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DEVELOPING NOVEL APPROACHES TO IMPROVE RESPONSE

TO T CELL BASED CANCER IMMUNOTHERAPY

Rina Makebeh Mbofung, B.S.

Advisory Professor: Patrick Hwu, M.D.

Recently, T cell based immunotherapies have moved to the forefront of cancer
immunotherapy with the success of Adoptive T cell therapy (ACT) and Immune checkpoint
blockade. ACT, where patients are treated with tumour infiltrating T cells (TILs), conferred
a clinical response rate of ~50%. Treatment with anti-CTLA4 and anti —PD1 therapy,
conferred response rates of up to 50%, greatly improving the overall survival of patients
with advanced melanoma amongst other cancer types. Despite the encouraging
outcomes, there are relatively low response rates coupled with the delay of weeks to
months before tumour shrinkage can be appreciated. Thus, understanding what tumour
intrinsic pathways contribute to non-responsiveness to immunotherapies and their effect
on T cells, to improve response rates, shorten time to treatment effect and developing

predictive biomarkers of response are vital to the care of cancer patients.

In order to identify possible tumour intrinsic pathways that could be perturbed to
improve responses to immunotherapy, a high-throughput in vitro screen with 850 different
bio-active compounds (Selleckchem), was designed to search for agents that could either
increase or decrease the resistance of melanoma tumour cells to T cell mediated killing.
Paired tumour samples and TILs from melanoma patients were used to assess which
compounds when used to treat the melanoma cell lines can enhance the cytotoxic activity
of the TlLs against the paired melanoma sample, using a flow cytometry based assay in

which active caspase 3 was used as a read out of apoptosis. Heat shock protein 90
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(HSP9O0) inhibitors amongst compounds that improved T cell mediated cytotoxicity. We
show that treatment with the HSP90 inhibitor ganetespib (Synta) greatly improves T cell
mediated cytotoxicity of both human and murine cancer cells lines in vitro. Furthermore,
in vivo murine studies using the MC38/gp100 tumour model show that ganestespib in
combination with immune checkpoint blockade, resulted in superior antitumour effect and
survival compared to either treatment alone. Microarray analysis of human cell lines
treated with ganetespib in vitro revealed an increase in interferon alpha (IFN-a) response
genes including IFIT1, IFIT2 and IFIT3. Silencing IFIT genes abrogated the synergy
observed with ganetespib treatment and T cell mediated killing, suggesting that the IFN-a
response pathway plays an important role in this combination therapy. This work highlights
the importance of IFIT genes in response to T cell based immunotherapy and will enable
the emergence of a new combination therapy of HSP9O0 inhibitors and anti-CTLA4 for the
treatment of melanoma patients that will increase the percentage of patients responding

to immunotherapy and achieving long term responses.

To understand what factors influence CD8 T cell effector function at the tumour
site, we used a murine adoptive cellular therapy model in which B16, a gp100-expressing
tumour cell line was implanted in mice and treated with transgenic Pmel T cells, which
recognize gp100 in the context of H-2D®. Transferred Pmel T cells were recovered from
the spleen and tumour of the mice. To interrogate novel pathways which may inhibit the
functions of tumour-reactive T cells at the tumour site, microarray and genome-wide gene
expression analyses, were used to characterize the differential expression profiles among
Pmel T cells from different groups. 720 genes were differentially expressed by T cells
recovered from the tumour site, when compared with those recovered from the spleen.
Amongst them, was the transcription factors Runx2, a gene whose role has not been

described in T cells, to be one of the genes that were differentially expressed. In addition,
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we found that when Runx2 was absent in T cells they did a better job at controlling tumour
growth and vice versa. Further investigation revealed that Runx2 regulated processes in
T cells such as cytokine production and differentiation status, processes which are
important in controlling tumour growth. We are currently focused on understanding how
Runx2 controls these processes in an effort to provide ways to improve existing

immunotherapies or discover new ones.
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Chapter 1

