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PLATISCITY OF C. ELEGANS GERMLINE STEM CELLS UNDER NUTRITIONAL 

AND METABOLIC STRESS 

Kenneth Andrew Trimmer, B.S. 

Advisory Professor: Swathi Arur, Ph.D. 

 

Stem cells are integral for tissue maintenance and fertility. Therefore, 

understanding how stem cells are regulated under stress is imperative. When 

confronted with acute starvation, stem cells must conserve energy and metabolites to 

cope with the lack of an external source. Caenorhabditis elegans germline stem cells 

(GSCs) are an excellent model for studying stem cell properties and regulation as they 

can divide throughout the life of the organism. While GSCs are an adult stem cell 

population, their cell cycle structure more closely mimics mouse and human embryonic 

stem cells with short G1 and long S phases. In this thesis, I report that adult GSCs 

regulate both the G1 and G2 phases to maintain their unique cell cycle structure. I find 

that the short G1 is promoted by the metabolic regulator gsk-3. Loss of gsk-3 inhibits S 

phase entry and progression through transcriptional down-regulation of cdk-2. Since 

metabolic signaling regulates gsk-3, I propose that controlling G1 progression may 

allow the cells to buffer metabolic stress. These observations also made me wonder 

how stem cells would respond to the extreme conditions of acute starvation.  

Adult GSCs are known to undergo a cell cycle arrest during acute starvation, so I 

investigated the mechanisms and cellular behaviors underlying this arrest. I find that 

acute starvation causes a reversible G2 arrest which is independent of the canonical 

DNA damage signaling arrest. Instead, this reversible G2 arrest is regulated by the 

Insulin signaling and TOR signaling pathways. Detailed investigation of the TOR 

signaling axis revealed that the G2 arrest is partially dependent on stress kinase 
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signaling, and is mediated by cdk-1regulation. I find that cdk-1 is both translationally 

and post-translationally regulated to impose the strong starvation-induced G2 arrest. 

Together, these data reveal novel paradigms through which adult GSCs maintain tissue 

homeostasis and regenerate tissues to respond to either chronic metabolic stress or 

acute nutritional deprivation. Given the cell cycle structure conservation between C. 

elegans GSCs and mammalian embryonic stem cells, I propose that gap phase 

regulation may also drive stem cell homeostasis in mouse and human embryonic stem 

cells in response to environmental and metabolic perturbation. 

  



vii 

TABLE OF CONTENTS 

Approvals ...................................................................................................................... i 

Title .............................................................................................................................. ii 

Dedication ................................................................................................................... iii 

Acknowledgements ..................................................................................................... iv 

Abstract ........................................................................................................................ v 

Table of Contents ....................................................................................................... vii 

List of Figures ............................................................................................................. ix 

List of Tables ............................................................................................................. xii 

Abbreviations ............................................................................................................ xiii 

CHAPTER 1: INTRODUCTION ................................................................................... 1 

1.1: Stem Cells .......................................................................................................... 2 

1.2: The Cell Cycle .................................................................................................. 17 

1.3: Metabolic and Nutritional Regulation ................................................................ 35 

CHAPTER 2: MATERIALS AND METHODS ............................................................. 45 

2.1: Materials ........................................................................................................... 46 

2.2: Methods ........................................................................................................... 53 

CHAPTER 3:  gsk-3 TRANSCRIPTIONALLY REGULATES cdk-2 TO PROMOTE G1 

AND S PHASE PROGRESSION TO MAINTAIN GSC PROLIFERATION ................. 66 

3.1: Introduction ...................................................................................................... 67 

3.2: gsk-3 Regulates GSC Proliferation in a Germline Autonomous and 

Kinase-dependent Manner during Larval and Adult Development .......................... 70 

3.3: gsk-3 Mutant GSCs Enter and Progress through S phase Inefficiently ............ 82 

3.4: gsk-3 Promotes cdk-2 Transcription to Regulate a Rapid G1/S Transition ...... 91 



viii 

3.5: DPL-1 Mediates GSK-3-dependent Regulation of CDK-2 Transcription and S 

Phase Progression ........................................................................................ 104 

3.6: Conclusion and Model .................................................................................... 110 

CHAPTER 4: ACUTE NUTRITIONAL DEPRIVATION AND GERMLINE STEM CELL 

PLASTICITY  ........................................................................................................... 112 

4.1: Introduction .................................................................................................... 113 

4.2: The Adult C. elegans GSCs Reversibly Arrest at G2 during Starvation ......... 114 

4.3: The Starvation-induced G2 Arrest is Independent of DNA Damage Signaling121 

4.4: The Starvation-induced G2 Arrest is Mediated by Nutritional Signaling ......... 129 

4.5: CDK-1 activity is Modulated by Nutritional and MAPK Pathways to Regulate the 

Reversible Starvation-induced G2 Arrest ......................................................... 148 

4.6: Conclusion and Model .................................................................................... 159 

 CHAPTER 5: DISCUSSION ................................................................................... 161 

5.1: Discussion ...................................................................................................... 162 

5.2: Future Directions ............................................................................................ 168 

Bibliography ............................................................................................................. 170 

Vita ........................................................................................................................... 204 

 



ix 

LIST OF FIGURES 

CHAPTER 1 ................................................................................................................. 1 

Figure 1: Stem cell fate map ................................................................................... 11 

Figure 2: C. elegans larval gonad development ...................................................... 12 

Figure 3: The C. elegans GSC niche ...................................................................... 14 

Figure 4: GSC divisions are random with respect to the distal-proximal axis .......... 15 

Figure 5: GSC divisions are random with respect to the DTC cytonemes ............... 16 

Figure 6: Cyclin and CDK regulation of the mammalian cell cycle .......................... 29 

Figure 7: Mammalian G1 regulation ........................................................................ 30 

Figure 8: The role of Cdk2 in regulating DNA replication ........................................ 31 

Figure 9: Cdk1 regulation at the G2/M boundary .................................................... 32 

Figure 10: Cell cycle control by DNA damage signaling .......................................... 33 

Figure 11: Altered cell cycle regulation in mESCs ................................................... 34 

Figure 12: The Insulin and TOR nutritional signaling network ................................. 43 

CHAPTER 2 ............................................................................................................... 45 

Figure 13: Comparison of feeding and soaking EdU methods ................................ 64 

Figure 14: Soaking in higher concentrations of EdU does not affect background ... 65 

 CHAPTER 3 .............................................................................................................. 66 

Figure 15: gsk-3 mutant allele structure .................................................................. 69 

Figure 16: gsk-3 mutants maintain fewer GSCs ...................................................... 74 

Figure 17: The gsk-3 mutant GSC defect is germline autonomous ......................... 77 

Figure 18: The gsk-3 mutant GSC defect is kinase dependent ............................... 79 

Figure 19: Self-renewal through Notch Signaling is unaffected in gsk-3 mutants .... 80 

Figure 20: gsk-3 mutant GSCs cycle but do not incorporate EdU ........................... 86 



x 

Figure 21: gsk-3 mutant GSCs do not incorporate EdU after long pulses ............... 87 

Figure 22: EdU incorporation is not dependent on the rate of bacterial eating ........ 88 

Figure 23: EdU soaking does not rescue EdU incorporation in gsk-3 mutants ........ 89 

Figure 24: gsk-3 mutant GSCs retain nuclear MCM-3 ............................................ 90 

Figure 25: DNA licensing factors do not contribute to gsk-3 mutant GSC defects .. 96 

Figure 26: cdk-2 inhibitors do not contribute to the gsk-3 mutant GSC defects ....... 97 

Figure 27: CYE-1 protein is expressed in gsk-3 mutant GSCs ................................ 98 

Figure 28: CDK-2 overexpression rescues the gsk-3 mutant GSC defect............... 99 

Figure 29: cdk-2 mRNA is downregulated in gsk-3 mutant GSCs ......................... 101 

Figure 30: Intron 1 of cdk-2 is the promoter (WS258) ........................................... 102 

Figure 31: gsk-3 promotes cdk-2 transcription which is driven by intron 1 ............ 103 

Figure 32: DPL-1 binds to the cdk-2 intron1 .......................................................... 106 

Figure 33: dpl-1 RNAi rescues the gsk-3 mutant GSC proliferation defect............ 107 

Figure 34: dpl-1 RNAi rescues cdk-2 transcription in gsk-3 mutants ..................... 109 

Figure 35: gsk-3 Model.......................................................................................... 111 

 CHAPTER 4 ............................................................................................................ 112 

Figure 36: Starvation induces a reversible cell cycle arrest ................................... 117 

Figure 37: Detecting G2 cells after releasing the reversible arrest ........................ 119 

Figure 38: Starvation induces a G2 arrest ............................................................. 120 

Figure 39: Starvation does not activate CHK-1 ..................................................... 124 

Figure 40: The starvation arrest does not require individual DNA damage kinases125 

Figure 41: Starvation induces mitotic catastrophe in atm-1;atl-1 double mutants . 126 

Figure 42: DNA damage kinase mutants are not necessary for the starvation-induced 

G2 arrest ........................................................................................... 127 



xi 

Figure 43: daf-2 and rsks-1 mutants do not completely arrest .............................. 135 

Figure 44: ADI analysis of daf-2 and rsks-1 mutants ............................................. 137 

Figure 45: RNAi of let-363 results in decreased proliferation ................................ 138 

Figure 46: let-363(ΔFRB) mutagenesis ................................................................. 140 

Figure 47: let-363(ΔFRB) has a decreased rate of progeny lay ............................ 142 

Figure 48: let-363(ΔFRB) has a proliferation defect .............................................. 143 

Figure 49: Lysosomes are absent from GSCs ...................................................... 145 

Figure 50: Stress kinases may contribute to the starvation-induced G2 arrest ..... 146 

Figure 51: wee-1.3 regulates the starvation-induced G2 arrest ............................. 152 

Figure 52: CDK-1 and (pT24Y25)CDK-2 antibodies respond as expected ........... 153 

Figure 53: CDK-1 expression decreases as pCDK-1 remains unchanged ............ 154 

Figure 54: Hydroxyurea exacerbates the regulation of CDK-1 during starvation ... 156 

Figure 55: RNAi of the translational regulator ifg-1 inhibits proliferation ................ 158 

Figure 56: Starvation model .................................................................................. 160 

   



xii 

LIST OF TABLES 

CHAPTER 1 ................................................................................................................. 1 

Table 1: Nutritional Signaling Homologs in C. elegans ........................................... 44 

CHAPTER 3 ............................................................................................................... 66 

Table 2: gsk-3 promotes developmental germ cell expansion ................................. 76 

Table 3: DNA licensing factor homologs in C. elegans ........................................... 95 

  



xiii 

ABBREVIATIONS 

ADI – Adjusted division index 

AKT – thymomoa viral proto-oncogene 

AMPK – AMP-activated protein kinase 

Atg14 – Autophagy related 14 

Atm – Ataxia-telangiectasia mutated 

Atr – Ataxia telangiectasia and Rad3 related 

ASC – Adult stem cell 

Bmp – Bone morphogenic protein 

BrdU – 5-bromo-2’-deoxyuridine 

C. elegans – Caenorhabditis elegans 

CAK – Cdk activating kinase 

Cdc6 – Cell division cycle 6 

Cdc25 – Cell division cycle 25 

CDK – Cyclin dependent kinase 

Cdt1 - Chromosome licensing and DNA replication factor 1 

Chk1 – Checkpoint kinase 1 

Chk2 – Checkpoint kinase 2 

CKI – Cdk inhibitor 

CRS – Cytoplasmic retention sequence 

D. melanogaster – Drosophila melanogaster 

DAPI - 4',6-diamidine-2-phenylindole dihydrochloride 

DTC – Distal tip cell 

EdU – 5-ethynyl-2’-deoxyuridine 

Eif4e – Eukaryotic translation initiation factor 4E 



xiv 

Eif4ebp – Eukaryotic translation initiation factor 4E binding protein 

Eif4g – Eukaryotic translation initiation factor 4G 

FISH – Fluorescent in-situ hybridization 

FOXO – Forkhead box O 

FRB – Fkbp12-Rapamycin binding domain 

GPCR – G-protein coupled receptor 

GSC – Germline stem cell 

Gsk3β – glycogen synthase kinase 3 beta 

Hif1a – hypoxia inducible factor 1, alpha subunit 

IR – Ionizing radiation 

IRS – Insulin receptor substrate 

MAPK – mitogen associated protein kinase 

Mapkap1 – Mitogen-activated protein kinase associated protein 1 

Mcm2-7 – mini-chromosome maintenance subunits 2-7 

Mdm2 - transformed mouse 3T3 cell double minute 2  

mESC – mouse Embryonic Stem Cell 

Mlst8 – MTOR associated protein LST8 homolog (S. cervisiae) 

Mtor – mechanistic target of rapamycin 

Myt1 – Myelin transcription factor 1 

ORC – Origin recognition complex 

Orc1-6 – Origin recognition complex subunits 1-6 

p70s6k – ribosomal protein S6 kinase, polypeptide 1 

PGC – Primordial germ cell 

PI3K – Phosphoinositide 3 kinase 

PIP2 – Phosphatidylinositol 4,5-diphosphate 



xv 

PIP3 – Phosphatidylinositol 3,4,5-triphosphate 

Plk1 – Polo like kinase 1 

PP2A – Protein phosphatase 2 

pRB – Retinoblastoma protein 

PRC – pre-replication complex 

Prr5 – Proline rich 5 (renal) 

Prr5l – Proline rich 5 like 

Pten – Phosphatase and tensin homolog 

qRT-PCR – Quantitative real time polymerase chain reaction 

Rag – recombination activating 

Rheb – Ras homolog enriched in brain 

Rictor – RPTOR independent companion of MTOR, complex 2 

Rpa1 – Replication protein A1 

Rptor – Regulatory associated protein of MTOR, complex 1 

RTK – Receptor tyrosine kinase 

ssDNA – Single stranded DNA 

TOR – target of rapamycin 

TORC1 – Target of rapamycin complex 1 

TORC2 – Target of rapamycin complex 2 

TSC – Tuberous sclerosis complex 

Tsc1 – Tuberous sclerosis 1 

Tsc2 – Tuberous sclerosis 2 

UV – Ultraviolet radiation 

Wnt – Wingless/Integrated 

  



1 

 

 

 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

  



2 

1.1 Stem Cells 

Stem cells are vital for establishing tissues during development, as well as 

maintaining those tissues once formed during both development and in adulthood in 

the context of tissue repair or regeneration. These tissues are made up of a variety of 

different cell types, with each cell type driving distinct functions. These functions have 

evolved to work in concert, keeping the organism healthy to successfully reproduce. 

Despite this extensive complexity, an organism develops from a single fertilized oocyte. 

Therefore, all stem cells, including a fertilized oocyte, must have two central properties: 

self-renewal and differentiation. Self-renewal is the ability of a stem cell to divide and 

retain its identity as a stem cell, in other words, to maintain its fate while expanding the 

stem cell population. However, a stem cell may change its fate and differentiate into a 

different cell type. Over the course of development, stem cells self-renew and 

differentiate in response to regulation by both internal and external factors. Through 

progressive waves of differentiation, a lineage is formed which provides a link between 

the fertilized oocyte and the differentiated cell types in each tissue. The combination of 

multiple lineages gives rise to a fate map (Figure 1). Each branching point in the fate 

map is the result of a differentiation event of a stem cell. Since differentiation typically 

occurs in a single direction in vivo, a useful way to group stem cells is by their potency. 

 

1.1.1: Stem cell potency 

The potency of a stem cell is defined by the number of cell types into which that 

cell can differentiate. As stem cells differentiate, they lose potency and gain specific 

functions. The cell types which are derived from a particular stem cell result in a cell 

lineage. To that end, stem cells with a longer lineage will have higher potency. The 
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potency of stem cells can be divided into four main types: totipotent, pluripotent, 

multipotent, and unipotent. 

Totipotency: Totipotent stem cells are able to produce all the cell types of a 

complete organism as well as extraembryonic tissues (Hima Bindu and Srilatha 2011). 

In mouse embryos, the fertilized oocyte and the cells resulting from its divisions until 

the 8 cell stage are totipotent stem cells, after which asymmetric divisions will occur 

(Johnson and Ziomek 1981). By the late blastocyst stage, cells which form the 

trophectoderm and primitive endoderm are differentiated and epiblast cells will no 

longer form extraembryonic tissues, losing potency (Gardner and Johnson 1973; 

Gardner and Rossant 1979; Papaioannou et al. 1975; Gardner 1983) (Figure 1). 

Pluripotency: Pluripotent stem cells are able to produce all embryonic cell types 

(Hima Bindu and Srilatha 2011). Pluripotent stem cells such as the mouse embryonic 

stem cells or human embryonic stem cells can be isolated from the inner cell mass of a 

blastocyst-stage embryo (Evans and Kaufman 1981; Thomson et al. 1998; Martin 

1981). Unlike totipotent stem cells, these cells do not give rise to all extra-embryonic 

tissues but can give rise to all cell types of an adult organism. However, as these cells 

differentiate and separate by germ layer, they lose the ability to produce all cell types 

(Figure 1). 

Multipotency: Multipotent stem cells can give rise to cells of multiple lineages, but 

cannot give rise to all the cells that make up an organism (Hima Bindu and Srilatha 

2011). Multipotent stem cells give rise to a family of related cell types. For example, 

during embryogenesis, the early lung bud forms from the foregut endoderm 

progenitors. These lung epithelial progenitor cells will give rise to the bronchial airway 

as well as alveolar sacs, each with very different functions and cell types (Rawlins et al. 

2009). Even after development, populations of multipotent stem cells are maintained 
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throughout the life of an organism to assist in regenerating tissue upon damage such 

as adult hematopoietic stem cells in mammals which give rise to the blood tissue and 

its various cell types (Spangrude, Heimfeld, and Weissman 1988; Wu et al. 1968) 

(Figure 1).   

Unipotency: Unipotent stem cells give rise to only a single type of cell (Hima 

Bindu and Srilatha 2011). In gonochoristic species, this includes the germline stem 

cells (GSCs) which produce only male or female gametes essential for reproduction 

(Figure 1).  

During embryogenesis, different levels of potency give rise to a hierarchy of stem 

cells as shown in the fate map (Figure 1). Totipotent stem cells can differentiate to 

produce pluripotent stem cells and extraembryonic cells. Pluripotent stem cells, in turn, 

can differentiate to produce various lineages of multipotent stem cells. Through waves 

of differentiation, cell types are refined until they reach their final fate as a terminally 

differentiated cell in adults. However, just producing all the adult cell types is not 

sufficient to form a functional adult organism. Self-renewal and differentiation must be 

regulated in order to form functional tissues. 

 

1.1.2: Stem cell fate regulation 

In order to develop a functional organism consisting of complex systems of tissues 

and cells from a single fertilized oocyte, many cell behaviors such as proliferation, 

differentiation and migration must be coordinated. Therefore, stem cell fate changes 

are tightly regulated throughout embryogenesis. Internal factors such, as asymmetric 

segregation of proteins and maternal transcripts in the early Caenorhabditis elegans 

(C. elegans) embryo, cell-autonomously drive fate decisions by setting up polarity 

within the cell (Reviewed in Betschinger and Knoblich 2004; Cheeks et al. 2004; Evans 
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et al. 1994; Guedes and Priess 1997; Schubert et al. 2000; Seydoux and Fire 1994; 

Tenenhaus, Schubert, and Seydoux 1998). External factors from developmental 

signaling determine fate in response to the signaling environment, like Wnt 

(Wingless/Integrated) signaling which induces a lung progenitor fate in endoderm 

progenitors (Goss et al. 2009), or Notch signaling which is required for nephron 

progenitors to differentiate (Chung et al. 2016). In contrast to fate regulation by internal 

factors, signaling allows for fate control of populations of cells. This is especially useful 

for maintaining populations of stem cells in adult animals. 

 

1.1.3: Adult stem cells 

After development is complete, adult stem cell (ASC) populations are maintained in 

many tissues. Though there are other methods of repairing damaged tissues, such as 

dedifferentiation in the case of facultative stem cells, ASC populations are retained to 

maintain tissue function by replenishing exhausted cells or repairing tissue damage. 

Many ASC populations are normally “quiescent”, which is characterized by a lack of 

proliferation, such that the cells remain in a dormant state in their host tissues 

(Reviewed in Rumman, Dhawan, and Kassem 2015). Upon damage to the host 

tissues, these ASC populations proliferate briefly, generate progenitor cells, then re-

enter quiescence; the newly generated progenitor cells will then replace any cells lost 

or damaged during tissue damage. This behavior can be found in a variety of ASC 

populations, such as bulge stem cells in the hair follicle, or satellite cells in the muscle 

(Cotsarelis, Sun, and Lavker 1990; Schultz, Gibson, and Champion 1978; Snow 1977). 

Populations of ASCs such as hematopoietic stem cells are likewise maintained in 

quiescence, though they assist in the maintenance of their tissue rather than 

responding to damage alone (Bradford et al. 1997; Van Zant 1984). Aberrant exit from 
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quiescence can lead to depletion of these ASC populations (Shea et al. 2010; Viatour 

et al. 2008). For long-term ASC maintenance, stem cell niches provide active pools of 

signaling to promote both quiescence and a stem cell fate (Reviewed in Ferraro, Celso, 

and Scadden 2010). However, while most populations of ASCs replenish or repair 

damage of tissues, adult populations of germline stem cells continuously provide 

gametes for reproduction. 

 

1.1.4: Germline stem cells 

Since GSCs will produce gametes which are central to the perpetuation of species, 

it is necessary that they be as free from deleterious mutations as possible. Anytime a 

cell divides, it must replicate its DNA, a process which has the potential to introduce 

new mutations due to replication fidelity or DNA damage (Reviewed in Kunkel 2004; 

Reviewed in Liu et al. 2016). Therefore, to prevent large changes to the DNA which will 

be transferred to the next generation, the germline lineages are protected from somatic 

lineages early in development in the form of primordial germ cells (PGCs). 

Like other stem cells, PGC fate can be specified by either internal or external 

factors. In mammals, PGCs are induced during embryogenesis from a portion of the 

proximal epiblast by Bmp (Bone morphogenic protein) and Wnt signaling (Ohinata et al. 

2009; Lawson et al. 1999). These PGCs then migrate along the hindgut to the genital 

ridge where they will eventually incorporate into either the testes or ovaries (Molyneaux 

et al. 2001; Tam and Snow 1981). In Drosophila melanogaster (D. melanogaster) and 

C. elegans, PGCs are specified very early by inheriting germplasm (Illmensee and 

Mahowald 1974, 1976; Wolf, Priess, and Hirsh 1983). As embryogenesis continues, the 

PGCs lie dormant. However, during larval development, the PGCs divide to form 
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germline stem cells which are incorporated into gonadal niches to enable the cells to 

maintain their germ cell fate and produce gametes as GSCs. 

While male GSC populations are typically maintained throughout the life of an 

organism, female GSC populations are depleted in the adults of mammals and some 

insect species (Spradling et al. 2011). In these species, GSCs are depleted by the time 

embryogenesis has completed, preventing the formation of new gametes. Due to the 

difficulty of studying this population in mammals, the model systems of  

D. melanogaster, C. elegans, and Danio rerio, which maintain an oogenic population of 

germline stem cells throughout adulthood, are often used. 

Regulation of GSC fate in each organism appears to be quite different, and one 

factor for this difference in regulation appears to be the structure of the niche which 

maintains the GSCs.  For example, the female oogenic stem cell niche in 

D. melanogaster is oriented in such a manner that only the cells adjacent to the niche 

maintain the GSC fate (Lopez-Onieva, Fernandez-Minan, and Gonzalez-Reyes 2008; 

Wang, Li, and Cai 2008). As the GSCs divide, one daughter cell divides away from the 

niche and is thus oriented away from the stem cell hub, resulting in a very clear 

asymmetric division. No longer in contact with the niche, this daughter cell begins to 

divide and differentiate into an oocyte with its accompanying nurse cells. However, in 

the C. elegans GSC niche, the distal tip cell (DTC) extends processes which touch a 

variety GSCs and provide a fate maintenance signal. In this system, as cells leave the 

niche, they gradually differentiate and cease to divide. 

 

1.1.5: C. elegans germline stem cells and their niche 

C. elegans GSCs originate from two PGCs which are set aside early in embryonic 

development, later dividing to form the GSCs and their differentiated progeny (Figure 
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2). Towards the end of embryogenesis, they reside medial and ventral in the animal. 

The PGCs remain arrested until the larva hatches. After hatching, C. elegans 

undergoes four larval stages designated L1 – L4. At mid L1, in the presence of 

nutrition, the PGCs start to divide and form the GSC compartment. As the GSCs divide 

and the population expands, the somatic gonad surrounding them grows laterally, with 

the DTCs leading the migration of the distal end. Towards the end of L3, the DTCs 

migrate dorsally then medially to form two U-shaped gonads in the adult. Throughout 

gonad development, the GSCs self-renew to fill the growing gonad. Around late-L3, the 

proximal GSCs begin to differentiate and enter meiosis. 

In the hermaphroditic C. elegans germline, the GSCs are multipotent, able to 

differentiate into both spermatozoa and oocytes. Spermatozoa are formed during L4, 

after which the immature germ cells undergo a fate switch to oocyte production. The 

GSC population is maintained so that it can continuously produce oocytes during 

adulthood. As such, the GSCs are regulated not only in terms of terminal differentiated 

fate, but the decision to self-renew or differentiate is regulated as well due to signaling 

from the GSC niche. 

The GSCs are maintained in a niche called the progenitor region which is defined 

by the DTC (Figure 3). The DTC displays mesenchymal characteristics and extends 

processes termed cytonemes. These cytonemes contain a membrane-bound Delta 

homolog, lag-2, which activates Notch signaling through one of the two C. elegans 

Notch receptors, glp-1 (Henderson et al. 1994; Lambie and Kimble 1991). Both the 

DTC and Notch signaling are required for GSC self-renewal as removal of the DTC as 

well as mutants in lag-2 or glp-1 result in loss of the GSC population (Austin and 

Kimble 1987; Kimble and White 1981; Lambie and Kimble 1991). Activation of Notch 

signaling drives a transcriptional program through its cofactor lag-1 which represses 
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gld-1, gld-2, gld-3, and nos-3, the main drivers of entry into meiosis (Eckmann et al. 

