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THE ROLE OF GENE EXPRESSION NOISE IN MAMMALIAN CELL SURVIVAL 

Kevin Scott Farquhar, B.S. 

Advisory Professor: Gábor Balázsi, Ph.D. 

Drug resistance and metastasis remain obstacles to effective cancer treatment. A major 

challenge contributing to this problem is cellular heterogeneity. Even in the same environment, 

cells with identical genomes can display cell-to-cell differences in gene expression, also known 

as gene expression noise. Gene expression noise can vary in magnitude in a population or in 

fluctuation time scales, which is influenced by gene regulatory networks.  

Currently, it is unclear how gene expression noise from gene regulatory networks 

contributes to drug survival outcomes in mammalian cells. An isogenic cell line with a noise-

modulating genetic system tuned to the same mean is required. Additionally, how modulating 

endogenous mean gene expression and noise in living cells influences pro-survival metastatic 

state transitions remains unanswered. 

To address these knowledge gaps, I implemented an exogenous synthetic biology 

approach to control noise for the drug resistance gene PuroR in drug survival while 

complementing with endogenous expression measurements of the pro-metastatic gene BACH1 

as a correlate for metastatic survival. For exogenous control, I developed synthetic gene 

circuits in Chinese Hamster Ovary (CHO) cells based on positive and negative feedback that  

tune noise for PuroR at identical mean expression. At a decoupled noise point, isogenic cells 

were treated with various Puromycin concentrations. Evolution experiments revealed that noise 

hurts drug resistance during low drug dosage while facilitating resistance at a high Puromycin 

concentration. Drug adaptation for the low-noise gene circuit relied on intra-circuit mutations 

while the high-noise circuit did not and became re-sensitized to drug after removing circuit 

induction. 

To implement the endogenous approach, I tagged the endogenous BACH1 gene with the 

mCherry fluorescent protein in six HEK293 clones. Molecular perturbations such as serum 

starvation and long-term hemin treatment altered mean fluorescence in at least one clone. 
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Additionally, monitoring migration after cell wounding revealed increased non-uniform 

fluorescence at the wound edge. The increased mean fluorescence for the potentially bistable 

HEK293 clone 2C10 during hemin treatment may reflect altered BACH1 state transitions. 

Overall, noise enhanced the probability of cells to reach an expression level that confers 

survival during drug treatment while hemin perturbations may induce a pro-survival metastatic 

transition via BACH1 expression. 
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Chapter 1: Introduction 
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1.1 Background 

1.1.1 Biological heterogeneity. 

Biological systems can vary phenotypically within and between populations at multiple 

scales, from single cells to the level of tissues3, organs4, and organisms5. Indeed, evolution 

requires phenotypic heterogeneity for selection and adaptation6. Phenotypic heterogeneity can 

be established through genetic variability involving single nucleotide polymorphisms, copy 

number variations7, chromosomal translocations8, and genetic mosaicism9. Phenotypic 

heterogeneity can also depend on the environment10 and in fact become an adaptive response 

to the environment, which is called phenotypic plasticity11. Phenotypic plasticity has a role in 

development12 and can be heritable by principles outside of genetics (epigenetic). 

Epigenetics is a concept first described by Conrad Waddington for any heritable 

alterations that are not governed by genetic processes13. Now the field of epigenetics has 

grouped together disparate mechanisms including histone modifications, non-coding RNA, 

DNA methylation, and chromatin remodeling as underlying epigenetic processes that do not 

require DNA modifications14,15. Despite the uncertain time scales, cells may demonstrate 

epigenetic inheritance only through DNA methylation and certain histone modifications16. 

Epigenetic processes that are heritable include genomic imprinting17, mammalian X-

chromosome inactivation18, paramutation19, and position-effect variegation (PEV)20. Epigenetic 

heterogeneity can develop in response to the environment21. In disease, increased epigenetic 

heterogeneity, such as genome-wide DNA methylation profiles, can predict neoplastic 

transformation22. Both genetic and epigenetic mechanisms of heterogeneity involve heritable 

transfer of information in the form of phenotypes, though it is possible for cells displaying 

phenotypic heterogeneity to have identical genomes and epigenetic marker patterns. 

Lately, there is confusion over the term ‘epigenetic’ in its original meaning compared to 

the definition heavily used in the epigenetics field in the early 21st century. In the case of the 

Waddington landscape, the original concept has more to do with nongenetic mechanisms and 

heterogeneity than ‘epigenetic’ mechanisms. The critical difference between these two types of 
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mechanisms is the role of stochastic or random processes in nongenetic heterogeneity, which 

can take the form of cells with the same genome and identical environment demonstrating cell-

to-cell variation in phenotypes23. As major driver of nongenetic heterogeneity, protein and 

transcript production in a single cell can randomly fluctuate, which is defined as gene 

expression noise24. A measure of gene expression noise amplitude in a population of cells is 

the coefficient of variation, which is the standard deviation over the mean (Figure 1, right side). 

Moreover, the time cells spent fluctuating away from mean expression is called cellular memory 

or the relaxation time (Figure 1, left side)25,26. Additional molecular and cellular processes 

driving nongenetic heterogeneity include aneuploidy27, stochastic partitioning of the cell during 

division28, and molecular chaperones29.  

Heterogeneity from nongenetic mechanisms has functional uses in cells. For example, 

nongenetic heterogeneity in terms of gene expression noise for a stress-response gene can 

promote survival in a subpopulation of isogenic cells during fluctuating environments, which is 

known as bet hedging30. Evolutionary processes can also accelerate through nongenetic 

heterogeneity by priming for selection of mutations in viruses31, unicellular organisms32, and 

possibly cancer33. Understanding gene expression noise requires expression measurements at 

the single-cell level to avoid masking the impact of heterogeneity through population-level 

averaging34. Indeed, one cannot understand stochastic gene expression without looking at 

single cells, especially in higher eukaryotes such as mammals. 

1.1.2 Stochastic gene expression. 

Novick and Weiner first demonstrated in 1957 that induction of enzyme synthesis 

between individual cells was highly variable and that induction scaled with the proportion of 

cells maximally producing the enzyme35. This stochasticity was later theoretically predicted to 

occur in gene expression36 using stochastic kinetic simulations developed by Gillespie in 

197737. A major experimental breakthrough in E. coli first introduced the concepts of intrinsic 

and extrinsic sources of gene expression noise24. In the experiments, two fluorescent proteins 

controlled by the same promoter in separate copies were introduced into E. coli and measured 
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with flow cytometry. Whenever the cyan and yellow fluorescence intensities directly correlated 

with each other in the same E.coli cell, the gene expression noise in a cell population arose 

Figure 1: Gene expression noise is a form of nongenetic heterogeneity. 

High (A) and low (B) gene expression noise in cells can comprise of noise amplitude and 

noise frequency. The noise frequency, also called cellular memory or the relaxation time, is 

the amount of time a cell spends in a consistent expression level (left) deviating from the 

mean. The gene expression amplitude is quantified by the coefficient of variation (σ/µ) and 

is a population level statistic at one time point. Both the gene expression noise amplitude 

and frequency depend on the network structure regulating the measured gene. 
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from extrinsic processes, such as the cell cycle and other global or pathway-specific processes. 

On the other hand, completely uncorrelated fluorescence levels indicated fluctuations from 

intrinsic sources, such as random biochemical processes in transcription and translation38. 

The mechanism of stochastic gene expression at the promoter level in prokaryotes 

follows a two-state model of promoter activity39,40, which is not governed by a Poisson 

stochastic process40. In eukaryotes, a two-state model predicts that promoters randomly 

transition between an ‘off’’ state, which represents a completely silenced promoter, and an ‘on’ 

state that can transcribe mRNA41. The kon and koff rates in the two-state model determine how 

long promoters take to transition into the ‘on’ or ‘off’ state, respectively42. Additionally, the rate 

that mRNA molecules are produced when RNA Polymerase II is bound to the promoter is 

termed km
41,43. Biologically, chromatin remodeling in eukaryotic cells can mediate the 

transcriptional promoter state transitions by altering promoter accessibility for binding of the 

transcriptional pre-initiation complex38,41. Thus, positional effects at specific genomic loci can 

influence fluctuations in gene expression whenever chromatin is accessible or non-accessible, 

leading to random silencing and activation44. 

When the promoter transition rates are slow, as in eukaryotes45, transcriptional activity 

can produce ‘bursts’ of mRNA, which is quantified by the average number of mRNA molecules 

created per transcriptional burst (burst size) at a measurable rate (burst frequency)46. The two-

state model predicts the transcriptional burst size equals the active mRNA production rate over 

the transition rate to an inactive promoter state (km/koff) while the burst frequency equals the 

transition rate to the active state (kon)41. In a more complex eukaryotic model, there are two ‘on’ 

states: active promoter bound to a transcriptional pre-initiation complex along with the TATA-

box binding protein (TBP)  either 1) without RNA Polymerase II or 2) with RNA Polymerase 

II43,46. An experimentally integrated three-state model of eukaryotic stochastic gene expression 

demonstrated that transcriptional bursting also depends on TATA box sequence, with 

mutations in the TATA box lowering fluctuations in gene expression, presumably by altering the 

TBP binding rate43. The two-state and three-state models are not mutually exclusive. In fact, 
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evidence is accumulating that chromatin-mediated promoter state transitions from the two-state 

model can depend on enhancer elements47. Additionally, the TATA-box binding protein central 

to the three-state model is associated with increased gene expression fluctuations depending 

on which cofactors in the pre-initiation complex (PIC) bind TBP and whether the turnover of 

TBP-bound pre-initiation complexes increases, mediated by PIC-disruptors such as Mot1p48. 

Thus, promoter element sequences such as the TATA-box can influence gene expression 

noise43. 

Protein production can also display noisy bursting dynamics. Translational bursting 

depends on the number of mRNA molecules available for protein synthesis, increasing with low 

levels of mRNA and higher translational efficiency, also called translational burst size (proteins 

synthesized per mRNA molecule)49. Noise strength, quantified by the variance divided by the 

mean (Fano factor), can determine the source of protein noise based on translational 

bursting42. The noise strength will increase over a span of mean protein levels whenever the 

translational burst size also increases with constant transcription rate. On the other hand, noise 

strength will not change with higher translational burst size whenever the transcription rate 

increases49. The coefficient of variation would not show this dependency, allowing noise 

strength to distinguish sources of protein noise.  

Lowering cell volume enhances stochastic gene expression by increasing the relative 

proportion of changes in protein subcellular compartment concentrations during diffusion 

between compartments. For example, in the nucleus, the number of proteins relative to the 

cytoplasm is vastly lower though equal in concentration, which increases proportional changes 

between compartments during nucleus protein number fluctuation. This phenomenon is called 

the ‘finite-number effect’, which roughly scales noise (coefficient of variation, standard deviation 

over the mean) to 1/√𝑁, where N is the average protein number42. Interestingly, mammalian 

cell volume correlates with transcriptional burst size while progression in the cell cycle 

negatively correlates with transcriptional burst frequency50. Though it is unclear how 

extensively gene expression noise affects mammalian cell phenotypes, it would not be 
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surprising to uncover additional relationships for noise in mammalian cells given the adequate 

tools. 

1.1.3 Synthetic biology. 

While recombinant DNA technologies have revolutionized the field of biotechnology and 

genetic engineering, most techniques tinkered with natural living systems. More recently, the 

development of artificial genetic constructs in novel, unnatural applications have coalesced in 

the field of synthetic biology51. Fundamentally, synthetic biology takes natural and unnatural 

biological components to quantitatively engineer novel biological systems, such as synthetic 

gene circuits akin to electrical circuits52, metabolic engineering of biosynthesis pathways53, and 

even whole chromosomes54 and genomes55. The standardization of biological parts and 

components form the core basis of engineering increasingly complex artificial biological 

systems56, which has become a central effort in adopting a Synthetic Biology Open Language 

(SBOL) for interchangeable part design57. 

At their core, the composition of synthetic gene circuits includes a gene(s) of interest and 

their interactions in the circuit, whether through transcriptional58, translational59, RNA-based60 or 

protein-protein-based61 mechanisms. Thus, network motifs such as positive or negative 

feedback loops, feed-forward loops, and cascades shape the interaction architecture and 

dynamics of a synthetic gene circuit62. For instance, negative feedback loops (through 

repressors) tend to lower the amount of time expression levels deviate from the mean (quick 

relaxation time/lower cellular memory)63 and overall reduce gene expression fluctuations64. In 

contrast, positive feedback loops (through activators) slow down the response time of the 

circuit (longer relaxation time/higher cellular memory)65 while enhancing stochastic fluctuations 

in gene expression66. Indeed, feedback loops allow systematic engineering of inducible 

synthetic gene circuits to manipulate nongenetic heterogeneity both temporally (cellular 

memory)67 and within a population (gene expression noise amplitude)67,68. 

In the early days of synthetic biology, simple synthetic gene circuits such as a toggle 

switch in E. coli demonstrated the transferability of an electrical engineering framework to 
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biology58. The toggle switch network pioneered the use of the tetracycline repressor (TetR) 

family of transcriptional repressors69,70, which has expanded to various orthogonal repressors71 

and the related reverse tetracycline transcriptional activator (rtTA)72. Synthetic gene circuits 

with regulatory components can act as oscillators73, edge detectors74, and function in more 

complex systems such as multi-cellular biological computers75. Now the field is becoming 

increasingly applied, with clinical and commercial interests in synthetic gene circuits. As 

therapeutic devices, engineered cells with synthetic gene circuits can detect pathogenic 

biomarkers76, monitor and adjust physiological pH in response to diabetic ketoacidosis77, and 

correct insulin resistance78. 

Recent advances in mammalian synthetic biology have significant clinical potential77,78. 

Mammalian synthetic gene circuits can modulate expression in response to light through 

optogenetic regulatory factors, which can regulate blood glucose to promote physiological 

levels as a proof-of-concept therapy shown in mice79. Additionally, synthetic biology principles 

have found usefulness in human chimeric antigen receptor (CAR) therapy (CAR-T), where 

receptors implemented an AND logic gate for targeting cancer cells with two antigens80. The 

engineered T cells avoid targets with just one antigen, thereby enhancing CAR-T specificity. As 

in bacteria and yeast, inducible mammalian synthetic gene circuits can adjust cellular memory81 

and can reduce the magnitude of fluctuations in gene expression82. Mammalian synthetic 

biology has progressed far enough that synthetic signaling pathways, such as synNotch83, are 

scaling towards interactions in complex systems with multiple cells and synthetic intercellular 

communication84. Still, the field of mammalian synthetic biology is nascent with many technical 

challenges. Quantitative prediction of engineered mammalian synthetic gene circuits has 

lagged compared to other organisms due to cell-type-specific endogenous gene regulation and 

locus insertion positional effects44,85. Future studies in mammalian synthetic biology should 

comprehensively address these challenges by using, for example, recombinase-mediated 

landing pads86. 
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1.1.4 Drug resistance in mammalian cells. 

Chemotherapy resistance is a major contributor to cancer-related deaths in the United 

States, with most of the 609,640 cancer deaths in 2018 ultimately caused by resistance to 

chemotherapy treatments87. The mechanisms underlying drug resistance in cancer and more 

generally in mammalian cells are complex and still under active investigation88. The distinction 

between tumor chemoresistance and drug resistance in mammalian cells is a matter of scale; 

effective understanding of chemotherapy and tumor drug resistance requires model organisms 

with organs affecting drug metabolism, drug distribution, and the tumor microenvironment89. On 

the other hand, the molecular and cellular biology of drug resistance in single mammalian cells 

can find just as much importance in mechanisms as diverse as altered cellular metabolism, 

rewiring of signaling pathways and molecular targets, induction of stem-like cell 

reprogramming, evasion of apoptosis, genomic instability, epigenetic changes, and phenotypic 

heterogeneity90,91. Indeed, the crucial mechanisms for mammalian and tumor drug resistance 

determine survival at the cellular level. 

Mammalian cells can employ a multi-drug resistance (MDR) phenotype to cope with 

cytotoxic drugs92. Increased P-Glycoprotein (ABCB1, otherwise known as MDR1) expression 

can mediate the multidrug resistance phenotype in a multitude of cancers and mammalian 

species93. MDR1 is an ATP-binding cassette (ABC) family transporter in the plasma membrane 

that pumps cytotoxic drugs out of the cell, thereby conferring drug resistance94. In addition to 

the MDR phenomenon, mutations in drug targets95, resistance-associated amplification of 

genes such as MDR196, and genomic instability97 contribute to mammalian drug resistance, 

leading to genetic heterogeneity, selection, and adaptation in response to treatment98,99. 

Mammalian cells can also inactivate drugs to confer resistance through chemical modifications, 

such as the case of thiol glutathione binding to platinum drugs100. 

Drug resistance in mammalian cells can also rely on drug-specific mechanisms. The 

aminonucleoside Puromycin, which shares chemical similarity to the 3’-end of an 

aminoacylated tRNA, inhibits translation and is cytotoxic in both prokaryotes and eukaryotes101. 
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Puromycin disrupts protein synthesis by binding to the A site in the ribosome and covalently 

binding to the translating peptide chain through the peptidyl transferase reaction in the 

ribosomal P site, which leads to pre-mature release of the polypeptide chain102. The bacterium 

species Streptomyces alboniger, which synthesizes Puromycin, also produces the 

corresponding resistance gene Puromycin N-acetyltransferase (pac or PuroR), which 

acetylates Puromycin and its toxic precursor O-demethylpuromycin, thereby simultaneously 

inactivating Puromycin while functioning as an enzyme in the Puromycin biosynthesis 

pathway103. In mammalian cells selected for natural resistance, the P-glycoprotein (MDR1) was 

reported to confer resistance to Puromycin along with multiple drugs, linking the multi-drug 

resistance phenotype to Puromycin resistance93.  

In addition to genetic mechanisms, epigenetic and nongenetic mechanisms can promote 

drug resistance in mammalian cells. Epigenetic modifications such as chromatin inaccessibility 

from remodeling confers resistance in ‘persister’ cells, where a drug-induced subpopulation of 

non-growing cells can transiently tolerate a cytotoxic drug and subsequently repopulate the 

sensitized main subpopulation after drug removal (Figure 2)104-106. The chromatin transitions 

rely on histone demethylase KDM5A104. By opening chromatin accessibility, histone 

deacetylase complex inhibitors (HDACi) can disrupt the persister state to re-sensitize the cells 

to a cytotoxic drug (Figure 2)104. Mammalian persister cells display tolerance to molecularly 

targeted drugs, such as the EGFR tyrosine kinase inhibitors104,105,107. In addition to HDAC 

inhibitors, disrupting a dependency on the lipid hydroperoxidase GPX4 can re-sensitize 

persister cells to drug and induce a lipid reactive oxygen species (ROS) form of cell death 

called ferroptosis105. In a population with high nongenetic heterogeneity, a small persister-like 

subpopulation of human melanoma cells displayed very high resistance marker (EGFR, JUN, 

WNT5A, AXL, PDGFRB) expression levels108.  

 Related to the concept of persister cells, cancer stem cells (CSCs) are hypothesized to 

comprise of a set of tumor cells, not necessarily a small or quiescent subpopulation, that have 

aggressive tumor-initiating potential, self-renewal of the CSC state, and the ability to 
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progressively transition into a hierarchy of tumor cell types with little ability to initiate or 

propagate tumors109. Cancer stem cells exhibit enhanced drug resistance properties that arise 

from quiescence, increased drug efflux activity, robust DNA repair pathways, and lower 

Figure 2: Drug-tolerant persister cells can recapitulate the original drug-sensitive 

population after treatment removal. 

Bacteria and cancer cells can have a subpopulation of non-growing persister cells that 

tolerate antibiotics or chemotherapy, respectively. Remove of drug treatment allows the 

persisters to phenotypically switch to a proliferative state that recapitulates the original 

population, leaving a majority of cells drug-sensitive. At least two mechanisms can disrupt 

the persister state in mammalian cells: inhibition of histone deacetylase complexes or 

GPX4. It’s unclear whether mammalian persister cells can evolve to become genetically 

drug resistant. 
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predisposition toward apoptosis110. Overexpression of MDR1 in cancer stem cells contributes to 

their high drug efflux rate111. While less understood, polyploid cells with multiple nuclei fused 

together can display cancer stem-like properties like aggressive tumorigenic capacity and 

enhanced drug resistance112,113. 

In addition to phenotypic heterogeneity from cancer stem cells and the persister state, 

gene expression heterogeneity may aid drug resistance in cancer114,115. Expression for the 

drug-pumping MDR1 gene, for example, displays features of cellular memory, with high 

expressing cells returning the original distribution after flow sorting115. Instead of a single gene, 

fractional apoptosis in response to TRAIL ligand can rely on variability in the rate of initiator 

CASP8/10 cleavage of the BID protein, which propagates expression noise for downstream 

pro- and anti-apoptotic proteins116. The studies on MDR1 and BID did not consider the effect of 

mean expression on survival, which is inherent to gene expression noise. Future experiments 

must control gene expression noise while minimizing the effect of mean expression on 

differential survival to drug. 

1.1.5 Experimental evolution. 

Evolution as a process leads to diversification of living organisms over time. Four major 

mechanism underlie the ability of populations to change: natural selection, random mutation, 

genetic drift, and gene flow. Natural selection is a fundamental mechanism for cells and 

organisms to adapt to their environment, which enriches for genotypes that optimally survive 

and reproduce (i.e., maximize fitness)117. Adaptation requires heritable, differential fitness 

between multiple genotypes. Fundamentally, adaptative evolution occurs on the level of genes. 

However, phenotypic interactions with the environment can influence adaptative evolution, and 

in some cases accelerate the rate of mutations for further adaptation118. Importantly, 

differences or alterations in gene expression can act as an adaptive response to a changing or 

hostile environment, thereby promoting phenotypic heterogeneity119. Investigations of 

adaptative evolution can take place in a natural or experimental setting. 
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Experimental evolution systematically imposes controlled environmental conditions in the 

laboratory to explore how populations adapt through fundamental evolutionary processes120. 

Pioneering evolution experiments in bacteria demonstrated that fitness benefits decelerate in 

the long term121. Experimentally evolved populations can adapt through pre-existing genetic 

heterogeneity or by increasing overall heterogeneity in response to the environment122. For 

instance, experimental evolution of P. fluorescens by passaging colonies with novel 

morphology and periodic shaking of liquid cultures led to adaptation through stochastic 

morphology state switching123. Because selecting against colonies with state-switching led to 

the genotype’s elimination, the adaptation developed as a form of bet-hedging in the fluctuating 

environment. Bet-hedging through nongenetic heterogeneity can also lead to drug treatment 

adaptation in bacteria124. Consequentially, cancer is an evolutionary process. Therefore, 

mammalian cells, especially in tumors, may exploit bet-hedging strategies for survival under 

chemotherapy125. However, evolution experiments with mammalian cells have not rigorously 

tackled how controlled phenotypic heterogeneity affects drug resistance independently from 

other traits. 

More recently, experiments in mammalian cells have evolved novel proteins and 

antibodies for biotechnological purposes126. Indeed, therapeutic evolution experiments of 

proteins require the physiology of mammalian cells for proper folding and maturation127. As 

biotechnology toolkits advance, evolution experiments in mammalian cells have become more 

automated with diverse measurements of novel evolutionary adaptation128. Now, emerging 

gene editing tools can directly drive genetic diversification129. Lacking in current basic research 

studies, experimental evolution of mammalian cells with constrained conditions, such as 

constant mean expression, a lack of genetic diversity, and differential gene expression noise, 

may reveal how mammalian cells with varying levels of gene expression noise adapt to drug 

treatment or tumorigenic cells escape from the primary tumor. 
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1.1.6 CRISPR-Cas9. 

The gene editing tool CRISPR-Cas9 originated from a bacterial anti-phage defense 

mechanism. Initiated by bacteriophage invasion, the natural type II CRISPR system works 

(Figure 3A) by first incorporating phage-specific protospacers, which are flanked by direct 

repeats for self-recognition, into a CRISPR locus expressing a noncoding RNA (crRNA). Direct  

repeats from the transcribed pre-crRNA bind to a trans-activating CRISPR RNA (tracrRNA), 

leading to cleavage and maturation of the crRNA. The CRISPR-associated enzyme Cas9 then 

cleaves the RNA duplex for eventual maturation of individual crRNAs each with a spacer and 

repeat. By targeting 20 nucleotides directly followed by a protospacer adjacent motif (PAM), 

crRNA guides Cas9 cleavage of invading viral DNA while avoiding targeting of endogenous 

spacers lacking PAM sites to avoid self-recognition130.  

Discovery of the CRISPR adaptive immunity system led to the realization that combining 

the crRNA duplex with tracrRNA while removing unessential nucleotides simplifies the system 

into two components: the Cas9 and a newly engineered single guide RNA (sgRNA) that is a 

fusion of the tracrRNA and crRNA131. A DNA sequence with 20 nucleotides complementary to a 

guide RNA followed by a 3’ PAM site can be targeted by the engineered CRISPR-Cas9 gene 

editing system for Cas9-mediated cleavage, usually leading to inefficient DNA damage repair 

through the non-homologous end joining (NHEJ) pathway (Figure 3B)132. Since NHEJ repair 

causes indels, complete gene knock-out systems can elucidate gene function more effectively 

than RNA interference133.  

