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DEVELOPMENT OF AUTOMATED RADIOTHERAPY TREATMENT PLANNING FOR CERVICAL AND BREAST 
CANCER FOR RESOURCE-CONSTRAINED CLINICS 

 

Kelly Kisling, M.S. 

Advisory Professor: Laurence Court, Ph.D. 

 

Globally, cancer rates are on the rise, especially in low- and middle-income countries (LMICs). 

However, many of these countries lack access to radiotherapy, which is due in part to a substantial 

shortage of the staff necessary to deliver safe and effective radiotherapy. This staff shortage could be 

mitigated by the automation of the radiation treatment planning process. To this end, we developed 

automated planning for cervical and postmastectomy breast cancer radiotherapy, the two most 

common types of cancer in women in many LMICs. 

For radiotherapy of cervical cancer in resource-constrained clinics, the recommended treatment 

technique is a four-field box. We created algorithms to plan four-field box treatments with 

homogenous dose distributions by automatically determining the beam apertures and relative beam 

weights. Using our techniques we automatically planned 150 four-field-box treatments and 89% were 

scored acceptable by radiation oncologists. The dose distributions were more homogenous (p<0.001) 

using automatically optimized beam weights compared with equal beam weights. We also created an 

automatic quality assurance (QA) technique to verify the clinical acceptability of the beam apertures, 

which flagged 90% of the unacceptable beam apertures (false-positive rate: 16%). 

For radiotherapy of node-positive, postmastectomy breast cancer, it is recommended to treat the 

chest wall and ipsilateral nodes, while reducing the dose to normal tissues, such as the heart and lungs. 

We created algorithms to plan three-field treatments (mono-isocentric tangential and supraclavicular 

fields) on free-breathing patient CTs. The dose distribution was automatically optimized by using mixed 

energy photon beams and field-in-field dose modulation. Using these algorithms, we automatically 

planned radiotherapy treatments for 10 left-sided, postmastectomy patients. The plans were evaluated 
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quantitatively based on their dose distributions, and 90% of the plans met constraints for lung dose, 

heart dose and target coverage. Physicians accepted all plans either as-is (50%) or with only minor 

changes (50%). Automatic QA of the plans flagged 92% of the changes requested by physicians. 

To assess the risk of failure in our automated treatment planning workflow, we performed Failure 

Modes and Effects Analysis (FMEA). FMEA showed that a specially-designed automated QA program 

reduced the risk of automated treatment planning. Additionally, we found that human error is still a 

prominent cause of potential failures and that manual plan reviews of automatically generated plans 

are still vital for safe delivery of radiotherapy. 

In conclusion, automated treatment planning and QA for radiotherapy of cervical and breast 

cancers were clinically viable for a majority of patients tested. Our algorithms will be implemented 

clinically at our partner hospitals in South Africa in the next year.  
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Chapter 1 : Introduction 

 

1.1 Prevalence of cervical and breast cancer 

The majority of the global cancer burden is in low- and middle-income countries (LMICs), where 

two-thirds of all cancer deaths in the world occur [1]. This amounts to more than eight million cases of 

cancer and five million deaths from cancer each year in a part of the world that has few resources to 

fight the disease [1]. Furthermore, cancer rates are on the rise, and the number of cases worldwide is 

predicted to rise from 14 million to 20 million cases of cancer each year by 2025 [2]. This rate of 

increase is expected to be the most rapid in LMICs [2].   

Breast and cervical cancers are extremely prevalent in LMICs, where they are the first and second 

most common types of cancer occurring in women [1]. They are also the first and third most common 

cause of cancer death for women in these regions [1]. More than half of all breast cancers occur in the 

developing world, where a large proportion of cases are detected in late stages [3]. A large majority of 

cervical cancer deaths (87%) occur in LMICs, where the risk of dying from the disease is three times 

higher than in more developed regions [1].  

 

1.2 Radiotherapy for cervical cancer 

For locally advanced cervical cancer (stages IB2–IVA), the standard of care treatment is concurrent 

chemotherapy and radiation, including both external beam radiotherapy and brachytherapy [4]–[9]. 

The goal of the external beam radiotherapy is to treat the gross tumor and any at-risk tissues in the 

pelvis, including lymph nodes and paracervical tissue, which reduces the risk of regional spread and the 

volume of the gross tumor prior to brachytherapy. Overall, radiotherapy has been shown to greatly 

improve local control of cervical cancer [4]–[9]. 

There are several primary techniques used to deliver external beam radiotherapy for cervical 

cancer: conventional, using two to four fields based on the bony anatomy; conformal, using two to four 
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fields that are designed on the basis of soft tissue contours within the pelvis; and intensity-modulated 

radiotherapy (IMRT), using five or more fields that are inversely-optimized on the basis of soft tissue 

contours within the pelvis. The selection of which treatment technique to use depends on the clinical 

resources available, the dose to normal tissues, and organ motion within the treatment area. The 

conventional technique is recommended for the treatment of locally advanced cervical cancer in 

resource-constrained clinics by both the American Society of Clinical Oncology (ASCO) and the 

International Atomic Energy Agency (IAEA) [10], [11]. The conventional technique uses considerably 

less resources than both the conformal and IMRT techniques which rely on accurate contouring.  

 

1.3 Radiotherapy for breast cancer 

For many stages of breast cancer, radiation is essential for treatment after surgery (lumpectomy or 

mastectomy). In more advanced stages of the disease, as is common in LMICs, the surgical procedure is 

usually a mastectomy. If the axillary lymph nodes are found to be involved, radiotherapy of the chest 

wall and at-risk lymph nodes is the standard treatment and has been shown to reduce the risk of local 

recurrence and improve survival among these patients [12]–[15]. The targeted lymph nodes include the 

level III axillary and supraclavicular (SCV) lymph nodes, and sometimes also include the internal 

mammary chain (IMC) lymph nodes. Including the IMC lymph nodes in the radiotherapy treatment 

increases the complexity of the radiotherapy and may increase the dose to sensitive normal tissues, 

such as the heart [16]. Given that the treatment of the IMC lymph nodes remains controversial, they 

may not be included if there is no indication that these nodes might be involved [17].  In resource 

constrained settings, the IMC lymph nodes are commonly not treated, as they do not have access to 

specialized techniques that help reduce heart dose by delivering the radiation to the patient under 

deep inspiration breath hold. 

One of the most common techniques for the treatment of node-positive, postmastectomy breast 

cancer is a tangential pair of fields, for treating the chest wall, which is matched to an anterior-oblique 
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field, for treating the SCV lymph nodes. The goal of this technique is to treat the entire chest wall and 

at-risk lymph nodes (SCV and level III axillary), while minimizing dose to sensitive normal tissues, such 

as the lung and heart [18]–[21]. Additionally, studies have shown that using radiotherapy techniques 

which achieve a homogenous dose can significantly reduce painful acute skin reactions [22]. There are a 

few techniques employed in order to achieve a homogenous dose, including using a combination of 

high and low energy photon beams and various field modulation techniques, such as wedges or field-in-

field (FIF) segments.  

 

1.4 Radiotherapy resources in low- and middle-income countries 

Radiation therapy is an essential aspect of the treatment for cancer: approximately half of all 

cancers require radiation therapy as part of their treatment [23]. Yet in low- and middle-income 

countries, radiation therapy is only accessible to half the number of people who need it [23]. One of the 

major contributing factors to the lack of radiotherapy access in less-developed regions is an enormous 

shortage of specialized radiotherapy staff [24]. Staff shortages in resource-constrained radiotherapy 

clinics have led to the use of simplified treatment techniques that require less time to plan than 

modern treatments, but can result in inferior outcomes. The time that staff spend planning treatments 

has been identified as a major contributor to the cost of radiation therapy for low- and middle-income 

countries [25]. Shortening, or eliminating, the time required to plan treatments could reduce this huge 

deficit in radiotherapy staff. As a result, we could lower the cost of radiation therapy.  

 

1.5 Automation in Treatment Planning 

Currently, treatment planning is a time-intensive, manual process that is necessary for delivering 

high quality radiation therapy to every patient. The process of treatment planning can be broken down 

into three general steps: (1) designing the treatment beam geometry, (2) optimizing the dose 

distribution delivered by the beams, (3) and quality assurance checks verifying the appropriateness and 
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safety of each treatment plan. These steps involve major human input from specialized staff, and in 

order to automate this process, we need to develop and validate novel automation techniques that will 

replace every manual step of treatment planning.  

While work has been done towards automating some of the individual steps of planning, the focus 

has been to ease workflows in high-resource clinics such as those in the United States. Many of these 

have focused on automated optimization of inversely-planned treatments, such as IMRT [26]–[29]. 

However, there are many other manual steps that would need to be completed in order to plan these 

treatments. For breast cancer, there has been some work towards automation of planning for 

individual process steps or for a simpler radiotherapy technique which is used for earlier stages of the 

disease [30]–[34]. However, given the prevalence of more advanced stages of breast cancer in LMICs, a 

more complex treatment technique is needed but has not yet been automated. There has never before 

been a concerted effort to develop a fully-integrated automated planning solution that requires no 

additional inputs from staff for cervical cancer or node-positive, postmastectomy breast cancer. 

 

1.6 Study Goal 

The overall objective of this project was to automate treatment planning of radiotherapy for 

patients with locally advanced cervical cancer and node-positive, postmastectomy breast cancer, 

including automated verification of plan quality. We validated the techniques that we developed and 

integrated them as a fully automated planning tool. Our goal was to require only a computed 

tomography (CT) scan and prescription as input, and with no other human interaction, generate a 

patient-specific treatment plan. 

In order to determine if the plans generated by the fully automated planning tool were acceptable 

for treatment, we tested the system retrospectively using patient CT datasets from several institutions, 

including MD Anderson and our partner hospitals located in South Africa.  The resulting treatment plans 

were evaluated by radiation oncologists from several institutions in both South Africa and the United 
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States. Finally, we created and test techniques to reduce the risk of automated planning by 

automatically detecting when plans are not of acceptable quality.  
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Chapter 2 : Purpose and Central Hypothesis 

Central Hypothesis: 

We hypothesized that 90% of the treatment plans created with our automated planning techniques will 

be rated as clinically acceptable by radiation oncologists and that our automated quality verification 

techniques will detect 90% of unacceptable plans.  

Specific Aim 1:  

Aim: Develop automated treatment planning of radiotherapy for patients with locally advanced cervical 

cancer. 

Hypothesis: Treatments planned by our automation techniques would be rated as clinically acceptable 

by radiation oncologists for at least 90% of plans. 

 Aim 1.1: Automated design of the beam apertures. 

Aim 1.2: Automated optimization of the beam weights. 

The work towards Specific Aim 1 is presented in Chapter 3: Automated Treatment Planning for 

Radiotherapy of Locally Advanced Cervical Cancer. 

Specific Aim 2:  

Aim: Develop automated treatment planning of radiotherapy for patients with node-positive, 

postmastectomy breast cancer. 

Hypothesis: Treatments planned by our automation techniques would be rated as clinically acceptable 

by radiation oncologists for at least 90% of plans. 

Aim 2.1: Automated design of the treatment field geometry. 

Aim 2.2: Automated optimization of the dose distribution. 

The work towards Specific Aim 2 is presented in Chapter 4: Automated Treatment Planning for 

Radiotherapy of Postmastectomy Breast Cancer. 
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Specific Aim 3:  

Aim: Assess the risk of automated treatment planning and develop automated quality verification 

techniques for treatment plans resulting from Aims 1 and 2. 

Hypothesis: Our quality verification techniques would automatically detect 90% of plans with 

unacceptable plan quality. 

 Aim 3.1: Assess the risk of automated planning. 

Aim 3.2: Develop automated quality assurance (QA) for cervical cancer automated planning. 

Aim 3.3: Develop automated QA for breast cancer automated planning. 

The work towards Aim 3.1 is presented in Chapter 5: Assessment of Risk in Automated Treatment 

Planning. 

The work towards Aim 3.2 is presented in Chapter 6: Automated Plan Quality Verification for Cervical 

Cancer Radiotherapy. 

The work towards Aim 3.3 is presented in Chapter 4: Automated Treatment Planning for Radiotherapy 

of Postmastectomy Breast Cancer. 
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Chapter 3 : Automated Treatment Planning for Radiotherapy of Locally Advanced 

Cervical Cancer 

This chapter is based upon the following article: 

Kisling K, Zhang L, Simonds H, Fakie N, Yang J, McCarroll R, Balter P, Burger H, Bogler O, Howell R, 

Schmeler K, Mejia M, Beadle BM, Jhingran A, Court L. Fully automatic treatment planning for external 

beam radiation therapy of locally advanced cervical cancer – a tool for low-resource clinics. J Glob 

Oncol, no. 5. 2019:1-9. doi:10.1200/JGO.18.00107 

 

3.1 Introduction 

Global cancer rates are increasing, especially in low- and middle-income countries [1]. By 2025, 20 

million cancer cases are predicted worldwide annually [2], of which half would benefit from treatment 

with radiation therapy [23], [35], [36]. However, many countries lack adequate radiation therapy 

capabilities [23]; this is due, in part, to staff shortages in these regions [24]. Automating radiation 

treatment planning could help mitigate this limitation by allowing technology to do a large part of the 

required work to begin treatment of patients. In addition, an expedited planning process could enable 

patients to be treated much sooner after diagnosis. According to ASCO and the International Atomic 

Energy Agency, the recommended treatment of invasive cervical cancer in low-resource settings is a 

radiotherapy technique known as a “four-field box” [10], [11]. This technique uses four orthogonal 

beams to treat the gross tumor and at-risk tissues in the pelvis. The beam apertures are based on bony 

anatomy that is visible in a digitally reconstructed radiograph from each of the beam angles: 

anteroposterior, posteroanterior, right lateral, and left lateral. Examples of beam apertures are shown 

in Figure 1. 
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Figure 1. Automatically created treatment fields. Beam’s eye view of the (A) anteroposterior (AP) and 

(B) right lateral beam angles. The beam apertures are designed on the basis of the bony anatomy and 

will be collimated using the multileaf collimator. 
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Through a collaboration with hospitals in South Africa and the United States, we have developed a 

fully automatic treatment planning tool, the Radiation Planning Assistant (RPA) [37]. The RPA designs 

patient-specific four-field box radiation treatments for locally advanced cervical cancer, one of the most 

prevalent forms of cancer in low-resource settings [1]. To build the RPA, we developed algorithms to 

automate every step in the treatment planning process. The RPA has been integrated with a 

commercial treatment planning system (TPS) to plan three-dimensional treatments on planning CT 

scans with no human input. 

The objective of this study was to validate the individual algorithms of the RPA and to test the fully 

integrated system on patient CT scans. We retrospectively tested the RPA using patient CT scans from 

cancer hospitals in the United States and in South Africa. We have also implemented a semiautomated 

version of the RPA into the clinical workflow at The University of Texas MD Anderson Cancer Center 

(Houston, TX; hereafter, MD Anderson). 

 

3.2 Methods 

All studies and patient data were handled in accordance with the corresponding approved 

institutional review board protocol, and where required, patient consent was obtained. 

3.2.1 Overview of the RPA 

To plan a patient-specific treatment with the RPA, the following inputs are used: (1) a CT scan of 

the patient in the treatment position and (2) a plan order from the physician, which includes basic 

patient information, including the prescription. With no further human input, the RPA automatically 

creates a treatment plan that is ready for physician review, along with plan documentation. This 

documentation is for the patient’s medical record and for performing quality assurance checks that are 

vital to delivering safe radiotherapy [38]. The documentation includes all dose distributions, allowing 

the physician to review the quality of the plan, including target coverage.  
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Algorithms have been developed to automate each manual step of treatment planning and have 

been integrated with the Eclipse TPS (Varian Medical Systems, Palo Alto, CA) using its Application 

Programming Interface to form the fully automatic TPS. The algorithms that automate each step are 

described in the following section. 

3.2.2 In-House Automation Algorithms 

3.2.2.1 Delineation of the body contour 

The body contour (Figure 2) is important for accurate dose calculation in the Eclipse TPS. The first 

step in this algorithm is to identify the location of the couch using the sum projection signal along the 

lateral direction and then searching for the most representative peak. The couch is then removed from 

the image by setting all pixels posterior to this line to the CT number of air. The RPA then searches for 

the body contour by thresholding the CT image intensity (with the couch removed) into a binary mask; 

it then uses postprocessing to ensure the topologic characteristics and smoothness. 

 

Figure 2. Body contour and marked isocenter. (A-C) Three views, (A) axial, (B) sagittal, and (C) coronal, 

of the computed tomography scan of a patient. The automatically segmented body contour is outlined 

in red. The views intersect at the location of the marked isocenter (green), which is determined on the 

basis of the radiopaque external fiducials. The intersecting planes are denoted by the dashed yellow 

line. 

3.2.2.2 Detection of the marked isocenter 

The next step in the RPA is to automatically detect the marked isocenter, as indicated by the 

intersection of three radiopaque fiducials placed on the patient’s skin during the planning CT scan 

(Figure 2). The RPA automatically detects the marked isocenter by defining a search domain within the 
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bandwidth of the body contour. Potential fiducial candidates within the search domain are identified on 

the basis of the CT number. Any false candidates are removed using several criteria, including size, 

location, and geometry. Finally, the intersection of the selected cluster of three fiducials is used to 

define the marked isocenter. 

3.2.2.3 Design of the treatment field apertures 

The RPA then automatically designs the four orthogonal treatment beams, which intersect at the 

marked isocenter. First, the RPA automatically segments the following bony anatomy on the CT image: 

bony pelvis, femoral heads, sacrum, and fourth and fifth lumbar vertebral bodies. The RPA uses a 

deformable, multiatlas technique for automatic segmentation [39], [40]. Next, the RPA projects the 

segmented anatomy into each beam’s eye view (BEV). The RPA automatically identifies anatomic 

landmarks in the BEV, such as the widest extent of the pelvic inlet, and sets the beam aperture on the 

basis of these landmarks according to a set of defined rules (eg, 2 cm wider than the pelvic inlet). A 

representation of this workflow is shown in Figure 3. 

