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ABSTRACT 

 

THE IMPACT OF CORTICAL STATE ON NEURAL CODING AND BEHAVIOR 

Charles Bradford Beaman, B.S.M.E. 

Advisory Professor: Valentin Dragoi, Ph.D. 

 

The brain is never truly silent – up to 80% of its energy budget is expended during 

ongoing activity in the absence of sensory input. Previous research has shown that 

sensory neurons are not exclusively influenced by external stimuli but rather reflect 

interactions between sensory inputs and the ongoing activity of the brain. Yet, whether 

fluctuations in the state of cortical networks influence sensory coding in neural circuits 

and the behavior of the animal are unknown. To shed light on this issue, we conducted 

multi-unit electrophysiology experiments in visual areas V1 and V4 of behaving 

monkeys. First, we studied the impact of neural population spiking before stimulus 

presentation on orientation discrimination in the primary visual cortex. We found that 

when neuronal populations are in a low firing state, they have a higher capacity to 

discriminate stimulus features despite an overall reduction in evoked responses. 

Importantly, behavioral performance was significantly improved in the low firing network 

state. Next, we conducted recordings in the visual cortical area V4 while animals 

participated in a natural image orientation discrimination task to determine whether 

fluctuations in local population synchrony during wakefulness play any role in 

modulating network and behavioral performance. We found that populations of cells 

exhibit rapid fluctuations in synchrony of ongoing activity ranging from desynchronized 

responses, indicative of high alertness, to more synchronized responses, indicative of 

drowsiness. These state fluctuations control the variability in the accuracy of population 
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coding and behavioral performance across trials in a visual discrimination task. When 

the local population activity is desynchronized, the correlated variability between 

neurons is reduced, and network and behavioral performance are improved. Lastly, we 

controlled the state of cortical networks by manipulating the animal’s behavioral state 

from wakefulness to rest. Thus, we analyzed population recordings from area V4 while 

the animals participated in an orientation discrimination task, which was immediately 

followed by a brief resting period of 20-30 minutes, and lastly, by a second task period 

(Task – Rest – Task). We found that cortical networks were desynchronized after rest 

such that behavioral performance was improved relative to the pre-rest condition. 

Altogether, the findings in this thesis demonstrate that the variability in spontaneous 

cortical activity is not simply noise but rather contains a dynamic structure which 

controls how incoming sensory information is optimally integrated with ongoing 

processes to guide network coding and behavior. 
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CHAPTER I: INTRODUCTION 

 

To gaze is to think. 

-Salvador Dalí 
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General visual processing and visual area V1 

The visual system evolved over millions of years to assist in the survival and 

reproduction of organisms that depend on an effective understanding of the 

surrounding environment. The essential activities of life – finding food and shelter, 

avoiding predators, and sexual reproduction – all benefit from an accurate extraction 

and processing of visual information that comes from light emitted or reflected by 

objects in the 3-dimensional world1. This 3-dimensional visual information in the form of 

light is first converted by the retina in the back of the eyes into 2-dimensional 

information that is passed to the lateral geniculate nucleus (LGN) and subsequently to 

the primary visual cortex (visual area V1, located in the calcarine sulcus of the visual 

cortex). Eventually, all visual information must be reconstructed back into a 3-

dimensional representation in real-time (albeit with a small delay on the order of 100’s 

of ms) by the cerebral cortex to create the rich and dynamic visual experience 

necessary for survival2. 

In the mid-20th century, Hubel and Wiesel first discovered that the primary visual 

cortex was organized into approximately 1mm x 1mm hypercolumns responsible for 

processing orientation stimuli in the brain3-6. These seminal early findings created a 

strong interest to elucidate the fundamental mechanisms responsible for orientation 

tuning in the visual cortex. How could neurons in V1 respond strongly to lines or edges 

of a particular orientation but not to a perpendicular orientation? A feedforward 

processing model was initially championed by Hubel and Wiesel and was supported by 

several different studies. Spike-triggered averaging of simultaneous recordings (a tool 

meant to characterize the response properties of neurons using spikes caused by time-

varying stimuli) from the LGN and V1 demonstrated that ON subfields of simple cells in 
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V1 are excited by ON-centered LGN relay cells (as well as OFF to OFF)7. In addition, 

groups of LGN cells projecting to an orientation column in V1 (an organized region of 

neurons that are excited by line stimuli or certain angles) create a simple-like receptive 

field that is aligned to the V1 column’s preferred orientation8. Hubel and Wiesel also 

discovered complex cells (making up to 75% of the cells in V1), which were thought to 

receive input from several simple cells with similar receptive field orientations but 

different positions6. This feedforward model explains some of the properties of complex 

cells such as motion-sensitive receptive fields, nonlinear responses, position 

insensitivity, and large receptive fields2. However, a purely feedforward model likely 

fails to fully account for the complexity of responses in the visual cortex. Observed 

properties such as cross-orientation suppression and contrast invariance of orientation 

tuning width have invoked new models relying on lateral inhibition and cortical 

feedback, but there is still considerable debate on how necessary these mechanisms 

are to orientation tuning9.  

Despite the decades of visual research, it is apparent that new studies will be 

needed to fully understand the fundamental mechanisms underlying orientation 

selectivity in V1. The contribution of cortical layers, feedback control, and the role of 

spontaneous activity on orientation tuning (addressed in this thesis) will help us 

develop a more comprehensive model of stimulus coding in the primary visual cortex.  

 

Visual area V4 

The macaque visual area V4 is an extrastriate region located primarily on the 

prelunate gyrus of the visual cortex (the lunate and superior temporal sulci and parts of 
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the occipitotemporal gyrus are associated with V4 as well)10. V4 is a mid-tier cortical 

area that is strongly associated with color and shape perception11. Anterograde and 

retrograde tracers have identified that V4 has feedback (modulatatory) connections to 

V2 and V3, intermediate type connections (not fully feedforward or feedback) to DP, 

MT, VIP, FEF, and PIP and feedforward (driving) connections to LIP, FST, MST, TEO, 

TE, and TF12,13. Investigations using fMRI have shown that macaque and human V4 

are homologous, but more work will be needed to fully understand the 

neurophysiological comparisons between the two species10,14,15.  

V4 is classically associated with object recognition in the ventral processing 

pathway, and the area is known to encode a diverse set of stimuli including color16-19, 

depth20-23, motion24,25, and shape26-28. We do not currently understand the complete 

functional role of area V4, but it has been suggested that the area is essential to figure-

ground separation, attentional and contextual modulation, and behavioral 

performance10. V4 likely implements low-level visual features such as lines and edges 

from the primary visual cortex to construct more complicated features associated with 

object recognition, which are then passed toward decision and emotion areas in the 

cortex10. 

In my thesis, I focus on the orientation coding of natural stimuli by neurons in V4. 

Several studies have found prominent orientation selectivity in V4 cells29-33, particularly 

in the interglob cells11,16, which are interleaved between color-selective glob cells16. It is 

likely that orientation domains in V4 do not simply process lines or edges but rather 

encode higher-order visual features such as polar and hyperbolic gratings, angled 

contours, and combinations of color and shape11,28,34. In experiments pertaining to 
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thesis chapters III and IV, we present oriented natural images – containing a wide 

range of edges and contours – in order to elicit robust neural responses in V4.  

Spontaneous cortical activity 

Spontaneous cortical activity is defined as the firing of neurons in the cerebral 

cortex in the absence of any external sensory input. In the 20th century, the canon in 

neuroscience was to label seemingly random spikes of spontaneous activity as “noise” 

in the brain, devoid of any significance. In this paradigm, the evoked spikes that arrive 

from the retina, via the LGN, are added to the noisy spontaneous spikes of the visual 

cortex, and then the higher regions of the cerebral cortex must decode the true signal 

from the noise35. However, in the past 10-15 years, neuroscientists have begun to 

realize that the ongoing activity in the brain cannot be dismissed so easily. In the 

primary visual cortex, only 5-10% of excitatory synaptic input to layer 4 comes from 

feed-forward thalamic signals. A small portion of synaptic input arises from long-range 

feedback inputs, but the vast majority of cortical synapses originate from sources within 

the local network36,37. This suggests that intracortical circuitry may play a dominant role 

in how external stimuli are processed. 

The first major finding that challenged the previous dogma was that 

spontaneous cortical activity is highly structured in space and time38. Using a diversity 

of recording tools – voltage-sensitive dyes39,40, two-photon calcium imaging41, multi-

electrode arrays42, and fMRI43-45 – researchers observed that spontaneous neural 

activity is correlated across regions of cortex and on different timescales46,47. Further 

efforts demonstrated that spontaneous firing rates of individual cells were correlated to 

firing rates of the local network48. In addition, the level of variability in spontaneous 
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firing rates was found to be similar in magnitude to the variability of evoked responses 

to high-contrast visual stimuli49. The importance of spontaneous neural activity was 

further strengthened by the unexpected finding that orientation maps exist even in the 

absence of external stimulation50. Each of these findings support the notion that 

ongoing activity is not simply “noise,” but rather reflects the underlying structural 

organization of the brain51-54. 

 The structure of ongoing neural activity is clearly important; however, a critical 

question remains: does spontaneous cortical activity functionally impact cortical 

processing? There are two proposed models by which the brain could operate in 

regards to spontaneous activity. In one scenario, the spikes created by external visual 

stimulation functionally erase the spontaneous spikes in the visual cortex to create an 

entirely new representation of the visual world55. In the alternative model, feed-forward 

spiking from external stimuli modulates a highly organized spontaneous network, which 

updates an existing representation of the visual world that is continually reverberating 

in the ongoing cortical activity38,56. Recent research has overwhelmingly supported the 

latter hypothesis. A seminal study by Arieli et al.57 demonstrated that the variability of 

evoked responses to repeated stimuli could largely be explained by the fluctuations of 

ongoing activity prior to the stimulation. Further evidence comes from the finding that 

evoked response patterns of the cerebral cortex are similar to firing patterns of the 

spontaneous network51,58. Importantly, it was found that the strength of incoming stimuli 

guides the interaction between ongoing and evoked neural activity. With high contrast 

stimuli, feed-forward thalamic drive dominates neural activity in the visual cortex, and 

conversely, with low contrast stimuli, the structure of feedback and locally controlled 

spontaneous activity plays the dominant role36,59. 
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 This collection of evidence clearly supports a pivotal role for spontaneous 

cortical activity in stimulus processing, but what factors modulate the baseline activity in 

the brain? The main synaptic input to the visual cortex, apart from feed-forward LGN 

signals, arises from feedback control from higher cortical regions to the superficial and 

deep layers of the cortex. Several studies have reported that cognitive factors such as 

attention and expectation of task-related stimuli can modulate ongoing firing rates by 

top-down control60-62. Importantly, this modulation of ongoing firing rates may be 

critically important for behavioral performance. A study by Super et al. demonstrated 

that increased spontaneous firing rates and correlations in the primary visual cortex of 

macaques prior to stimulus presentation resulted in improved performance on a figure-

ground detection task63. However, it is currently unclear if this finding was detection 

task-specific or representative of a more general feature in cortical processing. Indeed, 

a previous study conducted in our lab suggests the former64. We found that when 

neurons in a low firing state immediately preceding a stimulus, the cortical network has 

a greater capacity to discriminate between disparate orientation stimuli. That is, in the 

low pre-stimulus firing state, the tuning of orientation stimuli was non-linearly 

sharpened compared to the high pre-stimulus firing state64. These findings suggest that 

the level of ongoing activity before stimulus presentation may ultimately be important 

for the discrimination performance of the animal. We will directly test this hypothesis in 

chapter II. 
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Synchrony and behavioral state in visual networks  

Behavioral state varies along a continuum ranging from a highly synchronized 

state in slow-wave sleep or deep anesthesia to a highly desynchronized state in the 

alert and actively behaving animal65,66. In sleep or anesthesia, cortical networks 

fluctuate between periods of generalized population firing (“on periods” or “up periods”) 

and periods of generalized silence (“off periods” or “down periods”)67,68. The cyclical on 

and off periods generate large amplitude synchronous waves of electrical activity 

oscillating at frequencies between 0.5 and 4 Hz, called Delta waves, that can be 

observed on EEG69. Along with Delta waves, sleeping animals experience reduced 

muscle tone and rolling eye movements70. As an animal wakes up from sleep or 

anesthesia, the amplitude of Delta waves diminish, muscle tone increases, eye 

movements become behaviorally relevant, and the cortex becomes more 

desynchronized70,71.  

However, cortical state does not simply exist in bimodal form (synchronized vs. 

desynchronized), but rather varies continuously, even within the waking state. In alert 

and behaving animals, neural firing is highly desynchronized, but in quiescent and 

awake animals, neural firing fluctuates in synchronous oscillations51,72-75. It should also 

be noted that the oscillations in awake animals are much less regular than those 

observed during deep sleep or anesthesia. The amplitude and frequency of the up and 

down periods change erratically over time71.  

Two clear questions emerge from these findings: 1) Do synchronous oscillations 

significantly impact neural coding properties? 2) Do these oscillations impact behavioral 

performance? The answer to the first question has been shown to be a decisive ‘yes’ 
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in research conducted on a wide range of anesthetized animals. Firing rates, single 

unit variability and correlated variability have all been shown to be affected by 

synchronous fluctuations51,71,73,76-78. However, much less is known about how 

synchronous fluctuations might impact neural coding in the awake state and even less 

is known about their impact on behavioral performance. In chapters III and IV, I will 

attempt to thoroughly address these questions for the first time. 

 

Restorative effects of rest  

Rest is known to play a critical role in information processing and learning in the 

brain. Previous work has shown that humans demonstrate improvements in learning, 

memory, and perceptual performance following short daytime naps ranging from 10 to 

90 minutes79-85. In two separate studies, human subjects increased their performance 

on declarative memory tasks following naps as short as 6 minutes86,87. In addition, 

human subjects who experienced short periods of light sleep (stages 1 and 2) 

increased their performance on visual discrimination tasks when compared to non-

resting control subjects80,81, further demonstrating the efficacy of light sleep to improve 

behavioral performance.  

Sleep research in animals has the potential to elucidate the neural mechanisms 

contributing to improved performance following rest. Yet, an important limitation in 

previous rodent research is the paucity of appropriate sleep staging. In human studies, 

it is customary to divide NREM sleep into light sleep (stages 1 and 2) and slow wave 

sleep (stages 3 and 4). However, in rodent work, the term “slow wave sleep” is 

commonly used to describe all of NREM sleep88. Moreover, rodents are primarily 
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nocturnal and experience polyphasic, fragmented daytime sleep89,90, making useful 

comparisons to human sleep stages difficult. In this regard, non-human primates have 

the potential to fill the gap between rodent and human investigations of sleep and 

behavioral performance. The rhesus monkey (Macaca mulatta), in particular, is known 

to have consolidated nighttime sleep and exhibit daytime napping with human-like 

sleep stages, making it an ideal animal model to study the effects of resting periods on 

performance91,92. 

It is likely simplistic to say that stages 3-4 are “better” than stages 1-2, or vice 

versa. Most experts theorize that the separate stages of sleep accomplish different 

goals for the brain. For example, stages 1-2 are likely more important for active 

memory consolidation. Sleep spindles (prominent in stages 1-2) are oscillations in the 

thalamocortical network that increase following learning sessions compared to baseline 

and are thought to be critical for active memory consolidation93,94. In addition, sharp 

wave ripples (also more prominent in stages 1-2) are large bursts of hippocampal 

activity thought to be important for bidirectional information transfer between the cortex 

and hippocampus during sleep, likely needed for active consolidation of memories88,95. 

