 

not detect the signal of phosphorylation by using the #4381 antibody or anti-pS2 

antibody, suggesting that either the infection does not induce kinase activity or the level 

of phosphorylation is too low to be detected by our antibodies. The other possibility is 
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that the high level of p9GAG in EIAV expressing cells may occupy the opened ALIX and 

keep its open conformation. My results demonstrate that GST-p9GAG interacts with 

opened ALIX and partially keeps the open conformation of ALIX even after 

dephosphorylation of ALIX. Thus, these two mechanisms may function together to 

generate ALIX in open conformation to support retroviral budding.  
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Chapter 5: Discussion, perspective and future directions 

5.1.    The regulation of ALIX in ESCRT-mediated processes 

ALIX is involved in numerous ESCRT-mediated membrane remolding processes, 

including MVB sorting, cytokinetic abscission, retroviral budding, plasma membrane 

wound repair, exosome biogenesis, autophagy and nuclear envelope reformation, and 

all these processes are fundamental cellular processes that are critically involved in cell 

growth and survival (Bissig and Gruenberg, 2014; Hurley, 2015). Although much 

advancement has been made in discovery of key factors in these multi-step processes, 

the regulatory mechanism that links the initiator and the executor of this cascade is still 

poorly understood. ALIX is an essential mediator for linking the upstream initiator and 

the downstream executor of ESCRT-mediated processes by direct interaction with 

cargo proteins and CHMP4. Since CHMP4 interaction is inhibited by the default 

intramolecular interaction of ALIX, the regulation of ALIX in ESCRT-mediated 

processes is a very important question that should be explored for better understanding 

of these essential cellular processes. For investigating the regulation of ALIX in 

ESCRT-mediated processes, I chose the three classical ESCRT-mediated processes 

as the model systems because these three classical ESCRT-mediated processes are 

the most fundamental ones and the mechanisms underlining these processes are well 

studied.   

Three potential mechanisms that relieve the intramolecular interaction have 

been proposed in previous studies from our group (Zhou et al., 2010). One is partner 

protein interaction-induced conformational change; another one is competitive binding-

induced disruption of intramolecular interaction; the third one is posttranslational 

modification-induced disruption of intramolecular interaction. 
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My studies demonstrate that calcium-dependent ALG-2 interaction with ALIX 

specifically activates MVB sorting function of ALIX and that phosphorylation at the 

S718 and S721 residues in the nPRD specifically activates the function of ALIX to 

support cytokinetic abscission and retroviral budding (Fig. 30).   
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Figure 30. Graphic abstract illustrating the mechanisms that activate ESCRT 

functions of ALIX in three classical ESCRT-mediated processes (Sun et al., 2016). 

(Permission obtained from Cell Press, License No.: 3830440570477) 
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5.2. The implication of the two regulatory mechanisms in ESCRT-mediated 

processes 

Since ALG-2 interaction with ALIX is calcium dependent (Missotten MTrioulier et 

al., 2004; Shibata et al., 2004), it is possible that the ESCRT-mediated processes that 

induce calcium spike will activate ALIX through this mechanism. In my current study, 

endocytosis-induced calcium spike promotes ALG-2-mediated activation of ALIX in 

MVB sorting of activated EGFR. Plasma membrane damage also induces calcium 

spike near the damaged site. ALG-2 is important for recruiting ALIX and ESCRT-III to 

the damaged site for repair (Jimenez et al., 2014; Scheffer et al., 2014). Exosome 

biogenesis and autophagosome formation share the similar mechanism for MVB 

sorting, involving sorting cargo proteins into endosome. Thus, calcium-dependent ALG-

2 interaction with ALIX may be also involved in activating ALIX in these processes. 

Phosphorylation-dependent activation of ALIX happens when the kinases 

responsible for catalyzing this phosphorylation are active. Thus, it is possible that 

ESCRT-mediated processes that induce the activities of those responsible kinases will 

activate ALIX through this mechanism. In my current studies, in mitotic cells, which 

have numerous mitotic kinases activated, S718 and S721 residues can be 

phosphorylated by some of these kinases. Partner protein occupation maintains the 

open conformation of ALIX during cytokinetic abscission, which actually happens in 

interphase. Retroviral infection may induce a very low level of phosphorylation at S718 

and S721 residues, even falling below our antibody detection range, through either 

inducing a very low level of kinase activity or utilizing the basal level of kinase activity. 

Low level of phosphorylation may cooperate with partner protein (p6/p9) occupation to 

generate a pool of ALIX in open conformation to support retroviral budding. Proper and 
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timely nuclear envelope reformation prevents DNA damage and protects genomic 

stability (Olmos et al., 2015; Vietri et al., 2015). Recent studies showing that Aurora B 

and ULK3 (Unc-51-like kinase 3)-mediated phosphorylation of CHMP4 delayed 

cytokinetic abscission through inducing defective ESCRT-III polymerization (Caballe et 

al., 2015; Carlton et al., 2012) suggest that phosphorylation-dependent regulation may 

be involved in protecting genomic stability and preventing DNA damage. Thus, in the 

process of ESCRT-mediated nuclear envelope reformation, which may induce activities 

of many kinases, ALIX may be activated in a phosphorylation-dependent manner.  

Thus, my studies of regulation of ALIX in the three classical ESCRT-mediated 

processes provide perspective into the regulation of all ESCRT-mediated membrane 

remolding processes. 

