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THE INFLUENCE OF THE PEP-PTS AND OTHER METABOLIC SYSTEMS ON THE MASTER VIRULENCE 

REGULATOR ATXA AND TOXIN GENE EXPRESSION IN BACILLUS ANTHRACIS 

Naomi Bier-Reizes, B.S. 

Advisory Professor: Theresa M. Koehler, Ph.D. 

 

AtxA, the master virulence gene regulator in Bacillus anthracis, is a PRD-containing virulence regulator 

(PCVR) as indicated by the crystal structure, post-translational modifications, and activity of the protein. 

PCVRs are transcriptional regulators, named for the regulatory domains subject to phosphorylation by the 

phosphoenolpyruvate phosphotransferase system (PEP-PTS), termed PTS Regulatory Domains (PRD), and 

for their impact on virulence gene expression. Generally, the phosphorylation of a PCVR regulates protein 

activity and multimerization. AtxA is phosphorylated at two histidine residues - one in each of its two 

PRDs. Phosphorylation at position 199 allows for AtxA to positively affect expression of virulence genes, 

whereas phosphorylation at position 379 prevents or destabilizes dimerization, and therefore ablates 

activity of AtxA. Interestingly, current data from experiments employing physiological, genetic, and 

biochemical approaches do not support the predominant model of PCVR function in which the PTS 

proteins HPr and EI are responsible for phosphorylation of AtxA. Rather, we have determined that HPr 

and EI are required for transcription of the atxA gene. Assessment of atxA transcript levels using a 

transcriptional reporter assay revealed that transcript levels were 2.5-fold lower in a mutant lacking HPr 

and EI compared to the parent strain, and that this change is enough to affect toxin production. Mutants 

harboring HPr proteins altered for phosphotransfer activity were unable to restore atxA transcription to 

wild-type levels, suggesting that phosphotransfer activity of HPr and EI is important in the regulation of 
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atxA gene production. In a mouse model of late-stage anthrax disease the PTS double mutant (HPr-EI-) 

was attenuated for virulence. Virulence was restored by expressing atxA from an alternative, PTS-

independent promoter region indicating the PTS influences virulence through control of atxA expression. 

These findings are intriguing; the proteins (HPr and EI) that were hypothesized to regulate protein (AtxA) 

activity are in fact involved in regulating transcription of the gene encoding AtxA. HPr is a phosphotransfer 

protein and is not predicted to bind DNA. Thus, we hypothesize that HPr transfers a phosphate to a 

downstream transcriptional regulator to influence atxA gene transcription. Future studies aim to identify 

the transcriptional regulator involved in this process. 
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1.1 Metabolism and Virulence 

When scientists first started studying pathogenesis and identifying genes necessary for 

virulence they created a category of genes known as virulence factors that typically included 

genes encoding toxins, capsules, invasins, and other secreted factors. This category of virulence 

factors did not include genes products necessary for basic cell physiology, such as housekeeping 

genes involved in cell division and metabolism. With the advent of in vivo expression technology 

(IVET), signature-tagged mutagenesis (STM), and differential PCR analyses, scientists identified 

housekeeping genes and basic physiological processes necessary for successful colonization 

and/or dissemination and survival in the host (Rediers et al., 2005). Regulation of physiological 

processes and virulence are interrelated for many pathogenic organisms and key metabolic 

regulators including CcpA and CodY, and metabolite import systems, such as the 

phosphoenolpyruvate phosphotransferase system (PTS), have been identified as important 

players in virulence factor production and pathogenicity in many Gram-positive organisms 

(Poncet et al., 2009a, Stenz et al., 2011). 

Bacteria often find themselves in environments with multiple carbon sources. In order to 

conserve resources and optimize growth, bacteria have developed a mechanism for utilizing one 

preferred carbon source first and later metabolize secondary or less preferred carbon sources. 

This is accomplished through repression of the gene expression necessary for using secondary 

carbon sources when the preferred carbon source is available, known as carbon catabolite 
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repression (CCR). In Gram-positive bacteria CCR is carried out by the catabolite control protein A, 

CcpA, together with HPr, a general protein of the PTS (Deutscher et al., 2014).  

CcpA has been implicated in virulence factor production for many Gram-positive bacteria. 

In Bacillus anthracis and Streptococcus pyogenes CcpA positively affects expression of the master 

virulence regulators AtxA and Mga (Chiang et al., 2011, Almengor et al., 2007a).  In Streptococcus 

pneumoniae, bacteria deficient in CcpA have reduced expression of the capsular polysaccharide 

and are attenuated for mouse nasopharyngeal and lung infection (Iyer et al., 2005). In 

Enterococcus faecalis and Enterococcus faecium, CcpA positively affects expression of collagen 

binding factor  and full virulence in animal models of infection (Somarajan et al., 2014, Gao et al., 

2013). For some Gram-positive pathogens, CcpA plays an inhibitory role to suppress virulence 

factor production. For instance, in Streptococcus gordonii and Streptococcus sanguis CcpA 

represses H2O2 production in carbon rich environments, and in Streptococcus mutans a ccpA 

mutant produces more acid than the parent, grows better at low pH, and excretes acid more 

rapidly (Richardson et al., 2015). 

Another global regulator involved in both central metabolism and virulence is the 

metabolite-responsive global regulator CodY. CodY regulates primary metabolic genes in 

response to nutrient availability and starvation in low G+C content Gram-positive organisms. 

During nutrient replete conditions CodY binds activating ligands branched chain amino acids 

(BCAAs) and in some organisms GTP. When bound to ligands, CodY is active in binding target 

sequences on DNA to repress transcription of target genes. During the transition to stationary 
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phase when nutrients become limited and BCAA and GTP levels drop, CodY releases from DNA 

and repression of target genes is alleviated. Genes regulated by CodY mediate adaptation of the 

bacteria to nutrient limitation via a number of mechanisms including increased secretion of 

proteases and production of amino acid transporters, promotion of sporulation and/or biofilm 

formation. For a number of pathogenic bacteria CodY also regulates key virulence factors that 

facilitate invasion, dissemination, and survival in the host (Stenz et al., 2011).  