2004; Hansen, Hubbard, and Schedl 2004; Hansen et al. 2004; Kadyk and Kimble 

1998). gld-1 and nos-3, and gld-2 and gld-3 work in pairs to either repress translation of 

mitotic mRNAs (gld-1, nos-3) or enhance translation of meiotic mRNAs (gld-2, gld-3) 

(Eckmann et al. 2004; Hansen, Hubbard, and Schedl 2004; Jan et al. 1999; Marin and 

Evans 2003; Ryder et al. 2004). Along these lines, gld-1 represses glp-1 mRNA 

translation in a feedback loop (Marin and Evans 2003). As cells leave the region of glp-

1 activity, they transition into meiosis which can be visualized either by a nuclear 

morphology reminiscent of a crescent shape, or by the accumulation of meiotic proteins 

such as the synaptonemal complex proteins him-3 and syp-1 on the chromatin.  

In healthy, wildtype animals, the DTC maintains a stereotypical progenitor region 

length of 20 cell diameters (Figure 3A). Changes in Notch (glp-1) signaling which affect 

the decision between self-renewal and differentiation can alter this length. Partial loss 

of glp-1 function results in a smaller gonad with a shorter progenitor region (Dorsett, 

Westlund, and Schedl 2009; Kodoyianni, Maine, and Kimble 1992; Qiao et al. 1995). 

Conversely, temperature-sensitive gain of function mutations in glp-1 result in a longer 

progenitor region even when glp-1 is activated for short periods of time. Constitutive 

activation of glp-1 results in a complete germline tumor where germ cells never enter 

meiosis (Berry, Westlund, and Schedl 1997; Pepper, Killian, and Hubbard 2003). 

Downstream, gld-1;gld-2 double mutants, which inactivate two major meiosis promoting 

components, result in uncontrolled proliferation and produces a germline tumor (Kadyk 

and Kimble 1998). Therefore, the length of the progenitor region can be used as an 

indicator of the state of the self-renewal vs. differentiation balance. 

Perhaps due to the nature of this structure, there is no evidence of asymmetric 

divisions as occurs in other stem cell populations. Asymmetric divisions are inherently 
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regulated, often occurring in the same direction with the differentiating daughter cell 

leaving a niche. Over the course of my investigations, I attempted to observe whether 

divisions in the progenitor region were regulated directionally. I tracked divisions 

throughout the progenitor region and found that orientation appeared random with 

regards to either the distal-proximal axis (Figure 4), or to the distal tip cell cytonemes 

(Figure 5). Other groups have assayed the GSCs for evidence of asymmetric divisions 

as well. Gerhold et al used live imaging of mitoses to look for differences in the duration 

of cell division (Gerhold et al. 2015). Rosu and Cohen-Fix labeled populations of cells 

and followed their progeny (Rosu and Cohen-Fix 2017). Neither study found any 

evidence for asymmetric divisions. (Gerhold et al. 2015; Rosu and Cohen-Fix 2017). 

However, while GSCs do not divide asymmetrically, their cell cycle is heavily regulated 

as will be discussed in the next section. 
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Figure 1: Stem cell fate map 

Fate map of select lineages during mammalian development. Solid line depicts a 

direct differentiation event. Dashed line depicts multiple differentiation events. 
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Figure 2: C. elegans larval gonad development 

Adapted from Wormbook chapter “Introduction to the germline”. ”Cartoon 

representation of gonadogenesis” by E. Jane Albert Hubbard and David Greenstein 

which is licensed under CC BY 2.5 (http://creativecommons.org/licenses/by/2.5/). 

Shown is panel B from the original image. Cartoon representation of larval 

hermaphrodite gonad development. GSCs in yellow, distal tip cell in red, meiosis in 

green, sperm in dark blue, oocytes in purple, and somatic gonad in light blue.   
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Figure 3: The C. elegans GSC niche 

(A) Schematic representation of the GSC niche (progenitor zone) in C. elegans 

oriented with the distal tip cell to the left. DTC is in blue with a cytoneme extending into 

the progenitor region, germ cells are in green with GSCs (solid green), meiotic cells 

(crescent shaped and green circles with blue lines). Numbers mark each cell row with a 

typical 20 cell diameters from the distal tip cell to the end of the progenitor region. (B) 

Genetic network of mitosis/meiosis decision. Delta ligand is provided by the distal tip 

cell. C. elegans gene names are in parentheses. 
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Figure 4: GSC divisions are random with respect to the distal-proximal axis 

 (A) Time course of dividing cells in the progenitor region. Dividing cells are 

numbered. Time from the start of acquisition is shown in the bottom right of each frame. 

An mCherry::HIS-51 transgene (white) labels nuclei. (B) Orientation of divisions in larva 

(early L4) and adults (24 hours past L4). Graph is aligned along the axis of the germline 

from distal (left) to proximal (right). Numbering along the x-axis indicates the cell row 

where a division initiated. Lines depict the orientation of the metaphase plate with 

respect to the distal-proximal axis. Circles depict a metaphase plate which was oriented 

parallel with the plane of acquisition.  
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Figure 5: GSC divisions are random with respect to the DTC cytonemes 

Analysis of the orientation of mitotic divisions in the progenitor region. (A) Time 

slices of a representative division. lag-2::gfp (green) labels the DTC and cytonemes, an 

mCherry::HIS-51 transgene (white) labels nuclei. Images were taken as z-stacks and 

assembled in Imaris. Dividing cell is oriented in the middle of the frame. Clipping planes 

were used to remove overlapping nuclei and out of focus fluorescence from the DTC. 

Time from the start of acquisition is shown in the bottom right of each frame. Scale bar: 

10µm. (B) Analysis of whether or not divisions occurred adjacent to a cytoneme is 

shown on the left. Analysis of whether adjacent divisions occurred parallel, 

perpendicular, or at some angle in between, compared to the closest cytoneme. 
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1.2 The Cell Cycle 

In order for stem cells to self-renew, they must first divide.  There are many steps 

to prepare a cell for division. In order to divide, a cell must contain enough components 

for two daughter cells such as cytoplasm, organelles, DNA, nutrients, and energy. 

Therefore, once a cell enters the cell cycle, cell growth occurs during interphase (G1, 

S, and G2 phases) which is followed by cell division during M phase. Each of these 

phases and the transitions between them are regulated by cyclin dependent kinases 

(CDKs) (Figure 6). 

 

1.2.1 Cyclin dependent kinases 

CDKs are a class of proteins which phosphorylate targets to drive cell cycle 

progression. (Reviewed in Morgan 1995; Reviewed in Vermeulen, Van Bockstaele, and 

Berneman 2003). In mammalian somatic cell culture, five distinct CDKs function to 

drive cell cycle progression at each phase: Cdk2, Cdk4, and Cdk6 regulate at G1, Cdk2 

regulates S, Cdk1 regulates G2, and Cdk7 activates Cdk1 and Cdk2 in all phases 

(Figure 6). As each of these phases governs different steps in cell growth, CDKs 

phosphorylate different substrates at each phase to drive the different cell cycle 

transitions. Therefore, in order to regulate cell cycle growth and progression, each CDK 

is regulated by a variety of methods: cofactor binding, inhibitor binding, localization, and 

phosphorylation. 

Cofactor Binding: CDKs require cofactors called cyclins to function. Cyclins 

activate their partner CDK as well as determine their substrate specificity (Reviewed in 

Arellano and Moreno 1997) (Figure 6). For example, while both Cdk2-Cyclin E and 

Cdk2-Cyclin A complexes are required for S phase progression, each drives different 

activities during DNA replication by differential phosphorylation of their targets 
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(Coverley, Laman, and Laskey 2002). Cyclins are regulated by transcription throughout 

the cell cycle and, except for Cyclin D, are expressed cyclically allowing CDKs to 

activate at specific times, (Figure 6) (Evans et al. 1983; Pines 1991). Cyclin D isoforms 

are expressed in response to growth factors and bind to Cdk4/6 to drive cell cycle entry 

and G1 progression (Reviewed in Sherr 1994). Cyclin E is expressed during G1 and 

binds to Cdk2 to drive S phase entry (Figure 6) (Ohtsubo et al. 1995). During S phase, 

the expression of Cyclin A gradually increases and binds to Cdk2 to promote DNA 

replication (Figure 6) (Girard et al. 1991; Walker and Maller 1991). Cyclin B expression 

gradually increases during G2 and both Cyclin A and Cyclin B bind to Cdk1 to drive 

entry into M phase (Figure 6) (Arellano and Moreno 1997; Fung, Ma, and Poon 2007; 

King, Jackson, and Kirschner 1994). Coordinated regulation of cyclins through 

transcriptional programs thus regulates timing of the cell cycle. For precise regulation, 

the CDKs also need to be turned off when not needed, and CDK inhibitor proteins bind 

to CDKs and block cell cycle progression.  

Inhibitor Binding:  CDK inhibitors (CKIs) bind to either CDKs or CDK complexes 

and prevent their activity (Reviewed in Besson, Dowdy, and Roberts 2008). CKIs are 

divided into two major classes, the INK4 family and the Cip/Kip family. The INK4 family 

of CKIs (p15, p16, p18, and p19) form stable complexes with Cdk4/6, preventing 

Cyclin D binding and G1 progression (Chan et al. 1995; Guan et al. 1994; Hannon and 

Beach 1994; Hirai et al. 1995; Serrano, Hannon, and Beach 1993). The Cip/Kip family 

of CKIs (p21, p27, and p57) inhibit CDK activity by binding to the CDK-Cyclin pair, 

allowing them to regulate all cell cycle phases (Gu, Rosenblatt, and Morgan 1992; 

Harper et al. 1993; Polyak, Kato, et al. 1994; Polyak, Lee, et al. 1994; Toyoshima and 

Hunter 1994; Xiong et al. 1993; Lee, Reynisdottir, and Massague 1995; Matsuoka et al. 

1995).  
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Localization: CDKs mediate cell cycle progression by phosphorylating substrates 

in the nucleus. Therefore, re-localization of CDKs or CDK-cyclin complexes restricts 

their activity. A clear example of this type of regulation is the nuclear exclusion of Cyclin 

B via its cytoplasmic retention sequence (CRS). The Cyclin B CRS natively binds to 

cofactors which actively export Cdk1-Cyclin B complexes from the nucleus (Pines and 

Hunter 1994; Yang et al. 1998). Phosphorylation of the CRS of Cyclin B by Cdk1 and 

Plk1 (Polo like kinase 1) allows Cdk1-Cyclin B to remain in the nucleus which is 

necessary for entry into mitosis (Borgne et al. 1999; Hagting et al. 1999; Toyoshima-

Morimoto et al. 2001).  

Phosphorylation: In addition to all of the mechanisms of regulation listed above, 

CDKs can be also activated or inhibited by phosphorylation. Phosphorylation of CDKs 

on the T loop (Cdk1 on T161, Cdk2 on T160, and Cdk4 on T172) by the Cdk activating 

kinase (CAK) increases their activity and cyclin binding (Fisher and Morgan 1994; 

Gould et al. 1991; Gu, Rosenblatt, and Morgan 1992; Kato et al. 1994; Morgan 1995). 

However, phosphorylation in the ATP binding domain of Cdk1 (T14Y15), by Wee1 and 

Myt1 (Myelin transcription factor 1) kinases, and Cdk2 result in their inhibition (Gu, 

Rosenblatt, and Morgan 1992; Morgan 1995). These inhibitory phosphorylations must 

be removed by the Cdc25 (Cell division cycle 25) phosphatases to activate the CDKs 

(Reviewed in Kiyokawa and Ray 2008). Together, the activation and inhibitory 

phosphorylation events are powerful mechanisms for regulating CDK function and can 

be used to track the activity status of CDKs. 

 

1.2.2 G1 phase regulation (Figure 7) 

Once the previous mitosis is complete, the cell reaches a point where a decision is 

taken to either remain in the cell cycle or exit the cell cycle. In mammalian cultured 
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cells, removal of serum or growth factors results in an exit of the cell from the cell cycle 

into a G0 phase; the G0 phase is also known as a state of quiescence which is 

discussed later in this Chapter (1.2.6). In response to growth factors, quiescent cells 

express Cyclin D, promoting reentry of the cell cycle into G1 phase (Matsushime et al. 

1991). As Cyclin D transcription increases, it is thought to out-compete the INK4 CKIs 

for CDK binding resulting in active Cdk4/6-Cyclin D complexes (Sherr and Roberts 

1999). Progression through G1 occurs through inhibition of pRb (Retinoblastoma 

protein) which is phosphorylated and inhibited by the Cdk4/6-Cyclin D complex 

(Norbury, Blow, and Nurse 1991; Buchkovich, Duffy, and Harlow 1989; Kato et al. 

1993). 

pRb binds to the E2F-Dp1 heterodimer transcription factors and recruits histone 

deacetylases which inhibit nearby transcription through epigenetic modification (Brehm 

et al. 1998; Rubin et al. 2005). E2F/Dp1 complexes bind to promoters of genes that 

mediate cell cycle progression such as Cyclin D, Cyclin E and Cdk1 (Bracken et al. 

2004). Once pRb is phosphorylated by the Cdk4/6-Cyclin D complex, it does not bind to 

E2F allowing for active E2F-Dp1 complex to form (Weintraub, Prater, and Dean 1992), 

which results in an increase in the transcription of both Cyclin D and Cyclin E, allowing 

for more Cdk4/6-Cyclin D and Cdk2-Cyclin E complexes to form. Active Cdk4/6-Cyclin 

D and Cdk2-Cyclin E complexes, in turn, phosphorylate pRb resulting in a feed-forward 

loop which leads to hyper-phosphorylation of pRb. After a certain level of CDK 

activation has been achieved, the cell no longer responds to mitogen signaling as it 

passes the ‘restriction point’, committing the cell to pass through the cell cycle (Pardee 

1974). In addition to G1/S phase progression, this positive feedback loop promotes 

transcription of proteins involved in DNA licensing, a required process of G1 (Polager et 

al. 2002). 
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Licensing of DNA provides a starting point for DNA replication and its regulation 

helps prevent re-replication (Reviewed in Li and Jin 2010). Loss of DNA licensing 

factors leads to chromosomal fragmentation, genomic instability, incomplete replication, 

and can induce several types of cancer (Bagley et al. 2012; Shima et al. 2007). In order 

to license the DNA, the Origin Recognition Complex (ORC), a complex of Orc proteins 

(Orc1-6), identifies licensing sites and recruits Cdc6 (Cell division cycle 6) and Cdt1 

(Chromosome licensing and DNA replication factor 1), forming the Pre-replication 

Complex (PRC). The PRC then loads hetero-hexamers of Mcm2-7 (Mini-chromosome 

maintenance) proteins, which form part of a helicase during DNA replication. The 

process of licensing also appears to promote the expression of Cyclin D expression 

and plays a role in activating Cdk2 complexes (Nevis, Cordeiro-Stone, and Cook 2009; 

Liu et al. 2009). Since active Cdk2-Cyclin E complexes are necessary for DNA 

replication, this demonstrates that both DNA licensing and pRb inhibition are necessary 

for progression into S phase. 

 

1.2.3 S phase regulation (Figure 8) 

S phase of the cell cycle, or synthesis phase, is the phase in which the cell 

synthesizes a new copy of its DNA. While much of the regulation during this phase 

pertains to repairing DNA damage and is discussed below, the process of replication is 

also regulated. At the start of S phase, DNA replication machinery is assembled at 

licensed replication origins by active Cdk2-Cyclin E (Coverley, Laman, and Laskey 

2002; Zou and Stillman 2000). As Cyclin A expression increased during S phase, active 

Cdk2-Cyclin A complexes which sanction the origins to fire, causing the replication 

machinery to begin replicating the DNA, while simultaneously inhibiting the assembly of 

replication machinery at potential replication origins (Coverley, Laman, and Laskey 
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2002; Copeland et al. 2010). The interplay between Cdk2-Cyclin E and Cdk2-Cyclin A 

activity provides a small window in which replication machinery can be assembled 

while preventing re-licensing of DNA that has already been replicated. After activation 

by Cdk2-Cyclin A, replication occurs outward bi-directionally from the origin as two 

replication forks. Since not all forks fire at the same time, forks can be divided into 

early- and late-replicating forks. Recent reports suggest that early forks may fire in 

coordination with transcriptional machinery such that replication machinery and 

transcriptional machinery travel in the same direction (Chen et al. 2019). This would 

avoid head-on collisions between the two competing complexes which could lead to 

DNA damage (Hamperl et al. 2017). In this model, later forks would fire only if an early 

fork had stalled. However, regulation of firing early vs. late forks is still relatively 

unknown (Reviewed in Masai et al. 2010). 

Just as there is regulation for initiating and maintaining DNA replication, there is 

regulation to ensure complete DNA replication. The Atr (Ataxia telangiectasia and Rad3 

related) kinase, part of the DNA damage signaling pathway described below, prevents 

cell division until DNA replication has completed (Nishijima et al. 2003). However, 

caffeine in high concentrations will uncouple this regulation through inhibition of Atr, 

allowing for cell division to proceed even when the DNA is not completed replicated 

(Schlegel and Pardee 1986; Nishijima et al. 2003). 

 

1.2.4 G2 phase regulation (Figure 9) 

Once DNA replication has completed, the cell prepares to divide. During this 

period, Cyclin B expression increases resulting in the formation of active Cdk1-Cyclin B 

complexes. However, before binding to Cyclin B, Cdk1 is inactivated by 

phosphorylation in the endoplasmic reticulum by Myt1 on threonine 14 (T14) (Liu et al. 
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1997). After binding to Cyclin B, activation of the Cdk1-Cyclin B complex requires 

removal of inhibitory phosphorylations by the Cdc25 phosphatases, as well as 

activation by CAK (Figure 9) (Timofeev et al. 2009; Fisher and Morgan 1994). While 

removal of the inhibitory phosphorylations can occur either in the cytoplasm or nucleus, 

active Cdk1-Cyclin B is required in the nucleus to drive cell division (Franckhauser et 

al. 2010).  

Nuclear localization of the Cdk1-Cyclin B complex is regulated by the CRS located 

on Cyclin B which drives the export of Cdk1-Cyclin B complexes from the nucleus 

(Pines and Hunter 1994; Hagting et al. 1999). Once the Cdk1-Cyclin B complex is 

active, this export sequence is phosphorylated by Plk1 and Cdk1, inhibiting the CRS 

and allowing active Cdk1-Cyclin B to enter the nucleus (Borgne et al. 1999; Toyoshima-

Morimoto et al. 2001). However, the activity of nuclear-localized Cdk1-Cyclin B 

complexes is inhibited by phosphorylation on tyrosine 15 (Y15) of Cdk1 by Wee1 

kinases specifically to prevent cell division from occurring aberrantly (McGowan and 

Russell 1995; Russell and Nurse 1987; Den Haese et al. 1995). Therefore, both Wee1 

inhibition and Cdc25 activation are necessary for mitotic progression.  

 

1.2.5 DNA damage signaling (Figure 10) 

Damage to the DNA is extremely deleterious to cellular life, and in particular, it can 

severely affect progression through the S and M phases of the cell cycle. To prevent 

the cell cycle from continuing while DNA is damaged, there are mechanisms in place to 

arrest the damaged cell during interphase. This allows time for the cell to repair the 

DNA, though if the damage is too prevalent, it can lead to cell death through apoptosis. 

DNA damage is caused by multiple factors and the resulting cellular responses flow 

through two different kinase cascades. Double strand breaks, formed by sources 
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including ionizing radiation (IR), are largely sensed by Atm (Ataxia-telangiectasia 

mutated), a serine-threonine kinase (Shiloh 2003). Atr, however, responds to inter-

strand crosslinks, formed by sources including ultraviolet radiation (UV), and single 

strand breaks in addition to double strand breaks (Reviewed in Shiloh 2003). When 

either kinase is recruited to the site of DNA damage, it is activated by auto-

phosphorylation (Liu et al. 2011; So, Davis, and Chen 2009). This results in 

phosphorylation of various downstream substrates, including Chk1 (Checkpoint kinase 

1) and Chk2 (Checkpoint kinase 2) which phosphorylate yet more substrates 

(Reviewed in Shiloh 2003). This both initiates DNA repair as well as activates the DNA 

damage checkpoints at G1/S, S, and G2/M.  

G1/S Checkpoint: In response to DNA damage, Chk1 and Chk2 effector kinases 

phosphorylate Cdc25a, leading to its degradation (Mailand et al. 2000). Cdc25a is 

required to remove inhibitory phosphorylations from Cdk2 complexes, so its destruction 

leads to inhibition of Cdk2 activity, inhibiting the G1/S transition (Falck et al. 2001; Lee, 

Bielawska, and Obeid 2000). However, the p53 transcription factor appears to be a 

major driver of long-term maintenance of the DNA damage checkpoint at G1/S 

(Reviewed in Levine 1997). Normally, p53 is degraded by Mdm2 (Transformed mouse 

3T3 cell double minute 2), but stabilization of p53 occurs due to phosphorylation from 

Atm and Atr and their downstream effector kinases Chk1 and Chk2 (Liu et al. 2011; So, 

Davis, and Chen 2009; Shieh et al. 1997; Banin et al. 1998; Shieh et al. 2000; Haupt et 

al. 1997; Levine 1997; Tibbetts et al. 1999). p53 then increases transcription of the p21 

CKI which inhibits the activity of Cdk4, Cdk6 and Cdk2 complexes leading to cell cycle 

arrest at G1/S (Harper et al. 1995). 

Intra-S Checkpoint: If DNA damage occurs during S phase, the cell will extend S 

phase in order to attempt to repair the damage. The replication fork formed during DNA 
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replication is sensitive not only to many sources of DNA damage such as inter-strand 

crosslinks, double strand breaks, and pyrimidine dimers, but also to nucleotide 

depletion. Together these constitute sources of replication stress which will activate the 

Atm and Atr kinases triggering the intra-S checkpoint (Reviewed in Berti and Vindigni 

2016). Replication stress causes stalling of the replication fork, where the DNA 

polymerase can no longer progress, leading to the production of single stranded DNA 

(ssDNA) (Byun et al. 2005; Pages and Fuchs 2003). ssDNA recruits the ssDNA binding 

protein Rpa1 (Replication protein A1) (Reviewed in Wold 1997). While Rpa1 is involved 

in unwinding the DNA during replication, it transiently binds to ssDNA from the lagging 

strand as well (Fairman and Stillman 1988; Wobbe et al. 1987; Wold and Kelly 1988; 

Audry et al. 2015; Reviewed in MacNeill 2001). Long term Rpa1 binding, like that found 

at a stalled replication fork, will trigger the intra-S checkpoint by activating Atr (Zou and 

Elledge 2003). Activation by phosphorylation of Atr, or its effector Chk1, will lead to 

Cdc25a inhibition and degradation which can no longer remove the inhibitory 

phosphorylations from Cdk2 complexes (Goto et al. 2019; Shen et al. 2018). Due to 

this, Cdk2 complexes may be inhibited as a potential mechanism for arresting the cell. 

G2/M Checkpoint: DNA damage during G2 will stabilize p53 leading to increased 

transcription of p21, which also inhibits the activity of Cdk1 complexes (Harper et al. 

1995). In addition to p21, p53 also promotes transcription of 14-3-3 σ, an adapter 

protein which can bind to and exclude Cyclin B from the nucleus (Hermeking et al. 

1997). However, the major driver of the G2/M checkpoint appears to be inhibition of 

Cdk1 itself. Activation of Cdk1 requires the removal of the T14 and Y15 inhibitory 

phosphorylations (Jin, Gu, and Morgan 1996). Cdc25c phosphatase normally removes 

these, but if it is phosphorylated by the Chk1 and Chk2 kinases not only is its activity 

inhibited, but it is actively exported from the nucleus by 14-3-3 proteins (Falck et al. 
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2001; Sanchez et al. 1997; Peng et al. 1997; Lopez-Girona et al. 1999; Zeng et al. 

1998). This prevents the removal of inhibitory phosphorylations (T14Y15) on nuclear 

populations of Cdk1; keeping it in an inhibited state and preventing the G2/M transition. 

 

1.2.6 Quiescence 

 Many adult stem cell populations are maintained in a state of quiescence at the 

G0 phase of the cell cycle (Reviewed in Rumman, Dhawan, and Kassem 2015). This is 

a state akin to hibernation, where the cell does not proliferate, but is paused until it 

receives signals to re-enter the cell cycle at G1, progress through the cell cycle, and 

divide. Mechanistically, entry into quiescence is thought to be driven by low Cyclin D 

expression during G2 and low CDK activity at the end of M phase of the previous cell 

cycle (Spencer et al. 2013; Sa et al. 2002). Once in G0, quiescence is maintained by 

expression of CKIs and pRb (Viatour et al. 2008; Cheng et al. 2000; Matsumoto et al. 

2011; Zou et al. 2011; Hosoyama et al. 2011; Sankaran, Orkin, and Walkley 2008). Re-

entry into the cell cycle is thought to be driven by the expression of Cyclin D, which 

activates Cdk4/6 (Ladha et al. 1998). Therefore, at a cell cycle level, regulation of 

quiescence appears to utilize G1 regulators. 

