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THE ROLE OF 5-ALPHA REDUCTASE 3 IN STEROID METABOLISM 

Zahi I Mitri, M.D. 

Advisor Professor: Mark Titus, Ph.D. 

Background 

The growth and development of prostate cancer is largely driven by androgen mediated 

signaling. The 5-alpha reductase family of enzymes plays an essential role in the conversion of 

testosterone to the more potent androgen, 5-alpha dihydrotestosterone (DHT), which is capable 

of binding the androgen receptor to activate gene targets and downstream signaling. This study 

aimed to evaluate the role of 5-alpha reductase 3 (SRD5A3), a novel member of the 5-alpha 

reductase family, in steroid metabolism and prostate carcinogenesis. 

Materials and Methods 

HEK293 cells were transfected with the SRD5A3 human cDNA ORF Clone from OriGene. 

Steroid substrates (testosterone, progesterone, androstenedione, epitestosterone, 11-

ketotestosterone, 11α-hydroxytestosterone, 11β-hydroxytestosterone, 6β-hydroxytestosterone, 

and cortisol) were added to transfected HEK293 cells. The dual 5-alpha reductase 1 and 2  

inhibitor, dutasteride, was added to evaluate its inhibitory activity on SRD5A3 in the presence of 

each steroid. Mass spectrometry analysis was used to detect and quantify the conversion of 

steroid substrates to their 5-alpha reduced products. 

Results 

SRD5A3 plasmid was successfully transfected into HEK293 cells. Mass spectrometry analysis 

confirmed that SRD5A3 converted testosterone to DHT. This reaction was completely inhibited 
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by dutasteride. SRD5A3 did not convert progesterone or androstenedione to the 5-alpha reduced 

products. SRD5A3 had the capacity of reducing testosterone derivatives to their 5-alpha reduced 

products. This catalysis was concentration dependent, with higher substrate levels yielding 

higher amounts of the 5-alpha reduced steroid product. The inhibitory activity of dutasteride on 

SRD5A3 was substrate and concentration dependent.  

Conclusion  

SRD5A3 catalyzes the 5-alpha reduction of testosterone and testosterone analogues in the 

presence and absence of dutasteride.  These 5-alpha reduced steroids are capable of binding and 

activating androgen receptor signaling. Further studies evaluating the role of SRD5A3 in prostate 

carcinogenesis are mandated to determine the role of therapeutic SRD5A3 inhibition across the 

spectrum of prostate cancer. 
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The growth and development of prostate cancer is largely driven by androgen mediated 

signaling (1). Testosterone, the predominant circulating androgen, is produced in the testis under 

the control of luteinizing hormone. The 5-alpha reductase enzyme family plays a key role in the 

conversion of testosterone to the more potent androgen, 5-alpha dihydrotestosterone (DHT), in 

target organs such as the prostate (2). Given this pathophysiology, there has been interest in the 

development of 5-alpha reductase inhibitors for the treatment and prevention of prostate cancer. 

Two large trials have evaluated 5-alpha reductase inhibitors as chemoprevention for patients at 

high risk for developing prostate cancer. The Prostate Cancer Prevention Trial (PCPT) 

randomized >18,000 men to finasteride, a predominantly 5-alpha reductase 2 inhibitor, or 

placebo. The trial showed a decreased incidence of prostate cancer overall, but also a slight 

increase in the number of more aggressive tumors in the finasteride arm (3). One hypothesis to 

explain the increase in high-grade tumors in the finasteride arm is that this drug does not inhibit 

the 5-alpha reductase 1 enzyme. This isoform is overexpressed in prostate cancer, and has the 

ability to 5-alpha-reduce testosterone to DHT (4-7). In contrast, 5-alpha reductase 2 expression 

appears to either decrease or stay the same between normal prostate tissue and prostate cancer (5, 

8). These observations led to the Reduction by Dutasteride of Prostate Cancer (REDUCE) trial. 

This study compared dutasteride, a dual 5-alpha reductase 1 and 2 inhibitor to placebo in men at 

high risk of developing prostate cancer. There was a significant reduction in the development of 

prostate cancer in this study, but again was noted a trend for developing high-grade prostate 

cancer in the control arm. This was lower than the risk previously observed in the finasteride 

prevention study (2, 9). Both clinical trials failed to show a mortality difference between the 

intervention and the placebo arms. Currently, 5-alpha reductase inhibitors are indicated for the 

treatment of benign prostate enlargement and lower urinary symptoms. Conversely, the use of 



3 
 

finasteride or dutasteride as chemoprevention remains controversial (10-14), and mainly based 

on a risk/benefit conversation between patients and their physicians.  

In addition, 5-alpha reductase inhibitors have been evaluated in the treatment of prostate 

cancer (2, 14). Androgen deprivation therapy is the standard of care for advanced prostate 

cancer; however this therapy is not curative, with most tumors evolving into a castrate-resistant, 

also termed androgen-independent phenotype. Preclinical and clinical data have shown that the 

androgen receptor axis continues to be active under androgen deprivation therapy (15-18), and 

can potentially drive prostate cancer growth in an autocrine fashion (19-23). Androgen 

deprivation therapy achieves large reductions in systemic testosterone and DHT levels, however 

seems to have a lesser effect on testosterone and DHT levels within the prostate, where they 

remain at sufficient concentrations to activate the androgen receptor (22, 24-28). In addition, 

prostate cancer cells have the ability to use adrenal androgens such as dehydroepiandrosterone 

(DHEA) as substrates to produce testosterone and DHT and drive the androgen receptor (23, 28-

31). The 5-alpha reductase enzyme family appears to continue to play a role in the production of 

DHT from steroid precursors in this setting, especially with data showing that 5-alpha reductase 

1 and 5-alpha reductase-3 (SRD5A3) levels to be higher in prostate cancer compared to benign 

prostate tissue (4, 6-8). Furthermore, Li et al. demonstrated that activation of the androgen 

receptor negatively regulates SRD5A3 expression by binding a negative androgen response 

element on the SRD5A3 promoter (32). The reduction in androgen receptor expression in the 

setting of androgen deprivation therapy can then potentially lead to an increase in the expression 

of SRD5A3, and magnify its role in the production of DHT and tumor growth (32). 5-alpha 

reductase inhibitors either as single agent or in combination with androgen deprivation therapy 

or androgen receptor antagonists have been evaluated in several settings of prostate cancer 
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therapy (2). In the preoperative setting, the use of dutasteride before radical prostatectomy was 

associated with reduction in tumor volume and increased apoptosis (33, 34). The use of 5-alpha 

reductase inhibitors in the setting of biochemical relapse (35-37), castrate-sensitive (38-40), or 

castrate-resistant (41-43) advanced prostate cancer, has resulted in various levels of PSA decline, 

however no clinically meaningful survival endpoints have been reported to date. To date no 

clinical study has evaluated androgen deprivation therapy alone compared to androgen 

deprivation therapy combined with 5-alpha reductase inhibitors (2). More recently, the 

combination of dutasteride and enzalutamide, a novel androgen receptor antagonist, in the 

preclinical setting has shown to be synergistic in suppressing castrate-sensitive (LAPC4) and 

castrate-resistant (DuCaP) prostate cancer cell lines (44). Based on these preclinical and early 

phase studies, trials are planned to evaluate the role of 5-alpha reductase inhibitors in the 

management of prostate cancer. Currently, there are no data to support the use of 5-alpha 

reductase inhibitors for the treatment of prostate cancer (2, 14).  