The role of CodY in virulence factor regulation and pathogenesis has been explored for a 

number of pathogens including B. anthracis, Clostridum difficile, Listeria monocytogenes, 

Staphylococcus aureus, S. pneumoniae, and S. pyogenes (Stenz et al., 2011, Richardson et al., 

2015). CodY was found to be important in a subcutaneous model for anthrax infection. Though 

the mechanism has not yet been elucidated, toxin production in B. anthracis is abrogated in a 

codY-null mutant due to the effect of CodY on post-translational accumulation of AtxA, the 

regulator of toxin in B. anthracis (van Schaik et al., 2009). In C. difficile, CodY represses the 

expression of the toxin genes responsible for the development of gastrointestinal damage and 

antibiotic-associated pseudomembranous colitis through the direct binding of CodY to the 

promoter of the toxin gene regulator tcdR.  Binding of CodY to the promoter of tcdR is enhanced 

in vitro in the presence of BCAA and GTP linking nutrient deprivation with toxin expression in C. 

difficile (Dineen et al., 2007). In S. aureus the quorum sensing agr system, responsible for 

regulating a number of virulence factors including the including haemolytic -toxin (hla) and -

toxin (hld), is a target for CodY repression. A codY-null mutant has increased hemolytic activity 

toward rabbit erythrocytes due to activation of the Agr system and toxin genes (Majerczyk et al., 
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2008).  The general trend among these organisms is for CodY to repress genes involved in 

virulence during exponential growth and release repression as nutrients become scarce, 

conditions often encountered in the host.   

In recent years, the PTS, depicted schematically in Figure 1-1, has been implicated in 

virulence regulation as well. The PTS plays regulatory roles through the interaction HPr with CcpA, 

and in a CcpA-independent manner through the control of transcriptional regulators with PTS 

regulatory domains, known as PRD-containing regulators. The PEP-PTS is an energy dependent 

sugar import system used across bacterial species. It is made up of two general components, 

Enzyme I (EI) and HPr, and sugar-specific Enzyme II (EII) proteins. EI autophosphorylates using a 

phosphate from the end product of glycolysis phosphoenol pyruvate (PEP) (Deutscher et al., 

2014). The high energy phosphate is transferred to HPr on a conserved histidine residue, and 

then relayed to an EIIA protein. EIIB phosphorylates the incoming sugar transported by EIIC. This 

phosphorylation event serves to prevent efflux from the cell as EIIC has a low affinity for 

phosphorylated sugars and charge the sugar to enter glycolysis. In addition to phosphorylating 

EII proteins, HPr transfers the phosphate from its histidine residue to transcriptional regulators 

at conserved domains, known as PTS regulatory domains (Deutscher et al., 2014). These 

regulators, known as PRD-containing regulators because they are subject to phosphorylation by 

the PTS, generally control transcription of genes involved in sugar transport and utilization.  
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Figure 1-1 HPr phosphorylation and transcriptional control. EnzymeI (EI) autophosphorylates using 

phosphate from PEP and transfers the phosphate to the Histidine containing protein (HPr) on a conserved 

histidine residue. HPr-H15-P can transfer the phosphate to EIIA components of sugar-specific EII protein 

complexes (1), or to PRD-containing transcriptional regulators (2). After the enzyme IIA receives the 

phosphate group, it relays the P to EIIB which delivers the phosphate to the incoming sugar transported by 

the transmembrane protein EIIC. HPr in its histidine phosphoarylated form can also interact with 

transcriptional regulators to act as a co-effector and activate the regulator activity at target promoters (3). 

In the presence of readily metabolizable sugars, glycolytic intermediates, such as glucose-6-P and fructose-

bis-P, as well as energy in the form of ATP, are at high concentrations and stimulate 

HPrKinase/Phosphorylase (HPrK/P). HPrK/P phosphorylates HPr at a conserved serine residue (S46) (4). In 

this Ser46P form, HPr interacts with the catabolite control protein, CcpA, to activate CcpA as a 

transcriptional regulator.  
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1.2 PRD-containing Virulence Regulators 

PRD-containing transcriptional activators have a general protein organization as follows 

(Fig1-2). At the N-terminus of the proteins are DNA binding regions followed by PRDs. The PRD 

closer to the N-terminus is called PRDI, the PRD proximal to the C-terminus is called PRDII. At the 

C-terminus of the proteins are two domains resembling EII proteins of the PTS, an EIIA-like 

domain and an EIIB-like domain. Phosphorylation to control the PRD-containing regulators may 

occur at histidine residues in the PRDs or EIIA-like domain, or at a cysteine residue in the EIIB-like 

domain (Stulke et al., 1998). The outcomes of the phosphorylation events at specific sites differs 

for each protein. In the absence of a cognate sugar, the EII proteins of a specific system are found 

in their phosphorylated form and may phosphorylate the PRD-containing regulator to inactivate 

the regulator activity. Alternatively, when the substrate is present, the EII proteins transfer 

phosphate to the substrate and do not phosphorylate the PRD-containing regulator, thereby 

relieving the repressive phosphorylation on regulator activity. When HPr is phosphorylated at 

His15 (B. subtilis numeration), it can transfer the phosphate to PRD-containing regulators, 

thereby activating their activity. The presence of PTS substrates influences the phosphorylation 

state of the various components of the system, and therefore influence the system’s ability to 

phosphorylate and control PRD-containing regulators (Deutscher et al., 2014). 

Within the last ten years a group of PRD-containing regulators, primarily in Gram-positive 

pathogens, has been associated with virulence. In B. anthracis, AtxA, AcpA, and AcpB are required 

for immune evasion, colonization, and dissemination within the host. In S. pyogenes, a Group A 

Streptococcus that can cause throat and skin infections, Mga is required for biofilm formation,  
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Figure 1-2. Comparison of AtxA and PRD-containing proteins.  

The structural organization of PRD-containing regulators and PRD containing virulence regulators is 

depicted above (drawings are not drawn to scale). AtxA contains five domains; two DNA-binding 

domains, two PTS regulation domains, and a domain resembling EIIB of the PTS. Other PRD-containing 

regulators are shown for comparison. Group 1 are some of the PCVRs in Gram-positive pathogens. 

Group 2 are transcriptional activators from B. subtilis. Group 3 are transcriptional antiterminators 

from B. subtilis. Phosphorylation sites that have been identified are highlighted in green and red. 

Green indicates phosphorylation at this residue increases regulator activity. Red indicates 

phosphorylation at the site decreases or inhibits activity of the regulator. An alignment of the PRDs 

of these regulators and a few others is presented in figure 7-1. 
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growth in whole blood, and resistance to phagocytosis (Hondorp, et al., 2013). Although in the 

same organism, RivR, another PRD-containing transcriptional regulator, negatively regulates 

capsule production and protease inhibitors that act on host proteases (Trevino et al., 2013). S. 

pneumoniae expresses a PCVR, known as MgaSpn, which has been found to play a significant role 

in infection in a murine model of infection (Solano-Collado et al., 2013). A PRD-containing 

regulator in a Gram-negative bacterium, uropathogenic Escherichia coli, named PafR was shown 

to be required for urinary tract colonization in a murine UTI model, as well as playing a role in 

biofilm formation (Baum et al., 2014).  