 

Figure 3. Workflow of the algorithm that automatically designs four-field box treatment beams. For 

automated planning, the only input is a computed tomography scan and a prescription. No other 

human input is required, and a plan is presented for physician review. 2D, two dimensional; 3D, three 

dimensional; BEV, beam’s eye view 
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3.2.2.4 Optimization of the dose distribution 

Next, the RPA creates the treatment beams in the Eclipse TPS using the automatically defined beam 

apertures set at the automatically located isocenter. The RPA then automatically calculates the dose 

delivered by each beam using 18-MV photons. To achieve a homogenous dose distribution within the 

treated volume, the RPA automatically determines the weighted contribution of each beam. The RPA 

uses a least-squares fitting to determine the beam weights that minimize the dose heterogeneity inside 

the treated volume. The treated volume is defined as the volume intersected by all beams, contracted 

by a 0.5-cm margin to exclude the rapid dose drop-off at the field edge. 

3.2.3 Retrospective Testing of RPA Algorithms 

We first tested each algorithm retrospectively on 150 pelvic CT scans of female patients at MD 

Anderson. Then we tested the fully integrated RPA on 10 CT scans of female patients from Tygerberg 

Hospital (Cape Town, South Africa) and four CT scans from Groote Schuur Hospital (Cape Town, South 

Africa). All CT scans had been acquired for radiotherapy planning, with the patients supine. 

3.2.3.1 Delineation of the body contour 

The automatically delineated body contour from the RPA was compared with the body contour 

resulting from Eclipse’s semiautomated body contour tool, with manual edits where necessary. The two 

body contours were compared quantitatively using the Dice similarity coefficient, mean surface 

distance, and Hausdorff distance [39]. 

3.2.3.2 Detection of the marked isocenter 

The automatically localized marked isocenter was compared with an isocenter that had been 

manually placed at the intersection of the three fiducial markers. The absolute distance between these 

two points was calculated and used for comparison. 

3.2.3.3 Design of the treatment-field apertures 

The automatically created treatment-field apertures were reviewed by two physicians specializing 

in gynecologic radiation oncology, one from MD Anderson (A.J.) and one from Tygerberg Hospital in 
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South Africa (H.S.). They rated each field as “acceptable” or “not acceptable” for treatment, on the 

basis of whether they would treat the patient using that field. For a plan to be acceptable, all four fields 

must have been rated as acceptable. 

3.2.3.4 Optimization of the dose distribution 

The dose distributions were calculated using automatically optimized beam weights and were 

compared with nonoptimized dose distributions, which used equally weighted beams (ie, each beam 

contributed the same dose to the calculation point). The maximum dose, defined by the hottest 1 cc of 

tissue, was evaluated. We also assessed the coverage, defined by the percentage of the treated volume 

covered by at least 95% of the prescription dose. The values with and without automated beam weight 

optimization were compared using a Wilcoxon signed-rank test. 

3.2.3.5 Running time of the RPA system 

The time for the RPA to automatically plan a treatment was recorded. This included every step, 

beginning from the import of the CT scan and plan order into the RPA and ending with the optimized 

and calculated treatment plan in the TPS, ready for physician review. 

3.2.3.6 Running the RPA remotely on patients at two South African hospitals 

The fully integrated RPA was tested on-site at Tygerberg Hospital and Groote Schuur Hospital. The 

resulting treatment plans and dose distributions were reviewed by physicians specializing in 

gynecologic oncology at the corresponding hospital (H.S., N.F.) and rated as acceptable or not 

acceptable for treatment. 

3.2.4 Clinical Deployment at MD Anderson 

A semiautomated version of the RPA was created and deployed into the clinical workflow at MD 

Anderson for patients with cervical cancer in July 2016. This version was integrated with the Pinnacle 

TPS (Philips Healthcare, Andover, MA). The workflow of this system differs from the fully automated 

workflow in that the physician manually contours the soft-tissue target volumes on the CT scan. After 

the CT scan is imported into the TPS, the dosimetrist exports the CT scan to the RPA, The RPA then 
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automatically detects the marked isocenter and designs the treatment-field apertures (still based on 

the bony anatomy). Once complete, the RPA automatically sends an e-mail indicating that the plan is 

ready, and the dosimetrist imports the uncalculated treatment beams. The physician reviews the 

beams, making any necessary edits on the basis of the contours of the target and critical structures, and 

planning continues. 

We assessed any manual changes to the location of the marked isocenter. We also quantitatively 

compared the extent of the physician edits to the automatically planned beam apertures, using the 

mean surface distance and Hausdorff distance. 

 

3.3 Results 

3.3.1 Retrospective Testing of RPA Algorithms 

3.3.1.1 Delineation of the body contour 

A typical result of the automatically delineated body contour is shown in Figure 2. This body 

contour agreed well with the contour generated using Eclipse’s semiautomatic tool with manual edits. 

The median Dice similarity coefficient was 0.996 (standard deviation [SD], 0.001; range, 0.988 to 0.997). 

The median mean surface distance was 0.6 (SD, 0.2; range, 0.4 to 1.9) mm. The median Hausdorff 

distance was 22.3 (SD, 18.6; range, 5.7 to 122.7) mm. 

The largest discrepancies were found when the patient’s arm was included in only one of the 

contours. Although these differences may seem large in some patients, they result from differences in 

how each technique handled the inclusion of the patients’ arms. These discrepancies are outside the 

treatment area and would not affect the dose delivered. 

3.3.1.2 Detection of the marked isocenter 

The distances between automatically and manually placed marked isocenters were small (average, 

1.1 mm; SD, 0.7; range, 0.1 to 2.9 mm). The largest discrepancies were found when the fiducials did not 
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all appear on the same axial slice of the patient’s CT scan. This sometimes led to the isocenters being 

located on adjacent slices. 

3.3.1.3 Design of the treatment-field apertures 

An example of the treatment fields generated by the RPA are shown in Figure 1. Of the 150 

treatment plans (n = 600 fields), one physician rated 136 (91%) as acceptable for treatment. The second 

physician found that the image quality of the BEV was too poor in six of 150 plans (four had large 

amounts of bowel contrast that partially obstructed the bony anatomy in the BEV) and did not rate 

these six plans. Of the remaining 144 plans, the physician rated 126 (88%) as acceptable. Of the plans 

marked as unacceptable by at least one physician (n = 23), 19 (83%) had incorrectly placed superior 

borders as a result of inaccurate contouring of the vertebral bodies during the automatic segmentation 

step. To overcome this, we will incorporate an option to manually adjust this border in the workspace 

of the RPA where the physician reviews the treatment plan. 

3.3.1.4 Optimization of the dose distribution 

Figure 4 shows a comparison of the maximum dose for each patient with automatic beam-weight 

optimization versus without optimization. The maximum dose was significantly lower using 

automatically optimized beam weights, with a median change of −1.9% (P < 0.001, range −10.0% to 

+0.4%). In addition, there was a small yet statistically significant increase in the coverage of the treated 

volume. The median percentage of the volume covered by 95% of the prescription increased by 0.6% (P 

< .001, range: −2.8% to +2.8%). 
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Figure 4. Maximum dose was reduced using automatic beam-weight optimization. The maximum dose 

(hottest 1 cc) is shown for each patient (n = 149) as a percentage of the prescription dose for optimized 

versus equal beam weights (nonoptimized). The dotted line represents no change in the maximum 

dose, and all points below this line showed a reduction in the maximum dose. The reduction was 

especially large for patients who had very high maximum doses using equal beam weights. 

The use of automatic beam-weight optimization was especially beneficial for patients with high 

maximum dose (≥ 107% of the prescription dose) without optimization. These patients’ plans 

experienced a larger median change in maximum dose (−3.5%). Furthermore, the percentage of 

patients with high maximum doses was reduced from 44% without optimization to 3% with 

optimization. Figure 5 shows the dose distribution of one axial slice from one patient whose very high 

maximum dose was greatly reduced using optimized beam weights. 
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Figure 5. Patient plans with high maximum doses experience a substantial reduction in the maximum 

dose with automatic beam-weight optimization. The resulting dose distribution for an (A) automatically 

planned four-field box with equal beam weights (nonoptimized) and (B) automatically optimized beam 

weights. The maximum dose was reduced from 117% to 107% of the prescription dose for this patient. 

3.3.1.5 Running time of the RPA system 

Once the planning CT scan and plan order were imported, the fully integrated RPA created a plan in 

Eclipse ready for physician review in a median of 11.0 minutes (range, 8.2 to 13.6 minutes). 

3.3.1.6 Running the RPA remotely in patients at two South African hospitals 

Of the 14 treatment plans created on the planning CT scans of patients from the partner hospitals 

in South Africa, 100% were approved for treatment by the physician (10 plans from Tygerberg Hospital 

and four from Groote Schuur Hospital). 

3.3.2 Clinical Deployment at MD Anderson 

Since the clinical version of the RPA was deployed at MD Anderson, it has been used in the planning 

of 24 patients with cervical cancer. The location of the marked isocenter was not adjusted for 20 

patients and was adjusted less than 1 mm for four patients. The physicians edited the automatically 
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created treatment fields on the basis of their contours of the target and normal tissues. When 

comparing the fields before and after physician edits, the median mean surface distance was 3.5 mm 

(SD, 2.4 mm; range, 0.0 to 10.4 mm) and the median Hausdorff distance was 13.9 (SD, 9.1; range, 0.0 to 

42.0) mm. 

 

3.4 Discussion 

In this work, we validated the RPA’s algorithms with physician review of a large cohort of patients 

and performed remote testing of the fully integrated RPA. This work represents a critical step before 

implementation of the fully automated system in the clinic. To our knowledge, this is the first work 

toward automated treatment planning for radiation therapy of cervical cancer. 

Before this study, the algorithms for defining the beam apertures were honed over several testing 

iterations on more than 250 patient CT scans with feedback from physicians at MD Anderson and 

Tygerberg Hospital and on the basis of the clinical edits made by physicians using the MD Anderson-

deployed version of the RPA. The final algorithm, validated in this study, was a consensus of the 

radiation oncologists for patients whose disease extent was limited to the upper two-thirds of the 

vagina and with only pelvic lymph node involvement. In the future, we can extend this work for 

patients with more advanced disease (eg, involvement of the distal vagina or paraaortic nodes) by 

including variations on the beam-aperture definitions. Within the RPA workflow, the rules by which the 

beam apertures are defined can be adjusted for a range of disease stages, as long as these rules are 

based on automatically segmented bony anatomy. 

In addition to extensive retrospective testing at MD Anderson, we conducted a successful 

retrospective test of remote, fully automatic treatment planning at two clinics in South Africa. Moving 

forward, we will prepare for clinical deployment and testing, beginning with our two partner clinics in 

South Africa. We will monitor the prospective use of the RPA and evaluate its effect on clinical 

workflow, including the time staff spend planning and the time from CT simulation to first treatment.  
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During this testing, we expect to address challenges on the basis of differences in clinical workflow and 

software and hardware platforms. Ultimately, our goal is to deploy in clinics with fewer resources, 

which will likely introduce new challenges in terms of staffing, workflow, and equipment. We also are 

evaluating options to make this tool accessible to low-resource clinics, considering that there may be 

limited financial resources available. In addition, we are developing automated treatment planning for 

head-and-neck cancer radiation therapy [41] and postmastectomy chest-wall radiation therapy [37]. 

The treatment technique planned by the RPA is recommended for cervical cancer in low-resource 

clinics, according to the International Atomic Energy Agency and ASCO [10], [11]. Although treatment 

apertures on the basis of soft-tissue contours would be preferable for curative treatments, the bony 

anatomy approach is used as an alternative in low-resource settings where there is a lack of staff to 

complete the manual contouring necessary for more conformal treatments. With plans created by the 

RPA, the physician can use the automatically created documentation to review the dose distribution 

and evaluate the plan’s coverage, even without having contoured the soft-tissue disease.  

Given the prevalence of cervical cancer, the fully automatic treatment planning offered by the RPA 

could help alleviate staff shortages in low-resource clinics. In addition, by reducing the back-and-forth 

handoffs between planners and physicians needed to manually plan a treatment, the automated 

system could prepare a plan more quickly, presenting a plan for review shortly after the CT scan is 

acquired. We envision the RPA facilitating same-day treatments, where a patient never has to leave the 

clinic between CT scan and her first treatment. In contrast, for patients with gynecologic pelvic disease 

in our clinical practice, the median planning time is 21 hours (interquartile range, 7 to 47 hours) from 

CT simulation to when the plan is ready for physician review, including handoffs and time when the 

plan is not being actively worked on (unpublished data). Furthermore, handoffs between staff have 

been identified as a weakness in radiotherapy safety, and any reduction in the number of handoffs may 

result in an improvement in the safety of radiation therapy [42], [43]. 
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The results of this study indicate that fully automatic treatment planning for cervical cancer is 

achievable. More prospective studies are necessary and are ongoing in the United States and planned 

with our international partner clinics. By reducing the work required by trained staff, the RPA could 

ease the burden of creating patient-specific treatment plans in resource-constrained clinics. As a result, 

using the RPA to automatically plan treatments could help reduce some of the barriers to establishing 

radiation therapy programs. 

 

 

Note: A statement of appropriate use of the automated planning tool for cervical cancer can be found 

in Appendix A.  
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Chapter 4 : Automated Treatment Planning for Radiotherapy of Postmastectomy 

Breast Cancer 

 

4.1 Introduction 

Breast cancer is the most common cancer in women worldwide, including many low- and middle-

income countries (LMICs) [1]. Generally, breast cancer is diagnosed at more advanced stages in LMICs 

compared with more developed countries [3]. For breast cancer with four or more positive lymph 

nodes, the standard of care is postmastectomy radiotherapy (PMRT) to the chest wall and ipsilateral 

lymph nodes, which reduces the risk of local recurrence and improves survival [12]–[14]. There are also 

increasing indications to deliver PMRT to patients with one to three positive lymph nodes or those with 

high-risk node negative disease, as radiation in such situations is associated with improvement in 

disease-free survival [15]. Planning PMRT treatments can be difficult and time-consuming, as it involves 

using a complex combination of matched fields and various techniques to reduce the dose to organs at 

risk (OARs) and improve the homogeneity of dose to the targets. Planning such treatments is further 

complicated by the lack of access to technologies that facilitate deep-inspiration breath-hold 

techniques that reduce the dose to the heart, which is often the case in resource-constrained clinics in 

LMICs. These countries also have insufficient access to radiotherapy [23] in part because of a sizable 

shortage in the trained staff needed to plan and deliver radiation treatment [24]. Treatment planning 

constitutes a substantial amount of radiotherapy staff workload, and that workload could be reduced 

by increased automation. 

To date, most work on automating treatment planning for breast cancer has focused on a 

tangential field-only treatment technique or on specific steps in treatment planning, such as the 

inverse-planning of tangential intensity-modulated radiotherapy [30]–[34]. Many of these techniques 

are effective and have improved the efficiency of treatment planning. Expanding from these efforts, we 
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have developed a tool that automates the entire planning process for PMRT, which is necessary for 

treating more advanced breast cancers. The PMRT technique differs from the previously automated 

tangential field-only technique in that it includes a supraclavicular (SCV) field that is matched to 

tangential fields via a non-divergent border at the match line. Another unique feature of our current 

automation technique is that previous automation techniques require a particular placement of 

external fiducial markers, which is not standardized among clinics; the techniques and materials used 

for placing these markers vary greatly. Our goal in the present study was to develop an automated 

technique for planning PMRT that can be widely used at multiple institutions around the world. Thus, 

we designed a tool that does not require placement of external fiducial markers to determine the 

borders of the treatment fields.  

Herein we describe the automated treatment planning tool we developed, including the techniques 

used for automation and the results of a planning study for patients with breast cancer who underwent 

PMRT. We developed this automated planning tool in a collaboration between institutions in the 

United States and South Africa, and it is intended for use in resource-constrained settings for 

radiotherapy for locally advanced breast cancer after mastectomy. 

 

4.2 Materials and Methods 

4.2.1 Overview of the automated planning tool 

The automated planning tool tested in this work designs PMRT treatments using a monoisocentric 

tangential and SCV field technique. To reduce the dose to OARs and improve dose homogeneity in the 

targets, the algorithms in this tool optimize the use of mixed high- and low-energy photon beams and, 

for the tangential fields, the use of field-in-field (FIF) segments. The automated planning tool was 

developed assuming the radiation treatments would be planned on a free-breathing computed 

tomography (CT) scans of patients in the head-first, supine position owing to resource limitations. The 

only external fiducial markers required are those indicating the position of the marked isocenter (i.e., 
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wires are not necessary for determining the beam geometry). The external fiducial markers indicating 

the marked isocenter are automatically detected as described previously [44]. The initial version of this 

tool was developed for left-sided treatments only. Given the additional complexity of left-sided 

treatments because of the heart’s proximity to the targets in these treatments, translating this 

approach to right-sided treatments should be easier than translating it in the opposite direction. 

Patient treatments were prescribed for a hypofractionated regimen of 40.05 Gy delivered in 15 

fractions [45]. 

The techniques for PMRT planning automation used algorithms developed in-house that were 

integrated with the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA, USA) via 

its application programming interface. This PMRT planning tool is part of a suite of automated planning 

tools called the Radiation Planning Assistant that is being developed to automate planning processes 

for resource-constrained clinics [37] and currently includes treatment planning for radiotherapy of 

cervical and head and neck cancers [41], [44]. The inputs required by the Radiation Planning Assistant 

are a plan directive from the physician specifying the prescription and a CT scan for treatment planning. 

Another input needed for automatically planning PMRT is the location of the inferior border of the 

tangent. This additional user input is currently required because an automated technique for 

identifying this border that is sufficiently reliable has yet to be found, largely because of substantial 

variability between patients. Therefore, the user is required to identify the CT slice of the tangent fields’ 

inferior border before automated planning is initiated. 

The overall workflow for our automation technique for PMRT is illustrated in Figure 6. After 

automatic segmentation of the targets, OARs, and additional planning structures are two main 

automated planning steps: (1) setting up the treatment beams and (2) optimizing the dose 

distributions. These steps are described in detail below. Once automated planning is completed, the 

user is presented with a composite treatment plan consisting of the tangential and SCV field plans, 

calculated dose, and heart and ipsilateral (left) lung contours, all of which are created automatically. 
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We also implemented a technique to automatically verify the quality of the treatment plan and 

determine when it deviates from standard quality metrics to flag these deviations to the reviewer of 

the plan. 

 

Figure 6. Overview of the method for automated planning of postmastectomy radiotherapy. OARs, 

organs at risk; BEV, beam’s eye view; ROIs, regions of interest. 

