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Abstract 

AGING EXACERBATES NEUTROPHIL PATHOGENICITY IN  

ISCHEMIC STROKE 

 

Meaghan Anne Roy-O’Reilly, M.S. 

 

Advisory Professor: Louise McCullough, MD/PhD 

 

Ischemic stroke is a major cause of disability and mortality worldwide. As 

most patients cannot receive the currently approved therapies for ischemic 

stroke, novel treatments are critically needed. Cerebral ischemia causes 

irreversible tissue damage, referred to as the “tissue core”, which is surrounded 

by a salvageable penumbral region. Excitotoxicity, oxidative stress and 

inflammation can further damage this “tissue-at-risk”, resulting in even greater 

functional loss and poorer injury outcomes.  

Aging represents the single strongest risk factor for high mortality and 

poor outcome after stroke in patients. This phenotype is also seen in animal 

models, with aged mice experiencing higher mortality and poorer recovery than 

their young counterparts. Our lab has recently shown that bone marrow 

transplantation from young mice into aged mice improves functional outcome 

after ischemic stroke, whereas aged bone marrow transplantation exacerbates 

secondary brain hemorrhage in young mice. However, the identity of the 

deleterious factor present in aged bone marrow remains unknown. 
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Bone marrow is the main site of neutrophil differentiation, maturation and 

storage. Neutrophils, innate immune cells with a rich arsenal of anti-bacterial 

functions, traffic to the brain in large numbers following ischemic stroke. Age has 

previously been reported to impair neutrophil protective functions (phagocytosis, 

directed chemotaxis) and exacerbate neutrophil-driven inflammation (increased 

reactive oxygen species generation, impaired neutrophil clearance). However, 

there are currently no published studies on the effects of age on neutrophil 

function and neutrophil-associated brain tissue damage after stroke.  

Neutrophils are believed to exacerbate brain tissue injury in ischemic 

stroke via the release of degradative enzymes and reactive species, leading to 

blood-brain-barrier breakdown, secondary tissue hemorrhage and direct tissue 

damage. In light of this data, neutrophil-mediated damage has gained 

significantly interest as a potential therapeutic target in ischemic stroke.  

Despite success in animal models, clinical trials of anti-neutrophil 

therapies for ischemic stroke have been unsuccessful, due in part to the limited 

specificity of available treatments and the tendency to test therapeutics in young 

animals only. We believe this lack of specificity and the failure to include aged 

animals in pre-clinical studies may have obscured the true contribution of 

neutrophils to stroke pathology. In recent years, administration of the monoclonal 

antibody anti-Ly6G has been found to specifically and robustly deplete 

neutrophils in mice. Encouragingly, our early work confirmed that post-stroke 

anti-Ly6G treatment results in a transient decrease in circulating neutrophils, 
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making it a promising tool for testing the role of neutrophils in acute ischemic 

stroke pathology.  

In this dissertation, I hypothesized that age enhances the pro-

inflammatory functions of neutrophils after ischemic stroke, directly contributing 

to the poorer outcomes seen in aged animals. I tested this hypothesis by (1) 

examining the effects of age on neutrophil inflammatory phenotype in vivo and ex 

vivo, and (2) directly assessing whether neutrophil depletion had a differential 

treatment effect in young vs. aged animals following ischemic stroke.  

These studies not only examine the utility of post-stroke neutrophil 

depletion therapy in young and aged animals, but also provide new insight into 

the changing function of injury-induced inflammation throughout the lifespan. In 

addition, we demonstrate that neutrophils from aged animals exhibit altered 

behaviors, including an impaired clearance phenotype, greater sensitivity to 

inflammatory stimulus and a higher capability for reactive species generation.  

In this body of work, I have (1) examined neutrophil-activating cytokine 

levels and neutrophil-associated gene pathways in human stroke patients, (2) 

advanced scientific knowledge regarding the influence of age on neutrophil 

function and neutrophil-related damage after ischemic stroke, (3) and improved 

clinical translatability by testing the utility of post-stroke neutrophil depletion in 

both young and aged animals. 
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1.1 The Heavy Burden of Stroke in Society 

Stroke is the 2nd leading cause of death worldwide, affecting more than 15 

million people annually.1 Stroke is responsible for 1 in 20 deaths in the United 

States, with particularly high mortality seen in a region of the southeastern United 

States known as the “stroke belt”.2 This region, which includes parts of eastern 

Texas, experiences 30% higher stroke mortality than the rest of the nation.3 The 

incidence of stroke around the world is tightly correlated with the incidence of 

several stroke risk factors, including hypertension, hyperlipidemia, diabetes 

mellitus, cigarette smoking, atrial fibrillation and cardiovascular disease.2 

Patients who survive their initial stroke often experience permanent and 

profound morbidity, as the brain is critically important to all human functions and 

has limited ability to regenerate. Stroke often leaves patients with extensive, life-

altering dysfunctions, including weakness, paralysis, loss of speech, 

incontinence, cognitive dysfunction, emotional lability and pain.4 Stroke also 

places a heavy burden on the families of stroke patients, with stroke caregivers 

reporting high levels of stress and depression.5  

Due to its high incidence and extensive sequelae, stroke now represents 

the leading cause of disability in the United States.1 By 2030, another 3.4 million 

adults in the US will experience a stroke, increasing stroke prevalence by more 

than 20%.6 The overall cost of caring for these stroke patients is projected to 

reach upwards of $183 million dollars, driven largely by longer life expectancies 

and a concomittant increase in our aged population.6  
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1.2 Ischemic Stroke Pathophysiology & Current Treatments 

