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INVESTIGATING METASTATIC LINEAGE IN COLORECTAL CANCER 

BY SINGLE CELL DNA SEQUENCING 

 
Marco Lokyin Leung, B.S. 

 
Advisory Professor: Nicholas E Navin, Ph.D. 

Abstract 

 Metastasis is the primary cause of human cancer deaths. Patients with 

metastatic colorectal cancer (mCRC) show only an 11% 5-year survival rate, 

compared to those without local or distant metastases (92% 5-year survival rate). 

Understanding the CRC tumor evolution may provide valuable insights on how to 

improve treatment in patients with mCRC. However, the genomic basis of 

metastasis has been difficult to study, in part due to the extensive intratumor 

heterogeneity at both the primary and metastatic tumor sites, and the low 

frequency of subclones with metastatic potential. Previous studies have applied 

conventional bulk next-generation sequencing (NGS) methods, which have 

limited ability to resolve intratumor heterogeneity.  

 To address this problem, we have developed a highly-multiplexed single 

cell DNA sequencing method that combines flow-sorting of single nuclei, 

multiple-displacement-amplification using Φ29 polymerase, low-input library 

preparation, library barcoding, targeted capture and NGS to generate high-

coverage data from single cells. We validate this method by generating high 

coverage sequencing data from single human cells, with low allelic dropout and 

high detection efficiencies for single nucleotide variants.  
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 Using this method, we sequenced 186 single cells from primary tumor and 

liver metastases from two mCRC patients to delineate the clonal architecture of 

the tumor and reconstruct their phylogenetic lineages. We also performed exome 

sequencing on the bulk tumor tissues. Our data identified a large number of 

nonsynonymous mutations that evolved in the root node during the earliest stage 

of primary tumor evolution and were maintained in all single cells during the 

clonal expansion of the tumor mass. We also identified a small number of 

mutations that were specific to the liver metastases, which are likely to play an 

important role in metastatic dissemination. Furthermore, we found three diploid 

cells with only APC mutations in CO5, which may represent the progenitor clones 

that gave rise to the primary and metastatic tumors. Using the single cell data, 

we construct phylogenetic trees, which revealed branched evolution in 

metastasis. Our data suggest that both mCRC patients are consistent with the 

late-dissemination model, in which the primary tumors evolved for a long period 

of time prior to the dissemination of clones to distant organ sites. 

In summary, we have developed novel methods for single cell DNA 

sequencing, and applied these methods to gain unprecedented understanding of 

clonal evolution during metastasis in colorectal cancer.  
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Chapter 1 - Introduction 

1.1 Colorectal Cancer  
 
Colorectal cancer (CRC) is the third most common cancer among men and 

women in the United States with a lifetime risk of 1 in 20 (5%).1 It is estimated 

that there are more than 130,000 new CRC cases for 2015.1 The risk of CRC 

increases with age. Over 90% of new cases are diagnosed in people over 50 

years old.2 This is 15 times higher than people who are between 20 to 49 years 

old.2 Men are more likely to develop CRC than women (57.2% vs. 42.5%), 

however it remains unclear why there is a disparity in CRC incidence between 

the two genders.3 The pathogenesis of CRC is a long process, which usually 

takes more than a decade to develop.4 CRC first develops as a polyp from the 

lining of the colon or rectum and progresses to adenocarcinoma. Per The 

American Cancer Society’s recommendation, men and women should have 

colonoscopy as an early CRC screening beginning at the age of 50.5 This 

practice has decreased the CRC incidence by 3.0% for men and 2.3% for women 

per year since the 1980s.6 Colonoscopy was estimated to have prevented two-

third of cancer deaths from the descending (left-side) colon.7  

1.1.1 Chromosomal Instability and Microsatellite Instability 

Using genome instability as markers, CRC can be categorized into chromosomal 

instability (CIN) and microsatellite instability (MSI).8 CIN refers to the aberrant 

insertion and deletion of part or full chromosomes leading to aneuploidy; MSI 

refers to unstable DNA repeat length caused by a defect in the DNA repair 

pathway.8 About 85% of CRC patients are CIN and 15% are MSI.9 Although it 
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was thought that CIN and MSI are mutually exclusive, it was found that a portion 

of CSC cases present both.10 MSI CRC tumors harbor higher number of 

mutations than CIN CRC.11 This will be further discussed in a later section. (1.4.1 

Sequencing Studies and Colorectal Cancer) 

1.1.2 Staging of Colorectal Cancer 

According to the American Cancer Society, CRC is categorized into different 

stages: stage 0 – also called carcinoma in situ, cancer has not grown beyond the 

inner mucosal colon or rectum layer; stage I – cancer has grown into the 

submucosa; stage II – cancer may have spread through the wall of the colon or 

rectum into nearby tissue or organs; stage III – cancer has spread to nearby 

lymph nodes; stage IV – cancer has spread to one or more distant organs.12 

Therapeutic treatments are usually determined by the locality and staging of the 

tumor.13 For stage 0 and I CRC, surgery during colonoscopy is the standard of 

care to remove the section of colon or rectum that has the polyp.13 For stage II 

CRC, surgical resection is still the standard treatment but chemotherapy may be 

necessary if there is a high risk of cancer coming back.13 For stage III CRC, 

surgery with adjuvant chemotherapy is the standard of treatment.13 For stage IV 

CRC, treatments are varied depending on the patients. If there are only few 

metastases, surgery will be performed to remove all the tumors. If there are too 

many metastases for surgery, chemotherapy will be given and then surgery may 

be tried.13  
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1.2 Models of Metastasis 

While the overall 5-year survival rate for CRC has improved over the last 20 

years, the survival rate for patients with stage IV CRC is only at 11-12%.14 This 

grim outlook for CRC metastasis is consistent with other cancers, in which most 

metastases have poorer survival rates than primary cancers.2 It was estimated 

that 90% of human cancer death is caused by metastases.15 For CRC, the most 

common site of metastasis is the liver. Therefore, understanding the process of 

which CRC metastasize is critical to decreasing the mortality rate. Below, we 

describe the several general models of metastasis that have been proposed to 

describe how tumor cells disseminate from the primary tumor to distant organs.  

1.2.1 Late Dissemination Model 

The late dissemination model, also called the linear progression model or the 

classical model, is one of the earliest models to be proposed describing 

tumorigenesis. This model posits that cancer cells sequentially accumulate 

mutations and survive multiple rounds of clonal selections to form the primary 

tumor, and eventually metastasize after having acquired mutations that confer a 

metastatic phenotype.16,17 The metastasis, in theory, is the most malignant cells 

of the primary tumors that can survive the circulation and seed at distant organ 

sites. This model implies that it takes years, sometimes decades, to form the 

primary malignant tumor, whereas metastases only need months to form.16 In 

other words, the tumor has evolved for a long time before cells diverge and form 

metastasis in a short period of time; this leads to a similar mutational profile 

shared between the primary and metastasis. (Figure 1) 
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Figure 1 - Model of Metastasis 

The early seeding model posits that cells disseminate from the primary tumor 

during early tumor development, leading to parallel evolution of two distinct 

genomic profiles. The late dissemination model posits that cells leave the primary 

tumor during late stage of tumor development, thus retaining the majority of 

genomic signature. The self-seeding model posits that tumor cells travel bi-

directionally between the primary and metastatic sites, leading to the intermixing 

lineage of tumor cells.  
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1.2.2 Early Dissemination Model 

 The early dissemination model, also called the parallel progression model, 

is also another model proposed to describe the metastatic process. This model 

suggest that cancer cells disseminate from the primary tumor very early on 

during tumorigenesis, and acquire metastatic somatic mutations in parallel, 

leading to independent lineages with different mutational profiles. (Figure 1) It 

was suggested that, although the tumor cells disseminate early on during 

tumorigenesis, the metastasis might not arise at a similar time as the primary 

tumor. This may be due to cancer dormancy, in which micrometastases form and 

enter into a quiescent state.18,19 The metastases then reenter into a proliferative 

state triggered by different factors.19  

 The early dissemination model may also explain a clinical cancer 

syndrome, called cancer of unknown primary (CUP).20 CUP may be due to the 

early dissemination of tumor cells, which acquire somatic mutations at the remote 

site and become malignant before the primary tumor. The late dissemination 

model, in contrast, cannot explain this phenomenon.  

1.2.3 Self-Seeding Model 

The self-seeding model was proposed recently and it posited that circulating 

tumor cells (CTCs) travel from metastasis back to the site of origin.21 This model 

suggests that metastasis is a bidirectional, rather than unidirectional, process.21 

(Figure 1) It was shown in mice, that IL-6 and IL-8 act as CTCs attractants to 

recruit myeloid cells into the stroma.21 In other words, these CTCs can promote 

tumor growth in primary and metastatic sites by altering the microenvironments.22 
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Therefore, it is reasonable to warrant further investigation and potentially target 

these CTCs to stop the self-seeding process. However, this model has only been 

shown in mouse models and it has been difficult to examine the self-seeding 

model in human with current tools and technologies.  

1.3 Intratumor Heterogeneity 

Intratumor heterogeneity refers to the morphological and molecular differences 

within individual tumors and has been reported in most solid cancer types.23-26 

These differences may include histology, genotype, gene expression and 

proliferative potential.27 For example, using fluorescence in situ hybridization 

(FISH), the copy numbers of specific chromosome loci can be quantified across 

many cells, determining the clonality within a tumor.28 Similarly, using Giemsa 

staining on cells in which chromosomes are in metaphase, larger scale of 

chromosome aberrations can be observed.28 Although intratumor heterogeneity 

has been observed and studied as early as 1800s, the origin of intratumor 

heterogeneity during tumor evolution remains debatable and several competing 

hypotheses have been proposed.27,29 One of the earliest models to explain 

intratumor heterogeneity is the clonal evolution model, originally proposed by 

Peter Nowell, who was the first to propose an evolutionary model for tumor 

growth.30 (Figure 2) Monoclonal evolution model suggests that intratumor 

heterogeneity occurs early in tumor progression, leading to one dominant 

population of tumor cells that expands to form the mass of the tumor, whereas 

polyclonal evolution model proposes that there are multiple clones co-existing, 

that have the proliferative potential and expand and form the tumor mass.28  
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 Another model is the cancer stem cell (CSC) hypothesis. This model 

posits that a minor population of tumor initiating cells has self-renewing 

properties allowing them to proliferate indefinitely, and gives rise to the majority 

populations of tumor cells that have limited replication potential.28,31 (Figure 2) 

CSCs can be identified with different cell surface markers. However, it is difficult 

to study the genomes and transcriptomes of CSCs due to the rare frequencies of 

CSCs within tumors, which are often well below one percent. The self-seeding 

model is another hypothesis that can also be used to explain intratumor 

heterogeneity. (Figure 2) When tumor cells from metastasis leave and re-seed at 

the primary site, the metastatic clone would aggregate on the outer region of 

primary tumor. 

 Intratumor heterogeneity has complicated the diagnosis and treatment of 

cancer patients. If a tumor has multiple clones in the tumor mass, it is necessary 

to sample from multiple spatial regions to detect mutations in clinical assays. 

Furthermore, if tumor contain subclones with different sensitivity for a specific 

therapeutic drug, administering treatments will have to be adjusted depending on 

the composition of less-sensitive subclones. Therefore, it is critical to detect 

intratumor heterogeneity with high sensitivity in the clinics. There are different 

methods and technologies that can be used to measure intratumor 

heterogeneity, including cell surface markers, immunohistochemistry, fluorescent 

in-situ hybridization (FISH) and genotyping of specific mutations. Next-generation  
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Figure 2 - Tumor Progression Model 

This figure illustrates the forms of heterogeneity caused by the differences in how 

tumors progress. The monoclonal evolution model suggests that one clone 

expands and forms the tumor mass, whereas the polyclonal evolution model 

suggests that there are multiple clones that have the capability to contribute to 

the tumor mass. The self-seeding model posits that tumor cells can travel bi-

directionally between the primary and metastatic sites.  The mutator phenotype 

can generate a tumor with many diverse clones. The self-seeding model posits 

that a minor population of cells has the self-renewing property, which gives rise 

to the majority of cells.  

(Modified and reproduced from Navin, N. E. & Hicks, J. Tracing the tumor 

lineage. Molecular oncology 4, 267-283, doi:10.1016/j.molonc.2010.04.010 

(2010) with permission from Elsevier Limited.)  
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sequencing (NGS) has been used to measure genomic intratumor heterogeneity. 

Below, we will discuss NGS and its roles in resolving intratumor heterogeneity in 

more detail. 

1.4 Next Generation Sequencing  

Over the past 10 years, the advent of NGS has revolutionized the fields of 

biology by exponentially increasing the data output of genome sequencing and 

vastly decreasing the cost per base.32 NGS uses massively parallel sequencing 

to analyze millions of DNA fragments are sequenced at the same time. This is a 

major improvement over Sanger Sequencing, which uses the chain-termination 

method on only one single-strand DNA template at a time. Human Genome 

Project was able to complete a draft of the human genome in 2003, partly due to 

the high throughput of NGS. 

Among the several sequencing platforms, Illumina-sequencing is the most 

commonly used platform for NGS. Illumina-sequencing includes two major steps, 

library construction and sequencing. In short, genomic DNA is fragmented into 

~250-500 base pairs (bp) and the ends of fragments are repaired from sticky 

ends to blunt ends and the 5’ end is then adenylated. Adaptors are then ligated 

onto the both ends of DNA libraries and they are amplified during PCR. Libraries 

are hybridized onto the probes of the sequencing flow cells and generated into 

clusters of libraries. Using the sequencing-by-synthesis approach, when each 

specific base is added onto the libraries, a corresponding fluorescent label is 

excited and emits a specific wavelength. The Illumina machine captures the 
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image of the whole flowcell with all the labeled clustered and converts signals 

into text data. 

1.4.1 Sequencing Studies and Colorectal Cancer 

Before the advent of sequencing technologies, most genes mutated in CRC were 

discovered using linkage studies and cytogenetic studies, and this led to the 

identification of the frequently mutated genes, such as APC, KRAS, and 

TP53.8,33-35 Later, Sanger sequencing discovered more genes that are 

associated with CRC.36-39 However, exome- and genome-wide studies using 

Sanger sequencing is costly and time-consuming, making it unfeasible to use this 

approach for routine research studies.  

 Since 2011, NGS has been used to investigate CRC and the number of 

mutations detected in these patients has increased drastically. Early NGS studies 

of CRC used whole-genome sequencing to find that there are estimated 75 

somatic rearrangement in each of 9 sequenced non-MSI tumors.40 On average, 

they found there are approximately 5.9 mutations per Mb, with 79 non-

synonymous mutations per sample, as well as recurrent VTI1A-TCF7L2 fusion.40 

Another comprehensive NGS study was conducted by The Cancer Genome 

Atlas, in which they sequenced more than 200 CRC tumors and analyzed the 

DNA exome, copy number, epigenetics and transcriptomic aberrations.11 From 

these data, they categorized CRC tumors with more than 12 mutations per Mb as 

hypermutated, and those with less than 8 as non-hypermutated, and they found 

genes that were frequently mutated in each category.2 Another study was 

published using both exome and RNA sequencing on 70 CRC samples,41 in 
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which they found recurrent fusion events, such as RSPO2-EIF3E and RSPO3-

PTPRK in 10% of CRC. 

 These large-scale NGS studies provided detailed analyses of intertumor 

heterogeneity – the genomic differences between patients. However, these 

studies focused mainly on primary tumors and did not investigate mutations in 

matched metastatic tumor samples.  