Like other, general PRD-containing regulators, PCVRs are also subject to phosphorylation 

at histidine residues with the PRDs. AtxA from B. anthracis is subject to phosphorylation at H199 

in PRDI and H379 in PRDII. Phosphorylation at H199 allows for AtxA activity, whereas 

phosphorylation at H379 inhibits AtxA activity and dimerization (Hondorp et al., 2013, Raynor et 

al., 2018). Mga from S. pyogenes is subject to phosphorylation as well. Phosphorylation at 

positions H204 and H270 within PRDI inhibits Mga activity and phosphorylation at H324 in PRDII 

activates Mga (Hondorp et al., 2013). Direct phosphorylation of Mga by the PTS proteins HPr and 

EI has been demonstrated, and mimicking phosphorylation affects the affinity of Mga binding to 

Mga-regulated promoters (Hondorp et al., 2013).  

1.3 Bacillus anthracis and Anthrax Disease 

 B. anthracis is unique among PCVR-expressing pathogens studied thus far in that it 

expresses three PCVRs; AtxA, AcpA, and AcpB (Raynor et al., 2018). B. anthracis, the causative 
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agent of anthrax disease, is a low G+C content bacterium and part of the B. cereus group. The 

genome of the bacterium consists of three genetic elements; the chromosome (5.3 Mb) and two 

virulence plasmids pXO1 (182 kb) and pXO2 (96 kb) (Kaspar & Robertson, 1987). The structural 

genes for the well-studied anthrax toxin, pagA, lef, and cya, are on pXO1, and the capsule 

biosynthesis operon (capBCADE) is on pXO2 (Makino et al., 1988, Tippetts & Robertson, 1988, 

Koehler, 2009, Schuch et al., 2010).  

B. anthracis like other Bacillus species has a developmental lifestyle with two life stages: 

vegetative cells and dormant spores (Koehler, 2009).  The bacterium is most commonly found in 

its spore form in the environment, however studies have shown it can grow in the rhizospheres 

of plants and the intestines of earthworms (Schuch et al., 2010, Saile & Koehler, 2006). Due to 

the prevalence of the spores in the soil, anthrax infection typically affects grazing animals, which 

leads to infection of humans and other mammals through food and textile production (Dixon et 

al., 1999). Upon entry into a host the spores germinate and vegetative cells disseminate and 

replicate, sometimes reaching concentrations of 10-8 colony forming units (CFU) per ml in the 

blood (Lyons et al., 2004). Septicemia can lead to host death. Once the host dies cells are exposed 

to increased levels of O2 which leads to sporulation, completing the developmental cycle (Dixon 

et al., 1999).  

The first step in the infection process is entry of dormant spores into a host. The three 

natural routes of infection are inhalation, ingestion, and entry of spores into a preexisting 

cutaneous lesion (Koehler, 2002). The well-studied form of anthrax is inhalational anthrax. Upon 
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entry into the host spores are engulfed by alveolar macrophages and transported to regional 

lymph nodes from which they can spread systemically. Within the macrophages, germination 

occurs and vegetative cells start to produce virulence factors (Guidi-Rontani et al., 1999, Lyons 

et al., 2004).  

Two of the most important and well-studied virulence factors expressed soon after 

germination are the tripartite anthrax toxin and the poly-d-glutamic acid (PDGA) capsule. These 

virulence factors are essential for virulence in some animal models as they assist in survival and 

dissemination within the host (Lyons et al., 2004, Levy et al., 2014). The anthrax toxin is a 

variation of the classic A-B type toxin. There are two enzymatic A portions, edema factor (EF, 89 

kDa) and lethal factor (LF, 90 kDa) and one binding/translocating moiety, protective antigen 

(PA, 83 kDa). PA binds the host cell receptors tumor endothelial marker 8 (TEM8, ANTXR1) and 

capillary morphogenesis gene 2 (CMG2, ANTXR2). Once bound PA oligomerizes into heptamers 

or octomers, and in this form LF and EF may bind the PA complex. The receptor-toxin oligomers 

are endocytosed, and a drop in pH in the endosome triggers a conformational change in PA 

leading to pore formation and translocation of the toxin effectors into the host cell cytoplasm 

(Friebe et al., 2016). The poly-d-glutamic acid capsule of B. anthracis is unique among bacteria 

as it is composed of polymers of a single amino acid as opposed to typical polysaccharide 

capsules. The capsule is weakly immunogenic and serves to inhibit host defenses through 

inhibiting host-immune detection and phagocytosis (Ezzell & Welkos, 1999). Recent evidence 

suggests free capsule also acts to alter the maturation of host immune cells (Jelacic et al., 

2014). 
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1.4 The Anthrax Toxin Activator, AtxA 

The toxin genes (pXO1) and the PDGA capsule (pXO2) are both positively regulated by the 

trans-acting transcriptional regulator, AtxA.  atxA is encoded on a pathogenicity island on pXO1. 

AtxA was first identified as a positive regulator of toxin production and therefore was named 

anthrax toxin activator (Dai et al., 1995). atxA-null mutants have severely reduced, or completely 

abrogated, toxin and capsule production, and are attenuated for virulence in animal models for 

infection (Fouet & Mock, 1996, Dai et al., 1995, Uchida et al., 1997, Hadjifrangiskou & Koehler, 

2008). The transcripts of 145 genes are affected by AtxA at least 4-fold or greater (Dale et al., 

2018). Although no consensus regulatory sequences have been observed upstream of AtxA 

regulated genes, the toxin gene promoters display structure similarity (Hadjifrangiskou & 

Koehler, 2008). 

The importance of AtxA is demonstrated by the attenuation of virulence of an atxA-null 

mutant, and underscored by the numerous levels of regulation exerted on transcription of atxA. 

Transcription of atxA is initiated from two promoters. The predominant promoter, P1, is proximal 

to the translation start site, and the much weaker, less active promoter, P2 is located 

approximately 600 bp upstream from P1 (depicted in Fig 1-3) (Dai et al., 1995, Bongiorni et al., 

2008). In addition to the influence of CcpA on atxA transcription, and CodY on AtxA stability, 

there is a complex regulatory network of environmentally responsive regulators in place to 

further modulate transcription of atxA. The mechanisms of control for most of the regulation, 

however, remain largely unclear. In agreement with its role in pathogenesis in mammalian hosts, 
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atxA transcript levels are increased 5-6 fold when cells are grown in culture at 37 °C compared to 

28 °C (Dai & Koehler, 1997). PagR affects atxA expression two-fold (Hoffmaster & Koehler, 1999). 