Recent work demonstrated that disrupting slow wave sleep (stages 3-4) and REM 

sleep, while preserving light sleep, did not impair memory performance in a word-pair 

learning task, providing further evidence that stage 2 sharp wave ripples and sleep 

spindles might play a primary role in declarative memory96. Functional magnetic 

resonance imaging and intracranial electroencephaolography studies have 

demonstrated that corticocortical connectivity decreases as humans transition from 

stages 1-2 to stages 3-4 of sleep (as measured by coherence in LFP signals)97-99. 

Increased global connectivity in lighter stages of sleep has been proposed to further 
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promote reorganization of memory traces through the cortex and hippocampus to 

improve declarative memory88. Alternatively, the disconnected networks in stages 3-4 

of sleep may be necessary for important homeostatic mechanisms such as synaptic 

downscaling100,101. In this hypothesis, slow wave sleep renormalizes synaptic weights 

to enable efficient neural encoding following sleep. Indeed, suppression of stage 3-4 

sleep has been shown to negatively affect learning and memory performance102,103, 

and the amount of stage 3-4 sleep in humans correlated positively with memory 

performance on a face-location association task104. 

From this previous research, it is clear that short periods of rest have the 

potential to enhance perceptual performance and the underlying function of cortical 

networks. In chapter IV, I test the ability of monkeys to improve neural and behavioral 

discrimination performance following short naps of 20-30 minutes. 

 

Goals  

Until recently, our understanding of neural coding in the brain has been driven 

by the study of evoked spiking activity in sensory networks. However, the role of 

spontaneous neural activity, which consumes up to 80% of the energy of the brain, has 

often been overlooked105,106. Several research groups have identified that the brain can 

fluctuate between a continuous range of cortical states that have the potential to impact 

neural coding and behavior73,76,107. It has also been demonstrated that responses of 

sensory neurons are not exclusively influenced by sensory inputs but rather reflect 

interactions between external stimuli and the ongoing activity of the brain57; yet, we still 
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know very little about how spontaneous cortical activity influences population coding 

and perceptual performance of behaving animals. 

The insertion of multiple recording electrodes into the visual cortex allows for 

high temporal and spatial resolution investigations of network interactions in cortical 

circuits. We record in the receptive fields of neurons in the visual cortex that 

correspond to stimuli presented on a computer screen in behaving animals. In this way, 

we can relate neural activity of small populations of cells (approximately 10-20 

neurons) to perceptual performance on a trial-by-trial basis. 

My research seeks use these tools to elucidate the impact of spontaneous 

neural activity on information processing in the visual cortex areas V1 and V4 and 

behavioral performance of monkeys (Macaca mullata). Orientation discrimination tasks 

of gratings and natural stimuli will be used to determine: whether and how the state 

of cortical networks before stimulus presentation, as measured by level of 

spontaneous activity and population synchrony, influences the ability of neurons 

to encode incoming orientation stimuli; whether and how behavioral 

performance of the animals is affected by spontaneous neural activity; and 

whether a period of rest can desynchronize the cortical state and improve neural 

coding and behavioral performance. To test these hypotheses, the following specific 

aims will be implemented: 

Specific Aim 1: To determine the impact of pre-stimulus spontaneous neural 

activity on neural coding and behavior in primary visual area V1: Little is known 

about whether and how pre-stimulus firing rates impact network coding and 

perceptual performance in behaving animals. To address this, I analyze two 
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large data sets recorded in the macaque primary visual cortex V1 while the 

animals undergo an orientation discrimination task of sinusoidal gratings. Our 

hypothesis is that the distribution of ongoing states of a network of cells 

can shape the accuracy of population coding and impact the behavioral 

performance of the monkey. Specifically, we expect that when neuronal 

populations are in a ‘low’ pre-stimulus state, they will have a higher capacity to 

discriminate stimulus features, such as orientation, despite their overall 

reduction in evoked response. In addition, we expect that behavioral 

performance will be improved in the low pre-stimulus state. 

 

Specific Aim 2: To determine the impact of trial-by-trial synchronous state on 

neural coding accuracy and behavior in visual area V4: Synchronous waves of 

spontaneous activity are known to exist during rest and during anesthesia. 

Whether fluctuations in local population synchrony during wakefulness play any 

role in modulating the accuracy of sensory encoding and behavioral 

performance is currently unknown. I analyze two data sets in V4 to determine if 

synchronous neural activity impacts neural coding and perceptual performance 

in awake, behaving monkeys. Our hypothesis is that local state fluctuations 

in the awake animal can control trial-by-trial variability in the accuracy of 

population coding and behavioral performance across trials in a visual 

discrimination task. Specifically, we expect that when the local population 

activity is desynchronized, the correlated variability between neurons will be 

reduced, and the network and behavioral performance will be enhanced. 
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Specific Aim 3: To determine the impact of brief resting periods on the 

synchronous state of the brain, neural coding, and behavior in visual area V4: 

Brief resting periods have been shown to improve perceptual performance in 

animals, but little is known about their impact on population synchrony and 

neural coding. I analyze two data sets recorded in V4 while monkeys participate 

in a natural image orientation task. The animals are then allowed to rest for 20-

30 minute periods, before undergoing a second task period. Our hypothesis is 

that a short resting period will desynchronize neural networks and lead to 

improved behavioral performance in subsequent tasks.  
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Structure of this dissertation 

This dissertation is organized into 5 chapters: 

Chapter I (current chapter) provides an introduction to spontaneous neural 

activity in the visual cortex, as well as the research hypothesis and specific aims 

implemented to address my hypothesis. 

Chapter II focuses on experimental findings related to fluctuations of pre-

stimulus cortical activity in visual area V1 and their impact on neural coding and 

behavior. 

Chapter III focuses on experimental findings related to fluctuations in population 

synchrony in visual area V4 and their impact on neural coding and behavior. 

Chapter IV provides the results of my research related to rest, neural synchrony, 

and behavioral performance based on recordings from visual area V4. 

Chapter V provides a summary and general conclusions of the dissertation 

research. In addition, a discussion is provided on future research directions. 
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CHAPTER II: Spontaneous fluctuations in V1 impact network and behavioral 

performance 
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Introduction 

Note: This chapter is based upon: Gutnisky D*, Beaman CB*, Lew S, and Dragoi V. 

Optimal network states for perceptual discrimination. *denotes equal contribution. This 

manuscript is in preparation for submission (Gutnisky and Dragoi recorded the data. I 

conducted the analysis.). 

Despite the fact that spontaneous activity consumes more than 80% of the 

energy budget of the brain, its function remains a long-standing mystery in 

neuroscience106,108. Indeed, most systems neuroscience studies focus on examining 

task-related changes in neuronal activity, thus ignoring the component that consumes 

most of the brain’s energy: spontaneous activity. However, it is well known that waves 

of ongoing population activity continuously sweep across the cortex in various 

directions to potentially influence stimulus coding and behavioral performance. 

Research in recent years has shown that correlated spontaneous activity can change 

the state of neuronal populations involved in stimulus processing to impact behavioral 

performance. Yet, most of these investigations have been conducted using 

electroencephalogram (EEG), magnetoencephalogram (MEG), and fMRI techniques in 

humans63,109-121. The definition of population activity includes the aggregate activity of 

millions of cells of a wide diversity of stimulus tuning and coding properties, possibly 

including subthreshold activity, with heterogeneous contributions from local and long-

range circuits. In addition, a separate series of investigations has been conducted to 

elucidate the single cellular and population mechanisms contributing to spontaneous 

neural activity74,76,78,122-126. These studies have collectively demonstrated that ongoing 

activity can fluctuate rapidly in time to impact neural coding. Despite the clear 
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importance of this previous work, the relationship between single neuron and network 

spontaneous activity with behavioral performance continues to remain elusive. 

Intracellular studies have shown that the membrane potential can dynamically 

change to produce fluctuations in spontaneous activity to adaptively enhance neurons’ 

sensitivity to synchronous inputs while decreasing the sensitivity to temporally 

uncorrelated inputs127. In addition, theoretical and experimental evidence has shown 

that increasing the background synaptic input and neuronal conductance can decrease 

the response gain of in vitro and model neurons, without changing the variability of 

membrane potential fluctuations and spike responses128. More recent work has 

demonstrated that individual cells can rapidly shift between various states of excitability 

to influence stimulus processing, raising the possibility that the state of neuronal 

populations in cerebral cortex can fluctuate rapidly to influence sensory coding and 

possibly behavior 48,53,57,105,122,123,129. In previous research from our group64, we found 

that ongoing neural activity in fixating animals can modulate stimulus coding at the 

network level in a non-linear manner. We demonstrated that when neurons are in a low 

firing pre-stimulus state, they have a greater capacity to discriminate orientation stimuli. 

Nevertheless, it is still unclear whether and how ongoing activity impacts neural coding 

of large networks of cells in a behaving animal. 

To determine if low cortical activity preceding stimulus onset leads to improved 

neural and behavioral performance, we recorded multiple single-units in primary visual 

cortex of awake, behaving monkeys. Specifically, we examined the effects of pre-

stimulus activity on neural coding of orientation responses in the primary visual cortex 

(V1). Briefly, we tested the relationship between the ongoing activity before stimulus 



19 

 

presentation, the population response, and behavioral performance in an orientation 

discrimination task. Our goal was to determine if ongoing activity of nearby neurons 

influences the ability of cortical networks to process orientation signals. In summary, we 

demonstrate that the level of cortical activity across a network of cells impacts both 

neuronal and behavioral performance. 

Methods 

Behavioral Experiments: 

All experiments in this manuscript were conducted in accordance with protocols 

approved by the National Institutes of Health and the Institutional Animal Care and Use 

Committee at The University of Texas Health Science Center at Houston. Three male 

monkeys (Macaca mulatta) were trained in a fixed delayed-match-to-sample task in 

which they had to indicate whether the orientation of two successively presented 4 deg 

circular sine-wave gratings had the same or different orientation. A fourth monkey was 

also trained in the randomized delay experiment. In the fixed-delay task, after the 

monkeys maintained fixation for 100 ms, a target stimulus was flashed for 400 ms. The 

possible target orientations ranged from 0 to 135º in 45º intervals. During a delay of 

1050 ms the screen remained blank and monkeys maintained fixation. In half of the 

trials, the test stimulus had the same orientation as the target (‘match’ condition). In the 

other half of the trials, the target stimulus was randomly chosen within ±5º or ±10º of 

the target (‘non-match’ condition) and flashed for 200-400 ms. In the randomized delay 

task, the stimulus expectation effect is diminished (delay was randomized between 

250-750 ms). We also increased the length of the fixation period to 400ms to be able to 

compare the effects of the pre-target response state in the behavioral performance 
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(Fig. 3E and Fig. 9). All analyses were performed by dividing trials into two groups, low 

spiking and high spiking ongoing activity trials, contingent on whether the neuronal 

activity during the pre-stimulus period (200 ms) was above or below the median pre-

stimulus firing rate (this enables analysis on an equal number of trials in the two 

categories). For all of the recorded neurons, we determined the pre-stimulus activity 

and evoked response magnitude. In addition, we computed the change in performance 

on a session-by-session basis to eliminate potential bias. The number of possible 

combinations of subpopulation of size 1 to n for each session increases with the growth 

rate of a factorial function. As population size increases (e.g., n=13), sessions with 

larger numbers of cells would bias the results as they would weigh more into the pooled 

results. For this reason, we decided to average our results across sessions, and hence 

prevent the bias from individual sessions. 

In all monkey experiments, eye position was monitored using an infrared eye 

tracking system operating at 1KHz (Eyelink Inc.). We examined whether pre-stimulus 

states are associated with changes in the quality of fixation (standard deviation of eye 

position, eye movement velocity, etc.) on the vertical and horizontal axes during the 

pre-stimulus interval, but found that eye movements were not statistically different in 

the low and high pre-stimulus states (P > 0.1, paired t-test). We examined whether 

correct and incorrect behavioral responses were associated with changes in eye 

movements, but failed to detect a significant relationship (P > 0.1, Wilcoxon signed-

rank test, by comparing the standard deviation of horizontal and vertical eye 

movements for correct and incorrect responses). 

Electrophysiological recordings: 
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All experiments were conducted by Sorin Pojoga and Valentin Dragoi using a 

combination of in-house or Crist-grid electrode arrays (up to 6 electrodes) and laminar 

electrodes (Plextrode® U-Probe, Plexon Inc) with 16 equally spaced contacts (100 µm 

inter-contact spacing). They recorded at cortical depths between 200 and 400 µm 

(monkey V1) with the electrode grid and from all depths with the linear electrode array. 

They recorded cells with orientation preferences spanning the entire orientation range 

(between 0-180º). Stimulus presentation was controlled by the Experimental Control 

Module (ECM, FHC Inc.). Neuronal and behavioral events were recorded using the 

Plexon system (Plexon Inc.).  

Real-time neuronal signals were amplified, recorded, and stored digitally with 

Multichannel Acquisition Processor system (MAP, Plexon Inc) at a sampling rate of 

40Khz. Units were identified by visual inspection in an oscilloscope and also listened to 

through a speaker. Waveforms that crossed a user-specified threshold (typically ~4sd 

of the noise) were stored for further offline analyses. The spike waveforms were 

manually sorted using Plexon’s offline sorter software (with waveform clustering using 

parameters such as principle component analysis, spike amplitude, timing, width, valley 

and peak).  

Pearson correlation: 

The Pearson correlation R(x,y) of two time series x(n), y(n), n = 1,2,…,N is given by: 

𝑅(𝑥, 𝑦) =  
∑ [𝑥(𝑛)−𝑥̅](𝑦(𝑛)−𝑦̅]𝑁

𝑛=1

𝜎𝑥𝜎𝑦
 ; 
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where 𝑥̅ and 𝑦̅ are the means of  𝑥 and 𝑦, respectively, and 𝜎𝑥 and 𝜎𝑦 are the standard 

deviations of 𝑥 and 𝑦, respectively. We used the MATLAB function corrcoef to compute 

the Pearson correlation. 

Fisher linear discriminant analysis: 

Fisher linear discriminant (FLD) is a method to reduce the dimensionality of the 

data and to assess the neural classification performance in the low and high pre-

stimulus conditions. We calculated the most discriminant dimension 𝑤∗ as: 

𝑤∗ =  𝑆𝑤
−1(𝑢1 − 𝑢2) 

where 𝑢1 and 𝑢2 represent the mean vectors of spikes for all cells in the target and test 

condition, respectively. 𝑆𝑤
−1 represents the inverse of the total scatter matrix defined by: 

𝑆𝑤
−1 =  (𝑆1 + 𝑆2)−1 

Where 𝑆1 and 𝑆2 represent the scatter matrices for target and test, respectively. 

𝑆1 = (𝑛 − 1) ∗ 𝑐𝑜𝑣(𝑥1)   and   𝑆2 = (𝑛 − 1) ∗ 𝑐𝑜𝑣(𝑥2) 

𝑥1 and 𝑥2 represent the matrices of spikes for the target and test stimuli, respectively. 