4.2.1.1 Automation of segmentation 

The first step in our planning process is to automatically segment various anatomic structures, 

including the targets (chest wall and lymph nodes), several OARs (e.g., both lungs, heart, spinal canal), 

and other structures useful in defining beam geometry (e.g., sternum, clavicle, trachea). Automated 

segmentation was done by deforming multiple atlases of patient contours to the target patient and 

combining the deformed contours by using fusion based on the Simultaneous Truth and Performance 

Level Estimation [46], [47]. These atlases were created by our group and consisted of 11 patient CT 

scans with contours. This multi-atlas segmentation approach has been successfully used for many other 

anatomic sites [39]–[41].  
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4.2.1.2 Automation of beam setup 

Once automatic segmentation was complete, the next step was to determine the CT slice of the 

isocenter, representing the match line between the tangential fields and the SCV field. This slice was 

initially placed at the inferior aspect of the clavicular head. From there, the posterior, non-divergent 

border of the tangential fields (the principal border of the tangents separating the chest wall from the 

OARs) was determined by using support vector machine classification. This technique was adapted 

from the work described by Zhao et al. [33] and assigned points within the contours to one of two 

classes: target (chest wall) and avoidance (heart, lungs, and contralateral breast). These classified 

points were used as inputs to the support vector machine to determine the optimal three-dimensional 

plane separating the two classes. This plane represents the posterior border of the tangential fields and 

can be used to derive the beam parameters for the medial and lateral tangential fields, including the 

gantry angles, collimator angles, and jaw/multileaf collimator (MLC) positions defining the posterior 

border. The collimator angle is set to zero, and the posterior border is defined using the MLC. The 

anterior jaw is defined to provide 2 cm of flash from the projection of the body contour. The inferior 

jaw is defined at the projection of the slice of the body contour at the inferior border (which was 

previously defined manually). 

The first step in defining the SCV beam parameters after automatic segmentation was to determine 

the optimal medial border separating the targets (SCV lymph nodes) from the avoidance tissues 

(trachea and spinal canal). Again, a support vector machine was used to find the optimal plane, and this 

plane was used to define the gantry angle and medial jaw/MLC positions of the SCV field. Finally, the 

superior jaw was determined based on the beam’s eye view (BEV) projection of the cricoid cartilage, 

and the lateral jaw and MLC positions for humeral head blocking were determined based on the BEV 

projection of the humeral head. 

In some cases, the location of the match line (and isocenter in the superior-inferior direction) 

had to be automatically adjusted based on the patient’s anatomy and beam geometry. If the tangential 
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field length exceeded the machine capabilities (>20 cm for a Varian C-arm linear accelerator) or the part 

of the SCV field inferior to the humeral head was insufficient (<2 cm), the location of the match line was 

automatically adjusted toward the inferior direction, and planning continued. In some cases with 

excessive lung exposure in the SCV field (>4 cm based on the projection of the lung in the BEV), the 

match line was moved more toward the superior direction. In the latter case, two plans were created: 

the original plan with the match line at the inferior aspect of the clavicular head and an alternative plan 

with a more superior match line to reduce the amount of lung in the SCV field. The rationale for 

creating two plans was that several clinical factors contributed to the decision to move the match line, 

including the location of the level III axillary nodes and the possibility of the tangential fields 

intersecting part of the patient’s arm. If upon reviewing the original plan the physician decides that 

moving the match line in the superior direction is advantageous, he or she can review the alternative 

match line plan. The alternative match line plans were created while still considering the constraints of 

maximum tangential field length and proximity of the match line to the humeral head. Figure 7 

illustrates an example of the resulting SCV field BEV for the original and alternative match line plans for 

one of the test patients.   

 

Figure 7. Beam’s eye view of supraclavicular fields for the original match line plan (left) and alternative 

match line plan (right) for the same patient. The contour of the level III axillary nodes are shown 

projected in orange. 
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4.2.1.3 Automation of dose optimization 

Once the parameters for the open beams were determined, the three beams (medial and lateral 

tangents and SCV) were automatically generated in the treatment planning system and calculated for 

both 6- and 18-MV photons. Next, the dose per beam was exported and used as inputs for optimizing 

the dose distribution to reduce the maximum dose in the plan and the doses to OARs while maintaining 

target coverage. First, a normalization volume was created for each plan (tangential and SCV). These 

normalization volumes were derived from the automatic segmentations of the target structures (chest 

wall for the tangential plan and SCV and level III axillary lymph nodes for the SCV plan) that fell within 

the limits of the treatment fields. The normalization volumes were used to ensure that coverage was 

maintained throughout the optimization such that 95% of the normalization volume received 95% of 

the prescribed dose. 

In the optimization of the dose distribution, the relative weights of the high- and low-energy beams 

were determined first for the open fields by using a brute-force search strategy. Next, for the tangential 

fields, one or two FIF segments were created iteratively by blocking the dose cloud of the hot spots 

within each BEV, mimicking a forward-planning methodology. The dose of the hot spot was determined 

adaptively based on the current maximum dose in the optimization and the relative size of the dose 

cloud. The beam energy of each FIF segment and relative weighting were also determined by using a 

brute-force search strategy. The final resulting plans could have at most two SCV fields (high- and low-

energy fields, no FIF segments) and four tangential field segments per beam angle (high- and low-

energy open fields, two FIF segments). Combining the FIF segments with the open fields would result in 

a maximum of six treatment beams (two SCVs, two medial tangents, and two lateral tangents). 

4.2.2 Evaluation of automated treatment planning 

The performance of the automated planning tool was evaluated by using scans from a sample of 10 

patients who underwent left-sided mastectomy and a free-breathing CT scan for radiotherapy planning 

at a partner hospital in South Africa. These CT scans were acquired with the patient in the head-first, 
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supine position on a breast board with both arms raised over the head. All patients had external fiducial 

markers indicating their marked isocenters. Some patients had additional wires placed for treatment 

planning, although the wires were not used in this study. These patients’ CT scans were not used during 

algorithm development or preliminary testing of the automatic planning tool. All patient data used in 

this study were handled in accordance with an approved institutional protocol. 

4.2.2.1 Validation of automatic segmentation 

Although our automated techniques for PMRT planning make use of several automatically 

segmented structures for creating treatment plans, only the heart and ipsilateral (left) lung are 

presented with the plan. Therefore, the accuracy of segmentation of these contours was validated by 

comparing the automatically generated contours with physician-approved, manually edited contours. 

The physician-approved contours were created by using our automatic segmentation tool and then 

edited manually and reviewed and approved by a radiation oncologist (S.F.S.) with expertise in 

treatment of breast cancer. The contours were created according to the guidelines provided in the 

Breast Cancer Atlas for Radiation Therapy Planning from the Radiation Therapy Oncology Group [48]. 

The contours were compared geometrically by using the Dice similarity coefficient, mean surface 

distance, and Hausdorff distance and dosimetrically by using differences in dose metrics for each set of 

contours from the automatically planned treatments. 

4.2.2.2 Assessment of the automatically created treatment plans 

Once the automatically created plans were ready in the treatment planning system, they were 

reviewed for acceptability for treatment by two radiation oncologists with expertise in the treatment of 

breast cancer (D.A. and T.T.) at Groote Schuur Hospital (Cape Town, South Africa). The plans were rated 

on a three-tiered scale: use plan as is, use plan with minor changes, and plan requires major changes. 

The specific changes requested for each plan were recorded. If a physician requested to see the 

alternative match line plan for a patient, that plan was shown to the physician (if it had been created), 
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and the physician selected the preferred plan. The physicians’ final plan ratings were reported for their 

selected preferred plans. 

The selected plans were also assessed quantitatively for compliance with dose objectives for target 

coverage, OARs, and maximum plan dose. These dose objectives were evaluated by using the physician-

approved, manually edited contours. Coverage of the following target structures was assessed: the 

chest wall, SCV lymph nodes, and level III axillary lymph nodes. The preferred dose objectives and 

acceptable dose limits used for evaluation of the targets and OARs are presented in Table 1. These 

objectives were determined according to several sources, including recommendations from The Royal 

College of Radiologists [45], objectives from the Alliance A221505 clinical trial of hypofractionated 

PMRT (unpublished protocol) [49], and clinical constraints from collaborating institutions. Maximum 

doses were assessed separately for tangential and SCV field plans (preferred maximum dose <112% of 

the prescription) as well as for the composite plan (preferred maximum dose <116% of the 

prescription). 

 

Table 1. Hypofractionated PMRT dose objectives for target coverage and organs-at-risk 

Structure Dose metric Preferred objective Acceptable limit 

Targets Volume >95% Rx >95% n/a 

Targets Volume >90% Rx n/a >90% 

Heart Mean dose <4 Gy <6 Gy 

Volume >25 Gy <7% <10% 

Ipsilateral lung Volume >17 Gy <35% <40% 

Rx: prescription; n/a: not applicable. 
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4.2.3. Automated verification of PMRT plan quality 

Preliminary testing of automated PMRT planning techniques demonstrated that plans were most 

commonly rejected because of their dosimetric properties rather than the geometric design of the 

beam setup. As a result, automated verification of the dose distribution was integrated into the 

automated PMRT planning tool to alert the plan reviewer to these potential dosimetric deviations, with 

alert thresholds set based on published dose objectives or clinic-specific objectives. These thresholds 

included maximum plan doses and doses to OARs. Additional verifications included those of the 

amount of lung projected in the BEV of the SCV and beam properties, such as the SCV gantry angle 

(Table 2). The ability of these verification tests to detect potential deviations in the quality of the 

automatically planned treatments was evaluated for the 10 patient CT scans evaluated in this study. 

 

Table 2. Thresholds for automated verification tests of automated PMRT plan quality 

Test object Test metric Threshold 

Maximum dose (composite) Point dose >116% of prescription 

Maximum dose (tangential plan) Point dose >112% of prescription 

Maximum dose (SCV plan) Point dose >112% of prescription 

Heart dose Mean dose <4 Gy 

Volume >25 Gy <7% 

Ipsilateral lung dose Volume >17 Gy <30% 

Lung in SCV field Projection height <4 cm 

SCV gantry angle Angle off vertical >15° 
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4.3 Results 

4.3.1 Validation of automatic segmentation 

The results of the geometric comparison of the automatically generated and physician-approved 

contours of the heart and ipsilateral lung are shown in Figure 8. The Dice similarity coefficient values 

were all at least 0.85 for the heart and 0.93 for the ipsilateral lung, indicating very good agreement. We 

also observed good agreement of the mean surface distance, with all values less than 0.5 cm for all 

contours. The greatest differences between the automatically generated and physician-approved 

contours, as indicated by the larger Hausdorff distances, occurred when one contour included more 

slices in the superior or inferior direction than the other. 
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Figure 8. Comparison of the automatically generated and physician-approved contours of the heart and 

ipsilateral lung. The top row shows the following results of the geometric comparisons: Dice similarity 

coefficient (DSC; left), mean surface distance (MSD; center), and Hausdorff distance (HD; right). The 

bottom row shows the following results of the dosimetric comparisons: mean OAR dose (left) and dose-

volume histogram metric (right). The absolute difference in metrics was the results for the physician-

approved contour minus that for the automatically generated contour for the same plan. 
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The differences in the dose metrics when evaluated on the physician-approved contours compared 

with the automatically generated contours of the heart and ipsilateral lung are also shown in Figure 8. 

The differences were all small, resulting in less than a 1 Gy difference in mean dose and less than a 2% 

difference in volume for the dose-volume histogram metrics. Although the dose to the physician-

approved contours did trend higher than the automatically generated contours, it did not affect 

whether a plan met the dose objectives for planning. This demonstrates that using the doses to the 

automatically generated contours is appropriate when reporting plan quality to the user. (Note: the 

doses reported in the sections below are those to the manually edited contours.) 

4.3.2 Assessment of the automatically created treatment plans 

Upon physician review of the final 10 automatically planned treatments, the physicians rated all 

plans either acceptable as is (50%) or with only minor changes (50%). Of these plans, four were the 

alternative plans, in which the physicians preferred that the match line be placed more superior to the 

original match line. For the 10 original plans, physicians requested to see an alternative match line plan 

for five patients. One of these patients was constrained by the tangential field length limit (>20 cm), so 

alternative plans were presented for the remaining four, all of which were preferred by the physicians. 

Figure 9 shows an example of the dose distributions for a representative plan rated acceptable as is. 

Physicians requested a total of seven changes for the five plans: adding a heart block to reduce the 

heart dose in two patients, reducing the maximum dose in the tangential plan for one patient with a 

large separation, and reducing the depth of nodal coverage to reduce the maximum dose in the SCV 

plan, reducing the lung dose, adjusting the superior border of the SCV field, and adjusting the SCV angle 

in one patient each. 
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Figure 9. The resulting dose distribution for a test patient for whom the PMRT plan was rated use as is. 

The dose is shown on three different axial slices of the CT scan: in the supraclavicular field (left), in the 

superior half of the tangential fields (middle), and in the inferior half of the tangential fields (right). 

The resulting dose metrics for the heart and ipsilateral lung, coverage of the targets, and maximum 

doses are shown in Figure 10. Ninety percent of the plans met the acceptable objective for the heart, 

with 60% meeting preferred objectives, and all of the plans met the preferred objectives for the 

ipsilateral lung. Regarding target coverage, all of the plans met the preferred objective, in which 95% of 

the volume was covered by 95% of the prescribed dose. Eighty percent of the plans met the preferred 

objective for the maximum dose (<116% of the prescribed dose). The two patients’ plans that exceeded 

this value had maximum doses less than 118% of the prescription dose that were caused by large chest 

wall separation and deep lymph node targets. The locations of the maximum doses were checked to 

ensure that they did not fall within the brachial plexus. 

On average, we found that creation of one treatment plan took 38 min (range 28-52 min). For plans 

for which an alternative match line plan was automatically created based on the amount of lung in the 

SCV BEV, an average of 24 min (range 17-28 min) was added to the planning time. On average, the 

majority of the time went toward setting up the beams (19 min), contouring (11 min), and dose 

optimization (7 min). The automated planning tool tested in this system was implemented on a 

standalone workstation. In the future, the system that will be deployed for clinical implementation will 
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consist of a network of servers facilitating parallel processes, a distributed calculation framework, and 

further improvements in computational speed. 

 

Figure 10. The final dose metrics for the 10 automatically planned treatments. The dose-volume 

histogram (DVH) metrics (top left), mean dose delivered to the heart and ipsilateral lung (top right), 

coverage of targets by 95% or the prescription dose (bottom left), and maximum doses for the 

tangential and SCV plans and for a composite of the two plans (bottom right) are shown. OARs, organs 

at risk; SCV, supraclavicular; Ax3, level III axillary; Rx, prescription. 
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4.3.3 Automated verification of PMRT plan quality 

In their evaluation of the 10 treatment plans, physicians requested a total of seven changes 

(described above) plus five requests to review alternative match line plans. Of these 12 requests, 11 

(92%) were detected by the automatic plan quality verification tests. The only requested change not 

detected was adjustment of the SCV field’s superior border. The tests detected four additional potential 

deviations that the physicians did not request to be changed: two plans with slightly high heart doses, 

one plan with a slightly high ipsilateral lung dose, and one plan with a slightly large amount of lung in 

the SCV field. All four of these potential deviations were very close to the thresholds set for each test. 

 

4.4 Discussion 

In this work, we demonstrated the clinical viability of our automated planning tool for radiotherapy 

for locally advanced breast cancer after mastectomy. We developed this tool with the goal of reducing 

the workload on the limited radiotherapy staff of resource-constrained clinics, such as those in LMICs 

[24]. Such automated tools have the potential to reduce staff workloads and improve the reliability of 

treatment planning [50]. Investigators have shown that clinical implementation of automated planning 

for tangential breast irradiation can improve the efficiency and quality of treatment planning, even 

facilitating same-day treatments [30], [51]. We would expect an even greater gain in efficiency for 

automation of the complex PMRT necessary for advanced breast cancers, which are more common in 

LMICs owing to late-stage diagnosis. Some have also suggested that reducing the effort spent in 

treatment planning through automation could reduce the cost of radiotherapy programs [25]. 

Automation of PMRT planning is a major step toward improving treatment planning efficiency, 

especially given that breast cancer is one of the most common cancers in LMICs. 

To our knowledge, this is the first automated treatment planning tool designed for PMRT, which 

uses tangential fields to irradiate the chest wall matched with an oblique en face beam to irradiate the 

SCV lymph nodes. Although some clinics may also include the internal mammary chain (IMC) lymph 
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nodes in such treatment, this remains an area of controversy [17]. Treatment of the IMC increases the 

dose delivered to the heart and the risk of heart disease [16]. In the context of patients undergoing 

free-breathing treatments because of resource limitations in LMICs, the heart doses and risk of heart 

disease are even higher. For this reason, clinics may only treat the IMC if these nodes are suspected of 

being involved. Therefore, we designed our automated planning tool for a technique that irradiates the 

chest wall and SCV and level III axillary lymph nodes, and not the IMC lymph nodes. 

Without using external markers to set up the beams, the automation algorithms determined the 

appropriate beam angles for the tangential fields in this test cohort. However, not using markers means 

that one manual input is required for treatment planning: the location of the inferior border of the 

tangential fields. In the user interface of our automated planning tool, this border is conveniently 

selected in the same workspace in which the CT scan is approved for automated planning, which should 

add negligible effort and time to the entire planning process. Also, clinicians may follow their typical 

process for marking the inferior border, such as placement of a wire, to facilitate their selection of this 

location. The patient CT scans we tested here as well as those used previously in the development of 

this automated planning tool came from several different institutions. As a result, a variety of 

approaches for placing markers and wires were used for these patients, which did not seem to 

influence the performance of our algorithms in setting up the beams. 

We also integrated a method into our automated planning tool to automatically alert reviewers of 

the PMRT plan to any potential discrepancies in plan quality, which mainly resulted from the plan’s 

dose distribution. Given the proximity of the targets to sensitive normal tissues and the variations in 

patient anatomy, balancing normal tissue sparing and full target coverage is sometimes a challenge in 

radiotherapy for breast cancer. We designed our automated treatment planning tool to create plans 

with full coverage of the target volumes. Therefore, this automatic verification may be useful in alerting 

the plan reviewer to potential discrepancies in plan quality, such as high heart dose, which may call for 

adjustment of the plan depending on the acceptable clinical compromises for that particular patient 
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and plan. The alerts generated by the automatic plan quality verification tests could help expedite 

adjustment of treatment plans if necessary and improve the safety of automated treatment planning by 

automatically alerting the plan reviewer to potential issues with the plan. 