 A stroke occurs when blood flow to the brain is compromised. Bleeding 

into the brain results in a hemorrhagic stroke, whereas ischemic strokes result 

from the loss or blockage of blood flow within the vessels supplying the brain.2 

This work will focus on ischemic strokes, which account for approximately 87% of 

all strokes.2  

Despite the high prevalence of ischemic stroke, there are currently only 

two approved treatment options: (1) mechanical clot removal or (2) 

pharmacological clot dissolution with tissue plasminogen activator (t-PA). 

Unfortunately, clot removal procedures require fast access to high-level 

endovascular care within six hours of stroke onset, which is not a reality for the 

vast majority of stroke patients. Although pharmacologic t-PA therapy is more 

widely available than mechanical intervention, t-PA can only be utilized in large 

vessel ischemic stroke. However, the treatment window of t-PA and mechanical 

retrieval is narrow (3-4.5 hours and 6 hours after symptom onset, respectively).7 

Due to this brief treatment window, the vast majority of ischemic stroke patients 

(>90%) do not receive t-PA or interventional surgery, leaving them with no viable 

interventions in the acute setting.  

Although many effective candidates have been identified in pre-clinical 

studies, all prospective treatments have failed to provide significant clinical 

improvement in stroke patients in Phase III clinical trials.8 If we are to reduce 

stroke mortality and improve quality-of-life in stroke survivors, novel therapeutic 

targets with significant translational potential are critically needed.  
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To design effective clinical targets for stroke treatment, it is important to 

understand the underlying pathophysiology of cerebral ischemia. Ischemic stroke 

results in a permanent core brain injury, defined as tissue where cerebral blood 

flow has been reduced to <20% of baseline. As neurons are exquisitely sensitive 

to ischemia, cell death occurs rapidly at the core of the ischemic brain due to 

acute energy failure, resulting in ionic disequilibrium, mitochondrial dysfunction 

and breakdown of cellular components.9  

Although the tissue core is thought to be irreversibly damaged within 

minutes of stroke onset, the area surrounding the core region experiences an 

intermediate reduction in cerebral blood flow reduction.10 This territory is known 

as the ischemic penumbra, characterized by regions of dysfunctional cells that 

may recover once blood flow has been restored.11  

Both approved therapies for ischemic stroke (t-PA and clot retrieval) are 

targeted towards recanalization, which removes the vessel blockage and allows 

the return of blood carrying oxygen and glucose to the injured tissue.12 Although 

these interventions can offer significant benefits to patients who arrive quickly to 

skilled medical facilities, their narrow treatment window reflects their primary 

method of action – reducing the severity of the primary ischemic injury.  

Unfortunately, even when blood flow is restored via interventional therapy 

or natural recanalization, the compromised tissue of the penumbra remains 

endangered due to a wide array of secondary damage pathways initiated during 

the primary injury.9 As this secondary damage takes place over a longer period 

of time (hours to weeks) compared to the primary ischemic insult (minutes to 
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hours), it is believed that therapies targeting secondary damage may have wider 

therapeutic windows. In particular, excitatory neurotoxicity and inflammation have 

been extensively studied as promising targets for ischemic stroke treatment.13, 14  

Excitatory neurotoxicity is caused by a massive release of glutamate from 

dying and damaged neurons, resulting in the widespread activation of neuronal 

receptors that eventually results in profound cellular dysfunction and apoptosis.11 

Experimental studies have found that targeting these excitatory neuronal 

pathways, known as neuroprotection, can reduce cell death and improve 

outcome after injury. Particularly well studied are N-methyl-D-aspartate (NMDA) 

receptors, which have been shown to mediate glutamate-induced cell death.15, 16  

Preclinical studies found that NMDA receptor blockade was highly 

neuroprotective after stroke in young mice.17 Yet despite success in animal 

models, all clinical trials of NMDA antagonists for ischemic stroke have failed, 

with one study reporting a trend towards potential neurotoxic effects of the 

treatment after stroke.18-22 Subsequent work in experimental models found that 

NMDA antagonism after cerebral ischemia induces neuronal apoptosis and 

suppresses brain tissue regeneration, or neurogenesis, which is critical for the 

restoration function after ischemic stroke.23 This is due to the fact that, despite its 

harmful role during injury, the beneficial role of NMDA receptor signaling in 

normal neuronal physiology is integral to the healthy brain.  

These results, and other failed trials of “neuroprotective” agents targeting 

components of normal neuronal physiology indicate that these strategies are 

largely ineffective and potentially unsafe for clinical populations.20 In light of this, 
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we believe that targeting of other secondary injury mechanisms that do not 

directly affect neurons (such as post-stroke inflammation) may result in greater 

translational success.  