 

1.2.7 Alternate cell cycle regulation 

The cell cycle regulation described above results in well-defined gap phases which 

last for significant portions of the cell cycle. However, early embryonic cells from C. 

elegans, D. melanogaster and Xenopus laevis require rapid expansion, and thus 

abbreviate the gap (G1 and G2) phases, which when coupled with rapid DNA 

replication, results in an exceedingly fast cell cycle to generate the requisite number of 

cells for the onset of early gastrulation events (Edgar and McGhee 1988; Kermi, Lo 
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Furno, and Maiorano 2017; Graham 1966b, 1966a; Takada and Cha 2011). Mouse 

embryonic stem cells (mESCs) also display rapid expansion in culture. While they 

maintain a G2 phase and S phase length similar to that of differentiated mouse somatic 

cells, the G1 phase is abbreviated (Stead et al. 2002). Their abbreviated G1 phase 

appears to be due to a constant expression of Cyclin E, Cyclin A, and Cdk2, allowing 

these cells to rapidly enter S phase (White and Dalton 2005; Stead et al. 2002) (Figure 

11). Accordingly, they do not appear to engage the G1/S checkpoint in response to 

DNA damage, only the G2/M checkpoint (Chuykin et al. 2008; Hirao et al. 2000). While 

p53 is expressed in these cells, it isn’t stabilized in response to DNA damage (Chuykin 

et al. 2008). Thus, some cells may not utilize all aspects of the regulation above. 

 

1.2.8 Cell cycle structure of the C. elegans GSCs 

In adult C. elegans GSCs, the cell cycle structure and its regulation are reminiscent 

of mESCs. The GSCs cycle continuously and asynchronously. In addition, from BrdU 

(5-bromo-2'-deoxyuridine) and EdU (5-ethynyl-2’-deoxyuridine) labeling studies, there 

is no evidence of quiescence in this population (Crittenden et al. 2006; Fox et al. 2011). 

The cell cycle structure and regulation of GSCs appear to be similar throughout the 

progenitor zone. With the total cell cycle length ranging from 8 – 12 hours depending 

on the study, a majority of the cells are in S phase (~60-70%) with a very low 

percentage in either M or G1 phase (~5% each) (Crittenden et al. 2006; Fox et al. 

2011). Analysis of cell cycle regulators has shown that there is constant expression of 

Cyclin E (cye-1) and Cdk2 (cdk-2), and CDK-2 appears to be active in all cells (Fox et 

al. 2011; Brodigan et al. 2003). Active CDK-2 is required for cell cycle progression 

since RNAi of cye-1 and cdk-2 lead to a cell cycle arrest (Fay and Han 2000; Fox et al. 

2011; Furuta et al. 2018). However, the sole Cdk4/6 homolog, cdk-4, is not required for 
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cell cycle progression in the germline (Fox et al. 2011). Therefore, it is likely that 

constant CDK-2 activity promotes the short G1 and that the normal G1 regulators are 

unnecessary. Depletion of the Cdk1 homolog (cdk-1) also results in cell cycle arrest, so 

it is likely required for the G2/M transition in addition to the G1/S transition (Boxem, 

Srinivasan, and van den Heuvel 1999). 

Along those lines, DNA damage signaling is functional in GSCs as well. IR and UV 

damage each lead to cell cycle arrest in GSCs (Gartner et al. 2000; Stergiou et al. 

2007). IR and UV treatments result in an increase in apoptosis in the germline during 

meiosis, though to date there is no evidence of cell death within the GSC population. 

Moreover, similar to the mammalian context, deletion of the Atm homolog (atm-1) 

appears to abrogate the IR arrest, whereas deletion of the Atr homolog (atl-1) will 

abrogate both the IR and UV induced cell cycle arrest (Garcia-Muse and Boulton 2005; 

Lee et al. 2010). However, the IR-induced arrest is not abrogated by deletion of the p53 

homolog (cep-1) supporting the lack of an active G1/S checkpoint in these cells 

(Schumacher et al. 2001). While it is important to regulate the cell cycle in response to 

DNA damage, raw materials in the form of nutrients are required for any cell growth to 

occur. Therefore, eukaryotic cells have developed additional signaling pathways to 

detect internal and external nutrient and metabolite availability. 
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Figure 6: Cyclin and CDK regulation of the mammalian cell cycle  

Overview of the mammalian cell cycle. Cells which do not receive mitogens will exit 

into a G0 (quiescent) state. Cyclins are expressed temporally to activate their partner 

CDK. Towards the end of G1, as cells pass the restriction point (R) they are committed 

to the cell cycle and no longer require mitogens.  
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Figure 7: Mammalian G1 regulation 

Overview of G1 regulation in mammalian cells. In response to mitogens, Cyclin D 

levels rise and pRb is inhibited, promoting cell cycle regulator transcription in a positive 

feedback loop leading to increased pRb inhibition. Cells license the DNA for replication. 
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Figure 8: The role of Cdk2 in regulating DNA replication 

Cdk2-Cyclin E activity promotes loading of the DNA polymerase and other 

replication factors. Cdk2-Cyclin A activity promotes elongation of the nascent DNA 

strands while inhibiting re-licensing by export of DNA licensing factors. 
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Figure 9: Cdk1 Regulation at the G2/M boundary 

Cdk1-Cyclin B activity and nuclear localization is regulated by a number of 

phosphorylation and de-phosphorylation events. Phosphorylation on T14 and/or Y15 of 

Cdk1 are inhibitory. Phosphorylation on T161 of Cdk1 results in its activation. 

Phosphorylation on the CRS of Cyclin B is required for nuclear localization of the Cdk1-

Cyclin B complex.  



33 

 

 

Figure 10: Cell cycle control by DNA damage signaling 

Overview of cell cycle control in response to DNA damage at different cell cycle 

stages.  
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Figure 11: Altered cell cycle regulation in mESCs 

Overview of cell cycle phase proportions and cyclin expression in mESCs. 
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1.3 Metabolic and Nutritional Regulation 

For organisms to survive, it is necessary to receive a constant influx of nutrients. 

These nutrients are necessary to sustain tissues and cells in a working state. If this 

need is not met, it can result in harm to the organism’s tissues and cells. Therefore, it is 

important for an organism to be able to sense its environment and determine whether 

those nutrients are available. In response to such signals, cells and tissues modulate 

their cellular behavior to adapt to the environment and nutritional availability. One 

organism which has evolved a number of methods of adjusting to a lack of external 

nutrients is C. elegans. For example, during early larval development, lack of nutrients 

or overcrowding drives the animal into an alternate developmental state termed 

“dauer”. In this state, the animals are metabolically repressed and can sustain long 

periods of starvation. Return to normal nutritional conditions results in reentry of the 

dauer stage animals into L4 and normal development ensues. GSCs, like the somatic 

cells, have also developed methods to adapt to nutrient availability.  Under replete 

conditions, the C. elegans GSCs are constantly dividing. The GSCs adjust to changes 

in nutrient availability in a rapid manner, making it a good model system to study the 

effects of starvation on continuously dividing populations of cells. In C. elegans GSCs, 

most nutritional signaling appears to pass through either an insulin – PI3K 

(Phosphoinositide 3 Kinase) – AKT (Thymoma viral proto-oncogene) signaling axis or 

TOR (Target of rapamycin) signaling (Figure 12).  Therefore, I will focus on those two 

pathways for this chapter. 

 

1.3.1: Insulin Signaling 

Insulins and insulin-like peptides are a class of metabolic signaling peptides which 

promote the uptake and storage of systemic glucose as glycogen (Fukumoto et al. 
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1989; Suzuki and Kono 1980). Binding of insulin to the insulin receptor activates a 

number of signaling pathways involved in metabolism, cell growth and proliferation 

(Reviewed in De Meyts 2000; Reviewed in Taniguchi, Emanuelli, and Kahn 2006). The 

insulin receptor is a receptor tyrosine kinase (RTK) which functions as an α2β2 

tetramer (Olson, Bamberger, and Lane 1988; Schenker and Kohanski 1991). The 

insulin receptor gene encodes both subunits, with the α-subunit responsible for ligand 

binding, and the β-subunit responsible for kinase activity (Deutsch et al. 1983; Kasuga, 

Hedo, et al. 1982; Pilch and Czech 1979; Shia and Pilch 1983; Yip, Moule, and Yeung 

1982). Upon insulin binding, it auto-phosphorylates on intracellular tyrosine residues 

leading to its activation (Kasuga, Zick, Blith, et al. 1982; Kasuga, Zick, Blithe, et al. 

1982; Rosen et al. 1983; Van Obberghen et al. 1983). In mammals, this leads to 

phosphorylation of the insulin-receptor substrate (IRS) proteins which become adapters 

and activate downstream signaling complexes. Activation of these adapters recruits 

and activates downstream signaling modules including the PI3K-AKT signaling axis. 

 

1.3.2: The PI3K-AKT signaling axis 

Phosphoinositide 3 kinases (PI3Ks) are activated in response to a variety of G-

protein coupled receptors (GPCRs) and RTKs (Reviewed in Vanhaesebroeck et al. 

2010). PI3Ks are heterodimers that are made up of a regulatory and a catalytic subunit. 

They are activated by protein-protein interactions through recruitment to an activated 

signaling adapter (Klippel et al. 1996). In response to activation, PI3Ks phosphorylate 

PIP2 (Phosphatidylinositol 4,5-diphosphate) to produce PIP3 (Phosphatidylinositol 

3,4,5-triphosphate) (Reviewed in Vanhaesebroeck et al. 2010). Pten (Phosphatase and 

tensin homolog) negatively regulates this activity by dephosphorylating PIP3 to PIP2. 

PIP3 functions as a second messenger and activates a number of proteins with PIP3-
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recognition domains including AKT (Franke et al. 1995). AKTs are serine-threonine 

kinases which are recruited to the membrane through their PIP3 binding domains and 

are subsequently activated by phosphoinositide-dependent kinase 1 (Alessi et al. 

1997). Upon activation, AKTs will phosphorylate and inactivate multiple downstream 

effectors such as the FOXO (Forkhead box O) transcription factors, Gsk3β (Glycogen 

synthase kinase 3 beta), and Tsc2 (Tuberous sclerosis 2), which forms a complex with 

Tsc1 (Tuberous sclerosis 1), hereafter referred to as the TSC. The FOXO transcription 

factors are involved in regulating a number of cellular processes such as cell cycle 

control, stress response, and apoptosis (Reviewed in Tran et al. 2003). Gsk3β and the 

TSC both regulate TOR signaling in mammals. 

 

1.3.3: TOR Signaling 

Mtor (Mechanistic target of rapamycin) is a serine-threonine kinase which mediates 

TOR signaling in its response to energy, nutrient, and metabolite cues by regulating cell 

growth, proliferation, survival and metabolism (Reviewed in Saxton and Sabatini 2017). 

Mtor functions in two separate complexes designated TORC1 (Mtor, Rptor (Regulatory 

associated protein of MTOR, complex 1), and Mlst8 (MTOR associated protein LST8 

homolog (S. cerevisiae))) and TORC2 (Mtor, Rictor (RPTOR independent companion 

of MTOR, complex 2), mLST8, Mapkap1 (Mitogen-activated protein kinase associated 

protein 1), and either Prr5 (Proline rich 5 (renal)) or Prr5l (Proline rich 5 like)). 

The TORC2 complex recognizes PIP3 through its Mapkap1 cofactor, leading to 

activation and regulation of cell survival and proliferation (Jacinto et al. 2006). Many of 

its functions are executed through phosphorylation of AKT (Sarbassov et al. 2005). 

However, this activating phosphorylation appears important only for certain substrates 

of AKT. For example, phosphorylation of AKT downstream to TORC2 is required for 
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phosphorylation and inactivation of the FOXO transcription factors, but does not affect 

Tsc2 phosphorylation (Guertin et al. 2006; Jacinto et al. 2006). Thus, TORC2 activation 

of AKT does not affect TORC1. 

The TORC1 complex utilizes the Rheb (Ras homolog enriched in brain) GTPase to 

activate and regulate autophagy, metabolism, and protein synthesis. In mammals, a 

large pool of Rheb protein is thought to be bound to the lysosome, and so recruitment 

of TORC1 to the lysosome plays a large role in its activation (Inoki et al. 2003; Tee et 

al. 2003). From work in mammals, Rag (recombination activating) GTPase activity 

recruits TORC1 to the lysosomal surface in response to amino acid sensing proteins. 

Activation of TORC1 leads to phosphorylation of its downstream effectors some of 

which include p70s6k (ribosomal protein S6 kinase, polypeptide 1), Eif4ebp (Eukaryotic 

translation initiation factor 4E binding protein), Atg14 (Autophagy related 14), and Hif1a 

(Hypoxia inducible factor 1, alpha subunit)). 

 However, activation of TORC1 requires more than amino acid sensing. Other 

upstream signals from energy status (by sensing ATP) and growth factor signaling are 

required for full TORC1 activation. Low energy status, as well as hypoxia and DNA 

damage, is sensed by AMPK (AMP-activated protein kinase) and can either directly 

regulate TORC1 by phosphorylation and inhibition of Rptor, or by phosphorylation and 

activation of Tsc2 (Gwinn et al. 2008; Inoki, Zhu, and Guan 2003; Feng et al. 2007; 

Brugarolas et al. 2004). Tsc2, which is downstream to the Insulin-PI3K-AKT signaling 

axis, inhibits Rheb through the TSC which subsequently inhibits TORC1 activation 

(Inoki et al. 2003; Menon et al. 2014; Tee et al. 2003). Phosphorylation of Tsc2 

dissociates it from Tsc1 and the lysosomal surface, allowing Rheb to activate TORC1 

(Menon et al. 2014). Other regulators of the TSC include the Ras-MAPK (Mitogen 

associated protein kinase) pathway and Gsk3β. 
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1.3.4: Gsk3β 

Gsk3β functions in several signaling pathways, such as the insulin, TOR and Wnt 

pathways, to regulate proliferation, differentiation, and apoptosis (Bouskila et al. 2008; 

Campbell et al. 2012; McManus et al. 2005; Parisi et al. 2011), in addition to its original 

role of inhibiting glycogen synthase (Larner et al. 1968; Rylatt et al. 1980). This poises 

Gsk3β as an integrator of various signaling pathways. Gsk3β is a serine-threonine 

kinase which is constitutively active when first translated. Phosphorylation events thus 

inactivate Gsk3β unlike most other kinases, where phosphorylations are necessary for 

their activity (Jope and Johnson 2004). Specifically, phosphorylation on Ser-9 on the N-

terminus by various kinases, such as AKT and p70s6k, will inhibit the kinase. Since 

Gsk3β phosphorylates its substrates on serines or threonines which are 3-5 amino 

acids away from a phosphorylation, phosphorylated Ser-9 functions as bait, blocking 

the kinase binding pocket and preventing other substrates from binding.  

 

1.3.5: Nutritional Signaling in cell cycle regulation in yeast, flies and vertebrate 

systems 

Downstream from the insulin receptor, the Ras-MAPK pathway is well known for 

activating Cyclin D transcription resulting in G1 progression as previously discussed 

(Chapter 1.2.2). Additionally, the PI3K-AKT module appears to promote G1 progression 

as well by increase Cyclin D and Cyclin E expression in response to insulin-like growth 

factors (Mairet-Coello, Tury, and DiCicco-Bloom 2009). Similarly, TOR signaling 

regulates the G1 phase of the cell cycle as well. 

From studies in yeast and mammalian cell culture, downregulation of, or mutations 

in, Mtor and its downstream effectors result in a G1 arrest (Abraham and Wiederrecht 

1996; Fingar et al. 2004; Rohde, Heitman, and Cardenas 2001). However, in 
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embryonic stem cells, removal of the downstream effector p70s6k only affects 

proliferation rate mildly suggesting a different regulation (Kawasome et al. 1998). 

Additionally, there is evidence for the involvement of nutritional signaling in G2 

regulation as well. 

In Drosophila germ cells, there is evidence that Insulin signaling and TOR signaling 

independently regulate G2 (Hsu, LaFever, and Drummond-Barbosa 2008; LaFever et 

al. 2010). In fission yeast, the Mtor homolog for the TORC1 complex, Tor1, signals 

through stress kinases to regulate Cdc25 (Lopez-Aviles et al. 2008; Lopez-Aviles et al. 

2005). In budding yeast, Tor1 signals through PP2A (Protein phosphatase 2) which is 

required for polo-like kinase translocation into the nucleus, driving mitotic progression 

(Nakashima et al. 2008). This provides a link between TOR signaling and cell cycle 

regulators. 

 

1.3.6: Nutritional Signaling in C. elegans 

C. elegans is a free-living nematode that is often found on rotting fruits and is 

uniquely sensitive to nutritional availability in its surroundings. It has evolved a number 

of adaptations to deal with a lack of nutrients, including cell cycle arrest of the PGCs 

(Fukuyama, Rougvie, and Rothman 2006), and an alternate developmental stage 

named dauer (Golden and Riddle 1984). Upon hatching, if no nutrients are available, 

the PGCs maintain a G2 arrest until food is available. If nutrition becomes unavailable 

during L2 stage of development, the worm enters the alternate developmental pathway- 

dauer. As a dauer, C. elegans can survive for months without food, and when replete 

conditions are available, it will molt into an L4 and continue its development (Golden 

and Riddle 1984). Thus, nutritional signaling plays important roles for the survival of 

this organism. 
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Most of the nutritional signaling components described above are conserved in C. 

elegans (Table 1) with a few exceptions. While the C. elegans insulin receptor homolog 

(daf-2) appears to have a similar gene structure for encoding the receptor, DAF-2 has a 

C-terminal extension which may function as a signaling adapter similar to the IRS 

proteins (Kimura et al. 1997). Although there are functional IRS homologs in C. elegans 

(ist-1, aap-1), these are not necessary for dauer formation, suggesting that daf-2 itself 

may be able to function as the signaling adapter for the PI3K homolog age-1 (Munoz 

and Riddle 2003). In addition, C. elegans does not generate insulin. Instead, 40 

different insulin-like peptides are secreted from the sensory neurons to regulate the 

insulin receptor and mediate its effects (Li, Kennedy, and Ruvkun 2003; Kawano et al. 

2000; Duret et al. 1998; Pierce et al. 2001).  

Links between Insulin signaling and TOR signaling are few. To date, no Tsc1 or 

Tsc2 homologs have been identified in C. elegans. Since the TSC forms a major link 

between Insulin signaling and TORC1 in mammals, this suggests that the Insulin 

signaling and TOR signaling may not crosstalk in C. elegans. Similarly, there is little 

evidence that TORC2 functions through AKT. Mutations in the Rictor homolog rict-1 

produce a number of phenotypes such as increased fat storage, and small animal size 

(Jones et al. 2009; Soukas et al. 2009). However, while the increased fat storage 

phenotype is observed in the AKT homolog, akt-1 or akt-2, mutants, the phenotype is 

enhanced in double mutants with rict-1, suggesting that the two pathways function in 

parallel (Jones et al. 2009; Soukas et al. 2009). One link that does exist, however, is 

that the FOXO homolog daf-16 negatively regulates the expression of the Raptor 

homolog daf-15 (Jia, Chen, and Riddle 2004). Together, these observations suggest 

that Insulin signaling and TOR signaling may function relatively separately in C.elegans 

compared to mammals. 
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1.3.7: Nutritional Signaling in the C. elegans germline 

In the C. elegans germline, nutritional signaling has been shown to regulate both 

developing oocytes as well as GSCs. In developing oocytes, the insulin receptor daf-2 

provides the signal to activate let-60-mpk-1 (Ras-Mapk1) signaling to control oocyte 

production (Lopez et al. 2013b). In larval GSCs, mutation of the daf-2 receptor results 

in decreased proliferation in a daf-16 dependent manner (Michaelson et al. 2010). In a 

study on the TOR signaling downstream effector rsks-1 (p70s6k), it was found that daf-

2rsks-1 double mutants enhanced the rsks-1 single mutant phenotype for low GSC 

proliferation in larval stage L4 animals which suggests that Insulin signaling and TOR 

signaling drive proliferation in parallel pathways. (Korta, Tuck, and Hubbard 2012). 

Together, these studies raise the possibility that nutritional signaling may control the 

cell cycle in C. elegans GSCs. The mechanisms that mediate this remain unknown.  
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Figure 12: The Insulin and TOR nutritional signaling network 

Overview of common nutritional signaling network components and their 

connectivity. Red and blue arrows depict different inputs into AKT, which produce 

different responses. The blue input produces only the purple response, while the red 

input produces both red and purple responses. 
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Table 1: Nutritional signaling homologs in C. elegans 

Table listing the mouse nutritional signaling components on the left, and their C. 

elegans homologs on the right. Question marks denote that there is no known homolog 

in C. elegans.  
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Chapter 2: Materials and Methods 

 

Some of the contents of this chapter are reproduced/adapted with permission from 

“Furuta et al. 2018” with permission from Development 

(http://www.biologists.com/development).  

 

Full citation: 

Furuta, T., H. J. Joo, K. A. Trimmer, S. Y. Chen, and S. Arur. 2018. 'GSK-3 promotes 

S-phase entry and progression in C. elegans germline stem cells to maintain tissue 

output', Development, 145, doi: 10.1242/dev.161042 

 

2.1: Materials 

 

2.1.1: Chemicals and Buffers  

Chemicals Information 

Hydroxyurea (Sigma-Aldrich, cat. no. H8627) 

16% Paraformaldehyde (Electron Microscopy Sciences, cat. no. 
15710) 

3% Paraformaldehyde 20% (v/v) 16% Paraformaldehyde in 
(0.1M) Potassium Phosphate buffer at 
pH 7.2 

Methanol (Electron Microscopy Sciences, cat. no. 
18510) 

30% Normal Goat Serum  

DAPI (Sigma-Aldrich, cat. no. D9542 

K2HPO4 (pH 7.2) (SIGMA-ALDRICH, cat. no. P3786) 

1x PBS (SIGMA Life Science, cat. no. P2194) 

Tween 20 (Fischer Scientific, cat. no. BP337-500) 

M9 buffer (Stiernagle 2006) (3 g KH2PO4, 6 g 
Na2HPO4, 5 g NaCl, 1 ml 1 M MgSO4, H2O 
to 1 liter. Sterilize by autoclaving.) 

Sterile M9T M9 Buffer with 0.1% Tween sterilized 
using a 0.22µm filter 

http://www.biologists.com/development
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Click-iT® Plus EdU Alexa Fluor® 594 
Imaging Kit 

(ThermoFisher Scientific, cat# C10639) 

Alexa Fluor 647 picolyl azide (ThermoFisher Scientific, cat# A10277) 

  

Cupric Sulfate (Sigma-Aldrich, cat. no. C-7631) 

Proteinase K (10 mg/mL) (Roche, cat. no. 3115879001) 

Worm lysis buffer 5% (v/v)10mg/mL Proteinase K in 1X 
PCR buffer 

Apex Hot Start Taq BLUE Master 
Mix, 2X 

(Genesee Scientifitc, cat. no. 42-143) 

Agarose (Sigma-Aldrich, cat. no. A6877 

Ethidium Bromide (Sigma-Aldrich, cat. no. 46067) 

L-Lysine-monoHCL (Sigma-Aldrich, cat. no. L-9037) 

Sodium Periodate (NaIO4) (Sigma-Aldrich, cat. no. S1878) 

Vectashield Anti-fade (Vector Labs, cat. no. H-1000) 

  
2.1.2: C. elegans Strains and Culture 

Strains were made and handled using standard methods (Brenner 1974). 

Strains used in this study: 

Strain Genotype 

N2 Wildtype 

AUM1239 naSi2[mex-5p>mCherry::his51::nos-2 3’UTR>GFP::his-51::nos-2 
3’UTR] II; (? - unc-119 [ed3]) III. 