The current version of this automated planning tool for PMRT designs radiation treatments based 

on specific clinical practices that may vary by institution, including patient positioning (supine, both 

arms up), the use of free-breathing scans, the location of the match line or superior border of the SCV 

field, and a hypofractionated treatment regimen. However, the automation techniques presented 

herein can be easily adapted to comply with variations in this clinical practice. Some variations in 

practice may require greater adaptations in the automation technique, but are still feasible. One 

example is the use of a single-energy photon beam, which is common in many clinics, rather than a mix 

of high- and low-energy beams. With adaptation, automation of PMRT with a single-energy photon 

beam is very likely possible, although the dose distributions for many patients would be expected to be 

hotter than those with mixed-energy photon beams. Another possible adaptation is using tangential 

and SCV fields for the treatment of intact breast and at-risk nodes. By changing the automatic 

segmentation to create the breast contour to use as the target for the tangents rather than the chest 

wall, the automation techniques would function the same as those used for planning PMRT. Before 

clinical implementation, all of these adaptations would need to be tested thoroughly. 

In the evaluation described herein, we retrospectively planned PMRT treatments for a small cohort 

of patients with locally advanced breast cancer after mastectomy that required only minor changes or 

were acceptable for treatment as is. We also found that the automatic segmentation of the heart and 

ipsilateral lung was sufficiently accurate for presentation to the end user. Moving forward, we will 

subject this automated planning tool to prospective testing with our collaborating institutions before 

clinical implementation. In this prospective testing, we will compare automatically generated PMRT 

plans head-to-head with the corresponding manually created treatment plans.  
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Key considerations for clinical deployment of this automated treatment planning tool is ensuring 

that patient selection and setup are appropriate for the treatment technique planned by this 

automated tool. Thorough training will be necessary to ensure safe use and help users understand the 

specifications of this system. During clinical implementation, we will collect data on planning times to 

quantify improvements in efficiency when using this automated planning tool. 

 

4.5 Conclusion 

We developed and tested an automated planning tool for PMRT and demonstrated its viability for 

implementation in resource-constrained clinics in LMICs. This tool has the potential to improve 

efficiency in planning these complex treatments for breast cancer. 

 

 

Note: A statement of appropriate use of the automated planning tool for cervical cancer can be found 

in Appendix B. 
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Chapter 5 : Assessment of Risk in Automated Treatment Planning 

This chapter is based upon the following accepted article: 

Kisling K, Johnson JL, Simonds H, Zhang L, Jhingran A, Beadle BM, Burger H, du Toi M, Joubert N, Makufa 

R, Shaw W, Trauernicht C, Balter P, Howell R, Schmeler K, Court L. A Risk Assessment of Automated 

Treatment Planning and Recommendations for Clinical Deployment. Med Phys. 

 

5.1 Introduction 

Automation has the potential to improve the consistency and efficiency of radiation treatment 

planning. Additionally, the automation of treatment planning promises to improve safety by preventing 

human errors and reducing handoffs between medical staff members, both of which have been shown 

to be weaknesses in radiotherapy safety [42], [52], [53]. While it is generally assumed that automation 

leads to elimination of the risks associated with human error, it can introduce new or different types of 

error that are not part of the routine, manual treatment planning process. For example, automated 

processes may introduce new or added risks from the lack of active participation by a human user who 

could catch errors that may go undetected by computer algorithms.  

As with any other new technology to be implemented into clinical workflow, it is vital to assess the 

risk introduced by automated treatment planning in each step of the workflow. Furthermore, Task 

Group 100 (TG-100) of the American Association of Physicists in Medicine (AAPM) recommends that all 

new devices undergo a systematic risk analysis [53]. Failure mode and effects analysis (FMEA) is an 

established technique for methodically and prospectively identifying the risks involved in a process. This 

method has been used by several other groups to assess the risks of various processes in radiation 

oncology practice [43], [54]–[57]. 

Our group recently developed a fully automatic treatment planning tool, the Radiation Planning 

Assistant (RPA) [37], [44]. In addition to developing algorithms to automate treatment planning, we 

also implemented a quality assurance (QA) program specific to the RPA in order to enhance the safety 



42 
 

of automated planning. In the present work, we used FMEA to assess the risk of various failure modes 

in automated planning for cervical cancer radiotherapy with the RPA. We then assessed the impact of 

the specialized QA program on the identified risks. 

 

5.2 Materials and Methods 

5.2.1 Description of the RPA 

The workflow of automated planning with the RPA was previously described by Court et al [37]. 

Currently, the RPA is being implemented as a remote system with which the user interacts via a web 

interface. A locally installed system is also possible. The input to the RPA is a plan directive from the 

physician with patient information, including the treatment site and prescription, and the planning 

computed tomography (CT) images of the patient in the treatment position. In the RPA’s user interface, 

qualified staff can enter, review, and approve the plan directive and planning CT. Once these are 

approved, the RPA automatically begins planning.  

The RPA is being developed for all treatment sites, starting with cancers of the uterine cervix, head 

and neck, and breast. Here, we focused on RPA treatment planning for cervical cancer using a 4-field 

box technique with beam apertures based on bony anatomy. The algorithms and validation results of 

the RPA for cervical cancer have been previously described [44]. Briefly, the RPA uses in-house-

developed algorithms that are integrated with the Eclipse treatment planning system (Varian Medical 

Systems, Palo Alto, CA) via Eclipse’s application programming interface. The marked isocenter is 

automatically localized according to the positions of 3-point external fiducial markers, and the body 

contour is automatically segmented. Next, the pelvic bony anatomy is automatically segmented with an 

auto-segmentation tool using deformable registration of multiple atlases [46]. The pelvic bony anatomy 

is projected into each beam’s-eye view, and the beam apertures are designed on the basis of 

anatomical landmarks identified on the projections of the bony anatomy. The treatment beam 

parameters are then automatically set in the treatment planning system, and the dose is calculated 
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using the Analytical Anisotropic Algorithm. The relative beam weights are optimized to achieve a 

homogeneous dose distribution within the treated volume.   

After planning is complete, the RPA presents the plan as a PDF document for a physician to review. 

If the physician approves the plan, DICOM-format treatment plan files are transferred to the user. The 

expectation is that users will import the files into their own treatment planning systems for review 

before treatment and will perform their standard pretreatment QA.  

5.2.2 FMEA of Automated Planning 

For the FMEA, a team of subject-matter experts (3 medical physicists and 1 radiation oncologist) 

first enumerated the steps in the RPA automated treatment planning workflow for patients with 

cervical cancer, from CT simulation to plan approval by the physician. Then, for each process step, the 

group of 3 physicists identified potential failure modes and possible causes of each failure mode. The 

process map, failure modes, and scoring were determined assuming a generic clinic that follows the 

practices outlined in the American College of Radiology accreditation requirements, including physics 

plan review [58]. Prior to scoring, the process map and potential failure modes and causes were 

reviewed by 6 medical physicists at 4 centers in South Africa and Botswana that are prospective users 

of the RPA. These physicists assessed the applicability of the proposed treatment planning workflow 

and failure modes to their local clinical practice to identify any substantial discrepancies, and none 

were found.  

Next, the original team of 3 physicists scored the likelihood of occurrence (O), the severity (S), and 

the likelihood of going undetected (D) for each potential cause of each potential failure mode using a 

10-point scoring system. For scoring O and D, we used the values recommended in Table II of the TG-

100 report [53]. For scoring S, we used the system recommended by Faught, which augments the 

original definitions in the TG-100 report with quantitative descriptions of the severity [59]. This system 

is reproduced here in Table 3. The value for each O, S, and D score was the consensus value as 

determined by the group. We chose to focus on scoring the causes of failure modes individually in 
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order to better design the QA program to mitigate the variable risks attributable to different causes of a 

potential failure mode.  

 

Table 3. The system used for scoring the severity of a potential failure mode, reproduced from Faught 

[59]. 

Severity 
Score (S) 

Qualitative Definition 
Quantitative 

Definition 

1 No effect 0.0%-2.9% 

2 Inconvenience 3.0%-3.9% 

3  4.0%-4.9% 

4 Minor dosimetric error, suboptimal plan or treatment 5.0%-6.9% 

5 
Limited toxicity or tumor underdose. Wrong dose, dose 

distribution, location, or volume 
7.0%-8.9% 

6  9.0%-9.9% 

7 
Recordable event. Potentially serious toxicity or tumor under 

dose 
10.0%-14.9% 

8  15.0%-19.9% 

9 
Reportable event. Possible very serious toxicity or tumor 

under dose. Very wrong dose, dose distribution, location, or 
volume 

20.0%-49.9% 

10 Catastrophic ≥50.0% 

 

A risk priority number (RPN) was calculated by multiplying the O, S, and D scores. For potential 

failure modes with causes that were specifically related to the failure of an RPA algorithm, we were 

able to determine the O score quantitatively on the basis of our retrospective testing of the RPA using 

approximately 500 patient CT scans rather than making an estimate of the percent likelihood of 

occurrence. For example, a specific algorithm failure that occurred twice during testing would receive 

an O score of 6, representing an occurrence rate of less than 0.5%. If a potential failure mode never 
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occurred, we estimated the likelihood of occurrence from our experience and knowledge of the 

algorithms.  

5.2.3 Description of the QA Program 

To minimize opportunities for error, we implemented a QA program for the RPA that included 3 

types of QA to detect errors in the automatically created treatment plans. We applied this QA program, 

which is intended to supplement users’ standard QA processes, to all possible steps in the automated 

planning process. This QA program was initially developed prior to the FMEA based on our experience 

with the initial retrospective testing and development. The QA program was updated with additional 

tests based on the results of this FMEA. 

The first type of QA applied was an automatic, independent validation of the results of each step, 

which is a similar concept to the independent dose verification used in radiotherapy. For example, we 

use 2 independent methods to automatically detect the marked isocenter based on a 3-point external 

fiducial setup. The primary method searches within a band around the body contour for the high 

contrast external fiducials. The secondary method differs in that it searches for high contrast objects 

that constitute a triangle topology. The result of the primary method is used in the treatment plan, and 

its agreement with the results of the secondary method is verified. If the 2 methods do not agree, the 

treatment plan is flagged for human review. Other examples of tasks that have 2 independent 

algorithms are segmentation of the body contour and creation of the field apertures. We pushed the 

treatment plans to Mobius3D (Mobius Medical Systems, Houston, TX) to perform the secondary dose 

verification. We also automatically verified the patient’s orientation and anatomical site (e.g., head vs. 

pelvis) using both the DICOM header information and a simple rigid registration to a full-body patient 

CT scan.  

The second type of QA was an automatic check of the result against expected values. The expected 

values may be a range derived from the population of patient plans, such as for field size, or a single 

value, such as the collimator angle always being equal to 0.  
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Finally, the third type of QA was a series of specialized manual checks. One such manual check was 

a set of specific questions in the user interfaces for approving the plan directive and planning CT. For 

example, we asked the user to verify that the CT scan field of view was appropriate for the patient. 

Another manual check was plan documentation that was automatically created and designed to guide 

the appropriate staff, such as a physicist, through checking the treatment planning parameters.  

5.2.4 Assessment of the Effect of the QA Program 

We next assessed the effect of the QA program on the detectability of each failure mode and cause. 

First, we determined which failure modes could be detected by any of the 3 types of QA described 

above. For each type of QA, we estimated how effectively that type of QA could improve the 

detectability of that failure mode and cause using a 3-tier scale: very effectively, moderately effectively, 

or somewhat effectively. We used these ratings to adjust the D value (the likelihood of going 

undetected) for each failure mode by reducing the percentage of undetected failures (from the 

corresponding score values in Table II from TG-100). To facilitate the reduction in the D value, we 

assigned residual percent undetected values of 20%, 50%, and 80% to the very, moderately, and 

somewhat effective types of QA, respectively, based on the likely effectiveness as determined by group 

consensus. These reduced values were then converted back to a D score on the 10-point scale from TG-

100. We then calculated the differences in the RPN of all potential failure modes with and without the 

QA program.  

 

5.3 Results 

The RPA process, with its 4 major subprocesses (CT simulation, plan directive, RPA plan creation, 

and plan approval) and 30 steps, is shown in Figure 11. Using FMEA, we identified 68 failure modes with 

113 potential causes. The full results of the FMEA can be found in Appendix C. Of the 113 potential 

causes, 79 (70%) were subject to at least 1 type of QA as part of our QA program (not including typical 

clinical QA practices). Without the QA program, the average RPN was 91, and the maximum RPN was 
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504. With the QA program, these values were reduced to 68 and 315, respectively. The distribution of 

the RPNs with and without the QA program for all potential failure modes and causes is shown in Figure 

12, where the overall shift to lower RPN values is apparent. Since the QA program only affected the 

detectability of failures, we compared the change in the distribution of the D scores with and without 

the QA program (Figure 13). The median D score without the QA program was 5.0 and was reduced to 

3.0 with the QA program. 
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Figure 11. Depiction of the subprocesses and steps involved in automatically planning a 4-field box 

radiotherapy treatment for cervical cancer with the Radiation Planning Assistant (RPA). Subprocesses 1 

and 2 (CT simulation and plan directive) involve many manual steps from which errors could propagate 

downstream. Subprocess 3 (RPA plan creation) is entirely automatic. Abbreviations: MLC, multileaf 

collimator; TPS, treatment planning system. 
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Figure 12. Histogram of the risk priority numbers (RPN) for all potential failure modes identified for 

automatic planning of a cervical cancer treatment using the Radiation Planning Assistant (RPA) with 

(blue) and without (red) the QA program. 
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Figure 13. Histogram of the detectability score (D) for all potential failure modes identified for 

automatic planning of a cervical cancer treatment using the Radiation Planning Assistant (RPA) with 

(blue) and without (red) the QA program. 

Scores for the top 10 potential failure modes and associated causes are shown in Table 4 and Table 

5 for the RPA without the QA program and with the QA program, respectively. Without the QA 

program, 3 of the top 10 failure modes were related to a failure to correctly identify the marked 

isocenter based on the external fiducials. A failure in this step could have severe consequences if not 

detected and is not unique to automated treatment planning. Incorrect definition of the isocenter was 

also identified as a relatively high-risk failure mode in an FMEA of pretreatment steps for TomoTherapy 

by Broggi et al [55]. The QA program of the RPA includes automatic verification of the isocenter and a 

guided manual check of the isocenter identification in the plan documentation. With the QA program, 
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only 1 of the top 10 failure modes involved identification of the isocenter. This failure mode was caused 

by the presence of other external fiducials on the planning CT scan (e.g., wires), which could reduce the 

effectiveness of the automatic verification QA process.  

 

Table 4. The top 10 potential failure modes and their causes in automated planning with the Radiation 

Planning Assistant (RPA) without the quality assurance (QA) program. 

# 
Major 

process 
Step 

Potential failure 
mode 

Potential causes 
of failure 

O S D RPN 

1 
RPA plan 
creation 

Isocenter 
position 

Incorrectly identified 
Other external 

fiducials 
7 9 8 504 

2 
RPA plan 
creation 

Jaw positions 
Inappropriate 

position 
Algorithm error 10 7 6 420 

3 
RPA plan 
creation 

MLC positions 
Inappropriate 

position 
Algorithm error 10 7 6 420 

4 
Plan 

approval 
Physician plan 

review 
No comprehensive 

review 
Human error 3 10 10 300 

5 
RPA plan 
creation 

Isocenter 
position 

Incorrectly identified Algorithm error 4 9 8 288 

6 
CT 

simulation 

Select CT 
protocol and 

execute 

Field-of-view is too 
small 

Human error 5 8 7 280 

7 
CT 

simulation 

Select CT 
protocol and 

execute 

Field-of-view is too 
small 

Patient is too 
large 

5 8 7 280 

8 
Plan 

directive 
Enter 

prescription 

Incorrect (not 
changed from 

default) 
Human error 4 9 7 252 

9 
RPA plan 
creation 

Dose 
distribution 

Calculation point is 
inappropriate 

Located in high 
or low CT 
number 

10 4 6 240 

10 
RPA plan 
creation 

Isocenter 
position 

Incorrectly identified 
External fiducials 
out of range of 

scan 
3 9 8 216 

Abbreviations: O, occurrence score; S, severity score; D, detectability score; RPN, risk priority number; 
MLC, multileaf collimator; CT, computed tomography. 
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Table 5. The top 10 potential failure modes and their causes in automated planning with the Radiation 

Planning Assistant (RPA) with the quality assurance (QA) program. 

# 
Major 

process 
Step 

Potential failure 
mode 

Potential causes 
of failure 

O S D RPN 

1 
RPA plan 
creation 

Isocenter 
position 

Incorrectly identified 
Other external 

fiducials 
7 9 5 315 

2 
Plan 

approval 
Physician plan 

review 
No comprehensive 

review 
Human error 3 10 10 300 

3 
RPA plan 
creation 

Jaw positions 
Inappropriate 

position 
Algorithm error 10 7 4 280 

4 
RPA plan 
creation 

MLC positions 
Inappropriate 

position 
Algorithm error 10 7 4 280 

5 
Plan 

directive 
Enter 

prescription 

Incorrect (not 
changed from 

default) 
Human error 4 9 7 252 

6 
CT 

simulation 

Select CT 
protocol and 

execute 

Field-of-view is too 
small 

Human error 5 8 6 240 

7 
CT 

simulation 

Select CT 
protocol and 

execute 

Field-of-view is too 
small 

Patient is too 
large 

5 8 6 240 

8 
Plan 

directive 

Questions 
about patient 

appropriateness 

Completed 
incorrectly 

Human error 4 9 5 180 

9 
Plan 

directive 
Approve plan 

directive 

Approved by staff 
without correct 

rights 

Shared 
login/Incorrect 

rights 
4 9 5 180 

10 
CT 

simulation 
Position patient 

Inappropriate 
positioning 

Human error 6 4 7 168 

Abbreviations: O, occurrence score; S, severity score; D, detectability score; RPN, risk priority number; 
MLC, multileaf collimator; CT, computed tomography. 
 

Other important potential failure modes, with and without the QA program, were the definition of 

the beam apertures (jaws and multileaf collimator). We implemented automatic QA verification to 

detect gross errors in beam aperture definition. However, it remains vital that the physician review the 

appropriateness of the beam apertures, regardless of whether the beam apertures are determined 
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automatically by computer algorithms or drawn manually by a dosimetrist or resident. In fact, a 

potential failure mode identified by both our FMEA and that of other groups was failure of the 

physician review of plan quality [53], [56]. While physician review is standard clinical practice, and such 

a failure is unlikely, it would be very difficult to detect and could have severe consequences if the plan 

quality is inadequate. We have previously shown that nonspecialists are unlikely to reliably identify 

these errors, even when presented with examples of correct beam apertures as a reference [37]. 