 

1.3 Ischemic Stroke-Induced Inflammation 

Inflammation after stroke is caused by several factors, including (1) 

cellular activation and release of pro-inflammatory molecules from glial cells, 

endothelium and neurons, and (2) activation and recruitment of circulating 

peripheral immune cells.9 Following stroke onset, an array of danger associated 

molecular patterns (DAMPs) and inflammatory cytokines are released from dead 

and dying cells.9 Microglia, the innate immune cells of the brain, are activated 

and release cytokines and chemokines, potentiating both the central and 

peripheral inflammatory response.24 Inflammatory mediators generated in the 

brain gain access to the periphery via the (1) cerebrospinal fluid outflow tracts, 

(2) the systemic circulation via a disrupted blood brain barrier and (3) the 

glymphatics, a perivascular system for lymph circulation in the brain.9 In concert, 

these brain-derived DAMPS, cytokines and chemokines initiate the mass 

activation and recruitment of peripheral immune cells into the injured brain.25  

The earliest peripheral immune responders are neutrophils, followed 

closely by monocytes/macrophages.4 In later injury stages, the body mounts an 

adaptive immune response characterized by the activation and infiltration of 

lymphocytes.26 Pre-clinical studies have shown that the peripheral immune 

response can affect ischemic stroke outcome.8, 9 In addition, immune activation 
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and leukocytosis independent of infection (increased white blood cells in 

circulation) after stroke is predictive of poor outcome in patients, including higher 

mortality, poorer functional recovery and extended hospital stays.8, 27, 28 In 

particular, studies have found particularly robust associations between increased 

circulating neutrophil counts, higher neutrophil gene expression, and poor 

outcome after ischemic stroke.8, 28, 29 

 

1.4 Neutrophil Biology 

 Human blood is rich in neutrophils, which make up approximately 60% of 

our normal circulating immune cells. As neutrophils are typically very short-lived, 

new neutrophils are constantly produced in the bone marrow during a process 

known as granulopoiesis. Granulopoesis occurs on a massive scale, as humans 

are estimated to generated approximately 1011 new neutrophils every day, with 

even greater production under conditions of injury or infection.30 The 

development of all blood cell lineages begins with hematopoietic stem cells 

(HSC). Based on the levels of survival and differentiation factors (such as G-

CSF, discussed below), HSC can give rise to common myeloid progenitor (CMP) 

or common lymphoid progenitor (CLP) cells.31 CMP cells then further differentiate 

into monocyte erythrocyte precursor (MEP) or granulocyte monocyte progenitor 

(GMP) cells, followed by GMP differentiation towards either a 

monocyte/macrophage (monoblast) or granulocyte (myeloblast) lineage. 

Granulopoiesis begins with myeloblasts, which are capable of differentiating into 

the three types of granulocytes: neutrophils, eosinophils or basophils. Cells then 
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pass through the promyelocyte, myelocyte and metamyelocyte stages, becoming 

fully committed to the neutrophil lineage during the myelocyte-metamyelocyte 

transition.32  

Granulocyte colony-stimulating factor (G-CSF) is a major regulator of 

neutrophil production from progenitor cells, where it stimulates hematopoeitic 

progenitor proliferation and upregulates the expression of neutrophil-biasing 

transcription factors.33 During conditions of acute inflammation, G-CSF also 

facilitates the release of neutrophils from the bone marrow (where 90% of mature 

neutrophils reside) into the circulation via the inhibition of the bone-marrow 

retention CXCL12 ligand/CXCR4 receptor pathway.34 In addition to suppressing 

neutrophil marrow retention, G-CSF actively promotes neutrophil mobilization by 

stimulating CXCL1 production in endothelial cells and megakaryocytes. CXCL1 is 

the ligand for CXCR2, a highly expressed neutrophil chemotactic receptor.35 The 

lung microvasculature also contains a significant pool of mature neutrophils, 

which are released into the circulation during inflammation as a result of CXCR4 

inhibition.36 

 Neutrophils utilize four major inflammatory defenses to kill invading 

pathogens: phagocytosis, degranulation, neutrophil extracellular trap release 

(NETosis) and reactive species generation. In conditions of excessive 

inflammation, as seen in overwhelming infection and extensive tissue injury, 

these defenses can also exacerbate tissue damage.37  

Neutrophil phagocytosis is an important component of the immune 

response, characterized by the rapid uptake of microbes opsonized with IgG or 
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complement factors into neutrophil phagosomes, which contain destructive 

reactive species and hydrolytic enzymes.38 In conditions of excessive 

inflammation, phagocytic receptors on neutrophils encounter large complement 

or immune complexes that they cannot ingest, a phenomenon known as 

frustrated phagocytosis.37 As a result, neutrophils release massive amounts of 

granules within the vasculature, resulting in vessel degradation and tissue 

hemorrhage.39 This type of uncontrolled neutrophil granule release has been 

implicated in secondary tissue injury in both infection and inflammatory 

diseases.37 

Neutrophil degranulation occurs when immune activation stimulates the 

fusion of neutrophil granules containing an array of proteins with neutrophil 

phagosomes (for intracellular killing) or the cell membrane (for membrane 

presentation or extracellular release). During neutrophil development, they 

sequentially acquire four types of granules with distinct cargo; azurophilic 

(defensins, elastase, myeloperoxidase), specific (metalloproteinases, lactoferrin), 

gelatinase (arginase, lysozyme, gelatinase) and secretory (alkaline phosphatase, 

membrane receptors).31 Upon inflammatory stimulation, neutrophils release their 

granules in the reverse order. Therefore, although minor neutrophil activation is 