AUM1246 naSi2 [pmex-5>mCh::his-51::nos-2 3’ UTR>GFP::his-51::nos-2 
3’UTR] (II); qIs56 (plag-2::GFP::lag-2 3’UTR) (V) 

EG4322 ttTi5605 II; unc-119(ed3) III 

EG8082 unc-119(ed3) III; oxTi365 V 

AUM1012 gsk-3(nr2047)/hT2[bli-4(e937)let-?(q782) qIs48] I; unc-119(ed3)III/ 
hT2 [bli-4(e937)let-?(q782) qIs48] (I; III) 

AUM1054 gsk-3(tm2223) I/ hT2 [bli-4(e937)let-?(q782) qIs48] (I; III)  

BS121 glp-1(bn18ts) III 

BS3148 glp-1(ar202ts) III 

AUM1081 gsk-3(tm2223) I/ hT2[bli-4(e937)let-?(q782)qIs48] (I;III). Line 1 

AUM1082 gsk-3(tm2223) I/ hT2[bli-4(e937)let-?(q782)qIs48] (I;III). Line 2 

AUM1260 gsk-3(nr2047)/oxTi398 I 

AUM1262 gsk-3(nr2047)/oxTi398 I; gtIs64[mcm-3::GFP]; odIs57[Ppie-
1::mCherry::H2B]. Line 1 

AUM1266 gsk-3(nr2047)/oxTi398 I; gtIs64[mcm-3::GFP]; odIs57[Ppie-
1::mCherry::H2B]. Line 2  

AUM1279 gsk-3(nr2047)/ oxTi398 I; ddIs30[Ppie-1::YFP::CDK-2] 

AUM2026 gsk-3(nr2047)I;unc-119(ed3) III; vizIs26[Ppie-1::GFP::GSK-
3(WT)::pie-1 3’UTR unc-119(+)] 
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AUM2027 gsk-3(nr2047)I;unc-119(ed3) III; vizIs27[Ppie-1::GFP::GSK-
3(WT)::pie-1 3’UTR unc-119(+)] 

AUM2028 gsk-3(nr2047)I;unc-119(ed3) III; vizIs28[Ppie-1::GFP::GSK-
3(WT)::pie-1 3’UTR unc-119(+)] 

AUM2029 
 

gsk-3(nr2047)I;unc-119(ed3) III; visIs29[Ppie-1::GFP::GSK-
3(WT)::pie-1 3’UTR unc-119(+)] 

AUM2083 
 

vizSi44 [Pmex-5::GFP::GSK-3(WT)::tbb-2 3’UTR unc-119(+)] 
*ttTi5605 II; unc-119(ed3) III 

AUM2059 
 

vizSi20[Pmex-5::GFP::GSK-3 [K65A,E77A,D180A,D161A]::gsk-3 
3’UTR] *ttTi5605 II; unc-119(ed3)III 

AUM1295 gsk-3(nr2047)/ hT2 [bli-4(e937)let-?(q782) qIs48] I; vizSi20[Pmex-
5::GFP::GSK-3 [K65A,E77A,D180A,D161A]::gsk-3 3’UTR] 
*ttTi5605 II; unc-119(ed3)/hT2 [bli-4(e937)let-?(q782) qIs48]III 

TG1753 
 

unc-119(ed3) III; gtIs64 [pie-1p::GFP(lap)::mcm-3 + unc-119(+)] 
ltIs37 [pie-1p::mCherry::his-58 + unc-119(+)] 

TH98 unc-119(ed3) III; ddIs30 [Ppie-1::YFP::CDK-2 (K03e5.3a)  unc-
119(+)] II 

WM69 gsk-3(nr2047) I/ hT2 [bli-4(e937)let-?(q782) qIs48)] (I; III) 

AUM1294 
 

gsk-3(nr2047) I/ hT2 [bli-4(e937)let-?(q782) qIs48)] (I; III);glp-
1(ar202ts)III/hT2 [bli-4(e937)let-?(q782) qIs48)] (I; III) 

AUM1293 gsk-3(nr2047) I/ hT2[bli-4(e937)let-?(q782) qIs48)] (I; III); glp-
1(bn18ts) III/ hT2 [bli-4(e937)let-?(q782) qIs48)] (I; III); 

EG7843 ttTi398 [Peft-3::tdTomato::H2B::unc-54 3'UTR Cbr-unc-119(+)] 

EG7844 ttTi413 [Peft-3::tdTomato::H2B::unc-54 3'UTR Cbr-unc-119(+)] 

AUM2073 
 

vizSi34 [cdk-2[Promoter]::NLS::GFP::tbb-2 3’ UTR] *ttTi5605 II; 
unc-119(ed3) III 

AUM2071 
 

unc-119(ed3);vizSi32[cdk-2[Intron1]::NLS::GFP::tbb-2 3’UTR] 
*oxTi365 V 

AUM1339 
 

gsk-3(nr2047) I / ht2 [bli-4(e937)let-?(q782) qIs48)] (I; III);vizSi32 
[cdk-2[Intron1] ::NLS::GFP::tbb-2 3’UTR] *oxTi365 V 
 

JJ2213 
 

zuIs252[Pnmy-21::PGL-1::mRFP; unc119(+)] unc119(ed3)III 
 

AUM1076 
 

gsk-3(nr2047) I / ht2 [bli-4(e937)let-?(q782) qIs48)] (I; III); 
zuIs252[Pnmy-21::PGL-1::mRFP; unc119(+)] unc119(ed3)III 

AUM1079 gsk-3(tm2223) I / ht2 [bli-4(e937)let-?(q782) qIs48)] (I; III); 
zuIs252[Pnmy-21::PGL-1::mRFP; unc119(+)] unc119(ed3)III 

VC381 atm-1(gk186) I 

DW101 atl-1(tm853) V/nT1 [unc-?(n754) let-? qIs50] (IV;V) 

AUM1449 atm-1(gk186) (I); naSi2 (II); atl-1(tm853)/tmC12(V) 

CB1370 daf-2(e1370) III 

AUM1018 rsks-1(ok1255)/hT2 GFP [bli-4(e937)let-?(q782) qIs48) I; III 

AUM1291 daf-2(e1370)rsks-1(ok1255) III 

AUM1479 let-363(viz27[del2196-2287ins5xG]) 

EU1062 sur-6(or550) I 

AUM2082 vizSi43[Pmex-5::GFP::cdk-1(cDNA)::cdk-1 3’UTR, 
unc119(+)]*ttTi5605II; unc-119(ed3)III 
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KB3 kgb-1(um3) IV 

  
 

2.1.3: Antibodies 

The following primary antibodies were used: rabbit anti-HIM-3 (5347.00.02, Sdix) 

(1:1000); rabbit anti-REC-8 (29470002, Novus); mouse anti-phospho-Histone H3 

(Ser10) (05-806, Millipore) (1:500); rabbit anti-GFP (ab6556, Abcam) (1:400); rabbit 

anti-CYE-1 and anti-CDT-1 were gifts from Dr. Edward T. Kipreos (University of 

Georgia); guinea pig anti-Lamin was a gift from Dr. Kelly Liu (Cornell University) 

(1:800); Anti-alpha Tubulin (T9026, Sigma) (1:1000); rabbit anti-CDK-1, a gift from Dr. 

Jill Schumacher (MD Anderson Cancer Center), was received as serum and IgG 

purified (1:50); rabbit anti-(pT14pY15) Cdk1 (44686G, Biosource) (1:200); rabbit anti-

(pS345) Chk1 (2341, Cell Signaling) (1:400). 

The following secondary antibodies were used at (1:1000): donkey anti-mouse 

Alexa 594 (A21203, ThermoFisher Scientific), goat anti-mouse Alexa Cy5 (A10524, 

ThermoFisher Scientific), goat anti-mouse Alexa 488 (A21202, ThermoFisher 

Scientific), goat anti-rabbit Alexa 488 (A11008, ThermoFisher Scientific), donkey anti-

rabbit Alexa 594 (A21207, ThermoFisher Scientific), goat anti-guinea pig Alexa 594 

(A11026, ThermoFisher Scientific), anti-rabbit HRP (1858415, Pierce Biotechnology), 

and anti-mouse HRP (1858413, Pierce Biotechnology) secondary antibodies.   

 

2.1.4: Transgenic construction of GFP::GSK-3  

To generate a GFP::GSK-3 construct, the gsk-3 coding region from the start codon 

to the translation stop was amplified as one PCR product of 5.5 Kb with KOD 

polymerase (Novagen, Madison, WI), using the following primers:  
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attb1 GSK-3 ggggacaagtttgtacaaaaaagcaggcttgATGAATAAGCAGTTACTATCGT  

attb2 GSK-3  ggggaccactttgtacaagaaagctgggtTTAAGCCGATGGGCCAGCCACA  

After amplification from N2 cDNA, the fragment was cloned into the pDONR221 

vector of the gateway system using BP reaction. The pDONR plasmid was then 

sequenced to confirm integrity and recombined into the pID3.02 pie-1 GFP plasmid 

(pENTR) containing the unc-119 transformation marker using the gateway LR reaction 

to generate pSYC003[Ppie-1::GFP::GSK-3::pie-1 3’UTR]. Microparticle biolistic 

transformation was used to create low-copy integrated transgenic lines in unc-119(ed3) 

animals as described (Praitis 2006). Wildtype animals were individually cloned and 

assayed for integration of the transgene. Six integrated lines were obtained and named 

vizIs26, vizIs27, vizIs28, vizIs29, vizIs30 and vizIs31.  

To generate mex-5 driven GSK-3 transgenes, the full-length coding region of gsk-3 

was amplified from N2 cDNA and cloned via the Gateway system into pDONR221. The 

clones were verified for sequence integrity, and combined with Pmex-5::GFP (pJA245) 

and the tbb-23 3’UTR (pCM1.36). The final clone, Pmex-5::GFP::GSK-3::tbb-2 3’UTR, 

was cloned into the destination vector pCFJ150 via LR clonase reaction. The pSYC001 

plasmid, obtained from the LR reaction, was sequence verified for integrity.  

 

Kinase dead GSK-3 was generated by modifying pSYC001 with a series of site-

directed mutagenesis using the following primers:  

GSK-3_K65A_FP: AAATGAAATGGTTGCAATCgctAAAGTTCTTCA,  

GSK3_K65A_RP: GTTTGTCCTGAAGAACTTTagcGATTGCAACCA,  

GSK3_E77A_FP: CAAACGATTCAAGAATCGTgctCTACAGATTAT 

GSK3_E77A_RP: ATTTTCGCATAATCTGTAGagcACGATTCTTGA 

GSK3_D161A_FP: CATTGGAATCTGTCACCGTgctATTAAGCCTCA 
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GSK3_D161A_RP: GCAAATTCTGAGGCTTAATagcACGGTGACAGA 

GSK3_D180A_FP: CGGAGTGCTTAAGCTCTGTgctTTTGGATCTGC 

GSK3_D180A_RP: AATATTTGGCAGATCCAAAagcACAGAGCTTAA.  

The final GSK-3(KD) pENTR clone pSYC099 was sequenced to verify all the 

modifications.   

To generate mex-5 driven GSK-3 transgenes, pSYC001(GSK-3(wt)), or 

pSYC099(GSK-3(KD K65A, E77A, D161A, D180A)) was combined with Pmex-5::GFP 

(pJA245), tbb-2 3’UTR (pCM1.36), and inserted into the pCFJ150 destination vector 

using the multi fragment gateway system.  The final expression constructs 

pHJJ002(Pmex-5::GFP::GSK-3(wt)::tbb-2 3’UTR) or pSYC100 (Pmex-5::GFP::GSK-

3(KD)::tbb-2 3’UTR) were sequenced for the junctions.   

These constructs were injected into EG4322 worms for Chromosome II integration, 

and selected as described previously (Drake et al. 2014; Zeiser et al. 2011). 

 

2.1.5: CDK-2 transcriptional reporter construction 

A 2kb region directly upstream of cdk-2 exon 1 (Wormbase Ver 258) was amplified 

for the “promoter” construct using the following primers:  

GGGGACAACTTTGTATAGAAAAGTTGATcgcgggaagataagtggagagggag 

GGGGACTGCTTTTTTGTACAAACTTGTttttccacttttaaccagcattttt.  

1880bp (Wormbase Ver 258) of Intron 1 was amplified using the following primers:  

GGGGGACAACTTTGTATAGAAAAGTTGATgtgttacaagttctttgtgcaa  

GGGGACTGCTTTTTTGTACAAACTTGTctggaagataattaagattttc.  

The amplified fragments were cloned into pDONR P4P1R vector using BP reaction 

to make pENTR clones, pSYC122, and pSYC111. SV40NLS::GFP with synthetic 

introns was amplified from pPD95.67 using the following primers: 
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GgggacaagtttgtacaaaaaagcaggcttgATGACTGCTCCAAAGAAGAAGCG, 

ggggaccactttgtacaagaaagctgggtCTATTTGTATAGTTCATCCATGCC 

and cloned into the pDONR221 vector. The plasmids were assembled with the tbb-

2 3’UTR, pCM1.36 and pCFJ150 for MosSCI recombination site using Gateway LR 

reaction. Final expression plasmids were pSYC112 (Intron cdk-2::SV40NLS::GFP::tbb-

2 3’UTR MosSCIsite ttTi5605) and pSYC123 (promoter cdk-2::SV40NLS::GFP::tbb-2 

3’UTR MosSCIsite ttTi5605), sequenced for integrity. 

 

2.1.6: let-363(viz27[del2196-2287ins5xG]) allele construction 

A loss of function allele for let-363, was made by removal of the fkbp12-rapamycin 

binding (FRB) domain using CRISPR. A coCRISPR strategy was based on (Paix, 

Folkmann, and Seydoux 2017). Two potential CRISPR cut sites flanking the FRB were 

identified and the corresponding crRNAs ordered from Dharmacon: 

TTGTTCGTTGCGCAATTCTG 

ACTTGCCACTTTGAACTCGT 

The repair template was designed to remove a 381bp segment of genomic DNA 

corresponding to Trp2196 - Thr2287 of let-363 and substituting a 5xG linker and 

introducing a restriction site for StuI. This resulted in an ssODN as shown below with 

the 5xG linker in red and the silent mutations to introduce the StuI site in lowercase: 

GTGACAGAAGAGCTTGTTCGTTGCGCAATTCTGGGAGGAGGTGGaGGccTGAACT

CGTTGGATCTTGTCTACGTATCACCTAATTTGG 

The CRISPR injection mixture was injected into N2, and roller F1s were screened for 

the mutation by PCR using the following primers: 

AGTTGAAGTGCGCATATGTAGAA 

ACTATTGGAGCTGATGGATCGT 
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These primers produce a wildtype band of 675bp, a band at 290 if both crRNAs cut 

without repair, and a band at 309bp for both cuts with repair. 6 lines were isolated with 

the correct bands, and genomic DNA was sent for sequencing using the primers above. 

5 lines returned with the expected sequence. 

 

2.2: Methods 

 

2.2.1: Germline dissection and staining 

All animals were dissected as adults at 24 hours past the L4 stage of development, 

unless otherwise mentioned. Germlines were dissected as described previously (Arur 

et al. 2011; Arur et al. 2009; Drake et al. 2014; Suen et al. 2013). For antibody staining, 

dissected germlines were fixed with 3% paraformaldehyde with 100mM K2HPO4 (pH 

7.2) for 10 min, and post-fixed with 100% methanol at -20C for at least 30 min. Fixed 

germlines were blocked with 30% normal goat serum (NGS) at room temperature for 1 

hour, and incubated with primary antibodies diluted in 30% NGS at 4C overnight. After 

three washes, the germlines were treated with secondary antibodies diluted in 30% 

NGS at room temperature for 2 hrs. Antibody-treated germlines were then stained with 

2μg/ml DAPI (4',6-diamidine-2-phenylindole dihydrochloride) in PBST buffer (8mM 

Na2HPO4, 150mM NaCl, 2mM KH2PO4, 3mM KCl, 0.05% Tween® 20, pH 7.4) for 20 

min, washed and finally suspended in 10μl of Vectashield (anti fade agent).  

 

2.2.2: Analysis of germ cell numbers 

Cell numbers were counted using ImageJ and a custom macro I wrote. This macro 

assists the user in counting nuclei with a z-stack when nuclei are present in more than 
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one slice. Briefly, the user uses the point selection tool to mark nuclei. The macro then 

counts the cell and puts markers on the surrounding slices at the same (x, y)-

coordinates (Fig 13A). This allows the user to view which nuclei have already been 

marked on a different slice. 

 

2.2.3: EdU Labeling (Feeding) 

EdU feeding experiments were performed as described previously (Fox et al. 

2011). Briefly MG1693 was grown with 20uM EdU and seeded onto NGM plates. 

Hermaphrodites were transferred to EdU plates and incubated for either 30 minutes or 

the amount of time specified. Animals were then dissected and processed for antibody 

staining. 

 

2.2.4: Development of the EdU Labeling by Soaking 

To determine whether soaking adult hermaphroditic worms with the EdU analog 

allowed for efficient incorporation and detection, I soaked worms for 10 minutes with a 

series of EdU concentrations (50, 100, 200, 500 µM final concentrations) in M9 buffer 

with 0.1% Tween (M9T).  I found that the concentration of EdU did not affect EdU 

signal intensity or background (Figure 14), so I proceeded with a concentration of 500 

µM in the work described here.   

To compare EdU incorporation rate via soaking to the previous feeding EdU 

method, I performed the 30 minute EdU feeding assay and the 10 minute soaking 

assay in parallel and compared the percent of EdU labeled cells out of the total 

proliferative cells, or S phase index.  The S phase index measured in germline stem 

cells was similar between EdU incorporation via feeding or soaking (67%±13% and 

55%±7% respectively) (mean±SD) (Fig. 13 B, C).  The 10-minute soak seems to be a 
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more accurate representation of the S phase index, since it labeled only those cells that 

were replicating in a time window of 10 minutes. Overall, these data suggest that 

soaking the worms for 10 minutes in a solution of EdU is as effective as previous 

methods at identifying cells in S phase, and provides a rapid and efficient method of 

EdU incorporation.   

 

2.2.5: Final method used for EdU incorporation by soaking 

N2 worms were grown on nematode growth medium (NGM) plates with E. coli 

OP50 bacteria to 24 hours past mid-L4, then washed off plates into 1.5 mL eppendorf 

tubes using M9T (M9 buffer, 0.1% Tween), washed 2 times with M9T, liquid was 

removed to 100 µL, and worms were transferred to a well of a flat-bottom 48 well plate.  

50 uL of liquid was removed and 50 µL of a 1mM solution of EdU in M9T was added 

(500µM final) and incubated at room temperature in the dark for 10 or 15 minutes.  

Following incubation, worms were transferred to 1.5 mL eppendorf tubes and washed 

once with PBST, followed by either starvation, feeding, or dissection and processing as 

required. 

 

2.2.6: EdU Processing 

After animals were dissected and fixed, germlines were processed using the Click-

iT® Plus EdU Alexa Fluor® 594 Imaging Kit (ThermoFisher Scientific, cat# C10639) 

per the manufacturer’s recommendations, with a minor modification. Instead of the 

copper protectant provided with the kit (Component E), 2 mM CuSO4 was used. To 

visualize EdU incorporation at 647nm, Alexa Fluor 594 picolyl azide (Component B) 

was substituted with Alexa Fluor 647 Azide (ThermoFisher Scientific, cat# A10277) at 

5µM final concentration. 
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2.2.7: Measuring progenitor zone length, M phase and S phase indices 

Progenitor zone length was measured by counting the number of rows from the 

distal tip until either the onset of the first HIM-3 positive nucleus or the first crescent 

shaped nucleus. Each nucleus was visualized by DAPI. M phase index was calculated 

as percent of number of pH3 positive cells in the progenitor zone over the total number 

of cells in the progenitor zone. S phase index was calculated as a percent of EdU 

positive cells in the progenitor zone over the total number of cells in the progenitor 

zone. The criterion used for distinguishing the progenitors from meiotic cells was the 

absence of HIM-3.  

 

2.2.8: Measuring the adjusted division index 

Progenitor zone length was measured by counting the number of rows from the 

distal tip until either the onset of the first HIM-3 positive nucleus or the first crescent 

shaped nucleus. Each nucleus was visualized by DAPI. Germlines were stained with 

pH3 to detect dividing cells The adjusted division index (ADI) was calculated as the 

number of pH3 positive cells in the progenitor zone divided by the progenitor zone 

length in cell diameters (# of pH3 / Cell Rows).  

 

2.2.9: Larval germ cell counts 

Larval germ cell counts were performed using whole mount visualization of 

zuIs252[PGL-1::mRFP] and DAPI. Counts were performed at L1, early L2, early L3 and 

early L4 in both wildtype and two gsk-3 alleles (tm2223 and nr2047). 

 



57 

2.2.10: Allelic detection PCR 

Single worms were picked into 5µL of worm lysis buffer in a 200µL PCR tube. The 

sample was frozen at -80°C for at least 1 hour. A PCR machine was used to first lyse 

the worm by heating the tube to 65°C for 60 minutes, followed by inactivation of 

proteinase K at 95°C for 15 minutes, followed by a hold at 4°C. PCR was performed by 

adding 9 uL of “master mix” to each tube: 6uL of 2X Apex PCR mix, 1uL of each primer 

(10µM), and water for any remaining volume. PCR reaction was run for 35-40 cycles. 

PCR bands were then resolved by running the reaction on a 1-2% agarose gel in TBE 

with 2.5uL per 50mL of 10% (v/v) Ethidium Bromide. Gels were imaged on a Biorad 

GelDoc™ XR+. The following primers were used for detecting specific alleles: 

 

oxTi398 detection 

TF001  GGTGGTTCGACAGTCAAGGT 

TF003  ggaatagcgctgagacacag 

TF004  ggactccgaatggattcatc 

Detects 471bp PCR product in WT and 298bp in oxTi398  

 

ddIs30[YFP::CDK-2] detection 

TF010  aaaatgttcactgataagcacac 

GFP676F GATGGAAGCGTTCAACTAGCAGAC   

Detects 275bp PCR product in ddIs30       

    

gsk-3(nr2047) detection 

gSeq Mid B1 GAACGGAGAAGCTGATACATG  

nr2047 MuF CTACATGGCTGATAGCTTGG  
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nr2047 MuB CCGGGAAATGGCTTGATCTA 

Detects 350bp PCR product in WT and 530bp in nr2047. 

 

atm-1(gk186) detection 

atm-1(gk186) F CAAAAAATTATCACATAATACG 

atm-1(gk186) R GGAAGCGTTCTTTTCGTCATCA 

atm-1(gk186) Rint CTTCCAGTTGGCTGATGCATAC 

Detects 450bp PCR product in WT and 200bp in delFRB 

 

atl-1(tm853) detection 

atl-1(tm853) F TCGAGTTGGCTCAAAATGGGA 

atl-1(tm853) R ACTGGAAAGCAACGACCAGT 

atl-1(tm853) Rint CAGTTCCCAGACACGACTGA 

Detects 675bp PCR product in WT and 310bp in delFRB 

 

rsks-1(ok1255) detection 

rsks-1(ok1255) F GGAGATGCGGAAGCTATGCTC 

rsks-1(ok1255) R  CACCAGCTCTCGACATAGACG 

rsks-1(ok1255) Rint CCATATCCTCCCTTGCCAAGAAC 

Detects 200bp PCR product in WT and 420bp in ok1255 

 

let-363(viz27[del2196-2287ins5xG]) detection 

let-363(delFRB) F AGTTGAAGTGCGCATATGTAGAA 

let-363(delFRB) R ACTATTGGAGCTGATGGATCGT 

Detects 675bp PCR product in WT and 310bp in delFRB 
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2.2.11: PLP mounting for GFP visualization 

To assay the vizSi32[Intron cdk-2::NLS::GFP::tbb-2 3’UTR] reporter in the wt and 

gsk-3(nr2047) backgrounds, the animals were dissected in the same dish 24hrs past 

L4 in PBST and fixed for 3 min using 4% PLP (Hixson et al. 1981) with 4μg/ml DAPI. 

After washing the fixed germlines three times with 1x PBST, germlines were mounted 

on a 2% agarose pad and observed immediately. The pictures were taken on the same 

slide with identical exposure and gain for the GFP channel. 

 

2.2.12: Image acquisition and processing 

For full germlines, each gonad was captured as a montage. The focal plane was 

maintained throughout the experiment, and each image was captured with overlapping 

cell boundaries at 40x or 63x objectives (Arur et al. 2009). For analysis of distal 

regions, a z-stack was acquired through the entire distal region using sections 0.6 μm 

thick. While analysis is performed on all sections, only the top planes were used for 

figures. All epifluorescence images were taken on a Zeiss Axio Imager upright 

microscope by using AxioVs40 V4.8.2.0 SP1 micro-imaging software and a Zeiss Axio 

MRm camera. All confocal images were taken on a Zeiss LSM800 laser point scanning 

confocal using Zen 2.5 (blue edition). The montages and images were then assembled 

in Adobe Photoshop CS5.1 and processed identically. 

 

2.2.13: Quantitative real-time PCR (qRT-PCR) 

Total RNA was isolated from at least 100 dissected germlines using the miRNeasy 

Mini Kit (Qiagen). cDNA was synthesized from 500 ng of total RNA using the iScript 

cDNA Synthesis Kit (Bio-Rad Laboratories). cDNA was amplified for qRT-PCR using 
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iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) according to the 

manufacturer’s instructions. Amplified cDNA was monitored after each cycle and the 

ΔCt was measured using the CFX96 Real time system (Bio-Rad Laboratories). The 

relative expression rate was determined using the ΔCt method as described in the 

manufacturer’s instructions (Bio-Rad Laboratories). Average expression of the 

reference gene act-1 was used to control for template levels.  

 

2.2.14: RNA interference (RNAi) analysis 

RNAi was performed by feeding as described previously (Arur et al. 2009).The let-

363 RNAi clone was generated by amplification of an N-terminal fragment of let-363 

cDNA (203bp-1149bp) from an in house N2 cDNA library with the following primers: 

let-363_FP_Not1 ATGCGCGGCCGCaggctgctcgagaactcagcagatatgt 

let-363_RP_Pst1 ATGCCTGCAGtattatctgacgaacacaatcgagtatcttc 

Each primer contained a restriction enzyme cutting site for either Not1 or Pst1. The 

amplicon was digested by Not1 and Pst1 to insert into the pPD129.36 vector RNAi 

expression vector. dpl-1, efl-1, lin-35, pmk-1, pmk-2, kgb-1, jnk-1, wee-1.3, ifg-1 RNAi 

clones were sequence verified from either the Vidal ORFeome Library, or Ahringer 

RNAi library. RNAi clones were grown overnight on solid LB agar plates containing 

100μg/ml of Ampicillin and 50μg/ml of Tetracyclin at 37°C. Single colonies were then 

inoculated into LB liquid cultures containing 100μg/ml of Ampicillin and 50μg/ml of 

Tetracyclin and grown to necessary densities as described previously (Arur et al. 

2009). The cultures were then seeded onto the standard NGM agar plates 

supplemented with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and containing 

100μg/ml of Ampicillin and 50μg/ml of Tetracyclin. Fresh plates were incubated at room 

temperature for at least 3 days to allow for bacterial lawn growth. For P0 RNAi, L4 
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stage animals of the genotype listed were transferred to RNAi plates, and dissected for 

analysis at the listed time point. For P0 hatch RNAi, L4 stages animals from the listed 

genotype were allowed to lay progeny on the RNAi plates for 24 hours. Mothers were 

then destroyed and the progeny was allowed to grow. L4s were then transferred to new 

RNAi plates of the same type and incubated for the listed time. For F1 RNAi, L4 stages 

of wildtype or gsk-3 heterozygous animals were allowed to lay progeny on the RNAi 

plates for 24 hours, and transferred to a fresh RNAi plate every 24-hours for an 

additional three days. Progeny which were laid after the first day were used. Wildtype 

and gsk-3 homozygous F1 progeny from these plates were then synchronized at mid-

L4 stage and dissected for analysis at 48 hours past mid-L4.  

 

2.2.15: Western Blot analysis  

Wildtype (N2), and vizIs27 L4 hermaphrodites were hand-picked (250 for each 

lane), grown for 24 hours and then harvested for western analysis as previously 

described (Arur et al. 2011; Arur et al. 2009). The extracts were resolved on 10% SDS-

PAGE, transferred to PVDF membrane, and probed with antibodies to GFP (made in 

house, used at 1:500, (Lopez et al. 2013a)) and alpha tubulin (1:1000). Western blots 

were developed using SuperSignal West Pico Chemiluminescent Substrate (Pierce, 

Rockford, IL), on Kodak BioMax MS films.  