This analysis allowed us to find the optimal line direction 𝑤∗ on which to project our 

data. We then plotted histograms in this dimension and fit a normal distribution using 

the fitdist function in MATLAB. To compute the “difference in FLD means” in Fig. 5D, 

we calculated the difference between the means in the fitted distributions. To compute 

the “FLD pooled 𝜎”, we calculated the square root of the average variance of the fitted 

distributions. 

 

The discriminability between two multivariate distributions using the FLD weight vector 

can be quantified with the multivariate generalization of 𝑑2 35,130,131 given by: 
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𝑑2 =  ∆𝜇𝑇𝑄−1∆𝜇; 

Where ∆𝜇 is the vector difference in mean responses between the target and test 

orientation and Q is the pooled covariance matrix. Probability of correct classification 

(“With correlations”) is given by: 

𝑒𝑟𝑓𝑐(−√𝑑2)/2  

“Without correlations” represents the probability of correct classification while ignoring 

the effect of noise correlations using: 

𝑑𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑
2 =  ∆ 𝜇𝑇𝑄𝑑

−1∆𝜇   

where Qd is the diagonal covariance matrix obtained by zeroing the off-diagonal 

elements corresponding to correlations between neurons. The quantity measures the 

information in a dataset of uncorrelated neural response and can be smaller or larger 

than 𝑑2 35. 

 

Results 

We performed multiple-electrode recordings in primary visual cortex (V1) of 

behaving monkeys using custom-made electrode grids and linear arrays (U-Probe132). 

To test whether pre-stimulus fluctuations in ongoing activity are functionally significant 

for behavior, monkeys were trained to discriminate the orientation of sinusoidal gratings 

by deciding whether two successive stimuli (target and test) had the same or different 

orientations (Fig. 1A). After the monkey maintained fixation for 100 ms, a target 

stimulus was flashed for 400 ms and was followed, after a 1050 ms delay, by a test 
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stimulus of random orientation (within 5º or 10º of the target), which was briefly flashed 

for 200-400 ms.  

 

Figure II-1. Experimental setup and firing rate difference by pre-stimulus state.  

(A) Schematic representation of the experimental setup. (B) Neuronal activity during 
the delayed-match-to-sample orientation discrimination task. The gray shaded area 
indicates the interval used to classify trials into low and high pre-stimulus state trials. 
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The colored dots represent the firing of an example neuron in the low (blue) and high 
pre-stimulus trials (red). (C) Histogram of firing rate change between the two pre-
stimulus states. The median difference in firing rate between the two states was 18.46 
± 1.04 spks/s (arrow marks bin). (D) Evoked firing rate of the high pre-stimulus plotted 
as a function of the evoked firing rate in the low pre-stimulus state. Evoked firing rate 
was significantly greater in the high pre-stimulus state (p < 0.0001, paired t-test). (E) 
Auto-correlation of pre-stimulus firing rates for one example cell showing no significant 
correlation in trial-by-trial pre-stimulus firing rates (green shadow represents the 95% 
confidence intervals). (F) Mean correlation in pre-stimulus firing rates between trials for 
the entire population of cells (correlation values are near chance level) (error bars 
represent SEM). 

 

Overall, we recorded up to 13 neurons per recording session and analyzed a 

total of 263 stimulus-responsive cells.  Examples of single-unit responses and stability 

are shown in Fig. 2. To assess the impact of spontaneous activity on behavior, trials 

were divided into low and high pre-stimulus state trials based on the median ongoing 

activity (in the 200-ms interval before the test stimulus presentation) of the neurons 

recorded simultaneously within the same session (Fig. 1B shows an example of a cell 

recorded during the behavioral task in different pre-stimulus response states; see Fig. 3 

for statistics of firing rates during the pre-test period).  We found that the median 

change in firing rate between the two pre-stimulus states was 18.46 ± 1.04 spks/s (Fig. 

1C). We also confirmed previous findings that the evoked firing rate is correlated to the 

pre-stimulus firing rate46,48,64. As expected, the evoked firing rate was significantly 

greater in the high pre-stimulus state (Fig. 1D) (38.36 ± 2.17 spks/s vs. 34.24 ± 1.93 

spks/s; P < 0.0001, paired t-test). Next, to determine if the ongoing activity state 

corresponds to a general state of excitability in the network, we investigated whether 

the pre-stimulus firing rate was correlated across trials. To this end, we computed the 

auto-correlation of the pre-stimulus firing rates across trials for each cell in our 

population and found that correlation levels not significantly different from chance level 
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(P < 0.05, Wilcoxon rank-sum) (Figs. 1E-F), suggesting that the network undergoes 

seemingly random fluctuations in pre-stimulus activity through time. 

 

Figure II-2. Neural stability over the recording session.  

After dividing each session into ten blocks, we calculated the mean firing rate during 
the delay period. We observed that 99% of cells exhibited stable firing rates throughout 
the recording session (P > 0.05, Pearson correlation of each neuron over the ten trial 
blocks). 
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Figure II-3. Distribution of mean firing rates in the low and high pre-stimulus 
periods for the neurons recorded in the behavioral experiments.  

(A) Mean firing rate in the high pre-stimulus state plotted as a function of the mean 
firing rate in the low pre-stimulus state. (inset) Mean firing rate for low and high pre-
stimulus conditions (P < 0.0001, Paired t-test). 

 

We determined that the pre-stimulus state of individual neurons is difficult to 

predict in time, yet, it is still unknown whether spontaneous activity is correlated among 

neurons in our population. To explore this question, we removed each cell from our 

simultaneously recorded population and computed the probability that individual cells 

share the same pre-stimulus state as the remaining population (Fig. 4). That is, for 

each neuron, we first normalized the firing rate between 0 (minimum firing rate) and 1 

(maximum firing rate; independently for each neuron). Then, we computed the median 

firing rate for each cell and categorized the cell into the low pre-stimulus state if the 

firing rate was below the median, or alternatively, into the high pre-stimulus state, if the 

firing rate was above the median. We next performed a similar analysis to find the 



28 

 

mean normalized rate of the remaining population (i.e. for each cell of the population, 

we normalized the activity between 0 and 1 and then calculated the mean normalized 

activity) (Fig. 4A).  

 

Figure II-4. Ongoing activity of individual cells in correlated to the population 
activity.  

(A) (Top) The firing rate of one example cell normalized between 0 and 1 for 200 trials. 
The red dotted line represents the median normalized firing rate. Trials with firing rates 
below the median are placed in the low pre-stimulus firing rate group and trial above 
the median are placed in the high pre-stimulus category. (Bottom) The mean firing rate 
of the remaining simultaneously recorded population of cells (excluding the example 
cell) for this example session, normalized between 0 and 1. Trials with firing rates 
below the median are placed in the low pre-stimulus firing rate group and trial above 
the median are placed in the high pre-stimulus category. For this example cell, the 
probability of sharing the same pre-stimulus state with the remaining population is p = 
0.75. (B) Histogram of the probability of same state for the entire set of cells for all 
sessions. The dotted line represents the chance probability level of 0.5 for a cell to 
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share the same pre-stimulus state as the population. The mean probability is μ=0.59, 
which is significantly greater than chance (P<0.0001, Wilcoxon rank-sum). (C) Percent 
change in behavioral performance (low pre-stimulus state vs. high pre-stimulus state) 
plotted against the probability of same pre-stimulus state for each neuron. The two 
variables are significantly correlated (r = 0.36, P < 0.0001, Pearson correlation). The 
black line represents a simple linear regression (R2 = 0.13). 

 

Then, we determined the probability of each cell being in the same pre-stimulus 

state as the population across trials. It can be appreciated that some cells are highly 

correlated to the population, while other cells are less correlated, in agreement with 

previous literature133. Overall, the mean probability of same state for the entire data set 

was μ=0.59, which was significantly greater than chance level (Fig. 4B) (P < 0.0001, 

Wilcoxon rank-sum), thus demonstrating that spontaneous state is significantly 

correlated among neurons. In previous work133, it has been shown that neighboring 

neurons can differ greatly in their coupling to the population, but whether the 

relationship of individual cells to population activity is predictive of behavioral 

performance remains unknown. To address this question, we compared the behavioral 

performance in the low vs. high pre-stimulus states to the probability for each cell of 

sharing the same state as the population. For each cell, we divided the trials into two 

groups, low and high pre-stimulus, based on whether the pre-stimulus firing rate was 

below or above the median pre-stimulus firing rate across trials. We then analyzed the 

animals’ behavioral performance in the low and high trials and compared the % change 

in performance (low vs. high) to the probability of each cell being in the same state as 

the population.  As demonstrated in Fig. 4C, we found a significant relationship 

between behavioral performance and how tightly coupled individual neurons were to 

the population (r = 0.36, P < 0.0001, Pearson correlation). 

Behavioral performance improves in the low pre-stimulus condition 
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To further explore the impact of spontaneous activity on behavioral performance, 

we analyzed our population data in terms of the number of cells used to determine the 

pre-stimulus state. For each session, we analyzed all possible combinations of 

neuronal subpopulations of size 1 to n (n is the number of simultaneously recorded 

cells within a session). For instance, for a population of three cells – A, B, and C – 

there are three possible sets of individual cells (A, B, and C), three possible sets of two 

cells (i.e., AB, AC, BC), and one set of three cells (ABC) (Fig. 5A). For each set of 

neurons, we calculated the mean normalized pre-stimulus activity across all the cells 

within each set (independently for different population sizes) and divided trials into low 

and high pre-stimulus activity, as described previously in this chapter. Subsequently, 

we compared the behavioral performance for low and high pre-stimulus states as a 

function of population size. 

Given previous evidence that spontaneous cortical activity influences neuronal 

response gain and network performance in fixating animals64,128, we tested whether 

behavioral performance would be impacted by the level of ongoing activity before 

stimulus presentation. First, we determined that orientation discrimination performance 

was improved in the low pre-stimulus state when the relative difference between the 

target and test (Δθ) was ±5º (pooling the positive and negative angles) in N=11 

sessions (we excluded 4 sessions with performance in non-match trials lower than 50% 

correct responses; P < 0.0001, Wilcoxon rank-sum at highest population level; 

F(1,103)=23.3; P < 0.0001; two-way repeated measures ANOVA). Similar results were 

observed when Δθ was ±10º in 29 sessions (P < 0.0001, Wilcoxon rank-sum at highest 

population level; F(1,425)=104.4; P < 0.0001, two-way repeated measures ANOVA) 

(Fig. 6; see also Fig. 7 for individual animal performance). Next, we investigated if the 
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modulation of behavioral performance by pre-stimulus activity could be explained by 

top-down anticipation of the test stimulus. That is, could the animals learn the fixed 

delay duration and optimize their cortical activity just before stimulus presentation 

(200ms before onset) to improve discrimination performance? To address this 

question, we modified our experimental approach by randomizing the target-test delay 

interval (between 250 and 750 ms) (Fig. 8A). We found that behavior was improved in 

the low pre-stimulus condition for both the ±5º (P < 0.05, Wilcoxon rank-sum at highest 

population level; F(1,259)=42.14, P<0.0001; two-way repeated measures ANOVA) and 

the ±10º discriminations (P < 0.005, Wilcoxon rank-sum at highest population level; 

F(1,251)=55.7; P < 0.0001, two-way repeated measures ANOVA) (Fig. 8B-D). These 

findings likely indicate that the modulation of neuronal responses and behavioral 

performance by ongoing activity cannot be entirely explained by top-down effects, such 

as expectation or attention33,134,135.  
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Figure II-5. Ongoing activity influences behavioral performance in an orientation 
discrimination task.  

(A) A diagram depicting the analysis method for an example population of 3 cells. For 
n=1, we computed the mean pre-stimulus firing rate individually for each neuron (μA, μB, 

and μC) and then calculated the average behavioral performance in the low and high 
pre-stimulus trials, averaged across the three cells for each group (Beh1

low and 
Beh1

high). For n=2, we computed the mean normalized pre-stimulus activity for each cell 
pool of size 2 (μAB, μAC, and μBC), divided the trials into high and low groups based on 
each pool, and then calculated the average performance in the low and high pre-
stimulus trials (Beh2

low and Beh2
high). For n=3, we computed the mean normalized 

response for all three cells (μABC) and then split the trials to compare behavioral 
performance the low and high pre-stimulus groups (Beh3

low and Beh3
high). (B-E) 

Behavioral performance is modulated by the ongoing activity state; a single session 
(panels B and D); all sessions (panels C and E). The behavioral performance 
associated with each ongoing activity state in each session was normalized by dividing 
the performance in each state by the average session performance (i.e. irrespective of 
pre-stimulus state). The pre-stimulus state was determined based on the pooled activity 
of neural populations of varying size (conducted using the method depicted in panel A). 
The difference in discrimination performance between low and high pre-stimulus states 
was greater when the population size increases. Figs. 2A and 2B correspond to 
orientation differences between target and test of ±5º; Panels 2C and 2D correspond to 
orientation differences between target and test of ±10º. “All sessions” in Fig. 2B 
includes data from monkeys 1 and 2 (N = 24 sessions). “All sessions” in Fig. 2D 
represents data from monkeys 1, 2, and 3 (N = 42 sessions). Error bars represent 
s.e.m of session performance for each population size. In examples B and D, full 
population sizes of n=7 and n=9 were removed from the examples distributions (±5º 
and ±10º, respectively) for clarity. (F) Behavioral improvement in the low vs. high pre-
stimulus conditions is consistent in both the fixed delay and random delay conditions at 
±5º and ±10º orientations (* P < 0.05, ** P < 0.01, *** P < 0.001; Wilcoxon signed-rank 
test). Results in F-H were conducted at a population of 5 to include most sessions in 
the analysis (G) Behavioral improvement in the low vs. high pre-stimulus state for 
different pre-stimulus periods. The x-axis represents the time relative to the onset of the 
test stimulus. Pre-stimulus state was assessed based on the pre-stimulus interval in 
200 ms steps (during the delay period). The improvement in discrimination 
performance in the low pre-stimulus state occurs only when assessing the 200 ms 
period before test presentation. (** P < 0.01; n.s. = non-significant; Wilcoxon signed-
rank test). Error bars represent s.e.m.  (H) Pre-test influences the behavior more than 
pre-target. The low pre-test behavioral performance was significantly better than the 
high pre-test condition (P < 0.05, paired t-test). Behavioral performance was higher in 
the low pre-target state, but overall, the difference was not significant. N = 13 sessions 
from random delay data. Fixed delay data was included because we only had 100 ms 
fixation before target presentation.) 