The development of prostate cancer despite 5-alpha reductase inhibition in the prevention 

setting, and that of castrate resistant prostate cancer despite androgen blockade raised the 

hypothesis of an alternate pathway of androgen production to drive carcinogenesis. More 

recently, a new 5-alpha reductase isoform, SRD5A3, was discovered. The first report by Uemura 

et al. in 2008 identified this novel gene using gene expression profiling in hormone refractory 

prostate cancer (5). The SRD5A3 gene is located on the long (q) arm of chromosome 4 at 

position 12 (4q12) (OMIM 611715). This novel enzyme’s sequence aligned with known 

sequences of 5-alpha reductase 1 and 5-alpha reductase 2, including conservation of the C-

terminal domains, which are thought to be important in the catalytic activity of the 5-alpha 

reductase family in converting testosterone to DHT (5). Uemura et al. showed that SRD5A3 was 

http://www.omim.org/entry/611715
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overexpressed in hormone refractory prostate cancer compared to hormone sensitive prostate 

cancer and normal prostate tissue. In contrast, 5-alpha reductase 2, the predominant isoform in 

the prostate, is overexpressed in the normal prostate and in hormone sensitive prostate cancer, 

and is almost absent in hormone refractory prostate cancer. The SRD5A3 enzyme distribution 

was similar to 5-alpha reductase 1. In addition, the authors showed that SRD5A3 had the ability 

to convert testosterone to DHT. In contrast, mutated SRD5A3 lost its ability to reduce 

testosterone to DHT (5).  

Despite this observation, much remained unknown about this new enzyme that appeared 

to loosely fit in the 5-alpha reductase family. In 2010, Cantagrel et al. evaluated a large 

consanguineous family where several children were born with ocular defects, brain 

malformations, heart defects and developmental delays (45). Genome-wide linkage analysis 

localized the mutations to the region of the SRD5A3 gene, mutations that were not found in any 

of the unaffected control subjects. Interestingly, unlike defects in 5-alpha reductases 1 and 2, 

these children had no sexual development abnormalities (OMIM #264600) to suggest a defect in 

steroid hormone production. Given the clinical findings for these patients, further functional 

studies revealed that SRD5A3 plays a role in N-linked glycosylation of surface proteins. 

SRD5A3 encodes an enzyme that is required for the conversion of polyprenol to dolichol, an 

important molecule in the endoplasmic reticulum (45, 46). Following that, other reports linked 

congenital disorders of glycosylation with mutations in SRD5A3, with affected patients suffering 

from similar presentations, including cerebello-ocular syndromes. These studies showed that 

SRD5A3 was expressed in the brain, heart and retina in normal human tissues, and significantly 

reduced in individuals with SRD5A3 defects. This may explain the clinical manifestations in 

individuals carrying mutations in this enzyme (45, 47, 48). 

http://www.omim.org/entry/264600


6 
 

Despite the discovery of a surprising role of SRD5A3 in protein glycosylation, this 

enzyme’s localization and role in prostate cancer remained a mystery. Two studies by Godoy and 

Yamana analyzed the distribution of SRD5A3 in human tissues using immunohistochemical 

studies (49, 50). They found that SRD5A3 was overexpressed in several androgen regulated 

(prostate, skeletal muscle, skin) and non androgen regulated (pancreas, colon, kidney) benign 

tissues. This observation supports that SRD5A3 may play a role other than steroid reduction, 

potentially be involved in protein glycosylation as previously shown by Cantagrel et al. (45). 

Interestingly, SRD5A3 was overexpressed in prostate cancer tissues compared to benign prostate 

tissue. This result aligns with the findings by Uemura et al., who had shown that the expression 

of SRD5A3 seems to increase along prostate cancer carcinogenesis from benign tissue to castrate 

resistant cancer (5). With these findings regarding the localization of SRD5A3, Titus et al. 

evaluated SRD5A3 function in castrate resistant prostate cancer specimen homogenates. Using 

clinical specimens, they first confirmed previous reports that SRD5A3 was overexpressed in 

castrate resistant prostate cancer compared to 5-alpha reductase 1 and 5-alpha reductase 2 (51). 

In addition, Titus et al. expressed a HP-Thioredoxin-fusion SRD5A3 protein using a 

pBAD/Thio-TOPO vector in CHO-K1 cells (mammalian system), and TOP10 E.coli competent 

cells. The HP-Thioredoxin-fusion SRD5A3 protein in both systems was found to be catalytically 

active and 5-reduced testosterone to DHT. However 5-reduced steroids were produced in low 

amounts. This reaction was partially inhibited by dutasteride or abiraterone, suggesting that 

SRD5A3 can sustain DHT formation even in the presence of 5-alpha reductase 1 and 2 

inhibitors, and potentially sustain prostate cancer development. Of note, this fusion protein also 

converted androstenedione and progesterone to their 5-reduced products, androstanedione and 

dihydroprogesterone (51).  
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In contrast to these findings, a recent report looking at both hamster and human SRD5A3 showed 

that the enzyme was unable to reduce testosterone to DHT (52). In this study, Chaves et al. 

evaluated the 5-alpha reducing capacity of hamster SRD5A3 expressed as a fusion protein with 

green fluorescent protein from the pcDNA3.1-NT-GFP/hSrd5a3 plasmid and human SRD5A3 

(OriGene, Maryland, USA) (52). Of note, the fusion protein localized to the cytoplasm, whereas 

the SRD5A3 enzyme has been described to be a membrane protein involved in protein 

glycosylation (45). 

Several reports have now been published on SRD5A3; however its role in the 

pathogenesis of prostate cancer and in steroid metabolism has not been clearly defined. SRD5A3 

is ubiquitously expressed in human tissues –both benign and malignant- and plays a role in N-

linked protein glycosylation (45); with defects in this enzyme having been linked with congenital 

disorders of glycosylation (45, 47, 48). This study aims to evaluate the role of SRD5A3 in 

steroid metabolism, and elucidate its role in prostate carcinogenesis. Specifically, this study first 

assessed the ability of SRD5A3 to convert steroid precursors to their 5-alpha reduced products. 

Additionally, the effect of dutasteride on SRD5A3 function was also evaluated for each steroid 

precursor. 
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CHAPTER 2: MATERIALS AND METHODS 
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2.1 Cell Culture 

The HEK293 cell line (cat# CRL-1573, ATCC, VA, USA) was used in this experiment. 

This is a permanent cell line established from primary embryonic human kidney and transformed 

with human adenovirus type 5 DNA (http://www.atcc.org/products/all/VR-1516.aspx). The E1A 

adenovirus gene is expressed in these cells and participates in transactivation of some viral 

promoters, allowing these cells to produce very high levels of protein. HEK293 cells were 

prepared from a clone selected for fast growth in serum-free medium (Figure 1), good adherence 

during plaque assays, superior transfection efficiencies and a high level of protein expression. 

HEK293 cells that had been frozen in liquid nitrogen were removed and thawed on ice. 