Introduction and Background
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The human body is constantly bombarded by both external and internal ‘threats’ such as
pathogenic microbes, viruses and cancer. Whether the body succumbs to these threats is greatly
dependent on the integrity of the host immune system. Consisting of a cooperative network of
lymphoid organs, cells, humoral factors, and cytokines, the immune system can be divided into
two arms: innate and adaptive immunity that work hand-in-hand. Over the years, the important
role of the immune system in eradicating tumours has been well established. This concept of
immunosurveilance was first proposed by Ehrlich in 1909. He posited that the immune system
constantly recognized and eliminated evolving tumours before clinical manifestations could
occur(1). Burnet later polished this notion with the proposal that genetic mutations occurring in
somatic cells lead to the development of tumours and the immune system was vital in eradicating
these mutant cells(2). This phenomenon would later be confirmed by studies from several groups,
primarily through the observation that mice and humans with innate and adaptive immune-
deficiencies were more likely to develop tumours (3, 4). Amongst the adaptive immune cells, T
lymphocytes particularly CD8 T cells, are vital in tumour elimination as first shown in adoptive
transfer experiments in murine tumour models (5-7). These studies were translated to humans
with the treatment of melanoma and renal carcinoma with tumour-infiltrating lymphocytes
(TILs)(8), paving the way for the development of numerous immunotherapy options for cancer
patients. While there have been great strides in the development of immunotherapies, there is
room for improvement as many cancer patients do not benefit from immunotherapy. Therefore, in
this study considerable efforts were made, using preclinical models, to identify potential pathways
or molecules in tumours and T cells that could be perturbed to improve responses to T cell based
immunotherapy. It is hoped that this knowledge will inform rationale combination therapies that
can provide longer lasting patient outcomes in cancer patients treated with immunotherapy. | will
first introduce the general concept of the generation of an immune response and the signals that
lead to optimal T cell activation. In addition, | will introduce the concept of T cell mediated

antitumour immunity and how it can be suppressed. | will also summarize current strategies of T
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cell mediated immunotherapy. Finally, | will focus on the known and emerging underlying

mechanisms through tumours cells be unresponsive to T cell mediated immunotherapy.

Generation of a CD8 T cell mediated immune response

Although an effective CD8 T cell antitumour immune response has unique attributes, a great deal
of our current knowledge on the generation of a CD8 T cell response has come from the study of
acute viral infections. Following an encounter with antigen, naive CD8 T cells follow a classical
three phase response(9). Phase 1 begins with initial activation characterized by simultaneous
clonal expansion of antigen specific cells and procurement of peripheral tissue homing
capabilities, effector cytokine release, and cytotoxic activity. Phase 2 involves prompt, apoptosis
induced contraction of antigen specific effector T cells. Finally, phase 3 involves the development
of a persistent population of antigen experienced cells known as memory T cells. A comparable
response has also been observed in vivo when tumour specific T cells are stimulated with a
vaccine, accompanied by adjuvants and immunopotentiators(10). Important attributes that
distinguish the memory CD8 T cells in phase 3 include increased precursor frequency compared
to naive cells, antigen independent self-renewal via homeostatic proliferation sustained by the
cytokines interleukin 7 (IL7) and IL15, in addition to the rapid acquisition of effector functions and
clonal proliferation following antigen re-stimulation (11-13). These characteristics are jointly
known as the hallmarks of immunologic memory providing the host with long-lived protection from
future pathogenic encounters. CD4 T helper cells (Th) are vital in the development and
maintenance antigen specific memory CD8 T cells. As such, the ability of memory CD8 T cells to
function, persist and effectively control a secondary challenge is impaired in the absence of Th
(14, 15). Although tumour reactive precursor CD8 T cells are present in cancer patients, they fail
to control and eliminate tumours. Studies over the years have shown these cells to be anergic or

exhausted as a result of several immunosuppressive factors present within the host. An
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understanding of these factors have informed the development of several T cell based

immunotherapies for the treatment of cancer.

The initiation of T cell responses

Immune cells function in a precisely controlled sequential manner to provide protective immune
responses. As such T cell activation is a tightly regulated process. The interaction between T cells
and antigen presenting cells (APCs), including dendritic cells (DCs), B cells and macrophages, is
central to the initiation of a T cell response. This interaction provides a platform for signal
exchange between the two cell types. Adequate T cell activation requires the integration of
antigen-dependent signals, costimulatory signals and appropriate cytokine stimulation. The
mechanism of T cell activation was previously described as a two-signal model involving only
antigen-dependent signals and antigen-independent costimulatory signals. With the discovery
that cytokines are essential for optimal activation, differentiation, function and generation of
memory this model has now been revised and is now known as a three-signal model (Figure 1).