We specifically investigated the 15 higher-risk failure modes—those for which the RPN was greater 

than or equal to 200. Of these, 13 (87%) were subject to at least 1 type of QA technique. The number of 

these higher-risk failure modes was reduced from 15 to 7 when the QA program was implemented, 

with an average reduction in RPN score of 93 points (range, 40-189). Physician review of the plan was 1 

of the 2 higher-risk failure modes that could not be mitigated by a specialized QA technique (beyond 

standard clinical practice). 

The other top failure mode that was not subject to a specialized QA technique was an incorrectly 

entered prescription in the plan directive workspace, specifically cases in which the physician intended 

to change the prescription from the default or typical value. While such a scenario is unlikely, this 

failure would be more difficult to catch later in a manual check, since the intended prescription would 

not be the expected, typical value for that patient type. Automation does mitigate many potential 

transcription errors (such as those that occur between the plan directive and the treatment planning 

system). However, the initial entry into the system must be as the planning physician intends, 

regardless of whether manual or automated treatment planning is used. In fact, incorrect prescription 

has been identified as a potentially severe failure mode by other groups studying manual treatment 

planning [55], [56].  

We also investigated the 22 failure modes and associated causes with high severity scores (S ≥ 9). 

Table 6 lists all failure modes and causes with S scores of 9 or higher, including their overall scores with 

the specialized QA program. Here, we found that 14 (64%) failure modes were subject to at least 1 type 
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of QA. On average, the RPN of the high-severity failure modes was reduced from 146 to 113 with the 

QA program implemented. The maximum RPN for these was reduced from 504 to 315. Most of these 

failure modes were unlikely to occur; 20 (91%) had O scores of 4 or less. With 1 exception, the high-

severity potential failure modes that were not subject to any specialized QA test were caused by human 

error, such as incorrectly entering the prescription in the plan directive. 

 

Table 6. Potential automated treatment planning failure modes and associated causes with severity (S) 

scores of 9 or higher. Scores shown are for the Radiation Planning Assistant (RPA) with the quality 

assurance (QA) program implemented. 

Major 
process 

Step 
Potential failure 

mode 
Potential causes of 

failure 
O S D RPN 

CT 
simulation 

Enter patient 
information 

Incorrect name or ID 
entered 

Human error 1 10 9 90 

Plan 
directive 

Enter patient 
information 

Incorrect name or ID 
entered 

Human error 2 10 1 20 

RPA plan 
creation 

Prescription set 
Does not match the 

plan directive 
Algorithm error 1 10 5 50 

RPA plan 
creation 

Prescription set 
Incorrect 

normalization 
Algorithm error 1 10 5 50 

RPA plan 
creation 

Dose distribution 
Calculation point not 

at isocenter 
Algorithm error 1 10 5 50 

RPA plan 
creation 

Plan 
documentation 

Data corrupted Algorithm error 3 10 4 120 

Plan 
approval 

Physician plan 
review 

No comprehensive 
review 

Human error 3 10 10 300 

Plan 
approval 

Data transfer 
from RPA to local 

TPS 
Data corrupted Network error 2 10 3 60 

CT 
simulation 

Position patient Incorrect orientation Human error 3 9 2 54 

CT 
simulation 

Position patient Incorrect orientation 
Standard technique 

varies from RPA 
protocol 

6 9 1 54 

CT 
simulation 

Position patient Incorrect orientation 
Intentional non-

standard technique 
4 9 2 72 
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Plan 
directive 

Questions about 
patient 

appropriateness 

Completed 
incorrectly 

Human error 2 9 7 126 

Plan 
directive 

Questions about 
patient 

appropriateness 

Completed 
incorrectly 

Human error 4 9 5 180 

Plan 
directive 

Enter 
prescription 

Incorrect (not 
changed from 

default) 
Human error 4 9 7 252 

Plan 
directive 

Enter 
prescription 

Incorrect (changed 
from default) 

Human error 3 9 6 162 

Plan 
directive 

Approve plan 
order 

Approved by person 
without correct 

rights 

Shared login/incorrect 
rights 

4 9 5 180 

RPA plan 
creation 

Isocenter 
position 

Incorrectly identified Other external fiducials 7 9 5 315 

RPA plan 
creation 

Isocenter 
position 

Incorrectly identified 
Fiducials out of range 

of CT 
3 9 4 108 

RPA plan 
creation 

Isocenter 
position 

Incorrectly identified Algorithm error 4 9 4 144 

RPA plan 
creation 

All 4 beams 
created 

Not created at the 
isocenter 

Algorithm error before 
aperture generation 

1 9 6 54 

RPA plan 
creation 

All 4 beams 
created 

Not created at the 
isocenter 

Algorithm error after 
aperture generation 

1 9 2 18 

RPA plan 
creation 

MLC positions 
MLC missing from 

plan 
Algorithm error 1 9 2 18 

Note: Potential failures in the “Plan directive” step “Questions about patient appropriateness” were 
scored by considering 2 separate scenarios: (1) when the result does not affect the results of 
automated planning, but still poses a risk (such as prior irradiation); and (2) when the result would 
technically affect the result of automated planning (such as the presence of an artificial hip, which may 
cause errors in contouring the bony anatomy). 
Abbreviations: O, occurrence score; D, detectability score; RPN, risk priority number; CT, computed 
tomography; TPS, treatment planning system; MLC, multileaf collimator. 

 

5.4 Discussion 

Following the recommendation of TG-100 to perform a risk analysis of new technologies to be 

implemented in clinical practice, we assessed the risk of our recently developed automated treatment 

planning tool, the RPA. To our knowledge, this is the first published work assessing the risk of 

automated treatment planning using FMEA. Additionally, we determined the effect of the specialized 

QA program on the RPA’s failure risk. This work has enabled us to systematically and prospectively 
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identify the highest-risk steps involved in our automated treatment planning workflow and aided us in 

developing a QA program specific to the RPA. 

While the FMEA presented here is specific to the workflow of the RPA, the lessons gained can be 

applied broadly to implementations of automated planning. The current analysis has shown us that 

many of the highest-risk steps, both with and without the QA program (as shown in Table 4 and Table 

5), are similar to what might be expected in a manual treatment planning process, including correct 

identification of the marked isocenter, use of appropriate beam apertures, and use of the correct 

prescription. However, while the resulting failures may be the same, the causes of these failures may 

be different in automated planning, in which an algorithm, rather than a human planner, may fail to 

perform adequately. We have found that many of the highest risk errors in our automated planning 

workflow were caused by human error. Such errors in an automated plan can be readily detected by 

the physicist or physician who reviews the plan, as in standard clinical practice. The results of this study 

emphasize the importance of these plan reviews prior to patient treatment, regardless of whether the 

plan was generated automatically or using standard manual techniques. In fact, with the advent of 

automated treatment planning, we need to ensure that we do not develop an overreliance on 

automation and forego the usual attention to detail in the manual review of treatment plans. In 

general, automation can improve the safety and consistency of many steps of treatment planning, 

especially for more objective tasks such as setting prescriptions and creating the beams at the correct 

isocenter. However, for more subjective tasks, such as designing treatment beams or contouring, the 

automation techniques and algorithms, like a human planner, have a certain level of skill, so their 

results should always be scrutinized by qualified staff.  

Using automated QA techniques for plan review has been proposed by several groups [60]–[63]. 

Here, we incorporated such checks for the consistency and reasonability of the treatment planning 

parameters as part of our QA program. Additionally, we included automatic verification of more 

subjective tasks, such as designing beam apertures. These automatic checks add additional risk 
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mitigation without additional workload on staff, which is especially important for resource-constrained 

settings. However, our QA program only addresses potential failure modes in treatment planning and 

does not address failures that may occur as plans are transferred to the local treatment planning 

system or record-and-verify system, although we have developed software to check the integrity of this 

data transfer.  

In addition, our study revealed that automation of treatment planning and QA does not completely 

remove the risk of human error. For example, the effect of an incorrectly entered prescription is still a 

high-risk point that can only be detected by a diligent human review. To address this, the third 

component of our QA program, the specialized manual checks, was designed to draw the reviewer’s 

attention to these important components of the treatment plan. However, there are still potential 

failures that are not covered by any of our QA program, including the specialized manual checks. Many 

of these potential failures could be caught by standard QA steps, such as the typical physics and 

physician plan reviews which could detect if there was a discrepancy of the prescription or an 

abnormality in the plan. To reinforce the importance of the manual checks as we clinically implement 

automated planning, training of the users of the RPA will be vital to overcoming the residual higher-risk 

failure modes. The results of this FMEA will inform the training by educating the users on what are the 

highest-risk potential failure modes that should be included in their manual checks.  

Our analysis of approximately 500 test cases was able to quantify some of the values for the 

likelihood of occurrence of potential failure modes caused by algorithm error. However, most of the 

failure modes we identified prospectively through the FMEA did not materialize in this testing. 

Therefore, the O scores were estimated for these potential failure modes on the basis of the FMEA 

team’s experience and knowledge of the RPA algorithms. In order to further quantify and improve the 

reliability of the FMEA results, more extensive testing will be necessary in the course of pre- and early 

implementation. Therefore, the results of this FMEA will be a living document that will be updated as 

more testing occurs. This is similar to techniques that incorporate data from incident-learning systems 



58 
 

to validate and improve upon FMEA findings. We intend to conduct regular reviews and, if necessary, 

update the FMEA throughout the testing, clinical implementation, and use of the RPA. By continuing to 

monitor the RPA’s performance, the occurrence of failures, and the ability of the QA program to detect 

failures, we will collect quantitative data that will improve the validity of the FMEA.  

Additionally, before implementing automated planning for other treatment sites or techniques 

using the RPA, we will reassess the process map and failure modes. For example, in planning volumetric 

modulated arc therapy for head and neck cancers, contouring is a vital step that has been identified by 

other groups as a high-risk potential failure mode [43], [53], [55]. Therefore, this FMEA will be updated 

to consider the risk of failures in automatic contouring, and QA techniques will be added to reduce the 

risks of these failures. 

FMEA is by nature subjective; it incorporates the experience and bias of the team performing it. 

Thus, the results of this analysis may not necessarily represent the true risk of the system. Still, FMEA is 

a valuable tool for prospectively identifying potential failure modes and risks, which can help to design 

QA programs to mitigate the identified risks. Given this limitation, continuous monitoring of the 

performance of automated planning tools is vital to the safe use of automated treatment planning. 

Moreover, because the RPA is intended for global use in clinics that may have various levels of 

resources and follow different practice guidelines, it is important to assess how any deviations from the 

procedures and workflows assumed to be in place for this FMEA will affect its evaluations of risk. As 

part of initial clinical implementation, the results of this FMEA will be reassessed with multi-disciplinary 

teams from each clinic to ensure the results are reflective of each clinics particular risk profile. 

Finally, on the basis of the results of this FMEA and the experience we gained through this process, 

we identified the following 3 key components of the safe deployment of automated treatment 

planning: 
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1. Training. Training should educate the end users of automated planning systems about the 

potential failure modes, the impact of these failures on patients, and the need for careful 

manual review of the plans to prevent these failures. 

2. Manual plan checks. Physician review of the plans (and contours, where necessary) and 

physics checks are essential components of automated treatment planning. 

3. Automated QA. It is important to not only automate the planning, but also to include 

automated QA steps, as these can substantially mitigate the risks of automated planning. 

 

5.5 Conclusion 

We carried out an FMEA to assess the risk involved in the clinical deployment of automated 

treatment planning. We determined that while automated QA reduces the risks of automated planning, 

effective training and manual plan checks by radiation oncologists and physicists remain extremely 

important parts of the deployment process. 
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Chapter 6 : Automated Plan Quality Verification for Cervical Cancer Radiotherapy 

 

6.1 Introduction 

The treatment planning process is a primary source of radiation therapy incidents [52], [64]. For 

this reason, treatment planning is the focus of many quality assurance (QA) tasks, including physicist 

and physician reviews of treatment plans. Reviewing the treatment plan is a time-consuming task, and 

although it is considered one of the most effective forms of QA, it still does not reliably catch all errors 

that occur in treatment planning [38], [65], [66]. Automating the plan review process would improve 

the effectiveness of error detection by drawing reviewers’ attention to aspects of the treatment plan 

that are incorrect or are suboptimal and sparing them from reviewing every minute plan detail.  

Many radiation therapy groups have already automated various components of the plan review 

process. Some automation techniques verify the technical accuracy of the plans (e.g., the consistency of 

the prescription, correct settings for the dose calculation, and completeness of physician contouring) 

[60], [61], [63], whereas other techniques verify the quality of the treatment plans by comparing them 

to physician-specified plan quality objectives, estimated achievable dose metrics, or other similar plans 

[62], [67], [68]. The development of techniques to verify plan quality is more subjective and difficult 

than the development of techniques to verify the technical accuracy of plans, and most work to date 

has focused on the quantitative dose metrics involved in assessing plan quality for advanced 

treatments, such as intensity-modulated radiation therapy. However, many clinics rely heavily on 

simpler treatment techniques. For example, radiotherapy treatment for patients with cervical cancer 

can be delivered through the use of a four-field box with beam apertures based on the bony pelvic 

anatomy. This treatment technique is common in resource-constrained settings in which soft-tissue 

contouring is not available. In fact, the International Atomic Energy Agency and American Society of 

Clinical Oncology recommend that resource-constrained clinics use it to deliver radiotherapy to 

patients with cervical cancer [10], [11].  
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We have developed a technique to automatically verify the plan quality of three-dimensional 

radiation treatments for cervical cancer through detection of clinically unacceptable beam apertures 

for the four-field box treatment. The technique involves comparing the planned beam apertures to a 

set of independent beam apertures automatically created for the same patient using a secondary 

technique. This concept is similar to the concept of verifying dose calculation using a secondary, 

independent algorithm to calculate dose for a given patient’s treatment plan.  

In this paper, we present our new automated technique for automatically verifying the quality of 

beam apertures and describe its application in plans created by a recently developed, fully automated 

treatment planning tool intended for use in resource-constrained settings [37], [44]. Because staff is 

one of the most limited resources in such clinics [24], any improvement in the efficiency and 

effectiveness of QA tasks has a substantial clinical impact. 

 

6.2 Methods and Materials 

To detect clinically unacceptable beam apertures, this technique utilizes two independent, fully 

automated techniques to generate beam apertures for a single patient’s treatment planning computed 

tomography (CT) scan. The beam apertures created using the primary technique are intended to be 

used for treatment, and those created using the secondary technique are to be used to verify the 

primary treatment apertures. Poor agreement between the two sets of beam apertures indicates that 

the treatment beam apertures are potentially clinically unacceptable and can be used to alert the 

physician that the beam aperture may be in need of editing. The primary and secondary techniques, as 

well as the comparison technique used to detect when the two sets of beam apertures were not in 

agreement, are described in the following sections. All patient data used in this study were handled in 

accordance with an approved institutional review board protocol. 



62 
 

6.2.1 Primary Automation Technique for Treatment 

The automated planning tool designs four-field box treatments for locally advanced cervical cancer 

with beam apertures determined based on a patient’s bony anatomy. The automation technique and 

its validation have been previously described elsewhere [37], [44].  In brief, the input to the automated 

planning tool is a treatment planning CT scan and a plan directive. First, the marked isocenter and body 

contour are automatically defined, and the patient’s bony anatomy is automatically segmented using a 

technique that employs deformable registration of multiple atlases [39], [46]. Then, the bony anatomy 

is projected into the beam’s-eye-view for each of the four fields, and the beam apertures are 

determined based on these projections. Next, the beam apertures are converted into jaws and multi-

leaf collimator (MLC) positions specific to the type of linear accelerator and MLCs to be used for 

treatment. Finally, the dose is calculated, and the beam weights are automatically optimized to deliver 

a homogenous dose to the treated volume.  

In a previous study, two radiation oncologists with expertise in radiotherapy for gynecological 

cancers retrospectively reviewed the beam apertures for 150 treatment planning CT scans. These beam 

apertures had been generated automatically using the primary technique described above and each 

was rated as either “clinically acceptable” or “clinically unacceptable” for treatment. Eighty-nine 

percent of the beam apertures were found to be clinically acceptable [44].   

6.2.2 Secondary Automation Technique for Verification 

For the secondary verification technique, we used the DeepLabv3+ deep learning architecture [69] 

to predict the shape of the beam apertures from the digitally reconstructed radiographs (DRRs) for 

each beam angle. Essentially, this was a two-dimensional segmentation task in which the deep learning 

model was trained to learn which parts of the DRRs should be included in the beam apertures on the 

basis of the visible anatomy [70]. The deep learning model was trained and tested on the beam 

apertures and DRRs from 310 clinically acceptable four-field box treatment plans (255 for training, 55 
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for testing). Physicians had previously reviewed these beam apertures for clinical acceptability as part 

of the development and testing of the primary automation technique [44].  

During training, 3-fold cross-validation was used to fine-tune the model parameters (learning rate, 

decay, etc.). After the optimal parameters were identified during cross-validation, the model was 

trained on the complete training set (255 CT scans) for 35 epochs. A single model was trained to 

segment all four beams (anteroposterior [AP], posteroanterior [PA], right lateral [RT], and left lateral 

[LT]) independently; specifically, the model was trained with an equal distribution of each beam’s DRRs. 

To augment the input data, we applied random vertical and horizontal shifts of +/- 5 mm to the input 

images. Rotational shifts were investigated but were found to be inappropriate due to the nature of the 

beam aperture segmentations (flat edges defined by jaws with no collimator rotations). 

After training, the performance of the deep learning model was assessed by comparing the 

predicted beam apertures with the ground truth for the 55 test CT scans. The predicted beam apertures 

were post-processed prior to comparison in order to impose more typical beam aperture qualities, such 

as straight edges at the field borders to replicate the jaw edges. Averaged across all four post-

processed beams for all patients, the mean surface distance (MSD) was 1.6 mm (standard deviation 

[SD] = 1.0 mm) and the Hausdorff distance (HD) was 6.6 mm (SD = 4.8 mm) (data not shown). The beam 

apertures used in the secondary verification technique were not post-processed, but were the raw 

predictions. 

6.2.3 Comparison Technique 

To detect whether the beam apertures resulting from the primary automation technique were 

clinically acceptable, we compared them quantitatively to the beam apertures from the secondary 

technique using the following spatial agreement and overlap metrics [39]:  

• MSD: the average Euclidean distance between the points that define the edges of the beam 

apertures. A larger MSD indicates worse agreement. 
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• HD: the maximum Euclidean distance between the points that define the edges of the 

beam apertures. A larger HD indicates worse agreement. 