When thawed, cells were added to a 10 cm plate containing 10 mL of Dulbecco’s Modified 

Eagle Medium (DMEM) (cat # SH30022.01, HyClone, Utah, USA) to which were added 10% 

Fetal Bovine Serum (FBS) (cat #10437-077, Thermo Fisher Scientific, Massachusetts, USA) and 

Antibiotic-Antimycotic (cat # 15240-062,Thermo Fisher Scientific, Massachusetts, USA). Plates 

become confluent and ready to split within 24-48 hours. To split HEK293 cells, media was 

removed and the cells were washed with Phosphate Buffered Saline (PBS). After that, trypsin 

(cat # 25-053-CI, Corning, VA, USA) was added to the plate and the cells were placed in the 

incubator for 2-3 minutes. Plates were removed and the cells observed to ensure they have 

detached. At that point, DMEM was added to neutralize the trypsin effect. The cells were then 

aliquoted into the desired number of plates, and to each plate was added DMEM to a total 

volume of 10 mL.  
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Figure 1. HEK293 cell line growth time course 

 

  

Figure 1. The average HEK-293 cell 

doubling time in shaker flask. HEK293 

suspension cells were seeded at 

3x105cells/mL in 125 mL shaker flasks 

containing 20 mL media. Results show 

average doubling time of 33 hours and 

average density approaching 

2x106cells/mL over a period of four 

days. 
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2.2 SRD5A3 Expression Vector 

DH5α E.coli competent cells were used to clone the SRD5A3 vector using a heat shock 

protocol. The SRD5A3 vector was diluted to 10 ng/µL, and then 2 µL were added to 4 tubes 

containing 45 µL DH5α cells. The cells were incubated on ice for 30 minutes, and then exposed 

to a heat shock for 20 seconds in a 42oC water bath without shaking. The cells were then placed 

on ice for 2 minutes. Pre-warmed Luria Broth (LB Broth) was added to each tube and incubated 

at 37oC for 1 hour in a heated shaker at 225 rpm. Next, 20 to 200 µL of broth from each tube 

were added to LB plates and incubated overnight at 37oC. Subsequently, I picked bacterial 

colonies and inoculated LB broth. The SRD5A3 vector was isolated from E.coli and polymerase 

chain reaction (PCR) confirmed that the cDNA sequence matched the published sequence of the 

SRD5A3. Four different colonies were picked and the vector was quantified (ranged from 200-

500 µg of DNA).    

2.3 SRD5A3 Protein Expression - Creating a Transient Transfected Cell Line 

The transfection experiment was run using the SRD5A3 (NM_024592) human cDNA 

ORF Clone from OriGene (cat # RC200970, Maryland, USA). HEK293 cells were plated until 

they achieved 60-70% confluency in 10 cm plates. The OriGene application guide protocol for 

transient transfection was implemented during this experiment. Opti-Minimal Essential Medium 

(MEM, cat# 51985091, Thermo Fisher Scientific, Massachusetts, USA) 1.0 mL was added to 

each 10 cm plate. 10 µg of DNA was added to each plate as recommended by application guide 

(5-25 µg DNA per 10 cm plate), and then Turbofectin (cat# TF81001, OriGene, Maryland, USA) 

was added in a ratio of 3:1 (Turbofectin: DNA). The cells were then incubated for 30 minutes at 

room temperature. Following that, 9 mL of DMEM were added to the plates.  

http://www.ncbi.nlm.nih.gov/nuccore/NM_024592
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2.4 SRD5A3 Protein Expression - Creating a Stable Transfected Cell Line  

Using a transiently transfected plate 24 hours after transfection, cells were passaged into 

fresh growth medium with the selective agent and Antibiotic-Antimycotic. After passaging the 

cells and adding fresh medium to allow for growth, in the presence of the selective agent, 

immunoblot analysis was performed to confirm that the cells continued to harbor the transfected 

plasmid. This process aimed to generate a stably transfected HEK293 cell line for future 

experiments.  

2.5 Immunoblot Analysis  

Acrylamide gels (12%) were prepared using the following reagents: water, 30% acrylamide 

mix (cat # 161-0158, Bio-Rad, California, USA), 1.5M Tries buffer (pH 8.8) (cat # 161-0798, 

Bio-Rad, California, USA), 10% sodium dodecyl sulfate (SDS) solution (cat # 161-0416, Bio-

Rad, California, USA), 10% Ammonium Per sulfate (cat # 161-0700, Bio-Rad, California, 

USA), and TEMED (cat # 161-0800, Bio-Rad, California, USA). The lanes of each stacking gel 

were loaded with: molecular weight markers, negative control (cells without vector), and positive 

control (cat# RC200970, OriGene, Maryland, USA), positive control (cloned vector), and 

positive protein lysate (OriGene). The samples were run on the gel at 100 volts for 2 hours. 

Then, the separated proteins were transferred onto nitrocellulose for 2 hours. The nitrocellulose 

was removed from the transfer apparatus and immunoblot was performed using primary 

antibodies to DDK epitope (cat# AR100023, OriGene, Maryland, USA), SRD5A3 (cat# PA5-

25200, Thermo Fisher Scientific, Massachusetts, USA), and actin (cat# ab8229, Abcam, 

Massachusetts, USA). Immunoblots were performed as described below: 

1. The nitrocellulose was blocked for 30 minutes in 5% milk 
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2. Two washes in 10 mL Tris-buffered saline with Tween (TBST), 10 minutes each 

3. Incubation with actin (3 µL in 5.0 mL BSA) and DDK (3 µL in 5.0 mL BSA) primary 

antibodies 

4. Four washes in 10 mL TBST, 10 minutes each  

5. A second block was applied using 5% milk in TBST for 30 minutes 

6. Two washes with 10 mL TBST, 10 minutes each 

7. Secondary antibody (3 µL in 5 mL of 3% BSA) for 45 minutes 

8. Four washes with 10 mL TBST, 10 minutes each 

9. The nitrocellulose was exposed for 2 minutes and developed in the dark room. 

2.6 Protein Concentration 

The optimal timing of protein expression following transfection was determined by 

quantifying amount of total cell protein (Bradford Protein Assay Kit, Bio-Rad (product #23208, 

Bio-Rad, CA, USA)) using lysates from fixed time intervals. The results were graphed to 

determine the time point of maximum protein expression.  

 

2.7 SRD5A3 Enzyme Assays 

The stably transfected HEK293 cell line was used to determine the enzymatic function of the 

SRD5A3 vector with the addition of the following C-13 labeled steroid compounds:  

- Testosterone (cat# T1500, Sigma-Aldrich, Missouri, USA), 

- Progesterone (cat# 10314, IsoSciences, Pennsylvania, USA), 

- Dihydrotestosterone (cat# 6065, IsoSciences, Pennsylvania, USA), 

http://www.sigmaaldrich.com/catalog/product/sigma/t1500?lang=en&region=US
http://isosciences.com/catalog/112-progesterone-234-13c3.html
http://isosciences.com/catalog/65-dihydrotestosterone-13c3.html
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- Androstenedione (cat# 9044, IsoSciences, Pennsylvania, USA), 

- Epitestosterone (cat# E5878, Sigma-Aldrich, Missouri, USA), 

- 11α-hydroxytestosterone (cat# 10008647, Cayman Chemicals, Michigan, USA), 

- 6-hydroxytestosterone (cat# H2898, Sigma-Aldrich, Missouri, USA),  

- 11β-hydroxytestosterone (cat# A5760-000, Steraloids, Rhode Island, USA), 

- 11-ketotestosterone (cat# A6720-000, Steraloids, Rhode Island, USA), and  

- Cortisol (cat# 14465 IsoSciences, Pennsylvania, USA).  