 

2.2.16: Hairpin Chain Reaction based fluorescence in situ hybridization (FISH) 

cdk-1 mRNA, cdk-2 mRNA, and pgl-1 mRNA FISH were performed using hairpin 

chain reaction as described (Gao et al. 2017; Choi et al. 2016; Xuan and Hsing 2014) 

except that the analysis in the present study was conducted on dissected germlines 

that were fixed in 3% Paraformaldehyde, 0.25% glutaraldehyde solution at room 
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temperature for 2 hours. The probes were obtained from Molecular Instruments. Inc 

(Berkley, CA) and manufacturer’s instructions followed.  

 

2.2.17: Starvation assays 

Worms were grown on NGM plates with E. coli OP50 bacteria to 24 hours past 

mid-L4, then washed 4 times with sterile M9T and transferred to unseeded plates. All 

starvation was performed on 100mm agarose plates (2% agarose, 0.3% NaCl, 0.5% 

cholesterol, 1mM CaCl2, 1mM MgSO4, 25mM KH2PO4 pH6) for the indicated times. If 

re-feeding was required, worms were washed off NGM plates using M9T, and plated 

onto seeded NGM plates. 

 

2.2.18: Hydroxyurea treatment  

300µL of 850M Hydroxyurea was spread onto a 10cm NGM plate seeded with 

OP50 for a final concentration of 25mM. Plates were incubated overnight. Animals 

were picked onto the hydroxyurea plate and incubated for 12 hours.  

 

2.2.19: TEM microscopy 

Samples were fixed with a solution containing 3% glutaraldehyde plus 2% 

paraformaldehyde in 0.1 M cacodylate buffer, pH 7.3, then washed in 0.1 M sodium 

cacodylate buffer and treated with 0.1% Millipore-filtered cacodylate buffered tannic 

acid, postfixed with 1% buffered osmium, and stained en bloc with 1% Millipore-filtered 

uranyl acetate. The samples were dehydrated in increasing concentrations of ethanol, 

infiltrated, and embedded in LX-112 medium. The samples were polymerized in a 60 C 

oven for approximately 3 days. Ultrathin sections were cut in a Leica Ultracut 

microtome (Leica, Deerfield, IL), stained with uranyl acetate and lead citrate in a Leica 
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EM Stainer, and examined in a JEM 1010 transmission electron microscope (JEOL, 

USA, Inc., Peabody, MA) at an accelerating voltage of 80 kV.  Digital images were 

obtained using AMT Imaging System (Advanced Microscopy Techniques Corp, 

Danvers, MA). 
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Figure 13: Comparison of feeding and soaking EdU methods 

Analysis of S phase index. (A) Dissected germline oriented with distal tip to the left.  

Animal was soaked in EdU for 10min followed by dissection and staining for DAPI (top) 

and EdU (bottom). Cells are numbered and labeled using the ImageJ macro. Scale bar: 

20µm. (B) S phase index measured in a 30 minute feeding EdU pulse vs. in a 10 

minute soaking EdU pulse.  



65 

 

 

 

Figure 14: Soaking in higher concentrations of EdU does not affect background 

Dissected germlines from wildtype animals after exposure to EdU by soaking. 

Concentration of EdU is displayed for each panel. Distal tip is outlined with a dashed 

line and oriented to the left. Stained with DAPI (white), EdU (green), pH3 (red), and 

HIM-3 (blue).  
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CHAPTER 3: gsk-3 TRANSCRIPTIONALLY REGULATES cdk-2 TO PROMOTE G1 

AND S PHASE PROGRESSION TO PROMOTE GSC PROLIFERATION   
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Chapter 3: gsk-3 transcriptionally regulates cdk-2 to promote G1-S phase of the 

cell cycle and GSC proliferation 

 

Some of the contents of this chapter are reproduced/adapted with permission from 

“Furuta et al. 2018”. Permission is from Development 

(http://www.biologists.com/development).  

 

Full citation: 

* Furuta, T., * H. J. Joo, * K. A. Trimmer, S. Y. Chen, and S. Arur. 2018. 'GSK-3 

promotes S-phase entry and progression in C. elegans germline stem cells to maintain 

tissue output', Development, 145, doi: 10.1242/dev.161042 

* Equal contribution, alphabetically ordered 

 

3.1: Introduction 

Cells proliferate and regulate tissue development or turnover in response to 

environmental and metabolic fluxes. Several key metabolic or environmental factors 

and pathways have been identified (Chapter 1.3) that regulate proliferation. In this 

chapter, I will focus on the role of gsk-3 in regulating cell proliferation of the germline 

stem cells to maintain a pool of proliferating stem cells. 

Gsk3β plays many roles in response to both environmental and cell-cell cues as 

discussed previously (Chapter 1.3.4). Because Gsk3β is a kinase, it both regulates 

downstream substrates for its function and is often regulated by environmental and 

physiological inputs. In collaboration with two other members of the lab, we uncovered 

a role for gsk-3 in regulating plasticity of the C. elegans GSCs in response to nutritional 

and metabolite changes.  

http://www.biologists.com/development
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GSK-3 was identified as a substrate of MPK-1 signaling during germline 

development (Arur et al., 2009). To understand its function in germline development, 

we acquired two deletion alleles (nr2047 and tm2223). The nr2047 allele carries a 

deletion with breakpoints located in introns 2 and 3, completely removing the 3rd exon; 

tm2223 allele carries a deletion removing a portion of exon 3. Exon 3 houses the 

kinase domain, thus both of these alleles remove a similar portion of the kinase domain 

and result in frameshifts leading to truncated proteins (Figure 15). Because the two 

deletion alleles remove a significant portion of the kinase domain, we hypothesize that 

these are strong loss of function alleles.  

Each of the two gsk-3 alleles results in viable adult animals when segregated from 

a heterozygous parent. The adult homozygous animals are sterile, and the few 

embryos laid born die early due to polarity defects (Schlesinger et al. 1999). While 

assaying the function of gsk-3 in relation to the let-60/mpk-1 signaling pathway we 

noticed a dramatic phenotype in the adult germlines from homozygous gsk-3 alleles: 

the pool of GSCs in the adult germline was dramatically reduced. Thus, we set out to 

determine the role of gsk-3 in regulating GSC function. 
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Figure 15: gsk-3 mutant allele structure 

(A) Stick diagram of the gsk-3 gene with the exons and kinase domain labeled. 

Deletion break points for the nr2047 and tm2223 alleles are displayed. (B) Stick 

diagram of the gsk-3 mRNA with exons and kinase domain labeled. Arrows with “A” 

label the active site residues which transfer a phosphate to the substrate (K65, E77, 

D161, and D180). Arrows with “B” label residues which bind to primed substrates (R76, 

R160, K185). The arrow with “T” labels the phosphorylation site on the t-loop which 

opens up the catalytic site.  
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3.2: gsk-3 Regulates GSC Proliferation in a Germline Autonomous and 

Kinase-dependent Manner during Larval and Adult Development 

The adult wildtype C. elegans germline harbors a population of ~200-250 GSCs 

maintained by Notch signaling in the progenitor zone (Berry, Westlund, and Schedl 

1997; Fox and Schedl 2015; Fox et al. 2011) (Figure 3). As the GSCs move away from 

the distal tip cell (DTC) (Figure 3) they differentiate and enter meiosis at ~20-22 cell 

diameters, in both larval (specifically the last stage of larval development, the larval 

stage 4 or L4) and adult germlines. However, in the gsk-3 mutant alleles (both nr2047 

and tm2333) the progenitor region contained only ~90 GSCs, which is significantly 

fewer than the ~200-250 found in wildtype (p<0.001) (Figure 16A, 16B). To determine 

whether the lower number of GSCs in the adult germline was due to a defect in the 

early expansion of the GSC population, or lack of maintenance of an established adult 

GSC population, we analyzed larval developing germlines. The number of GSCs in 

gsk-3 mutants was significantly reduced as early as L3, with 14 germ cells compared to 

the wildtype ~34 germ cells (Table T2). These data suggest that the defect in gsk-3 

mutant GSCs may occur at the stage of stem cell expansion, which occurs during larval 

development. By L4 stage and into adulthood, the gsk-3 mutant reached and 

maintained a population of ~90 GSCs throughout adulthood (Figure 16D). Together, 

these data suggest that the GSCs fail to expand in number in the gsk-3 mutants during 

early larval stages, and the number established during larval development is then 

maintained into adulthood.  

During larval development, several environmental and pheromone pathways 

regulate germline development, whose signals are relayed to the germ cells regulated 

through the sensory neurons (Reviewed in Korta and Hubbard 2010). To test whether 

the GSC defect was due to a germline autonomous function of gsk-3, we generated 
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germline-specific GFP::GSK-3 transgenes driven by either a pie-1 or a mex-5 germline 

specific promoter (Merritt et al. 2008) and regulated by a tbb-1 3’ UTR for even 

expression. The transgenes were each integrated at a single site in the C. elegans 

genome, and both constructs drive wildtype GSK-3 in the germline (Figure 17A). 

Expression of a germline driven GFP::GSK-3 at a single copy knock-in localizes to 

nuclear and cytoplasmic compartments in the progenitor zone (Figure 17B). This 

transgene is expressed only in germ cells and so did not rescue any of the somatic 

defects of the gsk-3 mutants, such as small size and uncoordinated movements, as 

would be expected from the restricted promoter activity (Gleason, Szyleyko, and 

Eisenmann 2006; Maduro et al. 2001). Expression of the transgene completely rescued 

the GSC defect in gsk-3 mutants (Figure 17C-E), suggesting that gsk-3 functions 

autonomously in the germline to regulate the expansion of the GSC population. 

To determine whether the role of gsk-3 in regulating GSC expansion was 

dependent on its kinase activity, we mutated the kinase core residues (K65, E77, D161 

and D180) to alanine to generate a kinase dead GSK-3 transgene (Doble and 

Woodgett 2003). The resulting transgene, GFP::GSK-3 (K65A, E77A, D161A and 

D180A) which we refer to as GFP::GSK-3 kinase-dead (GFP::GSK-3 KD), is driven by 

the same germline specific promoter used to express the wildtype GFP::GSK-3 above. 

While GFP::GSK-3 and GFP::GSK-3 KD are expressed at similar levels and in similar 

cellular compartments in the GSCs (Figure 17B, 18A), GSK-3 KD did not rescue the 

GSC defects (Figure 18B). These data together demonstrate that gsk-3 functions 

germline-autonomously in a kinase-dependent manner to regulate GSC expansion. 

To determine whether the defects in GSCs were indeed due to lack of stem cell 

expansion vs increased differentiation of GSC population which would artificially mimic 

a GSC expansion defect, we tested whether gsk-3 mutant GSCs have increased 
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differentiation or loss of self-renewal. The length of the progenitor zone can be used to 

determine the balance of self-renewal with differentiation as discussed previously 

(Chapter 1.1.5). If the length is 20-22 cell diameters, there is likely no change in the 

rate of differentiation, however, if the length is increased, it would suggest increased 

self-renewal at the expense of differentiation. The length of the progenitor zone was 

maintained at 20-22 cell diameters from the DTC in both wildtype and gsk-3 mutants, 

suggesting that the defect in GSC population in gsk-3 mutants is not due to altered 

differentiation (Figure 16C, 16E, 17C, 17E).  

We next investigated whether the gsk-3 mutant GSCs remained responsive to 

Notch signaling for self-renewal. To determine this, we assayed GSCs in conditions 

with decreased or increased Notch receptor (glp-1) activity by utilizing the glp-1 

temperature-sensitive alleles bn18ts (reduction of function) and ar202gf (gain of 

function). Both of these alleles behave similarly to wildtype at the permissive 

temperature of 15°C, but at the restrictive temperature of 25°C, GSCs will exclusively 

differentiate (bn18ts) or self-renew (ar202gf) (Figure 19) (Dorsett, Westlund, and 

Schedl 2009; Kodoyianni, Maine, and Kimble 1992; Pepper, Killian, and Hubbard 2003; 

Berry, Westlund, and Schedl 1997). The animals were shifted to the restrictive 

temperature as embryos to assay their respective phenotypes. The wildtype or gsk-

3(nr2047) mutants do not display any temperature-sensitive behavior and at all 

temperatures the GSCs are maintained at numbers similar to those found previously 

(Figure 19A, B). When glp-1(bn18ts) and gsk-3(nr2047);glp-1(bn18ts) mutants are 

assayed at the permissive temperature, germlines produce both GSCs and meiotic 

cells (Figure  19C). At the restrictive temperature, however, both the glp-1(bn18ts) and 

the gsk-3(nr2047);glp-1(bn18ts) double mutant results in loss of the GSC population 
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with only sperm produced in 100% of adult germlines (Figure 19D). These data suggest 

that the gsk-3 mutant GSCs require glp-1 activity to self-renew. 

Next, to determine whether the gsk-3 mutant GSCs self-renew in response to 

increased Notch signaling, we investigated the glp-1(ar202gf) gain of function allele. At 

the permissive temperature of 15oC, glp-1(ar202gf) mutant and the 

gsk-3(nr2047);glp-1(ar202gf) mutants maintain GSCs and meiotic cells in adults(Figure 

19E). In contrast, shifting glp-1(ar202gf) or gsk-3(nr2047);glp-1(ar202gf) mutants 

(again as embryos) to the restrictive temperature of 25°C results in tumorous germlines 

as the GSCs self-renew at the expense of differentiation (Figure 19F). The 

gsk-3(nr2047);glp-1(ar202gf) mutant tumors, however, appear “skinnier” relative to 

glp-1(ar202gf) single mutant tumor (Figure 19E, 19F). This indicates that glp-1 activity 

is sufficient to drive self-renewal at the expense of differentiation in gsk-3 mutants. 

Together, these data demonstrate that responsiveness to glp-1 signaling was not 

affected in gsk-3 mutant GSCs.  
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Figure 16: gsk-3 mutants maintain fewer GSCs 

(A) Dissected germlines from adult (24 hours past L4) wildtype (top) and 

gsk-3(tm2223) (middle), and gsk-3(nr2047) labeled with REC-8 (green, GSCs) and 

DAPI (white, DNA). (B) Graph displaying the number of GSCs in wildtype, 

gsk-3(tm2223), and gsk-3(nr2047) at 24 hours past L4. (C) Graph displaying the 

number of cell diameters between the distal tip cell and the transition zone in wildtype, 

gsk-3(tm2223), and gsk-3(nr2047) at 24 hours past L4. (D) Graph displaying the total 

number of GSCs in wildtype and gsk-3(nr2047) mutant animals on a time course from 

mid-L4 until 60 hours after mid-L4. (E) Graph displaying the number of cell diameters 

between the distal tip cell and the transition zone in wildtype and gsk-3(nr2047) mutant 

animals on a time course from mid-L4 until 60 hours after mid-L4. In B and C, error 

bars indicate mean ± SD. **P<0.001, and n.s., not significant.  
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Table 2: gsk-3 promotes developmental germ cell expansion  

Whole mount germ cell counts at larval stages in wildtype and two gsk-3 mutant 

alleles (nr2047 and tm2223) utilizing a PGL-1::mCherry transgene to identify germ 

cells. gsk-3 mutants (nr2047 and tm2223) contain fewer germ cells than wildtype 

throughout development.  Counts are presented as mean ± SD. 
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Figure 17: The gsk-3 mutant GSC defect is germline autonomous 

(A, B) Transgenic expression of a germline driven GFP::GSK-3(WT) AUM2026 

(vizIs27[Ppie-1::GFP::GSK-3]) is detected by western blot (A) and immunofluorescence 

(B). (A) Western blot analysis was performed using an anti-GFP antibody on WT and 

gsk-3 (nr2047);vizIs27[Ppie-1::GFP::GSK-3(WT)] whole worm extracts. A 75kDa band 

corresponding to GFP::GSK-3 was detected in the gsk-3(nr2047);[Ppie-1::GFP::GSK-

3(WT)] worms, but not in wildtype (N2). anti-Tubulin was used as an internal control. 

(B) Dissected germline from adult (24 hours past L4) GFP::GSK-3(WT) AUM2026 

(vizIs27[Ppie-1::GFP::GSK-3]) labeled for GFP (Shah et al.). (C) Dissected germlines 

from adult (24 hours past L4) wildtype (top), gsk-3(nr2047) (middle), and gsk-

3(nr2047);vizIs27[Ppie-1::GFP::GSK-3(WT)] (bottom) labeled with HIM-3 (green, 

GSCs) and DAPI (white, DNA). (D) Graph displaying the number of GSCs in wildtype, 

gsk-3(nr2047), and gsk-3(nr2047);vizIs27[Ppie-1::GFP::GSK-3(WT)]. (E) Graph 

displaying the length of the progenitor zone in wildtype, gsk-3(nr2047), and gsk-

3(nr2047);vizIs27[Ppie-1::GFP::GSK-3(WT)]. All images are oriented with distal tip 

(asterisk) to the left and the end of the progenitor zone marked by a solid line. Scale 

bar: 40µm. 
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Figure 18: The gsk-3 mutant GSC defect is kinase dependent 

(A) Expression of a germline driven kinase dead GFP::GSK-3 transgene 

(vizSi20[Pmex-5::GFP::GSK-3(KD)]) at a single copy knock-in localizes to nuclear and 

cytoplasmic compartments in the progenitor zone. DAPI (white) labels the DNA, while 

GFP (green) labels transgene expression. (B) Wildtype GFP::GSK-3 (vizSi44) rescues 

the GSC number (B, middle) while the kinase dead GSP::GSK-3 does not (B, bottom). 

DAPI (white) labels the DNA, while HIM-3 (green) labels meiotic cells. Images are 

oriented with distal tip (asterisk) to the left and the end of the progenitor zone marked 

by a solid line. Scale bars: 40µm. 
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Figure 19: Self-renewal through Notch Signaling is unaffected in gsk-3 mutants 

Dissected germlines from adult (24 hours past L4) animals of indicated genotypes 

labeled with DAPI (white, DNA) and HIM-3 (green, meiotic cells) are oriented from left 

(progenitor zone) to right (oocytes). The left panel shows micrographs of germlines 

from animals maintained at permissive temperature of 15°C (A, C, E); the right panel 

displays adult germlines from animals shifted to the restrictive temperature of 25°C as 

embryos (B, D, F). (A, B) N2s and gsk-3(nr2047) mutants are displayed. (C, D) glp-

1(bn18ts) and gsk-3(nr2047);glp-1(bn18ts) mutants are displayed. (E, F) glp-1(ar202gf) 

and gsk-3(nr2047);glp-1(ar202gf) mutants are displayed. Each experiment was 

performed three times, and each time an N of 30 germlines was assayed. HIM-3 

staining is outlined with a dashed line. All images are oriented with distal tip (asterisk) 

to the left and the end of the progenitor zone marked by a solid line. Scale bars: 20µm 

(D), and 50µm (A-C,E,F). 
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3.3: gsk-3 Mutant GSCs Enter and Progress through S Phase Inefficiently 

We had identified the defect in early larval development in gsk-3 mutants as a 

failure of GSCs to expand. During early larval development, the GSCs are undergoing 

a rapid cell cycle to expand into the niche. As neither differentiation nor self-renewal 

was affected in gsk-3 mutant GSCs, we investigated the cell cycle parameters of gsk-3 

GSCs. Cell cycle parameters were investigated via immunofluorescence analysis on 

dissected germlines using phospho-histone H3 (pH3) labeling to mark M phase and 

EdU incorporation to mark S phase. The gsk-3 mutant GSCs labeled with pH3, 

indicating that they entered a productive M phase (Figure 20A, B). Mitotic index, which 

is the number of pH3 positive cells over the total number of cells, is used to measure 

the frequency of germ cell divisions. There was no significant difference in mitotic index 

found between wildtype and gsk-3 mutant GSCs (Figure 20C). In contrast, S phase 

was markedly altered in gsk-3 mutant GSCs. In wildtype animals, 100% of the 

germlines incorporated EdU with an S phase index (assayed by number of GSCs that 

are EdU positive divided by the total number of GSCs) of ~ 55% in adults, and ~67% in 

L4’s (Figure 20A, 20B, 20D) on a 15-minute EdU pulse. In gsk-3 mutants however, 

~90% of gsk-3 mutant germlines failed to incorporate detectable EdU both as adults 

(Figure 20A) and L4s (Figure 20B), and of those germlines that did, the S phase index 

was only ~6% (Figure 20D). These data suggest that cell cycle progression is affected 

in GSCs with a defect in S phase. 

These results could potentially be due to the fact that the gsk-3 mutant GSCs has a 

longer S phase of the cell cycle, or were more synchronous relative to wildtype. To 

determine whether the lack of EdU incorporation was due to increased length of each 

cell cycle phase we fed the worms the EdU bacteria for longer times of 1, 3, and 5 

hours. Wildtype GSCs incorporate EdU label robustly after 1 hour of feeding with EdU 
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bacteria (Figure 21). By 5 hours of continuous labeling, ~90% of the cells in the 

progenitor zone are labeled with EdU (Figure 21). Loss of gsk-3, however, results in 

extremely poor EdU incorporation even after 1, 3, or 5 hours of continuous feeding, 

suggesting a severe defect in S phase entry or replication rate (Figure 21). It is also 

likely, however, that the lack of EdU incorporation could be a reflection of low EdU 

accessibility itself due to low EdU bacteria uptake, which occurs when mutants cannot 

feed well, or decreased bacterial digestion. 

To test whether the lack of EdU incorporation was a reflection of S phase defects 

or defects in feeding we assayed mutants that have a low pharyngeal pumping rate and 

thus feed at a lower rate, eat-2 mutants. The rate of pharyngeal pumping, used as a 

measure of feeding, in wildtype animals is ~280 pumps per minute while eat-2 mutants 

eat at a rate of ~80 pumps per minute (Figure 22A). Feeding EdU bacteria to eat-2 

mutants for 30 minutes resulted in an EdU intensity similar to wildtype (Figure 22B). In 

contrast, gsk-3 mutants, which eat at an intermediate rate of ~200 pumps per minute, 

had weak EdU intensity (Figure 22). Since the pumping rate of eat-2 mutants was lower 

than gsk-3 mutants or wildtype, and they incorporated EdU efficiently, low bacterial 

intake was likely not the cause of the EdU incorporation defect. 

We next investigated whether the lack of EdU incorporation in gsk-3 mutant GSCs 

was due to a decreased rate of bacterial digestion in gsk-3 mutants resulting in rapid 

degradation of the EdU label. To test this, I developed a method to incorporate EdU 

without using bacteria. Instead of indirect EdU exposure, I soaked the worms in a 

200µM solution of EdU for 10 minutes and dissected immediately after EdU incubation. 

Upon 10 minutes of EdU soaking, wildtype GSCs incorporated EdU efficiently and 

100% of the germlines were labeled at ~67% S phase index (Figure 23). However, EdU 

incorporation was still very low in the gsk-3 mutant GSCs (Figure 23). This data 
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demonstrates that direct EdU exposure is insufficient to recover EdU incorporation, 

suggesting that the EdU incorporation defect is not due to the feeding method of EdU 

incorporation. As a majority of gsk-3 mutant germlines failed to incorporate detectable 

EdU, it is likely that GSCs in gsk-3 mutants incorporate fewer molecules of EdU per 

GSC compared to wildtype GSCs, suggesting a defect in S phase progression. In 

addition, the lower S phase index in those gsk-3 mutants with visible incorporation hints 

at an S phase entry defect. Therefore, we next tested whether there were any changes 

to S phase entry in gsk-3 mutants.  