 

Due to the fact that fixed and random delay results were similar, we pooled the 

data sets together for the remaining analyses. In summary, we found that behavior was 
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significantly improved in the low pre-stimulus state in N=24 sessions (P < 0.0001, 

Wilcoxon rank-sum at highest population level; F(1,355)=56.1, P < 0.0001, two-way 

repeated measures ANOVA) (Fig. 3B-C); similar results were observed when Δθ was 

±10º (N=42 sessions; P < 0.0001, Wilcoxon rank-sum at largest population level; 

F(1,697)=164.6, two-way repeated measures ANOVA, P < 0.0001) (Fig. 5D-E). We 

next determined that increasing the population size (in order to obtain better estimates 

of networks’ pre-stimulus state) yields a larger difference between the behavioral 

performance in the low and high pre-stimulus states (Figs. 5B-E). That is, the difference 

in discrimination performance in the low vs. high pre-stimulus activity conditions was 

amplified when the number of cells used to measure the network pre-stimulus state 

was increased (r=0.84, P < 0.0001; Pearson correlation for ±5º and r=0.93, P < 0.0001; 

Pearson correlation for ±10º), possibly due to a better estimation of the ‘true’ cortical 

state in larger pools of neurons. A summary of the results for each behavioral condition 

can be observed in Fig. 5F (Wilcoxon signed-rank, population N=5 is displayed to 

include most sessions in the analysis). 
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Figure II-6. Ongoing activity influences behavioral performance in an orientation 
discrimination task with fixed delay period.  

Three monkeys were trained in a behavioral task as noted in Fig. 1A. Behavioral 
performance is modulated by the ongoing activity state; single sessions (panels A-B); 
all sessions (panels C-D). Upper panels in A and C correspond to orientation 
differences between target and test of ±5º; lower panels correspond to orientation 
differences between target and test of ±10º. Behavioral performance was higher in the 
low spontaneous group (P < 0.0001), Wilcoxon rank-sum at highest population level; 
F(1,103)=23.3; P < 0.0001; two-way repeated measures ANOVA) for ±5º 
discrimination. Similar results were found for the ±10º discrimination experiment (P < 
0.0001, Wilcoxon rank-sum at highest population level; F(1,425)=104.4; P < 0.0001, 
two-way repeated measures ANOVA). The 5 degree orientation panel C includes data 
from monkeys 1 and 2. The 10 degree panel D represents data from monkeys 1, 2, and 
3. Error bars represent s.e.m of session performance for each population size. 

 

We further analyzed whether the difference in behavioral performance could be 

predicted based on pre-stimulus neural activity further from the test presentation (i.e. 
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400, 600, and 800 ms prior to the stimulus). As shown in Fig. 5G, we found that only 

the ongoing activity immediately preceding the test stimulus presentation was able to 

predict behavioral performance – analyzing the pre-stimulus period beyond 200 ms did 

not provide information about behavioral performance. The results described above 

demonstrate that we can predict a monkey’s response based on the ongoing activity 

preceding the test stimulus. This raises the issue of whether this prediction occurs only 

in relation to the presentation of the stimulus closest in time to the behavioral response 

(i.e., the test stimulus) or is common to both the target and test stimuli. In principle, 

since behavioral decisions in the discrimination task are likely made based on a 

temporal comparison between neuronal responses to the target and test, we reasoned 

that analyzing the ongoing activity preceding the target will likely demonstrate similar 

results. We examined this issue by conducting a complementary analysis of behavioral 

performance in relation to neuronal firing 200 ms before target presentation (conducted 

with random delay data that included a longer 300 ms fixation window). We found a 

significant difference between behavioral performance in the low versus high pre-test 

conditions (P < 0.05, Wilcoxon signed-rank), but not for the pre-target condition. To 

further explore this question, we repeated the analyses associated with Figs. 5B-E at 

all population levels and found (Fig. 9) that behavioral performance was not 

significantly higher in the low pre-target state when the relative difference between the 

target and test (Δθ) was ±5º (P = 0.40, Wilcoxon rank-sum at highest population level). 

We also did not find a significant difference between the high and low pre-target states 

when Δθ was ±10º (P = 0.09, Wilcoxon rank-sum at highest population level). Taken 

together, these results suggest that fluctuations in ongoing activity before the 

presentation of stimuli that are more remote with respect to decision making have a 
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diminished effect on behavioral performance. In addition, the target stimulus did not 

rotate across trials, so the animals may have made a direct categorization of the test 

stimulus to accomplish the behavioral task. 
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Figure II-7. Ongoing activity influences behavioral performance in an orientation 
discrimination task for each monkey.  

The low pre-stimulus group performs significantly better than the high pre-stimulus 
group in each monkey (P < 0.005, Wilcoxon rank-sum at highest population level, 
F(1,65)=63.7; P < 0.0001, two-way repeated measures ANOVA; P < 0.0001, Wilcoxon 
rank-sum at highest population level, F(1,79)=75.8; P < 0.001, two-way repeated 
measures ANOVA; P < 0.005, Wilcoxon rank-sum at highest population level, 
F(1,279)=47.9; P < 0.0001; two-way repeated measures ANOVA, respectively). Each 
session is from the fixed delay recordings. Error bars represent s.e.m. 

 

 

Figure II-8. Ongoing activity influences behavioral performance in an orientation 
discrimination task with random delay period.  

(A) One monkey was trained in an orientation discrimination task with a random delay 
between target and test presentation (in the 250-750 ms range). Behavioral 
performance is modulated by the pre-stimulus response state before test presentation. 
Example of a single session (B) and normalized behavioral performance for all 
recorded sessions for ±5º (C) and ±10º (D) discrimination. The responses of each 
neuron were grouped depending on the level of pre-stimulus activity into ‘low’ and ‘high’ 
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groups.  Behavioral performance was higher in the low spontaneous group for ±5º 
discrimination (P < 0.05, Wilcoxon rank-sum at highest population level; 
F(1,259)=42.14, P<0.0001; two-way repeated measures ANOVA).  Similar results were 
found for the ±10º discrimination experiment (P < 0.005, Wilcoxon rank-sum at highest 
population level; F(1,251)=55.7; P < 0.0001, two-way repeated measures ANOVA). We 
analyzed 103 neurons. This figure represents data from monkey 4 of our study. Error 
bars represent the s.e.m. of session performance for each population size. 

 

 

Figure II-9. Pre-target activity influences behavioral performance.  

Behavioral performance was higher in the low pre-target state when the relative 
difference between the target and test (Δθ) was 5º (P = 0.40, Wilcoxon rank-sum at 
highest population level). We did not find a significant difference when Δθ was 10º (P = 
0.09, Wilcoxon rank-sum at highest population level). The 5 degree orientation data 
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includes data from monkeys 1 and 2.  The 10 deg data represents data from monkeys 
1, 2 and 4.  Error bars represent s.e.m. 

 

Neural discrimination is improved in the low pre-stimulus condition 

We demonstrated that behavioral performance was increase in the low pre-

stimulus state; thus, we reasoned that if the animals pool the activity in the primary 

visual cortex to make decisions, then fluctuations in the network information should 

also be improved in the low pre-stimulus state. To assess the ability of our recorded 

network to discriminate orientations, we conducted an optimal linear classification, 

Fisher linear discriminant (FLD), by finding the optimal multi-dimensional projection of 

the data (number of dimensions equal to number of simultaneously recorded neuron in 

a session) into one-dimensional space35,136 that best separates the two different stimuli. 

The FLD projection maximizes the distance between the means of two groups of data 

while minimizing the variance within each group137. In our case, we sought to analyze 

the separation between the target and test stimuli separately, in both the low and high 

pre-stimulus conditions (see Methods). Fig. 10 represents data from one example 

session with 13 simultaneously recorded neurons (Fig. 10A). We have displayed the 

number of spikes of one pair of cells in all trials for both the target and test stimuli (Fig. 

10B). The axes of the histograms are plotted perpendicular to the dimensions that 

maximize the separability between target and test stimuli (green lines), and the solid 

curves represent one-dimensional Gaussian fits for the target and test distributions. In 

this way, one can observe the maximum linear separation between the target and test 

distributions for the low and high pre-stimulus states in a 2-cell example. Fig. 10C 

represents the same FLD analysis conducted for the entire population of 13 cells. In 

this example session, you can appreciate that there is greater separability between the 
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target and test stimuli in the low pre-stimulus condition vs. the high pre-stimulus 

condition, in accordance with our behavioral results. 

 

Figure II-10. Fisher linear discriminant (FLD) analysis from an example session. 

(A) Raster plots for 13 cells recorded simultaneously in the session. Each dot 
represents an action potential. Horizontal bars at the bottom represent stimulus 
duration for target and test. The random delay period has been truncated to align the 
test responses. (B) Example FLD of one cell pair (Neuron 3 and 9). Each circle 
represents the total number of spikes elicited during the target or test stimulus. Each 
histogram is plotted on the fisher linear discriminant axis which maximizes the 
difference between target and test relative to the variance of the responses. The black 
and blue (black and red for the high pre-stimulus condition) curves represent one-
dimensional Gaussian fits for the target and test distributions, respectively. The green 
line represents the decision boundary.  (C) Example FLD for the full population of 13 
cells. You can appreciate that there is a greater difference between the distributions in 
the low pre-stimulus trials vs. the high pre-stimulus trials. 
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The population discriminability between two multivariate distributions using the 

FLD method can be quantified by a single variable, 𝑑2: 

𝑑2 = (𝒙̅𝐴 −  𝒙̅𝐵)𝑇𝑄−1(𝒙̅𝐴 −  𝒙̅𝐵) 35 

Where 𝒙𝑨 and 𝒙𝑩 represent the vector of mean spikes in all trials for target and test, 

respectively, and 𝑄−1 represents the inverse of the pooled covariance matrix. The 

probability of correct classification (PCC) is directly related to 𝑑2 by the complementary 

error function (see Methods for further details). We computed the PCC for each session 

at all population sizes for both the low and high pre-stimulus conditions (Fig. 11A) and 

found that PCC was significantly greater in low spontaneous activity trials (P<0.05; 

paired t-test computed at the highest population level for each session). We also 

compared the difference between decoder performance at small (N = 2) and large (N = 

12) population sizes and discovered that the performance difference was greater at 

large population sizes (P < 0.05, Bootstrap significance test) (Fig. 11A inset). 
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Figure II-11. Population d’ analysis and noise correlations. 

(A) The probability of correct classification (PCC) as a function of population size. The 
PCC was significantly higher in the low pre-stimulus case (F(1,164)=9.32; P < 0.005; 
two-way repeated measures ANOVA). (inset) The difference in classification 
performance between low and high at a small population of n=2 (orange) and at a large 
population of n = 12 (blue). The performance difference was greater for the large 
population (P < 0.05, bootstrap significance test)    (B) Noise correlations of the high 
and low pre-stimulus states. Noise correlations were significantly higher in the high pre-
stimulus state (P<0.05; paired t-test). (C) Probability of correct classification between 
the high and low pre-stimulus states. “With correlations” represents data using the 

following equation: 𝑑2 =  ∆𝜇𝑇𝑄−1∆𝜇; Probability of correct classification = 𝑒𝑟𝑓𝑐(−√𝑑2)/
2 (Averbeck and Lee 2006). “Without correlations” represents the probability of correct 

classification when ignoring the effect of noise correlations using, (𝑑𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑
2 =

 ∆ 𝜇𝑇𝑄𝑑
−1∆𝜇), where 𝑄𝑑 is the diagonal covariance matrix. In each condition, there was 

a statistically significant difference between high and low pre-stimulus conditions (* 
P<0.05; paired t-test). (D) The magnitude of the difference in FLD means (left) and the 

magnitude of the pooled standard deviation (𝜎) of the FLD (right). In the low pre-
stimulus condition, the difference in means was significantly greater (P<0.0001; paired 
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t-test). The average variance was also higher in the low pre-stimulus condition 
(P<0.0001; paired t-test), but this had less impact on the population d’ overall. Analysis 
in this figure was conducted on all cells recorded at ±5º. 

 

There are three possible explanations for improved neural discrimination in the 

low pre-stimulus state that we wished to explore: change in correlated variability, higher 

difference in the mean responses in the FLD dimension, or decreased variance in the 

FLD dimension. First, because information about orientation depends on each neuron’s 

response profile and also on the correlated activity among neurons 47, we analyzed 

noise correlations in both the high and low pre-stimulus state. One might postulate that 

noise correlations would be larger in the high pre-stimulus state due to a higher evoked 

firing rate (Fig. 1D)138 and provide a possible explanation for decreased behavioral 

performance in the animals130,139,140 and indeed, we found a significant difference in 

correlations between the two states (0.116 ± 0.013 vs. 0.041 ± 0.011, high vs. low pre-

stimulus) (Fig. 11B, P<0.05, paired t-test). We next repeated our decoder analysis at 

the full population level for each session using the previously applied method, “with 

correlations,” along with a new analysis to determine the amount of information that 

would be extracted from our population of neurons using a decoding algorithm that 

ignored correlations, “without correlations.” We found that destroying correlations 

decreased the probability of correct classification, but against our expectations, the 

difference in classification performance between low and high pre-stimulus states 

remained (P<0.05; paired t-test) (Fig. 11C, right). Population d’ can be deconstructed 

into the difference in mean responses in the most discriminant dimension (FLD) divided 

by the square root of the average variance in the same dimension35. In this way, we 

could observe whether the decoder performance was greater in the low pre-stimulus 

condition due to a greater difference in FLD means or a smaller FLD pooled standard 
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deviation. In our data, we found that classification performance was better in the low 

pre-stimulus condition due to a greater difference in FLD means (P<0.0001; paired t-

test) (Fig. 11D). The FLD pooled standard deviation was larger in the low pre-stimulus 

condition, but ultimately, this difference had a smaller total impact on discrimination 

performance than the difference in FLD means. 

 

Discussion 

We have demonstrated that fluctuations in pre-stimulus ongoing activity can 

impact neural and behavioral discrimination performance. Altogether, our results 

indicate that in order to correctly discriminate or recognize a stimulus, cortical networks 

have to be in an appropriate state of excitability, possibly representing levels of network 

‘preparedness’ to facilitate the processing of incoming stimuli. Our work builds on the 

growing body of literature dedicated to spontaneous cortical activity by examining the 

impact of low and high pre-stimulus states on population coding in behaving animals. 

The fact that spontaneous waves of cortical activity exhibit similar spatio-

temporal characteristics as the stimulus-evoked response has recently made 

researchers wonder if ongoing activity can modulate behavioral performance. Previous 

studies examining this topic were performed in human subjects using 

electroencephalograms EEG: 111,112,115,117-119,141, magnetoencephalograms MEG: 

114,116,120,121,142, and functional magnetic resonance imaging fMRI: 110,113,143,144. The 

most important limitation of these studies is the low spatial and temporal resolution of 

the techniques used to assess the functional role of ongoing activity. A separate series 

of important efforts was conducted to investigate single-unit and network coding and its 
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relationship to spontaneous cortical activity74,76,78,122-126. Even though these studies 

have collectively concluded that pre-stimulus activity modulates behavioral 

performance in a variety of tasks, the dynamics of ongoing activity at the single neuron 

and population level and their impact on behavior have remained unknown.  Our study 

demonstrates that spontaneous neural activity is correlated among neurons along a 

continuum. We found that neurons that covary strongly with the population are more 

predictive of behavioral performance compared to neurons that fire more 

independently. We also demonstrate that decoding the population response before 

stimulus presentation can be used to predict subsequent neuronal performance and 

that a large proportion of behavioral variance can be attributed to the internal state of 

the local circuit. Importantly, the prediction of the behavioral response was not altered 

when the animal was unable to estimate the timing of occurrence of the test stimulus. 

Thus, top-down stimulus expectation does not seem to play a dominant role in altering 

local ongoing activity to impact behavioral performance. However, future research will 

elucidate whether the relationship between fluctuations in ongoing activity, network 

coding, and behavioral performance is a solely a characteristic of primary sensory 

areas or whether this represent a general coding strategy of the brain. 