Establishment of the two-signal model

Brescher and Cohn, are credited with the concept of the two-signal model for T cell activation as
they attempted to explain self-tolerance in the periphery(16). They postulated that activation of
thymic precursor cells requires the integration of antigen-mediated interactions with other non-
antigen specific pathways and that interaction of antigen alone with precursor cells could lead to
anergy. Their original paper lacked supporting data but overs the years, their model has been
confirmed and refined by many experimental observations. The first report supporting the two-
signal model came from Lafferty et al. They compared allogenic reactions between different
strains of the same species and strains from different species and found that allogeneic reactions
are much higher between different strains within a species compared strains from different

species(17). To explain these unexpected result, they proposed a model of cell interaction which
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incorporated Brescher’s second signal model, suggesting that this second signal was a species-
specific costimulatory signal. While TCR/MHC interactions comprise the first signal in the two-
signal model(18), the second signal was first shown to be provided by surface molecules on
APCs(19, 20). Investigators observed that even though the antigenic signal was intact in T cells
as evidenced by increased intracellular Ca?* flux, both murine and human T cell clones were not
activated by peptide-pulsed, metabolically inactive APCs or purified MHC molecules on artificial
membranes. These observations suggested that the lack of activation of murine and human T cell
clones under these conditions was caused by other defects of the APCs. In the early 90’s,
Janeway and Matzinger provided additional theories concerning the expression of inducible
accessory molecules on APCs. Janeway pointed out that quiescent APCs lack the ability to
provide help for T cell activation following the observation that full T cell activation required the
complete Freund’s adjuvant (CFA) for peptide or protein challenges. He concluded that, to induce
an immune response, quiescent APCs must be activated by microbial products similar to those in
CFA(21). Toll-like receptors (TLRs) were soon identified confirming and expanding upon
Janeway'’s theory. Interaction of TLRs on APCs with pathogen-associated molecular patterns
(PAMPs) derived from microbial products, leads to the surface upregulation of accessory
molecules on APCs, now known as costimulatory molecules. These molecules provide the
second signal of the two-signal model for T cell activation. This theory, however, only partially
explained T cell activation in infectious diseases. It failed to explain other common immune
responses, such as immune responses related to transplantation and tumours, and autoimmune
responses. Matzinger then posited the danger signal model where, danger signals released by
injured cells activated quiescent APCs, subsequently increasing the expression of costimulatory
molecules(22). Many types of danger signals have since then been identified including

mammalian DNA, RNA and heat-shock proteins, as well as PAMPs on bacteria(23).
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Signal one: Antigen-dependent signal

The recognition of the peptide-MHC (pMHC), present on the surface of APCs, by the T
cell receptor (TCR) provides the initial signal and is required for T cell activation indicating that T
cells are stimulated in an antigen-specific manner. Expressed on the cell surface of T cells, TCRs
consist of two transmembrane units, TCR-a and TCR-B. These units are rearranged during the
process of T cell development in the thymus. A cluster of genes on chromosome 6 in humans and
17 in mice, encode for MHC molecules expressed by APCs. MHC class | and MHC class |l are
two major forms of these polymorphic membrane-bound glycoproteins interacting with receptors
on CD8 T cells and CD4 T cells, respectively. As such, mature T cells can be classified into CD4
T helper (Th) cells and CD8 T cells (CTLs) based on the expression of these two receptors. The
binding of pMHC complexes to TCRs delivers activation signals transmitted into the T cell
cytoplasm via the CD3 complex (24). Following TCR engagement, tyrosine residues located in
immunoreceptor-based tyrosine activation motifs (ITAMs) on the CD3 complex are
phosphorylated by Lck/Fyn, belonging to the Src family of protein tyrosine kinases. ZAP70 then
binds to the phosphorylated CD3 complex via its SH2 domain, and gets activated by
autophosphorylation. ZAP-70 then propels TCR activation via phosphorylation several molecules
including Vav, PLCy and SLP-76 leading to the initiation of downstream signaling cascades.
Finally, TCR engagement induces the activation of several pathways controlling T cell effector

functions, such as the NFAT and NF-kB pathways (25).

Signal two: Co-stimulation

The second signal required for optimal T cell activation is co-stimulation. The prototypic molecule
that delivers the second signal for T cell activation is the co-stimulatory receptor CD28, a member
of the immunoglobulin (Ig) superfamily of receptors. CD28 is constitutively expressed on both

naive and activated T cells(26). Following TCR ligation, CD28 on the T cells interacts with
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CD80/CD86 on APCs. This interaction induces the phosphorylation of tyrosine residues on CD28,
recruiting the SH-2 domain containing kinases, PI3K and Grb2. CD28 signaling amplifies the
magnitude and duration of T cell responses, leading to T cell proliferation, differentiation and
upregulation of survival genes such as BCL-2 and Bcl-XL(27). This signal is critical as lack thereof
can lead to T cell anergy. Another member of the Ig superfamily which enhances T cell responses
is, Inducible co-stimulator (ICOS). Mice with defects in ICOS and its ligand, ICOSL, signaling
have severely impaired primary T cell responses, especially Th2 responses(28). Additional
costimulatory molecules include CD27/CD70, OX40/0X40L, 4-1BB/4-1BBL, HVEM/LIGHT and
CD40/CD40L, belonging to the tumour necrosis factor (TNF) / TNF receptor (TNFR)
superfamily(29). In general, members of the TNF/TNFR family stimulate T cell proliferation and

cytokine production following initial T cell activation.