To test whether the GSCs in gsk-3 mutant animals lengthened G1 due to inefficient 

S phase entry, we assayed for subcellular GFP::MCM-3 (gtIs64) localization 

(Sonneville et al. 2012). Mcm3 is a component of the DNA licensing complex that 

accumulates in the nucleus in early-mid G1 in vertebrate cultured cells, and is 

phosphorylated by Cdk2 and re-localized to the cytoplasm in late G1 or early S to 

prevent re-replication (Li et al. 2011); thus, nuclear localization of Mcm3 indicates 

nuclei in G1 (Blow 1993; Chong and Blow 1996). To test whether GFP::MCM-3 had 

cellular localization dynamics in C. elegans GSCs similar to vertebrate cultured cells, 

we depleted cdk-2 in GFP::MCM-3 animals and determined its localization. As 

previously described (Fox et al. 2011), depletion of cdk-2 results in a G1 cell cycle 

arrest wherein all cells are negative for EdU (S phase) and pH3 (M phase) (Figure 

24A). GFP::MCM-3 localizes to GSC nuclei upon depletion of cdk-2 (Figure 24B) 

indicating that GFP::MCM-3 changed cellular localization in GSCs in response to the 

loss of cdk-2, and by extension G1 arrest, as would be predicted from the vertebrate 

systems. Additionally, GFP::MCM-3 was excluded from meiotic germ cell nuclei in 

animals treated with cdk-2 RNAi (Figure 24B), indicating that the reporter changed 

localization based on the type of cell cycle. Wildtype germlines displayed cytoplasmic 
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GFP::MCM-3 in both GSCs and meiotic cells (Figure 24B) which is consistent with 

previous reports that the GSCs have a very short (seemingly absent) G1. In contrast, 

GFP::MCM-3 was nuclear in gsk-3 mutant GSCs (Figure 24B) in 56% + 3% of the cells 

and was cytoplasmic when the cells entered meiosis (Figure 24B). Taken together, 

these data suggest that gsk-3 mutant GSCs are in G1 for a longer period of time 

relative to wildtype GSCs due to inefficient entry into S phase in addition to the 

inefficient S phase progression found earlier. Furthermore, increased nuclear 

GFP::MCM-3 also suggests that CDK-2 activity may be affected in gsk-3 mutants, 

which could result in both of these observed defects. 
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Figure 20: gsk-3 mutant GSCs cycle but do not incorporate EdU 

Dissected germlines from wildtype and gsk-3 mutants at from adult (24 hours past 

mid-L4) (A) and mid-L4 (B). The progenitor region is oriented with the DTC (*) on the 

left and are labeled for Nuclei (DAPI, white) pH3 (red) and EdU (green). Pictures were 

taken at the same gain and exposure, and processed in the same tube to compare the 

level of EdU incorporation. (C) Mitotic index of wildtype and gsk-3 mutant GSCs over a 

time course from mid-L4 to 60 hours past mid-L4 (B) S phase index of those germlines 

in which EdU labeling was detected from wildtype and gsk-3 mutant GSCs. Each 

experiment in (A, B) was performed eight times, and 30-40 germlines were assayed 

each time. Error bars represent the standard deviation obtained from at least 30 

germlines each from three independent experiments. End of each progenitor zone is 

labeled with a solid line. Scale bar: 40µm. 
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Figure 21: gsk-3 mutant GSCs do not incorporate EdU after long pulses 

Wildtype and gsk-3(nr2047) mutant worms were fed with EdU bacteria for 1 hour, 3 

hours or 5 hours, and processed for detection of EdU incorporation. DAPI (white) labels 

DNA, and EdU (green) labels actively replicating S phase cells. Distal tip of each 

germline is labeled with an asterisk. Proximal end of each progenitor zone is labeled 

with a solid line. Scale bar: 40μm.  
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Figure 22: EdU incorporation is not dependent on the rate of bacterial eating 

All microscopy images in this figure represent the progenitor region of a dissected 

hermaphroditic adult germline with distal tip on the left of the photograph. DAPI marks 

DNA, and EdU labels actively replicating S phase cells. (A) eat-2 mutants are defective 

in pharyngeal pumping, and thus a model for dietary restriction. gsk-3 mutants display 

pharyngeal pumping rate less than wildtype animals, but significantly higher than eat-2 

mutant. Values indicate the mean ± S.D. *P<0.05, **P<0.001. n= number of animals 

counted. (B) Dissected germlines from the genotypes listed. DAPI (white) labels DNA, 

and EdU (green) labels actively replicating S phase cells. Distal tip of each germline is 

labeled with an asterisk. Proximal end of each progenitor zone is labeled with a solid 

line.  Scale bar: 40 μm. 
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Figure 23: EdU soaking does not rescue EdU incorporation in gsk-3 mutants 

Dissected germlines from wildtype and gsk-3 mutants after soaking in 200μM EdU 

for 15 minutes. DAPI (white) labels DNA, and EdU (green) labels actively replicating S 

phase cells. Distal tip of each germline is labeled with an asterisk. Proximal end of each 

progenitor zone is labeled with a solid line. Scale bar: 40μm. 
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Figure 24: gsk-3 mutant GSCs retain nuclear MCM-3 

(A) Dissected germline from a cdk-2 (RNAi) animal with distal end (asterisk) 

pointing left. DNA in white (DAPI), EdU in red (S phase), and pH3 in yellow (M phase). 

EdU and pH3 labeled channels are outlined with a dashed line.  (B) Dissected germline 

from wildtype, cdk-2 (RNAi), and a gsk-3(nr2047) mutant with distal end (asterisk) 

pointing left. DNA in white (DAPI) and MCM-3 (GFP) in green. The end of the 

progenitor zone is labeled with a white line. Scale bar: 40µm. 
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3.4: gsk-3 Promotes cdk-2 Transcription to Regulate a Rapid G1/S Transition 

To assess whether there were any changes in CDK-2 activity, we assayed 

processes and proteins which can inhibit its activity such as DNA licensing and CDK 

inhibitor proteins. DNA licensing is required for DNA replication as it provides starting 

points for the DNA polymerases. The act of DNA licensing activates Cdk2 in 

mammalian cell culture, preventing progress from G1 to S phase in its absence (Nevis, 

Cordeiro-Stone, and Cook 2009). Therefore, if C. elegans GSCs are regulated 

similarly, loss of a DNA licensing factor may result in difficulty with entry and 

progression through the S phase. To test this hypothesis, we reduced the expression of 

five DNA licensing factors (Table 3) by RNAi in both wildtype and gsk-3 mutant 

germlines and assayed for evidence of an arrest by cellular “fried egg” morphology 

(DAPI), characteristic of cell cycle arrest in GSCs. While GSCs in wildtype animals with 

control RNAi (GFP) appeared normal and displayed no signs of cell cycle arrest, GSCs 

in wildtype animals upon RNAi of components which recognize DNA licensing sites 

presented with DNA fragmentation and re-replication defects (Figure 25A). Surprisingly, 

however, GSCs from gsk-3 mutants upon RNAi of the licensing complex components 

did not result in fragmentation or re-replication defects. If gsk-3 was down-regulating 

one of these factors, RNAi of that factor should appear similar to gsk-3 mutants. 

However, since the gsk-3 mutants did not show a similar phenotype, and were able to 

rescue the DNA fragmentation and re-replication phenotypes of DNA licensing factor 

reduction, it is unlikely that gsk-3 mutants reduce DNA licensing factors.  

To next determine whether CDK inhibitors and negative regulators were 

responsible for the gsk-3 mutant GSC phenotypes, we investigated two negative 

regulators of cdk-2, pRb (lin-35) and p57 (cki-2). lin-35 is a negative regulator of mid-

G1 phase of the somatic cell cycles in C. elegans (Boxem and van den Heuvel 2001) 



92 

and negatively regulates transcription of Cdk2 through inhibition of E2Fs in mammalian 

cell culture (DeGregori et al. 1997). cki-2 is thought to negatively regulate late G1 

phase in proliferative cells of the soma (Buck, Chiu, and Saito 2009; Kalchhauser et al. 

2011) and negatively regulates Cdk2-Cyclin E activity in mammalian cell culture (Lee, 

Reynisdottir, and Massague 1995). If GSCs are regulated similarly to mammals and C. 

elegans somatic cells, increased expression of either inhibitor should decrease cdk-2 

activity. To test the hypothesis that lin-35 or cki-2 affects the progression of G1 into S 

phase, we depleted lin-35 via RNAi and analyzed gsk-3;cki-2 double mutant germlines. 

Neither loss of lin-35 nor loss of cki-2 rescued the gsk-3 mutant GSC phenotype, 

although there was a slight decrease in the progenitor region length of wildtype 

germline upon of loss of cki-2 (Figure 26). This suggests that the gsk-3 mutant GSC 

phenotype is not due to increased expression of lin-35 or cki-2. 

Since we did not observe any altered expression of cdk-2 regulators that may 

affect gsk-3 GSCs, we assayed expression of the cdk-2 and cye-1 themselves. cdk-2 

and cye-1 are expressed in all wildtype GSCs and their loss results in a cell cycle arrest 

in all of the GSCs suggesting that CDK-2 and CYE-1 are active in all of the GSCs, 

irrespective of the phase of the cell cycle (Fox et al. 2011) (Figure 27, 28). Thus, to 

determine whether CDK-2 function was reduced in gsk-3 mutant germlines and thus 

responsible for the GSC defects, we assayed for CYE-1 and CDK-2 expression.  

We observed that CYE-1 was still expressed in gsk-3 mutant germlines albeit at a 

slightly lower in gsk-3 mutant germlines (Figure 27). This suggested that CYE-1 may 

not be regulated by gsk-3, or responsible for the gsk-3 GSC phenotype. Since no CDK-

2 antibody exists, we obtained a transgenic YFP::CDK-2 (Cowan and Hyman 2006) 

driven by the germline-specific pie-1 promoter and expressed it in the gsk-3 mutant 

background to assess its localization. Surprisingly, the transgenic expression of 
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YFP::CDK-2 in gsk-3 mutant background rescued the gsk-3 GSC numbers (Figure 

28A-E) and S phase onset and progression (Figure 28A-D, 28F). Additionally, CDK-2 is 

expressed throughout the GSCs in both wildtype and gsk-3 mutant cells in this context 

(Figure 28G, 28H). Because pie-1 driven YFP::CDK-2 rescued the gsk-3 mutant GSC 

defects and localized to the gsk-3 mutant GSCs in a manner similar to wildtype, it 

suggested that the defects in gsk-3 mutants are driven by decreased CDK-2 function 

and that the relevant regulation of CDK-2 via GSK-3 was not through post-translational 

mechanisms, such as regulating CDK-2 protein degradation or activity through 

phosphorylation. Together, these data demonstrate that gsk-3 mutant GSCs enter and 

progress through S phase slowly due to lower CDK-2 accumulation, likely at the 

transcriptional level.  

To determine whether GSK-3 regulates CDK-2 levels transcriptionally in the GSCs, 

we assayed for CDK-2 mRNA in dissected germlines from gsk-3 and wildtype animals, 

using qRT-PCR. CDK-2 mRNA levels were lower by 10-fold in gsk-3 mutant germlines 

compared to wildtype (Figure 29A), and were restored in gsk-3 mutant animals carrying 

the transgenic YFP::CDK-2 (Figure 29A). To determine whether the lower transcript 

level of CDK-2 in gsk-3 mutant germlines was specific to the GSC population, we 

performed single molecule hairpin chain reaction FISH (Shah et al. 2016) with CDK-2 

mRNA probes in wildtype and gsk-3 mutant germlines. CDK-2 mRNA accumulates 

throughout the progenitor zone, predominantly in the cytoplasm, and is specific to cdk-2 

(Figure 29B, 29D). However, in gsk-3 mutant germlines cdk-2 mRNA levels are much 

lower relative to wildtype germlines (Figure 29A, 29C). These data demonstrate that 

GSK-3 promotes cdk-2 mRNA transcription in wildtype GSCs and reduction of CDK-2 

expression in gsk-3 mutants leads to defects in S phase entry and progression. 
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To directly assess whether gsk-3 regulates the transcription of cdk-2, we designed 

a transcriptional reporter for cdk-2. However, a perusal of the cdk-2 gene structure on 

Wormbase (ver WS258), revealed that intron 1, rather than the promoter annotated by 

Wormbase (ver WS258), contained multiple transcription factor and RNA polymerase II 

binding sites as well as SL1 and SL2 splice sites (Wormbase WS258) (Figure 30). 

These observations suggested that intron 1, rather than the promoter, may drive cdk-2 

expression. Thus, we generated two distinct transgenes: one with the Wormbase 

predicted 2Kb promoter driving GFP (cdk-2[Pr]::GFP), and one containing the intron 1 

driving GFP (cdk-2[In1]::GFP) (Figure 31A, 31B). As hypothesized, we observed that 

cdk-2[Pr]::GFP did not express in the germline, suggesting that the predicted promoter 

does not drive cdk-2 expression (vizSi34, data not shown, Wormbase WS258). Instead, 

cdk-2[In1]::GFP was expressed throughout the germline (Figure 31C), suggesting that 

intron 1 drives cdk-2 expression in the germline. In comparison to wildtype, expression 

of cdk-2[In1]::GFP in gsk-3 mutants resulted in lower GFP accumulation of the reporter 

in the progenitor zone, but not in oocytes (Figure 13C). Taken together, these data 

demonstrate that gsk-3 regulates cdk-2 transcription in the GSCs.  
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Table T3: DNA licensing factor homologs in C. elegans 

Human DNA licensing factors are listed along with their C. elegans homologs and 

a sequence identifier. Highlighted sequences were tested by RNAi. 
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Figure 25: DNA licensing factors do not contribute to gsk-3 mutant GSC defects 

All microscopy images in this figure display the progenitor region of a dissected 

germline after control RNAi (gfp) or RNAi of 5 members of the origin recognition and 

licensing complex in wildtype (A) and gsk-3 mutants (B). Distal tip of the germline 

(asterisk) is on the left of the photograph. DAPI (white) enables the visualization of 

DNA, while HIM-3 (Shah et al.) enables visualization of meiotic cells. 
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Figure 26: cdk-2 inhibitors do not contribute to the gsk-3 mutant GSC defects 

(A, B) Progenitor regions of a dissected germline after control RNAi and RNAi of 

cdk-2 and lin-35 in wildtype (A) and gsk-3 mutants (B). (C, D) Progenitor regions of a 

dissected germline from cki-2(ok2105) single and gsk-3(nr2047);cki-2(ok2105) double 

mutants. Distal tip of the germline (asterisk) is on the left of the photograph. DAPI 

(white) enables the visualization of DNA, while HIM-3 (Shah et al.) enables 

visualization of meiotic cells. Scale bar: 40µm 
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Figure 27: CYE-1 protein is expressed in gsk-3 mutant GSCs 

Dissected germlines from wildtype and gsk-3(nr2047) mutant animals, oriented 

with distal end (*) to the left. Anti-cye-1 antibody labels Cyclin E in all the GSCs evenly 

in both wildtype and gsk-3 mutant germlines, and is specific to cye-1 RNAi. End of 

progenitor zone is labeled with a white line.  Scale bar: 40µm. 
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Figure 28: CDK-2 overexpression rescues the gsk-3 mutant GSC defect  

Dissected germlines displaying the progenitor zone oriented with the DTC to the 

left in all photographs in this figure. (A-D) Transgenic expression of YFP::CDK-2 

(ddIs30, via Ppie-1 promoter) in gsk-3 mutant germlines results in EdU incorporation 

upon a 10 minute EdU pulse (D), gsk-3 single mutants incorporate very low or no EdU 

with the same treatment (B). (E-F) pie-1 driven YFP::CDK-2 rescues the S phase index 

(E) and the total number of GSCs of gsk-3 mutant germlines (F). (G-H) YFP::CDK-2 is 

expressed uniformly in all of the GSCs in wildtype and gsk-3 mutants. (A-H) the 

experiments were performed four times, each time 30-35 germlines analyzed. End of 

each progenitor zone is labeled with a solid line. Scale bar: 40µm.  
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Figure 29: cdk-2 mRNA is downregulated in gsk-3 mutant GSCs 

(A) qRT-PCR demonstrates significantly lower levels of cdk-2 mRNA in gsk-3 mutant 

germlines relative to wildtype. YFP::CDK-2 has higher cdk-2 mRNA compared to 

wildtype, revealing over-expression of CDK-2 in the transgene. (B-D) cdk-2 FISH 

analysis on dissected germlines shows cytoplasmic expression of cdk-2 in wildtype (B) 

that is absent in cdk-2 depleted germlines (D) and low in gsk-3 mutant germlines (C). 

Panel A the experiment was performed three times and each time 100 germlines were 

dissected and assayed by qRT-PCR. (B-D) the experiment was performed three times, 

each time 12-15 germlines were assayed. All experiments were performed on adult 

animals, at 24 hours past L4 stage of development. End of each progenitor zone is 

labeled with a solid line. Scale bar: 40µm. 
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Figure 30: Intron 1 of cdk-2 is the promoter (WS258) 

Screen shot of Wormbase Ver. WS258 depicting the binding of various 

transcription factors as well as DNA polymerase II via Chip analysis to the “intron 1” of 

cdk-2 along with predicted SL1 and SL2 trans-splicing sites. Regions highlighted in 

yellow are predicted binding sites. Transcription factors which did not bind to either the 

promoter or the intron were removed from the figure. CHIPs which did not show binding 

of DNA polymerase II to either the promoter or the intron were removed from the figure. 
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Figure 31: gsk-3 promotes cdk-2 transcription which is driven by intron 1 

 (A) Gene structure of cdk-2 on Wormbase Ver WS258. (B) Differential interference 

contrast (DIC) and GFP live image depicting the expression of the transcriptional 

reporter driven by Intron 1 of cdk-2 in the germline and embryos. Dashed line marks 

outline of distal germline. (C-D) Dissected germlines for adult (24 hours past L4) 

wildtype and gsk-3 mutants carrying the cdk-2 transcriptional reporter driven by Intron 1 

reporter, mounted in PLP media on the same slide, reveal expression of the cdk-2 

transcriptional reporter in the progenitor zone (C) of wildtype but not gsk-3 mutant (D). 

End of each progenitor zone is labeled with a solid line. Scale bars: 50µm. 
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3.5: DPL-1 Mediates GSK-3-dependent Regulation of CDK-2 Transcription and S 

Phase Progression 

To determine the factors that regulate cdk-2 transcription downstream to GSK-3, 

we perused the ChIP data for the cdk-2 intron 1 using Wormbase, and identified 

several transcription factors that bind to it, most notably, efl-1 and dpl-1, homologs of 

the E2F transcription factor family and the Dp1 transcription factor (Chapter 1.2.2, 

Figure 32), which promote S phase entry in vertebrate systems (Almasan et al. 1995; 

Muller et al. 1997). Because loss of efl-1 or dpl-1 individually does not inhibit S phase in 

C. elegans (Ceol and Horvitz 2001; Chi and Reinke 2006, 2009), suggesting that they 

do not promote S phase in C. elegans, we wondered whether they repress rather than 

promote S phase in the context of gsk-3 mutants. To determine whether these factors 

regulate S phase entry and progression downstream to gsk-3, we assayed them via 

RNAi-mediated depletion in the gsk-3 background. Depletion of dpl-1 in L4 animals 

from wildtype or gsk-3 heterozygous animals resulted in strong embryonic lethality in 

F1 progeny, as did the double mutants between dpl-1 and gsk-3 (not shown). Thus, we 

depleted dpl-1 starting at L4 in wildtype and gsk-3 mutant animals for 48 hours and 

assayed for EdU incorporation in the germlines (Figure 33). Wildtype GSCs from 

control (luciferase) RNAi and dpl-1 RNAi exhibited normal EdU incorporation with S 

phase indices of ~55% and ~67% respectively (Figure 33A, 33C, 33F), as well as 

endomitotic oocytes in the proximal germlines, as described previously (Chi and Reinke 

2006, 2009). dpl-1 RNAi in gsk-3 mutant animals restored EdU incorporation in GSCs 

in all the germlines with an S phase index of ~35% (Figure 33B, 33D, 33F), partially 

rescuing the S phase progression defect. These data suggest that gsk-3 normally 

inhibits dpl-1 in the GSCs to promote S phase progression. 
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To determine whether dpl-1 regulated cdk-2 mRNA levels, we performed FISH 

analysis on gsk-3(nr2047);dpl-1(RNAi) dissected germlines. We found that the cdk-2 

mRNA was restored in the gsk-3(nr2047);dpl-1(RNAi) double mutant germlines and 

was equivalent to dpl-1 RNAi alone (Figure 34). In summary, these data demonstrate 

that gsk-3 inhibits dpl-1 to maintain persistent high levels (and thus activity) of CDK-2 

mRNA expression in wildtype GSCs, resulting in rapid S phase entry and progression.  
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Figure 32: DPL-1 binds to the cdk-2 intron1 

Screen shot of Wormbase Ver. WS258 depicting the binding of DPL-1 via ChIP 

analysis to the “intron 1” of cdk-2.  
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Figure 33: dpl-1 RNAi rescues the gsk-3 mutant GSC proliferation defect 

Dissected adult (24 hours past L4) germlines displaying the progenitor zone 

oriented with the DTC to the left in all photographs in this figure. (A-D) RNAi-mediated 

depletion of dpl-1 in gsk-3 mutant animals results in restoration of EdU incorporation, 

assayed by a 10-minute EdU pulse (D), gsk-3 single mutant germlines incorporate very 

low EdU (B). (B) RNAi mediated depletion of dpl-1 in wildtype and gsk-3 mutant 

germlines results in a strong reduction of dpl-1 mRNA abundance. (C) RNAi mediated 

depletion rescues the EdU incorporation and restores the S phase index to ~35% in 

gsk-3 mutant GSCs. The RNAi experiments were performed five times, and for A-D 20-

22 germlines were imaged each time. Scale bar: 40µm. 
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Figure 34: dpl-1 RNAi rescues cdk-2 transcription in gsk-3 mutants 

(A-D) RNAi-mediated depletion of dpl-1 in gsk-3 mutant animals results in accumulation 

of cdk-2 mRNA (D), gsk-3 single mutant germlines exhibit very low accumulation of 

cdk-2 mRNA (B). The photographs for cdk-2 FISH were captured at 220ms each. A-D, 

10-12 germlines were imaged each time. Scale bar: 40µm.  
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3.6 Conclusion and Model 

We report on a novel mechanism through which C. elegans germline stem cells 

maintain their unique cell cycle structure with an abbreviated G1 phase (Figure 35). We 

find that gsk-3 promotes S phase entry and progression in a metabolically rich 

environment to mediate rapid expansion during the larval stages. GSK-3 function does 

not impact the balance between differentiation and self-renewal of the stem cells, 

revealing a specific function of this physiological regulator in maintaining the pool of 

GSC. The observed lack of EdU incorporation in gsk-3 mutants is likely not due to EdU 

accessibility to the germline, but rather points to difficulty of S phase entry and 

progression. We find that it is not due to aberrant DNA licensing or CDK-2 inhibition, 

but rather due to low expression of CDK-2 itself. We next find that CDK-2 is inhibited 

transcriptionally in gsk-3 mutants, which is rescued by RNAi of the cell cycle regulator 

dpl-1. This results in a situation where cdk-2 mRNA expression is regulated by gsk-3 to 

maintain a continuously high expression in the GSCs, resulting in high CDK-2 protein 

levels, so that when the cells reach the end of mitotic M phase they can transition into 

S phase with minimal time spent in G1. This results in an abbreviated G1 phase of the 

cell cycle thus allowing GSCs to proliferate rapidly to meet the tissue demands 

imposed by continuous production of embryos. Additionally, since gsk-3 is a metabolic 

regulator, GSCs may respond to chronic metabolic stress to control cell cycle 

progression through gsk-3. 
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Figure 35: gsk-3 Model 

GSK-3 beta inhibits DP1 transcriptional repressor to maintain persistent high levels of 

CDK-2 and mediate a short G1 coupled with rapid S phase entry and progression in C. 

elegans germline stem cells.  
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Chapter 4: Acute Nutritional Deprivation and Germline Stem Cell Plasticity 

4.1: Introduction 

Cell cycle control is integral to the plasticity of a constantly dividing population of 

stem cells such as the C. elegans GSCs. In conditions such as acute starvation or lack 

of nutrients, the inability to halt the cell cycle would result in an exhaustion of energy 

and nutrients. C. elegans PGCs and GSCs also arrest in conditions of acute starvation, 

likely to cope with the hostile environment. PGCs arrest at G2 when the larva hatches 

in the absence of food. This arrest is abrogated by loss of PTEN (daf-18) and PI3K 

(age-1) or AKT (akt-1) (Fukuyama, Rougvie, and Rothman 2006). Thus, signaling 

through the PI3K-AKT axis regulates the PGC arrest in hostile environmental 

conditions.  

GSC arrest appears in response to acute starvation in both L4 and adult animals 

as well. Acute starvation of L4 worms results in shrinkage of the germline and gamete 

production halts (Angelo and Van Gilst 2009). Return of the animal to replete nutrition 

results in regeneration of the germline and gamete production resumes. These data 

suggested that GSCs display plasticity an ability to adapt to environmental conditions. 

Seidel and Kimble 2015, discovered that the GSCs undergo cell cycle arrest during this 

time, though the nature and regulation of the arrest remain unknown (Seidel and 

Kimble 2015). In this chapter, I investigated the nature of the GSC arrest and 

uncovered its regulation through nutritional signaling. 
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4.2: The Adult C. elegans GSCs Reversibly Arrest at G2 during Starvation 

Acute starvation of adult C. elegans causes all the GSCs to stop cell divisions and 

enter cell cycle arrest. This arrest is completely in place as early as 4 hours of 

starvation (Figure 36A, B) (Seidel and Kimble 2015). To determine the cause of this 

arrest, I characterized the cell cycle state of GSCs and assayed for M and S phase 

using pH3 and EdU labeling respectively. Current methods in the field for EdU 

incorporation use feeding of the EdU analog through thymidine deficient bacteria grown 

in the presence of the EdU analog (Fox et al. 2011). Since feeding is incompatible with 

acute starvation, I devised a method to incorporate EdU by soaking the animal in an 

EdU solution for 10 minutes (described in detail in Materials and Methods). In this 

chapter, all EdU incorporation and S phase indices in GSCs from starved or fed control 

animals were labeled with the soaking EdU method. GSCs from fed animals 

demonstrated an average of ~4 dividing cells with ~ 60% S phase index (Figure 36B, 

36C). However, GSCs from animals without food for more than 4 hours displayed a 

distinct lack of pH3 labeled cells. These data suggest that the GSCs may be blocked 

from entering the M phase. To determine whether the S phase would alter with longer 

starvation times, I assayed GSC starvation for 4, 8, 12, and 18 hours, and observed 

that the S phase index does not change significantly upon extended starvation times 

(Figure 36C). Even in GSCs from animals without food for 18 hours, which is ~3 times 

longer than normal S phase length, I observed that the percentage of cells in S phase 

had not altered significantly. Since the GSCs are not actively entering M phase (as they 

do not display any pH3 positive nuclei), they are not transitioning into G1. Therefore, 

there are no new cells to enter S phase during starvation. With no new input into S 

phase, and no apparent output from S phase, these data suggest that the cells which 

were in S phase at the beginning of starvation remain in S phase for at least 3 times 
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longer than expected, leading to the model that starvation causes an extended S phase 

in the GSCs along with a cell cycle arrest. This cell cycle arrest is reversible since 

refeeding the animals after twelve hours of starvation causes pH3 positive cells to 

reappear (Figure 36A).  

Together, these data reveal that the C. elegans GSCs undergo a reversible cell 

cycle arrest with an extended S phase. The finding that a cell cycle arrest is imposed in 

GSCs in C. elegans was also demonstrated by the Kimble lab during the course of this 

work (Seidel and Kimble 2015). What remains unknown is the nature of the arrest and 

the underlying mechanism. 

I hypothesized that the arrest was most likely in the G2 phase of the cell cycle, 

which until now the field has only assayed using nuclear size as an assay. However, if 

cell cycle arrest is induced via cdk-1 or cdk-2 depletion, the GSC nuclei expand into a 

“fried egg” morphology. Therefore, nuclear size is an imprecise measure of cell cycle 

phase during cell cycle arrest. Therefore, to determine whether the GSCs arrested at 

G2, I performed an EdU pulse-chase experiment and assayed the various stages of the 

cell cycle upon starvation and refeeding (Figure 37).  