5.3.    The implication of ALG-2/ALIX supported MVB sorting in cancer  

Based on my studies demonstrating the essential role of ALG-2/ALIX-supported 

MVB sorting in silencing of activated EGFR, an interesting question would be: whether 

ALG-2/ALIX-supported MVB sorting also regulate other receptor tyrosine kinases or 

other types of membrane receptors?  Recent studies demonstrated the essential role of 

ALIX in MVB sorting of PAR1, a GPCR family member (Dores et al., 2012a). Although 

involvement of ALG-2 was not examined in that study, it is reasonable to expect that 

ALG-2 is involved in activating ALIX in this process.  

In the absence of normal ESCRT function, the signaling of EGFR and other 

receptor tyrosine kinases, including Insulin receptor, platelet-derived growth factor 

receptor (PDGFR) and vascular endothelial growth factor receptor (VEGFR) are 

elevated (Engedal and Mills, 2014; Rodahl et al., 2009; Wegner et al., 2011), indicating 

that MVB sorting is involved in timely silencing of these receptors. Further studies need 
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to use these receptor tyrosine kinases as the model molecules to examine whether 

ALG-2 is also involved in MVB sorting of other receptor tyrosine kinases.  

Activated receptor tyrosine kinases stimulate cell proliferation and survival, thus 

their signaling should be tightly controlled. ALG-2/ALIX-supported MVB sorting is an 

important negative regulator of the signaling of these receptors. If MVB sorting pathway 

has defects, the signaling of the activated receptors cannot be timely terminated. That 

may induce uncontrolled cell proliferation and tumorigenesis (Bache et al., 2004; 

Rodahl et al., 2009; Wegner et al., 2011).  

My studies provide a novel insight into the over-activation of receptor tyrosine 

kinases in cancer cells and suggest that ALG-2/ALIX axis may be a potential target for 

cancer therapy. 

5.4.   The switch of ALIX between its ESCRT-dependent function and ESCRT-

independent function 

Besides the widespread roles of ALIX in ESCRT-mediated processes, ALIX also 

performs diverse ESCRT-independent cellular processes. ALIX was shown to regulate 

cell adhesion, cell morphology and migration (Pan et al., 2008; Pan et al., 2006; 

Schmidt et al., 2003). These studies indicate that cytosolic ALIX is able to perform 

these functions. My studies demonstrate that cytosolic ALIX is in closed conformation 

and that ALIX in open conformation will associate with membrane. Thus, the possible 

scenario is that ESCRT-dependent functions of ALIX require open conformation of 

ALIX, while ESCRT-independent functions of ALIX need closed conformation of ALIX. 

Then, how ALIX is switched between these two types of functions and its implication in 

cancer is an important and interesting question.  



130 
 

The evidence from the studies in our group indicates that the ESCRT-

independent functions of ALIX may promote tumor cell migration. However, if ALIX is 

induced to open conformation, opened ALIX may exert malignancy inhibitory effects 

through promoting MVB sorting and silencing of activated receptor tyrosine kinases. In 

this context, ALG-2 may be an essential factor to regulate the switch of ALIX between 

pro-malignant function and anti-malignant function. 

5.5.    A potential new strategy to target activated receptor tyrosine kinases 

Current therapeutic strategies to target receptor tyrosine kinases in cancer cells 

are either targeting a specific type of receptors by using antibody, inhibiting the activity 

of a specific type of receptors by small-molecule inhibitors or inhibiting the downstream 

signaling of activated receptors by small-molecule inhibitors. The limitation of these 

strategies is that we can only target specific type of receptor tyrosine kinases. Then, 

other receptor tyrosine kinases may play redundant roles to induce drug-resistance.  

If we can develop a compound that can mimic ALG-2/ALIX interaction to induce 

open conformation of ALIX, this compound will promote ALIX-supported MVB sorting 

and silencing of activated receptor tyrosine kinases. The advantage of this strategy is 

that it can target multiple receptor tyrosine kinases simultaneously.  

5.6.     Future directions 

Our current studies also raise multiple new problems that deserve further 

investigations. 

1. To examine whether the regulatory mechanisms identified in the current 

studies also apply to other ESCRT-mediated processes.  
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Besides the three classical ESCRT-mediated processes studied in the current 

research, there are many new identified ESCRT-mediated processes. How these 

ESCRT-mediated processes are regulated is an important and interesting question. By 

using three classical ESCRT-mediated processes, our current studies identified two 

regulatory mechanisms: calcium-dependent ALG-2 interaction and phosphorylation.  

Future studies would test whether either of them applies to new identified ESCRT-

mediated processes. There is possible that some of the ESCRT-mediated processes 

use neither of these two mechanisms. In this case, further studies may be performed to 

explore the novel mechanisms that activate ALIX.  

2. To examine whether ALG-2/ALIX-supported MVB sorting applies to other 

receptor tyrosine kinases. 

EGFR is the model molecule for study of MVB sorting of ubiquitinated receptor 

tyrosine kinases. ALG-2 was identified as apoptosis inducing protein and shown to 

have dysregulation in many types of cancer. ALIX was also initially found to have 

apoptosis inducing effects. Moreover, ALG-2 and ALIX interaction is required for them 

to be involved in inducing apoptosis. However, the underlining mechanism is still not 

clear. The potential role of ALG-2/ALIX-supported MVB sorting in silencing of receptor 

tyrosine kinases is a possible underline mechanism.  Thus, in future studies, we need 

to examine the effects of ALIX or ALG-2 knockdown on downstream signaling and 

degradation of insulin receptor, PDGFR and VEGFR. If positive results are obtained, 

further studies may be performed to examine the role of ALG-2/ALIX-supported MVB 

sorting in cell proliferation, apoptosis and migration.  