In addition to indel creation, the double-stranded breaks in DNA cleaved by Cas9 can 

promote homology directed repair (HDR) in the presence of DNA with homologous sequence, 

which leads to replacement of the region surrounding the double-stranded break with 

homologous donor sequence (Figure 3B)132. Therefore, any synthetic sequence in the donor 

DNA molecule flanked by sequence homologous to the region of Cas9-mediated cutting can 

insert itself into a genomic region with a PAM site, allowing CRISPR-Cas9-mediated knock-in 

gene editing. The homologous DNA can comprise of homology arms in a relatively large 
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Figure 3: CRISPR-Cas9 is gene editing technology re-engineered from a natural anti-

bacteriophage immune system in bacteria. 

(A) The type II CRISPR/Cas bacterial viral immune system incorporates viral DNA as proto-

spacers (orange and blue) in the noncoding CRISPR array flanked by repeating elements 

(thick black rectangles). The tracrRNA (purple) and pre-crRNA duplex are processed by 

nucleases into mature crRNA bound to tracrRNA. The Cas9 protein binds to the RNA 

complex, which then binds to and facilitates cleavage of viral DNA containing a proto-spacer 

adjacent motif (PAM, red, NGG). (B) The tracrRNA and crRNA are fused as a guide RNA 

(gRNA) in the CRISPR-Cas9 gene editing system. Repair of double strand breaks (DSB, 

black arrow) cut by Cas9 can disrupt gene function with the error-prone non-homologous 

end joining (NHEJ) pathway or introduce a novel sequence with the homology directed 

repair pathway given the presence of a homologous donor clone (plasmid, unfilled arrows 

for homology arms). 
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double-stranded plasmid vector or single-stranded oligodeoxynucleotides (ssODNs)134. 

Replacement of deleterious disease-associated mutations in gene therapy135, introduction of 

fluorescence proteins for gene expression tagging136, and insertion of restriction sites at 

genomic loci are common applications of CRISPR-Cas9-mediated knock-in. In fact, CRISPR-

Cas9 knock-in of a fluorescence reporter tag at the native loci for a gene allows live-cell 

endogenous gene expression monitoring, which can reveal dynamics that have a basis in 

network structure or how specific expression levels affect a phenotype, like metastasis as an 

example137. 

 A major drawback of CRISPR-Cas9 gene editing is off-target cleavage from partially 

complementary guide RNA sequence138. To improve the specificity of CRISPR-Cas9 gene 

editing, directed protein evolution experiments uncovered more specific Cas9 variants139. 

Engineering Cas9 variants with mutations affecting DNA-Cas9 binding to improve specificity 

can also greatly reduce off-target effects140. Bioinformatics tools help in the design of guide 

RNAs to avoid off-target cleavage141. Targeting two close PAM sites with a gRNA pair and a 

double-nickase Cas9 can dramatically decrease off-target cleavage142. In mammalian cells, 

lowering expression of proteins involved with the NHEJ pathway promotes the repair of Cas9-

induced double-stranded breaks through the HDR pathway143.  

1.1.7 Metastasis regulatory factors. 

Along with chemoresistance, metastasis is a leading cause of cancer-related deaths87. In 

breast carcinomas, a major cellular program driving dissemination from the primary tumor is the 

epithelial-to-mesenchymal transition (EMT). Although it is hotly disputed whether EMT is 

necessary for metastasis144, EMT has a role in early dissemination by promoting invasion of the 

basement membrane145. Specifically, EMT inhibits α6β4 integrins that normally maintain 

contact with the basement membrane146 while requiring α5β3 and α3β1 integrins for EMT 

progression through interactions with the TGF-β signaling pathway147,148. Indeed, the TGF-β 

ligand is a major inducer of the core EMT network (Figure 4)149. 
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Figure 4: The core epithelial-to-mesenchymal transition (EMT) transcriptional 

network cross-talks with the MAP kinase pathway. 

TGF-β ligand induces the expression of SNAIL1, a pro-EMT transcription factor, part of a 

transcriptional activation cascade with the pro-EMT ZEB1 transcription factor. Both repress 

epithelial-associated genes, including E-cadherin. Each EMT-TF is repressed by an anti-

EMT microRNA. Ras is indirectly activated by TGF-β, which indirectly activates SNAIL1 

expression. Inhibition of RAF kinase activity by RKIP is disrupted by SNAIL1 transcriptional 

repression. The microRNA let-7 can de-repress RKIP by reducing expression of BACH1. 

Matrix metalloproteases are activated by EMT for basement membrane degradation. 
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Increased expression of EMT core transcription factors can promote early metastasis150. In the 

core EMT transcriptional network, TGF-β ligand transduces extra-cellular signaling by 

increasing the expression of the pro-EMT transcription factors SNAIL1/2 and TWIST151 while 

indirectly activating the RAS-MAPK pathway152. The microRNA miR-34 negatively regulates 

SNAIL1 expression while itself being transcriptionally repressed by SNAIL1 in a toggle switch 

network motif153. SNAIL1 can also repress itself and activate the pro-EMT transcription factor 

ZEB1154, which also inhibits miR-34155. ZEB1 activates itself and is directly repressed by the 

microRNA miR-200, which is also inhibited by ZEB1 and SNAIL1156. SNAIL1 and ZEB1 

transcriptionally repress E-cadherin, which leads to the disruption of epithelial adherens 

junction between cells149. Important for basement membrane invasion, SNAIL1 also promotes 

the expression of matrix metalloprotease 9 (MMP-9)157.   

In addition to the core EMT pathway, RAS-MAPK can contribute to signal pathway cross-

talk (Figure 4), where TGF-β and RAS-MAPK indirectly promote EMT through de-repressing 

HMGA2 expression that then promotes SNAIL1 expression149. By lowering RAS-MAPK activity, 

the Raf kinase inhibitory protein (RKIP) can indirectly repress HMGA2 through de-repression of 

the microRNA let-7158. Additional cross-talk is mediated by inhibition of RKIP by SNAIL1 and 

BACH1. BACH1 represses its own expression and is indirectly repressed by RKIP through let-

71. Important for metastatic phenotypes, BACH1 directly activates CXCR4 and MMP-1 

expression159. Although MMP-1 is usually silenced in breast cancer cells, MMP-1 from stromal 

cells in the tumor microenvironment can facilitate breast carcinoma invasion by degrading the 

PAR1 receptor, thereby activating pro-migration pathways independently from MMP-mediated 

ECM degradation160. 

Heterogeneity shapes the development and progression of metastasis. Single breast 

cancer cells were found to vary in gene copy number within a multiclonal tumor, which could 

determine the extent of tumor subpopulation clonal expansion between a primary tumor and a 

secondary metastatic tumor161. The tumor microenvironment has a heterogenous population of 

stroma that can enhance metastatic progression through secreting cytokines, various types of 
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growth factors, and components of the extra-cellular matrix162. Matrix stiffness in the 

microenvironment can facilitate breast cancer EMT and metastasis149,163. Spatial organization 

and heterogeneity in the microenvironment can also influence genetic heterogeneity through 

clonal evolutionary dynamics during cell survival164. 

In addition to genetic and microenvironmental heterogeneity, phenotypically plastic 

cancer stem cells, for example, aggressively initiate metastasis165. Partial EMT states may 

have the highest proclivity for initiating metastasis166. Importantly, partial EMT states could 

reflect nongenetic heterogeneity from the EMT transcriptional network167. Given the self-

activation of ZEB1 in the core EMT network (Figure 4), mutual inhibition of EMT microRNA 

miR-200 and the transcription factor ZEB1 can lead to tristability, where cells can transition 

between three stable miR-200/ZEB1 expression states167. Additionally, expression of the 

BACH1 and RKIP toggle switch network was found to display bistable-like transitions 

correlating with pro- and anti-metastatic states, respectively1. Although the characteristics of 

the epithelial-to-mesenchymal transition in living cells is well-established149,168, it is unclear how 

stochastic transitions between pro- and anti-metastatic states relate to endogenous BACH1 

expression noise in vivo. 

1.2 Core hypothesis and significance. 

Although studies on gene expression noise have mainly focused on unicellular 

prokaryotes and eukaryotes, understanding the role of gene expression noise in higher 

eukaryotes, particularly in living mammalian cells, is lagging. As a major challenge, mammalian 

cells have more complex gene regulatory networks and genetic constructs tend to randomly 

integrate into the genome. In addition, investigation of noise independently of the mean 

requires control of gene expression noise at similar mean expression levels, which is very 

difficult for endogenous genes. Such control feats are easier with exogenous genes that are 

integrated at a targeted genomic site. However, endogenous gene expression noise should not 

be ignored; concepts like incomplete penetrance have a deep connection to gene expression 

noise that required measuring endogenous noise to uncover169. 
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As introduced earlier, gene expression noise can drive phenotypic state transitions, like 

the Waddington landscape conceptualized for cellular differentiation, which can depend on 

network structure. As an example, Bacteria evolved gene regulatory networks to exploit gene 

expression noise for survival in response to environmental stress62,170. The surviving bacteria 

then enter a cellular state that allows drug tolerance, and these cells can be driven from and 

back to this pro-survival state through gene expression fluctuations171. It is not clear that 

mammalian cells can survive drug treatment solely based on gene expression noise, even in a 

short time-scale.  

Though studies in relation to nongenetic (Waddington) landscapes theoretically predict 

gene expression noise as driving pro-survival state transitions in mammalian cells, particularly 

in a drug resistance or metastatic context172, experimental verification is mostly lacking and the 

studies that do find a relationship suffer from two major weaknesses. First, gene expression 

noise is inherently tied to mean expression. Without making gene expression noise 

independent of mean expression by keeping the mean constant between two mammalian cell 

populations, it is difficult to rigorously separate the contribution of mean expression from gene 

expression noise on an outcome. Second, the cell populations must be isogenic, keeping 

genetics and the environment the same but varying gene expression noise. These two 

weaknesses are difficult to overcome for studying noise in endogenous genes, but even studies 

with exogenous systems do not meet the mark173. Therefore, how gene expression noise 

influences access to pro-survival cellular states in mammalian cells, as seen in bacteria, 

remains an open question. 

In this thesis, I hypothesize that gene expression noise in mammalian cells increases the 

probability to reach a cellular state leading to a survival outcome that is bounded by an 

expression threshold, whether it is in response to drug treatment (scenario 1) or metastatic 

progression beyond a primary tumor (scenario 2). In the first scenario, the level of drug will 

determine the expression threshold for the drug resistance gene Puromycin N-

acetyltransferase (PuroR) required to survive Puromycin treatment (Figure 5A). When the 
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Figure 5: Gene expression noise enhancing accessibility of pro-survival states. 

Cells express either (A) an exogenous drug resistance gene PuroR or (B) an endogenous 

reporter from the pro-metastatic gene BACH1. Single-cell PuroR expression above a 

variable kill-curve threshold confers survival in response to various drug concentrations. A 

fixed bistable BACH1 transition threshold determines entrance into metastatic states. The 

mean (µ) is fixed during drug treatment while molecular and physical perturbations may 

change both BACH1 mean (µ) and noise (σ/µ) sufficiently large enough to initiate bistable 

transitions. Cell expression can fluctuate slowly or quickly. Legends are on the right. 
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mean PuroR expression is fixed, high PuroR noise will lead to more cells entering the drug 

survival state than cells with low PuroR noise. Likewise, for the self-repressed pro-metastatic 

regulator BACH1, which is engaged in a toggle switch network by reciprocal repression with the 

anti-metastatic regulator RKIP, cells with BACH1 gene expression above a specific expression 

threshold will enter a pro-metastatic state (Figure 5B). The pro-metastatic threshold can 

change depending on network perturbations, such as perturbations altering the strength of 

BACH1 self-repression and anti-metastatic RKIP protein degradation1. The experimental 

perturbations in this thesis should not disrupt these parameters, leaving the threshold fixed. If 

the pro-metastatic BACH1 mean expression is too low, the chance of cells entering the pro-

metastatic state may diminish to zero depending on the noise level. Nonetheless, the highest 

expressing cells in a high noise population at each perturbation-driven mean expression level 

have a higher probability of entering the pro-metastatic state compared to the highest 

expressing cells in a low-noise population at the same mean because of the higher cellular 

memory and typically higher noise amplitude in gene expression. 

My investigation of noise affecting entrance into the drug survival state (scenario 1) is 

through exogenous control of the drug resistance gene PuroR at a fixed mean (Figure 5A), 

and the chance of being in the pro-survival state is predicted to depend on single-cell PuroR 

expression levels. As for BACH1 (scenario 2), I aim to estimate the occupancy in the pro-

metastatic state by measuring endogenous single-cell BACH1 expression levels in response to 

various perturbations and identifying bistable state transitions whenever I observe large shifts 

in expression levels (Figure 5B). Incorporating an endogenous system for studying gene 

expression noise will complement insights brought about by the more rigorous exogenous 

approach.  

The contrasting focus on drug resistance and metastatic regulators expands the scope 

and significance of the thesis. It is also possible that BACH1 has a relationship with the cancer 

persister state because NRF2 target genes shared with BACH1 are downregulated in cancer 

persister cells105 and RKIP regulates ferroptosis, which as a form of cell death mediates 
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persister cell drug resensitization upon loss of the lipid peroxidase GPX4174. By estimating state 

occupancy through single cell expression, I avoid the complexities of phenotypically quantifying 

the metastatic state with an in vivo model of metastasis, which could vastly increase the 

number of variables affecting survival outside the primary tumor. Unlike the drug resistance 

scenario, endogenous BACH1 mean and noise cannot be rigorously controlled by perturbations 

while keeping the mean the same. However, because the metastatic state threshold is fixed, 

the effect of mean expression on the cell state occupancy will be more consistent to infer the 

effect of noise compared to the case of a varying threshold. For example, high noise is 

predicted to help survival in high stress (high expression threshold) while hurting survival in low 

stress (low expression threshold), but this may simplify in the case of a constant threshold with 

varying mean. Thus, interpreting the effect of noise from an endogenous gene transition into 

cellular states with a constant threshold can still occur in future studies, though not perfectly 

rigorous. This thesis will focus on perturbing endogenous BACH1 expression levels without 

specifically modulating gene expression noise or studying noise exclusively. Rather, the thesis 

will monitor potential metastatic state transitions. 

The hypothesis of this thesis is significant because all cancer patient deaths are 

ultimately rooted in chemotherapy resistance from cells within metastatic lesions escaping the 

primary tumor. Studying mammalian drug resistance with an approach that captures the effect 

of gene expression noise will provide illuminating insights on how tumor cell heterogeneity 

affects efficacy of chemotherapy treatment and may influence therapeutic regimes to reduce 

the number of noisy cells. In addition, endogenous expression as a correlate for metastatic 

state occupancy has not been demonstrated in living cells. Without creating an endogenous 

gene expression readout system in living cells, we cannot take the next steps towards 

understanding how gene expression noise affects metastasis, especially since metastasis is 

influenced by the tumor microenvironment. Thus, cells allowing measurement of endogenous 

gene expression of a pro-metastatic gene provide the means for more physiological 

experiments in the future. 
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Chapter 2: Role of network-mediated stochasticity in mammalian drug resistance. 

This chapter is based upon Farquhar, K. S., Charlebois, D., Szenk, M., Cohen, J., Nevozhay, 

D., & Balázsi, G. Role of network-mediated stochasticity in mammalian drug resistance. 

Submitted, in review. 
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2.1 Introduction. 

2.1.1 Background. 

More than a decade after the completion of the Human Genome Project, understanding 

how genes control mammalian cells and organisms remains a daunting task175. A major factor 

contributing to this challenge is the complexity of gene regulation at various scales, from 

underlying molecular mechanisms to large-scale regulatory networks176. Adding to the 

conundrum is that genetically identical cells can differ drastically due to microenvironmental 

and stochastic factors23,38. Numerous examples over the last two decades indicate that a 

population of isogenic cells in the same environment can exhibit single cell-level stochastic 

fluctuations in gene expression, also known as gene expression noise23,44. Two main 

characteristics of gene expression noise are its amplitude and its memory. The amplitude 

(often measured by the coefficient of variation or CV) defines how far cells deviate from the 

average. The memory describes the time for which cells remain deviant once they depart from 

the average26,177. These noise characteristics of a gene depend strongly on the regulatory 

network that embeds it. Positive regulatory feedback typically increases both the amplitude and 

memory of noise, while negative feedback tends to have the opposite effect62, implying that 

network structure and noise characteristics are deeply intertwined and difficult to separate. 

Traditional measurements have generated numerous insights by focusing on the gene 

expression mean and its cellular effects, but we still need to understand the phenotypic roles of 

gene expression noise in many circumstances23,38,114,178. Likewise, approaches that perturb 

cells in bulk by over-expression, down-regulation, or knockout try to control only the gene 

expression mean, without precisely adjusting cell-to-cell stochasticity or considering its 

phenotypic effects34, which include aiding cell survival during drug treatment26,43,115 and other 

forms of environmental stress179,180. These effects depend on the amplitude and memory of 

noise, both of which are network-dependent. The network conferring noise can evolve181 while 

improving the adaptive impact of other beneficial mutations under stress32. Studies in human 

cells seemingly suggest that cellular heterogeneity and gene expression noise in general 
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promote chemotherapy resistance108,115, evasion of apoptosis116, and metastasis1,173. However, 

prior demonstration that noise can also be harmful in low stress43,180 cautions against the 

generality of such conclusions. Moreover, prior work implies that examining the phenotypic 

effects of noise requires proper, mean-decoupled noise control43,182,183, which has not been 

established for mammalian cells. Therefore, despite the growing interest in the role of 

mammalian gene expression noise, its precise role in mammalian cell survival and evolution 

remain open questions. Addressing these questions requires establishing mammalian cell lines 

that are as similar as possible, differing only in the networks controlling their gene expression 

noise. To achieve this, one might manipulate the expression of genes by selecting and mixing 

cells173, controlling transcriptional regulators, or applying noise-altering chemicals184. However, 

the regulatory networks that control mammalian gene expression are large, complex185, and 

incompletely known, making predictable and mean-decoupled noise control for specific 

individual genes in their native context difficult. Thus, unraveling how gene expression noise of 

specific networks affects mammalian cell evolution remains a serious challenge. 

 The field of synthetic biology builds bottom-up synthetic regulatory circuits, which often 

mimic natural network structures51,186. While gene expression noise is difficult to control 

endogenously, simple synthetic gene circuits have been specifically engineered to modulate 

noise independently of mean gene expression levels in yeast43,187 and bacteria182,183. In such 

cases, two non-overlapping noise vs mean curves have decoupled noise regimes (Figure 6A), 

which consist of decoupled noise points (DNPs) where two different noise values correspond to 

the same mean. Low noise gene circuits for this purpose could include synthetic microRNA-

based feedforward loops188,189 or negative autoregulation64,68,190 (Figure 6A). In contrast, 

synthetic gene circuits that incorporate positive auto-regulation (Figure 6A) or ultrasensitivity 

have high gene expression noise in yeast66,67 and mammalian cells191,192. Enforcing similar 

means, but different noise levels in yeast indicated (Figure 6B) that noise aids survival in high 

stress whereas it hinders survival in low stress if the kill curve is sharp. For gradual kill curves, 

cells with high noise always have a survival advantage regardless of the stress level. 
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Figure 6: Stress-dependent effect of network noise on drug resistance.  

(A) Mammalian positive (mPF) or negative (mNF) feedback synthetic gene circuits confer 

high and low gene expression noise while the mean expression is identical, thus decoupling 

gene expression noise amplitude (standard deviation divided by the mean; 𝜎/µ) from the 

mean within a decoupled noise regime composed of decoupled noise points (arrows). (B) 

Fractional viability under low or high levels of drug (stress) for cells with high (red 

distribution) or low (blue distribution) drug resistance gene expression noise. Relative 

survival upon treatment will depend on network noise relative to the fitness function 

(dashed line). 
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Testing the role of network structure and noise in mammalian cell evolution as in yeast requires 

a similar control feat. However, genes or gene circuits integrate randomly into mammalian 

genomes, which can impose locus-dependent effects on gene expression44, compromising 

rigorous noise control in mammalian cells. Therefore, noise-decoupling gene circuits should be 

reliably integrated at the same transcriptionally active locus to minimize such locus-dependent 

effects.  

Here, we integrate mammalian-optimized high-noise positive-feedback (mPF) and low-

noise negative feedback (mNF) synthetic gene circuits (Figure 6A) into separate, but isogenic 

Chinese Hamster Ovary (CHO) cells at the same well-expressed genomic locus by utilizing the 

Flp-In™ system193. By comparing gene expression in CHO cell lines carrying each gene circuit, 

we establish decoupled noise points with different gene expression noise levels but with similar 

mean expression. By using these gene circuits to control the expression of the Puromycin N-

acetyl-transferase (PuroR) gene that confers resistance to the antibiotic Puromycin, we 

investigate how mNF and mPF gene expression noise influences mammalian drug resistance 

evolution. We find that the mPF gene circuit with high PuroR expression noise can aid long-

term evolutionary adaptation of mammalian cells at high stress (Puromycin) level, whereas it 

has the opposite effect at low stress. Moreover, by withdrawing and re-adding the drug we find 

that the gene circuit can mutate to adapt stably in mNF cells. On the contrary, cells with the 

mPF gene circuit do not adapt by intra-network mutations and their resistance is unstable 

without circuit induction. Overall, combining mammalian synthetic biology with experimental 

evolution indicates that the noisy mPF network aids adaptation of mammalian cells to high drug 

levels, while the opposite is true at low drug levels. These findings may have implications for 

cancer treatment with known regulatory mechanisms of resistance. 

2.1.2 Significance. 

The dichotomy of noise being helpful or hurtful in the short-term depending on the drug 

treatment dosage has relevance to initial chemotherapy resistance and refractory treatment. 

When the gene expression noise for a chemoresistance-driving gene is low, the maximum 



29 

tolerable concentration of chemotherapeutic agents should optimally kill the resistant tumor 

cells. By inhibiting gene expression noise for a resistance gene with small molecule noise-

suppressors184, maximal treatment can then effectively kill resistant cells with reduced noise. 

This chapter will present results supporting this framework and will test the core hypothesis for 

scenario 1. 
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2.2 Methods and materials. 

2.2.1 Cell culture and maintenance. 

Chinese hamster ovary (CHO) cells with the single stably integrated FRT site (Invitrogen, 

R75807) were grown in Ham's F-12 Nutrient Mix (Gibco, 11765) with 10% fetal bovine serum 

(Gibco, 10437) and 100 U/mL Penicillin and Streptomycin (Gibco, 15140). The cells were 

grown at 37ºC in an incubator filled with 5% CO2. Hygromycin B (Invitrogen, 10687-010) at 700 

µg/mL was used as a selection agent that killed untransfected CHO cells and CHO cells with 

randomly integrated constructs.  

During subculture passaging, cells were washed with 1X Dulbecco’s Phosphate-Buffered 

Saline (DPBS) without calcium or magnesium (Life Technologies, 14190250), which was 

aspirated and replaced with 0.25% Trypsin containing 2.21 mM EDTA (Corning, 25-053-CI). 

After 2-5 minutes of incubation at 37 ºC, the trypsin/cell mixture was diluted 1:10 with growth 

medium containing serum and then passaged into a new flask with fresh media in another 1:10 

dilution. 

2.2.2 Preparation of reagent working stocks. 

Doxycycline (Fisher Scientific, BP26531) stock solution was stored at -20 ºC at 5 mg/mL 

and diluted in media at 4 ºC storage for no longer than 7 days after initial preparation. Prior to 

imaging experiments, CHO cell nuclei were stained with the live cell dye NucBlue (Invitrogen, 

R37605) at a concentration of 1 droplet per 90 mL of media. 

2.2.3 mPF and mNF plasmid construction. 

During the development of the humanized TetR (hTetR), an extra glycine amino acid was 

inserted directly after the start codon to complete a consensus Kozak sequence and thereby 

enhance translational efficiency82. Thus, the amino acid coordinates are shifted by +1 

compared to the original TetR class B protein sequence (UniProtKB: P04483; PDB: 4AC0). 

Plasmids integrated into CHO Flp-In™ cells were constructed using restriction cloning on 

commercial and custom vectors and constructs. The addition of T2A::PuroR to both plasmids 
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resulted in mNF-PuroR and mPF-PuroR constructs. The molecular cloning extensively used 

overlap PCR extension to fuse DNA pieces together.  

The oligonucleotides used in the construction of the mPF and mNF plasmids can be 

found in Table 1. The first intermediate plasmid pDN-D2irTNG5kwh was created by cutting 

pcDNA5/FRT and pDN-D2irTNG4kwh82 with the SpeI-HF and SphI-HF restriction enzymes. 