Since starved germlines incorporate EdU, cells in S phase can be labeled at any 

point during starvation. Therefore, I reasoned that if starved germlines are pulsed with 

EdU and released from starvation the S phase labeled cells would also label with pH3 

when the cells divide after re-entering the cell cycle (Figure 37). Such cells would be 

double positive – S phase and M phase labeled. However, if there are cells which 

arrest in the G2 phase of the cell cycle, then they would not incorporate the EdU label. 

Once these cells divide upon release of the arrest, they would only be labeled for pH3 

and be single label positive. Since G2 is after S phase, any EdU negative cells 

observed dividing before EdU positive cells would have been from G2 (Figure 37). 



116 

To determine the stage at which the cells were arrested during starvation I pulsed 

the animals with EdU after a 12 hour starvation, then refed them for 1 hour, 2 hours 

and 4 hours. As expected the control starved germlines displayed no pH3 positive cells. 

Upon 1 hour of refeeding, a majority of the germlines displayed no pH3 staining in the 

GSC population suggesting that the cells were in an arrested state, likely because the 

nutritional trigger had not been detected (Figure 38B). However, ~30% of the animals 

displayed pH3 positive cells suggesting that in these animals, the nutritional cues had 

triggered re-entry into the cell cycle (Figure 38A, 38B). A majority of these pH3 positive 

cells were EdU negative (Figure 38B) suggesting that the first set of cells to renter the 

cell cycle upon refeeding had arrested at the G2 stage. By 4 hours of refeeding, a 

significant proportion of the GSCs were both pH3 and EdU positive. The spike of 

divisions observed in some animals at 1 hour of refeeding is consistent with a cell cycle 

arrest and a piling up of germ cells at that point of the cell cycle. Upon the release of 

that arrest, this synchronized portion of cells enter mitosis together, and with most of 

them being EdU negative, these cells were most likely released from a G2 arrest.  
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Figure 36: Starvation induces a reversible cell cycle arrest 

(A) Dissected germlines with distal tips outlined with a dashed line and oriented to 

the left. Stained with DAPI (white), EdU (green) pH3 (red), and HIM-3 (blue). Last 

germline does not have HIM-3. From top to bottom, animals were: (1) Fed for 4 hours 

after reaching 24 hours past L4; (2) Starved for 4 hours after reaching 24 hours past 

L4; (3) Starved for 18 hours after reaching 24 hours past L4; (4) Starved for 12 hours 

after reaching 24 hours past mid L4 followed by recovery to replete conditions (NGM 

plate with OP50) for 4 hours. (B) Dividing cells were counted in fed and starved 

germlines. Time point listed is the duration of feeding or starvation after reaching 24 

hours past mid L4. (C) S phase index of germlines from fed and starved animals. Time 

point listed is the duration of feeding or starvation after reaching 24 hours past mid. 

Scale bar: 20µm.   



119 

 

 

 

Figure 37: Detecting G2 cells after releasing the reversible arrest 

Experimental plan for detecting G2 cells by pulsing EdU and releasing the 

reversible starvation-induced arrest. Time is on the y-axis. Circles represent cells. Solid 

line next to circles represents an arrest. Cells can be unlabeled (white) or labeled for 

EdU (green), pH3 (red), or both (yellow).  
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Figure 38: Starvation induces a G2 arrest. 

(A) Dissected wildtype germlines after starvation (left) and refeeding (middle and right) 

with distal tips outlined with a dashed line and oriented to the left. Stained with DAPI 

(white), EdU (green) pH3 (red). (B) Analysis of EdU colabeling after an EdU pulse-

chase experiment. Circles represent individual germlines. Height on the y-axis 

represents the number of dividing cells in that germline. Color depicts the percent of 

dividing cells which are co-labeled with EdU. Circles below the X-axis had no dividing 

cells. Scale bar: 20µm.   
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4.3: The Starvation-induced G2 Arrest is Independent of DNA Damage Signaling 

Since the reversible starvation-induced arrest occurred at the G2 stage, I 

investigated the role of the DNA damage signaling pathway, which is known to induce a 

G2 arrest. Starvation has the potential to induce DNA damage through replication 

stress. If replication continues during starvation, nucleotide depletion is possible due to 

the lack of an external source of precursors. This replication stress activates Atm 

and/or Atr kinase which can result in a cell cycle arrest by inhibiting CDK-1 (Zeng et al. 

1998). As discussed previously Atm and Atr kinases inhibit Cdk1 through a kinase 

cascade which leads to a G2 arrest through inhibition of Cdk1-Cyclin B complexes 

(Chapter 1.2.4). Since atl-1 has been implicated in regulating cell cycle arrest in GSCs 

in response to DNA damage, I assayed the activation state of the chk-1 kinase in GSCs 

with and without starvation. 

In response to Atr activation, Chk1 is phosphorylated at Ser345 and activated. In 

C. elegans, CHK-1 is phosphorylated in response to replication stress from 

hydroxyurea treatment but not double strand breaks (Lee et al. 2010). I assayed for 

phospho-CHK-1 status using Hydroxyurea as a positive control. Hydroxyurea treated 

control GSCs displayed a high level of phospho-CHK-1 staining, suggesting that the 

atl-1 pathway activated in response to replication stress in the GSCs (Figure 39). 

Comparison of GSCs from fed vs starved germlines revealed only a low level of pCHK-

1 label, suggesting replication stress may not occur during starvation to induce a cell 

cycle arrest.  

While there was no observable replication stress during starvation, it is possible 

that other forms of DNA damage were incurred. Therefore, I next investigated whether 

the DNA damage response played a role in mediating the starvation-induced G2 arrest. 

atm-1 and atl-1 are the major signaling modules through which DNA damage signals in 
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GSCs. I reasoned that if DNA damage was responsible for the starvation arrest, 

removal of these kinases would abrogate that arrest. I assayed atm-1 and atl-1 single 

and double mutant GSCs at 24 hours past L4 upon fed and starved treatment for 12 

hours. Under fed conditions, wildtype, atm-1 and atl-1 GSCs displayed pH3 positive 

cells, and upon starvation, all genotypes lacked pH3 positive cells, suggesting that the 

cell cycle arrest was induced (Figure 40). However, while atm-1 and atl-1 are thought to 

be sufficient to mediate the cell cycle arrest due to DNA damage, atl-1 can compensate 

for atm-1 in response to DSBs (Lee et al. 2010). To test whether atm-1 and atl-1 were 

redundant with each other, I assayed the atm-1;atl-1 double mutant. As before, fed 

wildtype and atm-1;atl-1 double mutant GSCs displayed pH3 positive cells (Figure 41). 

Upon starvation, wildtype GSCs displayed the G2 arrest and did not label with pH3. 

However, the atm-1;atl-1 double mutant germlines displayed pH3 positive GSCs that 

were seemingly undergoing mitotic catastrophe, with extreme DNA damage (Figure 41, 

arrowhead). Mitotic catastrophe occurs when a cell attempts to divide with high levels 

of DNA damage, eventually resulting in cell death. Considering that there is no 

evidence for programmed cell death or clearance of cell corpses in the progenitor zone 

of the C. elegans GSCs, it is likely that a mitotic catastrophe event perdures for a long 

time after initiating. Since mitotic catastrophe is a result of extreme DNA damage, their 

presence in the atm-1;atl-1 double was not surprising; the mitotic catastrophe likely 

occurred from lack of atm-1;atl-1 irrespective of starvation state (as is obvious to a 

lower extent in GSCs from fed animals). Since I was unable to assess the role of atm-1 

and atl-1 in regulating the starvation-induced G2 arrest in these experiments, I 

performed the pulse-chase experiments as described above to assess whether the 

GSCs arrest in G2 at all in the absence of atm-1 and atl-1 upon starvation.  
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In wildtype GSCs, the EdU pulse-chase experiment revealed an increase in EdU 

negative pH3 positive cells upon 1 hour of refeeding (Figure 38). I hypothesize that this 

increase in pH3 positive, EdU negative cells was likely due to a build-up of cells in G2. 

If a similar build-up were to occur in the absence of the atm-1 and atl-1 kinases, there 

is likely a portion of the G2 arrest which is independent of the DNA damage response. 

Therefore, I starved atm-1;atl-1 animals at 12 hours past L4 for 18 hours. I then pulsed 

the starved animals with EdU for 15 minutes and performed a refeeding time course for 

1, 1.5, 2, and 4 hours. As before, the refeeding led to a sharp increase in pH3 positive, 

EdU negative cells around the 1-1.5 hour mark (Figure 42). At the 4 hour mark, all the 

germlines contained pH3 cells, although the numbers were lower than those seen at 1-

1.5 hours; most of the pH3 positive cells are EdU positive (Figure 42). The similarity in 

the emergence of EdU negative, pH3 positive cells at 1-1.5 hour of refeeding upon long 

starvation in wildtype and atm-1;atl-1 double mutant germlines suggests that starvation 

induces a G2 arrest even in the absence of the atm-1 and atl-1 kinases, and therefore 

in the absence of DNA damage signaling. These data demonstrate that the starvation-

induced G2 arrest is independent of the DNA Damage signaling pathway. I next 

investigated the mechanism that may regulate the starvation-induced reversible G2 

checkpoint. 
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Figure 39: Starvation does not activate CHK-1 

Dissected germlines from wildtype animals which were either fed (top), starved 

(middle), or fed and hydroxyurea treated (bottom). Distal tip is outlined with a dashed 

line and germlines are oriented with the distal tip to the left. Germlines are stained for 

DAPI (white), (pSer345)CHK-1 (green) and pH3 (red). Scale bar is 20µm.  
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Figure 40: The starvation arrest does not require individual DNA damage kinases 

Dissected germlines from atm-1 and atl-1 single mutants with wildtype control 

which were either fed or starved. Distal tip is outlined by a dashed line and is oriented 

to the left. Germlines are stained with DAPI (white), EdU (green), and pH3 (red). Scale 

bar: 20µm.  
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Figure 41: Starvation induces mitotic catastrophe in atm-1;atl-1 double mutants 

Dissected germlines from atm-1;atl-1 double mutants along with wildtype controls 

which were either fed or starved. Distal tip is outlined by a dashed line and is oriented 

to the left. Germlines are stained with DAPI (white), EdU (green), and pH3 (red). 

Arrowhead depicts a mitotic catastrophe event during starvation which is pH3 positive. 

Scale bar: 20µm.  
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Figure 42: DNA damage kinases are not necessary for the starvation-induced G2 

arrest. 

(A) Dissected atm-1;atl-1 double mutant germlines after starvation (top left) and 

refeeding (top right, bottom left, bottom right) with distal tips outlined with a dashed line 

and oriented to the left. Stained with DAPI (white), EdU (green) pH3 (red). Scale bar: 

20µm. (B) Analysis of EdU colabeling after an EdU pulse-chase experiment. Circles 

represent individual germlines. Height on the y-axis represents the number of dividing 

cells in that germline. Color depicts the percent of dividing cells which are co-labeled 

with EdU. Circles below the X-axis are germlines with zero dividing cells. 
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4.4: The Starvation-induced G2 Arrest is Mediated by Nutritional Signaling 

The two major nutritional signaling pathways in the C. elegans germline are Insulin 

signaling and TOR signaling (Chapter 1.3.7). Previous studies in the field suggest that 

both of these pathways play an important role in GSC proliferation in larval animals 

during the expansion phase (Fukuyama, Rougvie, and Rothman 2006; Michaelson et 

al. 2010; Korta, Tuck, and Hubbard 2012). To determine whether these two signaling 

pathways were important for adult GSC arrest I assayed daf-2(e1370) mutants to 

assess the contribution of Insulin signaling and rsks-1(ok1255), a downstream effector 

of TOR signaling, to assess the contribution of TOR signaling. To rule out any 

compensation between the two pathways, I also assessed the impact of a loss of both 

daf-2 and rsks-1 with a daf-2(e1370)rsks-1(ok1255) double mutant. daf-2(e1370) 

contains a missense mutation in the kinase domain which results in a temperature-

sensitive loss of kinase activity at the restrictive temperature of 25°C, while the animal 

is relatively wildtype at 15°C. Therefore, I used daf-2(e1370), rsks-1(ok1255), and 

daf-2(e1370)rsks-1(ok1255) double mutants at 15°C until 6 hours past mid L4, then 

shifted for 18 hours to either 25°C or 15°C (Figure 43). In all mutants at either 

temperature, I observed germlines with dividing cells indicating that a G2 arrest did not 

occur (Figure 43). However, even a transient arrest or lengthening of G2 would result in 

a drop in proliferation. 

To determine whether there was any evidence of a transient G2 arrest, I counted 

the pH3 positive cells for each genotype. I reasoned that a lower number of pH3 

positive cells would signal either extension of the cell cycle or a transient arrest. 

However, the length of the progenitor zone can change depending on the degree of 

differentiation within the germline. Genotypes that result in alteration of the balance 

between proliferation and differentiation provide less area for GSCs to proliferate, and 



130 

thus fewer dividing cells would be observed solely due to a smaller available 

population. Therefore, I normalized the number of dividing cells by the length of the 

progenitor region in cell diameters to calculate an adjusted division index (ADI). 

I determined the ADI for wildtype at 15°C and 25°C and found that they were 

similar. In daf-2 mutants, I observed that at 15°C, the ADI was similar to wildtype, but at 

the restrictive temperature, the ADI dropped significantly (p<0.0001) (Figure 44). 

However, in rsks-1 mutants, the ADI was similar to wildtype at either temperature 

suggesting that rsks-1 does not contribute to cell cycle progression in adult GSCs 

(Figure 44). Additionally, in the double mutant, the ADI dropped a similar amount to that 

in the daf-2 single mutant at the restrictive temperature, suggesting that daf-2, and 

therefore Insulin signaling, regulates G2/M progression downstream to nutritional input 

(Figure 44). However, since rsks-1 is only one of the many downstream effectors of 

TOR signaling, I chose to investigate TOR itself and assess the contribution of the TOR 

signaling pathway. 

In C. elegans, the TOR homolog is let-363. Deletions in let-363 result in a larval 

arrest at L3, prohibiting investigation into any adult phenotypes (Long et al. 2002). 

Therefore, to investigate the role of let-363 in adult GSCs, I depleted let-363 via RNAi 

and assayed adult GSCs. Since Mtor kinase is activated in the presence of nutrition, I 

reasoned that let-363 RNAi should phenocopy the nutritional arrest. I performed the 

RNAi at two conditions, a milder condition, where the RNAi was performed in adults for 

24 hours followed by assaying the GSCs; and a long term RNAi, where the larvae were 

subjected to RNAi from hatching with GSCs assayed in the adult (24 hours past L4). 

The milder 24 hour depletion of let-363 did not reveal much impact on pH3 positive 

cells and the RNAi germlines were similar to wildtype germlines (Figure 45). However, 

with the longer RNAi, I observed that ~30% of germlines were pH3 negative and the 



131 

ADI observed was significantly lower than wildtype (p<0.0001) (Figure 45). These data 

suggest that TOR signaling may contribute to G2/M progression in addition to the 

Insulin signaling. However, due to the inherent variability of RNAi experiments, I 

generated a loss of function allele in let-363 and verified these phenotypes. 

While LET-363 has not been crystallized, its domain structure is very similar to the 

human homolog, mTOR, which has been well characterized and crystallized (Yang et 

al. 2013; Long et al. 2002). I used the homology between the two proteins to design a 

deletion for let-363. The N-terminal portion of LET-363 contains the heat domains to 

which Rptor (daf-15) and Rictor (rict-1) bind. The C-terminal portion harbors the Mtor 

kinase domain which is split in half by the Fkbp12-Rapamycin binding domain (FRB), 

which protrudes from the kinase domain and partially occludes the substrate cleft 

(Yang et al. 2013) (Figure 46A, B). The FRB has been found to assist in recruiting 

p70s6k in mammals. While rsks-1 does not affect proliferation in adult GSCs, the FRB 

may recruit other downstream effectors of let-363. Therefore, I used CRISPR to 

remove this domain in an attempt to create a partial loss of function allele.  

The FRB bridges exons 26 to 28, so I identified two crRNAs which bordered the 

domain (Figure 46C). After designing the repair template to contain 5xGly as a flexible 

linker, I performed the CRISPR injections (Figure 46C). I identified 6 candidates from 

the injections corresponding to the homology repair using a PCR-based screening 

method (Figure 46D) (Chapter 2.1.6). Sequencing of the lesion revealed that five of the 

six candidates contained the desired sequence. The resultant allele, let-363(viz27) 

(Hereafter designated let-363(ΔFRB)) is viable and does not arrest at L3 as null alleles 

of let-363 do. However, let-363(ΔFRB) animals are smaller in size than wildtype (data 

not shown), and while their brood size is the same as wildtype, their rate of egg laying 

is decreased (Figure 47). To determine whether deletion of the FRB in let-363 led to an 



132 

impact on GSC proliferation, I assayed let-363(ΔFRB) germlines. I observed that 

let-363(ΔFRB) germlines appeared skinnier than wildtype (Figure 48A). Additionally, in 

~30% of germlines there were no pH3 positive cells (Figure 48B). Upon assaying for 

ADI, I found that let-363 had a significantly lower ADI (p<0.0001) than wildtype 

suggesting that loss of TOR signaling leads to a partial cell cycle arrest in adult GSCs 

(Figure 48C). These data suggest that both Insulin signaling and Tor signaling regulate 

G2/M progression. Current experiments in the lab are ongoing to assess whether these 

two pathways function in a redundant manner. More importantly, I wondered how LET-

363 may control the cell cycle. 

Studies from yeast, also suggest a role for TOR signaling in regulating the cell 

cycle. I surmised that let-363 does not function through the canonical TOR signaling 

pathway and lysosomes since there was anecdotal evidence in the lab and from the 

field on lack of lysosomes in germ cells. To determine whether germ cells contain 

lysosomes, I utilized the High Resolution Electron Microscopy Facility at MD Anderson 

Cancer Center to perform Transmission Electron Microscopy. Lysosomes were 

identified as circular membrane-bound vesicles approximately 0.5 micron in size 

(Sigmond et al. 2008). While the gut contains lysosomes, I did not find any in the GSCs 

(Figure 49). Thus, I assayed for distinct pathways that may mediate the role of TOR 

signaling in regulating G2/M progression. Since fission yeast does not regulate TOR 

signaling through lysosomal signaling either, I wondered whether there were parallels 

in the cell cycle regulation between yeast and C. elegans GSCs.  

In fission yeast, Tor can regulate p38 stress kinases to regulate Cdc25 (Lopez-

Aviles et al. 2008; Lopez-Aviles et al. 2005). Since Cdc25 directly regulates Cdk1, this 

would provide a link between TOR signaling and cell cycle regulation. To test this, I 

assayed for the effect of stress kinases in regulating the GSC arrest in C. elegans. 
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There are three p38-like (pmk-1, pmk-2, pmk-3) and four JNK-like (jnk-1, kgb-1, kgb-2, 

C49C3.10) stress kinases in C. elegans which respond to a variety of different 

stressors from infection to injury (Reviewed in Andrusiak and Jin 2016). To determine 

whether stress kinases function downstream of let-363 in GSC response to starvation, I 

assayed four of these kinases, pmk-1, pmk-2, jnk-1, and kgb-1. I did not pursue pmk-3 

because it does not contain the canonical TGY motif through which the p38 family is 

activated, and so it is likely not activated by an upstream map kinase cascade. I 

depleted each kinase via an F1 RNAi (the RNA was depleted in the mothers and 

progeny) and observed changes in the germlines of the F1 progeny. I observed that 

under fed conditions, all genotypes had ADIs similar to the luciferase control (Figure 

50). However, loss of pmk-2 and kgb-1 individually displayed an increase in ADI, 

raising the possibility that they could each partially abrogate the starvation arrest. To 

investigate their effect on mediating the G2/ M arrest, I assayed for their necessity to 

induce the arrest. I performed an F1 RNAi of each kinase and starved animals at 24 

hours past mid L4. The germlines contained dividing cells which would indicate an 

incomplete arrest. The luciferase control RNAi, as expected, had zero germlines with 

pH3 positive cells. Similarly, the germlines from jnk-1, pmk-1, and pmk-2 RNAi did not 

display pH3 positive cells, suggesting that their loss did not abrogate the G2 arrest. 

However, loss of kgb-1 by RNAi leads to ~5% of germlines with pH3 positive cells. 

While this number is small, the data suggests kgb-1 activity may be necessary for 

initiating a complete G2 arrest upon starvation. Because RNAi only depletes the RNA 

and may not affect protein function, which could account for the small effect observed, I 

obtained a kgb-1(um3) mutant allele and performed the analysis. The um3 allele 

deletes a large portion of the KGB-1 kinase domain (Smith et al. 2002). Previous 

studies describe this allele as temperature-sensitive. While it is relatively wildtype at 
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20°C, the strain is sub-fertile at 15°C. Therefore kgb-1(um3) was cultured at 20°C and 

shifted at mid L4 for 24 hours to 15°C, followed by a 4 hour starvation. As previously 

shown, wildtype animals underwent complete G2 arrest at 20°C, but at 15°C the G2 

arrest in wildtype animals is evident only in 80% of the animals, with the remaining 

~20% of germlines displaying pH3 positive cells. These data suggest that temperature 

enhances the starvation-induced G2 arrest in wildtype. It was interesting however that 

in the kgb-1(um3) mutants at 15°C, ~80% of germlines displayed pH3 positive cells, 

and at 20°C the kgb-1(um3) mutants maintained ~5% of germlines with pH3 positive 

cells, further suggesting that kgb-1 assists in the starvation-induced G2 arrest. Since 

there are reports that active p38 genetically interacts with Cdk1 regulator to inhibit cell 

cycle progression, I next investigated CDK-1 regulation during starvation. 
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Figure 43: daf-2 and rsks-1 mutants do not completely arrest 

Dissected germlines from the listed genotypes with the distal tip outlined with a 

dashed line and oriented to the left. Left panel are animals raised at 15°C, Right panel 

are animals which were shifted to 25°C for 18 hours prior to dissection. All animals 

were dissected at 24 hours past mid L4. Stained for DAPI (white), EdU (green), and 

pH3 (red). Scale bar: 20µm. 
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Figure 44: ADI analysis of daf-2 and rsks-1 mutants 

ADI analysis is measured as the number of pH3 positive cells divided by the 

number of cell rows in the progenitor region. (**) p < 0.005, (****) P < 0.0001. 
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Figure 45: RNAi of let-363 results in decreased proliferation 

(A) Dissected germlines form the listed genotypes with the distal tip outlined with a 

dashed line and oriented to the left. Stained for DAPI (white) and pH3 (red). Scale bar: 

20µm. (B) ADI analysis is measured as the number of pH3 positive cells divided by the 

number of cell rows in the progenitor region. Displayed is the ADI for the long-term (F1) 

RNAi. (**) p < 0.005, (****) P < 0.0001. 
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Figure 46: let-363(ΔFRB) mutagenesis 

(A) 3D model of a c-terminal portion of let-363 kinase (pink and green) threaded 

onto the structure of a c-terminal portion of human mTOR (4JSP) (blue and red) using 

the ITASSER suite. The FRB domain is labeled in green (let-363) or red (mTOR). 

Square denotes the region magnified in (B). (B) Increased magnification of the FRB 

domain. The amino acids bordering each breakpoint for the FRB allele are labeled. (C) 

CRISPR design for replacing the FRB domain with a 5xGly flexible linker. Green and 

pink flags represent PCR primers used for allele detection as well as sequencing (not 

to scale). (D) Sequencing result from 6 clones generated from CRISPR injections using 

the above scheme. 5 of the 6 contain the desired edit, while the other one has a 3 base 

pair deletion (dashes) resulting in a missense mutation. 
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Figure 47: let-363(ΔFRB) has a decreased rate of progeny lay 

(A) Analysis of the total progeny laid by wildtype and let-363(ΔFRB). (B) Break 

down of the analysis in (A) by day. (**) p < 0.005, (****) P < 0.0001.  
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Figure 48: let-363(ΔFRB) has a proliferation defect 

Dissected germlines from wildtype and let-363(ΔFRB) oriented with distal tip to the 

left. (A) Full germlines displayed with the progenitor region outlined. Loop region and 

the region with developing oocytes are defined by solid lines. Oocytes are labeled up to 

the -3 oocyte with regards to birth order. Asterisks define regions of increased 

background due to an adjacent germline. Stained for DAPI (blue), EdU (green), and 

pH3 (red). Scale bar: 100µm. (B) Progenitor region is displayed with the distal tip 

outlined with a dashed line and oriented to the left. Stained for DAPI (white), EdU 

(green), and pH3 (red). (C) ADI analysis is measured as the number of pH3 positive 

cells divided by the number of cell rows in the progenitor region. (****) p < 0.0001. 

Scale bar: 20µm. 
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Figure 49: Lysosomes are absent from GSCs 

Samples were dissected and fixed in 3% glutaraldehyde plus 2% 

paraformaldehyde in 0.1 M cacodylate buffer, pH 7.3 prior to submission to the High 

Resolution Electron Microscopy Facility at MD Anderson Cancer Center where they 

were prepared by Kenneth Dunner. (A,B) TEM image from the germline. Square 

denotes magnified region shown in (B).  (C,D) TEM image from the gut. Square 

denotes magnified region shown in (D). Scale bar is: 2 µm(A,C), 0.5 µm(B,D).  
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Figure 50: Stress kinases may contribute to the starvation-induced G2 arrest 

(A) Dissected germlines of animals after RNAi of stress kinases (jnk-1, pmk-1, 

pmk-2, and kgb-1) and a luciferase control with or without starvation. Germlines have 

the distal tip outlined with a dashed line and are oriented with distal tip to the left. 