3. To identify the kinases responsible for catalyzing the phosphorylation at 

S718 and S721 residues of ALIX. 
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Based on our current studies showing that even combination of PLK1 and PKD 

inhibitors cannot completely inhibit S718-S721 phosphorylation, there are two 

possibilities: one is that PLK1 and PKD are among the multiple kinases that play 

redundant roles in phosphorylating S718-S721 residues; the other possibility is that the 

major kinase(s) that is/are responsible for this activating phosphorylation is still 

unidentified. To test these possibilities, we can use GST-ALIXnPRD to pull down proteins 

from MEE or ME and wash off the binding proteins. These proteins will be analyzed by 

mass spectrometry, which may identify all kinases binding to ALIXnPRD. Then, the 

kinase inhibitors will be used to further test the involvement of these kinases. 

Identifying the responsible kinases will lead to a better understanding for the 

phosphorylation-dependent regulation of ESCRT-mediated processes. 

4. To examine the mechanisms that switch ALIX between non-ESCRT 

function and ESCRT function. 

Our current studies as well as the studies from previous graduate student in our 

group indicated that ESCRT function of ALIX may be involved in malignancy inhibition 

while non-ESCRT function of ALIX may be involved in promoting cell migration. Thus, 

investigating the potential mechanisms that switch ALIX between ESCRT function and 

non-ESCRT function will lead to a better understanding for the role of ALIX in cancer 

biology. We hypothesize that conformational change of ALIX may be the switch. To test 

the hypothesis, we will examine the role of ALIX in cell migration. We will also examine 

the effects of constitutive opened ALIX on cell proliferation, cell morphology and 

apoptosis. Further studies may develop a compound that can induce the open 

conformation of ALIX and examine the malignancy inhibitory effects of the compound.  
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Chapter 6: Experimental procedures 

 

Cell culture, transfection, EGF stimulation and cell synchronization 

HEK293 and HeLa cells were maintained in Dulbecco’s Modification of Eagle’s 

Medium (DMEM) (Mediatech Inc) supplemented with 2 mM L-glutamine and 10% fetal 

bovine serum (Atlanta Biologicals). Subconfluent cultures of cells in 60-mm or 35-mm 

culture dishes were transfected with siRNAs or expression vectors using GenMute™ 

siRNA Transfection Reagent or PolyJet™ DNA In Vitro Transfection Reagent 

(SignaGen Laboratories) according to manufacturer’s instructions. Transfected cells 

were cultured for additional 24 to 48 h before experimental analyses. Transfection with 

ALIX-specific siRNAs was done twice (at 0 and 24 h) as performed in multiple previous 

studies, due to high abundance of ALIX. siRNAs used in this study are summarized in 

Table 2. Mammalian expression vectors used in this study are summarized in Table 3, 

and PCR primers used for site-directed mutagenesis and making vectors are 

summarized in Table 4. 

The calcium ionophore A23187 (Sigma) was solubilized in 0.1% DMSO, and 

was added to the culture medium at a final concentration of 10 µM 15 min before cell 

collection. Cell permeable calcium chelator BAPTA-AM (Toronto Research Chemicals) 

was solubilized in DMSO and added to the culture medium at a final concentration of 

10 µM 1 h before EGF stimulation.  

Subconfluent cells in 35-mm dishes were switched to serum free DMEM medium 

and cultured for ~12 h for serum starvation. For continuous EGF stimulation, 

recombinant EGF (Sigma) was added to the serum free DMEM medium at a final 

concentration of 100 ng/ml, and cells were cultured further for indicated lengths of time. 
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For pulse-chase EGF stimulation, recombinant EGF was added to the serum free 

DMEM medium at a final concentration of 100 ng/ml. Serum-starved cells were first 

incubated with EGF at 4ºC for 30 min (pulse), and then changed to EGF- and serum-

free medium and cultured at 37ºC for indicated lengths of time (chase). The lysosome 

inhibitor chloroquine (CQ) (Sigma) was added to the medium at a final concentration of 

25 mM, whenever indicated. 

To synchronize cells in mitosis, HEK293 cells were first cultured in DMEM 

containing 2.5 mM thymidine (Sigma) for 16 h and cultured in fresh DMEM for 3 h to 

release the cells. Then, 100 ng/mL nocodazole (NC) (Sigma) was added to DMEM for 

mitotic block. To prevent cells into mitosis, HEK293 cells were cultured in DMEM 

containing 2.5 mM thymidine (Sigma) for 16-24 hr to be arrested in S phase. 
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Table 2. Sequences of siRNAs used in this study 

Target Name Sequence Source 

ALIX si-ALIX(1) 5’-GAGAAGAAAUUGCAAGGUUdTdT-3’ Sigma-
Genosys 

ALIX si-ALIX(2) 5’-GAAGGAUGCUUUCGAUAAAdTdT-3’ Sigma-
Genosys 

ALG-2 si-ALG-2(1) 5’-GGUCGAUCAUAUCCAUGUUdTdT-3’ Sigma-
Genosys  

ALG-2 si-ALG-2(2) 5’-GACAGGAGUGGAGUGAUAUdTdT-3’ Sigma-
Genosys 

Firefly 
GL3 

luciferase 

si-NC 5’-CUUACGCUGAGUACUUCGAdTdT-3’ 
 

Sigma-
Genosys 

CHMP4B si-CHMP4B 5’-AGAAGAGUUUGACGAGGAUdTdT-3’ Sigma-
Genosys 

CHMP4B si-CHMP4B 5’-CGGAAGAGAUGUUAACGAAdTdT-3’ Sigma-
Genosys 
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Table 3. Mammalian expression vectors used in this study 

Vector Source 

pEGFP-C3-based expression vector for GFP-ALIX A gift from Dr. Masatoshi 

Maki (Nagoya, Japan) 