Each test steroid was added to DMEM containing 10% charcoal-stripped Fetal Bovine Serum 

(cat# F6765, Sigma-Aldrich, Missouri, USA) and Antibiotic-Antimycotic. Most endogenous 

steroids have been removed hence the effect of added steroids is monitored in the experiments. 

At 48 hours, the cell pellets and media were collected for steroid analysis using quantitative mass 

spectrometry. 

2.8 Mass Spectrometry Analysis 

Mass spectrometry analysis was performed using an Agilent 1290 UHPLC system 

(Agilent Infinity 1290 Autosampler, Binary Pump, Thermostatted Column Compartment), 

coupled to an Agilent 6490 Mass Spectrometer with Jet Stream Technology ESI source. 

Separation was achieved using a Chromolith Fast Gradient chromatography column, RP-18e, 50 

x 2mm, 1.5 um particle size. The analysis was done using the MassHunter Workstation 

Quantitative Analysis Software (Version B.06.00 SP01/Build 6.0.388.1, Agilent, California, 

USA). 

Cell pellets were reconstituted in 200 µL of UHPLC grade water and then spiked with 10 

µL of a 10ng/mL C-13 steroid internal standard solution (C-13 Testosterone, C-13 Progesterone 

http://isosciences.com/catalog/63-androst-4-ene-317-dione-13c3.html
http://www.sigmaaldrich.com/catalog/product/sigma/e5878?lang=en&region=US
https://www.caymanchem.com/product/10008647
http://www.sigmaaldrich.com/catalog/product/sigma/h2898?lang=en&region=US&gclid=CjwKEAiAuea1BRCbn-2n7PbLgEMSJAABQvTTDWPWZpnqTNILTykCd-Gnq5oaY9fac9KFwPQDuyTtwBoC6Mrw_wcB
https://steraloids.com/androst-based/4-androsten/4-androsten-11-17-diol-3-one-78.html
https://steraloids.com/androst-based/4-androsten-17-ol-3-11-dione.html
https://www.isosciences.com/catalog/592-cortisol-13c3.html
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and C-13 DHT, C-13 Pregnenolone). Media (200 uL) was also aliquoted and spiked with 10 µL 

of a 10ng/mL internal standard solution. Methyl t-butyl ether (MTBE) (3.0 ml) was then added 

and the sample was extracted with rocking for 15 minutes at room temperature. The organic 

layer was then separated by centrifugation, decanted and evaporated down to dryness under a 

steady stream of medical grade nitrogen. The residue was then reconstituted in 100 µL methanol. 

An aliquot (100 µL) of 1.5M Hydroxyalamine hydrochloride (cat# 159417, Sigma-Aldrich, 

Missouri, USA) was then added and the mixture was heated at 65oC for 60 minutes. The samples 

were then transferred into liquid chromatography-mass spectrometry (LCMS) vials and analyzed 

by triple quadrupole mass spectrometry.  

In addition, an 8 point standard (Std) calibration curve for the following 11 androgens was 

analyzed using mass spectrometry: 

- Testosterone = 1.0 to 1000 pg/mL 

- Epitestosterone = 1.0 to 1000 pg/mL 

- Androstenedione = 1.0 to 1000 pg/mL  

- Dihydrotestosterone = 10 to 1000 pg/mL  

- Progesterone = 1.0 to 1000 pg/mL  

- Dihydroprogesterone = 50 to 1000 pg/mL (cat# P2750-000, Steraloids, Rhode Island, 

USA) 

- Pregnenolone = 10 to 1000 pg/mL (cat# Q5500-000, Steraloids, Rhode Island, USA) 

- 17-hydroxyprogesterone = 1.0 to 1000 pg/mL (cat# Q3360-000, Steraloids, Rhode Island, 

USA) 

- Cortisol = 10 to 1000 pg/mL  

- Androstanedione = 10 to 1000 pg/mL (cat# A1630-000, Steraloids, Rhode Island, USA) 

https://steraloids.com/5-pregnan-3-20-dione.html
https://steraloids.com/5-pregnan-3-20-dione.html
https://steraloids.com/5-pregnen-3-ol-20-one-1808.html
https://steraloids.com/4-pregnen-17-ol-3-20-dione-2-2-4-6-6-21-21-21-d8.html
https://steraloids.com/4-pregnen-17-ol-3-20-dione-2-2-4-6-6-21-21-21-d8.html
https://steraloids.com/5-androstan-3-17-dione.html
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- 5-alpha pregnan-3-ol-20-one = 10 to 1000 pg/mL (cat# P3830-000, Steraloids, Rhode 

Island, USA) 

This was done using the following stock solutions in methanol: Std1: 0.02 ng/mL (1 pg/mL); 

Std2: 0.1 ng/mL (5 pg/mL); Std3: 0.2 ng/mL (10 pg/mL) Std4: 1 ng/mL (50 pg/mL); Std5: 2 

ng/mL (100 pg/mL); Std6: 5 ng/mL (250 pg/mL); Std7: 10 ng/mL (500 pg/mL); Std8: 20 ng/mL 

(1000 pg/mL). Two quality control (QC) solutions (representing both high and low 

concentrations) were also prepared using the following two solutions: QC1: 0.4 ng/mL (20 

pg/mL); QC2: 15 ng/mL (750 pg/mL). The standard curve and QC samples were prepared with 

the same method used for sample extraction detailed above. 

 

  

https://pubchem.ncbi.nlm.nih.gov/substance/273518897
https://steraloids.com/5-pregnan-3-ol-20-one-2136.html
https://steraloids.com/5-pregnan-3-ol-20-one-2136.html
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3.1 Cloning the SRD5A3 plasmid 

The SRD5A3 vector was successfully cloned in DH5α E.coli competent cells. PCR was 

used to confirm that our results matched the published sequence of the SRD5A3 vector with 98% 

concordance (Figure 2). Four colonies were obtained, yielding 496.4 µg, 266 µg, 466 µg, and 

510 µg of vector respectively.   
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Figure 2. SRD5A3 Plasmid Sequence by PCR 

 

 
Figure 2. PCR sequence of the cloned SRD5A3 plasmid matched with the published sequence of SRD5A3 
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3.2 SRD5A3 Transfection 

The HEK293 cells were initially transfected with the generated SRD5A3 expression 

vector. Immunoblot analysis was performed using anti-DDK, anti-SRD5A3 and anti-actin 

antibodies. The results confirmed the presence of the SRD5A3 protein band at 37 kDA using the 

anti-DDK antibody. However, no band was detected on the immunoblot using the anti-SRD5A3 

antibody. The immunoblot was repeated by adding increasing amounts of protein lysates to 

successive wells. Using the anti-DDK antibody, the immunoblot results showed that with 

increasing amounts of material, there is a commensurate increase in the size of the 37 kDa band 

corresponding to the SRD5A3 protein (Figure 3). Following confirmation of the transient 

transfection of the SRD5A3 vector, HEK293 cells underwent a stable transfection protocol. The 

integration of the SRD5A3 vector in these stably transfected cells was confirmed by immunoblot.  
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Figure 3. SRD5A3 Immunoblot 

 

  

Figure 3. Immunoblot using anti-DDK 

antibody to detect the SRD5A3 protein. 