• Dice similarity coefficient (DSC): the overlap of the beam apertures as measured by the 

ratio of their intersection to their mean area. A DSC value of 1 indicates perfect agreement, 

whereas 0 indicates no agreement. 

We tested this technique on 320 beam apertures (four apertures from each of 80 treatment plans. 

In a previous study, these were rated by physicians with 228 of the beam apertures rated as clinically 

acceptable and 92 rated as clinically unacceptable. These plans were part of the cohort used to validate 

the automated planning tool for cervical cancer [44]. These CT scans were originally acquired for 

treatment planning with the patient in a supine position.  

To determine if the beam apertures for the clinically acceptable plans had better agreement with 

the secondary technique than those for the clinically unacceptable plans, we compared the values of 

the agreement metrics using a one-sided t-test. A p-value of 0.05 was used to determine statistical 

significance. We then used a receiver operating characteristic (ROC) analysis to quantify the sensitivity 

and specificity with which we could detect unacceptable beam apertures. In this analysis, a true 

positive result corresponded to beam apertures that were correctly flagged as unacceptable for 

treatment. 

 

6.3 Results 

Figure 1, in which each panel corresponds to a different patient, shows examples of the beam 

apertures resulting from both automation techniques. Panel A shows a true negative case in which the 

two automation techniques agreed and the beam apertures were clinically acceptable. Panels B and C, 

show true positive cases in which the two techniques disagreed and the primary beam apertures were 

clinically unacceptable. In Panel C, both techniques failed to create clinically acceptable beam 
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apertures. Because the two automation techniques use independent methodologies, the disparate 

failures successfully flagged the unacceptable beam apertures. 
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Figure 14. Examples of Beam Apertures Resulting from Both Automation Techniques. The beam 

apertures are shown for the anteroposterior and right lateral beams (left and right images, 
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respectively) with results from the primary (red solid line) and secondary (yellow dotted line) 

techniques. Panel A shows examples of beam apertures that were correctly classified as clinically 

acceptable by the QA technique (a true negative result). Panels B and C show examples of beam 

apertures that were correctly classified as clinically unacceptable by the QA technique (true positive 

results). 

6.3.1 Comparison Metrics 

The histogram distributions of the MSD, HD, and DSC values for both clinically acceptable and 

unacceptable beam apertures are shown in Figure 15, Figure 16, and Figure 17, respectively. The means 

and standard deviations of the comparison metrics tested are embedded in the corresponding figures. 

For all comparison metrics, the average agreement was significantly better (lower for MSD and HD, 

higher for DSC) for clinically acceptable plans than for clinically unacceptable plans (all p < 0.001). The 

histograms show only a small overlap between the two sets of beam apertures. 
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Figure 15. Histogram of the Mean Surface Distance (MSD) Values. Comparison of the beam apertures 

created by the primary and secondary automation techniques, shown for apertures rated clinically 

acceptable (blue) or unacceptable (red) by physicians. In each subfigure, the mean is reported and the 

standard deviation is in parentheses for both the acceptable and unacceptable beams. Lower MSD 

values indicate better agreement. Abbreviations: AP, anteroposterior; PA, posteroanterior; RT, right 

lateral; LT, left lateral. 
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Figure 16. Histogram of the Hausdorff Distance (HD) Values. Comparison of the beam apertures created 

by the primary and secondary automation techniques, shown for apertures rated clinically acceptable 

(blue) or unacceptable (red) by physicians. In each subfigure, the mean is reported and the standard 

deviation is in parentheses for both the acceptable and unacceptable beams. Lower HD values indicate 

better agreement. Abbreviations: AP, anteroposterior; PA, posteroanterior; RT, right lateral; LT, left 

lateral. 
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Figure 17. Histogram of the Dice Similarity Coefficient (DSC) Values. Comparison of the beam apertures 

created by the primary and secondary automation techniques, shown for apertures rated clinically 

acceptable (blue) or unacceptable (red) by physicians. In each subfigure, the mean is reported and the 

standard deviation is in parentheses for both the acceptable and unacceptable beams. Higher DSC 

values indicate better agreement. Abbreviations: AP, anteroposterior; PA, posteroanterior; RT, right 

lateral; LT, left lateral. 
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6.3.2 ROC Analysis 

Using ROC analysis, we quantified how well each of the comparison metrics could determine if a 

beam aperture was unacceptable. The resulting ROC curves for all three metrics are shown in Figure 18. 

The area under the curve (AUC) for the AP, PA, RT, and LT beams are also shown (minimum AUC = 

0.89). The high AUC values indicate that these comparison metrics could detect unacceptable beam 

apertures with good sensitivity and specificity. Overall, the HD metric resulted in the highest AUC for 

three of the four beam apertures. 

 

Figure 18. Receiver Operating Characteristic (ROC) Curves for Each Comparison Metric. The area under 

the curve (AUC) for each metric and beam angle are shown in the corresponding subfigure. 

Abbreviations: AP, anteroposterior; PA, posteroanterior; RT, right lateral; LT, left lateral. 

In order to determine a threshold at which to flag plans that may be deemed unacceptable, we 

considered two scenarios: one with high sensitivity, giving a true-positive fraction (TPF) of 0.90, and 

another with high specificity, giving a low false-positive fraction (FPF) of 0.10. Using the HD metric, we 

determined the threshold values and the corresponding FPFs and TPFs for the beams in the high-

specificity and high-sensitivity scenarios, respectively (Table 7). For the high-sensitivity scenario, the 

corresponding FPF was relatively low, ranging from 0.16 to 0.21. For the high specificity scenario, the 

corresponding TPF was relatively high, ranging from 0.74 to 0.87.  
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Table 7. HD Thresholds for Two Verification Scenarios. 

 AP Beam PA Beam RT Beam LT Beam 

High sensitivity 

(TPF = 0.90) 

Threshold 7.0 mm 8.3 mm 14.1 mm 14.1 mm 

Corresponding FPF 0.19 0.21 0.16 0.16 

High specificity 

(FPF = 0.10) 

Threshold 11.0 mm 10.4 mm 19.3 mm 19.9 mm 

Corresponding TPF 0.87 0.78 0.74 0.74 

Abbreviations: HD, Hausdorff Distance; TPF, true-positive fraction; FPF, false-positive fraction; AP, 
anteroposterior; PA, posteroanterior; RT, right lateral; LT, left lateral. 

 

6.4 Discussion 

In a previous risk assessment of automated treatment planning using failure modes and effects 

analysis, it was found that beam aperture creation was one of the high-risk areas subject to failure [71]. 

Currently, standard practice relies solely on one physician to determine the clinical acceptability of the 

beam apertures; there is no secondary check by an independent expert.  To our knowledge, the QA 

technique presented in this work is the first technique to automatically verify the clinical acceptability 

of beam apertures. Because this technique was effective at detecting the clinically unacceptable beam 

apertures in need of editing prior to patient treatment with high sensitivity and specificity, it could 

make plan reviews more effective without requiring additional effort from staff. The increases in 

efficiency and safety wrought by automatic verification could be especially impactful in resource-

constrained settings, where there are immense staff shortages. 

We implemented this novel automatic beam aperture verification technique as part of an 

automatic QA program that accompanies a fully automated treatment planning tool for cervical cancer 

radiotherapy. The goal of the technique is to alert the physician (or other reviewer of plan quality) to 

potentially unacceptable beam apertures that, when compared with a secondary set of beam 
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apertures, exceed a threshold for a comparison metric. Based on the results of this study, we will 

initially use the HD as our comparison metric in our clinically deployed beam aperture verification and 

will select a threshold that results in high sensitivity to unacceptable beam apertures. However, this 

may result in an excessive number of false positives (i.e., it may create alerts for plans that a physician 

would deem acceptable for treatment); in turn, this could cause the alerts to eventually be disregarded. 

Accordingly, in the initial clinical deployment of the automated planning tool and QA program, we will 

quantify the effectiveness of the automatic verification of beam apertures and solicit feedback from the 

physician users regarding the practicality of the thresholds employed for the automatic verification.  

By inspecting the plans that were misclassified by the QA technique, we found that most could be 

attributed to DRRs that were difficult to interpret. Causes of poor quality DRRs included obscured 

anatomy, poor image quality, or high contrast material in the CT scan. An example of a DRR that was 

difficult to interpret is shown in Panel C of Figure 1. Poor DRR quality presents a challenge for both the 

secondary automation technique, which predicts the beam aperture using the DRR, and for physician 

review of the beam apertures via the DRR. 

In addition to having utility within the automated planning tool for cervical cancer, the technique 

we have presented in this work could be translated to other treatment sites for which beam apertures 

are designed automatically or manually using the beam’s eye view. Our group is currently creating such 

a tool for use in whole-brain treatments with lateral beams. The methodology presented in this work 

can be implemented relatively easily in other clinics wanting to verify the quality of their beam 

apertures and to use their existing, clinically approved treatment plans to train the deep learning 

model.  

With the development and clinical deployment of automated treatment planning, it is natural to 

include automated processes that aid the physicist and physician in the review of treatment plans prior 

to treatment. However, although automated plan QAs are a useful means of enhancing the QA process 

and aiding staff in planning safe and effective radiation treatments, they should only be used for those 
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purposes and never as a substitute for final manual reviews by staff. Physicians always have the 

responsibility of ensuring that only high-quality plans are approved for treatment. In this study, even 

with a threshold set for high sensitivity, 10% of beam apertures rated as clinically unacceptable would 

not have been flagged by the QA technique.  

 

6.5 Conclusions 

In this work, we tested the ability of a novel beam aperture quality verification technique to detect 

clinically unacceptable beam apertures. We found the technique to be very effective, with AUC values 

of 0.89-0.95. By comparing the beam apertures with a secondary set that were created using an 

independent automated technique, we were able to detect clinically unacceptable beam apertures with 

high sensitivity and specificity. This technique will be deployed as part of a fully automated treatment 

planning tool for cervical cancer and could be translated to other treatment sites. 
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Chapter 7 : Discussion and Conclusion 

 

7.1 Project Summary 

The primary objective of this work was to automate radiotherapy treatment planning for patients 

with locally advanced cervical cancer and node-positive, postmastectomy breast cancer. Additionally, 

we aimed to assess the risk of automated planning and to develop techniques to automatically verify 

the quality of automatically-generated treatment plans. To achieve these objectives we first developed 

techniques to automate treatment planning for both cervical and breast cancer radiotherapy in 

collaboration with hospitals in South Africa and the United States. These automation algorithms were 

integrated with a commercial treatment planning system and can generate patient-specific treatment 

plans with no further human input once automated planning is initiated. We then validated our 

techniques retrospectively by testing these techniques on patient CT scans. Upon physician review of 

plans, we found they overwhelmingly accepted the cervical cancer plans as-is (90%) and the remaining 

with minor edits (10%). They also accepted the breast cancer plans as-is (50%) or with only minor edits 

(50%). Next, we used failure modes and effects analysis (FMEA) to assess the risk involved in the 

workflow of using this automated planning tool and demonstrated a shift to lower relative risk when a 

quality assurance (QA) program specific to the automated planning tool was included in the analysis. 

We then created techniques for automated plan quality verification that were able to successfully 

detect potential deviations in plan quality in the automatically planned treatments generated for both 

cervical and breast cancer treatments. 

 

7.2 Specific Aim One 

In Specific Aim One, we developed and validated a fully automatic treatment planning tool for four-

field box treatments with beam apertures based on bony anatomy, which is the recommended 

technique for the delivery of external beam radiotherapy for locally advanced cervical cancer in low-
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resource clinics [10], [11]. We developed automation algorithms for the design of the treatment beam 

apertures and optimization of the beam weights to minimize dose heterogeneity.  

We have validated the clinical acceptability of the treatments planned by our automated planning 

tool for cervical cancer in three parts. First, we performed an extensive retrospective validation of the 

algorithms developed by testing them using 150 planning CTs. The automatically generated body 

contours and marked isocenters agreed well with their manually defined counterparts. In validating the 

automatically designed beam apertures, two physicians, one from our institution and one from a South 

African partner institution, rated 90.7% and 87.5% of plans acceptable for treatment, respectively. The 

use of automatically optimized beam weights significantly reduced the maximum dose while 

maintaining coverage within the treated volume. Second, we conducted a successful test of our fully 

automated planning tool on-site at two South African hospitals using 14 planning CTs from patients 

previously treated at those institutions. Upon physician review of these plans, 100.0% were rated 

clinically acceptable. Third, automatically planned treatment beams were clinically deployed at our 

institution at have been used for 24 patients with cervical cancer by physicians at our institution, with 

edits as needed, and its use is ongoing. 

Overall, we have found that the automation techniques developed in this work are effective for 

planning patient-specific treatments for locally advanced cervical cancer and may provide a reliable 

option for resource-constrained clinics. To our knowledge, this is the first work toward fully automated 

treatment planning for radiotherapy of cervical cancer. As cervical cancer is one of the most prevalent 

forms of cancer in LMICs, this automated planning tool could help alleviate staff shortages in resource-

constrained clinics. In addition to reducing the workload on staff, another benefit of this automated 

planning tool is that patient treatments could be prepared more quickly since the number of handoffs 

between physicians and planners would be reduced. This could also improve safety since staff handoffs 

is a known weakness in the safety of radiotherapy [42], [43]. 
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7.3 Specific Aim Two 

In Specific Aim Two, we developed and validated a fully automated treatment planning tool for 

radiotherapy of the chest wall and ipsilateral lymph nodes using tangential fields matched to an en-face 

supraclavicular (SCV) field, a standard treatment for node-positive, post mastectomy breast cancer 

patients. Overall, physicians accepted 100% of patient plans with no or minor changes, with 40% of 

plans using an alternative match line, which was placed more superior than the clavicular head to 

reduce the amount of lung exposed in the SCV field. The major automated steps include (1) 

segmentation of relevant structures (targets, normal tissues, and other planning structures); (2) setup 

of the beams (tangent fields matched to a supraclavicular field); and (3) optimization of the dose 

distribution using a mix of high- and low-energy photon beams and field-in-field modulation for the 

tangent fields.  

This automated postmastectomy radiation therapy (PMRT) planning tool was tested on ten CT 

scans of patients who had previously received radiation to the left chest wall. First we assessed the 

accuracy of the automated segmentation of the heart and ipsilateral lung. These contours agreed well 

when compared with manually edited contours. Any differences in contouring did not have a 

substantial impact on the dose calculated to the organs-at-risk. We then assessed the automatically 

created PMRT treatment plans quantitatively and found that they met the acceptable dose objectives, 

including target coverage, maximum plan dose, and dose to organs-at-risk, for all patient plans except 

for one in which the heart objectives were exceeded. The plans were then reviewed by two physicians 

who rated the plans on a three-tier scale: use as-is, minor changes, or major changes. Physicians 

accepted the treatment plans for 50% of the plans as-is and required only minor changes for the 

remaining 50%. 

Given the nuances involved in preparing PMRT and the proximity of the sensitive normal tissues to 

the targets, there are many trade-offs that must be balanced in order to achieve the desired final plan 

quality. These tradeoffs include covering the target, reducing dose to organs-at-risk, and minimizing the 
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maximum dose. As a result, for half of the test patients, physicians would accept the automatically 

planned treatments, but would attempt minor changes. This is still a positive outcome given that having 

a complete plan that only requires minor changes would likely still result in a substantial reduction in 

planning time for these challenging treatments.  

To our knowledge, we have developed the first automated planning tool for PMRT and, through 

retrospective testing, demonstrated its viability for clinical implementation. This tool has the potential 

to improve the efficiency with which we plan these complex treatments. And given the prevalence of 

breast cancer in LMICs and the advanced stage at which it is normally diagnosed, this automated PMRT 

planning tool can potentially reduce the workload on radiotherapy staff. 

 

7.4 Specific Aim Three 

In Specific Aim Three, we first assessed the risk of failure of the automated treatment planning tool 

that we have developed using FMEA and demonstrated that a specialized QA program, which included 

automatic QA techniques, reduced this risk by improving the detectability of failures. Next, we created 

and tested plan quality verification techniques for automatically planned treatments generated in this 

work for both cervical and breast cancer treatments which were both more than 90% effective at 

detecting potential deviations in plan quality, while having a relatively low false positive rate.  

Treatment planning is one of the most error-prone processes in radiation therapy [52], [64]. While 

the introduction of automated treatment planning techniques has the potential to reduce this risk, no 

formalized assessment of automated planning existed before now. This work has enabled us to 

systematically and prospectively identify the highest-risk steps involved in our automated treatment 

planning workflow and aided us in developing a specialized QA program. We have found that, while 

automated planning is likely a safe process overall, some residual risks persisted, which were similar to 

those found in manual treatment planning. Also human error remained a major cause of potential 

errors. 
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The risk assessment presented in this work is not only important for the safe clinical 

implementation of this automated planning tool, it also has generated broader reaching lessons that 

can inform the safe deployment of other automated planning tools. As the prevalence of automated 

treatment planning grows, such recommendations for safe deployment will be vital to maintaining 

safety for patients treated with radiation therapy. Through this risk analysis process, we identified three 

key aspects of safe deployment of automated planning: (1) user training on potential failure modes; (2) 

comprehensive manual plan review by physicians and physicists; and (3) automated QA of the 

treatment plan. 

In the FMEA, beam aperture creation for automated planning for cervical cancer was identified as 

one of the higher-risk potential failure modes. This is because the shape of the beam in four-field box 

treatments is the main driver of the quality of the treatment plan. As a result, the beam aperture 

quality was the focus of the plan quality verification technique developed for automated planning for 

locally advanced cervical cancer. We developed a technique to automatically verify the clinical 

acceptability of the beam apertures by comparing them with a secondary set of beam apertures 

developed using an independent technique. If the two sets of beam apertures disagree, this technique 

alerts the user that the beam apertures may need to be edited prior to treatment. We found that our 

technique was an effective tool for flagging potentially unacceptable beam apertures during the 

treatment plan review process.  

This plan quality verification technique is effective because of the total independence of the two 

methodologies used for creating the beam apertures. Both methodologies had instances where they 

failed to produce acceptable beam apertures, and sometimes this occurred for the same patient. 