(Shibata et al., 2004) 

pEGFP-C3-based expression vector for ALIX-siRNA(1)-

insensitive  GFP-ALIX  

Made in this study 

pEGFP-C3-based expression vector for I212D GFP-

ALIX 

Made in this study 

pEGFP-C3-based expression vector for ALIX-siRNA(1)-

insensitive I212D GFP-ALIX  

Made in this study 

 pEGFP-C3-based mammalian expression vector for 

ΔPxY GFP-ALIX 

A gift from Dr. Masatoshi 

Maki (Nagoya, Japan) 

(Shibata et al., 2004) 

pEGFP-C3-based expression vector for ALIX-siRNA(1)-

insensitive DM GFP-ALIX 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S718A GFP-ALIX 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S721A GFP-ALIX 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S718A-S721A GFP-ALIX 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S712A-S729A GFP-ALIX 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S718A-S721A ALIX-siRNA-insensitive GFP-ALIX (S2A 

GFP-ALIX*) 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S712A-S729A ALIX-siRNA-insensitive GFP-ALIX (S2A- 

GFP-ALIX*) 

Made in this study 

pEGFP-C3-based mammalian expression vector for 

S718D-S721D GFP-ALIX 

Made in this study 
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pCMV-based expression vector for FLAG-CHMP4b A gift from Dr. Masatoshi 

Maki (Nagoya, Japan) 

(Katoh et al., 2003) 

pCMV-Tag2C-based mammalian expression vector for 

FLAG-ALG-2 

A gift from Dr. Changmin 

Chen (Boston, MA) (Chen 

and Sytkowski, 2005) 

pCMV-Tag2C-based mammalian expression vector for 

siRNA(1)-insensitive FLAG-ALG-2 (FLAG-ALG-2*) 

Made in this study 

pCMV-Tag2C-based mammalian expression vector for 

E47A FLAG-ALG-2 

Made in this study 

pCMV-Tag2C-based mammalian expression vector for 

E47A/E114A FLAG-ALG-2  

Made in this study 

pCMV-Tag2C-based mammalian expression vector for 

E47A/E114A FLAG-ALG-2* 

Made in this study 

The pIRES2-based mammalian expression vector for 

FLAG–TSG101 

 

A gift from Dr. Wesley I. 

Sundquist (Salt Lake City, 

UT) (von Schwedler et al., 

2003) 

pEGFP-C3-based mammalian expression vector for 

GFP-Rab5 (Q79L)  

A gift from Jean Gruenberg 
(Geneva, Switzerland) 

(Brankatschk et al., 2012) 

pEV53B-based mammalian expression vector for 

infection defective EIAV 

A gift from Dr. John Olsen 

(Chapel Hill, NC) (Olsen, 

1998) 

 pGEX-4T3 based bacterial expression vector for WT 

GST-ALG-2 

Made in this study 

pGEX-4T3 based bacterial expression vector for 

E47A/E114A GST-ALG-2 

Made in this study 

pGEX-4T3 based bacterial expression vector for 

E47A/E114A GST-ALG-2 

Made in this study 

pGEX-4T3 based bacterial expression vector for GST-

p6HIV-Gag 

A gift from Dr. Wesley I. 

Sundquist  (Salt Lake City, 

UT) (Fisher et al., 2007) 
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pGEX-4T3 based vector bacterial expression for GST-

p9EIAV-Gag 

A gift from Dr. Wesley I. 

Sundquist (Salt Lake City, 

UT) (Fisher et al., 2007) 

pmCherry-C1-based expression 

vector for mCherry-CHMP4b 

Made in this study 

pmCherry-C1-based expression 

vector for mCherry-TSG101 

Made in this study 

pCS2-MT based TNT expression vector for myc-

ALIXnPRD 

Made in this study 

pCS2-MT based TNT expression vector for S718A-

S721A myc-ALIXnPRD 

Made in this study 

pCS2-MT based TNT expression vector for S712A-

S729A myc-ALIXnPRD 

Made in this study 

pCS2-MT based TNT expression vector for S718D-

S721D myc-ALIXnPRD 

Made in this study 

pCS2-MT based TNT expression vector for myc-

TSG101 

Made in this study 

pCS2-HA based expression vector for HA-Plx1 

(Xenopus) 

Made in this study 

pCS2-HA based expression vector for HA-K82R Plx1 

(Xenopus) 

Made in this study 

pGEX-4T3 based bacterial expression vector GST-

ALIXnPRD 

Made in this study 

pGEX-4T3 based bacterial expression vector for GST-

ALIXBro1 

Generated in our previous 

studies (Zhou et al., 2009) 

pGEX-4T3 based bacterial expression vector for GST-

ALIX1-746 

Generated in our previous 

studies (Zhou et al., 2009) 

pGEX-4T3 based bacterial expression vector for GST-

CHMP4b 

Made in this study 
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Table 4. PCR primers used in this study 

Product Primers (Forward/Reverse) 

ALIX-siRNA(1) 

insensitive 

GFP-ALIX  

5’GAAGAAATTTGGAGAGGAAATTGCAAGGTTAC3’ 

5’GTAACCTTGCAATTTCCTCTCCAAATTTCTTC3’ 

ΔPxY GFP-

ALIX* 

5’GAAGAAATTTGGAGAGGAAATTGCAAGGTTAC3’ 

5’GTAACCTTGCAATTTCCTCTCCAAATTTCTTC3’ 

S718A GFP-

ALIX 

5’CATTGCCAGAGAACCTGCTGCTCCTTCAATTCCTACAC3’ 

5’GTGTAGGAATTGAAGGAGCAGCAGGTTCTCTGGCAATG3’ 

S721A GFP-

ALIX 

5’GAACCTAGTGCTCCTGCAATTCCTACACCTGC3’ 

5’-GCAGGTGTAGGAATTGCAGGAGCACTAGGTTC3’ 