There is an increase in the size of the 

37kDa band corresponding to SRD5A3 

with increasing amounts of protein lysate 

loaded into the wells (Top panel). Actin 

control for the immunoblot (Bottom panel).  
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3.3 Estimation of SRD5A3 Protein Concentration  

The amount of SRD5A3 present in transfection was evaluated at successive intervals 

following transfection. There was an increase in the optical density, and subsequently of the 

protein expression in the system over the first 72 hours, after which the expression started 

decreasing. The time point of 72 hours post transfection was identified to correspond to the 

highest SRD5A3 protein expression (Figure 4). This time point was used for all experiments to 

evaluate the enzymatic activity of SRD5A3 in steroid metabolism. 
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Figure 4. Estimation of SRD5A3 Protein Concentration  
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Figure 4. SRD5A3 protein 

concentration shows 

increasing protein expression 

after transfection (D0) that 

peaks around day 3.  
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Table 1. The increase in protein expression is measured by an increased in the optical 

density of the sample 

 

 

 

 

 

 

  

DAY 

OPTICAL 

DENSITY 

CONCENTRATION 

(µg/µl) 

0 0 0 

1 0.182 2.561 

2 0.242 3.532 

3 0.302 4.55 

4 N/A N/A 

5 0.267 3.95 
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3.4 Quantitative Mass Spectrometry  

Liquid chromatography mass spectrometry analysis was used to determine the presence 

or absence of reduced products following the addition of C-13 labeled precursor steroids to 

HEK293 cells transfected with the SRD5A3 vector. Dutasteride, a known 5-alpha reductase 1 

and 2 inhibitor, was added to each steroid precursor to determine its effect on the enzymatic 

activity of SRD5A3. 
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3.41. Testosterone 

C-13 labeled testosterone at 1 and 10 µM was added to HEK293 control cells (non-

transfected) and HEK293 transfected cells. C-13 labeled testosterone was converted to DHT only 

in the transfected system (Figure 5). Notably, the baseline steroid profile of non-transfected 

HEK293 cells without the addition of any steroids did not contain any DHT.  

In addition, a standard curve for DHT using C-13 internal standards was created to 

quantify the amount of DHT produced following the addition of testosterone (Figure 6). The 

amount of DHT produced was quantified by mass spectrometry and showed a positive 

correlation with the amount of precursor C-13 labeled testosterone introduced. The addition of 1 

µm C-13 labeled testosterone yielded 379.7 +/- 19.4 pg/mL of DHT; 10 µm C-13 labeled 

testosterone yielded 2129.7 +/- 177.4 pg/mL of DHT. These findings confirmed that the 

SRD5A3 enzyme catalyzes the conversion of testosterone to DHT.  

Furthermore, we generated a cell free lysate of the HEK293 transfected cells, to which 

we added C-13 labeled testosterone. In this setting, we did not detect evidence of conversion of 

C-13 labeled testosterone to DHT by mass spectrometry (Figure 7).  

The addition of 1 nM dutasteride completely inhibited the conversion of C-13 labeled 

testosterone to DHT. DHT was not detected by mass spectrometry following the addition of 1 

µm or 10 µm of C-13 labeled testosterone (Figures 8, 9).  
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Figure 5. Conversion of Testosterone to DHT by SRD5A3 

 

 

 

  

Figure 5. HEK293 cells transfected with SRD5A3 vector reduced testosterone to DHT. Testosterone 

added to HEK293 cells showed that DHT was detected and quantified using mass spectrometry. The 

double peak eluting at 3.901 minutes (Panel A) was fragmented into a qualifier and quantifier ion 

(Panel B). The DHT retention time, ratio of qualifier/quantifier ion corresponds to results obtained 

with the DHT internal standard (Panel C).  

C 

B A 
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Figure 6. DHT Standard Curve 

 

 

  

Figure 6. DHT standard curve was created using the following DHT concentrations: 50, 100, 250, 500, 

and 1000 pg/mL. 
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DHT Standard 

A B 

C 

SRD5A3 Cell Lysate + Testosterone 

Figure 7. Conversion of Testosterone to DHT by SRD5A3 Cell Lysate 

Figure 7. HEK293 cell lysate did reduce testosterone to DHT. The addition of testosterone to HEK293 

cells did not result in the detection of DHT by mass spectrometry (Panels A, B). The DHT retention 

time, ratio of qualifier/quantifier ion, does not correspond to results obtained with the DHT internal 

standard (Panel C).  
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Figure 8. Conversion of Testosterone to DHT with Addition of Dutasteride  

 

 

 

 

  

Figure 8. DHT internal standard showing a double peak at an elution time of 3.901 minutes (Panel A). 

No DHT peak was detected following the addition of 10µM testosterone with 1 nM dutasteride to 

HEK293 cells transfected with the SRD5A3 expression vector.  

A B 
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Figure 9. SRD5A3 Protein Inhibition by Dutasteride  
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Figure 9. The addition of testosterone to HEK293 cells transfected with the SRD5A3 vector resulted in the 

production of DHT. The addition of 10 µM of testosterone (T10) resulted in a significantly higher amount of 

DHT detected compared to 1 µM of testosterone (T1). The addition of dutasteride (D) to T1 and T10 inhibited 

the conversion of testosterone to DHT, and no DHT was detected or quantified. The control cells had no 

detectable DHT.  
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3.42. Progesterone 

C-13 labeled progesterone at 1 and 10 µM was added to HEK 293 transfected cells. The 

conversion of progesterone to its 5-alpha reduced product, dihydroprogesterone, was not 

detected at either concentration by mass spectrometry (Figure 10). 
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Figure 10.Conversion of Progesterone to Dihydroprogesterone by SRD5A3 

 

  

B 

A 

Figure 10. HEK293 cells transfected with SRD5A3 vector did not convert progesterone to the 5-alpha 

reduced product, dihydroprogesterone. The addition of progesterone to HEK293 cells did not result in the 

detection of dihydroprogesterone (Panel A). The internal standard  for progesterone shows a peak eluting at 

4.2-4.6 minutes (Panel B). 
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3.43. Androstenedione 

C-13 labeled androstenedione at 1 and 10 µM was added to HEK 293 transfected cells. 