However, the reason for each methodology failing was different, resulting in different appearances for 

the beam apertures, allowing this QA tool to correct flag the unacceptable beam apertures in these 

cases. 
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The plan quality verification technique presented in this work is the first to automatically verify 

beam apertures. This technique was extremely effective at detecting clinically unacceptable beam 

apertures that were in need of editing. Additionally, this technique has applications for radiotherapy of 

other treatment sites, including whole-brain treatments. This automated technique could improve the 

effectiveness of plan reviews without additional effort from staff, which could improve the efficiency 

and safety of the treatment planning QA process.  

 We also have tested a plan quality verification tool for automatically created PMRT plans that 

alerts the user to any possible deviations in the plan quality. Most of these quality verification tests 

were based on the plan’s dose distribution. In the testing presented in this work, this tool was able to 

detect 92% of the changes requested by physicians. This methodology will be integrated with the 

clinical automated planning tool for PMRT, where it could improve the safety of treatment planning by 

alerting the physician to potential discrepancies, such as high organ-at-risk dose. These alerts could also 

enable quicker adjustment of the treatment plans, if needed, by automatically drawing attention 

specifically to the aspect of the treatment plan that may be in need of edit. 

 

7.5 General Discussion 

The resulting automated planning tools presented in this work are a consensus based on the 

expertise of several physicians from the United States and South Africa and was honed through several 

rounds of testing. For cervical cancer, we conducted preliminary testing on more than 250 patient CT 

scans. For breast cancer, we conducted preliminary testing on 29 additional patient CT scans prior to 

the final test reported in this work. 

Through this process, we have become aware of variations in radiotherapy treatment techniques 

for similar patients across institutions and physicians. Many of these variations in clinical practice can 

likely be accommodated by slight adjustments to the automation algorithms, which have flexibility in 

the parameters used to generate the resulting treatment plans (e.g. setting the jaws at 1.5 cm versus 
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2.0 cm beyond the widest extent of the pelvis for cervical cancer plans, or alternative superior border 

locations for the SCV field of PMRT plans). Such common variations could be accommodated through 

the use of institution-specific configuration files containing the preferred techniques. However, if the 

variations in clinical practice are too numerous, there is a risk that it becomes impractical to adapt the 

algorithms for every new clinic in which the automated planning tool is implemented.  

Other variations in treatment plan technique that could easily be accommodated are for patients 

with different characteristics than those for which these tools were designed, described in detail in 

Appendix A and Appendix B. For example, the automated planning for cervical cancer can be easily 

adapted for patients with more extensive nodal disease requiring adjustment of the inferior and/or 

superior border locations. For automated planning of breast cancer, the same methodologies can be 

used to automatically plan right-sided PMRT, and even for the treatment of intact breast and 

treatments without the inclusion of the ipsilateral lymph nodes (SCV and level III axillary). There are 

certain variations in radiotherapy technique that would require more extensive changes to the 

automation algorithms. One such example would be the treatment of the internal mammary chain 

lymph nodes with an en-face electron field, which would require more complex adaptation of the 

current algorithms and likely the development of new automation algorithms. Prior to the clinical 

implementation of any adaptation of the current automated planning tools, there should be extensive 

testing to ensure there are no unexpected outcomes.  

The radiotherapy techniques that we selected to automate in this work were based on several 

factors including, resource-stratified recommendations from international organizations, the current 

clinical practice of our international partner institutions and other institutions in low- and middle-

income countries, and the currently available computational techniques for automating the treatment 

planning process. As computational techniques progress, it is likely that our ability to automate more 

advanced techniques will improve. For example, improved automated segmentation of soft tissues in 
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the pelvis would facilitate automated planning of conformal techniques or even inversely-planned 

treatment techniques, such as volumetric-modulated arc therapy (VMAT).  

The automation of these advanced techniques has the potential to help resource-constrained 

clinics transition to more state-of-the-art radiotherapy treatment techniques. In order to make the 

transition to more advanced treatments safely, other developments in clinical practice would need to 

coincide, including upgraded technology for treatment, new QA processes and equipment, and 

additional staff expertise. For example, in order to implement VMAT for cervical cancer, clinics will 

need to have external beam radiotherapy machines capable of delivering such treatments, as well as 

the equipment necessary to perform the necessary QA tasks. Furthermore, staff will need the expertise 

to perform these QA tasks and to be able to sufficiently judge the quality of these treatment plans.  

 

7.6 Study Limitations 

A limitation of this study was lack of access to patient data from our partner institution. Due to the 

limitations of sharing data across international institutions, it was difficult to have access to large 

numbers of patient CT datasets, and especially to the corresponding treatment plans for those patients. 

As a result, the large cohort of patient CTs used for testing the automated planning tool for cervical 

cancer were from our own institution, with only a small cohort of 14 CT scans used for testing from two 

hospitals in South Africa. For automated PMRT planning, we found early in our development that 

differences in the position of the arms of patients treated at our institution and our South African 

partner institution was hindering the development process. As a result we were only able to conduct 

development and testing on data collected from other institutions where the setup was more similar to 

our partner institution. This severely limited the number of datasets we were able to use for testing.  

Finally, retrospective reviews are a vital step prior to the implementation of any clinical tool 

developed. They are useful in gauging the performance of the tool while minimizing interference in 

clinical processes. However, they do have several limitations as they do not fully replicate the actual 
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clinical conditions in which a physician would normally evaluate the quality of a plan. First, the 

physician does not have the extensive patient-specific information that could alter their opinion of the 

plan otherwise. Instead, they are instructed to assume the patient is a standard patient (based on the 

criteria outline in Appendix A and Appendix B, rather than a special case. Retrospective reviews also 

tend to be conducted in a manner in which the physician is reviewing multiple plans consecutively, 

which is not typical of the clinic. Prospective reviews in which the physician is comparing the automated 

treatment plan to a manually planned treatment, or reviewing and editing a manually planned 

treatment prior to patient treatment would give a better indication of the true performance of the 

automated planning tools. 

 

7.7 Future Direction 

Moving forward, the next step that needs to occur is on-site training and testing with the 

prospective end users of the tools for automated planning and plan quality verification. These tools are 

in the process of being converted from a standalone research system to a multi-server clinical 

implementation that will function as a cloud-based solution. Our partner institutions in southern Africa 

and the Philippines can access these tools remotely by submitting approved patient CT scans and 

corresponding approved plan directives through specialized user interfaces developed by our research 

group [37]. Using these interfaces, they can retrospectively evaluate the performance of these 

automated planning tools on larger numbers of their own patient cohorts and even compare the results 

of automated planning to the manually planned treatments. All end-users will need to be trained on 

the use of the automated planning user interfaces, the appropriate patient characteristics and setup 

procedures, and any potential failure modes in automated planning.  

Once the prospective end-users have completed retrospective validation of the automated 

planning tools, the next step would be for prospective testing with two main goals: evaluating the 
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performance under actual clinical conditions and evaluating the reduction in workload and time savings 

afforded by automated planning.  

Prospective testing can be performed in various ways. One such way is a side-by-side test in which 

the treatment plan is generated simultaneously using both automatic and manual planning. Then the 

physician would review both plans, ideally blinded to the source of the plan, select their preferred plan, 

and give feedback on any discrepancies in the two plans [72]. A benefit of this method is that we could 

also collect data on how long each planning method takes and quantify any potential time-savings and 

reduction in workload on staff with automated planning. A drawback is that this would require the 

physician to evaluate two plans, which would involve more of their limited time during the testing 

period. Another way to prospectively test the automated planning is to present the physician with only 

the automated plan and then ask them to accept or reject the plan. If accepted, we could then capture 

any edits made prior to final approval for patient treatment. The benefit of this method is that it does 

not require the physician to review more than one plan. However, it would not allow us to conduct a 

head-to-head comparison of the time required for automated and manual planning.  

Beyond clinical implementation at our current partner institutions, there are a few other steps that 

need to occur to facilitate widespread adoption of these automated planning tools. One such step is the 

adaptation of the current versions of the automated planning tools to accommodate more patients 

treated for cervical and breast cancer at these institutions. In their current form, the automated tools 

only apply to a subset of these patients, although we did select the largest subset based on our 

partner’s clinical experience. However, we are still limited by laterality for PMRT and extent of disease 

for cervical cancer. With some adaptation, these tools can be adapted to have utility for a majority of 

the patients receiving radiotherapy for cervical and breast cancer. 

Another step to enable widespread adoption is adapting these automated tools for other clinical 

scenarios that are common in resource-constrained clinics. One such example is the lack of access to 

high energy photons. These automated tools can be adapted and tested for treatments using only low-
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energy photon beams, or even for photon beams generated by Co-60 teletherapy machines. Another 

scenarios could be the use of photon blocks rather than MLCs. 

Additionally, prior to clinical deployment, the FMEA results should be revisited and updated based 

on the final workflow, automation methodologies, and the clinical practice of our partner hospitals 

where the tool will be implemented. Any findings that result in higher relative risk should be addressed 

by changes in the workflow, training, or other risk mitigation strategies. Through continued use of our 

automated planning tools, we can collect quantitative data on the frequency and detectability of any 

planning failures, and update the values used in our FMEA. This is similar to the use of an incident-

learning system to inform the results of an FMEA. 

The automation tools and techniques developed in this work are part of a larger project with the 

long term goal of automating treatment planning for all (or nearly all) radiation treatments. Initially our 

work (including that presented here and those of others), have spanned the extent of types of radiation 

treatments, from conventional (four-field boxes for cervical cancer) to inversely planned (VMAT for 

head-and-neck caner). These techniques build the foundation on which future automated planning 

techniques can be developed. For example, the techniques developed for four-field box beam aperture 

creation and beam weight optimization can be applied to other sites using this “2.5-D” technique, such 

as whole brain treatments using lateral beams or rectal cancer treatments using a three-field belly 

board technique. The techniques developed to determine optimal gantry angles for left-sided, 

postmastectomy radiotherapy can be used for determine treatment field borders for all types of breast 

tangent plans, any treatment using oblique gantry angles, such as the en-face SCV field, and even for 

setting up electron beams to treat the internal mammary chain lymph nodes. Additionally, the 

techniques developed for automating the optimization of the dose distribution using mixed energy 

photon beams and field-in-field segments could be applied to any radiation treatment using field-in-

field style modulation to achieve more homogenous dose distributions.  
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7.8 Conclusion 

For automated planning for locally advanced cervical cancer, radiation oncologists accepted as-is 

89.6% of treatments plans reviewed in the two test cohorts, with three expert physicians evaluating 

different subsets of the plans. The remaining 10% required only minor changes in the beam apertures. 

For node-positive, postmastectomy breast cancer, 100% of the plans were accepted with no or only 

minor changes and are therefore considered clinically viable. Therefore, our hypothesis that 90% of the 

treatment plans created with our automated planning techniques would be rated as clinically 

acceptable by radiation oncologists was proven in this work. Furthermore, the techniques we 

developed for the automated detection of poor quality beam apertures for cervical cancer radiotherapy 

was able to detect 90% of the unacceptable beam apertures with good specificity. The automated 

detection of deviations in plan quality for PMRT treatments detected 92% of the changes requested by 

radiation oncologists. Therefore, our hypothesis that our automated quality verification techniques 

would detect 90% of unacceptable plans was proven in this work.  
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Appendix A 

Statement of appropriate use of the automated planning tool for cervical cancer 

The automated planning tool developed in this work for radiotherapy of locally advanced cervical 

cancer has been designed and tested for a certain disease extent, treatment setup, treatment 

technique. Below are a list of criteria relating to the appropriate use of the current version of the 

automated planning tool presented in this work. Applicability of this tool to other similar conditions are 

feasible but not yet vetted. 

 

Patient Disease Extent 

• Locally advanced cervical cancer 

• Disease limited to the upper two-thirds of the vagina (ie, not involving the distal vagina) 

• Disease only involving the pelvic lymph node (eg, not involving the paraaortic lymph nodes). 

 

Patient Treatment Setup 

• Head first, supine 

• Marked and treatment isocenter indicated with a three-point external fiducial setup 

• No additional high density objects (eg, wires or fiducials) should be placed on the patient’s 

body surface 

• No intravenous or oral contrast should be used in the planning CT scan 

 

Treatment Technique 

• Four-field box treatment technique with beam apertures based on bony anatomy 

• Delivered using a linear accelerator with high energy photons 

• Treatment fields defined by asymmetrical jaws and MLCs (ie, no photon blocks) 
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• Dose normalized 100% to the marked/treatment isocenter 

 

AP and PA Beam Aperture Description 

Table 8. The AP and PA beams are not mirror images of each other. The location of each jaw or block 

described below is indicated by the Roman numeral and corresponds to the location shown in panel A 

of Figure 19.  

Superior-right block (i) From transverse process, straight line to level of SI (sacroiliac) joint 

(where sacrum touches the pelvis, ie, the top of the pelvic inlet) 

Superior jaw (ii) L3/L4 (ie, top of L4) 

Superior-left block (iii) From transverse process, straight line to level of SI (sacroiliac) joint 

(where sacrum touches the pelvis, ie, the top of the pelvic inlet) 

Left jaw (iv) 2.0 cm from widest part of pelvic inlet 

Inferior-left block (v) From where the top of the femoral head crosses the jaw, a straight 

line to skirt past the obturator foramen. Make sure to not block the 

medial/superior aspect of the femoral head 

Inferior jaw (vi) Bottom of the pelvis 

Inferior-right block (vii) From where the top of the femoral head crosses the jaw, a straight 

line to skirt past the obturator foramen. Make sure to not block the 

medial/superior aspect of the femoral head 

Right jaw (viii) 2.0 cm from widest part of pelvic inlet 
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Lateral Beam Aperture Description 

Table 9. The right and left lateral beams are mirror images of each other. The location of each jaw or 

block described below is indicated by the Roman numeral and corresponds to the location shown in 

panel B of Figure 19. 

Superior-posterior block (i) Follow curve of vertebral bodies 

Superior jaw (ii) L3/L4 (ie, top of L4) 

Superior-anterior block (iii) Start 3.5 cm out anterior to the vertebral bodies then straight 

inferior till bottom of L5. From there, diagonal out till anterior jaw, 

the slope of which is parallel to the slope from S1/L5 to top of 

pubic symphysis 

Anterior jaw (iv) Anterior to the pubic symphysis by 0.5 cm. However, if this puts 

the jaw <3.5 cm anterior to the vertebral bodies, then set at 3.5 cm 

anterior to the vertebral bodies. 

Inferior-anterior block (v) Following just inferior to the pubic symphysis 

Inferior jaw  (vi) Bottom of the pelvis 

Inferior-posterior block (vii) Start at posterior jaw at level of coccyx. Follow the curve of the 

coccyx and draw a curved line toward where the pelvis crosses the 

inferior jaw 

Posterior jaw (viii) Posterior to the sacrum 
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Figure 19. Figure adapted from Kisling et al [44]. Beam’s eye view of the (A) anteroposterior (AP) and 

(B) right lateral beam angles. The Roman numerals indicate the location of a jaw or block which 

corresponds to the descriptions above in Table 8 and Table 9.  
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Appendix B 

Statement of appropriate use of the automated planning tool for breast cancer  

The automated planning tool developed in this work for radiotherapy of node-positive, 

postmastectomy breast cancer has been designed and tested for a certain disease extent, treatment 

setup, treatment technique. Below are a list of criteria relating to the appropriate use of the current 

version of the automated planning tool presented in this work. Applicability of this tool to other similar 

conditions are feasible but not yet vetted. 

 

Patient Disease Extent 

• Node-positive, postmastectomy breast cancer requiring treatment of the chest wall, 

supraclavicular (SCV) lymph nodes, and level III axillary lymph nodes 

• For treatment of left-sided disease only 

• Not for treatment of the internal mammary chain lymph nodes 

• Not for patients with skin involvement 

 

Patient Treatment Setup 

• Head first, supine 

• Both arms raised over the patient’s head 

• Patient scanned while freely breathing (ie, no deep inspiration breathhold) 

• Patient positioned on an angled breast board 

• Marked isocenter indicated with a three-point external fiducial setup 

• No intravenous or oral contrast should be used in the planning CT scan 
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Treatment Technique 

• Monoisocentric medial and lateral tangential fields matched to an oblique, en-face 

supraclavicular field 

• Designed for a hypofractionated treatment (40.05 Gy in 15 fractions) 

• Delivered using a linear accelerator with both low and high energy photons (specifically 6 MV 

and 18 MV) 

• Treatment fields defined by asymmetrical jaws and MLCs (ie, no photon blocks) 

• Mixed energies allowed for all fields 

• Up to two field-in-field segments per medial and lateral tangential beam 

• Match line between tangential and SCV fields is placed at the inferior extent of the clavicle 

o If the tangent fields are too long (>20 cm maximum field size for a half-beam blocked 

field for Varian C-arm machines, such as 2100 series or TrueBeam), the match line if 

moved more inferior 

o If there is insufficient open field inferior to the humeral head (<2 cm), the match line if 

moved more inferior 

o If there is too much lung in the SCV field (>4 cm from the inferior border of field to the 

apex of the lung in the beam’s eye view), the match line is moved more superior (as 

long as the previous two points allow this move) 

 

Tangential Field Description 

• A beam’s eye view of an example of the medial tangential field is shown in Figure 20. The 

location of each border described below is indicated by a Roman numeral that corresponds to 

the location shown in the figure. 

• The collimator angle is 0 degrees 

• The superior border (i) is at the match line location 
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• The inferior border (ii) is 1 cm below the most inferior extent of the breast tissue (which is 

manually identified) 

• The anterior border (iii) allows for 2 cm of flash 

• The posterior border (iv) is defined by the MLCs 

 

Figure 20. Beam’s eye view of the medial tangential field. The Roman numerals indicate the location of 

a border that corresponds to the descriptions of the field. 

 

SCV Field Description 

• A beam’s eye view of an example of the SCV field is shown in Figure 21. The location of each 

border described below is indicated by a Roman numeral that corresponds to the location 

shown in the figure. 

• The superior border (i) is at the cricoid 

• The inferior border (ii) is at the match line location 

• The medial border (iii) shields the esophagus and spinal cord 

• At the lateral border of the field (iv), the humeral head is shielded 
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Figure 21. Beam’s eye view of the SCV field. The Roman numerals indicate the location of a border that 

corresponds to the descriptions of the field. 

 

Dosimetric Goals 

Table 10. These objectives were determined using several sources, including objectives from a 

hypofractionated PMRT clinical trial (unpublished protocol) [49], recommendations from The Royal 

College of Radiologists [45], and clinical objectives from our partner hospitals. 