1.4.2 NGS and Intratumor Heterogeneity 

NGS studies, such as TCGA, sequenced tumors to discover mutations that are 

frequent in hundreds of patients in many different cancers types. 42-58 (Table 1) 

These efforts led to better understanding in intertumor heterogeneity. However, 

due to the inadequate coverage depth and the limitation of conventional NGS 

technologies, intratumor heterogeneity is often difficult to measure from these 

dataset. To improve measurements of intratumor heterogeneity, different NGS 

approaches have been developed.  

 Previous studies have used deep sequencing methods to understand 

intratumor heterogeneity.59-61 By sequencing tumors at very high coverage 

depths, subclonal mutations can be discovered. Early NGS study used 

Pyrosequencing on B-cell chronic lymphocytic leukemia (CLL), in which the 

authors detected rare IGH locus with frequencies as low as 0.02%.23 However, 

conventional deep sequencing methods have inherent error rates (0.1-1%) that 

may lead technical artifacts. A recent deep sequencing technology, called duplex 

sequencing, was developed to address this problem.62 By using a random tag in 

the PCR primers, only variants that are presented multiple duplicates of the same  
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Year Tumor Type Tumors 
Studied Journal Reference 

2008 Glioblastoma 206 Nature 42 
2011 Serous Ovarian Carcinoma 489 Nature 43 
2012 Colorectal carcinoma 276 Nature 44 
2012 Squamous Cell Lung Carcinoma 178 Nature 45 
2012 Breast Cancer 510 Nature 46 
2013 Acute Myeloid Leukemia 200 NJEM 47 
2013 Endometrial Carcinoma 373 Nature 48 
2013 Clear Cell Renal Cell Carcinoma 417 Nature 49 
2014 Urothelial Bladder Carcinoma 131 Nature 50 
2014 Lung Adenocarcinoma 230 Nature 51 
2014 Gastric Adenocarcinoma 295 Nature 52 
2014 Papillary Thyroid Carcinoma 496 Cell 53 
2014 Head and Neck Squamous Cell Car. 279 Nature 54 
2015 Diffuse Lower-Grade Gliomas 293 NEJM 55 
2015 Cutaneous Melanoma 331 Cell 56 
2015 Papillary Renal-Cell Carcinoma 161 NEJM 57 
2015 Prostate Cancer 333 Cell 58 

 

 

	
  
	
  
Table 1 - List of Studies Published by The Cancer Genome Atlas 

The table provides a partial list of cancer types sequenced by TCGA. The 

number of tumors sequenced in each study ranges from 131 to 510.  
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molecular tags are scored.62 This authors showed that this approach led to a 

false-positive rate of less than 1 in 1x109 nucleotides.62   

 Despite the improvement of accuracy of deep sequencing, this method is 

unable to resolve spatial heterogeneity. An alternative approach for resolving 

spatial heterogeneity involves sampling and sequencing multiple macroscopic 

regions of a tumor to infer intratumor heterogeneity. For example, primary renal 

carcinomas and matched metastatic sites were macro-dissected and exome-

sequenced.63 The authors found that over 60% of somatic mutation are not 

present across all spatial regions of the tumor mass. The same approach was 

also demonstrated in lung adenocarcinoma and in non-small cell lung cancer by 

two separate groups.64,65 Another study used array comparative genome 

hybridization (aCGH) to study copy number profiling in multiple section in breast 

cancers and found that some breast tumors contain multiple tumor 

subpopulations.66 These studies underscore the importance and significance of 

understanding intratumor heterogeneity using genomic technologies. However, 

depending on the size of the tumor dissection, it is still difficult to detect 

mutations that occur at low frequencies using spatial sequencing (<1%).  

1.5 Single Cell Sequencing 

Single cell sequencing (SCS) offers an alternative approach to study intratumor 

heterogeneity.67 By sequencing many cells across multiple sections of a tumor, 

spatial heterogeneity can be studied and the mutations present in rare subclones 

can be detected. SCS can achieve the goals of both spatial sequencing and 

deep sequencing. The first single cell RNA sequencing study was published in 
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2009.68 After performing reverse-transcription of mRNA, cDNA is amplified by 

PCR and constructed for sequencing libraries. The authors showed that single 

cell RNA sequencing was more sensitive compared to other platforms, such as 

Affymetrix microarrays. Since then, further development of single RNA 

sequencing has increased the throughput and decreased the cost, enabling 

thousands of single cells to be sequenced at one time (for example, Drop-

Seq).69-71 On the other hand, the development of single cell DNA sequencing 

methods has been more challenging. This is partly because there are thousands 

of copies of each RNA molecule, whereas there are only two copies of each DNA 

molecule in each single cell.67 This limited amount of input material gives rise to 

the technical errors, such as false positive and allelic dropout.67  

1.5.1 Previous Published Single Cell DNA Sequencing Methods 

The first single cell DNA sequencing method, called Single Nucleus Sequencing 

(SNS), was published in 2011 to study the intratumor heterogeneity in breast 

cancer.72 To amplify the single cell genome, the authors used degenerate 

oligonucleotide primed PCR (DOP-PCR), which primers with semi-random 

nucleotides are used to generate genome-wide DNA with minimal bias.73,74 

Single cell libraries are then sequenced at sparse coverage depth. The genome 

is divided into small bins (50,000 bp) and reads are counted within each bin to 

infer copy number status. This approach was used to sequence two high-grade, 

triple-negative (ER-, PR- and HER2-) ductal carcinomas and a paired liver 

metastasis.72 By sequencing 100 nuclei from each patient, they found that there 

were 3 distinct clonal subpopulations in a polygenomic tumor, whereas there was 
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only one population in the monogenomic tumor and its liver metastasis.72 This 

study was the first to demonstrate using single cell DNA sequencing to infer 

tumor progression. However, this method is not sufficient to score single 

nucleotide variants due to the low coverage depth (0.5x). 

 Two single cell DNA sequencing studies were later published 

simultaneously.75,76 These two studies performed exome sequenced of single 

cells of clear cell renal cell carcinoma and myeloproliferative neoplasm.75,76 Using 

the multiple-displacement-amplification (MDA) approach, these studies used 

phi29 to amplify genomes and capture the exonic regions for sequencing. It was 

shown that phi29 polymerase has a superior performance with low false positive 

error rate of 1x10-7 compared to bst polymerase (1x10-5), which does not have 

proofreading capability.67,77,78  

 Another single cell DNA method is called MALBAC – multiple annealing- 

and looping-based amplification cycles.79 This method uses specific primers to 

loop both end of amplicons, thus preventing copied DNA to amplify exponentially. 

In theory, WGA reaction only amplifies the original DNA template, thus 

decreasing technical errors from amplifying. 79 This method can be used for both 

copy number and single nucleotide analysis, however it produces high false 

positive error rates,67 possibly due to the use of bst polymerase instead of phi29 

polymerase.  

1.5.2 Challenges in Single Cell DNA Sequencing 

Despite the recent advances in single cell sequencing in the last five years, there 

are still major technical challenges.67 Because of the low amount of DNA input in 
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single cells (6 picograms), amplification using a DNA polymerase is needed to 

generate sufficient amount of input material for library construction. However, 

DNA polymerases are prone to introducing artificial errors during the 

amplification step, thus generating high false positive error rates. False positive 

errors are problematic for the analysis of mutations in single cells, as they are 

difficult to distinguish from real biological events. 

 Another major SCS technical challenge is high allelic dropout rate. Allelic 

dropout refers to the detection of only one allele of two heterozygous alleles in 

single cells. Because WGA polymerases have allelic preference during the 

genome amplification step, it is common to have uneven amplification of both 

alleles. If the variant alleles are completely dropped out, it leads to false negative 

during analysis and mutations are missed.  

 Low throughput is another problem for single cell DNA sequencing. For 

single cell RNA sequencing, various methods have been developed to 

multiplexed thousands of single cells into one sequencing lane. For example, 

Drop-Seq uses a microdroplet system to simultaneously perform reverse 

transcription of mRNA and amplification and cDNA of up to thousands of single 

cells.69 This is possible because of the polyA tail in which an adaptor with a cell 

ID barcodes can be easily ligated using synthetic beads. Furthermore, to 

evaluate gene expression of single cells, sequencing reads are counted for each 

gene, and high coverage depth is not required. 

 Unlike RNA sequencing, multiplexing high number of single cell for DNA 

sequencing remains difficult and technically challenging. Because of the 
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polymerase used during the WGA step, long molecules of DNA are generated 

(>10 kilobases) and a sonication step is needed afterwards to construct libraries. 

Therefore, barcoding during WGA is not feasible. Furthermore, to generate 

enough sequencing reads to analyze variants at single nucleotide level, at least 

30x of coverage depth is needed, thus multiplexing many cells is not feasible for 

genome or exome sequencing.  

1.6 Dissertation Summary 

This dissertation focuses on developing novel single cell DNA sequencing 

methods to study intratumor heterogeneity and metastatic evolution in colorectal 

cancer. This chapter has so far described the background and current challenges 

in single cell DNA sequencing, and knowledge gaps in CRC and metastasis. This 

dissertation aims to resolve the following problems. 

1. Intratumor heterogeneity is difficult to study using standard NGS 

technologies since they are limited to reporting a bulk admixture of 

genomes in tissue samples. 

2. Genome evolution during CRC has been difficult to study due to 

intratumor heterogeneity at the primary and metastatic tumor sites.  

3. Previous SCS methods have limited coverage breadth, and are unable to 

detect mutation at base pair resolution. 

4. Current SCS methods are challenged by high false positive rates and high 

allelic dropout rates. 

5. Current SCS DNA methods have low throughput and high costs 

associated with performing the experiments.  
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These chapters in this dissertation are written in the chronological order of 

how we developed different SCS DNA methods over the past five years. This 

dissertation aligns with the continuing efforts of our laboratory to develop and 

improve single cell DNA sequencing methods for cancer research. In Chapter 3, 

we present the development of the first single cell whole-genome sequencing 

method, NUC-Seq, to understand the intratumor heterogeneity in ER+ and triple 

negative breast tumors. In Chapter 4, we further developed our method for 

exome sequencing of single cell and discuss the associated methodologies and 

error rates. In Chapter 5, we increase the throughput of single cell sequencing by 

multiplexing 96 single cells into one sequencing lane. In Chapter 6, we used SCS 

to study models of metastasis and intratumor heterogeneity in two CRC patients.  
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Chapter 2 – Methods and Materials 

Content of this chapter is based on the following publications: 

 

Yong Wang, Jill Waters, Marco L. Leung, Anna Unruh, Whijae Roh, Xiuqing Shi, 

Ken Chen, Paul Scheet, Selina Vattathil, Han Liang, Asha Multani, Hong Zhang, 

Rui Zhao, Franziska Michor, Funda Meric-Bernstam & Nicholas E. Navin. Clonal 

Evolution in Breast Cancer Revealed by Single Cell Genome Sequencing. 

Nature. 2014. 512(13500:155-160). doi:10.1038/nature13600. PMID:25079324. 

 

Marco L. Leung, Yong Wang, Jill Waters & Nicholas E Navin. SNES: Single 

Nucleus Exome Sequencing. Genome Biology. 16:55. 03/2015. PMID:25853327. 

 

Marco L. Leung, Yong Wang, Charissa Kim, Ruli Gao, Emi Sei & Nicholas E 

Navin. Highly-Multiplexed Targeted DNA Sequencing of Single Nuclei. Nature 

Protocols. 2016 Feb;11(2):214-35. doi: 10.1038/nprot.2016.005. Epub 2016 Jan 

7. 

 

Copyright permissions are not required, since Nature journal policy states “author 

retains the copyright to the published materials”, and Genome Biology states that 

“the authors retain copyright of their article.” 
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2.1 Cell Lines and Human Tumor Samples 

For the NUC-Seq study in Chapter 3, SK-BR-3 is a Her2 positive (ER-/PR-

/HER2+) breast cancer cell line. The estrogen receptor positive breast cancer 

(ERBC) and triple-negative breast tumor (TNBC) samples used in this study were 

obtained from the MD Anderson Cancer Center Breast Tissue Bank as frozen 

tumor specimens. Histopathology classified both breast tumors as invasive ductal 

carcinomas. The ERBC was reported to have mixed invasive lobular carcinoma. 

Both tumors were excised by lumpectomy before any chemotherapy or radiation 

therapy. The ERBC tumor grade was scored as Nottingham histological grade 2, 

whereas the TNBC tumor was scored as grade 3. Receptor staining showed that 

the ER tumor was positive for estrogen receptor (80%), positive for progesterone 

receptor (90%) and negative for the HER2 receptor (FISH HER2/CEP17, ratio 

1.1). The TNBC was negative for estrogen receptor (2%), negative for 

progesterone receptor (3%) and negative for the Her2 receptor (FISH 

HER2/CEP17, ratio 1.3). This study was approved by the Internal Review Board 

(IRB) at MD Anderson Cancer Center. 

For the SNES study in Chapter 4, SKN2 is a human fibroblast cell line that 

was obtained from the Cold Spring Harbor Laboratory (Dr. Michael Wigler). 

SKN2 was cultured using Dulbecco’s Modified Eagle Medium with 10% fetal 

bovine serum, penicillin/streptomycin and L-glutamine. 

For highly-multiplexed single cell DNA sequencing method in Chapter 5, 

we use MDA-MB-231, which is a triple-negative breast cancer cell line. This cell 

line uses the same media condition as SKN2.  
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For the CRC study in Chapter 7, tumor samples from two CRC patients 

(CO5 and CO7) were collected from MD Anderson Tumor bank through 

collaboration with Drs. Scott Kopetz (Department of Gastrointestinal Medical 

Oncology) and Dipen Maru (Department of Pathology). CO5 is a 77-year-old 

CRC patient with invasive moderately to poorly differentiated adenocarcinoma 

with liver metastasis. At the time of surgery, the colon primary tumor size was 4.0 

x 3.0 x 1.0 cm and the liver metastasis size was 4.1 x 2.3 x 2.0 cm. CO8 is a 64-

year-old CRC patient with invasive moderately differentiated adenocarcinoma 

with liver and lung metastasis. The colon primary tumor size was 4.0 x 5.0 x 

1.5cm and the liver metastasis size was 0.4 x 0.2 x 0.2 cm. However, we do not 

have the lung metastasis.  

2.2 Single Cell Isolation 

Nuclei of cell lines and frozen tumors were isolated using NST/DAPI buffer 

(800mL of NST (16mM NaCl, 10mM Tris base at pH 7.8, 1mM CaCl2, 0.05% 

BSA, 0.2% Nonidet P-40)), 200mL of 106 mM MgCl2, 10mg DAPI and 0.1% 

DNase-free RNase A. Cultured cells were trypsized and lysed directly in 

NST/DAPI buffer. Sectioned tumors were cut and minced using surgical blades in 

a Petri dish in NST/DAPI buffer in the dark. Samples were filtered through a 37-

µm plastic mesh to a 5-mL polystyerene tube. Nuclei were then sorted using 

FACS Aria II (BD Biosciences) and single nuclei were deposited into individual 

wells on a 96-well plate. Single nuclei were gated from the G2/M distribution of 

cells.  
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2.3 Single Cell Genome Amplification 

For the NUC-Seq project in Chapter 3, sorted single cells were amplified using 

REPLI-G UltraFast Mini Kit (Qiagen, #150035) per manufacturer’s instructions 

with minor modifications. In short, we put lysis buffer in each well of the 96-well 

plate prior to flow-sorting. After flow-sorting, we centrifuge the plate and incubate 

at 65°C for 10 minutes. We incubate the single cell DNA with Φ29 polymerase at 

30°C for 80 minutes. DNA was purified using QIAamp DNA Blood Mini kit 

(Qiagen, #51104) and quantified using the Qubit 2.0 Fluorometer (Invitrogen, 

Q32866).  