AbrB, a transition state regulator that controls growth-phase specific genes, represses atxA 

transcription in early exponential phase, and is the only identified trans-acting factor reported so 

far to bind directly to the atxA promoter region (Saile & Koehler, 2002, Strauch et al., 2005). A 

second repressor binding site was identified just downstream of the P1 transcriptional start site, 

however, the protein has not yet been identified (Dale et al., 2012). In accordance with these 

observations atxA transcription appears to be low in early phases of growth and peaks around 

transition phase. When the repressor binding site in the atxA promoter was mutated, activity 

from a PatxA-lacZ reporter was detectable in lysates earlier and at higher levels than in the parent 

strain (Dale et al., 2012). The redox potential of cells seems to play a role in atxA transcription as 

well. In cells deficient in cytochrome C, a sensor of the cell’s redox state, atxA transcription was 

increased in early exponential phase in rich medium, indicating cytochrome C may repress atxA 

transcription in response to the cellular redox state (Wilson et al., 2009).   
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Figure 1-3. Regulation of AtxA in B. anthracis. The multiple levels of AtxA regulation are 

depicted. Many factors have been shown to affect atxA transcription and post-translational 

stability and activity, but most of the mechanisms have not yet been defined (demonstrated by 

dotted arrows). 
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Environmental signals also play a role in modulating AtxA once the protein has been 

synthesized. CodY affects AtxA protein stability through an unknown mechanism (van Schaik et 

al., 2009). CO2 and bicarbonate appear to play a role in enhancing AtxA homomultimerization 

and activity (Hammerstrom et al., 2011). The high resolution crystal structure of AtxA revealed a 

structure similar to PRD-containing regulators, typically regulated by the PTS.  At the N-terminus 

of the protein are two helix-turn-helix domains, indicative of DNA binding. In the center of the 

protein are two PRDs, used to regulate AtxA activity via phosphorylation. The C-terminus of AtxA 

has a domain resembling an EIIB of the PTS, involved in multimerization of the protein. AtxA 

crystalized as a homodimer with the PRDII and EIIB-like domains of chain A interacting with the 

PRDII and EIIB-like domain of chain B (Hammerstrom et al., 2015).  

Phosphorylation and homomultimerization of AtxA is important for regulator activity. 

AtxA is phosphorylated at position H199 in the PRDI, proximal to the DNA binding region, and at 

H379 in PRDII proximal to the EIIB-like domain (Tsvetanova et al., 2007). Phosphorylation at H199 

allows for AtxA activity to positively affect toxin production, and phosphorylation at H379 inhibits 

AtxA activity and dimerization (Tsvetanova et al., 2007, Hammerstrom et al., 2015). 

1.5 Gaps in knowledge and significance of this work 

AtxA, the master virulence regulator of the important pathogen B. anthracis has been 

studied for many years for its role in pathogenesis. Much of the work has focused on 

understanding the mechanism of AtxA activity and the regulation governing the production and 

activity of AtxA. There still exists gaps in knowledge regarding the mechanism by which AtxA is 
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phosphorylated, how AtxA positively affects transcription of target genes, and as the work in this 

thesis describes, many levels of transcriptional regulation.  

In this work I found that AtxA, a PRD-containing regulator hypothesized to be controlled 

post-translationally by the PTS, is in fact controlled by the PTS at the level of transcription. I also 

explored further the effects phosphorylation of AtxA has on protein-protein interactions and 

solubility. Although many studies of PRD-containing proteins have focused on protein function 

and regulation of activity, relatively little is known regarding the potential influence of 

carbohydrate metabolism and signaling on transcription of the genes encoding these regulators. 

My data supports a model in which HPr transfers phosphate to a transcriptional regulator that 

regulates the transcription of a PRD-containing regulator, atxA. Future studies will aim to identify 

the target of HPr phosphorylation and if regulation of atxA is direct or through an indirect 

mechanism. 
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2.1 Strains and growth conditions 

Strains and plasmids are shown in Table 2-1. B. anthracis strains were derived from the 

Ames non-reverting, pXO1+ pXO2- strain, ANR-1 (Welkos et al., 2001). Escherichia coli strains TG1 

and GM2163 were employed for cloning. Unless otherwise indicated, E. coli cultures were grown 

in Luria Burtani (LB) broth (Bertani, 1951) with shaking at 37 °C. 

Inocula for all B. anthracis cultures were obtained from overnight cultures grown in brain-

heart infusion (BHI) (Becton, Dickson and Company) medium with shaking at 30°C. The 

stationary phase cultures were transferred to fresh medium at a starting OD600 of 0.08 and 

incubated with shaking at 37°C. For preparation of cells for electroporation, subcultures were 

grown in BHI to an OD600 between 0.6-0.8. For preparation of cell lysates for β-galactosidase 

assays, RNA isolation, and western blotting, subcultures were grown in CACO3 (Casamino Acids 

medium (Thorne & Belton, 1957, Hadjifrangiskou et al., 2007) buffered with 100 mM HEPES [pH 

8.0], and supplemented with 0.1% w/v glucose [or other sugars as specified], as well as 0.8 % w/v 

sodium bicarbonate) and incubated in 5% atmospheric CO2. For strains harboring atxA under 

control of the hyperspank promoter (Phyperspank) (Britton et al., 2002), expression was induced 

with isopropyl β-d-thiogalactoside (IPTG) during early exponential phase (2 h) and harvested at 

early stationary phase  (4 h). Strains harboring ptsH and ptsI under a xylose inducible promoter 

were induced with 0.1 - 2% xylose 1 h post-inoculation and harvested at early stationary phase 

(4 h). Cell pellets were used immediately or stored at -80 °C.  
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Antibiotics were added to media when appropriate, at the following concentrations; 

carbenicillin (100 g ml-1), spectinomycin (100 g ml-1), erythromycin (300 g ml-1) for E. coli and 

(5 g ml-1) for B. anthracis. 

2.2 DNA isolation and manipulation 

Standard procedures were used for cloning in E. coli TG1. Primers used for PCR are shown 

in Table 2-2. Plasmid isolation from E. coli was performed using the Wizard® Plus SV Minipreps 

DNA Purification System (Promega, Madison, WI). E. coli GM2163 was used to isolate non-

methylated plasmid DNA for electroporation into B. anthracis (Marrero & Welkos, 1995). B. 

anthracis DNA was obtained using UltraClean Microbial DNA Isolation Kit (Mo Bio Laboratories, 

Inc.). Restriction enzymes, T4 DNA ligase, and Phusion DNA polymerase were purchased from 

NEB. Bullseye Taq DNA Polymerase was purchased from MidSci (St. Louis, MO). 

2.3 Generation of marker-less deletions  

Markerless deletions in B. anthracis were constructed using the temperature-sensitive 

integration vector pHY304 as described previously (Pflughoeft et al., 2011). The ptsHI operon was 

removed from the ANR-1 chromosome via homologous recombination as described above. 