S718A-S721A    

GFP-ALIX  

5’CATTGCCAGAGAACCTGCTGCTCCTGCAATTCCTACACCTG

3’ 

5’CAGGTGTAGGAATTGCAGGAGCAGCAGGTTCTCTGGCAAT

G3’ 

S712A-S729A 

GFP-ALIX  

WT to S712A: 

5’CTTAAAGGACTTGCAACAAGCCATTGCCAGAGAACCTAGTG

3’ 

5’CACTAGGTTCTCTGGCAATGGCTTGTTGCAAGTCCTTTAAG

3’ 

S712A to S712A-S729A: 

5’CTACACCTGCGTATCAGGCCTCACCAGCAGGAGGAC3’ 

5’GTCCTCCTGCTGGTGAGGCCTGATACGCAGGTGTAG3’ 

S718A-S721A 

ALIX-siRNA-

insensitive 

GFP-ALIX 

5’CATTGCCAGAGAACCTGCTGCTCCTGCAATTCCTACACCTG

3’ 

5’CAGGTGTAGGAATTGCAGGAGCAGCAGGTTCTCTGGCAAT

G3’ 

S712A-S729A 

ALIX-siRNA-

insensitive 

5’GAAGAAATTTGGGGAGGAGATCGCGAGATTACAGCATGCA

GCA3’ 
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GFP-ALIX 5’CTGCTGCATGCTGTAATCTCGCGATCTCCTCCCCAAATTTC

TTC3’ 

S718D-S721D 

GFP-ALIX 

5'GCATTGCCAGAGAACCTGATGCTCCTGATATTCCTACACCT

GCG3' 

5'CGCAGGTGTAGGAATATCAGGAGCATCAGGTTCTCTGGCAA

TGC3 

Y319F-I212D 

FLAG-ALIXBro1  

5’GAGATAAAATGAAAGATGCCGACATAGCTAAATTGGCTAAT

CAG3’ 

5’CCTGATTAGCCAATTTAGCTATGTCGGCATCTTTCATTTTAT

CTC3’ 

FLAG-ALIXV  5’GAGGAATTCGCGTGTCAGTACAGTCT3’ 

5’TGTTGCGGCCGCAGTCCTTTAAGAGTTCAT3’ 

638KMK640 to 
638EEA640 

mutation in 

ALIX  

5’CTCACATCAGGAATTTTCAGAAGCGGCGCAATCTAATAATG

AAG3’ 

5’GCTTCATTATTAGATTGCGCCGCTTCTGAAAATTCCTGATGT

GAG3’ 

 
643NNE645 to 

643YKK645
 

mutation in 

ALIX V 

domain 

5’CAGAAGCGGCGCAATCTTATAAGAAAGCTAACTTAAGAGAA

G3’ 

5’CTTCTCTTAAGTTAGCTTTCTTATAAGATTGCGCCGCTTCTG

3’ 

WT 

FLAG-ALG-2* 

5’GTGACTGTCAGGTCCATCATATCCATGTTTG3’ 

5’CAAACATGGATATGATGGACCTGACAGTCAC3’ 

E47A  

FLAG-ALG-2 

5’GAGTGATATCAGACACCGCGCTTCAGCAAGCTCTCTC3’ 

5’GAGAGAGCTTGCTGAAGCGCGGTGTCTGATATCACTC3’ 

E47A/E114A 

FLAG-ALG-2 

5’GATGATCGATAAGAACGCGCTGAAGCAGGCCCTCTCAG3’ 

5’CTGAGAGGGCCTGCTTCAGCGCGTTCTTATCGATCATC3’ 

E47A/E114A 

FLAG-ALG-2* 

5’GTGACTGTCAGGTCCATCATATCCATGTTTG3’ 

5’CAAACATGGATATGATGGACCTGACAGTCAC3’ 
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WT GST-ALG-

2  

5’TAAGAATTCCATGGCCGCCTACTCTTAC3’ (EcoR1) 

5’TAACTCGAGTCATACGATACTGAAGACCATG3’ (Xho1) 

E47A/E114A 

GST-ALG-2 

5’TAAGAATTCCATGGCCGCCTACTCTTAC3’ (EcoR1) 

5’TAACTCGAGTCATACGATACTGAAGACCATG3’ (Xho1) 

mCherry-

TSG101 

5’TAACTCGAGCT ATGGCGGTGTCGGAGAG3’ (Xho I) 

5’TAAGAATTCTCAGTAGAGGTCACTGAGACCG3’ (EcoRI) 

pCS2-MT-

ALIXnPRD 

5’TAAGAATTCATTAAAGGACTTGCAACAAAGCATTG3’ (EcoRI) 

5’TAACTCGAGTGGCGCAGCAGTCCC3’ (Xho I) 

pCS2-MT- 

S718A-S721A 

ALIXnPRD 

5’TAAGAATTCATTAAAGGACTTGCAACAAAGCATTG3’ (EcoRI) 

5’TAACTCGAGTGGCGCAGCAGTCCC3’ (Xho I) 

pCS2-MT- 

S712A-S729A 

ALIXnPRD 

5’TAAGAATTCATTAAAGGACTTGCAACAAGCCATTG3’ (EcoRI) 

5’TAACTCGAGTGGCGCAGCAGTCCC3’ (Xho I) 

pCS2-MT- 

S718D-S721D 

myc-ALIXnPRD 

5’TAAGAATTCATTAAAGGACTTGCAACAAAGCATTG3’ (EcoRI) 

5’TAACTCGAGTGGCGCAGCAGTCCC3’ (Xho I) 

pCS2-MT-

TSG101 

5’TAAGAATTCAATGGCGGTGTCGGAGAG3’   (EcoRI) 