For Chapter 4-7, the single cell amplification step uses in-house lysis 

buffer and amplification buffers. Make a 2:3 ratio of lysis buffer(200mM KOH, 

50mM DTT):1xPBS solution. Load 3.5µL of solution into each well of a 96-well 

plate. After flow sorting, plate is centrifuged at 130g for 1 minute at room 

temperature. 1.5µL of neutralization buffer (900mM Tris-HCl, 300mM KCl, 

200mM HCl) is added into each well and centrifuge. Amplification is performed 

using Φ29 polymerase (NEB, M0269L) with 500µM hexamers (with 

phosphorothioate modification at the last 2 bases) and 1mM dNTP (GE 

Healthcare, 28-4065-52). Final reaction volume is 50µL per well. Incubate at 

30°C for 3 hours and 65°C for 3 minutes. Refer to Leung et al in Nature Protocol 

for detailed composition of each buffer. 

2.4 Quality Control for Amplified Single Cell Genome 

For WGA reaction, there are 22 individual qPCR reactions flanking a 200bp 

region of each autosome. (Table 2) 



	
  
	
  

25 

	
  
Table 2 - List of qPCR Primer Sequencing for Quality Control 
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For Chapter 3, each PCR reaction is set up using primers according to the 

table below. Perform PCR using the following conditions.  

Temperature Duration  

95°C 30s  

95°C 30s 30 cycles 

60°C 60s 

68°C 60s 

68°C 5m  

4°C hold  

 

For Chapter 4-6, each qPCR reaction is set up using primers according to 

the table below. Perform qPCR using the following conditions.  

Cycle Numbers Denature Anneal/Extension 

1 95°C, 3 minutes  

2-46 95°C, 20 seconds 60°C, 30 seconds 

2.5 Library Preparation 

For NUC-Seq study in Chapter 3, the WGA DNA was incubated with the Nextera 

transposome (Epicentre, Inc) to perform a tagmentation reaction in HMW buffer 

according to manufacturer’s instruction. The libraries were purified using 

MinElute PCR purification kits (Qiagen, #28106), followed by 4 cycles of PCR. 

After PCR, the libraries were run on 2% agarose gels and size-selected in the 

200-300 bp range (SK-BR-3) or 400-500 bp range (human tumors). The excised 

gel blocks were purified using MinElute purification columns. The size distribution 
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and concentration of the libraries were determined using the Bioanalyzer 2100 

system (Agilent) using high sensitivity DNA microcapillary chips. The final 

concentration of the library was determined using qPCR with the KAPA library 

Quantification Kit (KAPA Biosystems, KK4835) and fluorescence was measured 

using the Qubit 2.0 system (Invitrogen, Q32866).  For libraries that are prepared 

by ligation cloning, 100ng to 1000ng of DNA was acoustically sonicated to 300bp 

or 500bp using the Covaris Sonicator S220. Libraries were constructed using 

NEBNext DNA library Prep Master Mix Set for Illumina (New England Library, 

#F6040L) for end repair, 3’ adenylation and ligation according to the 

manufacturer’s instructions. MinElute PCR Purification Kit (Qiagen, #28006) is 

used for the purification step during library prep. Agarose electrophoresis is run 

for excision at 300bp to 400bp for size selection. We then perform 8 cycles of 

PCR following the manufacturer’s instructions, using PE5/7 primers (Illumina 

Inc). Agencourt AMPure XP (Beckman Coulter, #A63881) was used for final 

purification. Final concentration was measured by qPCR using KAPA Library 

Quantification Kit (KAPA Biosystems, KK4835) and ABI PRISM real-time 

machine (Applied Biosystems 7900HT), as well as 210 Bioanalyzer (Agilent).  

For Chapters 4 – 6, the WGA DNA is fragmented using Covaris Sonicator 

to size of 250 bp (peak incident power:157, duty factor:10%, Cycles per burst: 

200, Treatment time: 130) and purified by Zymo DNA Clean & Concentrator 

Column Kit (Zymo, D4004) according to manufacturers instructions. Libraries are 

constructed using NEBNext end repair model (NEB, E6050L), dA-tailing module 

(NEB, E6053L) and quick ligation module (NEB, E6056L). The sequences for P5 
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adaptor and barcoded P7 adaptors are shown in Table 3. Adaptor-ligated 

libraries are amplified using NEBNext high-fidelity 2x PCR master mix (NEB, 

M0541L) with primers specific to adaptors (F: 5-

AATGATACGGCGACCACCGAGATCTACAC-3 and R: 5-

CAAGCAGAAGACGGCATACGAGAT-3) 

For Chapter 6, single cell copy number profiling is performed for both 

colorectal patients. Cells are amplified using DOP-PCR according to the Nature 

Protocol paper by Baslan et al.74 WGA DNA is run on agarose gel for quality 

control. Libraries are constructed for cells that passed quality control, following 

the Nature Protocol paper by Leung and Wang et al.  

2.6 Exome/Targeted Capture 

For Chapter 3 and 4, exome capture was performed on single cell sequencing 

libraries using the TruSeq Exome Enrichment Kit (Illumina, 15013230) following 

manufacturer’s instructions with one modification: Nextera PCR primers 

(Epicentre) are used in place of the TruSeq PCR primers for library amplification. 

The capture platform targeted a 64Mb region including exons, promoters and 

UTRs. Final samples are purified using the AMPure XP beads (Beckman Coulter, 

A63881).  

For Chapter 5, targeted capture was performed using Nimblegen SeqCap 

EZ Choice Library. The capture region covers 201 cancer-related genes defined 

in Chen et al.80 For Chapter 6, targeted capture was designed to cover 1,000 

genes. Targeted capture was done with 68-72-hour incubation. The procedure is 

performed according to manufacturer’s instructions.  
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Table 3 - Sequence of Barcoded P7 Adaptors 
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2.7 Next Generation Sequencing 

For all whole genome, exome or targeted-capture sequencing, samples are 

sequenced on a 100 pair-ended flowcell on Illumina Hi-Seq 2000. For copy 

number profiling, samples are sequenced on 76 single-read flowcell. For the 

single cell sequencing in Chapter 6, cells are sequencing on Illumina Hi-Seq 

3000.  

2.8 Data Alignment and Processing  

The FASTQ file containing all of the NGS data is demultiplexed into individual 

FASTQ files using our in-house software (deplexer.pl). Individual FASTQ files are 

aligned to the human genome reference assembly (HG18 for Chapter 3, HG19 

for Chapter 4-6) using Bowtie 2, and they are converted to BAM files using 

SAMtools. BAM files are then processed by Picard to remove PCR duplicates. 

Re-alignment is performed around indel regions using the Genome Analysis 

Toolkit (GATK). Sequencing reads with mapping quality lower than 40 are 

removed. To calculate coverage metrics, we use an in-house Perl script (cal-

coverage_metrics.pl), which uses BEDTools to get coverage depth at each site 

and to calculate overall coverage depth and coverage breadth. We use GATK to 

generate a multi-cell VCF file. We also use GATK to recalibrate variant quality 

scores. We filter mutations that are only detected in one single cell, as well as 

mutations in clustered regions, in which multiple mutations are detected within a 

10-bp window. We annotate and classify the variants using ANNOVAR. The 

outline of the data processing pipeline, variant detection and annotation steps are 

shown in Figure 3.  
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Figure 3 - Data Processing Pipeline 

a. Alignment of sequencing reads to the reference genome and filtering by quality 

metrics. b. Detection of DNA variants and filtering of technical artifacts. c. 

Annotation of variants using integrated databases and protein damage-prediction 

algorithms.  

(Modified and reproduced from Marco L. Leung, Yong Wang, Charissa Kim, Ruli 

Gao, Emi Sei & Nicholas E Navin. Highly-Multiplexed Targeted DNA Sequencing 

of Single Nuclei. Nature Protocols. 2016 Feb;11(2):214-35. doi: 

10.1038/nprot.2016.005. Epub 2016 Jan 7. Permission is not required, since 

Nature journal policy states “author retains the copyright to the published 

materials”,) 
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2.9 Calculation of Data Quality and Metrics 

Coverage breadth is defined as the percent of genome (or targeted region) with 

at least one or more read. Coverage depth is defined as the average number of 

reads that each base of the genome (or targeted region) has.  

The allelic dropout rate (ADR) is defined as the mean fraction of homozygous 

sites in the single cell samples (Homs) where the matched population reference 

sample is heterozygous (Hetp) at the same nucleotide site.  

𝑨𝑫𝑹 =   
1  
𝑛      

𝐻𝑜𝑚!

𝐻𝑒𝑡!

!

!!!

  

The false positive rate (FPR) is defined as the number of heterozygous sites in 

the single cell sample (Hets) divided by the number of sites in the population 

reference sample that are homozygous (Homp) for the reference allele at the 

same nucleotide site.  

𝑭𝑷𝑹 =
1
𝑛      

𝐻𝑒𝑡!
𝐻𝑜𝑚!

!

!!!

  

Detection efficiency is defined as each variant as being detected if the reference 

allele is AB and the single cell data is either AB or BB. Detection efficiency can 

be calculated from the VCF4 variant files after the filtering steps are performed. 
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Chapter 3 – NUC-Seq – Single Cell Whole Genome Sequencing 

Content of this chapter is based on: Yong Wang, Jill Waters, Marco L. Leung, 

Anna Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, 

Han Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda 

Meric-Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600 

(Marco L. Leung developed the single cell sequencing method and performed 

experiments for the breast cancer tumors in this study.) 

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.” 

3.1 Introductions and Rationale 

 In 2011, the first single cell DNA sequencing method, called Single 

Nucleus Sequencing (SNS), was published, demonstrating copy-number profiling 

of single tumor cell from breast cancer patients.72 By using DOP-PCR, single 

cells are amplified and sparse-sequenced. By counting the sequencing reads 

throughout the genome, copy number profiling can be inferred, thus revealing 

tumor evolution by building phylogenetic tree.72   

 Although SNS is adequate for copy number detection, it is difficult to 

detect single-nucleotide variants (SNVs) using this method. It was shown that, 

even by performing deep sequencing, coverage breadth could not exceed more 

than 10%.81 A new single cell amplification method is needed, in order to detect 

genome-wide mutations at single-nucleotide resolution.  
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 To address this problem, we developed a novel method, called NUC-Seq, 

which can sequence the SNVs and indels of single cells. In this chapter, we 

demonstrate that, by using Φ29 polymerase, we can increase the genome 

coverage breadth up to 90%.81 We also exploit the natural cell cycle, in which we 

select cells that are at the G2/M phase. This approach provides double genome 

content from 6 to 12 picograms, thus increasing the chance of polymerase 

amplifying both alleles. We limit the MDA reaction time to 80 minutes. This 

prevents the over-amplification of false positive errors created by the 

polymerase. Lastly, we applied NUC-Seq to sequence single cells from two 

breast cancer patients to understand intratumor heterogeneity and tumor 

evolution. 

3.2 Results 

3.2.1 Whole-Genome Sequencing Using G2/M Nuclei 

 We developed the single cell whole-genome sequencing method by 

combining flow-sorting of nuclei, multiple displacement amplification, quality 

control, library construction by tagmentation or dA tailing cloning and next 

generation sequencing. (Figure 4)  

First, nuclear suspensions were prepared and stained by mixing cells with 

DAPI-NST buffer. Using a flow-sorter, we can determine the ploidy distribution of 

the nuclear suspension. The G2/M peak is gated and single nuclei were 

deposited into each well of a 96-well plate. Cells are then lysed and incubated 

with Φ29 polymerase to perform multiple-displacement-amplification for a limited 

isothermal time frame. A quality control step is performed on amplified DNA to  
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Figure 4 - NUC-Seq Method Overview 

a. Nuclear suspensions were prepared and stained with DAPI for flow-sorting, 

showing distributions of ploidy. The G2/M distribution was gated and single nuclei 

were deposited into wells. b. Cells were lysed and incubated with the Φ29 

polymerase to perform multiple-displacement-amplification for a limited 

isothermal time-frame. c.d. Sequence libraries were prepared using one of two 

methods: Tn5 tagmentation (c), or low-input TA ligation cloning (d). e. Exome 

capture was optionally performed to isolate gDNA in exonic regions. f. Libraries 
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were sequenced on the Illumina HiSeq 2000 system. g. Somatic mutations were 

detected using a custom processing pipeline. 

 

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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ensure even amplification and human origin. (Figure 5) We found that, in G1/0 

single cells, only 25.58% (11/43) of the cells show full amplification of the 

chromosomes, whereas G2/M cells have 45.34% (39/86). Sequence libraries are 

prepared on cells that pass quality control using one of two methods: Tn5 

tagmentation or low-input TA ligation cloning. (see Chapter 2 - Methods and 

Materials) Libraries are then sequenced on the Illumina HiSeq 2000 system. 

Somatic mutations are called using processing pipeline. (See Chapter 2 - 

Methods and Materials) 

3.2.2 Method Validation in a Monoclonal Cancer Cell Line 

 We first validate our NUC-Seq method using a breast cancer cell line (SK-

BR-3). In our previous study, we have shown that SK-BR-3 was a genetically 

monoclonal cell line.72 We performed Single Nucleus Sequencing on 50 single 

SK-BR-3 cells and calculate the copy number profiles at 220-kilobase resolution. 

(Figure 6) We found that the major copy number aberrations (amplifications of 

MET, MYC, ERBB2, BCAS1, and deletion in DCC) were stable across all 50 

cells. We also performed deep-sequencing the whole genome of SK-BR-3 cell 

population at high coverage depth (51x) and breadth (90.40%) and detected 

single-nucleotide variants (SNVs), copy number aberrations (CNAs) and 

structural variants (SVs) using our processing pipeline. We filtered the variants 

using dbSNP135 and identified non-synonymous SNVs and SVs. (Figure 7)  

 We then applied NUC-Seq to sequence the whole genomes of two single 

SK-BR-3 cells (named SK-1 and SK-2). Specifically, we sequenced single cells 

that are in G2/M phase of the cell cycle. We calculated the coverage depth and  
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Figure 5 - Evaluation of WGA Efficiency Using Chromosome-Specific 

Primers 

Whole genome amplified DNA from each single cell was used to perform PCR 

quality control experiments to determine WGA efficiency. For each cell, 22 

reactions were performed using primer pairs that target each autosome and 
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resulting 200bp PCR product were separated by gel electrophoresis. Two single 

nuclei from G2/M gate (a) and G1/0 gate (b) are shown. ‘X’ on the gel represents 

negative PCR reactions.  

 
(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 6 - Copy Number Heatmap of 50 Single SK-BR-3 

Each row represents a single SK-BR-3 cell. Chromosome 1-Y are organized from 

left to right. Blue represents copy number loss and red represents copy number 

gain.  

 
 
(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 7 - Bulk Sequencing of SK-BR-3 Cell Line 

The Circos plot represent the sequencing result of SK-BR-3 bulk whole genome 

sequencing. The outer circle shows the chromosome location. Next inner circle 

shows the SNVs and indels. The next inner circle shows the copy number 

aberrations. The most inner circle shows large scale chromosomal 

translocations. 