capable of inducing the release of secretory granules, the release of azurophilic 

granules requires stronger stimulation.40 Early neutrophil inflammatory responses 

consist primarily of the release of secretory, gelatinase and specific granules, 

which contain proteins that facilitate cell adhesion, migration through tissue and 

pathogen killing.  Azurophilic granules represent the last line of defense in 
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neutrophil degranulation, and the bactericidal proteins and destructive lytic 

enzymes they contain can cause significant damage to surrounding tissue.41 

Neutrophils can also release neutrophil extracellular traps (NETs) made of 

decondensed chromatin studded with neutrophil granules.42 NETs carry a variety 

of neutrophil proteins, including neutrophil elastase (NE), matrix 

metalloproteinase (MMP-9) and myeloperoxidase (MPO).42-44 Although NET 

formation is an anti-bacterial defense, excess NET formation can cause 

extensive damage to host tissues, including vascular injury and clot formation.45-

48 NET release is dependent on very high levels of intracellular oxidative species, 

suggesting the two processes are physiologically coupled.49, 50  

 Although neutrophils possess the capability to cause tissue damage via a 

wide array of functions, their production of reactive oxygen species (ROS) and 

the resulting oxidative damage to tissues ris a powerful potential mechanism for 

exacerbated secondary injury after ischemic stroke. Neutrophils generate large 

amounts of ROS during their respiratory burst, including (O2
*), hydrogen peroxide 

(H2O2) and hydroxyl radicals (HO-).51 Hydrogen peroxide can then react with 

chloride and iodide (halide ions) to produce anti-bacterial hypochlorite (HOCL) 

using an enzyme called myeloperoxidase (MPO), abundant in neutrophil 

granules.52, 53 

 In comparison to other cells, neutrophils from both mice and humans have 

low oxygen consumption and mitochondrial mass at rest.54, 55 Upon exposure to 

inflammatory stimuli, neutrophil oxygen uptake and glucose consumption rise, 

accompanied by increased intracellular levels of ROS, results in the phagocyte 
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respiratory burst.56, 57 The respiratory burst is largely controlled by the NADPH 

oxidase complex of proteins, consisting of both cytosolic (p47phox, p67phox, 

p40phox) and membrane-bound (gp91phox, p22phox) subunits.58 Upon 

neutrophil activation, NADPH oxidase localizes to both specific granules and the 

neutrophil plasma membrane, allowing for electrons in NADPH in the cytosol to 

access oxygen and resulting in the formation of superoxide anion.58 Superoxide 

is degraded to hydrogen peroxide, which is freely cell permeable and can 

mediate intracellular and extracellular effects, including inflammasome activation 

and type 1 interferon signaling.58, 59  

In addition to the NADPH oxidase complex, inducible nitric oxide synthase 

(iNOS) also plays a role in neutrophil radical generation via the production of 

reactive nitrogen species (RNS) (Figure 1). Although both ROS and RNS are 

important components of the anti-bacterial response, the production of excess 

reactive species has been implicated in the pathology of many diseases, 

including ischemic stroke. Studies have shown that nitric oxide (NO) produced by 

iNOS contributes to injury after ischemic stroke.60-64 Using bone marrow 

chimeras, Garcia-Bonilla et al. recently determined that iNOS from infiltrating 

neutrophils was sufficient to exacerbate brain tissue damage after ischemic 

stroke.65 However, as all studies of pro-oxidative enzymes have all been 

conducted using young male mice, the contribution of these factors in aged 

subjects remains largely unknown.  
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Figure 1. Schematic of the neutrophil oxidative burst. A series of pro-

oxidative enzymes (in red) are responsible for the generation of reactive oxygen 

and nitrogen species, while anti-oxidative enzymes and mediators rapidly 

facilitate their detoxification, preventing excessive damage to healthy tissues. NO 

= nitric oxide, iNOS = inducible nitric oxide synthase, NADPH = nicotinamide 

adenine dinucleotide phosphate. 
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1.5 The Role of Neutrophils in Ischemic Stroke 

Neutrophils represent a likely culprit in ischemic stroke pathology due to 

their extensive pro-inflammatory functions (Figure 2).8 Recent studies using in 

vivo two-photon microscopy have shown that neutrophils are the earliest 

peripheral responders after brain, capable of migrating and adhering to the 

nearby cerebral vasculature within minutes of the initial injury.66 Following 

adherence, neutrophils can transmigrate across the damaged blood-brain-barrier 

into the injured parenchyma, where they release a wide array of inflammatory 

mediators that orchestrate the recruitment of subsequent waves of immune 

infiltration.8 Under normal conditions, neutrophils play an important role in 

protection against infection and the resolution of tissue injury. However, if 

neutrophils persist in an injured area, they contribute to chronic inflammation -- 

characterized by over-recruitment of monocytes, high levels of pro-inflammatory 

mediators and continual tissue damage.67 

Neutrophils differentiate and mature in the bone marrow prior to their 

release into the bloodstream. Under basal homeostatic conditions, neutrophils 

have a very short circulating half-life, returning to organs for programmed 

apoptosis and clearance within 24 hours.68 However, once neutrophils in 

circulation have been activated by danger associated molecular patterns 

(DAMPs) or cytokines, the apoptotic programming is halted as neutrophils traffic 

to the inflammatory site.68  
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Figure 2. Neutrophil activation and recruitment following ischemic stroke. 