Following T cell activation is the upregulation of inhibitory receptors such as CTLA-4 which
dampen T cell activation to prevent autoimmunity once the ‘threat’ is cleared. Additional co-
inhibitory receptors include PD1, LAG3, TIM3 and BTLA(30). Ultimately, the fate of T cell
activation is determined by the integration of multiple co-receptors in T cell-APC focal synapses.
In the context of co-stimulatory receptors such as OX40, 4-1BB and ICOS, the outcome is a
favourable sustained T cell response characterized by increased proliferation, differentiation,
cytokine production, survival and memory. Whereas co-inhibitory receptors such as CTLA-4, PD1
and LAG-3 could result in the opposite effect, in addition to T cell anergy and exhaustion. In
summary, all of these discoveries shed light on the fact that T cell activation is more complex than
previously thought. T cell activation is the result of the binding of the TCR with pMHC complex,
and interactions of a variety of costimulatory molecules expressed on T cells and APCs. In
addition to the nature of TCR stimulation, the efficiency of T cell activation is controlled by a large

network comprised of a variety of costimulatory molecules (Figure 2).

20



Signal three: Cytokine stimulation

While the two-signal model was the central concept and foundation for T cell activation, it is now
known that appropriate cytokine stimulation is also required for optimal T cell activation.
Mescher and Curtsinger first demonstrated this concept using in vitro studies(31, 32). Beads
conjugated with pMHC complexes and costimulatory molecules (artificial APCs) were used to
stimulate purified CD8 T cells and results indicated that signal 1 and 2 were sufficient to induce
T cell proliferation and IL2 production but not cytotoxic activity. Addition of the cytokine 1L12
provided the third signal for cytotoxic activity of the CD8 T cells. Similarly, their in vivo studies
also confirmed this finding as the presence of only signal 1 and 2 and absence of IL12 resulted
in peripheral tolerance of CD8 T cells(33). This phenomenon was also observed in other
models. Studies from Filatenkov and colleagues evaluating the coordinated efforts between
CD4 and CD8 T cells in the development of an effective cytotoxic T lymphocyte (CTL) response,
showed that Th cells conditioned dendritic cells to produce IL-12 and that IL-12 was necessary
to sup-port development of CD8 T cell effector functions and graft rejection(34). Type |
interferons (IFN-a and IFN-B) and IL21 were subsequently identified as additional cytokines that
can also provide signal 3. Unlike IL12 and IFN-a/B, IL21 stimulation results in the development
of cytotoxic activity but not IFN-y upon re-stimulation. The gene expression pattern of cells
stimulated with IL12 and IFN-a/p along with signal 1 and 2 was evaluated by Agarwal and
colleagues(35). When naive cells were stimulated for 3 days with artificial APCs, transient gene
expression changes were observed which reverted to naive levels by 72 hours. However, in the
presence of either IL12 or IFN-a/B, the changes in gene expression increased and persisted at
72 hours, as well as additional changes consistent with the induction of a critical sustained
differentiation program in CD8 T cell function and memory. Many of the genes regulated by IL12
and IFN-a/B such as granzymes, IFN-y CD25, OX40, and Bcl-3, are involved in effector

functions, proliferation and co-stimulation, survival, trafficking, and migration of T cells.
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Therefore signal 3 provided by the cytokines IL12 and IFN-a/f play a critical role in
transplantation, tumour biology and vaccine development as well as other T cell mediated

immune responses.

T cell mediated antitumour response

As mentioned above, adoptive transfer experiments in murine models informed the process of
elimination of cancer cells by T cells. Particularly the CD8 T cell subtype capable of cytotoxic
activity. The positive clinical outcomes of cancer patients, which received in vitro expanded
tumour-reactive T cells, provided powerful proof that CD8 T cells can mediate objective cancer
regression (36). As such, much more effort has been dedicated to their role in tumour
immunosurveillance compared to CD4 T cells. Moreover, the major histocompatibility molecule
(MHC) class |, indispensable for CD8 T cell activation, is expressed by most cells, including some
cancer cells. Activated CD8 T cells can therefore, recognize and lyse tumour cells. Activated CD8
T cells or cytotoxic T lymphocytes (CTLs) kill tumour cells via two major mechanisms: secretion
of cytotoxic granules and the Fas/FasL death pathway (37). Granzymes and perforin, which are
pre-synthesize cytotoxic proteins stored in lysosomes, are released upon CD8 T cell activation to
lyse the tumour cells. The release of these cytotoxic proteins is targeted to tumour cells in a
specific manner such that they are not released into the extracellular milieu. They cleave critical
substrates, which initiate apoptosis or DNA fragmentation in tumour cells. The importance of
granzymes and perforin in antitumour immunity was demonstrated using deficient mice.
Compared to wild-type mice, perforin deficient mice are more susceptible to methylcholanthrene
induced tumours, while granzyme A and granzyme B deficient CTLs were unable to induce DNA
framentation(38). Furthermore, blocking the granzyme B/perforin pathway via overexpression of
the serine protease inhibitor PI-6, is associated with resistance to CTL-mediated tumour
clearance (39, 40). In an independent study, the ligation of Fas ligand (FasL), expressed on the