5’TAACTCGAGTCAGTAGAGGTCACTGAGACCG3’  (Xho I)  

pCS2-HA-Plx1 

(Xenopus) 

5’AATGGGCCCTCAAGTGGCCGGTAAGAAAC3’ (Apa I) 

5’GCCTCTAGAGCCGAGGCCTTTACGTGTGC3’ (Xba I) 

pCS2-HA-Plx1 

K82R 

(Xenopus) 

5’AATGGGCCCTCAAGTGGCCGGTAAGAAAC3’ (Apa I) 

5’GCCTCTAGAGCCGAGGCCTTTACGTGTGC3’ (Xba I) 

pGEX-4T3- 

ALIXnPRD 

5’TAAGAATTCCTTAAAGGACTTGCAACAAAGCATTG3’ (EcoRI) 

5’TAACTCGAGTGGCGCAGCAGTCCC3’ (Xho I) 

pGEX-4T3- 

CHMP4b 

5’TAAGAATTCCATGTCGGTGTTCGGGAAG3’  (EcoRI) 

5’TAACTCGAGTTACATGGATCCAGCCCAG3’ (Xho I)   
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Protein extraction, immunoblotting and immunoprecipitation 

To prepare crude cell lysates for immunoblotting, cells scraped from culture 

plates or dishes were pelleted and extracted with cell lysis buffer consisting of 50 mM 

Tris-HCl, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5 mM EDTA, 100 µM sodium 

orthovanadate 100 µM sodium fluoride, 100 µM sodium pyrophosphate, 1 mM 

Dithiothreitol (DTT) and proteinase inhibitor cocktail (Sigma); 100-200 l of cell lysis 

buffer was used to extract cells from one 60-mm dish. Cell lysates were cleared by 

centrifugation at 16,000 g for 10 min at 4C.  

To prepare membrane solubilized cell lysates for immunoprecipitation, pelleted 

cells were extracted by sonication in 50-100 µl of cell lysis buffer that omits 0.1% SDS 

and includes 10 mM N-Ethylmaleimide (NEM) (Sigma) whenever indicated. Cell lysates 

were cleared by centrifugation at 16,000 g for 10 min at 4C and diluted 10 fold before 

immunoprecipitation.  

To prepare cytosolic proteins from asynchronously growing cells or mitotically 

arrested cells for immunoprecipitation or GST pull-down, pelleted cells were sonicated 

with 10 volumes of extraction buffer (EB), consisting of 80mM β-glycerophosphate, 20 

mM EGTA, 15 mM MgCl2, 150 mM NaCl, 1 mM DTT, and proteinase inhibitor cocktail 

(Sigma) (pH 7.4). For extraction of mitotically arrested cells and occasionally also 

asynchronously growing cells whenever indicated, EB was freshly supplemented with 1 

mM microcystin (Sigma) and 1 mM ATP (Sigma). Cell lysates were cleared by 

centrifugation at 16,000 g for 10 min at 4C. CIP (New England Biolabs) was added to 

MEE at a final concentration of 1 unit/mg substrate proteins according to the 

manufacture’s instruction.  
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To prepare cell lysates for dIP, pelleted cells were re-suspended with 10 

volumes of denaturing buffer consisting of 50mM Tris-HCl (pH 7.5), 1% SDS, and 5mM 

DTT, and sonicated. After the samples were boiled for 5 min and cleared by 

centrifugation at 16,000 g for 5 min, they were diluted 10-fold with an SDS neutralizing 

immunoprecipitation buffer consisting of 50 mM Tris-HCl (pH 7.5), 250 mM NaCl, 5 mM 

EDTA, 0.5% NP-40, 1 mM DTT (Tansey, 2007), and proteinase inhibitor cocktail 

(Sigma).  

The immunoprecipitation was performed by incubating indicated antibodies with 

the cell lysates by rotating at 4C overnight followed by adding Protein A or Protein G 

resin (Genscript) to the cell lysates and incubating by rotating at 4C for 1 h. The 

immnucomplex was washed five times with the same buffer used for 

immunoprecipitation. 

The protein samples were mixed with SDS sample buffer and boiled for 10 min 

before being subject to SDS-PAGE. The protein samples on the SDS-PAGE gel were 

then transferred onto nitrocellulose (NC) membrane, which was blocked by 5% non-fat 

milk in TBST (TBS (50 mM Tris-HCl, 150mM NaCl, PH7.4) plus 0.02% Tween 20) at 

room temperature for 1 h. Then, the NC membrane was incubated with primary 

antibodies diluted in 3% BSA in TBST at 4C overnight and HRP (horseradish 

peroxidase)-conjugated secondary antibodies diluted in 5% non-fat milk in TBST at 

room temperature for 2 h. The signal was detected by ECL (enhanced 

chemiluminescence) solution. Antibodies used in this study are summarized in Table 5. 
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Table 5. Antibodies used in this study 

Recognition Type Source 

Actin Mouse monoclonal Sigma-Aldrich. Cat#: A5441 

1A3 anti-ALIX Mouse monoclonal Made in our previous studies (Pan 

et al., 2006) 

1A12 anti-

ALIX 

Mouse monoclonal Made in our previous studies (Pan 

et al., 2006) 

1F7 anti-ALIX Mouse monoclonal Made in our previous studies (Pan 

et al., 2006) 

2H12 anti-

ALIX 

Mouse monoclonal Made in our previous studies (Pan 

et al., 2006) 

3A9 anti-ALIX Mouse monoclonal Made in our previous studies (Pan 

et al., 2006) 