Our behavioral results demonstrated the greatest difference between low and 

high pre-stimulus states at the largest population sizes. Thus, we chose to focus our 

neural analysis on well-known population coding techniques, namely, Fisher linear 

discriminant (FLD) and population d’35,136, which had the potential to elucidate the 

neural correlates for our behavioral results. Using these methods, we were able to 

show that even though the population of neurons exhibited lower evoked firing rates in 

the low pre-stimulus state, they were able to transmit more information about stimulus 
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orientation to increase network discrimination accuracy. FLD analysis computes the 

axes that maximize the separation between these two classes of data, a task which the 

brain must similarly accomplish to receive reward. We explored the three main 

components of linear discriminant analysis which can lead to improved neural 

discrimination: changes in correlated variability, increased difference in mean 

response, and decreased variance in response35. It has long been reported that 

correlated firing between neurons can serve to constrain the schemes by which the 

cortex encodes and decodes information in incoming sensory stimuli139,145-147. We 

provided an estimate of the effect of correlated trial-to-trial response on information 

encoding by computing the information that would be contained in our neural 

population if the cells were uncorrelated, 𝑑𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑
2 . Through this measure, we 

determined that the information in the uncorrelated networks was decreased for both 

the low and high pre-stimulus states, yet the difference in the probability of 

classification between the states remained (Fig. 11C). Thus, we discovered that higher 

correlations did not preferentially affect network performance in the high pre-stimulus 

state (Fig. 11C). In addition, we demonstrated that a greater difference in the mean 

response in the most discriminant dimension (FLD) led to improved neural 

discrimination in the low pre-stimulus state. This result in behaving animals is in 

accordance with theoretical work128 and our previous work in fixating animals 

demonstrating an increase in response gain and neural discrimination in the low pre-

stimulus state64. The results suggest that neural populations in primary visual cortex 

fluctuate randomly between various states of excitability and become “optimized” for 

discrimination when cortical activity is low. That is, when pre-stimulus activity is low in 
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V1, neurons transmit more information about the stimulus orientation to improve neural 

and behavioral performance. 

In conclusion, our work represents the first effort to examine the effect of pre-

stimulus firing rates on population coding and behavior in the primary visual cortex. We 

found that networks in a low pre-stimulus state have improved discrimination 

performance that correlates with improved behavioral performance. Future work should 

further examine the structure of spontaneous activity and if it similar correlates to 

performance in higher cortical areas.  
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CHAPTER III: Population synchrony in cortical networks modulates network and 

behavioral performance 
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Introduction 

 

Note: This chapter is based upon: Beaman CB, Eagleman SL, and Dragoi V. 

Population synchrony in the cortex modulates network and behavioral performance. 

This manuscript is in preparation for submission (Eagleman SL recorded the data. I 

conducted the analysis). 

 

The dynamics and responsiveness of populations of brain cells in alert animals 

vary widely across different behavioral contexts74,125,148-150. Thus, even in the absence 

of external stimulation, the state of the brain can fluctuate between synchronized 

activity in quiescent animals and highly desynchronized activity during 

alertness75,123,151. Although the large changes in brain activity and transitions between 

sleep and waking have been well characterized73,76,152, the functional impact of local 

fluctuations in population activity during alertness has remained elusive. Indeed, even 

though global fluctuations in brain state induced by factors such as arousal or attention 

have been documented71,153, whether and how rapid changes in local population 

activity during alertness influence both the capacity of networks of neurons to encode 

sensory information and the behavior of the animal have remained unknown. How do 

fluctuations in the synchrony of local population spiking activity impact the variability in 

sensory coding and perceptual performance? To investigate this relationship, we 

conducted recordings in area V4 of primates participating in a match-to-sample 

orientation discrimination task (Fig. 1A). Two monkeys performed an image orientation 

discrimination task (n=28 sessions) while multiple neurons (up to 17) were recorded 

simultaneously. In each trial, two identical natural scenes (target and test) were flashed 
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for 367 ms each, and were separated by a 1250 ms delay (Fig. 1a). The test image 

was rotated by 0° (match condition), or 2°, 3°, 5°, 10°, or 20° (non-match condition) with 

respect to the target. Our strategy was to quantify the rapid fluctuations in ongoing 

population activity during the delay period, and then examine whether these 

fluctuations help identify the optimal network states for signal discrimination task 

performance. We reasoned that the operating mode of cortical circuits would be 

optimized in the more alert, desynchronized state, reflecting improved neural coding 

and behavioral performance. 

 

Methods 

The experimental approval protocol and surgical procedure was conducted as in  

Chapter II, but in this case, the recording chamber was cemented over area V4 (using 

MRI for localization). 

Behavioral task: 

Two male rhesus monkeys (Macaca mulatta) were trained in a delayed-match-

to-sample task in which they had to indicate whether two successively presented 

natural images had the same or different orientation (Fig. 1A; n = 28 sessions). After 

monkeys fixated for 400 ms, a target stimulus was flashed for 367 ms, and after a delay 

period of 1250 ms, was followed by a test stimulus flashed for 367 ms. In approximately 

half of the trials, the test stimulus had the same orientation as that of the target (‘match’ 

condition). In the other half of the trials, the test orientation was rotated from the target 

by 2°, 3°, 5°, 10°, or 20° (‘non-match’ condition). Match and non-match trials were 
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randomly interleaved. Animals were trained to release a bar on match trials and hold 

the bar on non-match trials in order to receive a juice reward. 

 To calibrate our measure of population synchrony, in a subset of sessions (n=6) 

we allowed the animals to rest quietly in the dark for 20-30 minutes following the 

behavioral task, while electrophysiological recordings continued. During this rest 

period, a white background noise was played on a speaker to prevent external sounds 

from arousing the animals. We monitored eye position using the eye tracker and night 

vision video monitoring. The timing of rest was carefully controlled such that monkeys 

began the rest at approximately 2 pm, which is around the time when monkeys 

naturally take daytime naps154. 

Visual stimuli: 

Gray-scale natural stimuli (e.g., deer eating grass, water buffalo, jungle scenes) 

were generated with Psychophysics Toolbox using MATLAB and presented on a 19” 

CRT color video monitor (60 Hz refresh rate). Only one image was presented in each 

session. Stimuli ranged in size from 8 to 10 degrees, and were presented at 3-10 

degrees of eccentricity. Stimulus location and size were optimized in each session such 

as to stimulate the largest number of simultaneously recorded cells. Stimulus 

presentation was recorded and synchronized with the neural data using the Experiment 

Control Module programmable device (ECM, FHC Inc.) 

Eye movement control analyses: 

On each trial, monkeys were required to fixate on a central point (0.4 deg in 

size) within a 2° fixation window. Eye position was continuously monitored by using an 
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eye tracker system operating at 1 kHz (EyeLink II; SR Research). Eye position was 

calibrated at the beginning of each experiment with a 5-point calibration procedure. We 

examined whether states of population synchrony were associated with changes in the 

quality of fixation by measuring the mean eye position, standard deviation of eye 

position, and eye movement velocity along the horizontal and vertical axes during the 

delay period. We found that eye movements were not statistically different between the 

synchronized and desynchronized cortical states (P > 0.1). 

Electrophysiological recordings: 

Single unit electrophysiological recordings were conducted as described in 

Chapter II of this thesis. 

Raw LFPs were collected at 1 KHz sampling frequency and a second-order 

notch filter was implemented to remove the 60 Hz line noise. The LFP power was then 

computed for each recording channel independently using the MATLAB R2015b 

function bandpower, which calculates the average power via a rectangle approximation 

of the integral of the Power Spectral Density estimate. The power was then z-scored 

across trials. The mean z-scored power was taken across channels for each band in 

the synchronized and desynchronized trials such that the mean of the combined groups 

should always be zero. The smallest frequency used to compute LFP power was 2 Hz 

due to the 1-second inter-stimulus window limitation. A rolling window band of 5 Hz was 

moved in 1 Hz steps to generate Fig. 4a. Physiologic bands were used to construct 

Fig. 4b (Delta = 2-4 Hz, Theta = 4-8 Hz, Alpha = 8-12 Hz, Beta = 12-30 Hz, Gamma = 

30-100 Hz). Power ratio was computed as the LFP power in the low band (2-10 Hz) 

divided by the LFP power in the high band (10-100 Hz). Trials were split into two 
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groups based on the median power ratio. One session was removed from the analysis 

due to corrupted LFP signal. 

 

Population synchrony index:  

The population synchrony index (PSI) was calculated in each trial by using the 

coefficient of variation of the ongoing population spike count across 100 windows of T = 

10 ms78,126:  

𝑃𝑆𝐼 = 𝐶𝑣 =  
𝜎𝑝𝑜𝑝 𝑠𝑐

𝜇𝑝𝑜𝑝 𝑠𝑐
 

 

The analysis period constituted one second of data during the delay preceding the test 

stimulus presentation (Fig. 1). For analyses pertaining to Figs. 2-3, we separated all 

trials into two groups, synchronized and desynchronized, depending on whether the 

PSI in the delay period was above or below the median PSI across all trials. In Fig. 3f, 

we recomputed PSI for the delay period using 20 windows of 50-ms duration, and 10 

windows of 100-ms duration. We then calculated behavioral and decoder performance 

in the newly defined synchronized and desynchronized trials for each separate window 

size. 

Fano factor: 

To assess firing rate variability, we computed the Fano Factor (FF) for each 

neuron, defined as the spike count variance divided by the spike count mean. Spike 

counts were summed in a 50-ms window starting at the onset of the test stimulus (plus 



55 

 

a delay of 70 ms to account for the latency of V4 neurons, as observed in the 

recordings). For each neuron, FF was calculated for each test stimulus separately and 

then averaged across conditions. In a separate analysis, we slid the 50-ms window in 

10-ms steps across the duration of the trial for comparisons with previous work155. 

Noise correlations: 

Correlated variability was computed for each pair of neurons using the Pearson 

correlation coefficient R(x,y) given by:  

 

𝑅(𝑥, 𝑦) =  
∑ [𝑥(𝑛) − 𝑥̅](𝑦(𝑛) − 𝑦̅]𝑁

𝑛=1

𝜎𝑥𝜎𝑦
 

where N is the number of trials, 𝑥̅ and 𝑦̅ are the means of  𝑥 and 𝑦, respectively, and 

𝜎𝑥 and 𝜎𝑦 are the standard deviations of 𝑥 and 𝑦, respectively156,157. We used the 

MATLAB function corrcoef to compute the correlation coefficient. 

Linear classifier: 

We decoded the neural activity by implementing a linear classifier which fits a 

multivariate normal density with a pooled estimate of covariance using the MATLAB 

function, classify. 50% of the data was used to train the classifier and determine an 

optimal decision boundary. The accuracy of the decoder was then evaluated on the 

remaining testing set of data. This process was repeated 100 times and classification 

performance was averaged across repeats. Data was analyzed separately for the 

synchronized and desynchronized trials of each session. 

Behavioral threshold: 
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We divided the trials in two halves based on the median PSI and then fitted the 

psychometric curve of the behavioral response for the synchronized and 

desynchronized trials in each session to a Weibull function in order to obtain the 

discrimination threshold158. The Weibull function was normalized by the false alarm 

rate, Pweib(0). We implemented the following equations: 

𝑃𝑤𝑒𝑖𝑏(∆𝜃) = 1 − (1 − 𝑃𝑤𝑒𝑖𝑏(0)) ∙ 𝑘
(

∆𝜃
𝜏

)
𝑏

 

 

𝑘 =  
1 − 𝑃𝑤𝑒𝑖𝑏(𝜏)

1 − 𝑃𝑤𝑒𝑖𝑏(0)
 

 

𝑑′(∆𝜃) = 𝑧(∆𝜃) − 𝑧(0) ⇒  𝑧(𝜏) = 1 + 𝑧(0) 

 

𝑃𝑤𝑒𝑖𝑏(𝜏) =  𝑧−1[𝑧(𝜏)] 

where τ is the discrimination threshold, Pweib(τ) is the proportion of correct responses 

corresponding to d’ = 1, z is the z-transform, and b is the slope of the Weibull function.  

Cell dropping procedure: 

For each session, we sequentially removed neurons from the population 

synchrony analysis and then recomputed the behavioral and decoder performance 

using all combinations of the remaining neurons.  For example, in a population of 10 

neurons, we started by removing 1 neuron. Then, we recomputed the % difference in 

behavioral and decoder performance for the desynchronized and synchronized trials 
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assessed after computing PSI based on the remaining 9 neurons. We repeated this 

procedure for all combinations of 9 neurons and then averaged the results across 

samples. In the case of 9 neurons we would have N = 10 different combinations. The 

number of combinations is calculated using the formula: v!/k!(v-k)!, where k is the 

combination size and v is the number of total neurons in the pool. We next removed 2 

neurons from the total pool of 10 neurons and computed the % difference in behavioral 

and decoder performance for the desynchronized and synchronized trials assessed 

after computing PSI based on the remaining 8 neurons. In this case, we would have 45 

different combinations of 8 neurons. This was repeated until we removed all but 1 

neuron from the total population. The final results were averaged across sessions and 

plotted based on the number of neurons removed from the population. 

Statistics: 

When the paired t-test was implemented, a Kolmogorov-Smirnov test was used 

to test the null hypothesis that the samples had a normal distribution (p > 0.05). When 

the data was not normally distributed, non-parametric tests were implemented, as 

noted in the main text. 

False discovery rate is a method to correct for multiple comparisons and is 

defined as the expected proportion of rejected hypotheses that are mistakenly rejected. 

We implemented the method outlined by Benjamini and Yekutieli (2001)159 that is 

guaranteed to be accurate for any test dependency structure. The false discovery rate 

was set at q = 0.05 for our analysis. 

The Bonferonni correction is a more conservative approach to multiple-

hypothesis testing. The procedure is conducted by simple dividing the significance 
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value α (0.05) by the number of observations. In Fig. 2C, we conducted 150 different 

comparisons and thus used α = 0.05/150 for each statistical test160. 

 

Results 

To analyze population synchrony across trials, we examined the single-unit 

spiking activity (up to 17 neurons per session) in a 1-second window preceding the test 

stimulus onset (Fig. 1B). We observed that even during actively engaged behavior, 

many trials were associated with strong fluctuations in cortical activity, characteristic of 

the synchronous state (Fig. 1C-F and Fig. 2). To quantify the degree of synchrony in 

each trial, we calculated the population synchrony index (PSI)78,126 during the delay 

period between the target and test stimuli (Fig. 1B). PSI is defined as the coefficient of 

variation (standard deviation divided by mean) of the average population firing rate 

(Fig. 1) in a given time interval using 10-ms bins (small bins can better capture rapid 

fluctuations in the population response). PSI has clear advantages over other methods 

of synchrony analysis, such as pairwise correlations, because it relies on the entire 

population, not just two cells, and can be computed in each trial. If the cells’ responses 

are synchronous, the standard deviation of the binned mean population response will 

increase (because the mean firing rate of the population will fluctuate between low and 

high response states, Fig. 1F), and PSI will increase. If, on the other hand, cells are 

desynchronized, the standard deviation of the binned population response will 

decrease (the difference between the low and high states of the mean population 

response will decrease in amplitude, Fig. 1E), which causes PSI to decrease.   
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Figure III-1. Trial-by-trial fluctuations in population synchrony in V4.  