The 4000 bp fragment from the first (Flp-In expression backbone) and 3400 bp fragment from 

the second (hTetR::NLS::EGFP construct with enhancements) plasmids were ligated together 

to make pDN-D2irTNG5kwh. The P2A sequence was introduced into the circuit by sequential 

extension PCR with primers CMV-PacI-f, SV40-AscI-BbvCI-r (flanking) and TN-P2A-r, P2A-TN-

f, P2A-i2-f, P2A-i1-EGFP-f, EGFP-P2A-f (internal) and then inserting the product fragment into  

pDN-D2irTNG5kwh (cutting both with SpeI-HF, NotI-HF and ligating) resulting in pDN- 

D2irTN2AG5kwh (mNF-GFP). 

Next, we built the mPF circuits. The pDN-MMa6h plasmid encoding the rtTA regulator 

was made by cutting pDN-D2irTN6kwh82 with SpeI-HF and XhoI-HF restriction enzymes and 

using it as a backbone for a subsequent insertion of a PCR fragment amplified by CMV-SpeI-f 

and rtTA-XhoI-adv-r primers from the pTet-On Advanced plasmid (Clontech, 631069). Then, 

the pTRE-Tight promoter was PCR amplified from pTRE-Dual2 (Clontech, PT5038-5) with 

pTRE-Tight-SpeI-f and 2nd-OL-pTRE-hrtTA-r, while rtTA was amplified from pDN-MMa6h with 

2nd-OL-pTRE-hrtTA-f and hrtTA-SalI-r, having overlap between the proximal ends. After 

overlap PCR extension of pTRE-rtTA, the intermediate plasmid pKF-P14MM5h was created by 

cutting pTRE::rtTA and the pDN-MMa6h vector with SpeI and SalI. We introduced the P2A and 

EGFP sequence with overlap PCR extension by adding P2A to pTRE-rtTA with pTRE-Tight-

MluI-f and pTRE-rtTA-OL-2A-r and to hEGFP sequentially with 2A-OL-hEGFP-f, 2A-Bridge-OL-

f and hEGFP-BamHI-r. Finally, the resulting pTRE-rtTA::P2A::EGFP construct and the 

pcDNA5/FRT vector was cut by MluI and BamHI, and ligated to produce the mPF-GFP circuit 

plasmid pKF-P14MM2AG5h. 
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T2A::PuroR was amplified from DC-RFP-SH01 (GeneCopoeia) with the T2A-f and NotI-

AgeI-PuroR-r primers. To make mNF-PuroR, the PCR product was combined in overlap PCR 

extension with the mNF-GFP construct amplified with Intron-SbfI-f and T2A-hEGFP-OL-r. Both 

Table 1: List of primers used for mPF and mNF plasmid construction. 

Primers were diluted with molecular-grade water to a working stock of 10 µM from 100 µM 

frozen stocks. 

 

Primer name Sequence (5’ -> 3’) 

CMV-SpeI-f GCGCACTAGTTATTAATAGTAATCAATTACG 

rtTA-XhoI-adv-
r 

GCGCCTCGAGTTACCCGGGGAGCATGTCAAGGTC 

CMV-PacI-f GCGCTTAATTAATGACATTGATTATTGACTAGTTATTAATAG 

SV40-AscI-
BbvCI-r 

CAGAAGGCTGAGGTAGCGGCGCGCCCCATAGAGCCCACCGCATCC
CCAGC 

TN-P2A-r GCTGAAGTTAGTAGCTCCGCTTCCCTTTCTCTTCTTTTTTGGCCCGCC
GC 

P2A-TN-f GCGGCGGGCCAAAAAAGAAGAGAAAGGGAAGCGGAGCTACTAACTT
CAGC 

P2A-i2-f GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACG
TGGA 

P2A-i1-EGFP-f CTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGG
TGAG 

EGFP-P2A-f GGAGGAGAACCCTGGACCTATGGTGAGCAAGGGCGAGGAGCTG 

pTRE-Tight-
SpeI-f 

GCGCACTAGTCGAGGCCCTTTCGTCTTCA 

2nd-OL-pTRE-
hrtTA-r 

CTTTGCTCTTGTCCAGTCTAGACATTCCAGGCGATCTGACGGTTCAC
TAA 

2nd-OL-pTRE-
hrtTA-f 

TTAGTGAACCGTCAGATCGCCTGGAATGTCTAGACTGGACAAGAGCA
AAG 

hrtTA-SalI-r AAAAGTCGACTTACCCGGGGAGCATGTCAAG 

pTRE-Tight-
MluI-f 

GCGCACGCGTCGAGGCCCTTTCGTCTTCA 

pTRE-rtTA-
OL-2A-r 

CAGCAGGCTGAAGTTAGTAGCTCCGCTTCCCCCGGGGAGCATGTCA
A 

2A-OL-
hEGFP-f 

GCTGGAGACGTGGAGGAGAACCCTGGACCTATGGTGAGCAAGGGC
GAGGA 

2A-Bridge-OL-f AGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAG
AACC 

hEGFP-
BamHI-r 

GCGCGGATCCTTACTTGTACAGCTCGTCCATGC 

T2A-f GAGGGCAGAGGAAGTCTTCTAACATG 

NotI-AgeI-
PuroR-r 

GCGGCCGCACCGGTTCAGGCACCGGGCTTGCG 

Intron-SbfI-f CCTACAGGTCCTGCAGGCGCCAC 

T2A-hEGFP-
OL-r 

AGGGCCGGGATTCTCCTCCACGTCACCGCATGTTAGAAGACTTCCTC
TGCCCTCCTTGTACAGCTCGTCCATGCCG 

SacI-pCMV-f GCAGAGCTCGTTTAGTGAACCGT 
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the product and pDN-D2irTN2AG5kwh vector were restriction digested by SbfI-HF and AgeI-HF 

and ligated to make the pKF-D2irTNP2AG-T2APuroR-5kwh plasmid (mNF-PuroR). The mPF-

GFP construct was amplified with SacI-pCMV-f and T2A-hEGFP-OL-r, and combined with 

T2A::PuroR in overlap PCR extension. The resulting product and the pKF-P14MMP2AG5h 

vector were cut with SacI and NotI-HF and ligated to make the final pKF-P14MMP2AG-

T2APuroR-5h plasmid (mPF-PuroR). 

2.2.4 Flpase-mediated integration of CHO Flp-In cells. 

For the genetic constructs containing the PuroR gene, CHO Flp-In cells were transfected 

with plasmid DNA (up to 5 µg) using the Lipofectamine 3000 reagent (Life Technologies, 

L3000008) according to the manufacturer protocol. Plasmid DNA for mNF-GFP and mPF-GFP 

was introduced into cells using the NucleofectorTM 2b device (Lonza, Walkersville, MD), per 

manufacturer protocol, using 5-10 × 106 cells, plasmid DNA (1-5 µg), and relevant buffers 

(Solution T, and program V-23). Site-specific integration of synthetic gene circuits was 

achieved by co-transfecting the pOG44 plasmid (Invitrogen, V600520) expressing Flp-

recombinase with the Flp-expression vectors that encode an FRT-tagged Hygromycin B 

resistance gene without a start codon. Upon selecting with Hygromycin B, the resistance gene 

acts as a positive-selection promoter trap, which provides the resistance gene with a start 

codon only upon successful integration at the genomic FRT site, thus leading to survival. The 

clonal CHO populations were derived from bulk-transfected cells by fluorescence-activated cell 

sorting (FACS) with the FACSAriaIII.  

2.2.5 Cell memory estimates. 

During the CHO mPF and mNF memory estimation experiments, FACSAriaIII sorted the 

cells with the lowest and highest 15% of PuroR expression into separate, terminal wells 

corresponding to each subsequent day of expression measurement. We estimated the rates of 

gene expression fluctuations (“switching rates”) by flow-sorting of high-expressing and low-

expressing mPF and mNF cells induced to the decoupled noise point (DNP) and then 

monitoring these sorted cells as they returned to their original expression distributions. To 
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threshold high- and low-expressing subpopulation fractions over time post-sorting, we split the 

expression values from each sorted sample by the median expression level of a corresponding 

unsorted control sample.  

The mNF high- and low-sort fractions drifted over time to a value higher than the 

unsorted high fraction (0.5). Since the original distribution did not shift accordingly, the trend did 

not represent a biological phenomenon; it possibly arose from technical noise after fractioning 

very similar distributions. To detrend the mNF high- and low-sort fractional data, we individually 

fit the linear equation mx + b, with x equaling the time point (days), to three local time points in 

each curve with a clearly visible linear trend. The resulting time-dependent linear equation was 

then subtracted from each mNF high fraction value at each corresponding time point from the 

curve.  

We fit the high subpopulation fractions of both high- and low-sorted cells over time using 

the following exponential curve, a general solution for two-state phenotype switching 

models67,194:  

𝐻(𝑡) = 𝐴 ∗ (1 − 𝑒−(𝑟+𝑓)𝑡) + 𝐶,                      (1) 

where H(t) is the high subpopulation fraction over time, r is the switching rate from low to high 

expression (rise rate), f is the switching rate from high to low expression (fall rate), A and C are 

constants. Fitting low-sorted cells resulted in consistent switching rate values. 

Since the individual median threshold at every time point partitions the monitored 

unsorted, visibly unimodal distributions into two cellular states with equal cell numbers, and cell 

growth rates do not differ noticeably, the calculated fits for r and f from the sorted cells reflect 

symmetrical cell switching rates across a consistent midway boundary. Therefore, at each time 

point, the rise and fall rates are equivalent: 

𝑟 = 𝑓 =
𝑟+𝑓

2
.                               (2) 
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The corresponding rates are listed in Table 5 while plots of high fractions over time are 

displayed in Figure 14. 

2.2.6 Flow cytometry expression measurements. 

The BD Accuri™ C6 bench-top flow cytometer measured single-cell EGFP fluorescence 

for the PuroR experiments. Prior to measurement, trypsinized cell solutions were neutralized 

with media, then centrifuged for 5 minutes at 300 x g, and the cell pellet was resuspended in 

1X DPBS without calcium or magnesium before straining into a 5 mL Polystyene round-bottom 

tube (Corning, 352235). Between cell measurements, Decontamination solution (BD, 653154) 

cleaned the flow cytometer liquid stream and the SIP to prevent cells from sticking in the fluidic 

tubing. In CHO experiments, up to 20,000 events were gated for analysis. CHO cell samples 

treated with Puromycin typically had lower cell counts. For memory experiments, I measured 

CHO mPF and mNF expression daily with a BD FACSCalibur Cell Analyzer flow cytometer at 

the Stony Brook School of Medicine Research Flow Cytometry Core facility.  

2.2.7 Time-lapse microscopy. 

The Nikon TiE motorized inverted microscope acquired 10x phase contrast and 

fluorescent images at pre-defined x- and y-coordinates for each experiment. Depending on the 

experiment, a large image consisting of multiple image frames was constructed with 10-15% 

overlap between frames in the motorized x- and y-coordinates. Exposure times and post-

acquisition look-up tables varied between separate experiments but remained consistent within 

each experiment. The Nikon Perfect Focus System (PFS) prevented focus drift between time 

points, with off-sets pre-programmed for each individual imaging field per experiment and 

sample. 

2.2.8 Kill curves to determine optimal Puromycin dosage. 

CHO Flp-in cells (parental) were passaged at 2.5 x 105 cells per well in a 6-well plate to 

establish toxicity over increasing Puromycin concentrations. Stock Puromycin solution was 

diluted to 10 µg/mL in media and further diluted to conduct a kill curve with Puromycin 

concentrations of 1, 3, 5, 7, and 10 µg/mL added a day after cell seeding. Cells were monitored 
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every day and media was replenished every 3-4 days up to 2 weeks. We found that 10 µg/mL 

Puromycin was not toxic for both uninduced circuits. 

2.2.9 Puromycin treatment phase. 

Prior to experimental design, a kill curve for ancestral CHO cells evaluated the minimal 

Puromycin concentration affecting cells without the resistance gene. In the initial drug treatment 

experiment, cells were seeded at 5 x 104 cells in 6-well plates and incubated 24h prior to 

Doxycycline induction. After 48 hours of induction, 8,000 cells were split in replicates of six into 

24-well plates and induced for another 24 hours before treatment with Puromycin. At 72 hours, 

expression was measured by flow cytometry to determine the existence of a decoupled noise 

point between the two circuits, with the criteria being means that differ by less than 10%. Once 

the decoupled noise point was established, the cells were treated with varying levels of 

Puromycin. Plates were replenished with media, Doxycycline, Puromycin, and NucBlue every 

24 hours before imaging (Figure 16A). If a well became confluent during the first treatment 

phase, we ran the sample under flow cytometry, temporarily removed Puromycin, split the 

sample into two new wells with or without Doxycycline, and the remaining cells were 

cryogenically frozen (Figure 26A).  

2.2.10 Post-treatment and re-treatment phases. 

Samples that survived the Puromycin treatment phase were separated into two conditions: 

i) no Doxycycline and no Puromycin; and ii) with Doxycycline and without Puromycin. To maintain 

the same concentration of Doxycycline between passages, we neutralized 100 μL of trypsinized 

solution with 1 mL of either 0.055 or 6.6 ng/mL Doxycycline to dilute the solutions to 0.05 and 6 

ng/mL, respectively. The media was replenished with the appropriate induction levels after 

adherence. Expression was monitored by flow cytometry during each passage. The number of 

passages for the samples required to reach the re-treatment phase varied between two to nine. 

If the expression completely reset, the mean expression for the uninduced sample reached lower 

levels than induced cells over a substantial amount of time (weeks), or the uninduced sample 

mean expression levels did not change over a month, the samples were retreated with the 
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previously used Puromycin concentration. All lineages were cryogenically preserved between 

each passage and after the re-treatment phase. Additionally, uninduced mNF-PuroR or mPF-

PuroR cells were measured by flow cytometry at each passage as a positive control for a 

successful reset. 

2.2.11 CHO genomic DNA extraction and sequencing analysis. 

Ancestral and evolved CHO populations were centrifuged for 5 minutes at 300 x g, and 

the genomic DNA from the cell pellet was either extracted with the DNeasy Blood & Tissue kit 

(QIAGEN, 69504) or immediately frozen at –80 Celsius for future extraction. For all samples 

except mNF-PuroR replicates 1, 3, 4, 5, and 6, the entire sample were immediately centrifuged 

after thawing from cryopreservation. Otherwise, one-tenth of the sample was grown to 

confluence up to a 6-well plate, which was then lysed for DNA extraction. Once purified, the 

genomic DNA acted as a template for PCR amplification of the mNF-PuroR or mPF-PuroR 

circuits using primers listed in Table 2. Various sequencing primers were used for Sanger 

sequencing such that the chromatographs covered the circuits with at least 2 reads. 

 

The ab1 files were aligned and peaks visualized with the SnapGene software (from GSL 

Biotech; available at snapgene.com). To assess for genetic heterogeneity in a sequencing read 

with peak mixtures, CRISP-ID195 analyzed individual chromatographs for variant subpopulation 

sequence. Background cutoff percentages (ranging from 10-25%) were scaled to the quality of 

Table 2: List of primers for circuit sequencing. 

Blue shaded rows contain primers ampifying the mNF-PuroR circuit, red rows indicate 

primers used for amplifying mPF-PuroR circuits, and primers in purple rows were used for 

both circuits. 

 Primer name Sequence (5’ -> 3’) 

D2ir-Enh-Seq-f ACGGGCCAGATATACGCGTT 

NF-Edge-f GCGTTGACATTGATTATTGACTAGTT 

FRT-Circuit-3-r GCTGGTTCTTTCCGCCTCAG 

MluI-pTRE-f ATATACGCGTCGAGGCCCTTTC 

hEGFP-130-qPCR-f ACGACGGCAACTACAAGAC 

bGH-pA-r GCTGGTTGCTAAGAGGGAGG 

FRT-Circuit-2-r CGAACGTGGCGAGAAAG 
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nucleotide calls. Each read was evaluated starting at 85 bp and up to 600 bp depending on the 

location of poor read quality. In doing so, we can distinguish genetic heterogeneity of potential 

subpopulations in the sequence reads from mixed peaks and minimize false positives derived 

from poor read quality. 

2.2.12 PuroR circuit copy number analysis with quantitative PCR. 

The qPCR reactions were measured by the Applied Biosystems™ QuantStudio™ 3 Real-

Time PCR system (ThermoFisher). PowerUp™ SYBR® Green Master Mix (ThermoFisher, 

A25742) amplified the genomic DNA templates and emitted fluorescence upon binding to 

double-stranded DNA. The standard reaction condition for the master mix was set on the qPCR 

instrument. Each reaction contained a total volume of 10 µL with 500 nM primers. Reactions 

were prepared as a serial dilution of each genomic DNA sample in triplicate over 5-fold 

changes in concentration. PuroR and Vinculin (Vcl) were targeted as the unknown target and 

known copy number reference standard, respectively. CHO cells contain two copies of 

Vinculin196. For each genomic DNA sample, we used the 2-ΔCt relative quantification method, 

where ΔCt = Ct_target – Ct_reference. To assess the upper bounds of error, we chose to analyze the 

serial dilution concentration with the largest set of deviation between Ct values. Results 

indicating a single copy of each circuit per cell should overlap 0.5 in terms of relative copy 

number of PuroR over Vcl, with two copies overlapping 1, three overlapping 1.5, etc. Since the 

box plot comparison intervals (95%) for each circuit (bounded by red notch markers) overlap 

0.5 but not 1 or higher, we reject the hypothesis that there is more than one circuit at the 0.05 

significance level. The qPCR primers are listed in Table 3. 

2.2.13 Flow data analysis. 

We developed custom MATLAB scripts to gate and analyze flow cytometry data. Cells 

were adaptively gated with a density-threshold fit of log-transformed SSC and FSC values per 

sample to exclude debris. Specifically, flow cytometry data was exported as individual FCS 

files, which were then analyzed by custom MATLAB scripts. Raw forward and side scatter 

values were log-transformed, and then plotted as a 2-dimensional histogram. The number of 
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bins was usually 60 unless adjusted whenever debris was unintentionally gated. The 2-

dimensional histogram counts were then plotted as a contour, which further subdivided the plot 

with a density gate. We chose the second from the widest contour level on average, which 

increased in density at the SSC-FSC coordinates harboring cellular events. Cells must make 

up most events in an FCS file for the algorithm to work.  

Fluorescent events that were less than 2,000 arbitrary units were filtered prior to 

normalization using the following formula: 

𝐸𝐺𝐹𝑃filtered
i = 𝐸𝐺𝐹𝑃raw

i  | (𝐸𝐺𝐹𝑃raw
i >  𝐸𝐺𝐹𝑃𝑐𝑢𝑡𝑜𝑓𝑓),                           (3) 

where EGFPi
filtered is the filtered fluorescence for individual cells (i) that have an unsilenced 

circuit, EGFPi
raw is the raw fluorescence from any cell (i) with the circuit, and EGFPcutoff is a 

constant fluorescence threshold (2,000 arbitrary units) above auto-fluorescence but below 

uninduced, basal circuit expression. The EGFPcutoff was shown to threshold non-fluorescent 

cells from cells with uninduced circuits based on the threshold value exceeding three standard 

deviations higher than the auto-fluorescence mean. Additionally, the non-expressing peak and 

basal expression peak flank a local minimum (Figure 13C) that aligns with the EGFPcutoff. The 

filter was justified by the lack of transitions from the small subpopulation of non-expressing cells 

to the basal expression level for both circuits (Figure 7). 

To estimate technical variation in fluorescence under flow cytometry between 

experiments, we measured fluorescent values from an auto-fluorescence reference (CHO Flp-

Table 3: List of primers used for qPCR copy number analysis. 

Primers were diluted with molecular-grade water to a working stock concentration of 10 µM 

from 100 µM frozen stocks. The Vinculin primer sequences were obtained from the 

literature2. 

Primer name Sequence (5’ -> 3’) 

PuroR-150-
qPCR-f 

CGAGTACAAGCCCACGGT 

PuroR-150-
qPCR-r 

AGTTCTTGCAGCTCGGTGA 

Vinculin fwd GCTGGTTGCTAAGAGGGAGG 

Vinculin rev ATCAGAGGCAGCTTTCACGG 
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In parental cell line) and 8-peak fluorescent calibration beads (BD, 653144). To normalize the 

gated, filtered fluorescence events, we applied the technical fluorescence variation control data 

to the following formula: 

𝐸𝐺𝐹𝑃norm
i =

𝐸𝐺𝐹𝑃filtered
i −𝐸𝐺𝐹𝑃auto

𝐸𝐺𝐹𝑃max
,               (4) 

where EGFPi
norm is the normalized fluorescence from individual cells with an unsilenced circuit, 

EGFPauto is the mean autofluorescence from the parental cell line without the circuit, and 

EGFPmax is the mean fluorescence of the highest fluorescence intensity peak from the 

calibration beads control.  

Using each individual normalized fluorescence reading, we calculated the normalized 

mean and CV directly from the 𝐸𝐺𝐹𝑃𝑛𝑜𝑟𝑚
𝑖  values using standard formulas: 𝐶𝑉 =

𝜎(𝐸𝐺𝐹𝑃norm
i )/𝜇(𝐸𝐺𝐹𝑃norm

i ) where 𝜇(𝐸𝐺𝐹𝑃norm
i ) =

1

N
∑ 𝐸𝐺𝐹𝑃norm

iN
1   and   𝜎2(𝐸𝐺𝐹𝑃norm

i ) =

1

N
∑ (𝐸𝐺𝐹𝑃norm

i )2N
1 . We plotted the mean and standard error of the mean (SEM) over replicates 

for each condition. 

2.2.14 Linearity assessment with L1-norm and curve fitting. 

A B 

Figure 7: FACS-sorting of non-expressing and basal CHO-PuroR subpopulations 

revealed no switching from the non-expressing state. 

(A) Percent fraction of the non-expressing subpopulation over time after sorting for cells 

with basal (uninduced) expression levels. (B) Percent fraction of the basal-expressing 

subpopulation over time after sorting for the non-expressing subpopulation. 
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To assess the degree and range of linearity, we calculated the L1-norm statistic68,82 for 

the mean expression levels from the mNF-PuroR and mNF-GFP dose-responses. The statistic 

can be thought of as the distance between a mean expression dose-response and an ideal 

linear function, with 0 representing perfect linearity and 0.5 being the least linear68,82. First, the 

doses and means were rescaled so that the first point in the new unit vector coordinate system 

was (0,0) and the last dose and mean was (1,1). From these discrete values, we finely 

interpolated the means between doses with the interp1.m MATLAB function. Then, the area 

between the ideal linear function and the rescaled interpolated dose-response was calculated 

with the trapz.m MATLAB function. This integrated area represents the L1-norm statistic up to 

each dose. We included 4 or more doses in each L1-norm statistic calculation. The plots in 

Figure 11A,C display L1-norms that are generally minimal over low to intermediate 

Doxycycline concentrations. The L1-norm abruptly increases once doses induce saturating 

means. To calculate the coefficients of determination or R-squared values of linearity for mean 

expression dose-responses, the mean expression data was also fit to a linear curve. 

2.2.15 Adaptation criteria. 

To calculate the adaptation time parameter, we fit the Baranyi environmental adjustment 

model197 through minimization between the model and the data using Powell’s method. We 

employed custom MATLAB scripts to estimate the local slope (growth rate) of the growth 

curves with a moving window of 3 timepoints (Figures 19; 40C,D). If the local growth rates up 

to saturation of the growth curve were equal to or greater than 0, then the adaptation time = 0. 

If any local growth rate of a curve was less than zero, then we extracted the half-saturation time 

and adaptation time from the Baranyi model. Replicate populations that completely die off have 

adaptation times = infinity. 

2.2.16 Statistical analysis. 

All statistical analyses employed custom MATLAB scripts. Given that the single-cell 

expression data consists of many cells per sample, the Central Limit Theorem states that the 

distribution of means for each sample is approximately normally distributed. Thus, parametric 
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tests were appropriate to infer differences in mean expression. Specifically, significant 

differences in mean expression were evaluated with the two-sample t-test with 0.05 set as the 

significance level. The coefficient of variation (standard error divided by the mean) of each 

distribution in a set were assumed to not follow a normal distribution. Thus, statistical 

inferences on CV and all other variables required the two-sample Mann-Whitney U test. The 

two-sample t-test and Mann-Whitney U test inferred significance at a p-value < 0.05. 

2.2.17 Image processing. 

In imaging, the number of cells per field was determined by spot detection of green-

fluorescent cells and nuclei stained with the live cell dye NucBlue using NIS Elements AR 

software. Specifically, the motorized Nikon TiE microscope at a magnfication of 10x captured 

phase contrast and fluorescent images every 24 hours after initial Puromycin treatment. Each 

individual sample in the Puromycin treatment experiments have image fields tiled together in 

2x3 fields with 15% overlap but not with active stitching (NIS Elements AR). Fluorescence 

background subtraction used an image that was a median of multiple background images of 

empty wells. The median background image was extracted with custom MATLAB scripts and 

then subtracted from the raw fluorescence images using the Nikon Elements AR software. 