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600. Copyright permission is not required since Nature 

journal policy states that “author retains the copyright to the published 

materials.”) 
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coverage breadth, and compared to the population (SKP). We found that both 

SK-BR-3 cells achieved high coverage depth (61x) and high coverage breadth 

(83.7%). (Figure 8, 9)   

 Next, we calculated the allelic dropout rate (ADR) and false positive rate 

(FPR) by comparing single cell variants to the population data. Our analysis 

suggests that NUC-Seq generates low allelic dropout rate (9.73%) compared to 

previous studies (7-46%).75 We also achieved low false positive error rates for 

point mutations (1.24 x 10-6), equivalent to 1-2 errors per million bases, which 

represents a major technical improvement over previous methods (FPR = 2.52 x 

10-5 and 4 x 10-5).75,79  

3.2.3 Single Cell Sequencing of Breast Tumors 

 We then selected tumors from two breast cancer patients for population 

and single cell sequencing. We first investigated an invasive ductal carcinoma 

from an estrogen-receptor positive (ER+/PR+/Her2-) breast cancer patient. We 

flow-sorted millions of nuclei from the aneuploid G2/M peak (6N) and from 

matched normal tissue for population sequencing. (Figure 10) We also flow-

sorted 50 single nuclei for copy number profiling, 4 nuclei for whole-genome 

sequencing and 59 nuclei for exome sequencing. After filtering germline variants, 

we identified a total of 4,162 somatic SNVs in the aneuploid tumor cell 

population. Among these SNVs, we identified 12 nonsynonymous mutations, 

which we validated by exome sequencing. Several non-synonymous mutations  
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Figure 8 - Coverage Depth for Bulk and Single Cell Sequencing 

The three inner circles represent the coverage depth of two single cells (blue and 

red) and population sequencing (green). The coverage performance is 

corresponded to the GC content of the genome (grey) 

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 9 - Coverage Breadth for Bulk and Single Cell Sequencing 

This line graph shows that the coverage breadth performance of single cells is 

comparable to the performance of population. This SCS method shows a large 

improvement of our previous method, single nucleus sequencing.  

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600. Copyright permission is not required since Nature 

journal policy states that “author retains the copyright to the published 

materials.”)  
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Figure 10 - Ploidy Distribution of an Estrogen-Receptor Positive Breast 

Tumor 

Single cells were sorted from the G2/M aneuploid peak, whereas populations are 

sort from the diploid and aneuploid peak. 

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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occurred in cancer genes, including PIK3CA, CASP3, FBN2 and PPP2R5E. 

(Figure 11).  

 To investigate copy number diversity, we performed single nucleus 

sequencing on 50 single nuclei. We constructed a neighbor-joining tree, which 

showed that single tumor cells shared highly similar CNAs, representing a 

monoclonal population. (Figure 12) Next, we performed whole-genome 

sequencing of four single tumor nuclei at high coverage breadth and depth. From 

this data, we identified three classes of mutations: (1) clonal mutations, detected 

in the population sample and in the majority of single tumor cells; (2) subclonal 

mutations, detected in two or more single cells, but not in the bulk tumor; and (3) 

de novo mutations, found in only one tumor cell. The de novo mutations are 

difficult to distinguish from technical errors and were therefore exclude from our 

initial analysis. In total, we detected 12 clonal non-synonymous mutations and 32 

subclonal mutations. (Figure 13) Many subclonal mutations occurred in intergenic 

regions; however, two mutations (MARCH11 and CABP2) were found in coding 

regions.  

 To identify additional subclonal mutations, we performed single nuclei 

exome sequencing on a larger set of cells (47 tumor cells and 12 normal cells). 

Each nucleus was sequencing at 46.78x coverage depth and 92.77% exome 

coverage breadth, from which somatic mutations were detected. The mutations 

were clustered and sorted by frequency to construct a heatmap. (Figure 14) As 

expected, the 17 clonal mutations identified by population sequencing were  



	
  
	
  

48 

	
  
Figure 11 - Circos Plot of Mutations and CNAs in ER+ Breast Tumor 

SNVs and CNVs are detected in the bulk sequencing of the tumor. 
 
(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 12 - Neighbor-Joining Tree of Single Cell Copy Number Profiles 

Neighbor-joining tree of integer copy number profiles from single diploid and 

aneuploid cells, rooted by the diploid node. 

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 13 - Circos Plots of Single Cell Whole Genome Profiles 

These circus plots of whole-genome single cell sequencing data showing 

mutations detected in two or more cells. Black, green and red represent clonal 

exonic, subclonal exonic, and subclonal noncoding SNVs, respectively. 

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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present in many of the single tumor cells. However, we also identified 22 new 

subclonal mutations. In contrast, only a single subclonal mutation was detected 

in the 12 normal cells. (Figure 14) 

 Next, we proceeded to analyze a triple-negative (ER-/PR-/Her2-) breast 

cancer (TNBC). From population sequencing of the bulk tumor and matched 

normal tissue, we identified 374 non-synonymous mutations, which is 

significantly higher than the ER tumor. A number of mutations occurred in cancer 

genes, including PTEN, TBX3, NOTCH2, JAK1, ARAF, NOTCH3, MAP3K4, 

NTRK1, AFF4, CDH6, SETBP1, AKAP9, MAP2K7, ECM2 and ECM1. (Figure 

15) Many of these mutations were previously reported in the TCGA breast cancer 

cohort.82  

 To investigate genomic diversity at single cell resolution, we performed 

copy number profiling and exome sequencing. We flow-sorted 50 single nuclei 

from the hypodiploid, diploid and aneuploid ploidy distributions for copy number 

profiling using SNS. Neighbor-joining revealed two distinct subpopulations of 

tumor cells (A and H) in addition to the normal diploid cells. (Figure 16) The 

single cell copy number profiles were analyzed using clustered heatmaps, which 

showed highly similar rearrangements within each subpopulation, but were 

distinguished by two large deletions on chromosome 9 and 15.  

 We then flow-sorted 16 single tumor nuclei from the G2/M peaks of 

hypodiploid and aneuploid, as well as 16 nuclei for exome sequencing. Non-

synonymous point mutations were used to perform hierarchical clustering and 

multi-dimensional scaling (MDS). As expected, the 374 clonal non-synonymous  
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Figure 14 - Mutations Detected in Single Cells Exome Sequencing 

Heatmap of coding mutations detected by single-nuclei exome sequencing. 

Mutations detected in whole-genome sequencing (pop) and exome sequencing 

(c) are displayed.  

 
(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 15 - TNBC Mutations Detected in Population Sequencing 

Circos plots of mutations and CNAs detection by population sequencing of the 

triple negative breast cancer, with cancer genes on the outer ring.  

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 16 - Neighbor-Joining Tree of TNBC Single Cell Copy Number 

Profiles 

Neighbor-joining tree of 50 single cell integer copy number profiles, rooted by the 

diploid node. There are three distinct subpopulations, clustered by their own 

ploidy profiles.  

(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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mutations detected by bulk sequencing were found in the majority of the single 

tumor cells, however, we also identified 145 additional subclonal non-

synonymous mutations that were not detected in the bulk tumor. MDS identified 4 

distinct clusters, corresponding to three tumor subpopulations and the normal 

cells. (Figure 17) Hierarchical clustering showed that many of the subclonal 

mutations occurred exclusively in one subpopulation. (Figure 18) Many of the 

subclonal mutations were predicted to have damage protein function by both 

POLYPHEN and SIFT.83,84  

3.3 Discussion 

 In this chapter, we have presented a novel single cell whole genome 

sequencing method, called NUC-Seq. By combining flow-sorting, multiple-

displacement-amplification, quality control, library preparation, next-generation 

sequencing, we are able to generate whole-genome data from single cells with 

high coverage breadth and high coverage depth. We are able to achieve high 

coverage depth (61x) and breadth (83.0%). Compared to our previous method, 

which uses sparse sequencing to detect CNVs, this improvement in coverage is 

particularly important because it detects mutations in single-nucleotide resolution. 

We demonstrate this technique to reveal subclonal mutations and intratumor 

heterogeneity in two breast tumors. We are able to detect rare mutations that 

would not be otherwise detected using conventional population sequencing 

techniques. 
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Figure 17 - TNBC Multi-Dimensional Scaling (MDS) Plot 

Multi-dimensional scaling plot of the nonsynonymous mutations from the single-

nuclei exome sequencing data in the TNBC. 

 
(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”) 
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Figure 18 - Mutations Detected in TNBC Single Cell Sequencing 

Clustered heatmap of the nonsynonymous point mutations detected by single 

nuclei exome sequencing and populations 

 
(Modified and reproduced from Yong Wang, Jill Waters, Marco L. Leung, Anna 

Unruh, Whijae Roh, Xiuqing Shi, Ken Chen, Paul Scheet, Selina Vattathil, Han 

Liang, Asha Multani, Hong Zhang, Rui Zhao, Franziska Michor, Funda Meric-

Bernstam & Nicholas E. Navin. Nature. 2014. 512(13500:155-160). 

doi:10.1038/nature13600  

Copyright permission is not required since Nature journal policy states that 

“author retains the copyright to the published materials.”)	
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Chapter 4 – SNES – Single Nucleus Exome Sequencing 

 

Content of this chapter is based on: Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.” 

 

4.1 Introductions and Rationale 

 While single cell sequencing methods provide an alternative approach in 

detecting rare mutations by sequencing single cells, further technical 

improvements are still needed to decrease the error rates. Following the 

publication of our SNS method, two recent methods were developed that use 

multiple displacement amplification (MDA) and multiple-annealing-looping-based-

amplification-cycles (MALBAC) to increase the coverage breadth during 

WGA.75,79 While pioneering, these studies increased coverage breadth at the 

cost of introducing high false positive and false negative error rates, due to 

excessive over-amplification of the DNA from a single cell from 6 picograms to 

microgram concentrations. Consequently, it was necessary to call variants 

across most of the single cells to reduce the high false positive (FP) technical 

errors, which is equivalent to sequencing the bulk tissue en masse.  



	
  
	
  

60 

 To mitigate technical errors, we developed NUC-Seq, which utilizes G2/M 

cells to perform single-cell genome sequencing.81 While this approach was 

suitable for analyzing highly proliferative cells, such as cancer cells, it was not 

suitable for analysis of normal cells or slowly dividing populations. To address 

this problem, we developed a new approach called single nucleus exome 

sequencing (SNES) that was built upon our previous method.  

 In this chapter, we describe the development of SNES and address the 

following problems in existing single cell genome sequencing methods. 

1. Error rates are high due to over-amplification of single cell DNA. 

2. NUC-Seq focuses only on single cells in G2/M phase. 

3. It is expensive to sequence cells using commercial kits. 

4.2 Results 

4.2.1 Experimental Approach and Quality Control Assays 

 The experiment approach of SNES is illustrated in Figure 19. It is similar 

to NUC-Seq with minor modifications and improvements. After nuclear 

suspensions are prepared from cells using the DAPI-NST lysis buffer, flow-

cytometry is used to sort cells in G1/0 or G2/M phase. After depositing single 

nuclei into individual well of a 96-well plate, we use phi29 polymerase to amplify 

single cell. To determine the optimal isothermal time-frame, we performed time-

series MDA reactions using G1/0 and G2/M cells over 8 hours. (Figure 20) From 

this amplification curve, we determine that 120 minutes to be the minimum time-

frame required to generate approximately 500 ng of DNA from a single cell,  
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Figure 19 - SNES Experimental Procedure 

Nuclear suspensions were prepared from tissues, stained with DAPI and flow-

sorted. Single nuclei were isolated by gating the G1/0 or G2/M ploidy 
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distributions and deposited singly into a 96-well plate. Multple-displacement-

amplification is performed using Φ29 to perform WGA. 

 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 20 - Amplification Curve of Single Nuclei Using phi29 Polymerase 

Time course of WGA showing total DNA yield of from single nuclei of both G1/0 

or G2/M phase 

 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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providing sufficient input material for constructing libraries, exome capture, and 

performing the necessary quality control assays.  

 Prior to library construction, we evaluate WGA efficiency by performing 

qPCR on each single nucleus WGA reaction using a set of 22 primary pairs that 

target each chromosome independently. (See Chapter 2) Single nuclei with 

22/22 amplicons were selected for subsequent library construction and next-

generation sequencing. Our data showed that G2/M cells resulted in an 

improvement over G1/0 cells for WGA efficiency, with 70% (14/20) single cells 

having the full set of chromosomes amplified in G2/M cells compared to 15% 

(3/20) in G1/0 cells. (Figure 21) 

 Single cells that passed quality control for WGA were used to construct 

sequencing libraries using a low-input TA cloning protocol starting with 100ng of 

input material. During library construction, a unique 6-bp barcode was added to 

each single-cell libraries together into one reaction for exome capture and next-

generation pair-end sequencing on the HiSeq2000 system using 100 paired-end 

cycles. 

4.2.2 Measuring Coverage Performance and Uniformity 

 To determine the coverage performance and error rates of SNES, we 

used a normal isogenic female fibroblast cell line (SKN2), in which we assume 

that the variants present in a single cell will be highly similar to the reference 

population sample. Any deviations from the reference variants were considered 

to be technical errors, and were used to calculate the error rates. We sequenced 

the population of cells at high coverage depth (59x) and breadth (99.76%) to  
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Figure 21 - qPCR Panel for Single Nuclei 

Quality control assay using a panel of 22 chromosome-specific qPCR primers to 

determine the WGA amplification efficiency of each single nucleus 

(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”)  
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obtain a reference set of whole-genome variants. We then applied SNES to 

sequence nine single cells that were gated from the G1/0 stage of the cell cycles 

and 10 single cells from the G2/M stage. We aligned the single-cell data to the 

human genome using our processing pipeline and eliminated sequencing reads 

with multiple mappings and PCR duplicates. As expected, all of the single cells 

showed very similar coverage depth distributions, irrespective of whether they 

were gated from the G1/0 or G2/M distribution, which is important for the 

subsequent comparisons. (Figure 22) 

 In order to assess coverage performance, we calculated coverage breadth 

(sites with ≥ 1x coverage) (Figure 23) and coverage uniformity (evenness) 

(Figure 24). Our data suggest that coverage breadth (≥1x) significantly (p = 

0.0021, t-test) increased in the G2/M cells (95.94%, ±0.005 sem) relative to the 

G1/0 cells (89.60%, ±0.018 sem) (Figure 23). This results in the number of sites 

with sufficient coverage depth for variant calling at 73.54% in G1/0 cells 

compared to 84.34% in G2/M cells. To assess coverage uniformity, we plotted 

the fraction of the exome covered as a function of coverage depth (Figure 25). 

These plots show that the G2/M cells achieved more even coverage uniformity at 

sites with low coverage depth compared to the G1/0 cells.  

 To further investigate coverage uniformity, we calculated Lorenz curves 

and plotted data for perfect uniformity, a genomic DNA population sample and 

mean data for the G1/0 and G2/M single cells, as well as data from our previous 

SNS method (Figure 24). These curves show a large improvement in coverage 

uniformity using G2/M cells compared to the G1/0 cells, and both showed vast  
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Figure 22 - Coverage Depth of Single Nuclei 

9 nuclei from the G1/0 phase and 10 from the G2/M phase were sequenced.  

There is no significant difference in coverage depth between the two groups.  

 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 23 - Coverage Breadth of Single Nuclei 

Coverage breadth data for exome region of G1/0 and G2/M single cells 

compared to previous studies using SNS and MALBAC. Error bars show SEM. 

 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 24 - Coverage Uniformity Comparison 

Lorenz curves of coverage uniformity, showing values for perfect coverage, 

milliions of SKN2 reference cells, NUC-Seq single cell, single cells from G1/0 and 

G2/M distributions, and SNS cell.  

 
 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 25 - Coverage Distribution for Sites with Low Coverage in G1/0 and 

G2/M Single Cells 

This plot shows that there are more sequencing reads at the low coverage depth 

for G1/0 cells. 