(1) Following stroke, neurons and glial cells within the brain initiate inflammatory 

cascades that result in disruption of the blood brain barrier and (2) production of 

inflammatory cytokines. These pro-inflammatory factors diffuse into systemic 

circulation and result (3) in the upregulated production and release of neutrophils 

from the bone marrow via decreased CXCR4/increased CXCR2 expression and 

(4) pro-survival and pro-inflammatory signaling cascades in circulating 

neutrophils that facilitate their activation and migration across the endothelium 

into the brain (5), where they can initiate a wide variety of damaging processes 

that further exacerbate tissue damage (6).  
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Within tissue, neutrophils have several important defensive functions, 

including phagocytosis, oxidative burst, formation of extracellular chromatin traps 

(NETs) and degranulation (as discussed above).42, 69 Extracellular levels of 

myeloperoxidase (MPO) and neutrophil elastase (NE) are elevated in the serum 

of stroke patients, consistent with high levels of neutrophil activation and 

degranulation.70  

Many pre-clinical studies have shown that blocking immune cell adhesion 

molecules (E-selectin, P-selectin, ICAM-1, MAC-1) or stimulatory chemokines 

and their receptors (MCP1 and CCR2, CX3CL1 and CX3CR1) results in reduced 

neutrophil infiltration and infarct volume following stroke.71-85 Unfortunately, when 

similar therapeutic strategies have been attempted in clinical trials of ischemic 

stroke, no benefit was seen in patients.8 This is likely due, in large part, to the 

fact that many of the targeted molecules are expressed on a variety of immune 

and non-immune cells, leading to a high degree of non-specificity and 

contributing to unwanted side effects including increased infections and 

secondary hemorrhagic transformation.  

A recent study examined ischemic stroke in young mice deficient in 

neutrophil-specific Mcl1, a protein essential for neutrophil survival during 

differentiation. This neutrophil knockout model has allowed for the most specific 

assessment of the role of neutrophils in ischemic stroke to date.86 The 

investigators found no improvement in neurological deficits in Mcl1 knockout 

mice, despite reduced neutrophil infiltration into the brain.86 As improved 

functional outcome represents the most important goal of ischemic stroke 
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therapeutics, these results suggest that neutrophils do not play a role in 

exacerbated tissue injury following ischemic stroke.  It is critically important to 

note that the Mcl1 study (and all other previous anti-neutrophil studies for 

ischemic stroke) utilized only young animals (2-3 months of age). However, 

ischemic stroke is largely a disease of aged patients, and age significantly 

increases both stroke incidence and the likelihood of death or significant disability 

after stroke. It is therefore critical that studies investigating potential therapeutic 

targets for ischemic stroke be replicated in aged animals, as age represents a 

critical biological factor in stroke pathlogy.2  

 

1.6 Ischemic Stroke and Aging 

One of the main barriers to effective clinical translation in stroke research 

is the prevalent use of healthy, young animals in pre-clinical experiments.87, 88 

The majority of ischemic stroke patients are older than 65, and many of them  

have significant co-morbidities (atherosclerosis, hypertension, diabetes mellitus) 

that enhance ischemic stroke risk and contribute to poor post-stroke outcome.2 

To increase the chances that pre-clinical research will translate into effective 

clinical therapies, it is critical to incorporate aged animals into both mechanistic 

and therapeutic studies. In addition to the higher incidence of exacerbating co-

morbidities in aged patients, previous work from our lab and others shows that 

age itself has profound changes on both the brain and the peripheral response to 

cerebral ischemic injury.89-91 
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 Age impacts several aspects of ischemic stroke pathophysiology. Cerebral 

ischemia commonly results in two different injury territories; a dead ischemic core 

injury surrounded by penumbra, the brain tissue that is metabolically impaired but 

may still be salvageable.92 As we age, the likelihood of tissue rescue in the 

penumbra decreases, resulting in permanent loss of the majority of impaired 

tissue.93 Most importantly, the ability to recover function after ischemic stroke is 

decreased in older patients, indicating that advanced age may impair cerebral 

tissue repair and regeneration.94, 95  

In light of this, it is clear that the use of young animals to test therapeutics 

for ischemic stroke does not represent an ideal model, since therapies will be 

used to treat elderly patients with enhanced ischemic tissue damage and 

impaired regeneration potential. Ischemic stroke modeling in aged mice, which 

has recently been well-validated by our lab, may better replicate the physiological 

background of the typical ischemic stroke patient.96 

 