Primers TH235 and TH245 were used to amplify the left flanking region surrounding the operon 

and primers TH246 and TH244 were used to amplify the right flanking region. The two amplicons 

were fused together by SOE-PCR, subcloned into pHY304, and used to transform B. anthracis. 
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The ptsHI, atxA double mutant UT448 was constructed by removing the atxA gene from the ptsHI 

mutant UT439 as described.   

The ccpA-null mutant was generated following the same protocol described above using 

the primers NB063 and NB064 to generate the LFR and NB065 and NB066 to generate the RFR. 

2.4 Generation of plcR::GBAA2500promoter-atxA-His6 

The promoter of GBAA_2500 was chosen to control atxA transcription based on the 

observation that GBAA_2500 transcript levels were approximately the same as atxA transcript 

levels in the RNA sequencing experiment performed by Malik Raynor (Raynor et al., 2018). The 

atxA-His6 construct was fused to the promoter region and cloned into the plcR locus, a 

nonfunctional gene in B. anthracis. To confirm the promoter was not controlled by the PTS, the 

promoter-atxA fusion was cloned into a ptsHI-null mutant and AtxA-His6 production was 

monitored, and compared to expression of the fusion cloned into a parent strain containing the 

ptsHI operon. 

The plcR::GBAA2500promoter-atxA-His6 construct was generated by fusing two 

fragments together via SOE-PCR. The fragments were generated contained atxA with a C-

terminal His6 tag and BamHI RE, and the region upstream of GBAA_2500 predicted to contain 

the transcriptional start site and a BamHI RE site. 

The plcR flanking regions were amplified with a BamHI cut site in the middle of the two 

regions in order to promote incorporation of the plcR::GBAA2500promoter-atxA-His6 construct 
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into the plcR locus via homologous recombination. Primers ES40 and ES41 were used to amplify 

the right flanking region upstream of the plcR locus. Primers ES42 and ES43 were used to amplify 

the left flanking region downstream of the plcR locus. The two flanking regions were fused via 

splicing by overlapping extension PCR (SOE-PCR) (Horton et al., 1989). 

2.5 Generation of the HPr and EI expression vectors 

The His6-EI (pUTE1141) and His6-HPr (pUTE1142) constructs were generated in the 

following manner. The ptsHI operon was amplified from the B. anthracis genome using primers 

NB074 and NB075. The atxA RBS was added to the 5’ end of the product by primer walking using 

NB074 and NB076. The NB7476 product was used a template for all the HPr and EI-expressing 

plasmids. pUTE1141, the pUTE657-based plasmid expressing His6-EI, was constructed using 

primers NB074 and NB145 and sub-cloned into pUTE657 using SalI and SphI.  pUTE1142, the 

pUTE657-based His6-HPr expressing vector, was constructed using primers NB144 and NB076.  

Site-directed mutagenesis was employed to create the HPr phosphovariants, primers 

listed in the primer Table 2-2.  

To use the plasmid-based PatxA-lacZ reporter and the HPrEI expression vectors 

simultaneously, we employed the pAW285 vector (Wilson et al., 2009) with a different origin of 

replication from the pHT304-lacZ based PatxA-lacZ reporter. To move His6-HPr and His6-EI from 

pUTE657 based plasmids the following primers were used. Primers NB146 and NB148 were used 

to amplify the ptsHI operon with His6-tagged EI and His6-tagged HPr from pUTE1140, a construct 
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I made containing the ptsHI operon, and the phosphovariants created by site-directed 

mutagenesis. Primers NB148 and NB149 were used to amplify His6-HPr, and NB146 and NB147 

were used to amplify His6-EI. The constructs were subcloned into pAW285 using the restriction 

enzymes BamHI and HindIII. 

2.6 Overproduction of Bacillus anthracis proteins 

For the in vitro phosphorylation assay, proteins were purified from B. anthracis cultures 

grown in 1 L of BHI at 37 °C. After two hours of growth 0.5 mM IPTG was added to the medium 

and cultures continued to incubate for four more hours. Cells were collected using a 0.22 µm 

pore-size filter unit and resuspended in Buffer A-PIC (20 mM Tris-Cl pH 8.0, 100 mM NaCl, 5% 

glycerol, 30 mM imidazole pH 7.9, 1X EDTA-free complete proteinase inhibitor cocktail) 

supplemented with 1 mM MgCl2 and 10 units DNAse I, followed by centrifugation at 5000 x g and 

freezing of the cell pellets at -80°C.  

Native levels of HPr were determined by western blot using an antibody raised against 

specific peptides within the HPr sequence (a gift from Bethyl Laboratories Inc., Montgomery, TX). 

A gradient of xylose was used to determine the proper induction levels of HPr and EI from the 

pAW285 constructs.  EI is expressed from its native RBS within the ptsH coding sequence. We 

therefore determined the level of EI-His6 expressed from the ptsHI locus with both ptsH and ptsI 

His-tagged, to determine the native levels of EI. 
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2.7 Purification of proteins from Bacillus anthracis 

Frozen pellets were thawed on ice and resuspended in 10 mL Buffer A (10 mM Tris-HCl 

pH 7.5, 200 mM NaCl, 1mM imidazole) with complete EDTA-free proteinase inhibitor cocktail (Buf 

A+PIC), supplemented with 1 mM MgCl2 and 10 µl DNase 1. Cells were lysed via French press (3 

passages through a small cell set on 1000 psi or 5 passages through a large cell). Cell debris were 

collected by centrifugation at 16,000 x g for 20 min at 4°C. Soluble cell lysate was transferred to 

washed NTA-Ni resin. One ml NTA-Ni resin slurry (Qiagen, 50% resin solution) was washed twice 

with 4 volumes Buf A-PIC. The lysate was incubated with the resin in batch for 2 hr at 4°C. Beads 

were washed in batch, two times using 4 bead volumes of BufA-PIC. Beads were then 

resuspended in 1.25 ml BufA, transferred to a gravity column, and washed with 15 ml BufA. 

Proteins were eluted using 1 ml of Buffer E (Buffer A with imidazole) with a gradient of imidazole 

concentrations. The Bradford reagent was used to detect the protein in fractions. The fractions 

with protein were combined and dialized to maintain proteins in 50 mM HEPES pH 7.5, 5 mM 

MgCl2, 5% glycerol and stored at 4°C. 