To determine the number of CHO cells in each field, distinct nuclear stained cells and 

green fluorescent cells were counted with a bright spot detection algorithm provided by the 

Nikon Elements AR software. A typical diameter between 9 to 12 μm and an average contrast 

of 22.7 was applied in each run of the algorithm. The resulting binary objects were merged with 

an OR gate and then the objects were morphologically separated with a structual element 

repeated throughout the image. Each object was then counted per image to construct the cell 

growth curves. 

2.2.18 Computational modeling. 

Used with permission from Daniel A. Charlebois, who developed the methodology, ran the 

simulations, and wrote the text in this section. 
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To relate the fraction of mPF-PuroR and mNF-PuroR cells surviving the death phase of 

Puromycin treatment to EGFP and Puromycin concentrations, we first log transformed the 

approximately lognormal experimental CHO EGFP histograms, which were then fit to the 

standard probability density function (Figure 24A): 
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where EGFP is the level of the fluorescence reporter which corresponds to the expression level 

of the Puromycin resistance gene (PuroR), and µ and σ are the mean and standard deviation of 

the population EGFP distribution for the mammalian positive or negative feedback circuit as 

indicated by the indices mPF and mNF, respectively.  

The cumulative distribution function was directly obtained by integrating Equation (5) and 

is related to the fraction of cells that are initially killed by Puromycin (AD):
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The fraction of clonal CHO cells that initially survive Puromycin (AS) is then simply 1-AD (Figure 

24B). The EGFP expression threshold below which CHO cells were killed is related to 

Puromycin concentration ([Puro]) via a Michaelis-Menten type function (Figure 24C): 
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.                                                                                                        (7)             

The fraction of initial surviving cells can be further divided into a persister cell fraction (AP) and 

a nongenetically resistant fraction (AN) such that AD + AP + AN = 1. The AP fraction was 

estimated using a lognormal distribution function (Figure 24D): 
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The initial subpopulation fractions of AD, AP, and AN served as input to a stochastic 

population dynamics model [Equation (9)], which accounted for the phenotype switching 
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between P and N cells and the mutation of N or P cells to form a genetically drug resistant 

subpopulation fraction of G cells (AG), which like N cells could grow and divide. The model 

predicted subpopulation fractions and adaptation (Figure 23):  

, , ,

, , ,

, ,

P N N P G P

P N N P G N N N

G P G N G G

dP
r N r P r P

dt

dN
r N r P r N k N g N

dt

dG
r P r N k G g G

dt

= − −

= − + − + −

= + + −

            (9) 

where ri,j is transition rate from genotype/phenotype j to i, ki is the growth rate of i, and gi is the 

death rate of i. The total population size Ntot is given by: 

tot
N G N G

dN dP dN dG
k N k G g N g G

dt dt dt dt
= + + = + − − .           (10) 

All parameter values are given in Table 4. 

Function/Simulation Parameters Strain Symbol Value 
f(EGFP) and ADmPF,mNF, Equations (5) & (6) in 
Methods section 2.2.18 

   

 mPF µ 4.4094 

  σ 0.3835 

 mNF µ 4.5452 

  σ 0.1774 

ADthres, Equation (7) in Methods section 2.2.18    

  β 5.1 

  K 4 

APmPF,mNF, Equation (8) in Methods section 2.2.18    

 mPF µ' 3.4556 

  σ' 0.2599 

 mNF µ' 3.3176 

  σ' 0.2392 

Population Model    

  µ 0.0556 

  η1 [1, 5, 4, 10, 10]×102 

  η2 [1, 5, 2.5, 10, 5]×102 

 mPF N0  [0.1, 0.15, 0.2, 0.1, 
0.1]×104 

  Nmax [6, 3, 3.25, 2.5, 2]×104 

  rP,N [1, 1, 1, 1, 1]×10-4 

  rN,P [1, 1, 1, 1, 1]×10-2 

  rG,N [0, 1, 1, 1, 1]×10-7 

  kN [1, 0.825, 0.6, 0.45, 0.4]×µ 

  gN [1, 2.5, 3, 3.5, 5]×10-2 

  rG,P [0, 5, 5, 5, 5]×10-6 

  kG [1, 0.825, 0.8, 0.45, 0.4]×µ 
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  gG [1, 1, 1, 1, 1]×10-2 

 mNF N0 [0.085, 0.2, 0.25, 0.1, 
0.1]×104 

  Nmax [6, 4, 3, 2.25, 2]×104 

  rP,N [1, 1, 1, 1, 1]×10-4 

  rN,P [1, 1, 1, 1, 1]×10-2 

  rG,N [0, 1, 1, 1, 1]×10-6 

  kN [1, 0.825, 0.8, 0.45, 0]×µ 

  gN [1, 2.5, 3, 3.5, 5]×10-2 

  rG,P [0, 5, 5, 5, 5] ×10-6 

  kG [1, 0.825, 0.8, 0.45, 0.4]×µ 

  gG [1, 1, 1, 1, 1]×10-2 

 

Table 4: Parameters for stochastic population dynamics model. 

Used with permission from Daniel A. Charlebois, who constructed the table.  

Parameters provided in an array correspond to increasing Puromycin concentrations ([0 10 

22.5 35 50] µg/ml). Single parameter values indicate the value used for all Puromycin treatment 

conditions. The same parameters were used for mPF and mNF strains unless otherwise 

indicated. 
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2.3 Results. 

2.3.1 Developing mPF-PuroR, a high-noise mammalian puromycin resistance synthetic 

gene circuit. 

To obtain high gene expression noise amplitude and memory, we designed and 

assembled a Flp-In-compatible version of the positive feedback (PF) synthetic gene circuit67. 

We integrated this mammalian PF-PuroR (mPF-PuroR or mPF) gene circuit into the well-

expressed genomic FRT site into clonal Chinese Hamster Ovary (CHO) Flp-In™ cells to avoid 

genomic locus-dependent variation in silencing. In mPF-PuroR, the reverse tetracycline Trans-

Activator (rtTA) binds to Doxycycline (Dox) and activates the transcription of a tricistronic 

construct consisting of that same rtTA regulator, the fluorescent reporter EGFP, and the drug 

resistance gene PuroR (Figure 8A). Thus, with Doxycycline induction, the positive auto-

regulatory network increases fluctuations in gene expression within a population of cells. We 

joined these coding sequences transcriptionally using the self-cleaving Porcine teschovirus-1 

2A (P2A) and Thosea asigna virus 2A (T2A) peptides to prevent potential unwanted functional 

effects from protein fusion198. Once translated, the P2A and T2A peptide motifs cleave 

themselves, leading to the expression of three separated proteins from one transcript. This 

simple design, with a single common promoter, minimizes the number of genetic components 

in the mPF-PuroR gene circuit, facilitating genomic integration. 

To characterize the expression of the mPF-PuroR gene circuit, we collected single cell-

level EGFP fluorescence data at varying Doxycycline levels by flow cytometry. We normalized 

single cell-level EGFP fluorescence data to minimize technical variation from flow cytometry 

measurements by correcting for auto-fluorescence and then dividing the corrected fluorescence 

by the mean of one fluorescence peak from flow cytometry calibration beads [Equations (1)-(2), 

Methods section 2.2.13]. We characterized these normalized EGFP fluorescence distributions 

in terms of their gene expression mean and noise amplitude, quantified by the CV. The mean 

mPF-PuroR expression dose-response was sigmoidal with a steep response region (Figure 

8B), similar to yeast67. Gene expression noise amplitude for uninduced mPF-PuroR cells was 
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low, but then increased markedly upon Doxycycline induction (Figure 8C). The highest noise 

amplitude values corresponded to broad, yet visibly unimodal single-cell expression 

distributions (Figure 8D) in contrast to the bimodal distributions in yeast67. Importantly, the 

removal of PuroR did not impact the performance  (noise amplification) of the mPF circuit 

(Figure 9), indicating that it can impose high noise for various genes. To summarize, 

transferring the mPF-PuroR gene circuit into CHO Flp-In cells led to high noise amplitude with 

B 

D 

Figure 8: Dose-response of the mPF-PuroR gene circuit. 

(A) Network schematic of the mPF-PuroR gene circuit induced by Doxycycline , which 

expresses the Puromycin resistance gene (PuroR) and EGFP separated by the self-

cleaving 2A elements. (B) Mean expression under varying levels of Doxycycline induction. 

(C) Gene expression noise amplitude (coefficient of variation, CV) in response to 

Doxycycline induction. Error bars denote the standard error of the mean. There is an x-axis 

break (//) between 50 and 500 ng/mL Dox. All samples were measured in triplicate. (D) 

Single-cell gene expression distributions of mPF-PuroR cells with broad peaks at 

intermediate levels of Doxycycline (legend). Distributions are from representative replicates.  

A 

C 

Doxycycline  

2A pTRE Promoter EGFP rtTA 2A PuroR 
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broad, visibly unimodal distributions. 

 

2.3.2 The low-noise mNF-PuroR gene circuit allows noise decoupling in conjunction with 

mPF-PuroR.  

To generate a low-noise gene circuit in the same genomic locus, we also integrated a 

Flp-In-compatible mammalian negative feedback (mNF-PuroR or otherwise called mNF) circuit 

P2A EGFP rtTA 

Doxycycline 

pTRE Promoter 

7x tetO2 sites 

A B 

C D 

Figure 9: The mPF-GFP gene circuit amplifies gene expression noise. 

(A) The Flp-In-compatible mammalian positive feedback circuit without PuroR (mPF-GFP) 

contains the Doxycycline-inducible transcriptional regulator rtTA which activates its own 

gene expression (red arrows) by binding to tetO2 sites in the pTRE-Tight promoter. (B) 

Mean expression of the mPF-GFP circuit in response to increasing levels of Doxycycline. 

(C) Gene expression noise (coefficient of variation) over increasing concentrations of 

Doxycycline. All conditions were run in triplicate. Error bars represent the standard error of 

the mean. (D) Single-cell expression distributions in response to increasing Doxycycline 

concentrations (legend). The distributions are from a representative replicate. 
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in the same ancestral CHO cell line (Figure 10A). With negative feedback, gene expression 

fluctuations are suppressed190. We preserved previous optimizations that enhanced gene 

expression, including mammalian-optimized codons, post-transcriptional expression elements, 

and a fold-activation-optimized promoter82. Again, we joined the humanized Tetracycline 

repressor  (hTetR), the EGFP reporter, and PuroR resistance genes with P2A and T2A peptide 

motifs, allowing co-translational separation of the three proteins. 

 

A B 

D C 

Figure 10: Dose-response of the mNF-PuroR gene circuit. 

(A) The mNF-PuroR gene circuit controls expression of a Puromycin resistance gene and 

the EGFP reporter gene through negative feedback of a humanized tetracycline repressor 

(hTetR) gene separated by self-cleaving 2A peptides. (B) Normalized mean expression of 

mNF-PuroR cells under varying levels of Doxycycline (Dox). (C) Gene expression noise of 

mNF-PuroR cells in response to Dox. Error bars denote the standard error of the mean. 

There is an x-axis break (//) between 50 and 500 ng/mL Dox. Samples were measured in 

triplicate. (D) Single-cell gene expression distributions of the mNF-PuroR circuit. The 

legend indicates Dox concentrations. Distributions are from representative replicates. 

2A D2ir Promoter EGFP hTetR 2A PuroR 

Doxycycline  
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To determine how the gene expression mean and noise amplitude of the mNF-PuroR 

circuit depend on Doxycycline, we obtained gene expression distributions by flow cytometry. As 

expected82, the mNF-PuroR gene expression mean increased linearly with Doxycycline 

concentrations prior to saturation (Figures 10B; 11A,B). Linearity was lost when expression 

saturated (Figure 11A,B). We observed low gene expression noise amplitude in response to 

Doxycycline (Figure 10C), in agreement with narrow gene expression distributions (Figure 

10D). Removing PuroR did not affect the performance of the mNF gene circuit (Figures 11C,D; 

12).

 

A B 

C D 

Figure 11: Assessment of linearity for the mNF-PuroR and mNF-GFP mean dose-

responses by L1-norm and curve fitting. 

(A) L1-norm statistics and (B) linear curve fits for the mNF-PuroR mean dose-response. (C) 

L1-norm and (D) linear curve fits for the mNF-GFP mean dose-response. The calculations 

incorporated average expression over replicates. 
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To test whether noise-mean decoupling is possible with mNF-PuroR and mPF-PuroR, we 

sought Doxycycline induction levels where the mean expression of the two gene circuits were  

similar while the differences in noise amplitude were high (Figure 6A). To identify such a 

decoupled PuroR noise regime from the dose-response, we analyzed noise amplitude as a 

function of mean expression (Figure 13A). We observed two decoupled noise regimes, one 

P
CMV-D2ir Intron EGFP htetR::NLS WPRE 

KS 
P2A 

Doxycycline 

2x TetO2 sites 

A B 

C D 

Figure 12: The Flp-In mNF-GFP circuit uniformly expresses EGFP. 

(A) The Flp-In-compatible mammalian NF (mNF-GFP) circuit lacking PuroR, engineered to 

linearly tune mean expression of a gene with minimal gene expression noise, contains 

several genetic elements intended to enhance expression, which is also in mNF-PuroR. (B) 

Normalized mean expression of mNF-GFP cell populations in response to increasing levels 

of Doxycycline. (C) Gene expression noise amplitude for the mNF-GFP circuit as quantified 

by the coefficient of variation (CV). Samples were run in triplicate. Error bars represent the 

standard error of the mean. The data was normalized as described in the methods. (D) 

Single-cell expression distributions for the mNF-GFP circuit. Distributions are from 

representative replicates. 
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mNF-PuroR mPF-PuroR 

B 

C D 

Figure 13: A decoupled noise regime provides a series of decoupled noise points 

prior to drug treatment. 

(A) Plotting the noise (coefficient of variation, CV) as a function of mean gene expression 

for both gene circuits revealed two decoupled noise regimes. Black brackets indicate the 

expression range for the Doxycycline (Dox) concentrations used for noise-mean decoupling 

in (B). Error bars represent the standard error of the mean. (B) Decoupled noise points 

(DNPs) at the beginning of the two drug treatment experiment sets. The noise was 

significantly different between gene circuits for both sets (*p-value = 0.0022; n = 6, Mann-

Whitney U test). The mean expression was not significantly different for set 1 (~3% 

difference; p-value = 0.1770; n = 6, two-sample t-test) while it had significance for set 2 

(~8% difference; **p-value = 7.9416 x 10-6; n = 6, two-sample t-test). The dashed lines 

display the range of significant mean-noise differences between the circuits. (C) Gene 

expression distributions at the DNP from the first set. (D) Images of cells at the decoupled 

noise point from the first set. Statistical tests inferred significance at p-values < 0.05. 
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before and one after the mNF-PuroR and mPF-PuroR noise-mean curves intersect at high 

mean expression. Each regime has a set of decoupled noise points (DNPs) where circuits can 

have matching mean expression while ensuring distinct noise amplitudes. Thus, we decoupled 

gene expression noise amplitude of the PuroR gene from mean gene expression, providing a 

number of decoupled noise points to initiate the Puromycin treatment experiments. 

2.3.3 Estimating cellular memory by flow-sorting the mNF-PuroR and mPF-PuroR cells 

by high- and low-expressing subpopulations. 

Besides the noise amplitude, we also studied the memory, estimating the rate at which 

cells moved within the distributions. Flow-sorting high- or low-expressing subpopulations for 

both circuits at the drug treatment induction levels indicated that cells with the high-noise mPF-

PuroR circuit have higher memory (~2 days) than cells with the low-noise mNF-PuroR circuit 

(~1/2 day) (Figure 14; Table 5). Overall, the mNF-PuroR and mPF-PuroR cell lines were 

equivalent except for the noise-controlling constructs, each integrated as a single copy (Figure 

15) into the same genomic locus of a clonal cell line. Thus, the decoupled noise regimes 

A B 

Figure 14: Relaxation of high and low expression subpopulations after flow sorting 

for memory estimates. 

(A) The fraction of high-expressing cells for mNF-PuroR after flow sorting for high- and low-

expressing subpopulations. (B) High fraction for mPF-PuroR after flow-sorting at the 

decoupled noise point. The exponential fits to the data are included in each figure. A control 

sample of cells was bulk-sorted without a gate as a reference for the original distribution. 

The mNF high- and low-sorted data were normalized as described in the methods. 
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provide DNPs to jointly control PuroR gene expression noise amplitude and frequency and test 

their role in drug resistance evolution. 

Table 5: Flow-sort subpopulation fitting of switching rates. 

Fall (f) and rise (r) switching rates were fitted with the H(t) solution for the high-expressing 

fraction in Equation 1.  

Sorted sample Parameter Value (day-1) 

High-sorted mNF f = r 2.776 

Low-sorted mNF f = r 2.663 

High-sorted mPF f = r 0.4142 

Low-sorted mPF f = r 0.3343 

 

Figure 15: Single copy integration for PuroR circuits confirmed by qPCR. 

Quantitative PCR results of relative copy number of the PuroR gene over the Vinculin (Vcl) 

gene, which served as a reference for known genomic copy number (Vcl copies = 2). The 

copy number was calculated using the 2-ΔCt relative quantification method. Individual 

reactions were conducted in triplicate. The median is indicated by a red horizontal line 

inside each box plot. The top and bottom edge of the box plots represent the 75th and 25th 

percentiles, respectively. The whiskers extend to the most extreme point not considered 

outliers. The red notch markers indicate the comparison interval end points at the 5% 

significance level in the case of non-overlapping intervals. 
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2.3.4 The noisy network helps or hinders drug resistance evolution in a 

stress-dependent manner. 

To uncover the role of mNF and mPF network noise in mammalian drug resistance 

evolution, we decoupled noise from mean PuroR expression in isogenic CHO cells. By 

following these cells in constant inducer concentrations through parallel flow cytometry and 

microscopy (Figure 16A), we identified a decoupled noise point for mNF-PuroR and mPF-

Figure 16: Puromycin treatment experimental design. 

(A) Experimental workflow of the Puromycin treatment assay. Cells induced with 

Doxycycline (Dox) were treated with Puromycin in a parallel series of plates for imaging or 

for flow cytometry. Upon confluency, Puromycin was removed temporarily. (B) Illustration of 

a representative growth curve with three growth phases: 1) growth suppression, 2) regrowth 

(gray box), and 3) saturation (green box). 
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PuroR at 0.05 and 6 ng/mL Doxycycline, respectively, in two experimental sets. At the DNPs, 

the means differed by less than 10%. The gene expression noise amplitudes were significantly 

distinct prior to treatment in both sets (Figures 13B; 17A). Accordingly, the high-noise mPF-

PuroR expression distribution consisted of a wide, visibly unimodal peak while the low-noise 

mNF-PuroR peak was narrow (Figures 13C; 17B), which is apparent in the imaging data 

(Figure 13D). Since the mNF-PuroR mean exceeded slightly the mPF-PuroR mean 

(non-significantly in the first experiment and significantly, but still within 10%, in the second 

experiment), observing better mPF-PuroR survival should then strengthen the evidence for 

noise-aided drug tolerance and subsequent resistance. 

 

After preparing six mNF-PuroR and mPF-PuroR replicates at the DNP, we introduced 

various concentrations of Puromycin and performed sets of evolution experiments, each lasting 

until the adapting replicates have reached confluency. In the first experiment set, we 

maintained Puromycin concentrations of 0, 10, and 22.5 μg/mL while in the second set, we kept 

cells in Puromycin concentrations of 35 and 50 μg/mL. A total of five mPF-PuroR replicates (3 

under 35 μg/mL Puromycin and 2 under 50 μg/mL Puromycin) were lost during sample 

maintenance. 

Figure 17: Replicate expression data of decoupled noise points prior to treatment. 

(A) Replicates at the decoupled noise points. (B) Raw expression distributions from the 

second experimental set. There were six replicates per sample. 
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To study the adaptation of CHO cells with low- and high-noise networks to Puromycin 

treatment, we constructed population-level adaptation curves at 0, 10, 22.5, 35, and 50 μg/mL 

Puromycin by detecting and counting single cells from daily microscope images. After 

examining these adaptation curves, we observed immediate growth without adaptation for low 

Puromycin doses, while for moderate to high Puromycin doses, the curves were initially flat, 

and fast growth resumed with a delay that increased with stress severity. We defined as 

“adaptation” only this latter behavior, which revealed three different phases of the adaptation 

process (Figure 16B): (1) growth suppression while the curve stayed mostly flat; (2) fast 

regrowth when the curve rose (grey region); and (3) saturation when the curve flattened again 

at confluency (green region). Based on these phases, we analyzed the adaptation time, which 

we defined as the time required for initially suppressed cells to reach half-saturation (indicated 

by a dashed arrow in Figure 16B). Interestingly, the length of the growth suppression phase 

became more variable between replicates of each circuit upon increasing Puromycin 

concentrations (Figure 18A-E). 

We first investigated how decoupled PuroR expression noise and the corresponding 

networks affect the adaptation time at various levels of Puromycin. We calculated adaptation 

times only for replicates whose moving average growth rates (estimated for every 3 timepoints 

on the adaptation curves) fell below 0 at least once (Figure 19). Based on this definition, CHO 

cells with the mNF-PuroR and mPF-PuroR circuits grew without adaptation at 0 and 10 μg/mL 

Puromycin (Figures 18A,B,F; 19A,B). Under 22.5 μg/mL Puromycin, the high-noise mPF-

PuroR cells adapted after a delay while the low-noise mNF-PuroR cells grew without adapting 

(Figures 18C,F; 20A). Likewise, the six low-noise mNF-PuroR replicates adapted faster with a 

shorter delay than the mPF-PuroR replicates (2 out of 3 surviving) under 35 μg/mL Puromycin 

(Figures 18D,F; 20B). Interestingly, cells with the high-noise network tended to exhibit 

morphological diversity, including signs of polyploidy (Figures 21B-22B). In contrast to the 

lower drug concentrations, at 50 μg/mL Puromycin all mNF-PuroR replicates perished whereas 

half (two) of the mPF-PuroR replicates eventually adapted and recovered (Figures 18E-F; 
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20C; 22). Importantly, visual inspection indicated that mNF-PuroR cells completely vanished 

Figure 18: High network noise hinders Puromycin resistance under low stress and 

facilitates adaptation under high stress. 

(A-E) Growth curves for cells initially tuned to the decoupled noise points (DNPs) under 0 

(A), 10 (B), 22.5 (C), 35 (D), and 50 (E) μg/mL Puromycin. Dash-dot growth curves indicate 

data from the first experimental set while dash-dash growth curves are from the second 

experiment set. (F) Mean adaptation times corresponding to (A-E) (*p-value = 0.0022, n = 6; 

**p-value = 0.0238, mPF-PuroR n = 3 and mNF-PuroR n = 6). The two-tailed Mann-Whitney 

U test inferred significant differences at p-values < 0.05, which included the non-growing 

mPF replicate 1 from 35 μg/mL Puromycin (infinite adaptation time), which is not shown in 

the mean in (F). The error bars represent the standard error of the mean. 
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A B 

C D 

E 

Figure 19: Initial cell death criteria for identifying adaptation during treatment.  

(a-e) Local growth rates estimated from a moving slope of 3 timepoints for 0, 10, 22.5, 35, 

and 50 µg/mL Puromycin. If the local growth rates dipped below 0, adaptation can occur. 

C 

Figure 20: Replicate adaptation times after initial treatment. 

Adaptation times for replicates with initial cell death after treatment under (A) 22.5, (B) 35, 

and (C) 50 µg/mL Puromycin. Cells quickly re-growing without initial death have adaptation 

times = 0 while treated replicates with no surviving cells have adaptation times = infinity. 

A B 
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Figure 21: Images of mNF-PuroR and mPF-PuroR replicate 2 growth curve phases at 

35 µg/mL Puromycin. 

Images of (A) mNF-PuroR and (B) mPF-PuroR replicate 2 at initial treatment (0h) with 35 

µg/mL Puromycin, then growth suppression, half-saturation (notice the large polynucleated 

cells for mPF-PuroR), and finally growth saturation phases. Time stamps are listed in the 

upper-right corner of each image, which come from Figure 18D. The images were cropped 

with consistent look-up table thresholds. 
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from the culture wells (Figure 22A) despite having slightly higher pre-treatment mean PuroR 

Figure 22: Images of mNF-PuroR replicate 2 and mPF-PuroR replicate 4 growth curve 

phases at 50 µg/mL Puromycin. 

Images of (A) mNF-PuroR replicate 2 and (B) mPF-PuroR replicate 4 at initial treatment of 

50 μg/mL Puromycin, growth suppression, half-saturation, and growth saturation. The times 

are listed in the upper-right corner, which come from Figure 18E. The images were 

cropped with consistent look-up table thresholds. 
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expression, indicating their inability to adapt to the highest Puromycin concentration.  