 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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improvements over our previous SNS approach. We also calculated the on-target 

performance for data in the exome region of single cells, and found very high 

percentages (mean = 67.33%) for G1/0 and G2/M cells, which are equivalent to 

previous reports (55% to 85%) of exome capture efficiencies using millions of 

cells.85  

4.2.3 Estimating Technical Error Rates 

To calculate the technical error rates, we filter the reads by mapping 

quality, base quality, and clustered regions. We then perform local realignment 

around indels. From these data, we identified SNVs and indels using the Unified 

Genotyper (GATK), following our processing pipeline. Major sources of technical 

errors that occur during WGA include the ADR and the FP error rates. (Figure 

26) Previous studies have reported very high ADR (43.09%) in single-cell exome 

sequencing data.76,86 In comparison, our data show that SNES significantly (p = 

7e-4, t-test) reduced the ADR to 30.81% (±0.013, sem) in G1/0 cells and 21.52% 

(±0.019, sem) in G2/M cells (Figure 27). These calculations are based on sites in 

which both the single cells and population sample have sufficient (≥ 6x) coverage 

depth (in order to eliminate sites with low coverage in which WGA did not 

necessarily lead to allelic dropout). An alternative approach for calculating the 

ADO includes all heterogeneous sites in the population and single cell sites 

regardless of coverage depth, which results in an ADR of 43.84% for G1/0 cells, 

and 27.21% for G2/M cells.  

 Next, we calculated the FP error rate, which is caused by the infidelity of 

the phi29 polymerase (error rate = 1e-7) during isothermal amplification.87 From  
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Figure 26 - Allelic Dropout Rate (ADR) and False Positive (FP) 

Allelic dropout is defined as the loss of one allele when there are two alleles 

present in the population sequencing sample. False positive is defined as the 

detection of an allele that artificially created during amplification and not present 

in the population sequencing.  

(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 27 - Allelic Dropout Rate Comparing G1/0 and G2/M Cells 

9 G1/0 and 10 G2/M cells are compared for their ADR. G1/0 cells have average 

of 30.81% ADR and G2/M cells have average of 21.52% ADR. 

*** = P≤0.001 
 
(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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our data, we calculated a FP error rate of 3.2e-5 for SNVs, which is equivalent to 

32 errors per megabase. This FP error rate is higher than our previous estimates 

for whole-genome single-cell sequencing with NUC-Seq, but can be explained by 

the increased isothermal WGA timeframe and additional PCR cycles required to 

generate sufficient DNA for exome capture and enrichment. We investigated the 

spectrum of the FP errors and found that 82.3% were C > T and G > A 

transitions, showing a significant bias relative to the normal transition and 

transversion spectrum in the population of fibroblast cells. (Figure 28) 

Importantly, we found that the majority of the FP errors occurred at random sites 

in the genomes of single cells, with few mutations occurring at recurrent sites in 

two or more cells. This distribution allows the FP erros rates to be mitigated by 

calling mutations in two (FP: (3.2e-5)2 = 1.02e-9) or more (FP: (3.2e-5)n) single 

cells. Using two or more cells in variant calling is possible in most single-cell 

studies, which normally seek to analyze large numbers of cells.  

 We also investigated the distribution of allelic dropout events in the single-

cell data. By comparing the allelic dropout events from both alleles, our data 

showed that there is a slight bias towards AB -> BB dropout event, when 

compared to AB -> AA events in both the G1/0 and G2/M events. (Figure 29) We 

suspect that this bias is likely due to mismatch hybridization inefficiency of the 

exome capture probes to the B alleles, they were designed for the A allele 

sequence (reference human genome assembly). Next we examined the 

distribution and recurrence of allelic dropout events by examining their frequency 

across multiple single cells. Our data show that in contrast to the random  
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Figure 28 - Spectrum of Single Nucleotide Variants 

82.3% of single nucleotide variants detected in the G2/M single cell data have 

G>A and C>T transition. 

(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 29 - Distribution of Allelic Dropout Bias 

Cells are slightly biased toward AB -> BB dropout event, compared to AB -> AA 

events, for both G1/0 and G2/M cells. 

(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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distribution of FP errors that occur at difference sites in single cells, allelic 

dropout errors sometimes occurred at recurrent position in multiple single cells. 

On average we observed that 2.55 cells out of 19 single cells shared a recurrent 

allelic dropout event at the same nucleotide position. These regions are 

important to note in single-cell studies and are showed be filtered, since they can 

misinterpreted as biological variation in SNVs prevalence, when in fact they are 

likely to be technical errors.  

4.2.4 Measuring Detection Efficiency 

 We calculated the detection efficiencies, to measure the proportion of the 

SNvs and indels that were successfully detected in each single fibroblast cell 

exome. For SNVs, we detected 92.37% (±0.008, sem) of the variants in the 

single cells (mean = 32,369/34,982) in the G2/M cells, and 86.71% (±0.012, sem) 

in the G1/0 cells (mean = 25,753/29,549). (Figure 30) In comparison, previous 

studies using MALBAC reported detection efficiencies of only 76% for SNVs. An 

alternative approach is to calculate the SNV detection efficiency at all variant 

sites in the reference, regardless of the coverage depth in the single-cell and 

population sample. This calculation results in a detection efficiency for SNVs of 

60.64% for G1/0 cells and 76.22% for G2/M cells. We also calculated the 

detection efficiency for indels, which is 85.60% (±0.007 SEM) for G2/M cells 

(mean = 2,448/2,856), and 82.11% (±0.009 SEM) for G1/0 cells (mean = 

1,926/2,336) (Figure 31). To our knowledge, this is the first report showing that 

indels can accurately be detected in the genomes of single mammalian cells. 
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Figure 30 - Detection Efficiency for SNVs in Single Cells 

G1/0 cells show 86.71% of detection efficiency in SNVs for G1/0 cells and 

92.37% in G2/M cells.  

(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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Figure 31 - Detection Efficiency for Indels in Single Cells 

G1/0 cells show 82.11% of detection efficiency in indels for G1/0 cells and 

85.60% in G2/M cells.  

(Modified and reproduced from Marco L. Leung, Yong Wang, Jill Waters & 

Nicholas E Navin. SNES: Single Nucleus Exome Sequencing. Genome Biology. 

16:55. 03/2015. PMID:25853327. 

Copyright permission is not required since Genome Biology states, “the authors 

retain copyright of their article.”) 
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4.3 Discussion 

 This chapter has described the methodology and detailed technicality of 

SNES, a method that can achieve high coverage (96%) data from the exome of a 

single mammalian cell. From these data, we show that we can accurately detect 

SNVs and indels at base-pair resolution. The technical performance in coverage 

improvement is due to multiple factors, including an improved phi29 polymerase, 

time-limited isothermal amplification and the use of a 22-chromosome qPCR 

panel to eliminate cells with poor WGA performance prior to exome capture and 

sequencing.  

 In this chapter, we have improved the sequencing quality of the single 

cells and decreased the error rates. In the Xu et al study, they have reported very 

high ADR of 43.09% in single-cell exome sequencing data, whereas we have 

decreased ADR to 21.52%.76 In the Hou et al study using MALBAC, they 

reported detection efficiencies of only 76% for SNVs, whereas we can achieve up 

to 92.37%. We have eliminated the NUC-Seq requirement for Tn5 transposase 

for library construction, which can introduce integration biases in the human 

genome and lead to coverage non-uniformity. Moreover, SNES protocol 

eliminates commercial kits for cell isolation, WGA and library construction, 

thereby reducing the cost of generating a single-cell library to approximately $30 

per cell. In other words, SNES demonstrates superior single cell data quality, 

compared to other existing single cell genome sequencing methods.  

 



	
  
	
  

81 

 

 

 
	
  
	
  

 

CHAPTER FIVE – HIGHLY MULTIPLEXED TARGETED DNA SEQUENCING  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  
	
  

82 

Chapter 5 – Highly Multiplexed Targeted DNA Sequencing 

 

Content of this chapter is based on: Marco L. Leung, Yong Wang, Charissa Kim, 

Ruli Gao, Emi Sei & Nicholas E Navin. Highly-Multiplexed Targeted DNA 

Sequencing of Single Nuclei. Nature Protocols. 2016 Feb;11(2):214-35. doi: 

10.1038/nprot.2016.005. Epub 2016 Jan 7. 

 

Copyright permission is not required since Nature journal policy states “author 

retains the copyright to the published materials.” 

 

5.1 Introductions and Rationale 

 To thoroughly understand intratumor heterogeneity, many single cells are 

required to study in order to accurately survey the diverse cell population in 

human cancers. Unlike single cell copy number profiling, whole genome or 

exome sequencing requires more sequencing data for analysis, thus it is difficult 

to multiplex many single cell libraries into one lane.  

 To address this issue, we have further refined SNES by using DNA 

barcoding to multiplex 48-96 single cells into single sequencing reactions to 

further increase throughput and to reduce costs of SCS. This is achieved by 

performing targeted capture on a panel of 201 cancer-associated genes, 

resulting in high coverage depth and reducing the cost of sequencing. In this 

chapter, we describe the changes of our method from Chapter 4, as well as the 

metrics generated by this updated method.  
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5.2 Results 

5.2.1 Reduction of Captured Exome Region to T200 Panel 

 To increase the number of single cell samples in a flowcell lane, we 

compensate by decreasing the captured region from exome to 201 genes. We 

adopt the gene panel from the Chen at al study.80,88 The genes are listed in Table 

4. These genes are found mutated in 5% or more of the samples across all 

cancers, and 3% or more of the samples in 1 specific cancer types when at least 

50 samples had been available. These genes can also be targeted by drugs that 

were commercially available, in clinical trails or under late-stage preclinical 

development. Several large genes previously shown mutated in cancer but with 

no direct clinical implications were not included, such as titin (TTN), Wolf-

Hirschhorn syndrome (WGHSC1, also known as NSD2), and microtubule-actin 

crosslinking factor 1 (MACF1).80 This panel covers 4,875 exons, spanning 

938,607 bases.  

5.2.2 Metric Performance 

 To establish technical error rates and metrics for this protocol, we applied 

our method to an isogenic breast cancer cell line (MDA-MB-231) to sequence 46 

single cells and two matched bulk populations. We constructed 48 barcoded 

libraries and pooled together 46 single cells libraries and two matched population 

samples into a single reacton for targeted capture using the T200 panel of 201 

cancer-associated genes. (Table 4) The pooled libraries were sequenced on a 

single lane on a HiSeq 2000 system (Illumina) at 100-bp paired-end cycles. Our 

samples showed an average coverage depth of 255x (SEM = 23.54) and  
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Table 4 - Genes Targeted by the T200 Panel 

These genes are selected in the Chen at al study and found mutated in 5% or 

more of the samples across all cancers, and 3% or more of the samples in 1 

specific cancer types when at least 50 samples had been available. These genes 

can also be targeted by drugs that were commercially available, in clinical trails 

or under late-stage preclinical development.  

	
  
  



	
  
	
  

85 

coverage breadth of 85% (SEM = 0.02%). (Figure 32) Uneven pooling can lead 

to occasional samples with low coverage, which should be removed from 

downstream analysis (for example, cell number 46 in Figure 32). The average 

on-targeted performance for this SCS data set in the capture regions was 

determined to be 65.03%.  

 Next, using the variants detected in the isogenic population samples. We 

calculated the technical error rates for each single cell at sites at which both 

samples ad sufficient coverage depth. The mean ADR for the single-cell data 

was 13.68% (SEM = 1.9%; Figure 33). We also calculated the detection 

efficiency of SNVs in regions in which sufficient coverage (≥10x) was found in 

both the population and single cell data sets. Our analysis identified an SNV 

detection efficiency of 82.80% (SEM = 1.9; Figure 34) We calculated the mean 

false positive error rate to be 4.98e-5 (SEM = 4.175e-6; Figure 35). This error rate 

is drastically reduced (squared) by calling mutations concurrently in two or more 

single cells.  

5.3 Discussion 

In this chapter, to increase the number of multiplexed samples, we 

decrease the region covered by the target capture from exome to 200 genes. 

These 201 genes are chosen based on their clinical relevance and frequent 

occurrence in all cancer. By sequencing only 201 genes instead of exome, the 

number of variants detected will decrease. There may be mutations with 

significant consequences that are not included in this platform.  
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Figure 32 - Coverage Metrics for Single Cells 

46 single cells were multiplexed and sequenced at average coverage depth of 

255x (a) and coverage breadth of 85% (b).  

 
(Modified and reproduced from Marco L. Leung, Yong Wang, Charissa Kim, Ruli 

Gao, Emi Sei & Nicholas E Navin. Highly-Multiplexed Targeted DNA Sequencing 

of Single Nuclei. Nature Protocols. 2016 Feb;11(2):214-35. doi: 

10.1038/nprot.2016.005. Epub 2016 Jan 7. 

Copyright permission is not required since Nature journal policy states “author 

retains the copyright to the published materials.”) 
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Figure 33 - Single Cell Allelic Dropout Rate 

The average allelic dropout rate for 46 single cells was 13.68%. 
 
(Modified and reproduced from Marco L. Leung, Yong Wang, Charissa Kim, Ruli 

Gao, Emi Sei & Nicholas E Navin. Highly-Multiplexed Targeted DNA Sequencing 

of Single Nuclei. Nature Protocols. 2016 Feb;11(2):214-35. doi: 

10.1038/nprot.2016.005. Epub 2016 Jan 7. 

Copyright permission is not required since Nature journal policy states “author 

retains the copyright to the published materials.”)	
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Figure 34 - Detection Efficiency for Single Nucleotide Variants 

The average detection efficiency for SNVs is 82.80%. 
 
(Modified and reproduced from Marco L. Leung, Yong Wang, Charissa Kim, Ruli 

Gao, Emi Sei & Nicholas E Navin. Highly-Multiplexed Targeted DNA Sequencing 

of Single Nuclei. Nature Protocols. 2016 Feb;11(2):214-35. doi: 

10.1038/nprot.2016.005. Epub 2016 Jan 7. 

Copyright permission is not required since Nature journal policy states “author 

retains the copyright to the published materials.”)	
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Figure 35 - False Positive Rate 

The average false positive error rate for single cells is 4.87e-5. 
 
(Modified and reproduced from Marco L. Leung, Yong Wang, Charissa Kim, Ruli 

Gao, Emi Sei & Nicholas E Navin. Highly-Multiplexed Targeted DNA Sequencing 

of Single Nuclei. Nature Protocols. 2016 Feb;11(2):214-35. doi: 

10.1038/nprot.2016.005. Epub 2016 Jan 7. 

Copyright permission is not required since Nature journal policy states “author 

retains the copyright to the published materials.”)	
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Collectively, these data show that high-coverage breadth data and high 

detection efficiencies can be obtained using the protocol to perform highly 

multiplexed single-cell targeted DNA sequencing. By multiplexing up to 96 

samples in one sequencing lanes, more single cells can be observed and high 

level of clonality within a tumor can be detected. We will further discuss how 

many single cells are needed to detect intratumor heterogeneity in a later section 

(7.1.3 Determining the number of single cells required for sampling). 
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CHAPTER SIX - TRACING METASTATIC LINEAGE IN COLORECTAL 
CANCER USING SINGLE CELL SEQUENCING 
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Chapter 6 – Tracing Metastatic Lineage in Colorectal Cancer Using Single 

Cell Sequencing 

6.1 Introductions and Rationale 

 As stated in Chapter 1, patients with CRC metastasis have worse 

prognosis than those without metastasis. Understanding how cancer genomes 

evolve during CRC metastasis may provide valuable insights on treating CRC 

metastasis. Recent studies have attempted to investigate the genomic diversity 

and metastasis among hundreds of patients using next generation sequencing 

(NGS). The TCGA study had found genes (APC, KRAS, NRAS, TP53) that are 

frequently mutated in CRC, as well as genes that are mutated at low frequency, 

such as ARID1A, SOX9 and FAM123B.11 Moreover, it was found that, in non-MSI 

CRC, primary and metastatic tumors had high concordance of mutational profiles 

in most patients.89,90 This suggests that CRC follows the late-dissemination 

model, in which the primary tumor has progressed for a long period of time 

before tumor cells metastasize to remote organs. However, it is difficult to detect 

rare clones in heterogeneous tumors using conventional NGS methods. There 

might be metastatic subpopulations that exist at low clonal frequency and cannot 

be detected by conventional NGS method.  