2.8 Purification of PEP Carboxykinase  

Troy Hammerstrom performed the following protocol. “PEP carboxykinase (His-

PEPCK) was expressed and purified from the E. coli C41(DE3) harboring plasmid pKSM879 

(gift from K. McIver, University of Maryland). A colony obtained from LB agar was used to 

inoculate three 2-L baffled flasks each containing 500 ml ZYP-5052 autoinduction medium 

(56). The cells were cultured at 37°C for 24 hours. After harvesting cells via centrifugation 
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(10 min, 6200 x g, 4 °C), the cell pellet was washed twice with 50 ml 100 mM NaH2PO4 pH 

8.0 and stored at -80 °C. The cell pellet was resuspended in 35 ml Buffer 1 (20 mM 

imidazole, 20 mM NaH2PO4, 500 mM NaCl, pH 7.4) containing Complete EDTA-free 

proteinase inhibitor and cell membranes were ruptured during five passages through a 

French Pressure Cell. The sample was centrifuged at 6200 x g at 4° C for 10 min. The 

soluble material was transferred to a new tube and centrifuged for 20 min at 20,000 x g 

and 4° C before applying to 2 ml NTA-Ni resin prewashed with Buffer 1. After binding for 

1 h at 4° C, the resin was washed in batch using 8 ml Buffer 1. The resin was transferred 

to a gravity-flow column and subsequently washed with 25 ml Buffer 1. PEPCK was eluted 

from the resin with 10 ml Buffer 2 (500 mM imidazole, 20 mM NaH2PO4, 500 mM NaCl, 

pH 7.4). 20 μl Ni chelation buffer (250 mM EDTA, 50 mM NaH2PO4) was added per ml 

fraction and fractions containing His-PEPCK were dialyzed four times against 1 L Buffer 3 

(20 mM Tris-Cl pH 7.4, 1 mM EDTA, 100 mM KCl). The induction and purification yielded 

100 mg His-PEPCK” (Hammerstrom, 2012). 

2.9 Synthesis of 32P-PEP 

(Protocol was established in the lab and published by Troy Hammerstrom (Hammerstrom, 

2012)) 

“32P-PEP was synthesized and isolated according to methods established 

previously (58) using γ-32P-ATP (PerkinElmer, Waltham, Massachusetts) and PEPCK. 0.5 

ml reactions containing 50 mM HEPES pH 7.5, 12.5 mM KF, 5 mM MgCl2, 1 mM 
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oxaloacetate, 500 μg PEPCK, 50 μM γ-32P-ATP (2 mCi ml-1, 10 Ci mmol-1) were incubated 

for 5 min at room temperature (21° C). The reaction was diluted 10-fold with ddH2O, and 

the newly synthesized 32P-PEP was isolated via anion exchange chromatography using AG-

1-X8 Bicarbonate resin. The hydroxide form of the AG-1-X8 resin (BioRad) was converted 

to the bicarbonate form according to the product manual. The PEP reaction was added to 

2 ml of resin and 32P-PEP was eluted using a step-wise gradient consisting of 5 ml 0.3 M, 

0.4 M, 0.6 M, and 0.7 M triethylammonium bicarbonate. 32P-PEP was present in fractions 

containing 0.6 M and 0.7 M triethylammonium. The fractions were concentrated 5 fold 

via vacuum centrifugation in a vacufuge (Eppendorf, Hamburg, Germany)” 

(Hammerstrom, 2012). 

2.10 In vitro Phosphotransfer Assay 

Phosphotransfer assays were conducted using purified His6-EI, His6-HPr, GlcT-His6 and 

AtxA-His6. Reactions contained 3 μg His6-EI, 1.6 μg His6-HPr, 2 μg AtxA-His6,and 2 g GlcT-His6 in 

a total volume of 30 μl buffer (50 mM Tris-Cl pH 7.4, 5 mM MgCl2). 32P-PEP (0.5 μCi, 10 Ci mmol-

1) was added to a final concentration of 10 μM and the solutions were incubated for 30 min at 

37°C. Reactions were quenched by adding SDS-loading buffer (final concentration of loading 

buffer was 5% glycerol, 100 mM DTT, 2% SDS, 40 mM Tris-Cl pH 7.4). Samples were subjected to 

SDS-PAGE (12% poly-acrylamide SDS gel). The gels were dried and exposed to a phosphorimaging 

screen to detect 32P-labeled protein. The screens were scanned using a STORM 840 scanner and 

analyzed with ImageJ software. 
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2.11 In vivo phosphorylation assay 

 B. anthracis strain UT376 (pUTE991) was subcultured from overnight cultures in 25 ml of 

specified cultures at a starting OD600 of 0.08. For LB air experiments, LB was inoculated with the 

overnight culture and incubated shaking at 37°C. For CACO3 experiments, CA was prepared 

without phosphates and supplemented with 32P-labeled phosphoric acid. At T2 AtxA-His6 over-

expression was induced with 40 M IPTG and 1 mCi of 32PO4 was added to the media. Samples 

were collected at T4 and AtxA-His6 was purified following the AtxA-His6 purification protocol 

published in Troy Hammerstrom’s thesis (Hammerstrom, 2012). Following purification proteins 

were run on SDS-PAGE, the gels were semi-dried, exposed to screens, and imaged on STORM 840 

scanner.   

2.12 Western blot analysis 

Four-ml culture samples were collected via centrifugation at 21,130 x g. Culture 

supernates and cell pellets were separated and processed immediately or stored at -80 °C. Cell 

pellets were resuspended in 550 µL KTE-PIC (10 mM Tris-HCl pH 8.0, 100 mM KCl, 10% eth5ylene 

glycol, and EDTA-free complete proteinase inhibitor) and transferred to tubes containing 400 µL 

0.1 mm zirconia/silica beads (BioSpec Products, Barletsville, OK) and beaten for two min using a 

Mini BeadBeater (BioSpec Products) to lyse the cells. Lysates were centrifuged at 10,000 x g and 

the soluble fraction collected. SDS-loading buffer (final concentration of loading buffer was 0.05% 

bromophenol blue, 0.1M DTT, 10% glycerol, 2% SDS, and 5 mM Tris-Cl pH 6.8) was added to the 

soluble fractions. 



 

 

28 

 

Suspensions were boiled and subjected to SDS-PAGE. Proteins were transferred to 

polyvinylidene difluoride (PVDF) membranes, blocked with 5% milk in TBS-T (20mM Tris base, 

137 mM NaCl, 0.1% Tween 20; pH 7.6), and probed with the appropriate primary antibodies. 

1:1,000 for anti-EF serum and anti-PA antibody (List Labs, Campbell, California).  His6-tagged 

proteins were detected using THETMHis antibody (Genscript, Piscataway, NJ, USA) diluted 1:5,000 

in TBST. RNA polymerase β subunit was used as a load control and was probed with an antibody 

generated by ThermoFisher (Rockford, IL). Membranes were washed three times for five min 

each with TBST and probed with an HRP-conjugated secondary antibody. Membranes were 

washed again and developed using the SuperSignal West Dura chemiluminescent substrate 

(Thermo Scientific). 