Stained for DAPI (white) and pH3 (red). Scale bar: 20µm. (B) ADI analysis is measured 

as the number of pH3 positive cells divided by the number of cell rows in the progenitor 

region. (n.s.) not significant. 
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4.5: CDK-1 activity is Modulated by Nutritional and MAPK Pathways to Regulate 

the Reversible Starvation-induced G2 Arrest 

Entry into M phase from G2 is controlled by cdk-1 and cyb-1 in C elegans. cdk-1 is 

inhibited by wee-1, so to investigate the role of cdk-1 signaling during starvation, I 

depleted wee-1.3 by RNAi. wee-1.3 is one of the Wee1 homologs in C. elegans and is 

expressed in the germline. After 4 hours of starvation, wee-1.3 RNAi resulted in ~40% 

of germlines with pH3 positive cells (Figure 51). This suggested that wee-1.3 plays a 

role in either entry or maintenance of the G2 arrest. 

To determine whether wee-1.3 mediated CDK-1 phosphorylation is regulated in 

response to starvation. I used antibodies to detect (pT14pY15)CDK-1, the inhibitory 

mark generated by WEE-1 and MYT-1 kinases; and a total CDK-1 antibody to observe 

overall changes in protein expression. The total CDK-1 antibody was raised by Dr. 

Andy Golden (NIH/NIDDK) and kindly provided by Jill Schumacher (MD Anderson 

Cancer Center). Both antibodies are specific to CDK-1 as they are depleted upon cdk-1 

RNAi (Figure 52). Additionally, the (pT14pY15)CDK-1 antibody is responsive to 

replication stress and DNA damage signaling since it increases in intensity after 

hydroxyurea treatment (Figure 52). Therefore, using these antibodies, I could assay the 

inhibitory state of CDK-1 during starvation. I assayed animals at 24 hours past mid L4 

in either fed or starved conditions. The starvation was performed for 4 hours. The 

germlines were then stained with either (pT14pY15)CDK-1 or total CDK-1 as well as 

pH3. In fed worms, there was noticeable accumulation of both the total CDK-1 as well 

as the (pT14pY15)CDK-1 in cells that were pH3 negative. This suggested that when 

the GSCs were not in M phase, CDK-1 was maintained in the nucleus in an inhibited 

state. In GSCs from starved germlines, the signal for (pT14pY15)CDK-1 was similar to 

GSCs from fed germlines. However, there was a decrease in total CDK-1 expression 
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level, and the low-level signal was not nuclear but rather cytoplasmic (Figure 53). To 

better understand this expression dynamic, the experiment was repeated and analyzed 

using confocal microscopy. I observed that the fed animals had clear nuclear 

localization of both total CDK-1 and the inhibitory (pT14pY15)CDK-1 (Figure 53). In 

starved animals, while the (pT14pY15)CDK-1 signal remained, the nuclear, total CDK-1 

signal was not visible (Figure 53). In addition, the overall accumulation of CDK-1 was 

decreased in starved animals. These data demonstrate two things: 1) total CDK-1 

levels are decreased upon starvation and (2) the phosphorylated nuclear signal of 

CDK-1 does not change upon starvation. At first sight these data seem confusing, 

however it led me to posit that CDK-1 was regulated at several levels simultaneously 

during starvation. One process would be responsible for decreasing the overall 

expression of CDK-1 as was observed. However, for the accumulation of inhibited 

CDK-1 to remain the same in fed and starved animals, the proportion of inhibited 

CDK-1 must increase. Therefore, another process would be responsible for this 

increase in inhibited CDK-1. Combining both processes may cause the strong G2 

arrest observed. 

I then reasoned that if the proportion of inhibited CDK-1 were high enough in the 

fed condition, it might be possible to watch the inhibited CDK-1 drop during starvation 

along with the total CDK-1 signal. To test this, I attempted to saturate the 

(pT14pY15)CDK-1 signal using hydroxyurea treatment. As seen before, hydroxyurea 

treatment leads to an increase in the (pT14Y15)CDK-1 signal (Figure 52). If the 

hydroxyurea treated germlines are then starved and the total CDK-1 levels drop, I 

would also be able to compare the levels of phospho-CDK-1, and a change in 

phospho-CDK-1 level should be easily detectable. Therefore, I treated wildtype animals 

with hydroxyurea for 12 hours and either starved or fed them for 4 hours. After 
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dissection, the germlines from fed animals were labeled with anti-NOP-1, a nucleolar 

marker, and combined with the starved samples for each condition. The combined 

samples were then split into two equal portions and stained with either 

(pT14pY15)CDK-1 or total CDK-1 antibodies. By staining both fed and starved in the 

same tube, I was able to rule out any intensity differences due to differences in 

antibody treatment or exposure. As expected, fed hydroxyurea-treated animals had 

high (pT14pY15)CDK-1 expression in the GSCs when compared to their control 

counterparts (Figure 54). However, even with increased signal, there was no change in 

(pT14pY15)CDK-1 intensity between the fed and starved conditions in hydroxyurea-

treated animals (Figure 54). This is in contrast to the drop in total CDK-1 levels, which 

can be seen in both the hydroxyurea-treated and control animals. In order for the 

(pT14pY15)CDK-1 intensity to remain the same in control animals, the drop in total 

CDK-1 levels must be accompanied by an increase in (pT14pY15)CDK-1 levels. 

Therefore, I posit that the increase in (pT14pY15)CDK-1 may be due to the role of 

kgb-1 during starvation. Additionally, I was intrigued by the drop in total CDK-1 levels 

upon starvation since that seemed like a key mechanism underlying the onset of G2 

arrest upon starvation. Thus, I investigated how cdk-1 expression was regulated during 

starvation. 

To determine if cdk-1 was being transcriptionally repressed I assayed for CDK-1 

mRNA, using PGL-1 mRNA as an internal control. I fed adult animals (24 hours past 

L4) and performed FISH using the above probes. I observed that both fed and starved 

conditions contained comparable fluorescence intensity for CDK-1 mRNA and PGL-1 

mRNA. This suggested that cdk-1 was not being transcriptionally regulated.  

Since TOR signaling regulated the G2 arrest, at least in part, it is likely that cdk-1 

expression is translationally regulated. Two downstream effectors of TOR signaling that 
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regulate translation are rsks-1 and Eif4ebp1. As observed earlier, rsks-1 does not play 

a role in the proliferation of adult GSCs, therefore I investigated the role of Eif4ebp1 in 

regulating CDK-1 expression. Eif4ebp1 is a negative regulator of 5’ cap-dependent 

mRNA translation which functions by binding Eif4e (Eukaryotic translation initiation 

factor 4E). Active TORC1 phosphorylates Eif4ebp1, dissociating it from Eif4e. This 

allows Eif4e to form a complex with Eif4g (Eukaryotic translation initiation factor 4G) to 

promote translation initiation. In C. elegans there is no known homolog of Eif4ebp1. 

However, while there are multiple genes with homology to regulatory subunit Eif4e, the 

structural subunit Eif4g has only one homolog (ifg-1). Since this complex regulates 

translation, and some of its components have larval GSC proliferation defects as well 

as suboptimal fertility, I used RNAi to investigate the function of ifg-1 (Korta, Tuck, and 

Hubbard 2012; Long et al. 2002). After a 24 hour RNAi treatment, I dissected and 

analyzed ifg-1 RNAi germlines. When compared to luciferase RNAi controls, ifg-1 RNAi 

germlines displayed significantly lower ADI (Figure 55). This suggests that ifg-1 

depletion, and translational inhibition in general, affects adult GSC proliferation. 

Therefore, I hypothesize that a decrease in TOR signaling results in lower IFG-1 

mediated protein translation which in turn lowers the level of CDK-1, and together with 

phosphorylation mediated inhibition of CDK-1, the overall lower levels of CDK-1 upon 

starvation induce the G2 arrest. 
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Figure 51: wee-1.3 regulates the starvation-induced G2 arrest 

Dissected germlines of animals after RNAi of wee-1.3 and a luciferase control with 

or without starvation. Germlines have the distal tip outlined with a dashed line and are 

oriented with distal tip to the left. Stained for DAPI (white) and pH3 (red). Scale bar: 

20µm. 
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Figure 52: CDK-1 and (pT14pY15)CDK-1 antibodies respond as expected 

Dissected wildtype germlines under normal conditions (top), after cdk-1 depletion 

(middle), or after Hydroxyurea treatment for 18 hours (bottom). Left panel was stained 

for total CDK-1, right panel was stained for (pT14pY15)CDK-1. Both panels were 

stained for DAPI (white) and pH3 (red). Germlines have the distal tip outlined with a 

dashed line and are oriented with the distal tip to the left. Scale bar: 20µm.  
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Figure 53: CDK-1 expression decreases as pCDK-1 remains unchanged 

Dissected wildtype germlines with or without starvation. Left panel was stained for 

total CDK-1, right panel was stained for (pT14Y15)CDK-1. Both panels were stained for 

DAPI (white). Germlines have the distal tip outlined with a dashed line and are oriented 

with the distal tip to the left. Germlines were either imaged using an epifluorescence (A) 

or confocal (B) microscope. Scale bar: 20µm.  
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Figure 54: Hydroxyurea exacerbates the regulation of CDK-1 during starvation 

Dissected wildtype germlines with or without starvation. Left panel was stained for 

total CDK-1, right panel was stained for (pT14Y15)CDK-1. After staining fed animals 

with NOP-1 (red), a nucleolar marker, fed and starved groups were combined and 

stained in the same tube for DAPI (white) and CDK-1 or (p124Y15)CDK-1 antibody 

Germlines have the distal tip outlined with a dashed line and are oriented with the distal 

tip to the left. Animals were either treated with Hydroxyurea (A), or with M9 vehicle 

control (B). Scale bar: 20µm. 
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Figure 55: RNAi of the translational regulator ifg-1 inhibits proliferation 

Dissected germlines from animals treated with RNAi for ifg-1 or luciferase control. 

Stained for DAPI (white), pH3, and HIM-3. Germlines have the distal tip outlined with a 

dashed line and are oriented with the distal tip to the left. Germlines were either imaged 

in an epifluorescence (A) or confocal (B) microscope. Scale bar: 20µm.  
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4.6: Conclusion and model 

Starvation is detrimental to organisms. Therefore, being able to respond to 

starvation in a way that preserves cellular integrity is important. In this chapter, I 

uncovered that C. elegans GSCs respond to acute starvation with a reversible G2 

arrest which is released upon return to replete conditions (Figure 56). I found no 

evidence of DNA damage due to replication stress during this arrest, and the arrest 

appears to be independent of DNA damage signaling all together. Instead, this arrest is 

mediated by nutritional signaling pathways. Loss of Insulin signaling (daf-2) or TOR 

signaling (let-363) results in an induction of the G2 arrest, with each contributing 

partially to the phenotype. Mechanistically, the arrest is partially mediated by stress 

signaling through kgb-1 which in turn leads to cdk-1 inhibition. Consistent with this 

model, depletion of the negative regulator wee-1.3 abrogates the G2 arrest, although 

loss of wee-1.3 results in a stronger abrogation of the G2 arrest than evidenced in kgb-

1 mutants, suggesting that cdk-1 is regulated by signals or mechanisms in addition to 

the one mediated by kgb-1. Furthermore, starvation resulted in a reduction of total 

CDK-1 protein, in addition to the phosphorylation mediated inhibition imposed by 

wee-1.3. The decrease in CDK-1 protein levels was not regulated transcriptionally in 

response to starvation, but rather may be under translational regulation, as transient 

depletion of ifg-1, which functions downstream of let-363 to promote translation, causes 

the onset of G2 arrest. Together, these data put forward the model that Insulin and 

TOR signaling regulate the G2 arrest in parallel. TOR signaling functions independent 

of the lysosomes, and via the stress activated kinase kgb-1 and ifg-1 to regulate CDK-1 

both at the post-translational level and at the translational level to efficiently respond to 

lack of nutrients in the environment and protect germ cell integrity.  
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Figure 56: Starvation Model 

Starvation inhibits both the let-363 and daf-2 signaling pathways to inhibit G2 

progression. let-363 mediates this response by inhibition of cdk-1 translationally, 

through ifg-1, and post-translationally, by increased inhibitory phosphorylation mediated 

by kgb-1.  
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Chapter 5: Discussion 

 

Some of the contents of this chapter are reproduced/adapted with permission from 

“Furuta et al. 2018”. Permission is from Development 

(http://www.biologists.com/development).  

 

Full citation: 

* Furuta, T., * H. J. Joo, * K. A. Trimmer, S. Y. Chen, and S. Arur. 2018. 'GSK-3 

promotes S-phase entry and progression in C. elegans germline stem cells to maintain 

tissue output', Development, 145, doi: 10.1242/dev.161042 

* Equal contribution, alphabetically ordered 

 

5.1: Discussion 

Stem cells play a critical role in maintaining tissue homeostasis, during tissue 

repair and regeneration. To faithfully execute these functions stem cells respond to 

extracellular cues and intrinsic signals to protect the progenitors from environmental or 

tissue based insult. In this thesis, I identified two cellular mechanisms which regulate 

the cell cycle in GSCs in response to adverse environmental or metabolic conditions. 

First: In GSCs, gsk-3 works to promote proliferation through regulation of the G1 phase 

of the cell cycle, without affecting the differentiation/self-renewal decision. I find that 

gsk-3 promotes EdU incorporation along with promoting a short G1 phase by promoting 

cdk-2 transcription. Second: I find that starvation induces a cell cycle arrest at G2 which 

is independent of the DNA damage G2 arrest. This starvation-induced arrest is 

mediated by Insulin and TOR signaling. The TOR signaling axis is mediated by the 

stress kinase kgb-1 and the translation initiation factor ifg-1, culminating in translational 

http://www.biologists.com/development
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and post-translational regulation of cdk-1. Combined, these regulatory components 

provide plasticity to GSCs in times of adverse environmental or metabolic conditions. 

 

5.1.1: GSCs may lack a DNA licensing checkpoint 

In mammalian systems, DNA licensing actively promotes Cdk2 activation, 

suggesting that the licensing checkpoint is essential for progression into S phase. In 

fact, depletion of licensing components results in cell cycle arrest in a p53 dependent 

manner further supporting a DNA licensing checkpoint. During our investigations into 

the nature of the gsk-3 mutant GSC phenotype, we found that depletion of the ORC 

complex members or Cdc6 resulted in DNA fragmentation and re-replication. Since the 

DNA licensing members were depleted by RNAi, it is likely that they were not 

completely removed, and so it is possible that some level of DNA licensing occurred, 

but that the licensing was not extensive enough to cover the entire genome. 

Surprisingly, in gsk-3 mutants, this phenotype is rescued. I propose that the extended 

G1 in gsk-3 mutants is in part responsible for this rescue. Extension of G1 in gsk-3 

mutants may allow DNA licensing components to complete licensing even if their 

expression level is reduced. However, that DNA licensing can be incomplete in wildtype 

supports the idea that there is no obvious DNA licensing checkpoint in C. elegans 

GSCs in addition to the cells displaying a distinct S phase entry regulation as a whole. 

However, if a p53-dependent DNA licensing checkpoint is in place in C. elegans GSCs, 

co-depletion of the p53 homolog cep-1 along with DNA licensing factors should appear 

worse than depletion of DNA licensing factors alone, providing one avenue of 

determining the presence of this checkpoint. 

 

5.1.2: How does constitutively high expression of CDK-2 regulate G1/S switch? 
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I find that the cdk-2 mRNA maintains a constitutively high level of expression in the 

GSCs, which is necessary for the abbreviated cell cycle structure. The expression of 

CDK-2 also reflects its activity, as shown previously by phospho-CDC-6 expression, and 

functional analysis (Fox et al. 2011), and from this study. Using the nuclear to 

cytoplasmic shuttling of MCM-3 as a dynamic readout of CDK-2 function, we found that 

MCM-3 is nuclear when CDK-2 function is lower, and cytoplasmic when CDK-2 function 

(or expression) is high. Interestingly, in gsk-3 mutant GSCs, MCM-3 is nuclear in about 

56% of the cells, the levels of cdk-2 mRNA are significantly reduced, and the cells 

incorporate EdU very inefficiently. Further, over-expression of CDK-2 in the gsk-3 

mutants completely rescues the GSC defects. Together, these data suggest that in 

GSCs, the cell cycle at the G1/S boundary is largely regulated by the accumulation of 

CDK-2. Consistent with this is the observation that depletion (via RNAi) and reduction of 

cdk-2 mRNA result in two distinct phenotypes:  cell cycle arrest in the former (Fox et al. 

2011) and slow S phase entry and progression in the latter (this study).  

That Cdk2 expression levels regulate the G1/S switch may be unique to cells that 

have a short G1. To put this in the context of canonical mammalian cell cycle progression 

which is regulated via low Cdk2 activity in G1 to enable pre-replication complexes to 

assemble at origins (Blow and Hodgson 2002), I propose the following model. 

Canonically, inactive Cdk2 enables the loading of the pre-replication complex into the 

nucleus at the end of G1, and active Cdk2 then initiates S phase, both of which are 

regulated through post-translational mechanisms such as phosphorylation. In the context 

of GSCs, it is likely that different thresholds of activation form distinct complexes of 

CDK-2 that mediate its differing roles in G1 and S. For example, it is likely that the pre-

replication complex can form at a lower threshold of CDK-2 activity (mimicking an 

‘inactive” pool of Cdk2) than a threshold of CDK2 that drives entry and progression 
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through S phase. Observations from mESCs support this model. In mESCs despite 

continuous high expression of Cdk2 and Cyclin E, a subset of Cdk2 complexes are in 

fact “inactivated” at G1, allowing pre-replication complexes to assemble transiently and 

allow S phase entry (Ohtsuka and Dalton 2008). Additionally, these complexes are 

thought to be undetectable above the elevated Cdk2 expression (Ohtsuka and Dalton 

2008). Therefore, one possible hypothesis is that much like in mESCs, different 

complexes of CDK-2 exist, and some of these are inactivated at late G1 (despite the high 

expression of CDK-2) in GSCs coupled with a very transient loading of the pre-replication 

complex. This notion of a very transient loading of the licensing complex may account 

for the inability to visualize the nuclear pre-replication complex in wildtype GSCs. 

Together, this leads to the model that a pool of CDK-2 is inactive, which enables loading 

of the pre-replication complex, but the high CDK-2/CYE-1 levels throughout GSCs result 

in the loading being transient thus facilitating an accelerated entry into S phase, 

effectively coupling the high expression of CDK-2 with the G1/S switch, and abbreviation 

of G1. 

 

5.1.3: DPL-1 as a transcriptional repressor of CDK-2 to regulate G1 and S phase 

progression. 

Dp1/E2F proteins are canonical G1/S phase regulators across multiple systems, where 

they promote G1/S phase progression through activation of S phase target genes. 

However, in C. elegans loss of dpl-1 had not previously revealed any loss of G1/S phase 

either in the soma (Ceol and Horvitz 2001; Chi and Reinke 2006; Reddien et al. 2007) or 

the germline (Figure 33, Chapter 3.5). These data suggested that Dp1/E2F may not 

function canonically to promote S phase in C. elegans. Instead, in this study, we made 

the discovery that DPL-1 represses S phase transcription. EFL-1, the partner of DPL-1, 
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is closest in homology to E2F4 family of E2F transcription factors (Smith et al. 1996), and 

in vertebrates E2F4 family members have been implicated in repression of S phase 

target genes rather than activation (Dominguez-Brauer et al. 2009; Pilkinton, Sandoval, 

and Colamonici 2007; Popov, Chang, and Serikov 2005). Thus, it is possible, that in C. 

elegans, the DPL-1/EFL-1 complex function more like the Dp1/E2F4 complex in 

vertebrates and repress G1/S phase target genes. Together, these data reveal a novel 

mode of cell cycle regulation via transcriptional control of cyclin dependent kinases. 

 

5.1.4: A G2 nutritional checkpoint 

Checkpoints are necessary to ensure that the cell cycle completes with fidelity. The 

well-established DNA damage checkpoint protects against mitotic catastrophe and 

DNA fragmentation (Vakifahmetoglu, Olsson, and Zhivotovsky 2008). This checkpoint 

can be triggered in any of G1, S and G2 phases to halt cell cycle progression until the 

DNA damage has been repaired, and can trigger cell death if the DNA damage is too 

extensive. The starvation-induced G2 arrest may be reminiscent of a checkpoint as 

well. 

There are reports of nutritional signaling governing the G2/M transition in 

D. melanogaster (Hsu, LaFever, and Drummond-Barbosa 2008). Additionally, I have 

found that nutritional signaling may be responsible for an arrest at G2. Due to the GSC 

cell cycle structure, it is likely that a G2 checkpoint would be optimal. Constant 

expression of cye-1 and cdk-2 lead to active CDK-2 in all nuclei. During starvation, it is 

likely that cdk-2 remains active, since continuous replication requires active cdk-2, as 

we showed using gsk-3 mutants. With continuous active CDK-2, it is unlikely that GSCs 

would enter a quiescent state, which prohibits the known G1 checkpoint. Therefore, the 

next safest point for the cell to arrest is at G2, when the cell has safely replicated its 
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DNA and is growing in order to divide. A nutritional checkpoint at the boundary between 

G2 and mitosis would protect against entry into an energy-intensive process when 

resources are limited.  

 

5.1.5: Cell cycle plasticity in response to nutrient and metabolic stresses. 

The ability to arrest the cell cycle at any phase in the face of metabolic or nutrient 

stresses gives the C. elegans GSCs an ability to adapt to adverse conditions, or 

plasticity. The regulation of this plasticity described herein may be important for other 

populations of rapidly dividing cells. Early embryonic populations of stem cells in 

humans and mice share a similar cell cycle structure with cells in S phase for 50-60% 

of the cell cycle, leading to relatively short gap phases (White and Dalton 2005). 

mESCs, in particular, have constitutive Cdk2 activity throughout the cell cycle, resulting 

in the lack of a restriction point and an inability to enter the canonical quiescence at G0 

(Stead et al. 2002). Since G1 is a major arrest point in response to nutritional signaling 

in many cell types, this altered G1 regulation suggests that mESCs may not retain 

plasticity to nutrient availability. However, similar to the proliferation defect found due to 

downregulation of let-363 found in this study, Mtor is required for proliferation of the 

inner cell mass from which mESCs are isolated (Gangloff et al. 2004). This appears to 

mirror the regulation found in C. elegans germline stem cells, raising the possibility that 

mESCs respond to acute starvation with a G2 arrest. Further research into the 

regulation of the acute starvation-induced arrest of C. elegans GSCs, therefore, may 

provide insights into cell cycle plasticity during early embryonic divisions in mammals, 

as well as other rapidly dividing populations of cells, including disease states such as 

cancer. 
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5.2: Future Directions 

5.2.1: gsk-3 in response to external signaling 

As stated previously, the adult C. elegans GSCs have a short G1. Here, we 

provide evidence of a mutant in gsk-3 which slows S phase entry, effectively 

lengthening G1. Additionally, this phenotype occurs due to a lack of gsk-3 kinase 

activity. However, gsk-3 can receive signals from multiple pathways. In mammals, gsk-

3 is inactivated in response to Wnt and Insulin signaling. However, if gsk-3 were to be 

inactivated similarly in C. elegans GSCs, normal fed conditions and/or developmental 

signaling would result in down-regulation of cdk-2, potentially halting the cell cycle. A 

few possibilities exist to reconcile this. Most inhibitory signals rely on the production of 

a bait phosphorylation on the N-terminal of gsk-3 (Jope and Johnson 2004). Therefore, 

one option is that gsk-3 has lower affinity towards the bait phosphorylation than 

towards the substrate mediating cdk-2 expression. A second option would be that gsk-3 

is not regulated by nutritional signaling in C. elegans. Regardless, it is still unknown 

whether and/or how gsk-3 is regulated in response to nutritional signaling in GSCs.  

 

5.2.2: Insulin signaling in the starvation arrest regulation 

Since starvation halts nutritional signaling, it is no surprise that the insulin receptor 

homolog daf-2 shows a proliferation defect in adult GSCs. By utilizing a temperature-

sensitive daf-2 mutant, I found that the ADI in GSCs was significantly lower than in 

wildtype (Figure 43, Chapter 4.4). How the signal is propagated to control the cell cycle 

is yet to be determined. There is evidence that the FOXO homolog (daf-16), which 

functions downstream of daf-2, can inhibit tumor formation due to increased Notch 

signaling providing one possibility (Qi et al. 2012; Pinkston-Gosse and Kenyon 2007). 

Another is that the signal goes through TOR signaling. In mammals Insulin signaling 
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and TOR signaling are linked by the TSC1/2 complex. To date there is no known 

homolog for either protein, suggesting that there may be no link between these two 

pathways in C. elegans.  However, there is evidence that daf-16, in response to TGFβ 

but not Insulin signaling, can regulate the transcription of the Raptor homolog daf-15, 

providing an alternate link between the pathways (Qi et al. 2017). Whether they are 

independent in regulating the adult starvation-induced arrest remains to be 

investigated.   

 

5.2.3: An Extended S phase During Starvation 

Sustaining DNA replication for long periods of time can be dangerous. In addition 

to replication fork stalling and collapse, large swaths of ssDNA can be generated if the 

replicative helicase uncouples from the DNA polymerase all of which can lead to DNA 

damage and cell death (Zeman and Cimprich 2014). However, during the GSC 

starvation arrest, I observe an extended S phase of at least 18 hours, 3 times longer 

than normal S phase. Therefore, GSCs may be incurring DNA damage and mutations 

over time.  

In addition, there is EdU incorporation at potentially any point during the extended 

S phase. This is in contrast to hydroxyurea treatment which does not incorporate EdU 

and suggests that there are nucleotides available during the starvation arrest. In acute 

starvation, there would be no external source for these nucleotides and the internal 

source of these nucleotides remains unknown. The apoptotic cells which are in 

pachytene, more proximal in the germline, could provide these nucleotides. Since there 

is no sign of re-replication, the GSCs could be undergoing a very slow DNA replication. 
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