ALG-2 Rabbit monoclonal Epitomics. Cat#: 3846-1 

Tubulin Rabbit monoclonal Cell Signaling. Cat#: 2125S 

CHMP4b Rabbit polyclonal  Santa Cruz. Cat#: sc-134946 

*CHMP4A Rabbit polyclonal Santa Cruz. Cat#: sc-67229 

*CHMP4B/C 

 

Rabbit polyclonal Abcam. Cat#: ab76334-100 

EIAV capsid 

antigen (CA) 

Mouse monoclonal A gift from Dr. Robert Mealey 

(Pullman, WA) (McGuire et al., 

1994; Mealey et al., 2009) 

 

EEA1 

 

Rabbit  

monoclonal 

Epitomics. Cat#: 3704-1 

EGFR Rabbit  

monoclonal 

Epitomics. Cat#: 1902-1 

ERK1 Rabbit polyclonal Santa Cruz. Cat#:sc-94 
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ERK2 Rabbit polyclonal Santa Cruz. Cat#:sc-154 

FLAG 

 

Mouse 

monoclonal 

Pierce  .Cat#: MA1-918781  

FLAG 

 

Rabbit  

polyclonal 

Sigma-Aldrich.Cat#: F7425-.2MG 

GFP Mouse  

monoclonal 

Santa Cruz. Cat#: sc-9996 

GST Rabbit  

polyclonal 

Santa Cruz. Cat#: sc-459 

HA  Rabbit  

polyclonal 

Santa Cruz. Cat#: sc-805 

HA Mouse  

monoclonal 

Pierce. Cat#: 26183 

IgG Mouse Sigma-Aldrich. Cat#: I5381-10MG 

IgG Rabbit Sigma-Aldrich. Cat#: I5006-10MG 

myc Rabbit polyclonal Santa Cruz. Cat#: sc-789 

MPM2 Mouse monoclonal Lab reserve 

#4381 

antibody 

Rabbit polyclonal Cell Signaling. Cat#: 4381 

pS2 antibody Rabbit polyclonal Made in this study 

p-ERK Mouse  

monoclonal 

Santa Cruz 

Cat#: sc7383 

p-Tyr Mouse monoclonal Cell Signaling. Cat#: 9416 

ubiquitin Mouse monoclonal Santa Cruz. Cat#: sc8017 

TSG101 Rabbit monoclonal  Epitomics. Cat#: 5377-1 
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Membrane floatation centrifugation 

The PNS of HEK293 cell lysates was prepared by re-suspending cell pellets in 

100 µl of 10% (w/v) sucrose in TE buffer (TBS plus 1 mM EDTA) supplemented with 

proteinase inhibitor cocktail. Cells were lysed by sonication followed by centrifugation at 

1800 g for 5 min at 4ºC. 0.1 ml of aliquot from each PNS was mixed with 0.4 ml of 85.5% 

(w/v) sucrose in TE buffer to generate a final concentration of 73% (w/v) sucrose. This 

73% (w/v) sucrose was placed at the bottom of a 4-ml ultracentrifuge tube, above 

which 2.3 ml of 65% (w/v) sucrose and 1.2 ml of 10% (w/v) sucrose in TE buffer were 

sequentially overlaid. The step sucrose gradients were ultracentrifuged at 100,000 g for 

18 h at 4ºC in a Beckman SW55-Ti rotor. After centrifugation, ten 0.4-ml fractions were 

collected by pipetting, and equivalent aliquots were taken from collected fractions for 

immunoblotting. In a typical execution of this protocol, fractions 3 and 4 contained 

membrane vesicles floating to the boundary of the 10% (w/v) and 65% (w/v) sucrose 

layers, whereas fractions 9 and 10 contained soluble proteins unable to float up. 

Proteinase K protection assay  

Mock treated or EGF stimulated cells were collected and pelleted by 

centrifugation at 1,800 g for 5 min. Pelleted cells were re-suspended in 10 volumes of 

6.5 µg/mL digitonin (Sigma) in PBS, followed by incubation first at room temperature for 

5 min and at 4ºC for 30 min. Samples were then centrifuged at 16,000 g at 4ºC for 5 

min, and pellets were re-suspended in 10 volumes of homogenization buffer containing 

100 mM K2HPO4/KH2PO4, 5 mM MgCl2 and 250 mM sucrose. Three aliquots with the 

same volume were taken equally from each sample, which were treated either with 

ddH2O, 4 ng proteinase K/µg sample protein or 4 ng proteinase K/µg sample protein 

plus 0.1% Triton X-100 at room temperature for 10 min. Proteinase K digestion was 
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stopped by adding SDS-PAGE sample buffer followed by being boiled for 10 min, and 

proteins were subject to SDS-PAGE and immunoblotting. Proteinase K should digest 

all EGFR in the presence of 0.1% Triton X-100, which solubilizes the membrane 

vesicles. Thus, the percentage of proteinase K-resistant EGFR in the absence of 0.1% 

Triton X-100 relative to total EGFR in ddH2O-treated sample was taken as the 

percentage of EGFR sorted into MVBs.  

GST pull-down 

GST and GST tagged proteins were produced and purified by the transformation 

of BL21 Competent E. coli stains (Thermo Fisher Scientific) with pGEX-4T3 based 

vectors for GST or GST tagged proteins. The transformed BL21 Competent E. coli 

stains were incubated with 0.1 mM IPTG (Sigma) to stimulate the expression of GST or 

GST tagged proteins. The E. coli stains were lysed with PBS containing lysozyme 

(Sigma), 1 mM DTT, proteinase inhibitor cocktail (PH 7.4) at 4ºC for 30 min. Then, 

Triton X-100 was added with the final concentration of 0.5%. The lysates were 

sonicated and cleared by centrifugation at 12,000 rpm at 4ºC for 40 min. The 

supernatant was incubated with Glutathione beads (GenScript) at 4ºC overnight. The 

beads were washed with buffer I, buffer II and buffer III, sequentially. The GST or GST 

tagged proteins were eluted by incubating the beads with elution buffer containing 50 

mM Tris-HCl, 150 mM NaCl, 1 mM DTT, proteinase inhibitor cocktail and 50 mM 

Glutathione (Sigma) at room temperature for 15 min. The elution step was repeated 

twice.   