(A) Schematic of the recording site and experimental design. Animals were trained to 
report whether two briefly flashed successive natural scenes (target and test) were 
identical or different. (B) Raster plot of one example neuron. The blue shaded inter-
stimulus delay period was used to measure population synchrony in each trial. The 
black bars under the x-axis mark the time intervals when the two stimuli are presented. 
(C-D) Population response measured in individual trials from the same session – the 
neural population is desynchronized in trial 106 (panel C) and synchronized in trial 217 
(panel D). (D-F) Population firing rate as a function of time for the example trials in 
panels C and D. The population of cells is desynchronized in trial 106 (PSI=1.19, panel 
E) and synchronized in trial 217 (PSI=2.22, panel F). The solid red line indicates the 
population mean firing rate; the red dotted lines indicate 1 standard deviation (s.d.) 
from this mean. (G) Top: Trial-by-trial population synchrony index (PSI) for the example 
session from panels C-F. Bottom: Trial-by-trial PSI after dividing the session into 
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desynchronized (PSI below median) and synchronized trials (PSI above median). (H) 
PSI histogram for the example session in panels C-G. (I) Average PSI across sessions 
for desynchronized (red) and synchronized trials (blue). These PSI values are 
compared to the mean PSI when animals rest for a 20 to 30-min period (black). Error 
bars represent standard error. (J) The mean autocorrelation function (across sessions) 
of trial-by-trial PSI.  

 

Individual trials differed widely in their degree of synchrony of the ongoing 

population response (Fig. 1G, top). Since our goal was to examine the impact of these 

fluctuations in synchrony on the information encoded in population activity and on 

behavior, we separated trials into two groups, desynchronized and synchronized, 

based on whether PSI was lower or higher than the median PSI in each session (Fig. 

1G, bottom). PSI values in each session were normally distributed rather than reflecting 

a bimodal distribution (Fig. 1H). However, our strategy to divide the trials by the median 

PSI enabled us to compare the network and behavioral performance between two 

equally-sized data sets. During wakefulness, PSI was significantly lower, both in the 

desynchronized and synchronized states, compared to the resting state when animals 

were sitting quietly in the dark with their eyes closed (desynchronized: P < 0.0005; 

synchronized: P < 0.01, Wilcoxon rank-sum, Fig. 1I). The autocorrelation of the trial-by-

trial PSI values revealed that across sessions the state of synchrony fluctuates 

randomly during wakefulness (r < 0.05 for all trial intervals, Fig. 1J). 
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Figure III-2. Additional examples of population activity in desynchronized and 
synchronized trials.  

(A) One example desynchronized trial with 13 simultaneously recorded neurons. The 
heat map represents the population firing rate for each neuron (40 ms rolling window, 5 
ms step). (B) The average population firing rate plotted as a function of time for the trial 
displayed in panel A. Population synchrony index (PSI, see Methods) is denoted. The 
solid red line indicates the population mean firing rate for the trial, and the red dotted 
lines indicate 1 standard deviation from this mean. (C) One example synchronized trial 
with 13 simultaneously recorded neurons. (D) The average population rate plotted as a 
function of time for the trial displayed in A. Two periods of synchronized firing can be 
seen in this trial.  

 

We further assessed the impact of fluctuations in cortical state on the neurons’ 

firing rates and correlated variability as these variables have been shown to influence 

the available information in a population of cells156,161,162. While previous studies have 

shown that anesthesia and sleep decrease firing rates and increase 
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correlations73,76,78,107,124, whether these measures are influenced by fluctuations in the 

state of cortical populations during wakefulness is unknown. As shown in Fig. 3A, by 

comparing the ongoing firing rates for all the neurons during the delay period, we found 

a significantly increased firing rate in desynchronized trials (P < 0.0001). In contrast, 

even though we expected pre-stimulus activity to be correlated to stimulus evoked 

activity57,64, there was no significant difference in evoked firing rates across the two 

states (P = 0.903). We further calculated the neurons’ firing rate variability155,163,164, or 

Fano factor (FF), for all the neurons in the synchronized and desynchronized trials, but 

found no significant difference between the two groups (Fig. 3B, P = 0.23). We also 

noticed a stimulus-driven decline in variability for both the synchronized and 

desynchronized trials (Fig. 3C), in agreement with previous work demonstrating 

widespread decline in variability immediately after stimulus onset155. 
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Figure III-3. Cortical state impacts the ability of the population of cells to extract 
sensory information.  

(A) Firing rates are higher in the desynchronized cortical state. The scatter plot pools 
data across sessions (each circle represents one neuron). Inset: Mean firing rates of 
neurons in desynchronized and synchronized trials (***P < 0.0001). (B) Variance of 
spike counts vs. mean spike counts (computed in 50 ms bins) for the entire population 
of neurons in the desynchronized (red) and synchronized trials (blue). Top right, 
histogram of the Fano factor (variance/mean) for the entire population of cells in the 
two cortical states. (C) Fano factor plotted in a 50-ms sliding window (step size 10 ms) 
from 1-second before test stimulus presentation (black bar) to 500 ms past stimulus 
onset. (D) Pairwise correlation coefficient (rsc) as a function of increasing window size 
during stimulus presentation (marked by the black line) for synchronized and 
desynchronized trials (blue and red lines, respectively). Shaded error represents 
standard error. Inset: correlation coefficient for the spontaneous neural activity 
represented as an increasing time window during the delay period (cell pairs were the 
same as in main figure). (E) Histogram of the evoked correlation coefficients for the 
synchronized and desynchronized trials. The arrows represent the mean <rsc> for each 
group. (F) Scatter plot of decoder performance (% correct classification) in the 
synchronized vs. desynchronized state. Each circle represents a session. (G) Average 
decoder performance was significantly higher in the desynchronized state (**P < 
0.005). Error bars represent standard error.  

 

Prior studies have demonstrated that cortical state can strongly influence 

pairwise correlations in the anesthetized state76,78, but little is known about how 

fluctuations in synchronized population activity during wakefulness impact correlations. 

We thus examined whether population synchrony impacts trial-by-trial fluctuations in 

correlated variability, or “noise correlations”, in the synchronized and desynchronized 

trials. We first analyzed the ongoing activity before stimulus presentation and found that 

correlations were higher in the synchronized state (Fig. 3D, inset, P < 0.0001), which is 

expected based on the increased population co-fluctuations in that state78. We next 

compared stimulus evoked correlations during the stimulus period (Fig. 3D-E) and 

found significantly higher correlations in the synchronized state (P < 0.001). These 

results raise the possibility that trial fluctuations in cortical state may influence the 

accuracy with which the population of cells can decode stimulus orientation. To this 
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end, we used the neurons’ responses to the target and test stimuli to train an optimal 

linear classifier to discriminate between the two stimuli, exactly as the animals were 

required to do in the task. We found that the network of cells performed significantly 

better in desynchronized trials, characterized by lower correlations (P < 0.005, Fig. 3F-

G). Altogether, these results indicate that trial-by-trial fluctuations in network synchrony 

significantly influence correlated variability and the amount of information in population 

activity.  
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Figure III-4. Population synchrony impacts behavioral performance.  

(A) Scatter plot of the behavioral performance (% correct responses) in synchronized 
vs. desynchronized trials. Each point represents one session. (B) Mean behavioral 
performance is significantly higher in desynchronized trials (**P < 0.001). Error bars 
represent standard error. (C) Average behavioral performance threshold is significantly 
lower in desynchronized trials (**P < 0.005). (D) Average number of trials (across 
sessions) corresponding to each test orientation difference for synchronized and 
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desynchronized trials. ‘M’ stands for ‘match’ condition (0° orientation difference). (E) 
Percent difference in behavioral and decoder performance between the 
desynchronized and synchronized trials using the cell-dropping procedure (behavior: 
black; decoder: purple). The two curves represent exponential fits. Error bars represent 
standard error. (F) Percent difference in behavioral and decoder performance between 
desynchronized and synchronized trials for different window sizes to define PSI (**P < 
0.005, *P < 0.05). (G) Percent difference in behavioral and decoder performance 
between desynchronized and synchronized trials after removing the high firing rate 
(outlier) neurons from the population. Ø represents no neurons removed, >3 s.d. and 
>2 s.d. represents removing neurons with average spontaneous firing rates > 3 s.d. 
and 2 s.d. above the population mean (**P < 0.005, *P < 0.05). 

 

Based on the results of the decoder analysis, we further hypothesized that the 

higher accuracy with which the network of cells encodes sensory information in the 

desynchronized cortical state may be correlated with an increase in behavioral 

performance in the discrimination task. Indeed, our analysis confirmed this hypothesis 

– behavioral performance (percentage of correct responses) was significantly higher in 

desynchronized trials (Fig. 4A-B; see also Fig. 5 for individual animal performance; P < 

0.001). Another measure of performance, the orientation discrimination threshold 

(obtained by fitting the psychometric curve of the behavioral response to a Weibull 

function), was also significantly lower in the desynchronized state (Fig. 4C, 

synchronized: 8.76 ± 1.32; desynchronized: 5.41 ± 1.10, P < 0.005). Furthermore, we 

found even larger differences in behavioral performance between the two network 

states when comparing the top third (vs. bottom third), or top quarter (vs. bottom 

quarter), most synchronized and desynchronized trials (Fig. 5). One potential confound 

when interpreting our behavioral results is that animals might have discriminated stimuli 

better in the desynchronized cortical state simply because those trials were associated 

with less difficult test orientations (our range of orientations was 2-20°). However, that 

was not the case – when we compared the average number of trials associated with 

each cortical state we found no significant difference across orientations (Fig. 4D, P > 
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0.05), indicating that our results were not due to differences in task difficulty. These 

results provide the first demonstration that trial-by-trial fluctuations in population 

synchrony during wakefulness modulate behavioral performance.  

 

Figure III-5. Behavioral performance is higher in desynchronized trials for each 
monkey.  

(A and C) Scatter plots showing the % correct responses in the synchronized vs. 
desynchronized trials for monkey 1 (panel A, N = 19 sessions) and monkey 2 (panel C, 
N = 9 sessions). (B and D) Behavioral discrimination performance was significantly 
greater in the desynchronized trials for monkey 1 (**P < 0.01) and monkey 2 (*P < 
0.05). 

 

Our measure of population synchrony (PSI) is based on the spiking activity of all 

the simultaneously recorded neurons within a session. Thus, we reasoned that the 

impact of PSI on network accuracy and behavioral performance would diminish if the 
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number of neurons pooled for the calculation of PSI is decreased – in this case, the PSI 

measure would not accurately reflect the ‘true’ state of the population of recorded 

neurons. We addressed this issue by sequentially dropping neurons from the 

population while recalculating the relative difference in behavioral and network 

performance in the two cortical states. The results confirmed our expectation – the 

difference between the effects associated with the two population synchrony states 

gradually diminished as more neurons were discarded from our sample (Fig. 4E, P < 

0.05). This analysis raises the possibility that recording simultaneously from large 

ensembles of neurons – e.g., several thousands of cells – would provide even more 

accurate measures of network synchrony that may be used to explain an even larger 

fraction of the perceptual variability observed experimentally.  

 

 

Figure III-6. Percent performance difference between desynchronized and 
synchronized trials using different trial separation criteria.  

“Halves” represents the method implemented throughout the manuscript. That is, we 
separated all trials based on the median population synchrony index (PSI) value and 
then compared behavioral performance in the desynchronized vs. synchronized trials 
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(***P < 0.001). ‘Red’ represents the proportion of desynchronized trials, and ‘blue’ 
represents the proportion of synchronized trials chosen for the analysis. “Thirds” 
represents a classification scheme where we extracted the top 1/3 of the most 
synchronized trials and the bottom 1/3 of the most desynchronized trials, and then 
compared the two groups (***P < 0.001). “Fourths” represents a classification scheme 
where we extracted the top 1/4 of the most synchronized trials and the bottom 1/4 of 
the most desynchronized trials, and then compared the two groups (**P < 0.005). 

 

Our results critically depend on the temporal resolution of the PSI measure. For 

instance, the results in Figs. 1-3 were obtained using a bin size of 10 ms in order to 

capture rapid fluctuations in population synchrony. However, using larger time 

windows, e.g., 50 or 100 ms, still yields significant differences in behavioral 

performance between the synchronized and desynchronized cortical states (Fig. 4F, P 

< 0.05); decoder performance difference remained statistically significant for the 50 ms 

bin size (Fig. 4F, P < 0.001), but not for 100 ms (P = 0.078). The fact that the neural 

and behavioral effects induced by fluctuations in population synchrony are diminished 

when using larger time bins indicates that a low-resolution PSI fails to explain the 

variability in neuronal and behavioral performance during wakefulness. Lastly, we 

investigated whether our main results were being driven by a small subset of high-firing 

neurons which would dominate the population rate. To control for this possibility, we 

removed from the analysis those neurons with spontaneous firing rates three, or two, 

standard deviations above the mean. However, even in this case we found that 

behavioral and decoder performance were still significantly improved in the 

desynchronized state (Fig. 4G, P < 0.05). 

Although we measured population synchrony based on the spiking activity of 

single neurons, another way to capture the fluctuations in network activity, ostensibly 

with less precision, is using local field potentials (LFPs)74,76,165,166. The synchronous 
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state in this alternate classification scheme would be associated with high LFP power in 

the low frequency range (0.5-10 Hz) and low power in the high frequency range (10-

100 Hz)76,151,165. Thus, we reexamined the functional impact of fluctuations in 

population synchrony by computing the normalized LFP power in the synchronized and 

desynchronized trials (defined by the PSI measure, Fig. 7A) – we found that the 

synchronous cortical state is associated with an increase in low-frequency LFP power 

(P < 0.0001) and a decrease in high-frequency LFP power. Importantly, using the LFP 

power ratio – low frequency power (2-10 Hz) / high frequency power (10-100 Hz) – as a 

measure of population synchrony, we found that behavioral performance was higher in 

trials characterized by a desynchronized state (P < 0.01, Fig. 7C-D). Lastly, we 

selected the synchronized and desynchronized trials using both the PSI and LFP power 

ratio criteria. That is, trials were independently classified based on the median PSI and 

the median power ratio, and only the trials associated with the same state of synchrony 

in both classification schemes were analyzed. We found that combining multiple single-

unit and LFP signals to define population synchrony leads to an improved definition of 

cortical state – there was an enhanced difference in behavioral performance (P < 

0.005, Fig. 7C-D) in the synchronized vs. desynchronized trials relative to the case 

when power ratio alone or PSI alone were used to measure population synchrony (P < 

0.05).  
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Figure III-7. Using LFP power to characterize the functional impact of population 
synchrony.  