Mass spectrometry analysis did not detect the conversion of androstenedione to its 5-alpha 

reduced product, androstanedione, at either concentration. (Figure 11). 
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A B 

C 

SRD5A3 + Androstenedione 

Androstanedione Standard 

Figure 11. Conversion of Androstenedione to Androstanedione by SRD5A3 

Figure 11. HEK293 cells transfected with SRD5A3 vector did not convert androstenedione to the       

5-alpha reduced product, androstanedione. The androstanedione retention time (Panel A), qualifier and 

quantifier ratio (Panel B), does not correspond to the androstanedione standard (Panel C).  
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3.44. Epitestosterone  

 Epitestosterone at 1 and 10 µM was added to HEK293 transfected cells. Mass 

spectrometry analysis revealed a peak associated with the formation of the 5-alpha reduced 

product of epitestosterone at both concentrations. This is based on the correct transition similar 

to testosterone, and correct retention time based on the testosterone to DHT standard available 

(Figure 12).  The addition of 10 µM epitestosterone resulted in a two-fold increase in the 

conversion to the reduced product compared to the addition of 1 µM of epitestosterone. The 

addition of dutasteride significantly decreased the conversion of epitestosterone to its 5-alpha 

reduced product at both 1 µM and 10 µM concentrations (p<0.05) (Figure 13). 
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A B SRD5A3 + Epitestosterone 

C Epitestosterone Standard 

Figure 12. 5-alpha Reduction of Epitestosterone by SRD5A3 

Figure 12. HEK293 cells transfected with SRD5A3 vector did convert epitestosterone to the 5-alpha 

reduced product. The resulting 5–alpha reduced  product was detected and quantified using mass 

spectrometry. The peak eluting at 4.351 minutes (Panel A) was fragmented into a qualifier and 

quantifier ion (Panel B). The epitestosterone standard is shown in Panel C, with a peak eluting at 4.164 

minutes.  
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Figure 13. SRD5A3 Protein Inhibition by Dutasteride – Epitestosterone  
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Figure 13. The addition of epitestosterone to HEK293 cells transfected with the SRD5A3 vector resulted in the 

production of the corresponding 5-alpha reduced product. The addition of 10 µM of epitestosterone resulted in 

a higher amount of product detected compared to 1 µM of epitestosterone . The addition of dutasteride (D) to 1 

and 10 µM of epitestosterone resulted in a significant decrease in the conversion of epitestosterone to its 5-

alpha reduced product.  
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3.45. 6--hydroxytestosterone 

6-β-hydroxytestosterone at 1 and 10 µM was added to HEK293 transfected cells. Mass 

spectrometry analysis revealed a peak associated with the formation of the 5-alpha reduced 

product of 6-β-hydroxytestosterone (Figure 14). There was a two-fold increase in the amount 5-

alpha reduced product formed between the 1 µM and 10 µM concentrations of 6-β-

hydroxytestosterone added. The addition of dutasteride significantly decreased the reduction of 

6-β-hydroxytestosterone at 1 µM concentration (p<0.05), but not at 10 µM concentration 

(p>0.05) (Figure 15). 

  



40 
 

 

   

Figure 14. 5-alpha Reduction of 6-β-hydroxytestosterone by SRD5A3 

SRD5A3 + 6-β-hydroxytestosterone A B 

C 6-β-hydroxytestosterone Standard 

Figure 14. HEK293 cells transfected with SRD5A3 did convert 6-β-hydroxytestosterone to the 5-alpha 

reduced product. The resulting 5–alpha reduced  product was detected and quantified using mass 

spectrometry. The peak eluting at 2.407 minutes (Panel A) was fragmented into a qualifier and 

quantifier ion (Panel B). The 6-β-hydroxytestosterone standard is shown in Panel C, with a peak 

eluting at 2.421 minutes.  
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Figure 15. SRD5A3 Protein Inhibition by Dutasteride - 6-β-hydroxytestosterone 
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6-β-hydroxytestosterone reduction following Dutasteride treatment

Figure 15. The addition of 6-β-hydroxytestosterone to HEK293 cells transfected with the SRD5A3 vector 

resulted in the production of the corresponding 5-alpha reduced product. The addition of 10 µM of                   

6-β-hydroxytestosterone  resulted in a higher amount of product detected compared to 1 µM of                         

6-β-hydroxytestosterone. The addition of dutasteride (D) significantly decreased the reduction of                     

6-β-hydroxytestosterone  at 1 µM, but not at 10 µM.  
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3.46. 11--hydroxytestosterone 

11-β-hydroxytestosterone at 1 and 10 µM was added to HEK293 transfected cells. Mass 

spectrometry analysis revealed a peak associated with the formation of the 5-alpha reduced 

product of 11-β-hydroxytestosterone (Figure 16). There is an almost three-fold increase in the 

amount of 5-alpha reduced product formed between the 1 µM and 10 µM concentrations of 11-β-

hydroxytestosterone. The addition of dutasteride (D) significantly decreased the reduction of 11-

β-hydroxytestosterone at 1 µM concentration (p<0.05), but not at 10 µM concentration (p>0.05) 

(Figure 17). 

  



43 
 

  

SRD5A3 + 11-β-hydroxytestosterone A B 

C 11-β-hydroxytestosterone Standard 

Figure 16. 5-alpha Reduction of 11-β-hydroxytestosterone by SRD5A3 

Figure 16. HEK293 cells transfected with SRD5A3 vector did convert 11-β-hydroxytestosterone to the 

5-alpha reduced product. The resulting 5–alpha reduced  product was detected and quantified using 

mass spectrometry. The peak eluting at 2.743 minutes (Panel A) was fragmented into a qualifier and 

quantifier ion (Panel B). The 11-β-hydroxytestosterone standard is shown in Panel C, with a peak 

eluting at 2.725 minutes.  
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Figure 17. SRD5A3 Protein Inhibition by Dutasteride - 11-β-hydroxytestosterone 
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11-β-hydroxytestosterone reduction following Dutasteride treatment

Figure 17. The addition of 11-β-hydroxytestosterone to HEK293 cells transfected with the SRD5A3 vector resulted 

in the production of the corresponding 5-alpha reduced product. The addition of 10 µM of                                     

11-β-hydroxytestosterone resulted in a higher amount of product detected compared to 1 µM of                           

11-β-hydroxytestosterone. The addition of dutasteride (D) significantly decreased the reduction of                        

11-β-hydroxytestosterone  at 1 µM, but not at 10 µM.   



45 
 

3.47. 11-α-hydroxytestosterone 

11-α-hydroxytestosterone at 1 and 10 µM was added to HEK293 transfected cells. Mass 

spectrometry analysis revealed a peak associated with the formation of the 5-alpha reduced 

product of 11-β-hydroxytestosterone (Figure 18). The addition of 10 µM of 11-α-

hydroxytestosterone resulted in an increased quantity of reduced product formed. The addition of 

dutasteride did not decrease 5-alpha reduced product formation at either 1 or 10 µM of 11-α-

hydroxytestosterone. 
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Figure 18. 5-alpha Reduction of 11-α-hydroxytestosterone by SRD5A3 

11-α-hydroxytestosterone Standard 

A B 

C 

SRD5A3 + 11-α-hydroxytestosterone 

Figure 18. HEK293 cells transfected with SRD5A3 vector did convert 11-α-hydroxytestosterone to the 

5-alpha reduced product. The resulting 5–alpha reduced  product was detected and quantified using 

mass spectrometry. The peak eluting at 2.723 minutes (Panel A) was fragmented into a qualifier and 

quantifier ion (Panel B). The 11-α-hydroxytestosterone standard is shown in Panel C, with a peak 

eluting at 2.725 minutes.  
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Figure 19. SRD5A3 Protein Inhibition by Dutasteride - 11-α-hydroxytestosterone 
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11-α-hydroxytestosterone reduction following Dutasteride treatment