 Here, we used SCS methods (as described in Chapter 4 and 5) to 

sequence single cells from primary tumors and metastases from two CRC 

patients. Our data identified a large number of nonsynonymous mutations that 

evolved in the root nodes during the earliest stages of primary tumor evolution 

and were maintained in all single cells during the clonal expansion of the tumor 



	
  
	
  

93 

mass. We explored the clonality of these tumors from bulk and single cell 

sequencing. Using the single cell data, we construct phylogenetic trees, which 

reveals branched evolution at both organ sites. 

6.2 Results 

6.2.1 Bulk Exome Sequencing Analysis of Two Colorectal Cancer Patients 

 For our study, we selected two colorectal cancer male patients (CO5 and 

CO8). Both patients have invasive differentiated adenocarcinoma of the colon 

without microsatellite instability. Both patients are presented with liver 

metastases. First, we isolated the nuclei from these tumors and stained with 

DAPI before we flow-sorted them based on ploidy distribution. (Figure 36) We 

gated and flow-sorted the bulk and single cells of each diploid and aneuploid 

population from each tumor. We performed exome sequencing on these four 

populations, as well as the matched normal tissues to filter germline variants, 

with high coverage performance (average coverage depth = 75.5x, average 

coverage breadth = 0.9733). (Table 5) We detected 90 nonsynonymous 

mutations for CO5 and 107 for CO8. These mutations include KRAS, NRAS, 

APC and TCF7L2, and they have been previously reported in the TCGA 

colorectal cancer study.11 (Table 6,7) 

 Consistent with previous studies, we found that the majority of mutations 

were common in the primary and metastatic tumors.89,90 There are 80 and 68 

common mutations in CO5 and CO8, respectively, with minor number of site-

specific mutations. (Figure 37)  We plotted the primary mutation frequency 

against the metastasis mutation frequency, and found that APC, KRAS, and  
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Figure 36 - Experimental Workflow 

Each tumor is gated and flow-sorted by ploidy distribution. For SNVs and indels 

detections, single cells are amplified using multiple-displacement-amplification 

with Φ29 polymerase, while degenerate-oligo-primed PCR is used for single cell 

copy number detection. For SNVs and indels, libraries are captured using either 

exome or T1000 hybridization. For copy number profiling, single cells are 

amplified using DOP-PCR and multiplexed for Illumina sequencing. 
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Figure 37 - Nonsynonymous Mutations Detected in CRC Tumors 

Venn diagrams demonstrate the number of mutations that are common and 

specific to each tumor.  
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Table 5 - Coverage Metrics for Bulk Exome Sequencing 

The average depth and breadth for CO5 is 64x and 0.9674, respectively. The 

average depth and breadth for CO8 is 87x and 0.9791, respectively. 
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Chromosome Position Gene Name Reference Variant 
chr9 95784648 FGD3 G A 

chr10 131641447 EBF3 G A 
chr19 50214113 CPT1C C T 
chr19 5244392 PTPRS C T 
chr15 42438030 PLA2G4F C T 
chr8 27779273 SCARA5 C T 

chr16 511409 RAB11FIP3 G T 
chr2 27552346 GTF3C2 G A 

chr17 3772840 CAMKK1 C T 
chr7 75050957 POM121C C T 
chrX 48650491 GATA1 C A 
chr9 116931070 COL27A1 G A 
chrX 7811288 VCX C G 
chr10 114911615 TCF7L2 C A 
chr22 39629508 PDGFB T C 
chr19 2216629 DOT1L C T 
chr7 36492153 ANLN G T 

chr11 111249887 POU2AF1 G A 
chr12 42512910 GXYLT1 T A 
chr15 41056381 GCHFR G A 
chr1 181686322 CACNA1E G A 
chr7 75050891 POM121C T C 

chr16 16103671 ABCC1 C A 
chr17 27383288 PIPOX A C 
chr17 39978517 FKBP10 C T 
chr5 112175303 APC C T 

chr17 72739280 RAB37 G A 
chr11 6470323 TRIM3 C A 
chr1 197111575 ASPM G T 

chr12 25398285 KRAS C A 
chr11 67012738 KDM2A C T 
chr4 109672135 ETNPPL C T 

chr19 58320385 ZNF552 C T 
chr1 111957412 OVGP1 G A 

chr20 43851625 SEMG2 C G 
chr9 43625849 SPATA31A6 C G 
chr4 187455223 MTNR1A G A 
chr4 114278764 ANK2 C T 
chr2 114512750 SLC35F5 G A 

chr19 9048227 MUC16 A G 
chr4 96761627 PDHA2 C T 
chr2 152515652 NEB T G 

chr18 61570307 SERPINB2 A G 
chr11 111177170 COLCA2 G A 
chr19 30313229 CCNE1 C T 
chr5 169535601 FOXI1 G T 
chr3 38739105 SCN10A C T 

chr17 56270739 EPX C A 
chr17 72832510 TMEM104 C T 
chr11 72945731 P2RY2 C T 
chr17 12905805 ELAC2 G A 
chr4 2691303 FAM193A A G 
chr1 27332541 FAM46B C T 
chr9 137620520 COL5A1 C T 

chr10 81697853 SFTPD C T 
chr16 80718449 CDYL2 G A 
chr10 82348482 SH2D4B C A 
chr15 86838537 AGBL1 C T 
chr3 187387985 SST C T 
chr5 149677523 ARSI C T 
chr5 141237011 PCDH1 G A 
chrX 48207025 SSX3 C T 
chr17 42854546 ADAM11 G A 
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chr5 137766019 KDM3B C T 
chr18 22807094 ZNF521 T C 
chr1 6681651 PHF13 G A 
chrX 38135983 RPGR C T 
chr5 54423155 CDC20B G A 
chrX 135958730 RBMX C A 
chr7 5415673 TNRC18 G A 
chr7 142458526 PRSS1 A G 

chr17 39394674 KRTAP9-8 A G 
chr2 131797751 ARHGEF4 C T 
chr1 36564618 COL8A2 C T 

chr13 109792732 MYO16 C A 
chr5 156279 PLEKHG4B G A 
chr2 166929996 SCN1A C T 

chr22 24581995 SUSD2 G A 
chr5 140594292 PCDHB13 A C 

chr22 20460526 RIMBP3 C T 
chrX 101912757 GPRASP1 A T 
chr19 15292500 NOTCH3 G T 
chr1 152279527 FLG T C 

chr15 44038842 PDIA3 C G 
chr4 170042033 SH3RF1 C G 

chr11 62294315 AHNAK G C 
chr5 173035291 BOD1 G A 
chr7 98554034 TRRAP A G 
chr4 106755675 GSTCD A G 

chr11 130785060 SNX19 A T 
 

Table 6 – CO5 Exome Bulk Sequencing Mutations 

The table lists the mutations detected in the CO5 tumors using exome 

sequencing. Black represents mutations detected in both primary and metastatic 

tumors. Blue represents primary-specific mutations and red represents 

metastatic mutations.  
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Chromosome Position Gene name Reference  Variant 
chr16 10525156 ATF7IP2 G T 
chr8 51465694 SNTG1 G T 
chr3 38648271 SCN5A C A 
chr5 666171 TPPP G A 
chr6 56883251 BEND6 G T 
chr1 46290133 MAST2 T G 
chr4 114279178 ANK2 G T 

chr20 60585112 TAF4 G A 
chr10 84718709 NRG3 C T 
chr8 59851979 TOX T C 
chr3 136076689 STAG1 C T 
chr7 32909384 KBTBD2 T C 
chr1 228504485 OBSCN C T 
chr2 215880335 ABCA12 G A 

chr11 117299235 DSCAML1 T G 
chr12 58144548 CDK4 C A 
chr4 186545169 SORBS2 C T 

chr16 15917267 MYH11 G A 
chr8 77767363 ZFHX4 C T 

chr12 9254240 A2M C T 
chr1 103471858 COL11A1 A G 
chr8 106814316 ZFPM2 A G 
chr1 3645901 TP73 G A 

chr19 8613192 MYO1F G T 
chr1 217975125 SPATA17 A C 
chr5 16694700 MYO10 G A 
chr7 48563978 ABCA13 G A 

chr11 117279728 CEP164 G T 
chr11 44069747 ACCSL C T 
chr12 112701998 HECTD4 G A 
chr11 66392695 RBM14 G A 
chr6 50810945 TFAP2B C T 

chr15 28520057 HERC2 G A 
chr20 5283324 PROKR2 G T 
chr5 112164646 APC G T 

chr10 27687804 PTCHD3 C T 
chr11 119053871 NLRX1 G A 
chr11 48373961 UNKNOWN A T 
chr10 52603881 A1CF T G 
chr8 59059734 FAM110B C A 
chr1 115258747 NRAS C A 

chr19 52130463 SIGLEC5 G C 
chr15 41810233 RPAP1 A T 
chr22 28193785 MN1 G T 
chr2 179426759 TTN C A 

chr11 32635763 CCDC73 G A 
chr9 131483555 ZDHHC12 G A 

chr17 17129519 FLCN G A 
chr11 65978634 PACS1 C A 
chr21 30934019 GRIK1 G A 
chr6 163956109 QKI C G 
chr2 37105068 STRN G A 

chr20 35444571 SOGA1 T C 
chrX 133700173 PLAC1 T G 
chr2 226447238 NYAP2 G A 
chr7 48391820 ABCA13 C T 

chr12 75601447 KCNC2 C T 
chr11 120811150 GRIK4 T A 
chr2 167145040 SCN9A T G 
chr1 205631135 SLC45A3 C T 
chr1 152275373 FLG C T 
chrX 17819893 RAI2 G T 
chr7 94293611 PEG10 G A 
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chr6 7374272 CAGE1 C A 
chr5 112175328 APC C A 

chr10 49929315 WDFY4 G A 
chr15 43574260 TGM7 G A 
chr17 7577548 TP53 C T 
chr6 90422940 MDN1 C T 
chrX 32536138 DMD T G 
chr15 56122103 NEDD4 C G 
chr22 40417962 FAM83F T A 
chr21 43691270 ABCG1 C G 
chr11 101771267 ANGPTL5 C A 
chr10 15821128 FAM188A C G 
chr19 9071750 MUC16 T G 
chr1 225156539 DNAH14 T C 
chr6 153345483 RGS17 A C 
chr5 178140358 ZNF354A A T 
chr1 211192300 KCNH1 A C 
chr5 106762962 EFNA5 G T 
chr1 16258997 SPEN G C 

chr21 19638334 CHODL A C 
chr2 21228452 APOB A C 

chr22 26898017 TFIP11 T A 
chr2 11716651 GREB1 G C 
chrX 154157378 F8 C G 
chr22 46930524 CELSR1 C T 
chr5 127866348 FBN2 G T 

chr12 25260947 LRMP T A 
chr14 20711786 OR11H4 T C 
chr12 102811648 IGF1 C A 
chr2 128624549 AMMECR1L A G 
chr5 140573225 PCDHB10 T A 
chr6 18197451 KDM1B A C 

chr16 31193877 FUS C T 
chr14 45639916 FANCM G C 
chr7 92120681 PEX1 C T 
chr5 38943059 RICTOR T G 
chr4 119035963 NDST3 A C 
chr1 186097285 HMCN1 G A 
chr8 55539448 RP1 A C 
chrX 36329023 CXorf30 C T 
chrX 114398248 LRCH2 T G 
chr11 45671752 CHST1 G T 
chr15 22958342 CYFIP1 A C 
chr4 158224914 GRIA2 A G 
chr9 90321594 DAPK1 C T 

	
  
Table 7 – CO8 Exome Bulk Sequencing Mutations 

The table lists the mutations detected in the CO8 tumors using exome 

sequencing. Black represents mutations detected in both primary and metastatic 

tumors. Blue represents primary-specific mutations and red represents 

metastatic mutations.  
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NRAS were present at high frequency in both primary and metastatic tumors. 

(Figure 38) This suggests that these mutations occurred early during the 

tumorigenesis, thus most tumor cells had acquired these mutations.  

 Next, we performed amplicon-sequencing on metastasis-specific 

mutations of CO5 and CO8 in the primary tumors. This is to confirm whether 

these mutations exist at low frequency in the primary tumor. We sequence 3 and 

18 metastasis-specific mutations in CO5 and CO8, respectively. We did not find 

any mutations that have a significantly higher read count than the normal tissue; 

hence the metastasis-specific mutations are not present in the primary tumor at 

low frequency. (Figure 39) (Table 8)  

6.2.2 Single Cell SNVs Analysis 

 To resolve the intratumor heterogeneity and trace the metastatic lineage, 

we sequenced single tumor cells from both patients. Using our previous 

published method, we amplified the single cell genome using multiple 

displacement amplification and performed barcoded library construction. (Figure 

36) We performed targeted sequencing on diploid and aneuploid cells by 

capturing a 4 Mb region, spanning 1000 genes.  

 We sequence 186 single cells from the primary and metastatic tumors for 

each patient. The average coverage depth is 137x and average coverage 

breadth is 0.92. (Figure 40 and 41) Single cell data are processed using our 

pipeline described in Chapter 2. (Figure 3) Furthermore, we applied additional 

filtering steps to select for variants. (Figure 42 and 43)  
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Figure 38 - Variant Allele Frequency of Primary and Metastatic Tumors 

The primary bulk exome variant allele frequency is plotted against those of 

metastasis. Red dots represent mutations that are specific to primary. Blue dots 

represent mutations that are specific to metastasis.  

	
  
	
   	
  



	
  
	
  

103 

	
  

	
  
 

 

 

Figure 39 - Amplicon Sequencing of Metastasis-specific Mutations 

150bp regions of metastasis-specific mutations were flanked by PCR primers 

and amplified in the genomic DNA. Sequencing read counts of the reference and 

variant allele were calculated and compared. Blue represents the metastasis. 