(A) z-scored LFP power in synchronized and desynchronized cortical states (defined by 
PSI). LFP power was calculated using a 5 Hz rolling window size with a step of 1 Hz. 
Shaded areas represent standard error. (B) z-scored LFP power in physiologic bands 
for synchronized and desynchronized trials (as defined by PSI) (Delta = 2-4 Hz, Theta 
= 4-8 Hz, Alpha = 8-12 Hz, Beta = 12-30 Hz, Gamma = 30-100 Hz) (***P < 0.0001, **P 
< 0.005). (C) Black dots: Scatter plot of behavioral performance (% correct responses) 
in desynchronized/synchronized cortical states (defined by the LFP power ratio). Each 
point represents one session. Gray circles: Scatter plot of behavioral performance in 
desynchronized/synchronized cortical states. Trials were selected only if they shared 
the same state of synchrony using both the PSI and the power ratio methods. (D) 
Difference in average behavioral performance (% correct responses) between 
synchronized and desynchronized states was higher when cortical state was assessed 



73 

 

using both the PSI and power ratio methods (*P < 0.01; **P < 0.0005). Error bars 
represent standard error.  

 

Discussion 

In summary, our results demonstrate that rapid fluctuations in local population 

synchrony during wakefulness impact both the information encoded in network activity 

and behavioral performance. That is, synchronous fluctuations in population ongoing 

activity influence the strength of sensory responses and interneuronal correlations such 

as to decrease network discrimination performance and reduce perceptual accuracy 

even when the animal is seemingly alert and actively engaged in the task. The 

functional impact of cortical state has been previously examined in anesthetized 

animals76,78,126, and recently using measures of arousal, such as pupil diameter, in 

awake mice123,151. However, whether fluctuations in cortical population synchrony are 

able to influence the accuracy of sensory discriminations while the animal is awake and 

performing a task had been unknown.  

Several mechanisms could be invoked to explain the rapid shift in cortical state 

from synchronized to desynchronized (and vice-versa), such as fluctuations in the 

strength of inputs to subcortical cholinergic nuclei or fluctuations in the glutamatergic 

inputs from thalamus and possibly other cortical regions. For instance, lesions of the 

basal forebrain, which provides cholinergic input to the cortex, have been shown to 

increase the low-frequency LFP power165,167, and stimulation of the basal forebrain 

causes cortical desynchronization167-170. To further elucidate the functional role of 

fluctuations in population synchrony, future studies are needed to causally manipulate 

synchrony in the cortex and measure its impact on the trial-by-trial population code and 
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behavioral responses. Importantly, it remains to be seen whether the rapid fluctuations 

in population synchrony during wakefulness are coordinated across brain areas and 

whether the spatiotemporal pattern of population activity is relevant for behavior. 
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CHAPTER IV: Rest Desynchronizes Cortical Networks and Improves Behavioral 

Performance 
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Introduction 

Rest is a universal activity in animals171. It is known that neurons in the brain 

cannot fire eternally without intermixed periods of quiescence. However, the specific 

function of rest in the cortex remains elusive. Previous investigations have 

demonstrated that even brief periods of rest have a beneficial effect on cognitive and 

behavioral performance in a variety of tasks, including those involving visual 

stimuli79,81,87,172-174. Importantly, it has been shown that human test subjects increase 

their perceptual performance following naps as short as 6 minutes in duration86,87. In 

animal studies, it has been observed that cortical networks begin to oscillate between 

high and low firing states, primarily at frequencies between 0.5 and 4 Hz (delta waves), 

as animals begin to fall asleep67,68. Thus, it is likely that high amplitude delta waves 

serve an important function for cortical networks. Yet, despite these previous studies, 

we still do not understand whether and how rest impacts the accuracy of neuronal 

network computations to improve behavioral performance.  

Why is a network-based understanding of the function of rest important to study? 

Behavioral performance is more accurate than would be predicted from the responses 

of single neurons175-177. In addition, theoretical work has shown that population coding 

schemes encode more information than single cell coding schemes178-180. 

Unfortunately, despite the clear importance of understanding how populations of cells 

encode information, whether and how rest changes population coding accuracy 

remains unknown. Previous research from our lab (chapter III) has demonstrated that 

desynchronized networks are more optimal for neural coding and behavioral 

performance. Thus, we hypothesize that rest improves behavioral performance through 

cortical desynchronization that leads to enhanced accuracy of network coding in visual 
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area V4. To test this hypothesis, we recorded from populations of neuron in V4 while 

monkeys participate in a match-to-sample orientation discrimination task. After a 90 

minute task period, we let the animals rest quietly in the experiment room, while 

electrophysiological recordings continue. After the rest period, we had the animals 

participate in a second task period. In this way, we tested if rest improves networks 

coding and behavioral performance in non-human primates.  

 

Methods 

All experiments described here were conducted in accordance with protocols 

approved by the National Institutes of Health and the Institutional Animal Care and Use 

Committee at The University of Texas Health Science Center at Houston. The surgical 

procedure was conducted as described in chapter III of this thesis. 

Behavioral task: 

Two male rhesus monkeys (Macaca mulatta) were trained to participate in a 

match-to-sample orientation discrimination task as described in chapter III of this 

thesis. Unique to this experiment, the animals participated in one of two separate block 

designs on each day (Fig. 1b). In the main experiment, called the ‘rest’ condition, the 

monkeys underwent between 200 and 300 trials of the orientation discrimination task, 

lasting approximately 90 minutes. They were then allowed to rest quietly in a dark room 

for 20-30 minutes. During the rest period, white noise was played to prevent outside 

noises from disturbing the animals. Eye tracking and video monitoring was conducted 

throughout the rest period (Fig. 1a). The daily experiments were timed such that the 
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rest period would fall at approximately 2pm, a time when monkeys naturally take 

daytime naps154. Following the rest period, they engaged in a second task period of 

200 to 300 trials, again lasting approximately 90 minutes.  

In the control experiment, called the ‘no rest’ condition, animals also participated 

in the first and second task periods. In this condition, however, the animals were kept 

awake in a well-lit room for 20-30 minutes between the two task periods. One 

experimenter would stay in the room for the duration of the ‘no rest’ period to ensure 

that the animals remained awake. The animals participated in the main experiment and 

control experiment on randomized days so that they could not easily anticipate which 

condition they would experience on any given day. 

Visual stimuli, eye movement, electrophysiology, synchrony index: 

 These methods were conducted as described in chapter III of this thesis. 

Population d’: 

 The discriminability between the target and test stimuli was computed using a 

multivariate generalization (due to many neurons being recorded simultaneously) of 𝑑2 

35,130,131 given by: 

𝑑2 =  ∆𝜇𝑇𝑄−1∆𝜇; 

Where ∆𝜇 is the vector difference in mean responses between the target and test 

orientation and Q is the pooled covariance matrix. The probability of correct 

classification was computed using a complementary error function: 

𝑒𝑟𝑓𝑐(−√𝑑2)/2  
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Linear classifier: 

 A 50% train and test linear classifier was implemented as described in chapter 

III. 

Statistics: 

 Neural data recorded in task 1 and task 2 from the same animal, and on the 

same day, were considered paired data. All other data was unpaired. For paired data, a 

Wilcoxon sign rank test was implemented. For unpaired data, a Wilcoxon rank sum test 

was used. 

 

Results 

To assess the impact of rest on perceptual performance, we recorded 

simultaneous spiking activity from populations of neurons in visual area V4. The 

animals participated in two natural image orientation discrimination tasks on each 

experimental day (Fig. 1C). In the main experimental condition, animals participated in 

task 1, which lasted approximately 90 minutes. Then, they were allowed to rest quietly 

for 20-30 minutes, and lastly, they participated in task 2, lasting another 90 minutes 

(Fig. 1A-B).  In a separate control experiment, the animals were kept awake for 20-30 

minutes in a brightly lit room between tasks 1 and 2 (Fig. 1B). To assess population 

synchrony on a trial-by-trial basis, we analyzed the spiking of neurons in the delay 

period between the target and test stimuli on each individual trial (Fig. 1D). Then, to 

quantify the level of synchrony on individual trials, we computed the coefficient of 

variation of the mean population firing rate, defined as the population synchrony index 
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(PSI), for the 1-sec delay period. Trials with more synchronous activity display a larger 

variance in the population rate compared the mean and thus a higher PSI. If neural 

firing is more desynchronized, the variance of the population rate is small compared the 

mean, leading to a smaller PSI. We observed that population activity was relatively 

desynchronized in awake, behaving animals (Fig. 2A and C). We continued our 

electrophysiological recordings throughout the ‘rest’ period. As the animals rested 

quietly in the room with their eyes closed, the network became more synchronized, as 

expected from decades of sleep literature (Fig. 2B and D)67,89,94. 

 

Figure IV-1. Design for rest experiment and orientation discrimination task.  

(A) Night vision video of one monkey during the task and rest periods. (B) Top, the 
paradigm for the main experiment in task–rest–task block design. Bottom, the control 
paradigm consists of a task–no rest–task block design. (C) Schematic of the recording 
site and orientation discrimination task. Animals were trained to report whether two 
briefly flashed successive natural scenes (target and test) were identical or different. 
(D) Raster plot of one example neuron. The blue shaded delay period was used to 
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measure population synchrony on a trial-by-trial basis. The black bars under the x-axis 
mark the time intervals when the two stimuli, target and test, are presented. 

 

 

Figure IV-2. Single unit and population firing rates in two example time periods. 

(A) Firing rates of 13 simultaneously recorded neurons from one example trial 
computed in a 40ms rolling window (step size 5 ms). The neurons fire in a 
desynchronized pattern. (B) Firing rates of the same 13 neurons during the rest period. 
Three synchronized up and down periods can be observed in this 3 second example. 
(C) Population firing rate for the desynchronized trial shown in A. The solid red line 
indicates the population mean and the dotted lines indicate 1 s.d. from the mean. PSI, 
population synchrony index (coefficient of variation of the population rate) (D) Same as 
figure C, but for the synchronized 3 second example depicted in B. 

 

The implementation of population firing rate is a relatively new way to measure 

synchrony in networks that has only been available with the advent of recording from 

large numbers of individual neurons simultaneously78,126. However, synchrony in 

cortical networks has been monitored for many years using field potentials (both EEG 

and local field potentials), which pool subthreshold and spiking activity from thousands 

of neurons in the vicinity of the recording electrode69,85. The synchronized state defined 

by LFP is characterized by high power in the low frequency range (0.5 to 10 Hz) and 
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low power in the high frequency range (10 to 100 Hz). We computed the ratio of low 

LFP power to high LFP power (LFP power ratio) across the ‘rest’ period to compare the 

two different measures of population synchrony. As shown in Fig. 3, PSI and LFP 

power ratio track each other very closely across the eyes closed and eyes portion of 

the rest period in this example session (Fig. 3A – C). Thus, it is likely that the 

synchrony in local networks is related to the population synchrony of larger regions of 

the surrounding cortex. 

 

Figure IV-3. LFP Power Ratio and population synchrony rise during rest period. 

This data represents an example resting period from 1 session. The monkey rested at 
the beginning of the rest period, then spontaneously awoke, then rested again at the 
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end of the period. (A) LFP power in low frequencies is higher and LFP power in high 
frequencies is lower during rest periods. (B) Population synchrony measured with the 
LFP Power Ratio (red) and Population Synchrony Index (PSI, black) are higher during 
rest periods. PSI and LFP Power Ratio were computed in contiguous 10 sec intervals 
throughout the rest period. (C) Eye closure corresponds to synchronized neural activity. 

 

We next conducted analysis to answer our principal question in this study: does 

rest improve behavioral performance? As shown in figure 4, we found that behavioral 

performance was significantly improved in task 2 compared to task 1, when the 

monkeys were allowed to rest (P < 0.0001, Wilcoxon sign rank). In our control ‘no rest’ 

experiment, we found that task 2 behavioral performance was significantly worse than 

task 1 behavioral performance (P < 0.005, Wilcoxon sign rank). Importantly, we found 

that the percent difference in behavioral performance in task 2 vs. task 1 was 

significantly greater in the ‘rest’ condition compared to the ‘no rest’ condition (P < 

0.0001, Wilcoxon rank sum) (Fig. 4).  
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Figure IV-4. Behavioral performance is improved following rest. 

(A) Behavioral performance of orientation discrimination in task 2 plotted as a function 
of behavioral performance in task 1 for the ‘rest’ (black circles) and ‘no rest’ (red 
squares) conditions. The dotted line represents unity. (B) The percent difference in 
behavioral performance of task 2 vs. task 1 is significantly greater in the ‘rest’ condition 
compared to the ‘no rest’ condition (*** P < 0.0001, Wilcoxon rank sum). Error bars 
represent s.e.m. 

 

These findings demonstrate that synchronized rest periods improve behavioral 

performance, but it is important to understand how cortical networks change from task 

1 to task 2 following ‘rest’ compared to ‘no rest’. Do neural properties change following 

synchronized rest in a way that reflects increased behavioral performance? We first set 

out to answer this question by comparing the mean PSI in task 1 and task 2 in both the 

‘rest’ and ‘no rest’ experiments and found that following rest, cortical networks become 

significantly desynchronized (P < 0.005, Wilcoxon sign rank) (Fig. 5, left). In contrast, 

the mean synchrony did not significantly change when animals were not allowed to rest 

(P > 0.05, Wilcoxon sign rank) (Fig. 5, right). This indicates that synchronized rest 

periods have a causal effect to desynchronize the state of subsequent cortical 

networks. 
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Figure IV-5. Population synchrony decreases following rest. 

The % difference in mean PSI between task 1 and task 2 in the ‘rest’ and no rest’ 
conditions. PSI is significantly decreased in task 2 compared to task 1 in the ‘rest’ 
condition (** P < 0.005, Wilcoxon sign rank). There is no significant difference between 
task 1 and 2 in the ‘no rest’ condition. 

As observed in chapter III of this thesis, desynchronized networks have been 

shown to be optimal for network coding, but whether neural properties change following 

rest has never been fully characterized. We first compared the spontaneous firing rates 

in both task 1 and task 2 in the ‘rest’ and ‘no rest’ condition. We found that 

spontaneous firing rates were significantly increased following rest but not following the 

‘no rest’ condition (P < 0.0001, Wilcoxon sign rank) (Fig. 6). In previous work, it has 

been demonstrated that ongoing firing rates can impact evoked firing rates57, thus, I set 

out to determine if test stimulus firing rates were similarly increased following resting 

periods. As shown in figure 7, the evoked firing rates were significantly increased in 

task 2 compared to task 1 in the ‘rest’ condition, but the evoked firing rates were slightly 

decreased in task 2 compared to task 1 in the ‘no rest’ condition (P < 0.05 and not 

significant, Wilcoxon sign rank). A difference in feedforward drive may be partly 

responsible for the increase in perceptual performance observed following rest.  
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Figure IV-6. Spontaneous firing rates are increased following rest. 

(A) Task 2 spontaneous firing rates plotted as a function of task 1 spontaneous firing 
rates in the ‘rest’ condition. Each circle represents one neuron in each condition. 
Spontaneous refers to the inter-stimulus delay period, as in figure 1. (B) The 
spontaneous firing rates are significantly increased in task 2 compared to task 1 (** P < 
0.005, Wilcoxon sign rank). (C-D) Same as in A and B but for all the neurons recorded 
in the ‘no rest’ condition sessions. There is no significant difference in spontaneous 
firing rates between task 1 and task 2. 
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Figure IV-7. Evoked firing rates in the test period are increased following rest. 