surface of CTLs, with the Fas receptor on tumour cells triggered apoptosis through the classical
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caspase pathway (37). In addition to contact dependent cytotoxic mechanisms through cytotoxic
granules and Fas/FasL interactions, CTLs can also kill tumour cells through contact independent
mechanisms. This is achieved through release of several cytokines including interferon gamma
(IFN-y) and tumour necrosis factor alpha (TNF-a). TNF-a binds to receptors expressed by tumour
cells inducing activation of the caspase pathway, leading to tumour cell apoptosis. IFN-y interacts
with specific receptors, ubiquitously expressed on all nucleated cells. This interaction initiates the
JAK-STAT pathway, activating the expression of several genes including MHC molecules, the
antigen processing and presentation machinery, as well as increasing antigen presentation(41).
In addition, IFN-y, through Fas/FasL upregulation, can induce apoptosis in tumour cell via
caspase-1. IFN-y, together with TNF-alpha trigger the production of reactive oxygen species
(ROS) and NO, which might also inhibit the tumour growth (42). Chemokines produced by CTLs,
such as RANTES, also contribute to the recruitment and activation of innate immune effector cells

to control tumour growth (43).

Suppression of the T cell mediated antitumour immune response

The cancer immunity cycle is series of sequential steps involved in the generation of an effective
anti-tumour immune response (44, 45). Beginning at the tumour site, APCs capture and process
antigens released by oncogenesis. These antigens vary in type ranging from differentiation
antigens, overexpressed antigens to mutational neoantigens(46-48). Following migration to the
lymph nodes, APCs present the processed antigens to T cells in the context of MHC, thereby
priming and activating effector T cell responses. T cell priming has conventionally been thought
to occur exclusively in tumour-draining lymph nodes. However, spontaneously organized tertiary
lymphoid organ structures can be also found within tumours signifying that T cell education may
occur within the tumour bed(49). Activated T cells migrate to the tumour bed where the TCR
recognizes its cognate peptide in the context of MHC. Recognition of tumour cells leads to their

T cell mediated lysis. This further releases additional TAAs thereby propagating the cycle.
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Interruption of the cycle at any step can impede the generation an antitumour immune response.
Over the years, many tumour related factors, that impede the generation antitumour responses,
have been identified(45). Given that TILs are such significant prognostic markers for tumour
progression across multiple tumour types, understanding the processes involved in their
suppression is essential to the improvement of current therapeutic strategies and development of
novel therapeutic strategies. In this section, | will outline direct and indirect ways in which tumours
suppress several steps in the generation of an effective antitumour immune response; these
range from generation of tumour-reactive T cells to their homing, recognition and killing of tumour

cells.

Suppression of T cell priming

As reviewed above the first two steps of the cancer immunity cycle involve APCs which
process and present tumour antigens to T cells, as well as provide essential co-stimulatory
signals. As such, APCs are particularly important for the coordination of an anti-tumour immune
response. As professional APCs, DCs are the major type cell type that present TAAs to both B
cells and T cells, generating an antigen-specific antitumour response. Optimal priming of tumour-
reactive T cells depends on the apt differentiation and maturation of DCs, which provide effective
antigen stimulation and co-stimulation. The tumour microenvironment can however be
suppressive to the differentiation and maturation of DCs(50, 51). In mice and humans, defective
dendritic cell function is often associated with deregulation of DC maturation. Mature DCs are
located in peripheral lymphoid organs such as the spleen and lymph nodes. They express robust
levels of MHC and costimulatory molecules and activate tumour-reactive T cells to initiate a T cell
mediated antitumour immune responses. In contrast, immature/partially differentiated DCs are
located in the periphery, express intermediate amounts of MHC molecules, low levels of
costimulatory molecules as well as high levels of immunosuppressive cytokines and inhibitory