Red represents the primary tumor and black represents the normal tissue.  
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Figure 40 - Coverage Depth for Single Cells Data 

The average coverage depth is 137.9x (SEM = 2.716) for CO5 and 138.6x (SEM 

= 4.215) for CO8. 
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Figure 41 - Coverage Breadth for Single Cell Data 

The average coverage breadth is 0.9363 (SEM = 0.0045) for CO5 and 0.9183 

(SEM = 0.0055) for CO8. 
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Figure 42 - Filtering Pipeline for CO5 

Additional filtering steps were used to identify mutations in single cell in CO5.  
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Figure 43 - Filtering Pipeline for CO8 

Additional filtering steps were used to identify mutations in single cell in CO8.  
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      Met normal 	
  	
  
	
  

primary    

 chr pos gene ref var vaf A C G T total vaf A C G T total vaf 

CO5 

5 173035291 BOD1 G A 0.3 64 39 5106 146 5355 0.011951447 37 29 3322 102 3490 0.010601719 

7 98554034 TRRAP A G 0.31 1445168 1008 318 302 1446796 0.000219796 1466151 496 303 348 1467298 0.000206502 

4 106755675 GSTCD A G 0.33 1500362 671 574 295 1501902 0.000382182 1632261 868 422 352 1633903 0.000258277 

                        

CO8 

6 153345483 RGS17 A C 0.22 3613 36 11 37 3697 0.009737625 5247 49 32 52 5380 0.009107807 

5 178140358 ZNF354A A T 0.3 821913 246 283 278 822720 0.000337904 785945 259 260 298 786762 0.000378768 

1 211192300 KCNH1 A C 0.34 1921380 1481 731 416 1924008 0.000769747 2023907 1193 631 325 2026056 0.000588829 

5 106762962 EGNA5 G T 0.27 334 66 1290095 548 1291043 0.000424463 519 128 1838594 713 1839954 0.00038751 

22 26898017 TFIP11 T A 0.45 592 929 1192 1448993 1451706 0.000407796 508 884 765 1232711 1234868 0.00041138 

2 11716651 GREB1 G C 0.25 699 343 1636714 1299 1639055 0.000209267 560 303 1218420 965 1220248 0.00024831 

22 46930524 CELSR1 C T 0.33 428 2007773 458 739 2009398 0.000367772 885 1412564 455 627 1414531 0.000443256 

5 127866348 FBN2 G T 0.36 219 88 880028 295 880630 0.000334987 148 60 495614 215 496037 0.000433435 

12 25260947 LRMP T A 0.32 399 703 1706 1445118 1447926 0.000275567 464 899 1619 1940018 1943000 0.000238806 

14 20711786 OR11H4 T C 0.38 141 203 232 1246055 1246631 0.000162839 126 171 137 1125174 1125608 0.000151918 

2 128624549 AMMECR1L A G 0.21 1767704 838 518 749 1769809 0.000292687 2565317 1216 723 1247 2568503 0.000281487 

5 140573225 PCDHB10 T A 0.4 308 662 1010 1521724 1523704 0.000202139 319 413 696 1299987 1301415 0.000245118 

6 18197451 KDM1B A C 0.22 2844026 2683 730 529 2847968 0.000942075 2771445 1922 653 453 2774473 0.000692744 

16 31193877 FUS C T 0.29 1868 2704367 610 692 2707537 0.000255583 2042 2658991 633 688 2662354 0.000258418 

8 55539448 RP1 A C 0.23 1662490 377 402 241 1663510 0.000226629 530243 80 126 75 530524 0.000150794 

X 114398248 LRCH2 T G 0.38 43 71 68 371793 371975 0.000182808 24 30 46 185557 185657 0.000247769 

11 45671752 CHST1 G T 0.43 858 1482 1437757 1213 1441310 0.000841595 358 618 589642 678 591296 0.001146634 

9 90321594 DAPK1 C T 0.3 2035 3215837 1613 1235 3220720 0.000383455 1670 2292808 1079 947 2296504 0.000412366 

 

 

Table 8 - Amplicon Deep-Sequencing of Metastatic-Specific Mutations 

150bp region around the metastatic-specific mutations were flanked, amplified 

and sequenced. Each base was counted and variant allele frequencies were 

calculated.  
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 As shown in the CO5 mutation heatmap, cells are separated into three 

major clusters, the diploid cells, the primary aneuploid cells and the metastatic 

aneuploid cells. (Figure 44) For the aneuploid cells, the primary and metastatic 

cells share 10 mutations. There are five metastatic-specific mutations and 1 

primary-specific mutation. For the diploid populations, cells are mostly wild-typed 

in sites where mutations are detected in aneuploid cells. As shown in the 

heatmap, there are occasional false positive variants detected in the diploid cells. 

(Figure 44) We have checked each individual variant detected in the diploid cells 

and can verify that they are false positive (in dark grey), which may be caused by 

poor base quality or poor mapping quality. However, we found three cells 

(PDD93, PD16, and PD41) that only have the APC mutation. We check the other 

variants sites for these three cells and they are all wild-typed. 

 For CO8, there are 14 shared mutations, with two primary-specific 

mutations and 14 metastatic-specific mutations. There are also three major 

clusters for the diploid cell, primary aneuploid cells and metastatic aneuploid 

cells. (Figure 45) Unlike CO5, there are three subpopulations (m1, m2 and m3) 

for the metastatic aneuploid cells. (Figure 45) For the diploid cells, we found a 

sub-cluster of cells (diploid cluster) that have five mutations (NR3C2, ATR, ALK, 

EPHB6 and SPEN), which do not shared with the aneuploid cells. (Figure 45)   

 Next, using the SNVs data from CO5 and CO8, we built multi-dimensional 

scaling (MDS) plots. (Figure 46 and 47) We found that, for both patients, there  
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Figure 44 - SNV Mutation Heatmap for CO5 

The heatmap is built using two-dimensional hierarchical-clustering. Each row 

represents a SNV and each column represents a sample. Blue represents the 

variant allele. Grey represents the reference allele. White represents low 

coverage. Dark grey represents false positive errors. The asterisks next to the 

gene names represent that the SNVs are nonsynonymous mutations. The top 

bar represents the clusters of sample. N represents normal cells. P represents 

primary cells. M represents metastatic cells and E represents the progenitor cells 

with APC mutation only.  
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Figure 45 - SNV Mutation Heatmap for CO8 

The heatmap is built using two-dimensional hierarchical-clustering. Each row 

represents a SNV and each column represents a sample. Blue represents the 

variant allele. Grey represents the reference allele. White represents low 

coverage. Dark grey represents false positive errors. The asterisks next to the 

gene names represent that the SNVs are nonsynonymous mutations. The top 

bar represents the clusters of sample. N represents normal cells. P represents 

primary cells. M1 – M3 represents metastatic cell subpopulations. I represents 

the independent lineage of diploid cells.  

 
  



	
  
	
  

112 

	
  

 

 

 

Figure 46 - SNV Multi-Dimensional Scaling Plot for CO5 

MDS plot is built using CO5 mutation matrix calculated using Euclidean distance. 

Green represents normal sample, primary diploid and metastatic diploid cells. 

Blue represents primary aneuploid samples. Red represents metastatic 

aneuploid samples. Yellow represents the three progenitor cells with APC-only 

mutation. 
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Figure 47 - SNV Multi-Dimensional Scaling Plot for CO8 

MDS plot is built using CO8 mutation matrix calculated using Euclidean distance. 

Green represents normal sample, primary diploid and metastatic diploid cells. 

Blue represents primary aneuploid samples. Yellow, orange and red represent 

three metastatic aneuploid cell subpopulations. Black represents the diploid cells 

sharing the independent lineage. 
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are three distinct populations (diploid, primary aneuploids and metastatic 

aneuploids) that clustered by themselves. There are rare aneuploid cells that are 

clustered in the diploid cells (and same for vice versa). This is caused by the flow 

cytometer mistakenly flow sorted an aneuploid cell as a diploid cell due to the 

closeness of two ploidy peaks.  

6.2.3 Copy Number Analysis of Single Tumor Cells 

 In addition to SNVs, we also performed copy number profiling of single cell 

using single nucleus sequencing in CO5 and CO8.72 (Figure 36) Using 

degenerate-oligo-primed PCR, we amplified and sparse-sequenced the genome 

of single cells. We surveyed 8 primary and 15 metastatic cells in CO5, as well as 

19 primary and 24 metastatic cells in CO8. The single cell copy number profile 

were analyzed using clustered heatmaps, which show the amplifications and 

deletions across the genomes for both patients. (Figure 48 and 49) 

 For CO5, the primary and metastatic cells show highly similar profiles with 

shared focal deletion in the 8p arm and amplification in 7, 13, and 20q arm, but 

were distinguished by amplification in chromosome X amplification in the 

metastatic cells. (Figure 48) There is no subpopulation clustered within each 

primary and metastatic site. For CO8, the primary and metastatic cells each 

show distinct copy number profiles, with subclonal profiles within the metastatic 

population. (Figure 49) The primary cells have amplification in chromosome 9p 

that the metastatic cells don’t have. For the two clusters found in the metastatic 

cells, they share most major CNV events such as amplifications in chromosome  
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Figure 48 - Copy Number Heatmap for CO5 

The heatmap illustrates the copy number status of single cells. Each row 

represents a single cell. The single cell samples are clustered by hierarchical 

clustering. Red represents copy number gain and blue represents copy number 

loss. 
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Figure 49 - Copy Number Heatmap for CO8 

The heatmap illustrates the copy number status of single cells. Each row 

represents a single cell. The single cell samples are clustered by hierarchical 

clustering. Red represents copy number gain and blue represents copy number 

loss.  
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1q and 13p. However, cluster 1 (m1) is distinguished by amplification in 

chromosome 3q.  

 Next, using the copy number data of CO5 and CO8, we built MDS plots. 

(Figure 50 and 51) For both patients, MDS plots show three populations (normal 

samples, primary aneuploid cells and metastatic aneuploid cells) that are 

distinctly clustered together.  

6.2.4 Phylogenetic Analysis 

 Using the SNVs from CO5 and CO8 as evolutionary markers, we 

construct phylogenetic trees using maximum parsimony. For CO5, the trees 

show that the diploid cells are at the base of the tree with the normal samples. 

(Figure 52 and 53) At the long trunk of the tree, the common mutations (for 

example, APC, KRAS, FAT3, MYH9, TDRP, ROBO2, TCF7L2 and TP53) are 

acquired for all the primary and metastatic aneuploid cells. For the metastatic 

aneuploid cells, additional mutations (ZNF521, RBFOX1, EYS, TRRAP, GATA1) 

are then acquired.  

 For CO8, the diploid cells are at the base of the tree with the normal 

samples. Mutations (NRAS,CDK4, TP53, STRN, LINGO, APC, IL21R and 

MYH11) that are shared in all the aneuploid cells are then acquired at the trunk 

of tree. (Figure 54 and 55) Then tree is diverged into two main branches. The 

primary branch has acquired the LRP1B mutation while the metastatic branch 

has acquired HELZ and TSHZ3 mutations. As described in Figure 45, the small 

cluster of diploid cells is found evolving from the base of the tree, separated from 

the aneuploid branch. (NR3C2, ATR, ALK, EPHB6, SPEN and CIITA) 
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Figure 50 - CNV Multi-Dimensional Scaling Plot for CO5 

MDS plot is built using CO5 single cell copy number profiles calculated using 

Euclidean distance. Black represents normal samples. Blue represents primary 

aneuploid samples. Red represents metastatic aneuploid samples.  
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Figure 51 - SNV Multi-Dimensional Scaling for CO8 

MDS plot is built using CO8 copy number profiles calculated using Euclidean 

distance. Black represents normal sample. Blue represents primary aneuploid 

samples. Red and yellow represent the two metastatic aneuploid subpopulations.	
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Figure 52 - CO5 Single Cell Phylogenetic Tree with Gene Annotation 

The tree is constructed using maximum parsimony using mutation status of each 

aneuploid cell. The tree is rooted at the node of NC.pop and NL.pop (Normal 

colon and normal liver tissue)   

	
  
 

  



	
  
	
  

121 

	
  
 

Figure 53 - CO5 Single Cell Phylogenetic Tree with Aneuploid and Diploid 

Cells 
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Figure 54 - CO8 Single Cell Phylogenetic Tree with Gene Annotation 

The tree is constructed using maximum parsimony using mutation status of each 

aneuploid cell. The tree is rooted at the node of NC.pop and NL.pop (Normal 

colon and normal liver tissue) 
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Figure 55 - CO8 Single Cell Phylogenetic Tree with Aneuploid and Diploid 

Cells 
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6.3. Discussions 

 In this chapter, we have described how CRC tumor cells from two patients 

metastasize using SCS. For CO5, we found each primary and metastatic tumor 

to be homogeneous. The SNVs and CNVs are highly similar across all cells in 

each tumor. All single cell data suggests that this patient follows the late 

dissemination model.  For CO8, we found the mutations to be highly similar 

across all cells in the primary tumors, however there are three subpopulations in 

the metastasis in both SNVs and CNVs data.  

 Interestingly, we found three diploid cells that bear only the APC mutations 

in CO5. We suspect that these cells are part of the progenitor clone that gave 

rise to the overall tumor. In CO8, we found a subclone of diploid cells with 5 

mutations. The phylogenetic tree suggests that this subclone of diploid cells has 

a separate lineage than those of aneuploid cells because this diploid subclone 

has no shared mutations with the overall tumor.  

 The detection of the three subclones within the CO8 metastatic tumor is 

important to note because it highlights the potentials of SCS in capturing the 

intratumor heterogeneity. By flow-sorting nuclei from the overall tumor, we could 

investigate the intratumor heterogeneity by broadly sampling single cells without 

bias. The approach allowed us to obtain single cell genomic data that is 

representative of the overall tumor. This is in contrast to spatial sequencing (as 

described in 1.4.2 NGS and Intratumor Heterogeneity), whereby a tumor is cut 

into multiple sections and sequenced. The sections cut for spatial sequencing 
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may not be proportional of the subclones in the tumor, whereas random sampling 

of single cells is representative of the subclone distribution.  

 In summary, we have demonstrated the metastatic lineage and intratumor 

heterogeneity in two CRC patients using SCS.  To our knowledge, no prior 

studies have used SCS to study how CRC tumors metastasize. Furthermore, this 

data would be difficult to replicate using conventional sequencing methods.  
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Chapter 7 – Discussion, Conclusions and Future Directions 

7.1 Discussion and Conclusions 

7.1.1 Using Single Nuclei as Input Materials for Sequencing 

In this dissertation, we describe our efforts to develop single cell DNA 

sequencing methods, and their application to study how CRC tumors evolve by 

tracing the metastatic lineage. Although we have gone through multiple stages of 

SCS development, we continue to prefer using nuclei as input material. There 

are multiple reasons why we prefer to use nuclei instead of intact cells.  

1. Although it is common to isolate intact single cells from fresh tissues using 

enzymatic or physical dissociation, it is difficult to achieve the single cell 

isolation in frozen tissues because cell membranes are ruptured during 

the freeze-thaw cycles, while nuclear membranes remain intact. 

2. Instead of using live/dead cell viability dye, nuclei can easily be stained for 

ploidy distribution using DAPI, allowing the selection of aneuploid tumor 

cells. Furthermore, DAPI can be used to avoid the collection of replicating 

cells in S-phase or the genomes of highly degrade cells (<1n). 

3. In highly connected tissues, like neuronal cells, it is difficult to dissociate 

cells, thus two or more cells may be missorted into one reaction (doublets) 

and treated as one cell. Nuclei on the other hand can be more easily 

separated and deposited accurately for flow-sorting applications. 
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7.1.2 Sequencing Single Cells at the G2/M Phase and at the Aneuploid Peak 

The singular challenge of SCS is the low-input material. In order to construct 

libraries, single cell genome (6 pg) must be amplified more than ten-thousand-

fold using WGA polymerases. However, the amplification process is not perfect, 

thus introducing technical errors (false positive) in the amplified products. 

Moreover, because there are only two alleles in diploid cells, one allele may get 

amplified preferably over the other allele, leading to allelic dropout. We address 

these issues by sequencing cells specifically in the G2/M phase. During the 

G2/M phase of the cell cycle, the DNA content doubles. Instead of one copy of 

each allele, there are two copies, thus increasing the chance of polymerase 

detecting both alleles for amplification. 

 As described in this dissertation, we compare the sequencing metrics and 

error rates of cells in G1/0 and G2/M phases. We found that G2/M cells 

constantly outperformed G1/0 cells in coverage uniformity and coverage breadth 

(96%). More importantly, we demonstrated that G2/M cells have lower allelic 

dropout rate (21%) and higher detection efficiency for SNVs (92.37%). 

 In Chapter 6, we demonstrated using our developed methods on 

aneuploid cells to study tumor evolution. By selecting aneuploid cells, it ensures 

that we are sequencing tumor cells, instead of stromal cells, fibroblast or immune 

cells. Moreover, aneuploid cells have more than two alleles in at least some parts 

of the genome, decreasing the allelic dropout events that occur during the WGA 

step. 
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 However, there are caveats and biases to consider when selecting 

aneuploid cell or G2/M cells for sequencing.  

1. In tissues where cells are proliferating slowly, it is difficult to detect a G2/M 

peak to gate during flow sorting.  