2.13 Use of PhostagTM to detect phosphorylated proteins 

Cell lysates and purified proteins were dissolved in SDS-loading buffer and loaded onto 

regular 6% acrylamide gels and the PhostagTM-containing 6% acrylamide gel. 100 M PhostagTM 

and 200 M MnCl2 were used in making the PhostagTM-containing gel. Gels were run at low 

voltage until the bromophenol blue dye on the regular acrylamide gel reached the bottom of the 

gel. Proteins were transferred to PVDF via standard protocol and western blots were performed 

as described above. 

2.14 Use of pHis antibody to detect phosphorylated histidine residues   

 Cell lysates and purified proteins were subjected to SDS-PAGE on 15% acrylamide gels 

followed by transfer to PVDF membranes and probing with the pHis antibody. Samples were 

dissolved in 4X loading buffer ((160 mM Tris, pH 8.5, 40% (v/v) glycerol, 4% (w/v) SDS, 0.08% 
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(w/v) bromophenol blue, and 8% (v/v) BME) and electroblotted onto a PVDF membrane in 

Towbin buffer (25 mM Tris base, 192 mM glycine, pH 8.3, 10 % (v/v) methanol) at 100 V for 60 

minutes. The membrane was blocked with 3% BSA in wash buffer (25 mM Tris, 137 mM NaCl, 2.7 

mM KCl, 0.1% (v/v) Tween-20, pH 8.5) for 1 hour at room temperature followed by incubation 

with anti-pHis antibody (supplied by Thomas Miur, Ph.D., Princeton University) diluted 1:100 in 

wash buffer with 3% BSA for 1 hour at room temperature. The membranes were washed with 

wash buffer and incubated with goat anti-rabbit IgG-HRP conjugate (diluted 1:5000 in wash 

buffer with 3% BSA) for 1 hour, washed, and developed using the SuperSignal West Dura 

chemiluminescent substrate (Thermo Scientific). 

2.15 Detecting phosphorylated tyrosine residue  

 Three µg of each protein was incubated with 3U of CIP at 37°C for 1 hr. Approximately 

20µg of the positive control cell lysate (provided with the pTyr antibody) was loaded. Each protein 

(0.5 µg) and each CIP treated protein was loaded onto two 10% polyacrylamide gels (one for pTyr 

western and one for THEHisAb). The positive control came in buffer already, and was boiled at 

100°C for 5 min per the protocol. For the rest of the proteins 5X SDS-loading buffer was added to 

the samples. The rest of the samples were not boiled prior to loading onto gel in order to preserve 

the phosphorylated histidine on EI to see if cross-reactivity would be detected with 

phosphorylated EI and not CIP treated EI.   The proteins were transferred to PVDF membranes, 

and probed with 0.5 mg/ml α-pTyr antibody (Millipore Anti-phosphotyrosine, clone 4G10 

Monoclonal Antibody Cat.# 05-321 Lot# 2310354) followed by 1:10,000 anti-mouse antibody 

conjugated to HRP.  
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2.16 BMH crosslinking  

Cells of the B. anthracis strain UT376- derived strains harboring plasmids encoding WT 

AtxA-FLAG (pUTE991), EIIB-like FLAG (pUTE1022) and AtxA H379D (pUTE992H379D) were 

cultured in CACO3  and induced with IPTG at early exponential phase. After two hours 20 ml of 

each culture was collected by centrifugation at 5,000 x g for 10 min at 4˚C and washed with PBS-

EDTA. Cells were resuspended in PBS-EDTA and lysed by bead beating. Cell lysates were 

centrifuged at 10,000 x g for 5 min at 4˚C to pellet insoluble debris. For each experiment, 250 μl 

of the soluble lysate was mixed with 5 μl of 20 mM bis(maleimido)hexane (BMH, Thermo 

Scientific, prepared freshly in DMSO) and incubated at 4˚C with end-over-end mixing for 2 h. 

Control reactions lacking BMH contained DMSO only. Reactions were quenched by adding 

cysteine to a final concentration of 40 mM and vortexing for 15 min at room temperature. SDS-

loading buffer (final concentration of loading buffer was 0.05% bromophenol blue, 0.1M DTT, 

10% glycerol, 2% SDS, and 5 mM Tris-Cl pH 6.8) was added to the samples and samples were run 

on SDS-PAGE followed by western blotting using α-FLAG antibody (Genscript). 

 

2.17 Determining solubility of AtxA 

Cell lysates were collected at transition to stationary phase. Cells were resuspended in 

KTE-PIC, disrupted by mechanical perturbation, and separated into soluble and insoluble cell 

fractions. The insoluble fractions were rinsed with KTE-PIC and then treated with 8M urea and 

rocked at room temperature for 3 hours. 5X SDS-loading buffer was added to the soluble 
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fractions. Fractions were subjected to SDS-PAGE and probed with THEHisTMmAB to detect AtxA. 

Relative levels of AtxA were determined using densitometry. The soluble fraction was arbitrarily 

set to 1 to determine the relative solubility of AtxA in each strain.  

 

2.18 β-galactosidase assays 

One-ml samples were collected from cultures grown to late exponential/transition phase. 

Liquid β-galactosidase assays were performed as previously described by Miller et al. (Miller, 

1972). Cell pellets were resuspended in 1 ml Z-buffer (60 mM Na2HPO4 · 7H2O, 40 mM NaH2PO4 

· H2O, 10 mM KCl, 1 mM MgSO4 · 7H2O, 50 mM β-mercaptoethanol [added just prior to use]), 

transferred to tubes containing 400 µL 0.1 mm zirconia/silica beads (BioSpec Products, 

Bartlesville, OK), and beaten for 1 min using a Mini BeadBeater (BioSpec Products) to lyse the 

cells. Lysates were centrifuged at 10,000 x g to pellet debris, and supernatant fractions were used 

to assay β-galactosidase activity. Figures show data averaged from at least three independent 

cultures. 

2.19 RNA purification 

RNA was isolated using a NucleoSpin®RNA RNA isolation kit (Macherey-Nagel, Düren, 

Germany) with the following modifications. Cells were resuspended in 100 µL TE and transferred 

to tubes containing 400 µL of 0.1 mm zirconia/silica beads (BioSpec Products, Barletsville, OK). 

Samples were subjected to bead beating for 2 min using a MiniBeadBeater (BioSpec Products) to 
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lyse the cells. Following centrifugation at 10,000 x g to remove cell debris, supernates was 

transferred to the column provided in the kit. The remaining steps were performed as 

recommended by the manufacturer with the exclusion of the on-column DNAse treatment. RNA 

was eluted from the columns with water, quantified using a NanoDrop Spectrophotometer ND-

1000 (Thermo Scientific), and checked for quality by subjecting samples to agarose gel 

electrophoresis.  