1.7 The Effects of Aging on Neutrophils 

Under normal conditions, neutrophils have short circulating half-lives, 

usually returning to the bone marrow, spleen, or liver for clearance within 24 

hours of their release.97 Recent evidence has shown that these exhausted 

neutrophils, typically identified by their low expression of CXCR2 and CXCR4, 

are also characterized by upregulation of the adhesion molecules ICAM-1, Mac-1 

and CD44.97-100 Perhaps driven by this increased ability to adhere, exhausted 

neutrophils are preferentially recruited into tissues following inflammatory 
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challenge. A study by Zhang et al. showed that neutrophils can become 

exhausted due to exposure to low-level inflammatory exposure in circulation.100 

In the same study, Zhang et al. found that exhausted neutrophils were capable 

forming higher levels of ROS and neutrophil extracellular traps (NETs).100  

As age is marked by increased chronic, low-level inflammation, it is 

possible that hyper-inflammatory, exhausted neutrophils are enriched in the 

circulation of aging individuals, significantly altering the inflammatory response to 

infection and injury in the aged. Several studies have shown higher levels of 

neutrophil infiltration into the lungs after pneumonia in older subjects, compared 

to younger subjects.101-103 In response to the same inflammatory stimuli, aged 

animals have higher levels of neutrophil-activating chemokines and a prolonged 

period of neutrophil infiltration into tissues than young animals.104-107 

Neutrophils from aged animals have been reported to produce higher 

levels of NETs and ROS compared to young neutrophils upon exposure to 

bacterial products.100 Some studies have also reported that the augmentation of 

ROS production in neutrophils with age, significantly impacting on injury 

outcome.108 Recent work has demonstrated that depletion of neutrophils protects 

old, but not young, mice from toxic-induced liver injury.109 However, the specific 

mechanism behind the enhanced pathogenicity of aged neutrophils in tissue 

injury remains uncharacterized.  

Another recent study has shown that neutrophil extracellular traps (NETs) 

increase in the circulation following acute ischemic stroke in patients.110 

Fascinatingly, this study also found that NETs were significantly increased stroke 
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patients over the age of 65 compared to levels found in younger stroke 

patients.110  

Similar aberrations in neutrophil function with aging have been described 

across a wide array of diseases, and it has been suggested that age-related 

changes in neutrophil function may be a significant driver of poorer outcomes in 

elderly patients.111 It is possible that age-related changes in the acute pro-

inflammatory capabilities of neutrophils can exacerbate secondary tissue injury 

after a major inflammatory event like ischemic stroke. 

 

1.8 Conclusions 

 Ischemic stroke affects millions of people every year, resulting in high 

mortality and contributing to a staggering loss in quality-of-life. We have outlined 

the detailed pathophysiology of ischemic stroke, including the pathways of 

primary initial injury and delayed secondary injury. Currently available stroke 

therapies, both of which target primary stroke injury and have a very narrow 

therapeutic window, were discussed.  Additionally, the detailed pathophysiology 

of ischemic stroke was reviewed, with particular attention to the role of excitatory 

neurotoxicity and post-stroke inflammation in secondary tissue injury. Within the 

scope of inflammation, neutrophils were identified as a likely culprit for 

inflammation-related damage after ischemic stroke. We presented several 

mechanisms of neutrophil-induced tissue damage that may be critical to stroke, 

including their ability produce high levels of reactive species (ROS and RNS). 

The role of aging as a major driver of ischemic stroke incidence and poor 
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outcome was also discussed. Finally, the very limited known data regarding the 

effect of host aging on neutrophil function was reviewed. 

 

1.9 Hypothesis and Research Goals 

 This dissertation investigates the effects of age on the inflammatory 

phenotype of neutrophils, and tests whether age alters the contribution of 

neutrophils to stroke pathology. Little is currently known about the effects of age 

on neutrophil function, and no studies have yet examined the relationship 

between age and the neutrophil response to stroke. The second chapter 

examines the relationship between age and stroke outcome in both human 

ischemic stroke patients and a mouse model of experimental stroke. The third 

chapter tests whether age intrinsically alters neutrophil function, or whether the 

neutrophil inflammatory response is dependent on the surrounding environment. 

In the fourth chapter, we investigate potential mediators of age-related changes 

in post-stroke neutrophil activation, mobilization and function in both mice and 

humans. In the fifth and final chapter, we utilize a neutrophil specific monoclonal 

antibody to deplete neutrophils after stroke onset, to examine the short and long-

term effects of anti-neutrophil depletion after ischemic stroke in both young and 

aged mice.  

 To summarize, I hypothesize that age enhances the pro-inflammatory 

phenotype of neutrophils after stroke, particularly reactive species generation, 

and contributes to the poor outcome seen in aged subjects. I further hypothesize 

that selective neutrophil depletion after stroke will (1) improve behavioral 
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outcome preferentially in aged animals and (2) permit examination of the in vivo 

pathogenic role of neutrophils in aged animals after ischemic stroke, an issue 

that has not been established to date.  

 

To test this hypothesis (Figure 3), I endeavored to: 

1. Examine the relationship between age, stroke and neutrophils  

a. In clinical ischemic stroke, utilizing demographic data and gene 

expression analysis 

b. In experimental ischemic stroke, by assessing the effects of age on 

neutrophil phenotype, neutrophil mobilization, and stroke outcome 

2. Determine if post-stroke anti-neutrophil depletion is differentially protective 

in aged mice by 

a. Examining the effect of anti-neutrophil depletion on infarct size and 

long-term brain tissue atrophy in young and aged mice 

b. Examining the effect of anti-neutrophil depletion on mortality and 

long-term functional outcome in young and aged mice 

3. Elucidate the effects of age on neutrophil inflammatory phenotype by 

a. Determining the effects of age on the quantity and quality of brain-

infiltrating neutrophils in young and aged animals after stroke  

b. Examining the influence of organism age on neutrophil cytokine 

and chemokine production, post-stroke neutrophil infiltration and 

the generation and detoxification of reactive species 
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Significance and Impact: This work will improve scientific knowledge regarding 

age effects on neutrophil function at baseline and after ischemic stroke. It will 

advance clinical practice by testing the utility of neutrophil depletion for the 

treatment of ischemic stroke in both young and aged animals, and may provide 

the basis for new efficacious therapies applicable to human ischemic stroke.  
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Figure 3. Graphical abstract illustrating dissertation specific aims. 
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Chapter II 