2. In tumors where aneuploid cells are present, it is important to also 

consider the diploid cells. There may be tumor cells present in the diploid 

peak that have not acquired aneuploidy. 

3. When sequencing G2/M tumor cells, fast-proliferating cells are selected 

and slow-proliferating cells that may have different genomic profiles may 

be missed (for example, cancer stem cells).  

4. Although G2/M cells and aneuploid cells have significantly lower allelic 

dropout rate (Figure 27), ADO errors should still be considered when 

interpreting single cell data. For data with ADO rate of 20%, there are 10% 

of AB alleles dropped to AA, thus 10% of the variant alleles are missed. 

This is important to consider when interpreting the mutational heatmaps 

(Figure 44 and 45), whereby the variants are not detected in few 

aneuploid cells (such as CCNE1 and ROBO2 in CO5 heatmap in Figure 

44).  

7.1.3 Determining the Number of Single Cells Required for Sampling 

As the sequencing throughput of NGS technologies continues to improve and the 

cost per sample continues decreases, it will become more affordable to 

sequence thousands of single cells to study intratumor heterogeneity in tumors. 

In Chapter 6, we sequenced 186 single cells from each patient because we were 
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able to multiplex up to 96 samples in one sequencing lane. However, there is no 

consensus on the total number of cells that is needed to be sequenced from a 

tumor. Previous studies have estimated the numbers of cells needed to be 

sequenced based on the amount of coverage depth required to detect mutations 

or copy number from each single cell dataset, as shown in Figure 56.91 In order 

to sequence more cells, previous studies increased the cell numbers and  

compensated by decreasing the total number of bases covered in each cell, 

hence reducing the sequencing output requirement for each cell. This approach 

allows researchers to logistically determine the maximum number of single cells 

that can be sequenced based on the funds available for the project.  

 However, this approach determines the sampling numbers based on 

technical needs, and does not address how many cells needed to be sampled to 

resolve intratumor heterogeneity. The number of single cell needed to be 

sequenced can be determined using statistical method, as shown as below in 

which the power of detection determined for sampling number based on the 

sensitivity required to detect subclones.  

P(d) = 1 – (1 – s)n 

In this formula, s represents the subclonal frequency and n represent the 

number of single cell.92 Using this approach, we determine the sensitivity of 

which intratumor heterogeneity can be detected at high confidence. For example, 

to detect a subclone of 0.01 frequencies at 95% detection power, 300 cells are 

needed. Similarly, to detect a subclone of 0.1 at 95% detection power, only 30 

cells are needed.   
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Figure 56 - Number of Single Cell Sequencing Based on Genome Coverage 

This figure demonstrates the numbers of single cells past studies have 

sequenced, as well as the type of genome coverage they used. For studies that 

sequenced whole genomes, the numbers of cells are below 50. For studies that 

used sparse sequencing or targeted sequencing, the number of cells is 

comparatively higher. 

(Modified and reproduced from Gawad, C., Koh, W. & Quake, S. R. Single-cell 

genome sequencing: current state of the science. Nature reviews. Genetics 17, 

175-188, doi:10.1038/nrg.2015.16 (2016). with permission from Nature 

Publishing Group ) 
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7.1.4 Single Cell Sequencing Applications in Clinical Diagnostics 

In Chapter 6, we used SCS to understand metastatic lineage in CRC, and found 

that both patient followed a late-dissemination model. We also found three single 

primary cells in CO5 that had the APC mutation, and we suspect this cell might 

be a part of the progenitor clone that gave rise to the overall tumor. Moreover, we 

discovered three subclonal populations within the metastatic tumor in CO8. For 

both patients, we used single cell data to construct phylogenetic trees to trace 

the metastatic evolution. These findings would be difficult to discover with 

conventional NGS methods due to low sensitivity and admixtures of disparate 

genomes in the bulk tissues. This dissertation has demonstrated that SCS is a 

powerful tool for understanding the fundamental basis of metastasis in colorectal 

cancer. Similarly, colorectal cancer is a suitable model to demonstrate the 

advantage of SCS because the primary colon tumors are often excised along 

with liver hepatectomy before treatments are administered. Treatment-naïve 

tumor samples are important because SCS data would allow us to understand 

the innate evolution of the tumor, instead of the genomic state of chemo-resistant 

tumors under selective pressure.  

 The advent of SCS also provides an invaluable tool for clinical research 

and diagnostics. In non-invasive monitoring of the blood, SCS can be used to 

profile circulating tumor cells (CTCs). CTCs serve as a link between the primary 

tumor and metastasis. However, it has been difficult to investigate the genomes 

of CTCs due to the rare frequency in the blood (1-10 CTCs out of millions of 

leukocytes in 1 mL of blood in patients with metastatic diseases).93 Previous 
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studies have used copy number profiling to study CTCs of lung cancer patients.94 

However this approach cannot identify mutation at base pair resolution. A recent 

study attempted to exome-sequence 19 CTCs from a prostate cancer patient.95 

They found that mutations in CTCs are concordant to those in the metastatic 

tumor. However, these mutations were detected by combining all single cell 

libraries; this is because of low coverage breadth and high error rates of their 

SCS method. This approach is similar bulk sequencing, thus nullifying the 

intention of SCS.  

 In addition to the cancer field, SCS has provided tremendous 

improvements in the reproductive field. To prevent miscarriage and genetic 

disorder due to aneuploidy or mutations, previous study has shown to use SCS 

to screen and preselect fertilized egg.96 Sequencing the oocyte polar bodies can 

detect genetic disorder from the mother. Similarly, sequencing cells from the 

blastocyst stage of the embryo can detect genetic disorder from the father.96  

 However, there is a major challenge in utilizing SCS in clinical settings. 

NGS tests are often validated by another method, such as Sanger Sequencing. 

For SCS, validation using the original single cell DNA is impossible because all 

DNA from the particular single cell has been used to amplify. Amplified single cell 

DNA is not suitable for validation because technical errors have already been 

introduced during the amplification step, hence incorrectly categorized as true 

mutation. An indirect approach to circumvent this issue is to annotate mutations 

that occur in two or more cells. As we have shown in Chapter 4, our SCS 

methods have false positive error rate of approximate 3.2e-5.88 By detecting 
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mutations in two or more cells, false positive error rate would decrease to 1.02e-

9, which is sufficient to confidently call mutations. However, this approach would 

miss the de novo mutations present in only one cell. 

7.1.5 Late Dissemination Model in Colorectal Cancer 

 The process of metastasis was likened to a decathlon in a previously 

published review article by James Talmadge and Isaiah Fidler, whereby a cancer 

cell must overcome multiple steps of obstacles in order to successfully 

metastasize.97 These steps include the vascularization of tumor mass, the local 

invasion of the host stroma by tumor cells, the detachment of tumor cells into 

circulation, the survival of tumor cells that trafficked through the circulation and 

arrest in a capillary bed, the extravasation and proliferation of tumor cells at 

distant organ sites and the re-establishment of vascularization in the 

metastasis.97 However, it remains unclear what mutations are needed to acquire 

in order to overcome these steps of obstacles. Moreover, this review article had 

also stated that the time required to form primary tumor and develop metastasis 

was different for patients with different cancer types. For example, 

mammography has shown that the growth of breast tumors require an average of 

12 years to grow from initiation to a size of 1 cm, whereas it takes up to 25 years 

for familial adenomatous polyposis to become malignant. This may be caused by 

the fact that different cancer types may follow different tumor progression models 

and different models of metastasis. (Figure 1 and 2)	
  

Our single cell sequencing data identified a late-dissemination model in 

two mCRC patients. In the previous studies, different models of metastasis are 
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difficult to distinguish using conventional NGS methods. (Figure 1) The late-

dissemination model posits that the primary tumor develops for a long period of 

time before tumor cells disseminate and seed at distant organs. In this model, the 

majority of mutations are acquired and accumulated in the primary tumor, and 

the cells carrying these mutations metastasize but do not acquire many 

additional mutations after seeding. Another model, self-seeding, posits that tumor 

cells travel bi-directionally between the primary and metastatic sites; this leads to 

primary and metastatic sites sharing the majority of mutations, similar to the late-

dissemination model. Conventional NGS methods have difficulty distinguishing 

between these two models because both suggest that the majority of mutations 

are shared at both sites. In contrary, SCS can distinguish between these models 

by detecting mutations specific to each single cell because it can detect 

individual tumor cells from the metastatic tumors that have re-seeded the primary 

tumor.  

Our data, as well as previous CRC studies, support a late-dissemination 

model in CRC without any evidence for self-seeding or early dissemination. This 

model has major implications for CRC patients by suggesting that surgical 

resection or therapeutic treatment of the primary CRC tumor can prevent 

metastasis. Furthermore, the late-dissemination model suggests that the primary 

and metastatic tumor shared similar genomic profile. A tumor biopsy should 

represent other tumor sites within a patient, thus a single tumor biopsy is enough 

to guide therapy for metastatic patients. As it was suggested that polyps require 

more than 10 years to become malignant, early detection of polyps in the colon 
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(with the use of colonoscopy) is beneficial to the management and treatment of 

early-stage primary tumor. Removing the polyps or early-stage adenoma in the 

colon would prevent metastasis to develop, thus decreasing the prevalence of 

stage IV CRC. 

7.1.6 Identification of Progenitor Clones Using Single Cell Sequencing 

In addition to the analysis of aneuploid tumor cells, we investigated the diploid 

cells flow-sorted from the two CRC patients. While most of the diploid cells did 

not have any mutations present, we did identify three diploids cells in CO5 that 

showed only a single mutation in a cancer gene: APC. This APC mutation 

(c.C4012T) was present in every tumor cell sequenced from the primary and 

metastatic liver tumors, suggesting that it was acquired at the earliest stages of 

tumor initiation. This finding agrees with the previously described Vogelgram, in 

which described the stages of CRC genetic alterations and the APC mutation is 

the first event of CRC tumorigenesis.98 (Figure 57) 

 The detection of this progenitor clone is important because it has been 

challenging to observe in previous studies. When a given tumor is sequenced, 

only the mutations present at the time when tumor is surgically excised is 

detected. The original cell with the first ‘hit’ mutation, or the progenitor cell, is not 

detected because it is outcompeted by other clones with subsequent additional 

mutations that have increased fitness. We were able to detect these three cells 

because they have not been completely outgrown by the major subpopulations.    

 This finding highlights the advantage of using SCS to study tumor 

evolution and metastasis. Out of 112 primary diploids that were sequenced, we   
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Figure 57 - Vogelgram describing the Events of Genetic Alterations in CRC 

The sequential mutations occurred during CRC has been previously described by 

Bert Vogelstein. The first ‘hit’ is usually the APC mutations, leading the activation 

of oncogenes, such as KRAS, and inactivation tumor suppressor genes, such as 

TP53.  

(Modified and reproduced from Vogelstein, B., Papadopoulos, N., Velculescu, V. 

E., Zhou, S., Diaz, L. A., Jr. & Kinzler, K. W. Cancer genome landscapes. 

Science 339, 1546-1558, doi:10.1126/science.1235122 (2013) Permission is 

obtained from the publisher, The American Association for Advancement of 

Science)	
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found only 3 cells with the APC mutations; this is equivalent to the frequency of 

0.0268. The low frequency would be difficult to detect using conventional 

sequencing without high coverage depth. 

7.2 Future Directions 

While SCS shows great promise in cancer biology as well as other fields of 

biology, further technical improvements are needed before it can become widely 

used in research and clinical settings. Because SCS is a complex method 

encompassing multiple techniques (single cell isolation, whole-genome 

amplification, library preparation, targeted capture and data analysis), fine-tuning 

of each of these techniques can improve the overall performance of SCS. For 

example, single cells isolation can be more accurately and precisely performed 

with microfluidics and robotics. Improving DNA polymerase can decrease the 

technical errors generated during single cell genome amplification. Novel 

bioinformatics software may distinguish the real biological variants from technical 

errors during data analysis. These are the areas that we foresee improving in 

coming years in order to optimize the ability of SCS to address novel biological 

questions and solve current clinical challenges.  

To improve the prognosis of patients with metastatic CRC, we believe that 

SCS of CTCs is one of the important future steps to fully understand the 

metastatic cascade. As described in 7.1.4, CTCs are key intermediates of 

metastasis. Past studies have used the enumeration of CTCs as a prognostic 

marker for breast cancer patients.99 It was found that patients with 5 or more 

CTCs in 7.5mL of blood had a higher chance of relapse after treatments and 
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metastasis, when compared to those with less than 5 CTCs.99 However, it 

remains unclear how the numbers of CTCs correlate to patient survival. It would 

be interesting to use SCS to discern the genomes of CTCs from these two 

groups of patients. In other words, SCS may give us insight to understand 

whether certain mutations in CTCs increase the metastatic capabilities and 

potentially resist treatments.  

Furthermore, we predict SCS to be widely used as a non-invasive 

monitoring tool of mutation status of CRC tumor genome, and aid in determining 

the appropriate treatments. For example, it was recently shown that 

immunotherapy targeting the programmed-death 1 (PD-1) pathway using 

pembrolizumab is effective in MSI-high CRC patients.100 However, the MSI status 

of CRC patients is not unknown without performing tumor biopsy. SCS can be an 

alternative approach (liquid biopsy) to tumor biopsy, where MSI status is 

determined the number of mutations in CRC CTCs detected by SCS, and 

oncologists can decide whether immunotherapy is needed to administer. 

Moreover, there are cancers in specific organs that are difficult to safely biopsy. 

For example, there are 15% of patients who suffers partial lung collapse when 

undergoing lung needle biopsy, and there are 1% of patients resulting in 

excessive bleeding.101 In contrary, liquid biopsy of CTC using SCS is a much 

safer approach. 

Nevertheless, CTCs remain difficult to study due to the rarity of these cells 

and the technical flaws of SCS. Technical improvement in decreasing SCS error 

rates will allow researchers to answer the following opposing questions: 
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1. Do CTCs possess the mutations of primary tumors and later acquire 

additional metastatic-specific mutations after seeding? 

2. Do CTCs have already acquired mutations and possess the metastatic 

capability necessary to proliferate in distant organs? 

Additionally, we also anticipate future studies to focus on both the 

genomic and transcriptomic profiles of CTCs. This can be achieved by 

developing novel methods in the sequencing genome and transcriptome of the 

same cell. A method was recently published that can detect DNA copy number 

and gene expression of one cell.102 However, single nucleotide variants (SNVs) 

cannot be detected due to the problems with low coverage. Further refinements 

of the method by increasing the coverage will allow researchers to understand 

how changes in single nucleotide variants can lead to changes in gene 

expression in individual cells. For CTCs, this proposed technique would allow us 

to investigate how the combination of mutations and epithelial-to-mesenchymal 

transition (EMT) expressions in CTCs can potentially affect the metastatic 

potential.  

In Chapter 6, we detected three cells that harbored only the APC 

mutation, suggesting that they were a part of the progenitor clone that gave rise 

to the overall tumor mass. The progenitor clone has been difficult to detect in 

previous genomic studies because it is usually outcompeted by the more 

proliferative clones. To further understand the sequential event during CRC 

tumorigenesis, as shown in the Vogelgram in Figure 57, we can perform SCS on 

a patient with lesions of multiple stages (polyps, adenoma, carcinoma). By 
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sequencing single cells on the lesions of multiple stages in the same patient, we 

can track when a specific mutation occurs and how different clones expand and 

shrink during tumorigenesis.  

 In summary, we expect that the use of SCS will become widely utilized, 

not only in cancer biology, but also in other aspect of biology, such as 

microbiology, developmental biology and prenatal genetic diagnosis, in which 

SCS can provide unprecedented genomic information and improve our 

understanding of variety of human pathologies. 
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