Figure 19. The addition of 11-α-hydroxytestosterone to HEK293 cells transfected with the SRD5A3 vector 

resulted in the production of the corresponding 5-alpha reduced product. The addition of 10 µM of              

11-α-hydroxytestosterone resulted in a higher amount of product detected compared to 1 µM of                   

11-α-hydroxytestosterone. The addition of dutasteride (D) did not consistently affect the conversion of         

11-α-hydroxytestosterone to the 5-alpha reduced product. 
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3.48. 11-ketotestosterone 

11-ketotestosterone at 1 and 10 µM was added to HEK293 transfected. Mass 

spectrometry analysis revealed a peak corresponding to 11-ketoDHT, the 5-alpha reduced 

product of 11-ketotestosterone (Figure 20). The addition of dutasteride to both the 1 and 10 µM 

concentrations of 11-ketotestosterone did not result in a significant difference in the amount of 

11-ketoDHT formed (Figure 21). 
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Figure 20- 5-alpha Reduction of 11-ketotestosterone by SRD5A3 

Figure 18. HEK293 cells transfected with SRD5A3 vector did convert 11-ketotestosterone to the        

5-alpha reduced product, 11-ketoDHT. 11-ketoDHT was detected and quantified using mass 

spectrometry. The peak eluting at 2.767 minutes (Panel A) was fragmented into a qualifier and 

quantifier ion (Panel B). The 11-ketotestosterone standard is shown in Panel C.  

11-ketotestosterone Standard 
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C 

SRD5A3 + 11-ketotestosterone 
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Figure 21. SRD5A3 Protein Inhibition by Dutasteride - 11-ketotestosterone 
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11-ketotestosterone reduction following Dutasteride treatment

Figure 19. The addition of 11-ketotestosterone to HEK293 cells transfected with the SRD5A3 vector resulted 

in the production of the corresponding 5-alpha reduced product, 11-ketoDHT. The addition of 10 µM of          

11-ketotestosterone resulted in a higher amount of product detected compared to 1 µM of 11-ketotestosterone. 

The addition of dutasteride (D) did not significantly change the amount of 11-ketoDHT produced at 1 µM, but 

did significantly decrease the conversion at 10 µM of 11-ketotestosterone. 
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CHAPTER 4: DISCUSSION 
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The 5-alpha reductase enzyme family plays an important role in the conversion of steroid 

precursors to their 5-alpha reduced products, such as the conversion of testosterone to the more 

potent androgen, DHT (16, 53). Androgen deprivation therapy aimed at reducing levels of 

circulating testosterone, and subsequently DHT, is well established as first line therapy for 

prostate cancer (54). 5-alpha reductase inhibitors, such as finasteride and dutasteride, have the 

capacity of inhibiting the conversion of testosterone to DHT (55). However, despite showing 

activity in reducing the incidence of prostate cancer development in preventive studies, the role 

of 5-alpha reductase inhibitors in prostate cancer prevention remains controversial (3, 9, 13). In 

addition, 5-alpha reductase inhibitors are not currently included in the treatment guidelines for 

prostate cancer, as they have not shown convincing clinical activity in this setting (2). The 

distribution and function of 5-alpha reductase 1 and 2 have been well characterized in the normal 

prostate as well as prostate cancer (4). This study aimed at shedding light on the enzymatic 

activity of a newer member of the 5-alpha reductase family of enzymes, SRD5A3, in 

steroidogenesis and prostate carcinogenesis. 

SRD5A3 cDNA ORF was transfected into HEK293 cells using the OriGene vector 

system. This is different from the HP-Thioredoxin-fusion SRD5A3 protein using a pBAD/Thio-

TOPO vector used by Titus et al. (51), and the FuGENE 6 vector used by Uemura et al.(5). 

Using this vector, the SRD5A3 plasmid was successfully transfected into HEK293 cells. 

Transient and stable transfections were verified by immunoblot assays using an anti-DDK 

antibody revealing a band at 37 kDa, corresponding to the SRD5A3 protein (Figure 3). 

Conversely, the anti-SRD5A3 antibody did not yield a positive immunoblot result, despite the 

addition of increasing concentrations of SRD5A3 into the immunoblot wells. These results 
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suggest that the anti-DDK antibody may be a more sensitive tool to detect successfully SRD5A3 

transfection using the OriGene vector with an anti-DDK tag. 

Mass spectrometry analysis revealed that HEK293 transfected cells did convert C-13 

labeled testosterone to DHT (Figure 5). This activity was concentration dependent, with higher 

levels of testosterone yielding a higher DHT levels (Figure 9). This report confirms prior 

observations by Uemura et al. using a different transfection system (5), and Titus et al. using a 

fusion SRD5A3 protein (51). The conversion of C-13 labeled testosterone to DHT was only 

observed in intact HEK293 transfected cells. Mass spectrometry analysis of a cell lysate of 

HEK293 transfected cells did not detect any DHT production following the addition of C-13 

labeled testosterone (Figure 7). This is in contrast to the study by Titus et al. where HP-

Thioredoxin-fusion SRD5A3 protein using a pBAD/Thio-TOPO vector showed 5-alpha reducing 

activity in both intact cells and cell lysate (51). Conversely, another study evaluated hamster 

SRD5A3 expressed as a fusion protein with green fluorescent protein from the pcDNA3.1-NT-

GFP/hSrd5a3 plasmid and human SRD5A3. In that study, the fusion protein localized to the 

cytoplasm and did not show steroid reducing capacity (52). These findings in addition to the 

known role of SRD5A3 role in in N-linked glycosylation of surface proteins (45), suggest that 

SRD5A3 exerts its 5-alpha reducing activity mainly when intact in the plasma membrane.  

This study also aimed at evaluating the ability of SRD5A3 to reduce testosterone 

analogues. The development of castrate resistant prostate cancer despite low testosterone levels 

has generated interest in looking for other steroid substrates able to active the androgen receptor 

under castrate conditions. Castrate resistant prostate cancer appears to possess the machinery to 

bypass testosterone and use adrenal androgens, such as dehydroepiandrosterone and 

androstenedione, to produce intratumoral DHT through a “backdoor steroid pathway” (16, 20, 
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56). Additionally, more recent studies have expanded the list of adrenal androgens that may 

potentially be involved in the development of castrate resistant prostate cancer (31, 57). 11-

hydroxyandrostenedione is an abundant adrenal androgen which has limited ability to activate 

the androgen receptor. Through the action of 17β-hydroxysteroid dehydrogenase and 11β-

hydroxysteroid dehydrogenase enzymes, 11-hydroxyandrostenedione is converted to 11-

ketotestosterone. Subsequently, 11-ketotestosterone is 5-alpha reduced to 11-ketoDHT, a steroid 

as potent as DHT in its ability to active the androgen receptor (31, 57). These studies have shed 

light on the role of 5-alpha reductases 1 and 2 in this “backdoor steroid pathway”. However, the 

role of SRD5A3 in this setting has not been studied yet. In our study, the addition of testosterone 

analogues (epitestosterone, 11-hydroxytestosterone, 6-β-hydroxytestosterone, 11-β-

hydroxytestosterone, 11-α-hydroxytestosterone, and 11-ketotestosterone) resulted in the 

production of the respective 5-alpha reduced counterparts. These findings, in addition to 

SRD5A3 being almost ubiquitous in the body (49, 50), suggests that this enzyme may be 

involved in the conversion of circulating steroid precursors to more potent androgens capable of 

activating the androgen receptor. Developing a model containing SRD5A3, the androgen 

receptor gene, as well as linked reporter assay such as luciferase would demonstrate activation of 

the androgen receptor. In addition, such a reporter assay can potentially allow quantification of 

the androgen receptor activation depending on the precursor steroid added to the system. 