molecules. They inefficiently process and present TAAs to T cells inducing the loss of function of
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tumour-reactive T cells (52). All-in-all immature DCs mediate immune tolerance to tumours,
inducing anergy of effector T cells and/or favouring the expansion of T regulatory cells (Tregs) in
the lymph nodes or at tumour sites (53, 54). Till date several tumour secreted factors which
suppress DC maturation have been identified. Vascular endothelial growth factor (VEGF)
produced by tumour cells was one of the first factors reported to induce immature/partially
differentiated DCs (51). In addition to suppression of DC maturation, VEGF can also induce high
levels of PDL1 expression thereby also impairing DC function(55). Additional tumour derived
factors that disrupt DC maturation and function include macrophage colony stimulating factor (M-
CSF), Interleukin 6 (IL6), IL10, transforming growth factor beta (TGF-B) which inhibit
differentiation of DC (56-58), as well as physiological stimuli such as hypoxia and lactic acid(59-
61). Finally, immature DCs fail to secrete appropriate chemokines important in recruiting effector
cells to the tumour(62). In summary, normal DC differentiation, maturation and function are
essential components of T cell priming and disruption of this process via tumour-mediated
immune suppression leads to tumour immune tolerance. Current strategies aimed at relieving this
immune  suppression include blocking these aforementioned tumour secreted
immunosuppressive molecules, stimulating DC maturation via administration of TLR agonists or

CD40 agonistic antibodies, as well as generating potent DC-vaccines ex vivo.

Suppression of T cell homing

Chemokines play a critical role in T cell trafficking or homing to the tumour. As such, tumours
disrupt normal chemokine expression, greatly contributing to impaired T cell trafficking. Tumours
with a great number of TILs express high levels of established T-cell-attracting chemokines,
including chemokine (C-C motif) ligand 2 (CCL2), CCL3, CCL4, CCL5, chemokine (C-X-C motif)
ligand 9 (CXCL9), and CXCL10(63). In the tumour milieu, these chemokines can also be induced
by IFN-y secreted by T cells. From observations in murine models, it is thought that a few T cells

initially infiltrate tumours along a chemokine gradient, followed by a large influx of both specific
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and nonspecific T cells as a result of a positive feedback loop that amplifies these T cell attracting
chemokines(64, 65). In tumour cells, it is well known that aberrant post-translational modifications
occurs in expressed chemokines. Changes in their cleavage, deamination and glycosylation
results in dramatically altered activities of expressed chemokines (66, 67). For instance, reactive
oxygen species (ROS) can induce nitrosylation of CCL2, an important chemokine for the
recruitment of CTLs to the tumour site(68). This post translational modification abrogates the
ability of CCL2 to attract tumour-specific CTLs, instead attracting myeloid-derived suppressor
cells (MDSCs) to the tumour bed(69). Additionally proteolytic processing of CXCL11, an important
chemokine that recruits CXCR3 expressing effector T cells, could be significantly altered. This
weakens CXCL11 binding and signaling, greatly decreasing lymphocyte homing (63, 64, 67).
Furthermore, CCL22 expression in ovarian and breast cancer can result in recruitment of Tregs
within tumours forming an immunosuppressive microenvironment (70). Hence, the deregulation

of chemokine expression is an important tumour immune escape mechanism.

Suppression of T cell extravasation

In addition to the chemokine gradient, the vascular endothelium also plays an important role in T
cell trafficking, particularly transmigration of T cells through the vascular endothelium into target
tissue in a process known as extravasation. T cell extravasation through the endothelium into the
tumour is a multi-step process that includes rolling and adhesion to endothelial cells and
subsequent diapedesis. The tumour endothelium can, however, be prohibitive in nature to T cell
transmigration, depending on the type and quantity of adhesion molecules expressed (36, 71,
72). Key adhesion molecules important for extravasation include intercellular adhesion molecule-
1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), expressed on the endothelium.
ICAM-1 and VCAM-1 are known to be upregulated by soluble factors such tumour necrosis factor-
alpha (TNF-a) often expressed within the tumour microenvironment, albeit in low amounts by