Aging increases stroke mortality and morbidity in patients and an 

experimental stroke model  

 

 

 

 

 

 

 

 

 

 

 



25	
	

2.1  Abstract 

Purpose: Aging is associated with poor outcome after ischemic stroke. Ischemic 

stroke results in the activation and recruitment of peripheral leukocytes, including 

neutrophils, to the brain. The purpose of our initial studies was to examine the 

relationship between aging, ischemic stroke outcome and the neutrophil 

response to stroke in (1) human stroke patients and (2) a mouse model of 

ischemic stroke.  

 

Experimental Design: Chart review of medical records and biological samples 

from ischemic stroke patients admitted to a major stroke center over a ten-year 

period was conducted. Demographic data, stroke severity, outcome data and lab 

values (absolute neutrophil and immature neutrophil counts) were obtained via 

retrospective chart review. For experimental studies, young (3 month) or aged 

(22-24 month) mice were subjected to middle cerebral artery occlusion (MCAO) 

or sham surgery. Mortality, weight loss, neurological deficit score, infarct size and 

hang-wire test were assessed. Flow cytometry was used to quantify neutrophil 

infiltration into the brain after experimental stroke in young and aged mice.  

 

Results: The average age of our stroke patient cohort was 69 years. Patients 

discharged to rehab/skilled facilities (high morbidity) or patients who died as a 

result of their stroke (mortality) were found to be significantly older than those 

who were discharged home (low morbidity). Ischemic stroke patients had 

significantly higher circulating neutrophil counts than control patients 24 hours 
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after symptom onset, and neutrophil count in stroke patients was positively 

associated with increasing stroke severity. Stroke severity was also positively 

associated with circulating counts of immature “band” neutrophils. In animal 

studies, young animals had significantly larger infarcts and higher levels of 

edema than aged animals. Aged animals showed significantly higher mortality, 

poorer weight recovery, poorer behavioral performance and more severe 

neurodeficit scores than young animals. 

 

Conclusions: Age significantly impacts ischemic stroke mortality and morbidity 

in human stroke patients and in an experimental mouse model. Circulating 

mature and immature neutrophil counts increase acutely in stroke patients in a 

severity-dependent manner. As seen in human patients, aged mice experienced 

higher mortality and poorer functional outcomes compared to young mice. Taken 

together, these results indicated that MCAO in aged mice is a good candidate 

model for the study of age-related neutrophil pathogenicity in ischemic stroke.   
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2.2 Introduction 

Stroke incidence increases dramatically with age, with the majority of 

strokes occurring in patients older than 65 years of age.2 The increased 

incidence of stroke during advanced age is associated with an age-related 

increase in stroke risk factors, including atrial fibrillation, diabetes, 

hyperlipidemia, coronary artery disease and hypertension.112, 113 Epidemiological 

studies show that aging is also associated with poorer functional outcome after 

stroke.3, 114, 115 Unfortunately, while thrombolytic and clot retrieval therapy can 

significantly improve stroke prognosis for patients, recent clinical research has 

shown that advanced age also increases the chances of poor outcome after IV 

tPA or intra-arterial therapy.116, 117 The uniquely high burden of stroke in the 

elderly, coupled with evidence that current therapeutics are less effective in aged 

patients, underscores the need for novel treatment modalities that can improve 

outcome in aged stroke patients.  

Recent work in the field of ischemic stroke has shown that aging has a 

significant impact on stroke outcome in mouse models, closely mirroring the 

patterns seen in ischemic stroke in humans.96 The impact of aging on brain 

physiology and injury is multifactorial, involving systemic changes throughout the 

body in addition to alterations in the central nervous system itself.118 

Inflammation has been increasingly recognized as a driver of age-related tissue 

dysfunction, a phenomenon known as “Inflammaging.”119 Inflammation is typically 

caused by tissue injury or pathogenic infection, and usually resolves once the 

pro-inflammatory stimulus has been eliminated.120 During conditions of long-term 
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or excessive inflammatory response, this resolution can fail, leading to a 

consistent state of non-productive, non-resolving inflammation. Inflammaging is 

characterized by a gradual increase in pro-inflammatory immune activation as an 

organism ages, which is believed to be largely driven by cells of the innate 

immune system, including neutrophils.121  

Neutrophils and neutrophil-associated inflammatory molecules have 

recently been found to predict both initial stroke risk and poor outcome after 

ischemic stroke. A study by Buck et al. found that early neutrophilia (within 24 

hours of stroke onset) in ischemic stroke patients was significantly predictive of 

larger infarct size.122 A higher neutrophil-to-lymphocyte ratio (NLR), a predictor of 