Overall, the adaptation times indicate that the noisy mPF network promotes evolutionary 

adaptation compared to mNF at high stress, while the reverse is true for low stress, which is 

consistent with the effects of noise on survival immediately after treatment for steep kill curves. 

Therefore, noisy mPF networks affect long-term mammalian drug resistance evolution similarly 

to noise-dependent short-term survival of other cell types43. The most pronounced evolutionary 

benefit from the noisy mPF network occurs at the highest stress level. Importantly, the temporal 

fluctuations in PuroR expression (memory) from the mPF network (~2 days) did not temporally 

overlap with the length of time before the emergence of drug resistance (weeks). 

2.3.5 Computational model offers mechanistic insights into adaptation to drug 

treatment. 

Used with permission from Daniel A. Charlebois, who contributed to the modeling in figures 

(Figures 23 and 24) and text in this section.  

To predict the experimentally observed long-term evolutionary adaptation behaviors at 

high stress, we developed a stochastic population/evolutionary dynamics model199. This model 

assumed additional cellular states based on short-term experimental data before and 

immediately after drug treatment. Specifically, we assumed that cells die if their PuroR 

concentration is below a specific Puromycin-dependent threshold, which we estimated from the 

initial fraction of cells surviving Puromycin treatment [Equations (5)-(7), methods section 

2.2.18]. We partitioned the remaining surviving cells into stress-induced “persister” cells that 

neither grow nor die and preexisting, nongenetically drug resistant cells that grow in the 

presence of Puromycin [Equation (8), methods section 2.2.18] (Figure 23). Thus, upon initial 

drug treatment, three different cell types exist within the cell population: dead (D), persister (P), 

and nongenetically drug-resistant (N) cells. We allowed phenotype switching between P and N 

cells. Additionally, we assumed that over time P cells and N cells can give rise to a fourth, 

stable (genetically or epigenetically) drug-resistant (G) cell type. Though growth rates of N and 

G cells were similar, the death rates of N cells were increasingly greater than G cells for higher 
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A 

C 

G 

mPF mNF 

Figure 23: Modeling the adaptation of mPF-PuroR and mNF-PuroR cells in various 

concentrations of Puromycin. 

Used with permission from Daniel A. Charlebois, who made the figures and wrote the 

legend text. (A) Schematic depicting the effects of Puromycin on CHO cell population 

composition and survival. Nongenetically Puromycin-resistant cells (green) and nongrowing 

persister cells (magenta) can switch phenotypes (bidirectional arrow), both of which can 

also become stably resistant cells (black). Upon increasing stress, cells die (dark blue). (B-

F) Representative growth curves for simulated mPF and mNF CHO cell populations under 

(B) 0, (C)10, (D) 22.5, (E) 35, and (F) 50 μg/mL Puromycin. Growth curves shown in panels 

correspond to: (left) mPF and (center) mNF subpopulations, and (right) mPF and mNF 

populations. (G) Adaptation times corresponding to the populations shown in panels (B-F). 
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Puromycin doses (Table 4). Gene expression noise and the concentration of the drug imposing 

the selective pressure determine the D, P, and N cell type percentages in the population shortly 

after treatment, and consequently, the ultimate evolutionary outcome in these simulations 

(Figure 23B-F). As Puromycin concentrations increase, the number of D cells increases 

accordingly at the expense of surviving cells. Among surviving cells, the frequency of P cells 

increases with stress levels until all surviving cells are P cells at very high stress (Figure 24). G 

cells emerge subsequently at rates reflecting the numbers of their P and N cell precursors. 

Only models that allowed P to G conversion captured the experimental adaptation time 

dynamics in all tested Puromycin conditions (Figure 23G). Therefore, the experiments and 

models jointly support that resistance to high Puromycin levels occurs by drug-induced 
a b

c d

Figure 24: Determination of initial dead, persister, and nongenetically drug resistant 

CHO subpopulation fractions.  

Used with permission from Daniel A. Charlebois, who made the figures and wrote the 

legend text. (A) Fits to log-transformed mPF and mNF expression data for Doxycycline = 6 

and 0.05 ng/mL, respectively, using Equation (5). Insets show experimental non-

transformed lognormal distributions. (B) Fraction of cells surviving initial Puromycin 

treatment (AS) calculated from 1 - Equation (6) (solid lines) along with mPF and mNF data 

(open circles). (C) EGFP threshold below which cells are killed by Puromycin using 

Equation (7) (grey data points and dashed line) and the cumulative distribution function 

(CDF) (black data points and dashed line) from (B). (D) The number of persister cells (NP) 

as a function of Puromycin levels. Inset shows surviving cell fraction that are persisters. 
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formation of persister-like cells serving as reservoirs for fast-growing, heritably drug-resistant 

mutants. 

2.3.6 Temporary removal of Puromycin and sequencing suggest mNF-PuroR adaptation 

by intra-circuit mutations. 

As the computational model indicated, after initial cell death, adaptation to Puromycin 

stress could occur by multiple different mechanisms depending on the stress level. Specifically, 

at low stress, nongenetically resistant cells could continue growing, and eventually reestablish 

the population without any mutations or other heritable alterations (Figure 25)26. Alternatively, 

 

Figure 25: Evolutionary scenarios for adaptation to Puromycin treatment. 

Two categories of mechanism can drive drug resistance evolution in the mNF and mPF cell 

populations: heritable alteration and stochastic gene expression. Heritable alterations can 

occur either inside or outside the gene circuit. Extra-circuit alterations could elevate PuroR 

expression (i.e., be PuroR-dependent) or could elicit PuroR-independent, native resistance 

mechanisms. PuroR-dependent adaptation could further be classified as inducer- 

dependent or independent. Gene expression stochasticity as a resistance mechanism 

should be inducer-dependent, based on the noise amplitude and noise memory at the 

given inducer level. Inducer-dependence should be indicated by expression reversion to 

pre-treatment levels in uninduced populations after drug removal. 
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at high stress, cells can acquire heritable (genetic or epigenetic) drug resistance alteration(s) 

after a significant delay, leading to stable resistance. Heritable mechanisms could be 

endogenous (based on native mechanisms independent of PuroR gene expression), or PuroR-

dependent, elevating PuroR expression to a level enough for resistance. However, for all mNF 

and mPF replicates evolved at the highest 3 stress conditions, induced PuroR expression 

increased and stayed far above pre-treatment levels. Therefore, we concluded that adaptation 

always relied on elevated PuroR expression. 

PuroR-dependent mechanisms could occur inside or outside the synthetic gene circuit 

and may depend on network induction. To distinguish between such possibilities (Figure 25), 

and to formulate hypotheses about the nature of molecular events contributing to evolutionary 

adaptation, we removed Puromycin temporarily and then re-added it again for cells that have 

adapted under 22.5, 35, and 50 μg/mL Puromycin. Moreover, to test whether gene circuit 

induction was necessary for resistance, we split each evolved replicate into two separate wells, 

culturing them either without Doxycycline (“uninduced”) or with Doxycycline (“induced”) at the 

same concentration as before Puromycin removal (Figure 26A).  

Next, we studied the behavior of mNF-PuroR replicates after removal of 35 µg/mL 

Puromycin. All uninduced and induced mNF-PuroR replicates maintained constant PuroR 

expression levels well above corresponding induced but untreated ancestral cells for ~ a month  

(Figures 26B; 27-28), suggesting that inducer-independent, high PuroR expression has 

evolved. Accordingly, all uninduced and induced mNF-PuroR replicates grew without 

adaptation upon Puromycin re-addition, much quicker than their Puromycin-treated ancestors, 

further supporting stable, induction-independent drug resistance in each population (Figure 

26E). 

To examine how inducer-independent, PuroR-dependent resistance arose in the mNF-

PuroR circuit, we sequenced the gene circuit from the six induced replicates after drug removal 

at 35 µg/mL Puromycin. In replicate 2, we found an indel in hTetR that can reduce binding 

affinity to tetO2 sites by 1000-fold200 (Figure 29). Therefore, this mutation likely compromised 
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repressor functionality, leading to high PuroR expression and drug resistance. In replicate 3, 

A 

C

c 
D 

F G 

Figure 26: Gene expression and cell counts during drug removal and re-addition 

suggest stable PuroR-dependent mechanisms of resistance at high drug levels.  

(A) Schematic for the drug removal and retreatment experiment. Doxycycline (Dox) was 

removed or maintained simultaneously with drug removal. (B) Mean expression for mNF 

during temporary removal of 35 μg/mL Puromycin and after final retreatment (FT). (C-D) 

Mean expression for mPF after removal of (C) 35 and (d) 50 μg/mL Puromycin and after 

final retreatment (FT). (E-G) Growth curves (top) and adaptation times (bottom) during re-

treatment for (E) mNF cells under 35 μg/mL, and mPF cells under (F) 35 and (G) 50 μg/mL 

Puromycin. The black growth curves are averaged untreated cell counts from Figure 18A.  
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we found a single nucleotide polymorphism in the distal region of the promoter (Figure 30). 

Furthermore, the CRISP-ID195 genotyping algorithm uncovered in replicate 1 two mutant 

variants in the same distal promoter region as in replicate 3 (Figure 31). Both variants contain 

the same mutation as replicate 3 (Figures 30-31), suggesting that both arose by selection for 

A B 

C D 

E F 

Figure 27: Uninduced mNF expression distributions after removing 35 µg/mL 

Puromycin. 

(A-F) Log-transformed expression distributions for uninduced mNF-PuroR replicates 1-6 

after removal of 35 µg/mL Puromycin. Each color bar represents normalized cell counts. 
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elevated PuroR expression. Therefore, mutations abrogating hTetR repression seem to occur 

repeatedly. This may occur because random mutations are typically deleterious rather than 

beneficial for biological function181. Despite identical phenotypes (stable inducer-independent 

Figure 28: Induced mNF expression distributions after removing 35 µg/mL 

Puromycin. 

(A-F) Log-transformed expression distributions for induced mNF-PuroR replicates 1-6 after 

removal of 35 µg/mL Puromycin. Each color bar represents normalized cell counts. 
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Marker 

Replicate 2 (aa):  -21–> VGIEGLTTRK 31 –> LAQKLGVEQP 41 –> TLYWHVKNKR 50 -> 

Marker 

Figure 29: Sequencing mNF-PuroR replicate 2 after 35 µg/mL Puromycin treatment 

revealed a DNA-binding-abolishing mutation in hTetR. 

(A) Sequencing map of the mNF-PuroR circuit from replicate 2 after 35 µg/mL Puromycin 

treatment with a zoom-in of hTetR. (B) Glycine 22, adjacent to the DNA-binding domain 

(underlined), was deleted along with Ile23. (C) Nucleotide sequences of affected amino 

acids (underlined) with chromatographs. Blue bases indicate insertions while crossed red 

nucleotides indicate deletions. 
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1 50 100 150 200 

Reference (bp):   -51-> ACTCAA TGAAGT CGGTAT C   G AAGGCCTGACGAC AAGGAAAC T C G C  -96-> 

Replicate 2 (bp): -51-> ACTCAATGAAGTACGGTATCGAAGGCCTGACGACAAGGAAACTCGC -96-> 
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expression), we found no mutations in the mNF-PuroR circuit from replicates 4, 5, and 6  

(Figure 32). In summary, the mNF gene circuit adapts through intra-circuit mutations or extra-

circuit heritable alterations that corrupt hTetR repressor function to confer elevated, inducer-

independent PuroR expression (Figure 33). 

Finally, we followed the same procedure to gain insights for evolution in 22.5 µg/mL 

Puromycin, the lowest stress level, where mNF-PuroR cells grew instantaneously. At this stress 

level, after drug removal both uninduced and induced mNF-PuroR mean expression levels 

reverted quickly towards their pre-treatment levels (Figure 34A). This indicated non-genetic 

Marker 

Figure 30: Mutation in the early CMV enhancer suggests genetic heterogeneity in the 

mNF-PuroR circuit from replicate 3 after 35 µg/mL Puromycin treatment. 

(A) Sequencing map of the mNF-PuroR circuit from replicate 3. Zoom-in of the promoter 

has multiple elements including the CMV early enhancer (dark gray), TATA box (light gray), 

tetO2 operator sites (blue), and Initiator element (black). A marker indicates the location of a 

mutation. (B) Nucleotide sequence for the reference and the replicate 3 promoter at the 

vicinity of the mutation in the CMV early enhancer at T186->Y (C/T mixture; underlined). 
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drug resistance purely from non-uniform PuroR expression. Sequencing revealed no intra-

circuit mutations, further supporting these conclusions (Figure 35A). Overall, the lack of intra-

circuit mutations and the quick reversion to pre-treatment expression levels suggest nongenetic 

drug resistance mechanisms relying on preexisting Doxycycline-dependent PuroR expression 

variability, as predicted computationally at sufficiently low stress levels (Figure 23D). 

Marker 

Figure 31: Mutations in the early CMV enhancer suggest genetic heterogeneity in the 

mNF-PuroR circuit from replicate 1 after 35 µg/mL Puromycin treatment. 

(A) Sequencing map of the mNF-PuroR circuit from replicate 1 with a zoom-in of the CMV-

D2ir promoter, which has two reads showing genetic heterogeneity (predicted variants 

shown as blue reads) from mixed sequencing traces. The marker indicates the location of 

the mutations. (B) Nucleotide sequence for the ancestral promoter, replicate 1 consensus 

read, and two variants at the vicinity of the mutations (orange) detected by CRISP-ID. 
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Replicate 1 reads 1-2 (bp):        -153–> ACGTATG TTCCCATAGT AACGCC AA TA GGGACT T TCCATT -193–> 
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Reference (bp):                          -153–> ACGTATG TTCCCATAGTAA CGCCAATAGGG ACTTT CC A T T -193–> 

Replicate 1 read 1 variant (bp): -153–> ACGTCTG TTCCCATAGCCACGCCAACCGGGACCCTCCATT -193–> 

Replicate 1 read 2 variant (bp): -153–> ACGTATGTTCCCATAGTCACG CC AA TCGGGACCCTCCATT -193–> 
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Figure 32: Sequencing induced mNF-PuroR replicates 4 through 6 after removal of 35 

µg/mL Puromycin treatment revealed no fixed mutations. 

Sequencing maps of the mNF-PuroR circuit from (A) replicate 4, (B) 5, and (C) 6 previously 

under 35 µg/mL Puromycin treatment. 
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Figure 33: mNF-PuroR at 35 µg/mL Puromycin adapts through inducer-independent 

genetic mechanisms. 

We ruled out stochasticity because the uninduced and induced cells did not return to pre-

induction and pre-treatment expression levels, respectively. This implies PuroR-dependent 

resistance. Sequencing results for 3 mNF-PuroR replicates supports intra-circuit mutations 

leading to drug resistance. The remaining replicates do not have fixed circuit mutations, 

consistent with extra-circuit heritable drug resistance as an additional mechanism. 
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Figure 34: Mean expression after temporary removal of 22.5 µg/mL Puromycin. 

Normalized mean expression of (A) mNF-PuroR and (B) mPF-PuroR after temporary 

removal of 22.5 µg/mL Puromycin. Uninduced samples that were not treated nor induced 

(black solid line) and pre-treatment expression at the decoupled noise point (black dash 

line) served as references for expression reversion. 
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2.3.7 Temporary removal of Puromycin and sequencing suggest mPF-PuroR adaptation 

without intra-circuit mutations. 

To investigate molecular adaptation mechanisms of mPF cells to 35 µg/mL Puromycin, 

as for the mNF gene circuit, we performed sequencing, which revealed no mutations in the 

high-noise mPF-PuroR gene circuit (Figures 36-37) for any replicate. Therefore, extra-circuit 

heritable alterations must exist that confer resistance by rtTA induction-dependent or 

independent mechanisms. To distinguish between these possibilities, as before, we compared 

“induced” versus “uninduced” cell count and gene expression time courses for mPF-PuroR 

replicates during drug removal and re-addition. In contrast to cells with the mNF-PuroR circuit, 

uninduced mPF-PuroR replicates showed signs of regulator (rtTA) induction-dependent 

adaptation, as their expression dropped closer, albeit not completely down to ancestral levels 

(Figures 26C; 38A,B), and they failed to grow initially after drug re-addition, adapting with a 

A 

B 

Figure 35: Cells with the mNF-PuroR and mPF-PuroR circuit in replicate 4 after 

removal of 22.5 µg/mL Puromycin did not harbor intra-circuit mutations. 

(A) Sequencing results for the mNF-PuroR circuit from cells in replicate 4 after removal of 

22.5 µg/mL Puromycin. (B) Sequencing reads for the mPF-PuroR circuit replicate 4 cells. 
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long delay (Figure 26F). Induced mPF-PuroR cells maintained their expression well above 

induced and uninduced ancestral cells (Figures 26C; 38C,D) and regrew quickly without 

adaptation upon retreatment (Figure 26F). Together with the lack of intra-circuit mutations and 

reacquisition of drug sensitivity after Doxycycline removal, the evidence supports rtTA 

C 

Figure 36: Sequencing of induced mPF-PuroR replicates 2 and 3 circuits after 

removal of 35 µg/mL Puromycin indicated no mutations in the circuit. 

(A-B) Sequencing reads for the (A) pTRE promoter and rtTA regulator and (B) PuroR from 

induced mPF-PuroR replicate 2 after removing 35 µg/mL Puromycin. (C-D) Sequencing 

reads for the (C) pTRE promoter and rtTA regulator, and (D) PuroR from mPF-PuroR 

replicate 3 after removing 35 µg/mL Puromycin. 
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induction-dependent extra-circuit alterations that elevate PuroR expression to resist 35 µg/mL 

Puromycin (Figure 39).  

At the highest level of 50 µg/mL Puromycin, two mPF-PuroR replicates recovered, 

demonstrating the evolutionary benefit of the noisy mPF-PuroR gene circuit over mNF-PuroR 

at very high stress levels. Once again, sequencing did not reveal any intra-circuit mutations 
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Figure 37: Sequencing of induced mPF-PuroR replicates 3 and 4 circuits after 

removal of 50 µg/mL Puromycin did not reveal intra-circuit mutations. 

(A-B) Sequencing results for the (A) pTRE promoter and rtTA regulator and (B) PuroR from 

the induced mPF-PuroR replicate 3 circuit after removal of 50 µg/mL Puromycin. (C-D) 

Sequencing results for the (C) pTRE promoter and rtTA regulator, and (D) PuroR from the 

induced mPF-PuroR circuit replicate 4 after removal of 50 µg/mL Puromycin. 
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(Figure 37). The expression of uninduced mPF-PuroR replicates dropped closer to the 

A 

C D 

Figure 38: Expression distributions of mPF-PuroR cells after removal of 35 and 50 

µg/ml Puromycin. 

(A-D) Log-transformed expression distributions for (A-B) uninduced and (C-D) induced 

mPF-PuroR replicates 2 and 3 after removing 35 µg/mL Puromycin. (E-H) Expression 

distributions for (E-F) uninduced and (G-H) induced mPF-PuroR replicates 3 and 4 after 

removing 50 µg/mL Puromycin. Each color bar represents normalized cell counts. 
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baseline DNP mean over ~10 days (Figures 26D; 38E,F). Interestingly, for uninduced replicate 

3 expression dropped farther down, and re-adaptation to Puromycin occurred even in the 

induced condition (Figure 26G). Moreover, uninduced replicate 4 cells required more time to 

adapt upon retreatment compared to replicate 3, despite slightly higher expression levels, 

which suggests distinct heritable alterations contributed to resistance in each replicate. Overall, 

we found evidence of distinct extra-circuit heritable inducer-dependent mechanisms 

maintaining high PuroR expression at 50 µg/mL Puromycin (Figure 39). 

 

 

Figure 39: Populations with mPF-PuroR at 35 and 50 µg/mL Puromycin adapt through 

extra-circuit inducer-dependent heritable mechanisms. 

We ruled out stochasticity out because the cells did not return to pre-treatment expression 

levels. This also implies PuroR-dependent resistance. Sequencing results for mPF-PuroR 

replicates 2 and 3 from 35 µg/mL Puromycin and replicates 3 and 4 from 50 µg/mL 

Puromycin did not reveal intra-circuit mutations. Expression dropped after removal of 

Doxycycline. Therefore, inducer-dependent extra-circuit heritable drug resistance is the 

mechanism for mPF adaptation at these stress levels.  
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Finally, we applied similar criteria to gain insights for 22.5 µg/mL Puromycin, the lowest 

stress level where mPF-PuroR replicates adapted with a moderate delay. All induced mPF- 

PuroR replicates maintained their PuroR expression above the ancestral levels (Figure 34B),  

but uninduced replicates dropped close to baseline, indicating stable PuroR expression-

dependent mechanisms of resistance requiring rtTA-induction. Accordingly, uninduced mPF-

PuroR replicates failed to grow initially during retreatment, showing signs of adaptation (Figure 

40B,D), as opposed to induced replicates, which grew instantaneously. Gene circuit 

sequencing revealed no mutations in any replicate (Figure 35B), suggesting heritable 

alterations outside the circuit contributing to inducer-dependent adaptation. Overall, the 

elevated expression in induced mPF-PuroR cells along with rtTA-dependent resistance 

Figure 40: Final treatment under 22.5 µg/mL Puromycin. 

(A-B) Growth curves for (A) mNF-PuroR and (B) mPF-PuroR replicates retreated with 22.5 

µg/mL Puromycin. (C-D) Local growth rates for (C) mNF-PuroR and (D) mPF-PuroR 

retreated with 22.5 µg/mL Puromycin. 
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supports heritable extra-circuit genetic or epigenetic PuroR-dependent mechanisms of 

adaptation (Figure 41).  

 

 

  

 

Figure 41: Populations with mNF-PuroR at 22.5 µg/mL Puromycin adapt through 

stochastic mechanisms while mPF-PuroR cells adapt through extra-circuit heritable 

alterations in an inducer-dependent manner. 

Stochasticity cannot be ruled out for cells with the mNF-PuroR circuit because, after drug 

removal, expression of both induced and uninduced cells dropped to pre-treatment and pre-

induction levels, respectively. On the other hand, the induced mPF-PuroR populations 

maintained their expression above pre-treatment levels, which is consistent with extra-

circuit heritable mechanisms. Accordingly, sequencing results for mNF-PuroR and mPF-

PuroR replicate 4 revealed no intra-circuit mutations. 
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2.4 Discussion. 

Recent studies have raised awareness on cellular heterogeneity and gene expression 

noise, implying a general benefit for cell populations to overcome drug resistance or metastatic 

barriers1,108,115,116,173. However, earlier evidence for the harmful effects of noise in low 

stress43,180 cautions against generalizing these recent observations. In fact, to rigorously study 

phenotypic effects of noise requires two cell populations with similar means, but different noise 

levels43,182,183, which was lacking for mammalian cells. Without such control, we cannot exclude 

the possibility that the fitness benefit is from higher mean expression. Therefore, how gene 

expression noise affects mammalian cell survival and evolution were open questions, 

addressing which required isogenic mammalian cell lines with mean-decoupled noise control. 

We established such noise control with high- and low-noise gene circuits to study how network 

noise contributes to drug resistance evolution in CHO cells. While earlier work in yeast 

indicated that noise can aid or hinder short-term survival depending on the balance between 

drug and resistance protein levels43,201, the evolutionary effects of noise are only recently being 

unraveled32,181. Here, by experimentally evolving synthetic gene circuit-harboring CHO cells in 

Puromycin, we show that noisy mPF networks hinder evolution at low stress, but aid evolution 

at high stress, mimicking the effects of noise on short-term survival43. 

We combined experimental evolution and synthetic gene circuits to drive evolutionary 

adaptation in mammalian cells. Since the pioneering studies of prokaryotic experimental 

evolution202, the field has expanded into yeast32,181,203 and fruit flies204. Mammalian cell 

evolution studies are timely and relevant to cancer205, but they are still rare and have not 

involved synthetic gene circuits. Experimental evolution of artificial gene circuits in 

microbes32,181,206 provided mechanistic insights across multiple scales of time and biological 

organization, by reducing the influence of complex and incompletely known native gene 

regulatory networks. Thus, synthetic gene circuits facilitate the development of predictive 

models that reveal unexpected, higher-level effects, which would be more difficult for natural 

gene networks. 
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The experimental system we developed is a feasible model205 for the long-term 

evolutionary response of cancer cells to translational inhibitors. Puromycin compromises 

protein synthesis in a broad range of cell types, like emerging cancer therapeutics targeting 

mRNA translation207,208. Moreover, Puromycin itself has been proposed as a potent anticancer 

agent specifically released from a prodrug in cancer cells209. Considering that over 80% 

(19,711/24,383) of the predicted CHO protein-coding genes have homologs in human196, 

studying drug resistance evolution in this cell line should be as relevant as mouse cell line 

models of drug resistance are to human cancers. 