Region of Interest Dose Metric Preferred Objective Acceptable Limit 

Heart 
Mean Dose < 4 Gy < 6 Gy 

Volume > 25 Gy < 7% < 10% 

Ipsilateral (left) lung Volume > 17 Gy < 35% < 40% 
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Appendix C 

Full results of failure modes and effects (FMEA) analysis 

Table 11. The following table contains the potential failure mode and potential cause of failure for each 

process step assessed in the Radiation Planning Assistant (RPA) workflow (depicted in Figure 11 in 

Chapter 5). The FMEA scores are shown for the likelihood of occurrence (O), severity (S),  likelihood of 

going undetected (D), and the overall risk priority number (RPN) both without and with the specialized 

quality assurance (QA) program. 

    
Without QA 

program 
With QA program 

Process 
Step 

Process Step 
Description 

Potential Failure 
Mode 

Potential Cause of 
Failure 

O S D RPN O S D RPN 

1 CT simulation           

1.01 Position patient Incorrect orientation Human error 3 9 2 54 3 9 2 54 

1.01 Position patient Incorrect orientation 
Standard 

technique varies 
from RPA protocol 

6 9 3 162 6 9 1 54 

1.01 Position patient Incorrect orientation 
Intentional non-

standard technique 
4 9 3 108 4 9 2 72 

1.01 Position patient 
Unexpected 

immobilization (that 
affects CT data) 

Human error 3 5 8 120 3 5 6 90 

1.01 Position patient 
Unexpected 

immobilization (that 
affects CT data) 

New 
immobilization 

device 
2 5 7 70 2 5 6 60 

1.01 Position patient 
Unexpected 

immobilization (that 
affects CT data) 

Standard 
technique varies 

from RPA protocol 
3 5 8 120 3 5 7 105 

1.01 Position patient 
Unexpected 

immobilization (that 
affects CT data) 

Intentional non-
standard technique 

4 5 8 160 4 5 6 120 

1.01 Position patient 
Inappropriate 

positioning (eg arm 
in-field) 

Human error 6 4 7 168 6 4 7 168 

1.01 Position patient 
Inappropriate 

positioning (eg arm 
in-field) 

Intentional non-
standard technique 

4 4 8 128 4 4 8 128 

1.02 
Place external 

fiducials 
Inappropriate type of 

external fiducials 
Human error 2 4 8 64 2 4 4 32 
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1.02 
Place external 

fiducials 
Inappropriate type of 

external fiducials 

Standard 
technique varies 

from RPA protocol 
2 4 8 64 2 4 4 32 

1.02 
Place external 

fiducials 

External fiducials 
exceed planar 

limitations 
Human error 3 3 1 9 3 3 1 9 

1.02 
Place external 

fiducials 

External fiducials 
exceed planar 

limitations 
Patient moves 4 3 1 12 4 3 1 12 

1.02 
Place external 

fiducials 
<3 external fiducials 

placed 
Human error 1 3 1 3 1 3 1 3 

1.02 
Place external 

fiducials 
<3 external fiducials 

placed 

Standard 
technique varies 

from RPA protocol 
8 3 1 24 8 3 1 24 

1.02 
Place external 

fiducials 
<3 external fiducials 

placed 
External fiducials 

fall off 
2 3 1 6 2 3 1 6 

1.02 
Place external 

fiducials 

Out of range of 
treatment/wrong 

location 
Human error 3 6 4 72 3 6 2 36 

1.03 
Enter patient 
information 

Incorrect ID or name Human error 2 1 1 2 2 1 1 2 

1.03 
Enter patient 
information 

Incorrect ID or name Human error 1 10 9 90 1 10 9 90 

1.04 
Select CT 

protocol and 
execute 

Orientation entered 
incorrectly 

Human error 5 2 1 10 5 2 1 10 

1.04 
Select CT 

protocol and 
execute 

Orientation entered 
incorrectly 

Standard 
technique varies 

from RPA protocol 
5 2 1 10 5 2 1 10 

1.04 
Select CT 

protocol and 
execute 

Orientation entered 
incorrectly 

Incorrect CT 
protocol selected 
(eg HN protocol) 

5 2 1 10 5 2 1 10 

1.04 
Select CT 

protocol and 
execute 

Orientation entered 
incorrectly 

Standard CT 
protocol is 

inappropriate 
5 2 1 10 5 2 1 10 

1.04 
Select CT 

protocol and 
execute 

Too large slice 
spacing 

Human error 2 8 5 80 2 8 3 48 

1.04 
Select CT 

protocol and 
execute 

Too large slice 
spacing 

Standard 
technique varies 

from RPA protocol 
2 8 5 80 2 8 3 48 

1.04 
Select CT 

protocol and 
execute 

Too large slice 
spacing 

Incorrect CT 
protocol selected 
(eg HN protocol) 

2 8 5 80 2 8 3 48 

1.04 
Select CT 

protocol and 
execute 

Too large slice 
spacing 

Standard CT 
protocol is 

inappropriate 
2 8 5 80 2 8 3 48 
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1.04 
Select CT 

protocol and 
execute 

FOV is too small Human error 5 8 7 280 5 8 6 240 

1.04 
Select CT 

protocol and 
execute 

FOV is too small Patient is too large 5 8 7 280 5 8 6 240 

1.04 
Select CT 

protocol and 
execute 

FOV is too small 
Incorrect CT 

protocol selected 
(eg HN protocol) 

3 8 7 168 3 8 6 144 

1.04 
Select CT 

protocol and 
execute 

FOV is too small 
Standard CT 
protocol is 

inappropriate 
2 8 7 112 2 8 6 96 

1.04 
Select CT 

protocol and 
execute 

Insufficient scan 
length 

Human error 4 3 1 12 4 3 1 12 

1.04 
Select CT 

protocol and 
execute 

kV/mA inappropriate 
(affects image 

quality) 
Human error 1 5 5 25 1 5 5 25 

1.04 
Select CT 

protocol and 
execute 

kV/mA inappropriate 
(affects image 

quality) 

Incorrect CT 
protocol selected 
(eg HN protocol) 

1 5 5 25 1 5 5 25 

1.04 
Select CT 

protocol and 
execute 

kV/mA inappropriate 
(affects image 

quality) 

Standard CT 
protocol is 

inappropriate 
1 5 5 25 1 5 5 25 

1.04 
Select CT 

protocol and 
execute 

Used contrast (IV or 
oral) 

Human error 3 5 5 75 3 5 3 45 

1.04 
Select CT 

protocol and 
execute 

Used contrast (IV or 
oral) 

Standard 
technique varies 

from RPA protocol 
8 5 5 200 8 5 3 120 

1.04 
Select CT 

protocol and 
execute 

Used contrast (IV or 
oral) 

Intentional non-
standard technique 

4 5 5 100 4 5 3 60 

1.04 
Select CT 

protocol and 
execute 

Scan 
incomplete/failure 

Power failure 1 3 1 3 1 3 1 3 

1.04 
Select CT 

protocol and 
execute 

Scan 
incomplete/failure 

Patient issues 1 3 1 3 1 3 1 3 

1.05 
Transfer CT to 

RPA control 
center 

Incorrect CT sent Human error 4 4 8 128 4 4 8 128 

1.05 
Transfer CT to 

RPA control 
center 

Data 
corrupted/incomplete 

Network error 1 7 5 35 1 7 3 21 

1.05 
Transfer CT to 

RPA control 
center 

Data 
corrupted/incomplete 

Human error (too 
quick) 

6 7 5 210 6 7 3 126 
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1.05 
Transfer CT to 

RPA control 
center 

Not completed Network error 1 2 1 2 1 2 1 2 

1.05 
Transfer CT to 

RPA control 
center 

Not completed Human error 3 2 1 6 3 2 1 6 

1.06 
Approve CT in 

RPA control 
center 

Not approved Human error 8 2 1 16 8 2 1 16 

1.06 
Approve CT in 

RPA control 
center 

Approve incorrect CT 
(same patient, if >1 

CT) 
Human error 3 4 8 96 3 4 8 96 

1.07 

Transfer CT from 
RPA control 

center to RPA 
planning module 

Data corrupted Network error 1 7 5 35 1 7 3 21 

1.07 

Transfer CT from 
RPA control 

center to RPA 
planning module 

Not completed Network error 1 2 1 2 1 2 1 2 

2 Plan directive           

2.01 
Enter patient 
information 

Incorrect ID or name Human error 2 10 1 20 2 10 1 20 

2.01 
Enter patient 
information 

Incorrect ID or name Human error 2 1 1 2 2 1 1 2 

2.01 
Enter patient 
information 

Incomplete ID or 
name 

Human error 2 1 1 2 2 1 1 2 

2.01 
Enter patient 
information 

Incompatible digits Algorithm error 2 1 1 2 2 1 1 2 

2.02 
Enter treatment 

site 
Incorrect treatment 

site 
Human error 3 1 1 3 3 1 1 3 

2.02 
Enter treatment 

site 
Not completed Human error 2 1 1 2 2 1 1 2 

2.03 
Questions about 

patient 
appropriateness 

Not completed Human error 2 1 1 2 2 1 1 2 

2.03 
Questions about 

patient 
appropriateness 

Completed 
incorrectly 

Human error 2 9 7 126 2 9 7 126 

2.03 
Questions about 

patient 
appropriateness 

Completed 
incorrectly 

Human error 4 9 5 180 4 9 5 180 

2.04 
Enter 

prescription 

Incorrect dose (not 
changed from 

default) 
Human error 4 9 7 252 4 9 7 252 

2.04 
Enter 

prescription 

Incorrect dose 
(changed from 

default incorrectly) 
Human error 3 9 6 162 3 9 6 162 
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2.05 
Select treatment 

machine 
Incorrect Human error 6 3 6 108 6 3 6 108 

2.05 
Select treatment 

machine 
Not selected Human error 2 1 1 2 2 1 1 2 

2.06 
Approve plan 

directive 
Not completed Human error 2 1 1 2 2 1 1 2 

2.06 
Approve plan 

directive 
Approved by staff 

without correct rights 

Shared 
login/incorrect 

rights 
4 9 5 180 4 9 5 180 

2.07 

Data transfer 
from RPA control 

center to RPA 
planning module 

Data corrupted Network error 2 1 1 2 2 1 1 2 

2.07 

Data transfer 
from RPA control 

center to RPA 
planning module 

Not completed Network error 2 1 1 2 2 1 1 2 

3 
RPA plan 
creation 

          

3.01 
Isocenter 
position 

Incorrectly identified 
Other external 

fiducials 
7 9 8 504 7 9 5 315 

3.01 
Isocenter 
position 

Incorrectly identified 
Out of range of CT 

scan 
3 9 8 216 3 9 4 108 

3.01 
Isocenter 
position 

Incorrectly identified Algorithm error 4 9 8 288 4 9 4 144 

3.01 
Isocenter 
position 

Not identified 
Out of range of CT 

scan 
3 2 1 6 3 2 1 6 

3.01 
Isocenter 
position 

Not identified Algorithm error 2 2 1 4 2 2 1 4 

3.02 Body contour 
Inadequately 

contoured 
Inappropriate 

immobilization 
5 5 8 200 5 5 6 150 

3.02 Body contour 
Inadequately 

contoured 
Poor image quality 5 4 8 160 5 4 5 100 

3.02 Body contour 
Inadequately 

contoured 

Unexpected item 
in CT (eg arm, cell 

phone, etc) 
6 4 7 168 6 4 5 120 

3.02 Body contour 
Inadequately 

contoured 

Unexpected couch 
(eg low density 

material) 
3 4 8 96 3 4 6 72 

3.02 Body contour 
Inadequately 

contoured 
Algorithm error 4 5 8 160 4 5 4 80 

3.02 Body contour Not created Algorithm error 2 2 1 4 2 2 1 4 

3.03 
All 4 beams 

created 
Not at isocenter 

Algorithm error 
before aperture 

creation 
1 9 8 72 1 9 6 54 
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3.03 
All 4 beams 

created 
Not at isocenter 

Algorithm error 
after aperture 

creation 
1 9 5 45 1 9 2 18 

3.03 
All 4 beams 

created 
<4 beams created Algorithm error 1 2 1 2 1 2 1 2 

3.03 
All 4 beams 

created 
Wrong machine Algorithm error 1 4 5 20 1 4 5 20 

3.04 Gantry angles Incorrect 
Algorithm 

error/corrupted 
template 

1 5 8 40 1 5 6 30 

3.05 
Collimator angle 

= 0 
Incorrect 

Algorithm 
error/corrupted 

template 
1 5 5 25 1 5 3 15 

3.06 Couch angle = 0 Incorrect 
Algorithm 

error/corrupted 
template 

1 5 7 35 1 5 5 25 

3.07 Jaw positions 
Inappropriate 

position 
Poor image quality 5 5 5 125 5 5 4 100 

3.07 Jaw positions 
Inappropriate 

position 
Algorithm error 10 7 6 420 10 7 4 280 

3.07 Jaw positions 
Inappropriate 

position 
Presence of high 
contrast material 

8 5 5 200 8 5 4 160 

3.07 Jaw positions 
Inappropriate 

position 

Unexpected item 
in CT (eg arm, cell 

phone, etc) 
6 4 7 168 6 4 6 144 

3.07 Jaw positions 
Inappropriate 

position 
Isocenter at 

extreme location 
6 6 5 180 6 6 3 108 

3.07 Jaw positions 
Exceeds delivery 

limits 
Algorithm error 7 2 1 14 7 2 1 14 

3.08 MLC positions 
Inappropriate 

position 
Poor image quality 5 5 5 125 5 5 4 100 

3.08 MLC positions 
Inappropriate 

position 
Algorithm error 10 7 6 420 10 7 4 280 

3.08 MLC positions 
Inappropriate 

position 
Presence of high 
contrast material 

8 5 5 200 8 5 4 160 

3.08 MLC positions 
Inappropriate 

position 

Unexpected item 
in CT (eg arm, cell 

phone, etc) 
6 4 7 168 6 4 6 144 

3.08 MLC positions 
Inappropriate 

position 
Isocenter at 

extreme location 
6 6 5 180 6 6 3 108 

3.08 MLC positions Not present Algorithm error 1 9 3 27 1 9 2 18 

3.08 MLC positions 
Exceeds delivery 

limits 
Algorithm error 7 2 1 14 7 2 1 14 

3.09 Accessories set Incorrect 
Algorithm 

error/corrupted 
template 

1 7 4 28 1 7 2 14 
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3.10 Prescription set 
Incorrect (doesn't 

match plan directive 
Algorithm error 1 10 7 70 1 10 5 50 

3.10 Prescription set 
Incorrect 

normalization 

Algorithm 
error/corrupted 

template 
1 10 7 70 1 10 5 50 

3.11 Energy set Incorrect energy 
Algorithm 

error/corrupted 
template 

1 4 8 32 1 4 6 24 

3.12 Dose distribution 
Calculation point is 

inappopriate 
Located in high or 

low CT number 
10 4 6 240 10 4 3 120 

3.12 Dose distribution 
Incorrect but 

approved calculation 
algorithm 

Algorithm error 1 1 10 10 1 1 9 9 

3.12 Dose distribution 
No heterogeneity 

correction 
Algorithm error 1 4 8 32 1 4 6 24 

3.12 Dose distribution 
Dose grid 

inappropriate 
(size/location) 

Algorithm error 1 4 6 24 1 4 4 16 

3.12 Dose distribution 
Calculation point is 

not at isocenter 
Algorithm error 1 10 7 70 1 10 5 50 

3.13 Field weights set Inappropriate Algorithm error 5 4 8 160 5 4 7 140 

3.14 
Plan 

documentation 
Data corrupted Algorithm error 3 10 4 120 3 10 4 120 

3.14 
Plan 

documentation 
Not created Algorithm error 1 2 1 2 1 2 1 2 

4 Plan approval           

4.01 
Physician plan 

review 
Not completed Human error 2 3 1 6 2 3 1 6 

4.01 
Physician plan 

review 
No comprehensive 

review 
Human error 3 10 10 300 3 10 10 300 

4.02 
Data transfer 
from RPA to 

local TPS 
Not completed Network error 3 3 1 9 3 3 1 9 

4.02 
Data transfer 
from RPA to 

local TPS 
Data corrupted Network error 2 10 5 100 2 10 3 60 
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Appendix D 

Quality assurance (QA) for the location of the calculation point in four-field box treatment 

plans for cervical cancer radiotherapy 

In the automated planning tool for cervical cancer radiotherapy that was developed in this work, 

the calculation point is set at the location of the marked isocenter, per the local practice of our partner 

hospitals located in low- and middle-income countries. This calculation point is used as the prescription 

point, where the dose is set to be normalized to 100% of the prescription, and as the reference point 

for the relative field weights. 

In our testing of automated planning for cervical cancer radiotherapy, we discovered that 

sometimes the location of the calculation point was not suitable to be used for dose calculation. There 

were two main causes: (1) the calculation point was very close to the edge of the treatment field and 

(2) the calculation point was located in high density material, such as bone, or low density material, 

such as gas within the bowels.  

In order to avoid creating treatment plans with an inadequate location for the calculation point, we 

developed an automatic QA test of the location of the calculation point. The first QA test was based on 

the proximity of the calculation point to the edge of the treatment field and creates a flag if the 

proximity is less than 2 cm. In a test of 366 patient plans, 1.1% were found to have the calculation point 

located within 2 cm of the edge of at least one beam aperture.  

The second QA test is based on the distribution of the CT numbers in the region around the 

calculation point. This QA test evaluates a 1-cm radius sphere around the calculation point and 

searches for high-density by assessing the 90th percentile of the CT numbers within this sphere (ie, the 

most dense values) and searches for low-density by assessing the 10th percentile of the CT numbers 

within this sphere (ie, the least dense values). In a test of 366 patient plans, using an upper threshold of 

200 and a lower threshold of -200 created flags for 5.7% and 9.6% of patient plans, respectively. The 

distributions of the CT number at the 90th and 10th percentiles for these patients are shown in Figure 22 
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below. The red line indicates the threshold value used in this test.  Examples of patient plans that were 

flagged for high and low density are shown in Figure 23.  

 

Figure 22. Histogram of the 90th percentile (left) and 10th percentile (right) of the CT numbers within a 

1-cm radius sphere around the calculation point for 366 patient plans. The red line indicates a threshold 

that was used in a QA test of the location of the calculation point.  

 

 

Figure 23. Examples of patient plans that were flagged for high and low density (left and right, 

respectively). The plan flagged for high density had a CT number of 548 at the 90th percentile, and the 

plan flagged for low density had a CT number of -375 at the 10th percentile.  
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