Additionally, SRD5A3 is upregulated under androgen deprivation therapy (32), 

potentially magnifying its role in the reduction of circulating androgens capable of binding the 

androgen receptor to activate gene targets and downstream signaling. This potentially implicates 

SRD5A3 in the non-canonical steroid pathway which is hypothesized to drive castrate resistant 

prostate cancer even in the presence of castrate levels of testosterone.  Mass spectrometry 
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analysis can be performed to compare the levels of circulating adrenal androgens between 

castrate-sensitive and castrate-resistant prostate cancer samples, in the setting of castrate levels 

of testosterone. Circulating adrenal androgens levels, along with their respective potencies in 

activating the androgen receptor, can be helpful in determining their role in driving androgen 

receptor signaling. 

These findings, along with previous studies linking adrenal androgens to the production 

of potent androgen receptor ligands suggest that measuring peripheral blood testosterone levels 

alone may not fully reflect the circulating steroid burden that can potentially drive prostate 

cancer growth. A more accurate assessment of castrate androgen levels may be obtained by 

evaluating a panel of circulating androgens shown to bind and androgen receptor signaling.  

Furthermore, this study aimed to evaluate the effect of dutasteride, a known 5-alpha 

reductase 1 and 2 inhibitor, on the enzymatic activity of SRD5A3. Titus et al. previously 

reported that dutasteride partially inhibited the conversion of testosterone to DHT in a HP-

Thioredoxin-fusion SRD5A3 enzyme system (51). Using an SRD5A3 cDNA ORF transfected 

into HEK293 cells using the OriGene vector system, our findings suggest that the inhibitory 

effect of dutasteride on SRD5A3 is substrate dependent. Dutasteride completely inhibited the 

conversion of testosterone to DHT at both 1 and 10 µM concentrations of testosterone. When 

added to epitestosterone, dutasteride significantly decreased but did not completely eliminate the 

conversion of epitestosterone to the 5-alpha reduced product at both the 1 and 10 µM 

concentrations. For 6-β-hydroxytestosterone and 11-β-hydroxytestosterone, dutasteride 

significantly decreased the conversion to their respective 5-alpha reduced products at 1 µM, but 

not at the 10 µM concentration. Finally, dutasteride did not inhibit the conversion of 11-α-

hydroxytestosterone or 11-ketotestosterone at either the 1 or 10 µM concentrations. 
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These results suggest that the interaction between the steroid substrate and the SRD5A3 

enzyme affects the inhibitory activity of dutasteride. The androgen substrate conformation and 

location of hydroxyl and ketone groups may dictate the potential for drugs such as dutasteride to 

bind SRD5A3 and inhibit its catalytic 5-alpha reducing function. Similarly to previously 

described activity with 5-alpha reductases 1 and 2 (55), dutasteride inhibited the conversion of 

testosterone to DHT by SRD5A3. Interestingly, dutasteride reduced but did not fully eliminate 

the conversion of epitestosterone, an epimer of testosterone, to its 5-alpha reduced product. 

Furthermore, with variations in the location of hydroxyl and ketone groups in testosterone 

analogues, the inhibitory potential of dutasteride on SRD5A3 appeared to be weaker. A higher 

concentration (10 µM) of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone was able to 

overcome the inhibitory activity of dutasteride on SRD5A3. This suggests that the mechanism of 

action of dutasteride with these specific substrates may be through competitive inhibition. 

Finally, dutasteride had no effect on the 5-alpha reducing capacity of SRD5A3 when 11-α-

hydroxytestosterone or 11-ketotestosterone were added to HEK293 transfected cells.  

These findings suggest that further investigation is warranted to understand the structure 

activity relationship of the SRD5A3-dutasteride enzyme-substrate complex. This knowledge may 

shed light on the reasons underlying the variation in dutasteride inhibitory activity on SRD5A3 

based on the type and polarity of androgen substrates. Additionally, given the differences in 

properties between various 5-alpha reductase enzymes, and between 5-alpha reductase inhibitors, 

it is imperative to determine if dutasteride is the optimal 5-alpha reductase inhibitor to target 

SRD5A3.  

The mass spectrometry findings suggest that SRD5A3 has the capacity of reducing 

steroid substrates into potent androgens that have been shown to activate the androgen receptor 
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(31, 57). In this closed system, dutasteride lacks the capacity to inhibit SRD5A3 5-alpha 

reducing capacity across all androgen substrates. In vivo studies measuring circulating adrenal 

androgens prone to becoming 5-alpha reductase substrates are mandated to evaluate the overall 

androgen burden that may be contributing to prostate carcinogenesis. Findings from such studies, 

in conjunction with ubiquitous distribution of SRD5A3 in the body (49, 50), can potentially 

magnify this enzyme’s role in the development of castrate resistant prostate cancer. This would 

provide a basis for the discovery of targeted SRD5A3 inhibiting drugs, to be used in rational 

therapeutic combinations across the spectrum of prostate cancer. This would include, but not 

limited to prostate cancer prevention, preoperative therapy for prostate cancer, and the 

prevention and treatment of castrate resistant prostate cancer.   
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In conclusion, this study confirmed that, within an in-vitro system, SRD5A3 has the 

capacity to convert testosterone and its derivatives to their more potent, 5-alpha reduced, 

products, capable of binding and activating androgen receptor signaling. The inhibitory activity 

of dutasteride, a known 5-alpha reductase 1 and 2 inhibitor, on this enzyme, appears to be 

substrate and concentration dependent. These findings suggest a role for SRD5A3 in androgen 

metabolism and the development of the lethal phenotype of castrate resistant prostate cancer. In-

vitro assessment of SRD5A3 is mandated to determine the potential role of therapeutic SRD5A3 

inhibition across the spectrum of prostate cancer.  
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 There are several limitations to this study. First, SRD5A3 was evaluated in a closed in-

vitro system. This likely doesn’t replicate the intricate steroidogenic pathways and regulatory 

mechanisms in the human body, and less so in the presence of prostate cancer. Additionally, each 

steroid substrate was added separately into the system. This approach does not allow for the 

assessment of relative substrate affinity to SRD5A3. Furthermore, mass spectrometry internal 

standards for the 5-alpha reduced products of certain testosterone derivatives are not 

commercially available. Mass spectrometry analysis was carried out using standards extrapolated 

from the substrate compounds, or from previously published work in the literature (57). Finally, 

liquid chromatography-mass spectrometry is a highly sensitive tool that can detect compounds at 

minute quantities. This sensitive approach may lead to the detection of background noise which 

may contaminate the results, and lead to false positive conclusions. 
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