Overall, the data suggest that at the highest stress levels that cause prolonged growth 

suppression, cells with high-noise mPF networks recover through stable, but unknown extra-

circuit genetic or epigenetic drug resistance mechanisms. At milder stress levels, cells with the 

low-noise mNF network adapt partly by mutating the circuit to abrogate repressor function. 

Surprisingly, adapting CHO cells always take advantage of the non-native PuroR gene. The 

mechanisms vary, and most likely include direct PuroR upregulation by intra- or extra-circuit 

alterations. The intra-circuit mutations or lack thereof reflect the fact that random evolutionary 

changes can more easily disrupt repression than facilitate activation. The exact extra-circuit 

heritable mechanisms behind the evolutionary adaptation remain to be studied as whole-

genome and -transcriptome sequencing of CHO cells advance210. 

We used different (mNF and mPF) networks to control noise properties, keeping the role 

of networks and noise intertwined. We think noise properties (amplitude and memory and then 

switching to a persister state) should be more relevant for initial survival, when the protein level 

fluctuations make the difference between survival and death. On the other hand, network 

topology (repression versus activation of drug resistance) and how it can be beneficially altered 

seems to matter more at longer, evolutionary time scales. In the future, it will be interesting to 

try controlling noise while minimizing differences in network topology187, to separate better the 

evolutionary effects of networks and gene expression noise. 
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Comparing the experimental evolution time courses with the evolutionary model and 

sequencing results suggested that persister cells convert to stably resistant proliferating cells at 

high stress levels. The mammalian drug-tolerant persister state could derive from a chromatin-

mediated transition, which previously has shown sensitivity to HDAC inhibitors104, or could 

depend on GPX4 expression105. However, in these experiments “persister” simply means cells 

that neither divide, nor die in stress – mediated by many possible mechanisms, such as the 

formation of polyploid cells211. Nonetheless, the successful elimination of low-noise populations 

without resistance at high stress levels provides hope for noise-controlling treatment strategies 

in cancer, like HIV184.  

The findings could also have relevance for metastasis, where gene expression noise may 

drive transitions into metastatic states1. Based on this chapter’s findings, genes can confer drug 

survival in mammalian cells by expressing the gene above a critical expression threshold, 

which later leads to evolutionary adaptation. In a bistable network, an expression threshold can 

separate two stable expression states that switch. Both scenarios can lead to the same 

outcome: survival based on single-cell expression above a critical expression threshold. 

Survival for cells highly expressing metastasis-driving genes would be conferred in the 

environment outside the primary tumor. High gene expression noise then may lead to better 

survival in a metastatic setting, which has not been demonstrated with endogenous pro-

metastatic regulatory genes. By complementing the exogenous system for studying gene 

expression noise in mammalian drug resistance, endogenous gene expression readout 

systems may reveal fundamental systems-level principles on noise in the context of an 

endogenous regulatory network. 
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Chapter 3: Characterization of a live-cell endogenous expression reporter for the pro-

metastatic BACH1 transcriptional repressor. 
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3.1 Introduction. 

3.1.1 Background. 

Understanding of the dysregulated activity of transcription factors212, signaling 

pathways213, micro-environmental cues214,215, non-coding RNAs216, and metabolic 

processes215,217 that facilitate cancer progression and survival beyond the primary tumor has 

become better understood at the population-average level. However, although next-generation 

sequencing methods have advanced knowledge of intra-tumor heterogeneity in terms of 

spatially distinct genomic alterations161,218, fundamental insights regarding gene expression and 

cancer progression at the single-cell level are still lacking34. While protein-coding sequence 

mutations can drive cancer progression at the primary site219,220, evidence for specific mutations 

driving metastasis is sparse221 and only recently have novel mutations been identified222. This 

indicates that metastasis may rely on nongenetic mechanisms on top of the mutations already 

present in the primary tumor33,114,173. An important consequence of nongenetic mechanisms is 

the presence of nongenetic heterogeneity of tumor cell populations223. Nongenetic 

heterogeneity can take on the form of gene expression fluctuations (noise) in oncogenic or 

tumor-suppressing genes1,173. While single-cell genetic and transcriptomic sequencing has 

deepened our knowledge of tumor heterogeneity224, the investigation of gene expression noise 

for metastasis regulatory factors in living cells has lagged. Part of the difficulty arises from the 

lack of single-cell endogenous expression reporters in cancer cell lines. 

In breast cancer, the epithelial-to-mesenchymal transition (EMT) has generally been 

thought to mediate pro-metastatic phenotypes, though conflicting studies have created debate 

whether EMT is required at all144,225. Beyond the epithelial-mesenchymal transition regulatory 

program, breast cancer metastasis is associated with the pro-metastatic transcriptional factor 

BACH1 and anti-metastatic Raf kinase inhibitory protein (RKIP), which both mutually repress 

each other1. This RKIP-BACH1 toggle switch network (Figure 42) can predispose cells towards 

stochastic pro- and anti-metastatic state transitions mediated by the bistable overall positive 

feedback loop1. Additionally, BACH1 inhibits its own expression by recruiting histone 
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deacetylase complexes (HDACs)1. Depending on the strength of the BACH1 auto-regulatory 

feedback loop and RKIP levels, the regulatory network can transition between anti-metastatic 

and pro-metastatic states directly or could transverse a bistable regime where BACH1 

expression levels are noisy1. 

While immunofluorescent staining of fixed cells supports the network structure, it is 

unclear how BACH1 expression in live cells behaves in response to various perturbations that 

Figure 42: The RKIP-BACH1 regulatory axis controls metastatic state transitions. 

(A) The BACH1 transcription factor participates in a double negative feedback look with the 

anti-metastatic RKIP gene, while BACH1 negatively regulates its own expression in an 

HDAC-dependent manner. (B-C) Immunofluorescent staining of RKIP (green), BACH1 

(red), and the CellMaskBlue dye (blue), revealed lowered BACH1 levels and increased 

RKIP in fixed MCF7 cells after (B) RNAi-mediated down-regulation of BACH1, leading to a 

shift from a (C) bimodal BACH1 distribution with low RKIP to unimodal low BACH1 and high 

RKIP distribution. (D-E) Immunofluorescent images of the BACH1 (D) low- and (E) high-

expressing subpopulations. The figures were derived from a co-authored publication1. 

A B C 

D E 
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could transition cells into the pro- or anti-metastatic state. Doing so requires a readout of 

endogenous BACH1 expression. An endogenous expression readout in living cells could 

involve tagging or replacing the endogenous gene of interest with a fluorescence marker, GFP 

binding to MS2 coat proteins encoded in mRNA, or exogenously introducing the BACH1 

promoter driving a fluorescent reporter at a safe harbor locus. To address this knowledge gap, I 

designed a CRISPR-Cas9 knock-in procedure for fluorescently tagging BACH1 by integrating 

the red fluorescent reporter mCherry downstream of a self-cleaving T2A element at the end of 

the genomic BACH1 locus (Figure 43A). To this end, I report the successful construction of six 

HEK293 cell lines having the endogenous BACH1 locus tagged with mCherry. Fluorescent 

tracking of BACH1 expression levels in live cells could help uncover expression dynamics in 

response to various perturbations. HEK293 cells can also serve as a test bed for CRISPR-

Cas9-mediated knock-in techniques based on their ease of transfection and robust growth 

characteristics. I also attempted to create a BACH1 reporter system in the triple-negative MDA-

MB-231 breast cancer cell line but could not find a successfully integrated clone. With the 

endogenous expression readout system, it is possible to uncover regulatory principles for the 

BACH1-RKIP network that provide a better understanding of gene expression noise in 

metastasis. 

3.1.2 Significance. 

Escape from and survival outside the primary tumor needs curtailing to reduce the 

number of cancer deaths. The ability of cancer cells to survive outside of the tumor may 

depend on gene expression of pro-metastatic genes, allowing intravasation into blood vessels 

in the case of BACH1159. Thus, we must study the expression dynamics associated with cell 

survival in a hostile environment, whether it is during drug treatment or metastatic progression. 

A fluorescent readout of endogenous gene expression will provide insights on single-cell gene 

expression dynamics associated with metastasis, complementing the exogenous approach for 

drug resistance in the previous chapter. In the most optimistic scenario, a better understanding 

of gene expression noise in a natural gene regulatory network may contribute to preventing 
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metastasis in the way that low noise prevented survival of cells at very high levels of drug 

stress.  
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3.2 Method and materials. 

3.2.1 Cell culture maintenance. 

HEK293 (ATCC® CRL-1573™) cells were grown in Dulbecco’s Modified Eagle Medium 

(DMEM) containing 4500 mg/mL glucose (ThermoFisher Scientific, 11965092). The 1X DMEM 

media was supplemented with 10% fetal bovine serum and 100 units/mL and 100 µg/mL of 

Penicillin and Streptomycin, respectively. MDA-MB-231 (ATCC® HTB-26™) cells were grown in 

1X RPMI 1640 media (Life Technologies, 11875093) containing a 5% fetal bovine serum 

supplement along with 1X Penicillin and Streptomycin. Each cell line was grown at 37ºC in an 

incubator filled with 5% CO2. Sub-passaging was done as described in section 2.2.1. 

3.2.2 Preparation of reagent working stocks. 

DMEM media in the wound healing experiments contained 0.2% fetal bovine serum. 

Human Transforming Growth Factor-β1 (Sigma Aldrich, H8541-5UG) was aseptically 

reconstituted at a frozen stock concentration of 5 mg/mL in 4 mM Hydrochloric acid (Aqua 

Solutions, H2505-500ML), which contained 0.1% low-endotoxic bovine serum albumin 

supplement (Sigma Aldrich, A4919-1G). TGF-β1 was diluted to 5 ng/mL in DMEM media for 

use in perturbation experiments. Hemin (Sigma Aldrich, H9039-1G) was reconstituted at a 

stock concentration of 5 mM in 20 mM Sodium hydroxide solution (EMD Millipore, SX0607D-6) 

kept at 4ºC with minimal exposure to light. The final hemin concentration in DMEM media used 

in perturbation experiments was 20 µM. Cell culture plates with hemin were wrapped in 

aluminum foil to avoid exposure to light. During experiments with negative selection, MDA-MB-

231 cells transfected with the donor clone modified to contain the HSV-TK gene were treated 

with 10 µg/mL Ganciclovir (InvivoGen, sud-gcv) after single-cell flow-sorting. 

3.2.3 CRISPR-Cas9 DNA donor clone design and construction. 

The BACH1::T2A::mCherry donor clone plasmid (GeneCopoeia, DC-HTN000623-

PUC19-B) and the corresponding all-in-one CRISPR-Cas9 plasmid (GeneCopoeia, 

HCP000623-CG01-1-B) with a BACH1-targeting guide RNA induced a double-stranded break 

within 60 bp upstream of the endogenous stop codon of Homo sapiens BTB domain and CNC 
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homology 1 (BACH1) transcript variant 1 (NM_206866) from Chromosome 21. The system was 

designed to induce homology directed repair of the double-stranded break in the presence of a 

donor clone possessing two BACH1 homology arms (655 bp long upstream and 586 bp long 

downstream of insertion site) flanking the end of the BACH1 amino acid coding region prior to 

the stop codon. Between the homology arms, the donor clone contains a translational self-

cleaving T2A element followed by the red fluorescent reporter mCherry. 

The modified donor clone plasmid containing the HSV-TK negative selection marker 

outside of the BACH1 homology arms was constructed using the HiFi DNA Assembly Master 

Mix (NEB, E2621S). In detail, the primers pKRAS-HSV.R and pKRAS-HSV.F amplified the 

vector backbone of a custom-built KRAS.A donor clone (GeneCopoeia, DC-HTN000555-D10-

B), which includes the HSV-TK gene driven by a PGK promoter. Next, the BACH1 upstream 

and downstream homology arms flanking the T2A::mCherry genetic element were amplified 

with the BACH1-mCh-Ins.F and BACH1-mCh-Ins.R primers from the original 

BACH1::T2A::mCherry donor clone plasmid. Both fragments contain 20 bp of overlap 

sequence for the opposing fragment. About 0.088 pmol of the insert and vector backbone 

fragments were ligated in the HiFi assembly reaction. For the sequences of cloning primers, 

see Table 6.

  

3.2.4 CRISPR-Cas9 DNA transfection. 

For optimization and hedging purposes, the Cas9/gRNA-expressing plasmid along with 

the original BACH1::T2A::mCherry donor clone plasmid were transfected in three wells of pre-

Table 6: Primers for constructing the BACH1::T2A::mCherry donor clone with the 

HSV-TK negative selection marker outside the homology arms. 

The primer sequences are listed above. Lower-case nucleotides overlap with the 

complementary fragment during HiFi assembly. 

Primer name Sequence (5’->3’) 

pKRAS-HSV.R TGTTCCCTTTAGTGAGGG 

pKRAS-HSV.F CAATTCTACCGGGTAGGG 

BACH1-mCh-Ins.F gctcgaaattaaccctcactaaagggaacaCCAAAACCTGAAAAATGCTTTG 

BACH1-mCh-Ins.R gaaaagcgcctcccctacccggtagaattgGCTTAAAGCCTGATTTTAGG 
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seeded HEK293 cells in concentrations of either 3.75 or 7.5 µL Lipofectamine 3000 reagent for 

the two samples with 1 µg total DNA (0.5 µg per plasmid) and 7.5 µL for the one sample with 2 

µg total DNA (1 µg per plasmid). Based on the low amount of red fluorescent HEK293 cells 

seen after 2 days post-transfection (1%>), the three HEK293 transfection samples in the 6-well 

plate were pooled together for subsequent single cell flow-sorting into 96-well plates for clonal 

expansion.  

MDA-MB-231 cells were nucleofected with 0.5 µg of the Cas9/gRNA plasmid and the 

improved BACH1::T2A::mCherry donor clone using the Nucleofector™ 2b device. Cells were 

seeded at 106 per well in a 6-well plate the prior night. In the nucleofection experiment, 

trypsinized cells were centrifuged at 90 x g for 10 minutes. The cell pellet was then 

resuspended with 100 µL Cell Line Nucleofector™ Kit Solution V containing Supplement 1 

(Lonza, VVCA-1003). After transferring the cell solution to a provided cuvette that is then 

placed inside the device, the Nucleofector™ program X-013 was selected for immediate 

nucleofection. The resulting nucleofected cells were diluted with 500 µL medium and 

transferred into a pre-prepared 6-well plate for subsequent fluorescent imaging and single-cell 

flow sorting. 

3.2.5 Fluorescence-activated cell sorting (FACS). 

The Stony Brook Medicine Research Flow Core facility FACSAriaIII instrument sorted the 

HEK293 and MDA-MB-231 cells. For the HEK293 BACH1 reporter clone expansion, single 

HEK293 cells were flow-sorted based on low or high red fluorescence, which is indicated in the 

first number (1 and 2, respectively) of each clone ID after expansion and genomic DNA 

isolation. The plate row follows as a single letter (A-H) after the 96-plate identifying number and 

the column represented by an additional number following the letter ID from 1-12 (#plate Letterrow 

#column). The clone ID system was applied for both potential HEK293 and MDA-MB-231 BACH1 

clonal samples. The HEK293 clone 2D9 is an example, expanded from plate 2 (high 

fluorescence), row D, and column 9. 
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There were two separate flow-sorting clonal expansion experiments for MDA-MB-231 

cells from the original nucleofected sample, with the second clonal expansion comprising 

remaining cells that were cryo-preserved. In the first MDA-MB-231 clonal flow-sorting 

experiment, there were three 96-well plates. For the first four rows in each plate, single cells 

were sorted in each well based on low fluorescence, whereas the last four rows had cells 

sorted for high fluorescence. 

For the second MDA-MB-231 clonal screen, there were four 96-well plates that contained 

flow-sorted cells (Clone ID: 1plate Letterrow #column to 4 plate Letterrow #column). The first and second 

plate were seeded with single cells previously bulk-sorted prior to the first MDA-MB-231 screen 

by either low or high fluorescence, respectively. For these two plates, four additional gates of 

increasing fluorescence intensities sorted the cells into two rows for each gate. Additionally, the 

third plate consisted of MDA-MB-231 cells from the unsorted, original transfection having low 

levels of fluorescence. Finally, cells in the fourth plate from the originally unsorted transfection 

were then sorted based on mid-to-high fluorescence. 

3.2.6 Flow cytometry expression measurements. 

The BD Accuri™ C6 bench-top flow cytometer measured single-cell mCherry 

fluorescence for the BACH1 experiments. The flow data was gated as described in section 

2.2.13. Cells were prepared for flow as described in section 2.2.6. In HEK293 experiments, the 

number of gated cells per sample consistently analyzed in each experiment ranged from at 

least 1,000 in perturbation experiments to 110,000 in the initial clone characterization 

experiment. The mean and standard error of the mean from flow data were plotted. 

3.2.7 Time-lapse microscopy. 

The Nikon TiE motorized inverted microscope acquired 10x phase contrast and 

fluorescent images at pre-defined x- and y-coordinates for each experiment with the tiling of 

multiple frames into a large image as described in section 2.2.7. BACH1 reporter experiments 

either consisted of one frame or 3x3 field frames. Fluorescence background subtraction was 

done as described in section 2.2.17. The look-up tables were consistent within experiments. 
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3.2.8 Junction PCR, genotyping PCR, and associated Sanger sequencing. 

The junction PCR assay required a primer that uniquely binds to human genomic DNA on 

Chromosome 21 upstream (outside) of the first homology arm containing part of the last 

BACH1 intron. This primer cannot target the homology arms or off-target loci in the genome. A 

reverse primer then targeted the synthetic portion of the knock-in. The assay only works on 

genomic DNA samples from clones that successfully recruited the homology directed repair 

pathway to close the double stranded break from Cas9 and replaced the break with the 

homology arms flanking the synthetic construct, leading to the introduction of the fluorescent 

tag. Thus, the junction PCR only amplifies the knock-in BACH1 allele, not the wild-type BACH1 

allele or a donor clone that randomly integrated. 

For the genotyping PCR assay, the same forward primer lying outside the upstream 

homology arm in the native BACH1 intron and a different reverse primer targeting the 

homology arm downstream of the synthetic fluorescent tag amplified the wild-type BACH1 

allele (1165 bp) from untransfected human genomic DNA. If the T2A::mCherry construct was 

integrated as a heterozygous allele, a second band (1927 bp) will amplify along with the wild-

type BACH1 allele. A third band could be the third HEK293 Chromosome 21226 or a potential 

duplication or deletion event inherent in repair after CRISPR-Cas9 cutting227. The verified 

BACH1 clones were screened for non-specific integration of the donor clone by amplifying the 

AmpR gene. Primers used for the junction PCR and genotyping assays are listed in Table 7. 

Table 7: Primers for amplifying successful integrations with junction PCR and 

BACH1 alleles with genotyping PCR. 

The primer sequences are listed above. BACH1-Int-Seq-2-f was used in both the junction 

PCR and genotyping PCR assays. 

Primer name Sequence (5’->3’) Assay 

BACH1-Int-Seq-2-f TCCCTTCAGTGGGTTTGATGTT Junction and Genotyping PCR 

mCh-Junct-2-r CACGTCACCGCATGTTAGAAG Junction PCR 

BACH1-HA-R-GSeq-r GACGCTGCCAAAACTTCAGG Genotyping PCR 

AmpR-split.rev TTGATCGTTGGGAACCGGAG Integration PCR 

Origin-Seq-r GCGTTGCTGGCGTTTTTCC Integration PCR 
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PCR products were submitted to the DNA Sequencing Facility at Stony Brook University and 

sequenced by the Sanger method with primers listed in Table 7 and Table 8. 

 

3.2.9 Wound healing experimental design. 

The wound healing assay228 required 24 hours of serum starvation (0.2% fetal bovine 

serum) prior to wounding to restrain cell proliferation, so that cells filling the wound gap did so 

through migration. Using a sterile micropipette tip, a straight vertical line of cells was scraped 

off from the cell monolayer in each well at the first time point (0h) in the wound healing assay.  

There were two separate wound healing experiments at different time scales of imaging. 

In the four-day wound healing experiment, each well contained at least two wounds serving as 

replicates with or without 5 ng/mL TGF-β1 treatment added 48 hours before wounding. Images 

were acquired every 24 hours during the four-day experiment. The first experiment wounding 

event occurred in a biosafety cabinet before media replenishment, imaging, and standard 

incubation. During the second experiment, images were acquired every 5 minutes up to one 

hour. Cell monolayers in the second experiment were wounded directly on the microscope after 

acquisition of a pre-wound image and then immediately imaged for the remaining hour. 

3.2.10 Pri-let-7g over-expression experiment. 

The pri-let-7g microRNA was expressed from the pcDNA3-pri-let-7g vector, which was a 

gift from Narry Kim229 (Addgene plasmid # 51381 ; http://n2t.net/addgene:51381 ; 

RRID:Addgene_51381). Cells were transfected with 1 µg of pcDNA3-pri-let-7g vector using the 

Lipofectamine 3000 kit. The transfected cells were incubated for four-days before flow 

cytometry measurement along with an untransfected set of replicates. 

Table 8: Sequencing primers for BACH1 genotyping PCR. 

The primer sequences are listed above. All other primers used for sequencing the BACH1 

locus are listed in Table 7. 

 

Primer name Sequence (5’->3’) 

mCh-Junct-r CTCCATGTGCACCTTGAAGC 

BACH1-C-Term-f GTGGGATCTCAGATTTCTGTCAGCAG 

BACH1-C-Term-Seq-r CTGCTGACAGAAATCTGAGATCCCAC 

BACH1-aa661-668-f TGGTGAACTGGCGTTACCAT 
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3.2.11 Optimized direct PCR methodology. 

During optimization of the original direct PCR method230, the necessity of flash-freezing or 

trypsin mixture was tested, the volume of trypsin to dilute with 1X DPBS was varied, and so 

was the number of cells extracted as template DNA. In the optimized protocol, the first step 

requires dilution of about 1/5th of trypsinized cells from a confluent 96-well plate with 5-fold 

volume 1X DPBS without calcium or magnesium. After spinning the diluted cells for 5 minutes 

at 300 x g and removing supernatant, the cell pellet, even if not visible, was resuspended with 

10 µL 1X DPBS. Next, the trypsin-free cell solution was flash-frozen at -80ºC. After 2 or more 

hours, the sample was heated at 65ºC for two minutes. After this final step, about 1 µL of lysed 

solution served as a DNA template for PCR (see Figure 57).  

3.2.12 Statistical analysis. 

All statistical analyses employed custom MATLAB scripts. Statistical tests were 

conducted as described in section 2.2.16. To assess for bimodality (two peaks) in a single-cell 

expression distribution, a z-score statistic67 tested whether two distribution extrema are 

significantly multi-modal. The z-score statistic was calculated after finding local minima/maxima 

extrema pairs from smoothened log-transformed single-cell expression distributions. Given that 

the smoothened distributions (with a moving average = 800) become Gaussian based on the 

Central Limit Theorem, two distribution extrema were significantly bimodal when the height 

difference between the local minimum and the right and left maxima peaks exceeded 4 

standard deviations (see Equation 11 for score and 12 for standard deviation), 

[|
𝐻𝐿 − 𝐻𝑀

𝐻𝑅 − 𝐻𝑀
|] − 4 ∗ [

𝜎𝐿

𝜎𝑅
] + [

4
4

] = [
𝑍𝐿

𝑍𝑅
],         (11)  

with the standard deviation equaling: 

[
𝜎𝐿

𝜎𝑅
] =

√[
𝐻𝐿
𝐻𝑅

]

√2∗𝑚𝑜𝑣𝑖𝑛𝑔𝑎𝑣𝑒𝑟𝑎𝑔𝑒
.             (12) 

3.2.13 Image processing. 
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For the HEK293 BACH1 reporter 96-hour wound healing experiment, wound gap area 

was segmented using the Nikon Elements AR segmentation option called ‘Wound area 

Detection in time’. Segmentation thresholds were first automatically determined and then 

manually adjusted to avoid including cells in the calculated gap region. After exporting the gap 

area values from Nikon Elements AR, the data was analyzed with custom MATLAB scripts. The 

calculated gap area for each image over time was normalized by the gap area from the first 

time point (0h) of each individual replicate (Figure 50-51). 
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3.3 Results. 

3.3.1 Developing a red fluorescent reporter system tagging endogenous BACH1 

expression in vivo. 

To measure endogenous BACH1 gene expression at its native locus as demonstrated 

with other genes231, I designed a CRISPR-Cas9 knock-in plasmid that contains two separate 

homology arms for BACH1 exon 5 and the BACH1 3’ untranslated region flanking right before 

the BACH1 stop codon a T2A self-cleaving motif and the red fluorescent mCherry reporter 

(Figure 43A). Along with a second plasmid expresing a BACH1 guide RNA targeting the 

corresponding native BACH1 genomic locus and Cas9, I transfected the BACH1 donor clone 

plasmid into HEK293 cells and clonally expanded single cells after fluorescence-activating cell 

Junction-f (0 kb) Junction-r (~ 1.2 kb) A 

B 

1.2 kb 

2D9 1B11 
2C10 2D11 2C1 2D12 

Figure 43: Design and validation of HEK293 with mCherry-tagged BACH1 as an 

endogenous expression readout. 