poor outcome in a variety of diseases, predicts poor short-term outcome, poor 

long-term outcome and the likelihood of hemorrhagic complications in ischemic 

stroke patients.123-125 Interestingly, studies have also shown that an elevated 

NLR in otherwise healthy patients is a significant independent risk factor for 

future ischemic stroke.126 In line with this data, neutrophils play a significant role 

in pathological processes that contribute to ischemic stroke risk, including 

atherosclerosis and thrombosis (clot formation).127-129 Circulating neutrophil 

counts increase within several hours of ischemic stroke onset.130 This increase 

likely results from increased neutrophil differentiation, augmented release of 

neutrophils from the bone marrow and spleen reservoirs, and suppression of 

neutrophil apoptosis.131 However, a significant gap in knowledge remains 

regarding the effects of age and inflammaging on neutrophil biology. Most 

importantly, we do not yet understand how age-related changes in the 
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destructive potential of neutrophils impact patients in conditions of excessive 

sterile inflammation, as seen in ischemic stroke. 

In order to best model the contribution of neutrophils to ischemic stroke 

pathology in patients, it is critical to realize that age may play a major role in 

ischemic stroke pathology for many patients. Despite success in animal models, 

clinical trials for ischemic stroke therapies have been largely unsuccessful. One 

critical barrier to effective therapeutic testing is the lack of pre-clinical testing in 

aged animals. To date, the vast majority of experimental stroke research is 

performed in young animals. However, ischemic stroke is largely a disease of the 

aging, which represents the single strongest independent risk factor for ischemic 

stroke.   

In this chapter, we aimed to (1) examine the relationship between 

ischemic stroke and neutrophil mobilization, (2) confirm the relationship between 

aging and increased ischemic stroke mortality and morbidity in human patients 

and (3) replicate the age-related increase in poor stroke outcome in a mouse 

model of ischemic stroke.  
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 Hyperlipidemia and obesity have been shown to result in a build-up of lipid 

metabolites and secondary inflammation throughout the body.250-253 Studies have 

previously shown that obesity is correlated with increased production of 

neutrophil-derived ROS, including superoxide.254-256 Recent work by Roberts et 

al. found that neutrophils from obese patients release significantly higher levels 

of ROS compared to neutrophils from controlled patients, which could be partially 

reduced by significant weight loss.257 

In light of the undeniable association between age and neutrophil-

activating comorbidities in human patients, future experimental work should 

assess whether conditions such as hyperlipidemia and hyperglycemia are (1) 

necessary and (2) sufficient for age-related increases in neutrophil pathogenicity 

after ischemic stroke. Fascinatingly, recent work in a mouse model has shown 

that induction of acute hyperglycemia in mice worsens outcomes and increases 

the likelihood of hemorrhagic transformation after ischemic stroke.258 Future work 

should explore whether the toxic effects of hyperglycemia are mediated by 

neutrophils by testing whether (1) the exacerbation of stroke outcomes in young 

animals by induced hyperglycemia can be reversed by neutrophil depletion and 

(2) whether controlling naturally occurring hyperglycemia in aged animals 

abrogates the efficacy of neutrophil depletion therapy.  

Similarly, a recent paper reported that genetic hyperlipidemia (ApoE 

knockout) exacerbates ischemic stroke damage in young mice, an effect that can 

be reversed by neutrophil depletion.259 A complimentary study should be 

performed in aged mice, with naturally occurring age-related hyperlipidemia 
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controlled via diet or pharmacology, to see whether the efficacy of neutrophil 

depletion is reduced in the absence of abnormal lipid levels.  

 

6.3 Significance and Impact 

 The aged population is growing rapidly worldwide, driving an increase in a 

wide variety of cardiovascular diseases like ischemic stroke.260, 261  First and 

foremost, this work highlights the importance of examining pathological 

processes and testing therapeutics in aged animal models, particularly when the 

target disease occurs largely in an aged population (e.g., cerebral ischemia, 

atherosclerosis, hypertension).  Although clinical epidemiology has always 

categorized stroke as a disease of aging, and a wealth of evidence has 

suggested that age alters many aspects of stroke pathophysiology, the majority 

of studies are still conducted in young, male animals.96, 262, 263 Adapting 

conclusions made from studies in young animals into treatments for aged 

humans is likely to significantly decrease the efficacy of clinical translation – and 

may mask the potential of age-dependent candidate therapies, like the anti-Ly6G 

antibody tested in Chapter 4 of this dissertation.  

Aging is known to have significant and profound effects on both the 

immune and cardiovascular systems.264 In particular, age-related changes in the 

function of neutrophils are now believed to be a significant mediator in many age-

related diseases.265 The body of work presented in this dissertation examines the 

utility of post-stroke neutrophil depletion therapy in young and aged animals and 

provides new insight into the changing function of injury-induced inflammation 
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throughout the lifespan. In addition, it shows that neutrophils from aged animals 

exhibit altered behaviors, including an impaired clearance phenotype, greater 

sensitivity to inflammatory stimulus and a higher capability for reactive species 

generation.  

While the studies included in this dissertation make a case for an age-

related increase in neutrophil pathogenicity after ischemic stroke, these 

implications of age-induced alterations in neutrophil biology are far-reaching, 

offering potential insight into the role of neutrophils in a variety of age-associated 

tissue injury and inflammatory processes, including atherosclerosis, cancer and 

autoimmune disease.  
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