tumour cells themselves(73). TNF-a is a known activator of endothelial cells and T cell adhesion.
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However, in the presence of angiogenic promoting factors such as basic fibroblast growth factor
(bFGF) or VEGF, TNF-a stimulation is unable to induce expression of ICAM-1 and VCAM-1 on
endothelial cells(74, 75). In addition to VEGF, the presence of endothelins and their receptors
within the tumour microenvironment is detrimental to the expression of adhesion molecules.
Frequently upregulated in a number of cancers including ovarian, colon, breast, prostate and renal
cancer endothelin (ET) peptide ligands ET-1, -2, -3, and -4 are potent regulators of endothelial
cell biology(76-78). They are involved in autocrine and paracrine loops that promote
angiogenesis, proliferation, protection from apoptosis, vasculogenesis, invasion and metastatic
dissemination of tumours. Through interactions with VEGF, endothelins regulate several aspects
of angiogenesis, including endothelial cell proliferation, migration, invasion, vessel formation, and
neovascularization. The suppressive effects of VEGF and endothelin can be commonly induced
by the highly reactive free radical nitric oxide (NO)(74, 79). NO decreases T cell-endothelial
interactions via downregulating the expression of the important adhesion molecules Pselectin,
ICAM-1, and VCAM-1. As such, inhibition of the NO-producing enzyme, nitric oxide synthase
(NOS), enhances both the rolling and adhesion of CD8 T cells on tumour vasculature.
Independent of adhesive mechanisms, the tumour vasculature can also influence the nature of T
cell infiltration in tumours. Endothelial cells can, for example, express a number of molecules such
as FasL and TNF-related apoptosis-inducing ligand (TRAIL) which can interact with
corresponding receptors on effector CD8 T cells leading to their suppression and death(80, 81).
Furthermore, immunosuppressive molecules such as TIM-3, IL-10, TGFb, PDL1, PDL2, B7-H3
and PGE2 can also be expressed by the tumour endothelium(76, 82-88). Therefore, the role of
tumour endothelial cells is mostly immunosuppressive and is maintained by tumour cells through

paracrine mechanisms.
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Suppression of T cell interaction and recognition of tumour cells

Once CD8 T cells emerge into the tumour bed, they can encounter additional immuosuppresive
cell populations within the tumour microenvironment. T regulatory cells (Tregs) are one of such
cell types encountered(89-91). They can be actively recruited and local expanded to effectively
suppress T cell effector functions. As such, infiltration of Tregs is frequently associated with a
poor prognosis, although their presence may also be indicative of an ongoing immune response.
Characterized by the markers, CD4+ CD25+ FoxP3+, Treg cells can be divided into natural Tregs
(nTregs) and inducible Tregs (iTregs)(92). nTregs are thymically derived and maintained
peripherally by TGF-3, while iTreg are induced from naive CD4+ T cell precursors periphery. A
number of studies indicate that Treg cells accumulate within tumours in a clonally restricted
manner and are specific for tumour antigens. Treg cells are therefore, activated in an antigen-
specific manner and can suppress T cell function through both specific and nonspecific
mechanisms(91, 93). Tregs cells can be actively recruited by chemokines such as CCL22
secreted by tumour cells tumours and tumour associated macrophages(70). In addition to
recruiting nTregs, the tumour microenvironment favours the continued expansion of nTregs as
well as the generation of iTreg cells via IL-10, TGF-$ and adenosine derived from either tumour-
resident immunosuppressive DCs and Tie-2+ monocytes (TEMs) or tumour cells(94). Cytokines
such as TGF-B, IL-10, and IL- 35, secrete by Tregs suppress effector T cell expansion and effector
cytokine secretion. Another mechanism through which Tregs suppress effector cells is through
competitive consumption of IL2 in the tumour microenvironment, thus limiting effector T cell
expansion and function(95). Tregs express high levels of the IL-2 receptor alpha (IL-2Ra, also
known as CD25) and hence have higher affinity for IL2. While IL2 signaling on Treg cells is not
required for their suppressive function, IL2 is required to maintain their metabolic homeostasis
and competitive fitness in vivo. Thus, Treg cells depend on paracrine support from T effector cells,

which secrete IL-2, for expanding and maintaining local tolerance. In addition, Tregs can directly
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kill T cells via TRAIL or granzyme B mediated cytotoxicity (96, 97). Finally, Tregs can crosstalk
with DCs, inducing the expression of TGF-, IDO and IL-10 expression from DCs through direct

interactions(91).

While a number of suppressive myeloid lineage cells have been identified within tumours,
myeloid derived suppressor cells (MDSCs) are the best described. Often found in great numbers
within tumour and in circulation of cancer patients, they are potent inhibitors of effector T cell
functions(98). Recruited from the bone marrow, MDSCs are expanded in the peripheral blood
through interactions with BV8 and endocrine-gland-derived VEGF (EGVEGF)(99). Once in
circulation, MDSCs can be recruited a number of chemokines, including CCL2, CXCL5, CXCL12,
and stem cell factor (SCF) to the tumour site(100). Within the tumour, MDSCs suppress T cells
through the production of IL10, TFG-(, arginase |, as well as reactive oxygen species (ROS).
Furthermore, MDSCs can also expand Treg cells within the tumour microenvironment (59, 86).
Nevertheless, studies have shown that MDSCs can be phenotypically plastic. They can acquire
the features of tumour-rejecting monocytes and even APCs if the right conditions are met. For
instance, the cytokines IFN-y and IL12 have been shown to convert MDSCs into APC-like cells
that activate and enhance the functions of T cells in vitro and in vivo (101, 102). Therapies that
deplete MDSCs or change their phenotype to a more favourable one are attractive for cancer

treatment.