For GST pull-down, the GTS or GST-tagged proteins, either untreated or treated, 

were first immobilized onto Glutathione beads by rotating at 4ºC for 2 h. The 

immobilized beads were then incubated with either cell lysates or in-vitro translated 
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proteins at 4ºC for 2 h. In vitro transcription and linked translation was performed by 

using the TNT QuickCoupled Transcription/Translation System (Promega) according to 

the manufacturer’s instruction. The beads were washed five times with the same buffer 

used during pull-down. The samples were then mixed with SDS-sample buffer and 

subject to SDS-PAGE.  

Biotinylation of cell surface proteins and affinity absorption of biotinylated 

proteins  

Serum-starved HEK293 cells cultured in 6-well plates were stimulated with 100 

ng/ml EGF for indicated lengths of time followed by rinse with ice-cold PBS (pH 7.4) 

supplemented with 1.5 mM MgCl2 and 0.2 mM CaCl2. The cells were then incubated 

twice (15 min each time) on a shaker with 200 mg/ml freshly prepared cold sulfo-NHS-

SS-biotin solution (0.75 ml/well) (bioWORLD) at 4°C, and quenched by wash with 

quenching solution (PBS supplemented with 1.5 mM MgCl2, 0.2 mM CaCl2 and 100 

mM glycine, pH 7.4) and further incubation in this solution at 4°C for 30 min. Cell 

lysates were prepared with cell lysis buffer consisting of 50 mM Tris-HCl, 150 mM NaCl, 

1% Triton X-100, 0.5 mM EDTA, 100 µM sodium orthovanadate, 100 µM sodium 

fluoride, 100 µM sodium pyrophosphate, 1 mM DTT and proteinase inhibitor cocktail 

and incubated with Streptavidin Separopore (Agarose) 4B (bioWORLD) at 4°C 

overnight. Pelleted beads were then washed five times with the same buffer used in 

incubation and proteins were eluted with SDS sample buffer for immunoblotting.  

In Vitro Phosphorylation of ALIX Fragments with Xenopus Extracts 

MEE and IOE were prepared in the previous studies in our laboratory (Wu et al., 

2010).  
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The in vitro phosphorylation reaction was performed by mixing one volume of 

substrate proteins and three volumes of IOE or MEE at room temperature for 2 h 

unless otherwise indicated, and terminated by adding SDS sample buffer. PLK1 

inhibitor BI-2536, PKD inhibitor CID755673, and pan-kinase inhibitor staurosporine 

were dissolved in DMSO and added to MEE at 4ºC 15 min prior to the phosphorylation 

reaction to reach a final concentration of 2 mM, 5 mM, and 5 mM, respectively.  

The EIAV VLP release assay  

HEK293 cells were transfected with pEV53B EIAV vector and cultured for 48 h. 

Conditioned medium was collected and loaded onto a 2-ml 20% sucrose cushion in a 

4-ml tube. After ultracentrifugation of the sample in an SW55-Ti rotor at 26,000 rpm for 

2 h, pelleted proteins were extracted by using SDS sample buffer and immunoblotted 

with anti-EIAV capsid antigen (CA) antibodies. 

Immunostaining and fluorescence microscopy 

Transfected HeLa cells were subcultured into chamber slides (Nunc Lab-Tek) 

coated with poly-D-Lysine (Cultrex) and cultured for 48 h before being fixed with 4% 

(w/v) of Paraformaldehyde at room temperature for 20 min. Fixed cells were 

permeabilized with 0.2% Triton X-100 in PBS followed by blocking with 1x blocking 

buffer (1% BSA, 0.25% horse serum, 0.2% Triton X-100 in PBS). Blocked cells were 

first stained with primary antibodies in 0.1x blocking buffer at 4ºC overnight, and then 

with Alexa Fluor 568, Alexa Fluor 488 or Alexa Fluor 647 conjugated secondary 

antibodies in TBST (0.1% Triton X-100 in TBS) at room temperature for 1 h. Nuclei 

were stained with DAPI (Sigma). Images were acquired using MetaMorph software 

(7.7.5.0) on ZEISS Axioplan2 image system (Objective: plan-NEOFLUAR 20×/0.50 or 

plan-NEOFLUAR 100×/1.30 oil).  
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Generation of rabbit polyclonal antibodies for phosphorylated ALIX at S718 and 

S721 

To prepare antigen, a synthetic phosphopeptide consisting of the residues 711 

to 724 of ALIX and phosphorylated at both S718 and S721 (CSIAREP(pS)AP(pS)IPT) 

was conjugated to keyhole limpet hemocyanin (KLH). To generate rabbit polyclonal 

antibodies, rabbits were immunized with the conjugated phosphopeptide for 42 days, 

and immunesera were collected. The IgG fraction of the antibodies was purified by 

protein G affinity chromatography. The phosphospecificity of the purified antibodies 

were evaluated with the enzyme-linked immune sorbent assay (ELISA). 

Statistical analysis 

Statistical analyses were performed using Student’s t-test. The p-value of ≥0.01 

and <0.05 was considered significant (*). The p-value of ≥ 0.001 and <0.01 was 

considered highly significant (**). The p-value of <0.001 was considered very highly 

significant (***). 
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