(A) The T2A motif and mCherry reporter gene were inserted directly upstream of the 

BACH1 stop codon by providing two BACH1 homology arms (BACH1-HA-Left and -HA-

Right) during double-stranded DNA repair. PCR primers are indicated above. (B) Junction 

PCR results with integrant clone identifiers above the bands. 2-log ladder assessed size. 

Genotyping-r (~ 1.9 kb) 

1.2 kb 
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sorting. In summary, the CRISPR-Cas9 knock-in methodology will introduce mCherry at the 

BACH1 genomic locus in HEK293 cells to allow live-cell monitoring of endogenous gene 

expression. 

To validate mCherry integration at the native BACH1 locus in flow-sorted HEK293 cells 

previously transfected with the donor clone and guide RNA/Cas9 plasmid, I amplified the 

synthetic T2A::mCherry target from genomic DNA samples with a primer outside of the 

upstream homology arm using the junction PCR technique. Subsequently, the results indicated 

successful integration of the reporter construct at the BACH1 locus in 6 HEK293 clones 

(Figure 43B). In line with this finding, the HEK293 BACH1 2D9 clone displayed red 

fluorescence under microscopy compared to the ancestral HEK293 cell line (Figure 44). The 

remaining clones did not amplify during junction PCR, which indicates failure of mCherry 

integration at the endogenous BACH1 locus. Thus, the junction PCR indicated the knock-in 

experimental design worked as intended for six HEK293 clones, facilitating integration of the 

synthetic T2A::mCherry at the native BACH1 locus. 

 

A 

Figure 44: Fluorescence from HEK293 BACH1 reporter clone 2D9. 

(A-B) Overlay bright field and fluorescent images of the (A) HEK293 clone 2D9 and (B) 

parental HEK293 cells. 

B 
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To confirm whether the T2A:mCherry tag integrated into all BACH1 alleles in each clone, 

I ran a genotyping PCR that amplified with a primer binding outside the upstream homology 

arm in the native BACH1 intron and a primer inside the downstream homology arm, thereby 

allowing simultaneous amplification of both the wild-type, non-integrated BACH1 allele and the 

knock-in allele. Genotyping PCR results suggested heterozygous integration in all six clones 

(Figure 45A). In fact, the genotyping assay revealed three bands after amplifying the genomic 

BACH1 locus in all clones. Based on the fragment size, the ~1.2 kb band consisted of the wild-

type allele with no knock-in, and the ~1.9 kb band matched the predicted size that includes the 

T2A::mCherry knock-in. Unexpectedly, a third band with a size of ~1.5 kb amplified that did not 

match in silico predictions arising from CRISPR-Cas9 modification. Since BACH1 resides in 

Chromosome 21 with three chromosomal copies in the aneuploid HEK293 cell line226, each 

band could have amplified from the three individual BACH1 copies. 

To confirm whether the BACH1 genotyping bands contained either the wild-type allele or 

the T2A::mCherry knock-in, I sequenced the PCR products. For the 2D9 clone fragment with 

the putative knock-in, sequencing did not reveal evidence of substantial mutations (Figure 

45B). Additionally, the wild-type allele (~1.2 kb) also lacked mutations (Figure 45C). Lastly, the 

anomalous allele aligned with the BACH1 locus but displayed many mutations and indels 

(Figure 45D). A complex reconfiguration of the BACH locus in addition to multiple indel events 

inherent in CRISPR-Cas9 gene editing227 may have led to the aberrant allele. Importantly, one 

knock-in allele sequencing read (blue in Figure 45B) from the 2D9 clone spanned from the 

synthetic T2A sequence across the upstream homology arm and ended with coverage in the 

native BACH1 intron not contained in the donor clone homology arms, which strongly supports 

site-specific integration at the BACH1 locus. There was no evidence of fixed mutations in the 

knock-in allele for the 2C1, 2C10, and 2D11 clones (Figure 46). Thus, sequencing of the three 

2D9 clone alleles supported heterozygous integration of the T2A::mCherry tag in-frame with the 

C-terminus of BACH1, along with a non-integrated undamaged allele and a disrupted third 

allele.  



101 

 

To determine whether the verified integration event in the six HEK293 clones coincided 

with random integration of the entire donor clone, I amplified a region of the donor clone 

Figure 45: Genotyping PCR for HEK293 BACH1 reporter clone 2D9 alleles. 

(A) The genotype of six successfully integrated BACH1 clones were analyzed by amplifying 

a region outside of the upstream homology arm, across the synthetic construct, and ending 

within the downstream homology arm. (B-D) Sequencing for the 2D9 clone alleles, including 

the (B) knock-in, (C) wild-type, and (D) a damaged third allele. The blue read in (B) includes 

a continuous read spanning from mCherry to outside the upstream homology arm. 

A 

B 

C 
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plasmid backbone outside of the homology arms from genomic DNA of the six verified HEK293 

BACH1 reporter clones. Compared to a known randomly integrated clone lacking a tag at the 

BACH1 locus serving as a positive control, the PCR experiment revealed non-specific 

integration of the donor clone in all six clones (Figure 47). Despite the unideal random 

integration, it may not lead to fluorescence from the randomly integrated locus. A lack of any 

expression from the native integrated BACH1 locus along fluorescence from a random 

integration event would be too improbable to explain the fluorescence results. Otherwise, the 

low fluorescence arises from low BACH1 expression in HEK293 cells, which has been 

Figure 46: Genotyping PCR for HEK293 BACH1 reporter clones 2C1, 2C10, and 2D11 

knock-in alleles. 

Sequencing for the knock-in allele from HEK293 clones (A) 2C1, (B) 2C10, and (C) 2D11. 

A 

B 
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previously demonstrated (see NCI60 cell line expression at BioGPS.com). Importantly, the 

BACH1::T2A::mCherry construct does not contain a promoter, leaving the mCherry reporter 

promoter-less at a random genomic locus. During a successful integration, mCherry will 

express if the endogenous BACH1 promoter is active. Therefore, the observed fluorescence 

should come from the mCherry reporter tagging the BACH1 locus, but this requires functional 

verification. In summary, I successfully detected six HEK293 clones with the endogenous 

BACH1 locus tagged with a fluorescent protein, which despite the presence of at least one 

randomly integrated donor clone, can serve as a tool to measure single cell BACH1 

expression, including gene expression noise, in response to molecular and mechanical 

perturbations in vivo.  

Figure 47: Random integration of the donor clone in the six HEK293 BACH1 reporter 

clones. 

The presence of the AmpR gene was assessed from the genomic DNA of wild-type 

HEK293, a randomly integrated, but non-successful endogenous integration clone for 

BACH1 (1F2, positive control), the donor clone plasmid positive control, and the six HEK293 

BACH1 clones. 2-log ladder served to assess product size. 
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3.3.2 Characterization of unperturbed endogenous HEK293 BACH1 reporter clone 

expression. 

To assess mCherry fluorescence from the six HEK293 BACH1 reporter clones, I 

characterized single-cell red fluorescence by flow cytometry. All six clones have higher mean 

fluorescence than a HEK293 parental cell auto-fluorescence control (Figure 48A). The 2D9 

clone exhibited the highest mean mCherry fluorescence while 2C10 fluorescence displayed the 

lowest. Despite having the highest mean expression, 2D9 gene expression noise exceeded the 

five other clones (Figure 48B). Single-cell expression distributions for the HEK293 BACH1 2D9 

clone suggest the noise arises from a relatively larger tail of high-expressing cells (Figure 48C; 

green distribution). Unlike the rest of the clones, the HEK293 clone 2C10 displayed a 

statistically significant bimodal distribution67 (Figure 48C; cyan distribution in middle right; ZL = 

4.6073 and ZR = 7.2478, significant bimodality at ZL,R > 4). In all, the six BACH1 reporter clones 

exhibited various levels of fluorescence that are specific to each clone. Next, I will cover 

various chemical perturbations and one physical perturbation applied to live HEK293 cells to 

better understand the fluorescence response dynamics and functionally verify the reporter 

system.  

3.3.3 TGF-β1 induction of the HEK293 BACH1 reporter clones.  

To assess the functionality of the HEK293 BACH1 fluorescent reporter system with a 

chemical perturbation, we needed a test for a known BACH1-specific interaction that either 

increases or decreases BACH1 expression. Transforming Growth Factor Beta I (TGF-β1) 

ligand may increase BACH1 expression232, but single-cell verification has not confirmed this 

finding in living HEK293 cells. Therefore, I treated the HEK293 BACH1 2C1 and 2C10 clonal 

cells with 5 ng/mL TGF-β1 over 24 hours. The two clones represent distinct expression 

distribution modalities observed in the six HEK293 BACH1 clones: 2C1 having one peak and 

2C10 having two peaks. Flow cytometry revealed no significant increase in mean fluorescence 

(Figure 49A). The gene expression noise also did not change significantly (Figure 49B). Since 

the study reported an increase in BACH1 expression from a western blot in NMuMG cells, 
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which are from Mus musculus, while HEK293 cells are from humans, the results may reflect 

Figure 48: Expression characterization of the HEK293 BACH1 reporter clones. 

(A) Mean expression for the HEK293 parental cells and six BACH1 reporter clones. (B) 

Gene expression noise (coefficient of variation). (C) Single-cell expression distributions for 

the HEK293 parental compared to each BACH1 reporter clone. 

A 

C 
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species-specific differences in the regulatory network controlling BACH1 expression or a non-

active BACH1 locus. It is also possible that 24 hours was not a sufficient amount of time to 

observe an effect on expression. To summarize, the cells treated with TGF-β1 did not respond 

with changes in mCherry fluorescence, indicating the need for a perturbation assay that shows 

an effect of TGF-β1 on human cells.  

Figure 49: TGF-β1 induction of HEK293 BACH1 reporter clones for 24 hours.  

(A) Mean expression of mCherry in two BACH1-tagged HEK293 reporter clones (2C1 and 

2C10) after 24 hours of TGF-β1 stimulation. (B) Gene expression noise for two BACH1 

reporter clones and wild-type cells. The experiments were conducted in triplicate. Error bars 

represent the standard error of the mean (SEM). (C) Single-cell expression distributions for 

HEK293 BACH1 clones 2C1 (left) and 2C10 (right). The cell counts were normalized by the 

bin with the highest number of cells. 
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To phenotypically characterize the fluorescence response with a physical perturbation in 

conjunction with a chemical perturbation, I induced the HEK293 BACH1 2D9 clone with 5 

ng/mL TGF-β1 vs untreated 2D9 cells prior to wounding a monolayer of cells in a scratch 

assay. We used the 2D9 clone over the unimodal 2C1 or bimodal 2C10 clones because the 

unimodal population of 2D9 cells displayed the highest gene expression noise (CV) during 

expression characterization, exceeding the bimodal 2C10 clone. By utilizing the clone with the 

highest noise, we can best address the core hypothesis in a physiologically-relevant phenotype 

(migration after wounding) for BACH1. Qualitatively, fluorescence tended to increase initially at 

the frontier edge of the wound for 2D9 cells (Figure 50), though the untreated sample 

monolayer of cells were flipped over after wounding, making interpretation between samples 

difficult. Over the course of four days, both untreated and treated cells that migrated to close 

the wound tend to have decreased fluorescence (Figure 50, 24h-96h). However, to check 

whether the fluorescence rapidly changed required a considerable amount of time to acquire 

images at time intervals less than 24 hours. As for the wound closure rate, the data was 

inconclusive regarding whether TGF-β1 induces migration (data not shown). In conclusion, the 

fluorescence at the wound edges increased after wounding, but the time scales of fluorescence 

dynamics required further investigation.  

3.3.4 Time scales of wound healing. 

To study the timescale of fluorescence dynamics during wound healing, I conducted a 

scratch assay for serum-starved low-noise HEK293 BACH1 reporter 2C1 clone without TGF-β1 

induction and imaged every 5 minutes over the span of one hour. Qualitatively, the cells 

remained relatively uniform in red fluorescence before the scratch (Figure 51A). Right after the 

scratch, fluorescence slightly increased for parts of the wound edge (Figure 51B). Moreover, 

fluorescence tended to non-uniformly increase even further at the edge during later time points 

(Figure 51C). Overall, the images visually demonstrated an increase in fluorescence at the 

wound edge within an hour of wounding.  
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To quantify the fluorescence while retaining spatial information, the red fluorescence for 

each x-coordinate was averaged over the y-axis pixels. As distance from the wound became 

Figure 50: Images of wound healing for BACH1 clone 2D9 after TGF-β1 induction. 

Images of HEK293 BACH1 reporter clone 2D9 cells (A) treated with 5 ng/mL TGF-β1 and 

(B) untreated cells during a wound healing assay over time.  

0h 24h 

48h 72h 
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0h 24h 

48h 72h 
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shorter, the overall fluorescence increased after wounding (Figure 51D). In conclusion, I 

observed overall increased fluorescence at the edge of the wound over an hour after wounding 

the serum-starved HEK293 BACH1 reporter clone 2C1 cells, with qualitative evidence of 

increased gene expression noise at the wound edge. 

 

3.3.5 Effect of hemin treatment on HEK293 BACH1 reporter clone expression.  

To test whether other molecular perturbations affect mCherry fluorescence in a manner 

expected for BACH1 expression, I treated the HEK293 BACH1 reporter clones 2C1 and 2C10 

with hemin, which promotes cytoplasmic transport and subsequent degradation of BACH1 

protein233,234. Since hemin-mediated degradation of BACH1 can take 4 hours234, I treated the 

Figure 51: Wound healing for BACH1 clone 2C1 over one hour. 

(A) Pre-scratch image of 2C1 cells starved of growth serum. (B) Post-scratch (0 minute) 

image of serum-free 2C1 cells. (C) Image of 2C1 cells 40 minutes after the scratch. (D) 

Mean intensity of 2C1 cells for each x-axis coordinate (average of y-axis pixel intensities) 

with the wound edge indicated by blue arrows. X-coordinate 0 starts at the left image edge. 

2-log ladder 

A 

C D 
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HEK293 BACH1 clones 2C1 and 2C10 for four hours with 20 µM hemin. I found no significant 

change in mean mCherry fluorescence for BACH1 clones 2C1 and 2C10 compared to 

untreated samples (Figure 52A), though the treated samples tend to have slightly higher, 

nonsignificant mean fluorescence. However, the effect of duration of the hemin treatment on 

mCherry fluorescence was unclear, which could mask the response to the perturbation. 

Additionally, a longer time series may reveal a stronger fluorescent response after the initiation 

of BACH1 protein degradation. 

 

Figure 52: Hemin treatment over 4 hours for HEK293 BACH1 clones 2C1 and 2C10. 

(A) Mean mCherry expression in BACH1 clones and wild-type cells after 4 hours with or 

without hemin treatment. (B) Gene expression noise (CV). (C) Single-cell expression 

distributions. The experiments were conducted in triplicate. Error bars represent the 

standard error of the mean. 

B A 

C 



111 

To uncover alterations in fluorescence from hemin at a larger time scale, I again treated 

the two HEK293 BACH1 reporter clones 2C1 (unimodal) and 2C10 (bimodal) with 20 µM hemin 

for 48 hours. Flow cytometry indicated the mean mCherry fluorescence for the 2C10 clone 

significantly increased after 48 hours of hemin treatment (Figure 53A; p-value = 0.0219, two-

sample t-test). Based on this finding, it is possible that the build-up of mCherry protein may 

take more time than the hemin-mediated BACH1 protein degradation mechanism233 and 

subsequent locus de-repression, leading to a stronger effect at longer time scales. Overall, 

Figure 53: Hemin treatment over 48 hours suggests increased fluorescence for the 

bimodal 2C10 HEK293 BACH1 clone. 

(A) Mean fluorescence for wild-type HEK293 and two BACH1 clones after 48 hours with or 

without hemin. (B) Gene expression noise (CV). (C) Single-cell expression distributions. 

The experiments were done in triplicate. Error bars indicate the standard error of the mean. 

*p-value < 0.05 from a two-sample t-test. 

* 

C 
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hemin increased mCherry fluorescence in the 2C10 clone, which remains consistent with the 

expected expression dynamics arising from temporary inhibition of BACH1 self-repression.  

3.3.6 Over-expression of pri-let-7g in the HEK293 BACH1 reporter clones. 

To assess the effect of post-transcriptional perturbations on fluorescence from the 

BACH1 reporter system, I transiently transfected a vector constitutively expressing the primary 

microRNA pri-let-7g into the HEK293 BACH1 clones 2C1 and 2C10. The pri-let-7g matures into 

let-7g, a known target for the BACH1 mRNA 3’ untranslated region159. I observed no significant 

evidence of miRNA-induced decrease in mean expression, though the transfection non-

significantly increased mean 2C10 expression (Figure 54A). Gene expression noise also 

Figure 54: Over-expression of pri-let-7g in HEK293 BACH1 2C1 and 2C10 clones. 

(A) Mean fluorescence for two BACH1 clones with or without pri-let-7g transfected over 93 

hours. (B) Gene expression noise (CV). The experiments were conducted in triplicate. Error 

bars represent the standard error of the mean. (C) Single-cell expression distributions. 
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remained significantly unchanged, though qualitatively 2C10 displayed slightly increased noise 

after transfection (Figure 54B). Since the let-7g seed sequence does not have a perfect 

complementary binding site in BACH1 mRNA, the RISC complex should inhibit translation of 

the mRNA rather than degrading the BACH1 mRNA235. Since the BACH1 negative feedback 

loop depends on the level of BACH1 protein in the cell, a temporary decrease in BACH1 

protein levels could de-repress the BACH1 locus, leading to increased mCherry levels over 

time. Like hemin, this mechanism could explain the possible (non-significant) increase in 2C10 

mean fluorescence. To summarize, pri-let-7g over-expression did not significantly alter 

mCherry fluorescence from the HEK293 BACH1 reporter system. 

3.3.7 Negative selection as a mechanism to decrease random integration events. 

To avoid expanding clones with non-specific integration of the BACH1::T2A::mCherry 

cassette vector, as seen in the six HEK293 BACH1 reporter clones with the verified tag at the 

endogenous BACH1 locus (Figure 47), I introduced the Herpes Simplex Virus-Thymidine 

Kinase (HSV-TK) negative selection marker outside of the BACH1 homology arms flanking the 

reporter tag in a modified donor clone plasmid backbone (Figure 55). Doing so should 

Figure 55: Introduction of the Herpes Simplex Virus Thymidine Kinase (HSV-TK) 

negative selection marker for avoiding random integration cell enrichment. 

(A) Plasmid map and (B) sequencing results for the improved BACH1::T2A::mCherry donor 

clone containing the HSV-TK outside the homology arms. 

B A 
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sensitize cells possessing the HSV-TK gene to the drug Ganciclovir, which would occur when 

the entire backbone randomly integrates. After selection, the remaining cells will either not 

contain the construct at all or will have a successful integration event at the BACH1 locus. In 

summary, I built a BACH1::T2A::mCherry donor clone with a negative selection marker 

guarding against random integration.  

3.3.8 Designing the BACH1::T2A::mCherry reporter system in the MDA-MB-231 triple-

negative breast cancer cell line.  

After successfully constructing the improved donor clone with the HSV-TK negative 

selection marker and the characterization of the HEK293 BACH1 reporter cell lines, it was 

unclear how BACH1 expression dynamics could reflect physiological characteristics in a cancer 

cell line, specifically the highly aggressive triple-negative MDA-MB-231 breast cancer cell line. 

Creating such a cell line could reveal how BACH1 expression in living cells switches to pro-

metastatic, anti-metastatic, and mixed bistable expression regimes previously uncovered in 

fixed cells1. Additionally, the BACH1 expression levels in single breast cancer cells may 

respond to more perturbations than the non-tumorigenic HEK293 cells. Therefore, the 

development of such a BACH1 reporter clone in a breast cancer cell line will open lines of 

inquiry that are relevant to the pro-metastatic functions of BACH1. 

To develop the MDA-MB-231 BACH1 reporter cell line, I transfected the improved donor 

clone vector with the BACH1-specific guide RNA into triple-negative MDA-MB-231 breast 

cancer cells. After flow-sorting by low or high mCherry fluorescence, I applied the negative 

selection agent Ganciclovir to the potential MDA-MB-231 BACH1 clones to select against 

random integration events. Since I lacked an HSV-TK positive control required for a proper 

Ganciclovir kill curve, I conducted a rudimentary kill curve experiment on wild-type MDA-MB-

231 cells. Based on qualitatively slower growth of the untransfected MDA-MB-231 cells using 

Ganciclovir concentrations of at least 0.5 mM (data not shown), I treated the transfected cells 

once in exponential growth after flow sorting with a much lower dosage; about 0.03 mM (10 

µg/mL) Ganciclovir. However, none of the clones growing in the 96-well plates died off after 
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Ganciclovir selection, suggesting either the ineffectiveness of that concentration or the lack of 

any clone harboring randomly integrated donor clone plasmids. Thus, one cannot make a 

conclusion on Ganciclovir’s effectiveness without knowing the lethal dose concentration for 

MDA-MB-231 cells with the HSV-TK gene. 

To ensure the archiving of all fluorescent clones, I cryogenically preserved the bulk, 

polyclonal population, and high- and low-fluorescent FACS-sorted cells. To uncover a MDA-

MB-231 clone with a successful knock-in of T2A::mCherry at the BACH1 locus, I conducted two 

separate screens with genotyping PCR targeting the region upstream the 5’ homology arm and 

within the 3’ downstream homology arm as in HEK293 cells (see section 3.3.1). I evaluated 40 

clones in the first round of screening. In the second round, I genotyped 151 clones. Clones 

varied from having high to low or no mCherry expression (Figure 56). Therefore, the clones 

vary widely in mCherry expression, which was expected from the flow-sorting gating. 

 

A 

Figure 56: Fluorescent images from putative MDA-MB-231 BACH1 clones. 

(A) Image of the non-fluorescent 2B12 clone cells. (B) Image of the mildly fluorescent 1G4 

clone cells. (C) Image of the highly fluorescent 2E11 clone cells. The look-up tables were 

kept consistent between images. 

B 

C 
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3.3.9 Screening for MDA-MB-231 BACH1 clones with an optimized direct PCR method. 

To reduce the time for detecting whether a particular MDA-MB-231 clone contained the 

knock-in, I modified a direct (colony) PCR detection method that directly lyses cells before 

amplification of DNA230. As a mammalian version of colony PCR, it can reduce the amount of 

time for genotype screening after flow-sorting from a month to just a week (Figure 57). Sixteen 

clones genotyped with direct PCR during the optimization stage consisted of 6 clones that did 

not amplify either the wild-type or knock-in allele. Of the six clones failing to amplify, one clone 

(1G4) eventually amplified the wild-type BACH1 allele during a repeat direct PCR. Additionally, 

purified genomic DNA from a 17th clone (3B8) amplified just the wild-type BACH1 allele (data 

not shown). Thus, I confirmed the amplification of the wild-type BACH1 allele in 12 out of 17 

MDA-MB-231 clones, but all clones lacked the correctly integrated mCherry tag. 

 

Single-cell sort into 96-well plate 

Expand to 24-well plate 

Expand to 6-well plate 

Purify genomic DNA 

Dilute 1/5th trypsinized cells 

with 5 volume DPBS 

Spin for 5 minutes at 300 x g 

Resuspend cells in 10 µL DPBS 

Flash freeze at -80ºC 

Heat at 65ºC for 2 minutes 

Figure 57: Experimental workflow of the modified direct PCR method. 

On the right, single cells that are sorted into a 96-well plate are expanded into 24-well 

plates, then 6-well plates, further expanded in 25 cm2 flasks, and then genomic DNA from 

each clone is purified. Right before expansion to 24-well plate, the direct PCR method 

quickly lyses the cell after trypsinization and flash freezing, saving weeks before screening. 

2-3 weeks 

1 minute 

5 minutes 

2 minutes 

At least 2 hours 
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3.3.10 Two rounds of direct PCR screening for potential MDA-MB-231 BACH1 clones.  

To further test the direct PCR methodology in its optimized form, I genotyped the 

remaining 23 MDA-MB-231 putative BACH1 clones from the first screening round, which 

derived from clones directly expanded after the original flow-sorting experiment. In all cases, I 

did not detect a knock-in allele. Overall, the direct PCR methodology found the wild-type 

BACH1 allele in 28 out of 40 clones. Moreover, traditional PCR for purified genomic DNA from 

2 clones detected just the wild-type allele. It is possible that the integration rate via DNA repair 

mechanisms in MDA-MB-231 is too low to uncover one clone with the knock-in out of 40 

samples (<1/40 odds). In the entire original screen, 30 clones that contained the wild-type 

BACH1 allele lacked the fluorescent reporter knock-in (Table 9).  