Suppression of T cell mediated killing of tumour cells

Finally, once T cells successfully make their way through the barriers of the tumour vasculature
and stroma, they can face additional immunosuppressive factors that interfere with effective
recognition and/or killing of tumour cells. As previously described, T cells rely greatly on pMHC-
TCR interactions in order to recognize targets and perform their effector functions. It is well
established that that tumours express protein products or peptides that can be recognized by the

immune system as "non-self". This peptides are derived from a range of proteins including
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overexpressed self-proteins (including cancer testis and other immune-privileged site antigens)
to novel mutational epitopes resulting from nonsynonymous somatic mutations (47, 103). T cells
recognizing these tumour associated peptides have been identified in melanoma as well as other
cancer types. Tumours have however developed mechanisms to avoid T cell recognition by T
cells through loss of immunogenic peptides from the tumour surface. This could be accompanied
by loss of expression or downregulation of the antigen processing and presentation machinery,
as well as downregulation or complete loss of MHC | expression(104). Selective pressure from
mutation, genetic loss, or epigenetic silencing could be responsible for this observation. In
addition, tumour intrinsic oncogenic signaling could also contribute to this effect as inhibition of
certain pathways can increase MHC | and surface antigens on tumour cells (104, 105). This
aberration in antigen processing and presentation is associated with poor prognosis of disease

and poor clinical outcomes.

Tumours can also express surface molecules including the TNF family members FasL
and TRAIL that can directly kill T cells following interaction with the receptors on T cells(106).
They can also express the ligands to co-inhibitory receptors on T cells, such as PDL1, PDL2 and
B7-H4 which can suppress T cell functions arresting tumour rejection (107, 108). Furthermore,
the microenvironment in close proximity to tumour cells can be quite toxic for optimal CTL function.
Soluble mediators, such as IL-10, PGE2, TGF-f3, histamine, hydrogen peroxide, and adenosine,
secreted by tumour cells, can directly inhibit CTLs(106). Moreover, metabolic substrate
deprivation as a result of competitive consumption by tumour cells and/or active depletion by
enzymes such as IDO and arginase can further diminish T cell effector function(109). Finally, the
hypoxic conditions and the relatively lower extracellular pH reminiscent of the tumour interstitium

can negatively affect CTL function(90).
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T cell mediated cancer immunotherapy

Given the crucial role of tumour-reactive T cells in antitumour immune responses and an
increased understanding of tumour suppressive mechanisms, T cell mediated cancer
immunotherapy has been exploited for several decades to harness or boost the immune system
to eliminate tumours. Till date many immunotherapies have been developed and successfully
implemented for the treatment of various cancer types including melanoma, renal cell carcinoma,
non-small cell lung cancer and lymphoma. Cancer immunotherapy can be divided into four major
categories: cancer vaccines, cytokine based therapy, adoptive cellular therapy and immune

checkpoint therapy.

Cancer vaccines

The concept of cancer vaccines was borrowed from the successful development of vaccines
against infectious diseases. Cancer vaccines illicit recognition and destruction of tumour cells by
activating the immune system. Common forms of cancer vaccines being investigated for cancer
treatment include protein vaccines, whole cell vaccines, DNA vaccines, peptide vaccines,
recombinant virus vaccines and dendritic cell vaccines. The identification of several differentiation
antigens such as gp100 and MART-1 paved the way for the development of cancer vaccines.
Additional tumour antigens used in cancer vaccines include overexpressed antigens (Mesothelin),
viral antigens (HPV E6, E7), cancer-testis antigens (MAGE family) and neo-antigens (Ras )(110,
111). Although the success of cancer vaccines has been limited, the results from pre-clinical and
clinical studies thus far have provided insight into how their therapeutic efficacy can be improved.
For example, results from a standalone phase Il study in which patients with metastatic melanoma
were treated with the gp100 peptide followed by Interleukin 2 (IL2) resulted in a 42% objective
clinical response providing evidence that vaccines could provide therapeutic benefit for cancer
treatment. A follow up randomized phase lll study where patients received either gp100 alone or

gp100 followed by IL2 indicated that addition of IL2 provided additional benefit over gp100 alone
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