(A) Task 2 evoked firing rates plotted as a function of task 1 evoked firing rates in the 
‘rest’ condition. Each circle represents one neuron in each condition. Test stimulus 
refers to evoked firing rates while the test stimulus was presented. (B) The evoked 
firing rates are significantly increased in task 2 compared to task 1 (** P < 0.05, 
Wilcoxon sign rank). (C-D) Same as in A and B but for all the neurons recorded in the 
‘no rest’ condition sessions. There is no significant difference in evoked firing rates 
between task 1 and task 2. 
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Firing rates alone do not fully capture the ability of networks of neurons to 

process visual information. Another important coding property is how correlated pairs of 

neurons are in the network, a property which has previously been shown to influence 

the available information in a population of cells156,161,162. We computed the correlated 

variability of all pairs of neurons in task 1 and task 2 of the ‘rest’ and ‘no rest’ conditions 

and found that correlations were significantly decreased in task 2 compared to task 1 in 

the ‘rest’ condition (P < 0.05, Wilcoxon sign rank) (Fig. 8, top). In contrast, there was 

trend toward increased spontaneous correlations in task 2 compared to task 1 in the 

‘no rest’ condition (Fig. 8, bottom). While the magnitude of correlation difference is not 

drastically different between the two tasks, it is important to note that a small difference 

in correlations in the local network can theoretically have a great impact on neural 

coding of larger populations of neurons64,147. 
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Figure IV-8. Spontaneous correlations are decreased following rest. 

(A) Scatter plot of each cell pair for task 1 and task 2 in the ‘rest’ condition. The dotted 

red line represents unity. (B) Histogram of the task 1 spontaneous correlations plotted 

on top of the task 2 correlations in the ‘rest’ condition. The ‘x’ marks the mean 

correlation in task 1 and task 2. (C) The mean task 2 spontaneous correlation 

coefficient is significantly decreased compared to task 1 in the ‘rest’ condition (* P < 

0.05, Wilcoxon sign rank). (D-F) Same as in A-C, but for the ‘no rest’ condition. There is 

no significant difference in spontaneous correlations between the task 1 and task 2. 

 

Lastly, we computed two different measures of network discrimination in the 

‘rest’ and ‘no rest’ conditions. First, we computed the population d’, a multivariate 

generalization of d’, for task 1 and task 2 in each condition. Using a complementary 
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error function, we were able to compute the probability of correct classification (PCC) 

between target and test stimuli for each set of data. We found that PCC was 

significantly greater in task 2 compared to task 1 following rest, but there was no 

significant different between the two task periods when the animals were not allowed to 

rest (P < 0.05 and not significant, Wilcoxon sign rank) (Fig. 9, top). We next trained a 

linear classifier with 50% of our data in each condition and tested the classifier to 

compute decoder performance. We found that decoder performance was significantly 

greater in task 2 compared to task 1 when the animals were allowed to rest (P < 0.005, 

Wilcoxon sign rank), and there was no significant difference in decoder performance 

between the two tasks when the animals were not allowed to rest (Fig. 9, bottom). 

These results indicate that network discrimination is improved following a resting 

period, but there is no change in network discrimination when they are not allowed to 

rest. 
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Figure IV-9. Neural discrimination performance is improved following rest. 

(A) The probability of correct classification using a population d’ analysis plotted for 

task 2 vs. task 1 in the ‘rest’ condition sessions (black circles) and ‘no rest’ condition 

sessions (red squares). (B) Classification performance is improved in task 2 compared 

to task 1 in the ‘rest’ condition (* P < 0.05, Wilcoxon sign rank). There is no difference 

between the classification performance of task 1 and task 2 in the ‘no rest’ condition. 

(C) Linear decoder performance using a train and test method for task 1 and task 2 in 

the ‘rest’ condition sessions (black circles) and ‘no rest’ condition sessions (red 

squares). (D) Linear decoder performance is increased in task 2 compared to task 1 in 

the ‘rest’ condition (** P < 0.005, Wilcoxon sign rank). There is no difference in decoder 

performance between task 1 and task 2 in the ‘no rest’ condition. 
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Discussion 

Studies in humans have primarily focused on changes in global brain activity 

during rest. The existing methodology (e.g., EEG or fMRI) did not allow the spatial and 

temporal resolution required to examine changes at the single neuron or network level. 

For instance, a recent fMRI study examining activity in visual cortical area V1 during 

rest after perceptual learning, reported that subareas that were active during the task 

had enhanced activity during subsequent rest period174. However, how neuronal activity 

across the network is modified at the single-cell resolution remains unknown. On the 

other hand, more invasive studies in small mammals, such as rats, using 

electrophysiological recordings mainly focused on a selective re-activation of 

memories. For instance, hippocampal place cells that were co-activated during a maze 

running task were more likely to be reactivated together during slow-wave sleep 

following the task181. This was the first evidence that the structure of correlations 

between neurons during a task was preserved even in the absence of further 

stimulation; similar findings were reported in motor, somatosensory, and parietal 

cortices182. Nonetheless, the question of why humans and higher mammals perform 

better after a period of rest had not been addressed. We conducted long recordings 

from population of spiking neurons and found that rest synchronizes cortical networks 

and leads to post-rest cortical desynchronization. We also observed an increase in 

firing rates and a decrease in correlated variability. Altogether, these findings represent 

first evidence of how rest alters networks to optimize neural coding and perceptual 

performance. 

Although the idea that sensory inactivity or rest favors subsequent cognitive 

function has been around for a long time183, the underlying neural mechanisms are still 
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poorly understood. Recently, it has been proposed that rest is critical to ensuring 

metabolic homeostasis184, and that the restorative ability of sleep maybe be due to the 

enhanced removal of metabolic degradation products accumulating during 

wakefulness. Indeed, neurons are highly sensitive to their environment, and it is critical 

that waste products of metabolism are effectively removed from the brain’s interstitial 

space, as waste products have been associated with adverse effects on synaptic 

transmission185 and are believed to possibly trigger irreversible neuronal injury186. 

However, while these findings suggest that the specific beneficial influence of rest is to 

remove the neurotoxic waste products, whether and how rest influences neuronal 

signaling and network processing, and how these changes influence behavioral and 

cognitive performance had never been previously explored. Our findings represent the 

first evidence that short periods of rest can alter neural properties to enhance network 

and behavioral performance. Future work will look at the full stages of sleep to 

determine how non-REM (non-rapid eye movement)and REM sleep work in concert to 

optimize the function of cortical networks.  
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CHAPTER V: Conclusions and Future Directions 
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The internal state of a racecar driver is putatively different from a student 

struggling to stay awake in math class. Indeed, it has always been subjectively 

understood that the function of an individual’s brain may vary based on a variety of 

factors. The scientific study of spontaneous cortical activity has garnered significant 

interest in recent years through extensive research of sensory function in anesthetized 

and awake brains. From this work, it has become clear that neural responses result 

from the amalgamation of external stimuli and intrinsic cortical dynamics which vary 

along a continuum of states. 

The goal of this research project has been to understand whether and how the 

spontaneous cortical state impacts neural coding and behavioral performance: 1) How 

do pre-stimulus firing rates impact networks and behavior? 2) How does the state of 

synchrony impact networks and behavior? 3) Do short period of daytime rest improve 

network coding and behavior? To address these questions, we studied single unit and 

population spiking and LFP data from the visual cortex of non-human primates as they 

performed orientation discrimination tasks (using gratings and natural stimuli). 

 In chapter II of this thesis, we discovered that the level of ongoing activity 

immediately preceding a test stimulus can influence the processing of sinusoidal 

grating stimuli in the primary visual cortex. In chapter III of this thesis, we demonstrated 

that trial-by-trial fluctuations in cortical synchrony can predict the efficiency of network 

discrimination and perceptual performance of natural stimuli in visual area V4. In 

chapter IV of this thesis, we showed that brief periods of rest can desynchronize 

subsequent cortical networks to improve network coding and behavioral performance in 

visual area V4. Altogether, our results demonstrate that the structure of spontaneous 

activity is critically important in visual processing and ultimately, in the behavioral 
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performance of animals. As a result of our work, we can better explain the fluctuations 

of spontaneous activity in cortical activity. What was previously called “noise” can be 

effectively reduced, indicating that the brain is more predictable than previously 

thought. 

 

Implications of synchronous fluctuations in V4 impacting behavioral 

performance 

It has been analytically demonstrated that synchronous fluctuations, alone, do 

not limit information in orientation discrimination tasks, but rather reduce the level at 

which information saturates in the presence of certain information-limiting correlations 

(information-limiting correlations, also referred to as differential correlations, represent 

a specific type of noise correlations that are proportional to the product of the 

derivatives of the tuning curves187,188). In addition, synchronous fluctuations in V4 will 

not reduce information if downstream brain regions have access to the fluctuating gain 

factor caused by synchronous fluctuations. If downstream regions did have access, the 

downstream decoder could divide out the fluctuating gain, recover the full input 

information, and behavior would likely not be affected in any way187. Our results 

suggest the alternative – that synchronous fluctuations in lower visual areas are not 

shared with decision areas and thus reduce information in a way that impacts behavior. 

Wavering attention is one possible explanation for the trial-by-trial fluctuations in 

synchrony observed in chapter III. It has been suggested that voluntary top-down 

attention is a mechanism that improves behavioral performance by desynchronizing 

networks187,189. Prior studies have demonstrated that spatial attention reduces single-
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unit normalized measures of spike count variance and pairwise correlations189-192, 

similar to our results. Studies have also shown that attentional modulation leads to a 

decrease in evoked firing rate synchronization192,193. In addition, many studies have 

found a relationship between local field potential (LFP) synchronization, particularly in 

the gamma band (35-70 Hz) frequency range, and attention194,195. 

Yet, we found no difference in evoked activity between states, contrasting 

results found by others studying attention in the extrastriate cortex196-198. Another more 

likely explanation (based on our findings from chapter IV) for the observed fluctuating 

states of synchrony is arousal. It has previously been shown that neurons in sleep-

deprived rats can display synchronous activity that is detrimental to behavior148. 

McGinley et al. also recently demonstrated that auditory detection performance was 

optimized at an intermediate arousal state as reflected by pupil size in mice123. We 

found that the monkeys’ performance was optimized in the most desynchronized state 

as measured by spiking activity in the simultaneously recorded population. However, it 

should be noted that our animals were likely not maximally, and as a result 

detrimentally, aroused under the calm, head-fixed experimental conditions. 

In summary, we demonstrated in chapter III and IV that fluctuations in cortical 

synchrony can impact network and behavioral performance in the awake, behaving 

animal. That is, common fluctuations in population spiking activity decrease neural 

discrimination performance and gross behavioral performance even when the animal is 

seemingly alert and actively engaged in a task. Our investigations also indicate that 

downstream decoding regions do not have access to the fluctuating gain factor, 

suggesting that the synchronous activity is either locally generated or resulting from a 

top-down signal that is unavailable to decision areas. 
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Control of cortical states 

The question of how and where cortical states are controlled in the brain has 

been pondered since the early twentieth century199,200, and the question is still up for 

debate. It is clear that arousal varies grossly between waking and sleep states. In 

addition, my work demonstrated that arousal, as measured by neural spiking 

synchrony, can also fluctuate across trials in behaving animals. Several brain regions 

have been attributed to control of arousal including the basal forebrain, hypothalamus, 

and brainstem201-203. Based on research using brain slices and neural track lesions, it is 

generally believed that the cerebral cortex requires excitatory stimulation from 

subcortical structures and the brainstem to persist in the waking state204,205. Using a 

variety of anatomical and physiological techniques, important regulatory nuclei in the 

sleep-wake cycle have been identified and classified into a region collectively called the 

ascending reticular activating system206. Cholinergic neurons were found to project 

from the pedunculopontine and laterodorsal tegmental nuclei (PPT-LDT) to the 

intralaminar nuclei of the thalamus and the reticular nucleus of the thalamus207-209. 

Monoaminergic cell groups in the locus coeruleus (noradrenaline), raphe nucleus (5-

HT), and tuberomammillary nucleus (histamine) all characteristically fire in the waking 

state but not in NREM or REM sleep210-212.  

In addition, recent work has shown that the mammalian basal forebrain might be 

critical for controlling sleep and wakefulness. A recent optogenetic study by Xu et al.170 

demonstrated that basal forebrain glutamatergic neurons exhibited a strong wake-

promoting effect on the cerebral cortex by direct excitation of both cholinergic and 
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parvalbumin+ GABAergic neurons. In agreement with this work, Kim et al.213 used dual 

retrobead tracing and optogenetic stimulation to demonstrate that activation of 

cholinergic neurons in the basal forebrain induces desynchronization in specific 

sensory cortices. They also discovered that activation of noradrenergic locus coeruleus 

neurons induces broad desynchronization throughout the sensory cortices213.  

 

Future directions 

The investigation of spontaneous cortical substates is certainly still in its infancy. 

The majority of current studies have employed an experimental method of partitioning 

data into discrete states of synchrony such as anesthetized vs. awake or quiet resting 

vs. active whisking in mice. Indeed, the strategy I employed in my own research 

similarly divided the data into two groups for comparison (low vs. high firing rates, 

synchronized vs. desynchronized trials, and ‘rest’ vs. ‘no rest’ conditions). While this 

strategy is practical in that it enables paired statistical comparisons between two 

groups, it surely fails to capture the full range and dimensionality of substates in the 

brain. In future work, it will be important to move beyond correlational analyses by 

causally controlling cortical substates to determine their impact on network coding and 

perceptual performance. Indeed, as mentioned in the previous section, several recent 

investigations have successfully demonstrated that it might be possible to control 

cortical substates through the use of electrical or pharmacological stimulators. 

The nucleus basalis of the basal forebrain projects diffusely throughout the 

neocortex214. Importantly, it is a region that has long been known to affect wakefulness 

and neural activity associated with cognition215-217. Previous work by Goard and Dan 
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demonstrated that microstimulation of the basal forebrain led to a decorrelation 

between neurons in the rat visual cortex along with an increase in reliability of evoked 

responses165. One important future experiment will be to causally manipulate the level 

of synchrony in primary visual cortices in behaving animals. This could be achieved by 

either microstimulation of the basal forebrain in monkeys (adapted from the work 

previously conducted in rat165) or alternatively, by means of optogenetic targeting of 

glutamatergic neurons in the basal forebrain. Using this procedure, we could first test if 

we can causally manipulate synchrony and neural properties in the visual cortex on 

trial-by-trial basis. At the same time, we could test perceptual performance and 

determine the true impact of basal forebrain contribution on network coding and 

behavior. Based on our previous findings, our hypothesis would be that causally 

desynchronizing the sensory cortex will optimize neural coding and behavioral 

performance. 

 Another question that emerges from our work is how does the spatial structure 

of spontaneous cortical activity vary across brain regions? For example, are cortical 

states, as measured by the level of ongoing activity or synchrony, shared across the 

visual cortex at any moment in time? Or alternatively, does each cortical area contain a 

local representation of state and efficiency in cortical processing in time? We could 

attempt to answer these questions by conducting simultaneous recordings in multiple 

visual cortices while the animals undergo orientation discrimination tasks. For instance, 

we could record from visual area V1 and V4 simultaneously and then investigate the 

dynamics of cortical state across visual areas. 

 This thesis represents a first step toward a greater understanding of how the 

brain dynamically processes external stimuli. The proposed ideas in this section 
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represent a possible next step in the scientific analysis. Certainly, there are still many 

unanswered questions about how fluctuations in spontaneous activity in the brain 

impact the processing of external information. 
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