After exhausting the clones from the original flow sorting screen, I still had to check the 

cryo-preserved bulk-transfected MDA-MB-231 cells along with cryo-preserved high- and low-

expressing bulk-sorted cells from the original CRISPR-Cas9 transfection experiment. After 

thawing both unsorted bulk-transfected and high- or low-fluorescing bulk-sorted cells, flow 

sorting separated cells into four 96-well plates based on mCherry fluorescence. In two plates 

with cells either previously sorted for high or low fluorescence, four gates further separated 

cells from low to high fluorescence intensities. This gating scheme may increase the chance of 

enriching for clones with successful mCherry integration by systematically scanning possible 

BACH1 expression levels. The two other plates contained single cells from the remaining bulk-

transfected sample, which I flow-sorted based on low or high fluorescence. Overall, the gating 

may enrich for the range of fluorescence that actual BACH1 expression resides in. 

To determine whether the mCherry tag integrated in the BACH1 locus for the previously 

cryo-preserved samples, I applied the optimized direct PCR method for genotyping in a second 

screen. The second screen evaluated 151 clones. Out of the 151 clones, 4 clones failed to 

amplify anything. The remaining 147 clones, despite the presence of non-specific bands in 

some clone PCR products, all amplified the wild-type BACH1 allele. However, not a single 

clone contained the knock-in allele. In summary, the second screen failed to verify MDA-MB-



118 

231 BACH1 reporter clones. In all, I found the wild-type BACH1 allele in 177 clones (Table 9). 

 

3.4 Discussion. 

In this chapter, I described the construction and characterization of an endogenous 

BACH1 locus reporter system that should co-translate the red fluorescent mCherry protein after 

transcription in HEK293 cells. While none of the MDA-MB-231 clones successfully integrated 

the T2A::mCherry fluorescent tag at the BACH1 locus, the direct PCR technique facilitated 

rapid screening, useful in future experiments. For the HEK293 BACH1 reporter clones, 

inducing a wound increased fluorescence at the wound edge. Additionally, long-term hemin 

treatment increased mCherry fluorescent reporter intensities for the bimodal 2C10 population.  

 

 

 

 

  

Table 9: Summary statistics of MDA-MB-231 BACH1 clone genotyping screens. 

Table includes the number of clones with just the wild-type BACH1 allele, the number of 

clones with the knock-in allele, and the total number of genotyped MDA-MB-231 clones, 

including clones without amplification of the BACH1 locus. 

  Screen 1 Screen 2 Total 

MDA-MB-231 clones with wild-type BACH1 30 147 177 

MDA-MB-231 clones with knock-in 0 0 0 

Total MDA-MB-231 clones 40 151 191 
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Chapter 4: Discussion and future directions. 
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4.1 Discussion. 

4.1.1 Gene expression noise can enhance cellular access to a pro-survival state. 

Gene expression noise is a ubiquitous phenomenon in biology ranging from bacteria to 

humans. The functional aspects of gene expression noise have been investigated in unicellular 

organisms while studies on higher eukaryotes such as mammalian cells are limited by 

biological complexities. Mammalian cells do not easily integrate foreign DNA in a site-specific 

manner. Additionally, the endogenous gene regulatory networks in mammalian cells involve 

multiple feedback loops with dense, redundant layers of interactions facilitating robustness, 

especially in drug resistance. Thus, mammalian cells with noise-tunable genetic constructs 

must share the same genetic background while maintaining constant mean expression. In this 

manner, I modulated noise with exogenous synthetic gene circuits controlling the drug 

resistance gene Puromycin N-acetyltransferase (PuroR) to rigorously study gene expression 

noise in mammalian drug resistance . 

The core hypothesis of my thesis argues that gene expression noise in mammalian cells 

enhances the probability of reaching a favorable survival fate in drug resistance and 

metastasis. To this end, I investigated the role of PuroR noise independently of mean 

expression using an exogenous approach in Chinese Hamster Ovary (CHO) cell drug 

resistance. Moreover, I developed an endogenous BACH1 expression fluorescent reporter 

system in live HEK293 cells to observe metastatic state transitions in response to molecular 

and physical perturbations. In Chapter 2, the exogenous approach allowed tuning the mean 

expression at similar levels in two circuits with high or low PuroR gene expression noise, 

thereby fixing the mean with distinct noise levels in a decoupled noise point (DNP). Using this 

tunable system to control the non-native PuroR gene should isolate the impact of PuroR gene 

expression from all other cellular characteristics during short time-scales of drug treatment.  

Improved drug survival from gene expression noise in mammalian cells under high drug 

concentrations clearly supports the core hypothesis, even with lower mean expression from the 

noisy circuit. In low stress levels, cells with high PuroR noise tend to have a subpopulation of 
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cells with very high expression of the gene, past the highest expressing cell in the low-noise 

population (Figure 13C). Consequently, cells with drug resistance in low stress (Figure 

18C,D,F) that survived drug treatment have higher mean expression than at pre-treatment 

(Figure 26B-C). Furthermore, increasing Puromycin concentration from 35 to 50 µg/mL led to 

higher mean expression levels for the high-noise cells before drug removal (Figure 26C-D). 

Lastly, mean expression levels tended to jump even higher during the retreatment phase 

(Figure 26B-D), though induced mPF at 35 µg/mL Puromycin proved to be an exemption 

(Figure 26C). Summing it all up, gene expression noise was shown to enhance the opportunity 

for mammalian cells to escape drug-induced cell death by expressing enough of the drug 

resistance gene for survival, which is apparent in cellular memory experiments (Figure 14B). 

In addition to exogenous control of the drug resistance PuroR gene, I investigated 

endogenous expression of the pro-metastatic BACH1 transcriptional regulator that participates 

in a double negative feedback loop with the anti-metastatic RKIP gene (Figures 4; 42). If gene 

expression noise in BACH1 can contribute to the survival of cancer cells in a hostile 

microenvironment after facilitating escape from the primary tumor, noise in the anti-metastatic 

regulator RKIP could also affect survival through bistable state transitions mediated by the 

network. Under this scenario, high RKIP gene expression noise and mean expression may 

stochastically drive RKIP expression in single cancer cells below the ultrasensitive bistable 

expression threshold, leading to stabilization of the pro-metastatic state with low RKIP and high 

BACH1 levels in a cellular subpopulation1. Thus, the mean expression of BACH1 and RKIP 

strongly influences whether cells can exit or enter the pro-metastatic state, with high noise 

facilitating survival and subsequent metastasis in a subpopulation of cells deviating from low 

BACH1 and high RKIP mean expression despite the mean expression levels favoring the anti-

metastatic state. On the other hand, low noise with low BACH1 and high RKIP mean 

expression levels should stabilize the anti-metastatic state. 

A potential tumor suppressor relevant to the hypothesis outside of metastasis is TP53 

(p53), which depends on the gene regulatory network with embedded feedback loops236,237 as 
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predicted computationally236-238.  Phosphorylation by the ATR and ATM kinase pathways 

activates the p53 protein after single and double stranded DNA breaks, respectively239. In both 

pathways, the MDM2 ubiquitin ligase and the WIP1 phosphatase proteins negatively regulate 

p53 at the protein level while p53 also transcriptionally activates MDM2 and WIP1 

expression240,241. During ATM kinase transduction, WIP1 protein also dephosphorylates the 

ATM kinase, which adds an additional layer of negative feedback controlling the TP53 gene. 

With both layers of feedback, TP53 expression can pulse237. Thus, double stranded DNA 

breaks from gamma radiation may increase gene expression noise for the TP53 tumor 

suppressor238. In this case, high noise in wild-type TP53 expression may aid survival when 

single cancer cells express TP53 below the mean, highlighting another oncogenic phenomenon 

where the core hypothesis regarding cancer cell survival is relevant to tumor suppressors. It is 

unclear how the hypothesis relates to mutant TP53, which will disrupt the underlying gene 

regulatory network architecture. 

4.1.2 Evolution of network noise-mediated mammalian drug resistance depends on 

endogenous mechanisms outside the circuit. 

The synthetic gene circuit, drawing on non-native genetic elements, should exhibit 

genetic isolation from the rest of the CHO genome. In line with this, two of six low-noise 

replicates at 35 µg/mL Puromycin developed mutations in the inducible promoter while a third 

replicate acquired an amino acid deletion in the hTetR gene that disrupted repression of the 

promoter, thereby increasing PuroR expression (Figures 29-31). Unexpectedly, the three 

remaining replicates did not contain mutations within the circuit (Figure 32) even though all 

replicates had elevated expression levels without induction (Figure 26B). For those three 

replicates, the induction-independent elevation of PuroR expression without circuit mutations 

suggests CHO cells either acquired mutations outside the circuit or epigenetically modulated 

PuroR expression (Figures 26B; 32-33). Since removing Doxycycline inducer did not lower 

PuroR expression in the three circuit-mutation-free replicates, logically the hTetR repressor 

cannot effectively repress the promoter. If the mechanism did not require disrupting hTetR 
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repression, the molecular mechanism of adaptation would depend on induction, leading to 

lower PuroR levels in the absence of Doxycycline.  

Hypothetically, at least three processes outside the circuit could affect hTetR repression: 

1) hTetR-specific protein degradation, 2) inhibition of hTetR binding to tetO2 operators, and/or 

3) general up-regulation of the FRT locus. The first case requires an endogenous mechanism 

that degrades the hTetR repressor. A stress response program could disrupt proper folding of 

hTetR while somehow leaving the PuroR gene functionally intact242, possibly by not affecting 

the N-acetylation reaction. In the second case, altered protein-protein, protein-DNA, or protein-

Doxycycline interactions may prevent binding of hTetR to the promoter. In yeast, synthetic 

control of efflux pumps increased inducer sensitivity of a TetR-based negative feedback 

circuit243. Although the exact mechanism is not clear, it depends on reduced TetR regulator 

activity. In the third case, the transcriptional machinery may strongly activate expression at the 

FRT circuit to overcome hTetR-mediated repression, either through chromatin-mediated or 

steric mechanisms. Since the Initiator element in the low-noise circuit is flanked by one tetO2 

site on each side, the RNA Polymerase II pre-initiation complex could possibly outcompete 

steric inhibition from hTetR-tetO2 binding, leading to higher PuroR expression. Independent of 

extra-circuit processes, insufficient 2A cleavage from EGFP and PuroR may lower the 

degradation rate of the fused protein or completely inefficient cleavage, creating a 

hTetR::P2A::EGFP::T2A::PuroR fusion protein, may sterically prevent the regulator from 

binding to DNA. 

For evolved cells with the high-noise circuit, induction with Doxycycline enhanced PuroR 

expression above uninduced cells, which themselves displayed elevated expression above the 

pre-treatment mean expression level. Chromatin-mediated activation of the genomic FRT site 

may explain the increased expression, where induced rtTA and epigenetic markers 

synergistically enhance transcriptional activation above the pre-treatment mean. For evolved 

mPF cells, it is not clear how enhanced activity of efflux pumps that should reduce intra-cellular 
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Doxycycline and Puromycin concentrations would lead to higher activity of the positive 

feedback circuit in a Doxycycline-dependent manner. 

4.1.3 Impact of gene expression noise for various mechanisms of chemotherapy 

treatment. 

We computationally predicted drug-tolerant persister cells must develop genetic 

resistance to explain the experimental results (Figures 23-24). The persister state may depend 

on histone demethylases or GPX4, which can be disrupted by histone deacetylase complex 

inhibitors (HDACi) and molecular inhibitors of GPX4104,105. If feasible, the findings in Chapter 2 

support the design of a therapeutic regime that lowers gene expression noise of genes relevant 

to cell survival in early chemotherapy treatment resistance prior to increasing the dose regime 

to the highest tolerable level, thereby wiping out the low-noise, otherwise drug resistance 

population. Consistent with the core hypothesis, decreasing the opportunity for mammalian 

cells entering a survival state could depend on reduced gene expression noise. This is the case 

with the PuroR gene in Puromycin resistance. 

Expanding the scope of the findings to various chemotherapeutic agents will depend on 

their mechanism of action. PuroR-based resistance, since the mechanism initially depends on 

a single gene, could mimic resistance from molecularly targeted chemotherapy agents, such as 

EGFR mutation-mediated resistance to Gefitinib in non-small cell lung cancer (NSCLC)244 or 

BCR-ABL kinase domain mutations conferring resistance to Dasatinib in acute lymphoblastic 

leukemia (ALL)245. Gefitinib resistance can also rely on enhanced DNA methylation246 and 

altered signaling pathway activity from genes such as HER2247, which is consistent with extra-

circuit mechanisms predicted during the evolution of Puromycin resistance. Additionally, anti-

tumor activity from EGFR inhibition can be overcome through stochastic transitions into 

persister cell states104,107. Thus, targeted therapy with EGFR is one example where our findings 

have potential relevance.  

Genotoxic chemotherapy agents such as Cisplatin may accelerate genetic mutations that 

subsequently influence resistance. However, the drugs damage DNA in general without 



125 

targeting a specific gene248, making gene expression noise for a single gene uninfluential. 

Theoretically, cell-cycle disruption from genotoxic agents may increase global gene expression 

noise, potentially affecting and mediated by cell cycle regulators249. Chemotherapeutic agents 

that disrupt microtubules may become ineffective for killing cancer cells when expression of 

βIII-tubulin is high250, which is a possibility with high βIII-tubulin expression noise. For inhibitors 

of DNA topoisomerase251, a subpopulation of cancer cells with high TOP2A mean expression 

and noise may maintain drug resistance by facilitating low TOP2A levels in single cells 

deviating from the mean, but it is unclear which transcription factors, mainly tumor 

suppressors251,252, would down-regulate the gene without affecting tumor progression. Overall, 

the postulated effect of gene expression noise in drug resistance for different classes of 

chemotherapy agents will depend on the mechanism of action and could be confounded by 

interactions with tumor suppressors. 

4.1.4 HEK293 cell BACH1 expression reporter fluorescence responds to one chemical 

and physical perturbation. 

In Chapter 3, I report the development of endogenous BACH1 gene expression reporters 

in six clonal populations of the human cell line HEK293. The BACH1 locus in six clones 

demonstrated heterozygotic CRISPR-Cas9 homology directed repair-mediated knock-in of an 

T2A::mCherry reporter prior to the BACH1 stop codon. However, the donor clone with the 

promoter-less BACH1 exon 5::T2A::mCherry element also randomly integrated into the 

HEK293 genome. The triple-negative breast cancer cell line MDA-MB-231 failed to successfully 

integrate the T2A::mCherry tag at the BACH1 locus in almost 200 genotyped clones. The 

methodology for direct PCR genotyping readily increased the through-put of screening, making 

the isolation of very rare integration events easier as the number of screened clones scales 

upward. Importantly, the HEK293 reporter system clones proceeded to perturbation 

experiments to address the core hypothesis. 

Mean mCherry expression levels only varied during long-term hemin treatment and 

possibly wounding, though wound healing fluorescence statistics were not statistically 
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quantified. During hemin treatment, an increase in mCherry fluorescence was not unexpected 

because hemin-mediated BACH1 protein degradation should temporally de-repress the BACH1 

promoter based on negative feedback (Figure 42), thereby increasing mCherry protein levels. 

Thus, the decoupling of degradation rates for mCherry and BACH1 protein along with the de-

repression of the BACH1 negative feedback loop may lead to lower BACH1 and higher 

mCherry protein levels. In addition to chemical perturbations, I characterized the fluorescence 

of the HEK293 BACH1 clones after physically inducing wound-mediated migration. Wounding 

tended to non-uniformly increase fluorescence at the wound edge (Figures 50-51). After 

migration, mCherry fluorescence for cells enclosing the gap qualitatively decreased (Figure 50, 

24h-96h). At shorter-time scales (1 hour), the cells at the wound edge displayed increased 

fluorescence (Figure 51), which suggests alterations in protein translation rates may drive the 

wound-induced expression dynamics since protein synthesis is in general faster than 

transcription in mammalian cells1,253.  

4.1.5 mCherry fluorescence may not reflect BACH1 expression. 

It is possible that mCherry fluorescence arose from a randomly integrated donor clone. 

Although promoter-less, the construct could in principle integrate at a site that promotes the 

transcription of the BACH1 homology arms and the mCherry element. Future qRT-PCR 

experiments will confirm correlation between BACH1 mRNA levels and red fluorescence. 

Nevertheless, hemin treatment revealed the most promising evidence for fluorescence 

negatively correlating with BACH1 expression given that the BACH1 protein degradation rate 

increased, potentially leading to anti-correlated BACH1 and mCherry protein levels.  

4.1.6 Inconclusive evidence that BACH1 expression transitions between metastatic 

states in HEK293 cells. 

It is unclear that the fluorescence, if correlated with BACH1 expression, reflects 

transitions into or out of a pro-metastatic state in the six HEK293 clones. The fluorescence 

changes during the two perturbation experiments and the failure of the remaining chemical 

perturbation experiments may instead reflect an inability of cells to push past a steep 
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Waddington valley (expression threshold) for a transition to occur. However, the hemin 

treatment experiments demonstrated a significant increase in mean fluorescence for the 

bimodal 2C10 clone, but not the unimodal 2C1 clone. Does this reflect a shift in the make-up of 

the bimodal subpopulation composition in 2C10? Repeat experiments may reveal a similar shift 

in the bimodal distribution (Figure 53C), which hints of cells in the low-expressing anti-

metastatic subpopulation potentially transitioning into a high-expressing pro-metastatic state. If 

so, the five HEK293 clones with unimodal distributions may reside in the pro-metastatic state. 

Except for long-term hemin treatment, mean fluorescence did not significantly change in 

the other chemical perturbation experiments. In these experiments, the very low red 

fluorescence (Figure 48) may indeed change, but the variation in fluorescence during a 

perturbation could be too small to notice. To address this issue, one could amplify the low 

expression levels with a novel synthetic gene circuit or measure fluorescence with a more 

sensitive technique. 

Although gene expression noise did not change significantly in any chemical perturbation 

experiment, the standard error of the mean for the coefficient of variation (gene expression 

noise) for clone 2C10 during long-term hemin treatment did not overlap with the untreated 

control (Figure 53B), which requires further investigation. Additionally, single HEK293 cells at 

the frontier wound edge during the induction of wound-mediated migration qualitatively varied 

in gene expression based on fluorescence, which could represent spatially localized gene 

expression noise. In line with these findings, previous research1 support a role for BACH1 gene 

expression noise in pro-migratory phenotypes. Overall, the core hypothesis could not be 

addressed with the endogenous BACH1 reporter HEK293 cell lines. To continue this line of 

inquiry, a future approach could decouple endogenous BACH1 gene expression noise from the 

mean during chemical and physical perturbations with noise-modulating molecules184. 

4.2 Future studies. 

4.2.1 Single-cell RNA-seq on evolved CHO mPF and mNF populations. 
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How the cell recruits other endogenous genes to implement adaptation to Puromycin 

remains unaddressed. To gather as much information as possible, single-cell RNA-seq for 

evolved and ancestral cells could reveal the signaling and gene regulatory pathways 

differentially expressed in the evolved cells, possibly resulting from mutations within that 

pathway. Sequencing single cells will also preserve heterogeneity persisting after adaptation. In 

fact, enhanced gene expression noise in endogenous pathways associated with resistance 

could elegantly complement the exogenous approach for controlling PuroR mean and gene 

expression noise. Expected up-regulated pathways detected by RNA-seq could include 

WNT115, MDR193, NF-κB254, RAS-MAPK255, NOTCH256, PI3K257, and NRF2258. Importantly, 

activation of the RAS-MAPK pathway could occur through reduced RKIP expression259, which 

has direct relevance to the BACH1 and RKIP pathway studied in Chapter 3.  

Single cell RNA-seq has many technical drawbacks that makes subsequent analysis 

difficult260,261. A lack of reads for a gene may actually indicate RNA dropout arising from a lack 

of cells or partial lysis during a cell isolation event, which is hard to distinguish from true 

absence of expression260. RNA dropout can also lead to under-estimation of RNA levels for 

genes after insufficient RNA extraction. It is also challenging to distinguish gene expression 

noise from technical variation, which RNA spike-ins can help estimate for removal during 

analysis262. Coverage of the 3’ end can introduce read bias when quantifying mean expression, 

which full-length RNA sequencing technologies such as STRT-Seq can better limit263. However, 

the cost of both 3’ end and especially full-length single cell sequencing technologies can 

prohibit its use depending on how many cells to sequence, the resolution of gene coverage, 

and required statistical power264. Overall, one should cautiously interpret expression data from 

single-cell RNA-sequencing. In case the prohibitions are too high, bulk RNA-seq could act as 

an alternative approach that focuses attention on population-level differentially expressed 

genes. 

4.2.2 Molecular disruption of the drug-tolerant persister state. 
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The persister cells predicted from the model could become re-sensitized to drug upon 

inhibition of histone deacetylase complexes (HDACs)104. Additionally, inhibition of the lipid 

hydroperoxidase GPX4 may promote a drug-sensitive state in persister cells105. Future 

experiments on the evolved CHO populations to disrupt the persister state include treatment 

with trichostatin A (TSA), which inhibits class I and II HDACs. GPX4 inhibitors associated with 

sensitizing persister cells will require screening to uncover their effect in CHO cells without prior 

knowledge or screening. Nevertheless, we can attempt persister state disruption by GPX4 

inhibition through RSL3 and ML210105. 

4.2.3 Efflux dye assays for evolved drug resistance populations. 

If multi-drug resistance contributes to the evolution of drug resistance in the CHO 

populations surviving Puromycin treatment, one should expect increased efflux of intra-cellular 

drug, conferring resistance90. To test whether MDR1 or another efflux pump contributes to 

resistance, an efflux dye assay can determine differential pumping of drug between cell 

populations. The Calcein Assay® fluorescent dye is activated within a cell but does not 

fluoresce after efflux pumping. Thus, the evolved cells with the dye may display lower 

fluorescence than ancestral cells, implicating drug pumping as an extra-circuit mechanism of 

adaptation, which may involve the MDR1 gene. No differences in cellular fluorescence would 

rule out drug pump-based mechanisms of resistance. 

4.2.4 Sequencing the HEK293 BACH1 reporter clone 1B11 knock-in allele. 

Regarding the small size of the 1B11 knock-in allele (Figure 45A), future work should 

determine whether the C-terminus of mCherry carries a deletion. A deletion at the end of 

mCherry could explain why the size of the 1B11 junction PCR product was consistent with 

integration because the reverse junction PCR primer binds upstream of the mCherry C-

terminus (Figure 43). Sequencing must address the issue before interpreting data from this 

clone. 

4.2.5 Flow-sorting each peak in the bimodal HEK293 BACH1 2C10 clone to assess 

cellular memory. 
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The characterization of endogenous expression revealed a bimodal distribution for the 

HEK293 2C10 clone, which requires explanation. There are two possibilities for the bimodal 

distribution. The population may consist of two genetically distinct subpopulations, arising from 

two cells flow-sorted into the same well. On the other hand, isogenic cells could exhibit 

bimodality in a mixed bistable regime1. To rule out one scenario over the other, a flow sorting 

experiment enriching for each subpopulation could lead to either no change in fluorescence 

over time if the population is polyclonal, or the reestablishment of the original distribution if the 

bimodality arises from bistability. If the clone is in a bistable regime, then the hemin treatment 

data from 2C10 could provide evidence of state transitions, addressing the core hypothesis. 

4.2.6 Repeating the long-term hemin treatment experiment with more samples. 

The trend of higher gene expression noise for the 2C10 clone after 2 days of hemin 

treatment hints at a difference, but triplicates lack the statistical power to test this for either non-

parametric tests or coefficient of variation equivalence testing265. Does gene expression noise 

also change during treatment with hemin? Repeat hemin treatment experiments with more 

replicates of the HEK293 clones can resolve this question, strengthening a functional 

verification interpretation from hemin treatment data.  

4.2.7 Parallel qRT-PCR experiments to verify whether BACH1 mRNA levels correlate with 

mCherry fluorescence. 

Lastly, future fluorescence measurement experiments absolutely require corresponding 

qRT-PCR experiments to verify whether mCherry fluorescence changes in conjunction with 

BACH1 mRNA levels. While experiments using CRISPRa on the BACH1 locus showed ~1.6-

fold increase in qPCR BACH1 mRNA levels (data not shown), we could not properly apply 

image processing tools to rigorously quantify changes in fluorescence from microscopy. In 

conclusion, future experiments and analyses will address these outstanding questions, which 

will serve to independently confirm the findings in Chapter 3. 
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In an ending note, renowned physicist Max Plank once said,  

“The whole strenuous intellectual work of an industrious research worker would appear, 

after all, in vain and hopeless, if he were not occasionally through some striking facts to find 

that he had, at the end of all his criss-cross journeys, at last accomplished at least one step 

which was conclusively nearer the truth.”  

Every journey has an ending, as in my educational progression to a Doctoral degree, but 

every journey’s end is another journey’s beginning. I look forward to my future as a scientist 

and the many successes ahead. 
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