2.20 Real-time quantitative PCR (RT-qPCR) 

A two-step reaction for RT-qPCR was employed. Step one was performed following the 

SuperScirpt III (Invitogen) insert: 1 µg RNA, 250 ng of Random Primers (Invitrogen), and 0.5 mM 

dNTPs were incubated at 65°C for 5 minutes, followed by at least one minute on ice. Next DTT, 

5X buffer, and the SuperScriptIII enzyme were added to the reaction. The reaction was incubated 

at 25°C for five minutes, followed by 50°C for 60 minutes, and finally 70°C for 15 minutes. The 

resulting cDNA was cleaned using a DNA Clean and ConcentratorTM-5 kit (Zymo Research), and 

quantified using the ND-1000 NanoDrop. For the second step of qPCR 50ng of cDNA, IQ mix 

(BIORAD, Hercules, CA), and a primer probe mix from Thermo Fisher, assay numbers AIHSQBA 

(gyrB) and AII1OHI (atxA) were used to detect transcript of atxA and gyrB (internal standard). The 

second step was run on a BioRad real-time instrument using the following cycling conditions: 

98˚C, 2 min; followed by 40 cycles of 98˚C, 12 sec and 60˚C, 30 sec. Data was transferred to 

Microsoft Excel, the relative values of atxA transcript in each strain was determined (atxA/gyrB) 
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and compared to the parent strain. Student T tests were performed to compare all samples to 

the parent strain to determine the significance of the results (p values <0.05). 

 

 

2.21 Preparation of vegetative cells for I.V. injection 

B. anthracis spores (~107) were incubated in 1 ml BHI at 37 °C shaking for 15 min. The 

entire spore outgrowth culture was transferred to 30 ml CACO3 for 4 hours to an OD600 of 0.4- 

0.6. Vegetative cells were collected onto a filter membrane and rinsed twice with 25 ml Dubelco’s 

phosphate buffered saline (DPBS) without calcium or magnesium (insert company name). Cells 

were resuspended in DPBS to an OD600 of ~0.4. Prior to infection, an aliquot of the resuspension 

was diluted and plated on LB agar to determine the final inoculation dose (in CFU ml-1). 1 ml 

syringes with needles on (to account for dead space) were loaded with 100 L vegetative cell 

suspension. 

2.22 Mouse infections 

All mouse protocols were approved by The University of Texas Health Science Center 

Institutional Animal Care and Use Committee and performed using accepted veterinary 

standards. Seven to eight week-old female A/J mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME) and maintained in a pathogen-free vivarium at The University of Texas Health 
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Science Center. Food and water were supplied to the mice ad libitum. The animals were housed 

3-5 per cage and were allowed to acclimate to their surroundings for 72 hours prior to being used 

in experiments. Mice were sedated with 3-6 mg kg-1 acepromazine 5-10 minutes prior to 

injection. Mice were infected intravenously via tail vein using 27 gauge needles (Becton, 

Dickinson and Company, Franklin Lakes, NJ) with 100 L suspensions containing approximately 

1,000 heat sensitive CFUs. Mice were monitored for two to six times per day for seven days 

according to the approved protocol. When mice presented with multiple signs of disease and 

were determined moribund, they were sacrificed and the liver, lungs, and spleen were collected 

to determine CFU per organ.   

2.23 CFU determination and Statistics 

Organs from deceased mice were collected, weighed, and resuspended in 1 mL sterile PBS 

and 400 L 2.3 mm diameter zirconia/silica beads (BioSpec Products, Barletsville, OK). Tissues 

were homogenized by bead beating for 1 min, followed by 1 min on ice, and again bead beating 

for 1 min. Homogenates were diluted and plated on LB agar and incubated at 30 °C overnight. 

Plates containing 30-300 colonies were counted and used to calculate the CFU g- tissue. A two-

sample permutation test (60) was performed to determine the significance of the differences in 

CFU per g and survival curves. 

2.24 Phenotype MicroarraysTM Biolog 
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 B. anthracis strain UT428 harboring the vectors pUTE991 and pUTE991H379A were grown 

on LB agar containing spectinomycin overnight. Colonies were resuspended in 20 mL 1 X IF-0a, 

the reagent specific for PM plates (Biolog catalog #77268) to an OD600 of 0.012, or 81% 

transmittance. For PM 1,2 panels 1.76 mL of the cell suspension was added to 2.24 mL of PM 1,2 

inoculating fluid (2 mM MgCl26H2O, 1 mM CaCl22H2O, 25 M L-arginine HCl, 50 µM L-glutamate 

Na, 12.5 µM L-cystine, pH8.5, 25 µM 5’-UMP, 2Na, 0.005% yeast extract) with added bicarbonate 

to a final concentration of ~0.08%. Plates were inoculated with the cell suspension. Initial 

readings were taken; OD600  and OD509 -excitation at 395 nm, emission at 509, gain of 100. A 

Synergy™ Mx Microplate Reader (BioTek, Winooski, VT) was used to make the measurements. 

Cultures were incubated at 37°C shaking on an OrbiShaker™ MP (Benchmark Scientific, Sayreville, 

NJ) at 290 rpm for 7 hours. After 7 hours the cultures were pipetted up and down to break up 

any clumps that may have formed during the incubation period and measurements were 

repeated. The fluorescence readings were normalized to the cell densities for both time points 

((485,528))/((600)), and then the T0 value was subtracted from the T8 value for each strain. Any 

numbers that were nagative were changed to zero and not used. In addition if a well contained 

a zero value from either strain, the well was not used in the analysis either. Wild-type value was 

subtracted from the H379A value so that any well with a positive value had more activity in the 

H379A strain, than the wild-type strain.  
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Table 2-1 B. anthracis strains and plasmids used in this study 

Name Description Source 

Strains   

ANR-1 B. anthracis, parent strain, pXO1+, pXO2- (Welkos et al., 2001) 

UT374 ANR-1-derivative atxA-null (Dale et al., 2012) 

UT376 ANR-1-derivative, lef promoter - lacZ fusion (Plef-lacZ) at 
native lef locus, atxA-null 

(Hammerstrom et al., 
2011) 

UT417 UT376- derivative, lef promoter - lacZ fusion (Plef-lacZ) at 
native lef locus, atxA-null, ptsHI-null 

This work 

UT425 ANR-1 derivative, AtxA-H379D in native atxA locus on pXO1 This work 

UT428 7702-derivative, lef promoter- gfp fusion at native lef locus, 
atxA-null 

This work 

UT433 ANR-1-derivative ccpA-null This work 

UT439 ANR-1 derivative, ptsHI-null This work 

UT447 UT374-derived, GBAA_2500 promoter region fused to atxA-
His6 and incorporated in to the plcR locus 

This work 

UT448 UT439-derived, ptsHI-null, atxA-null  This work 

UT449 UT448-derived, ptsHI-null, atxA-null, GBAA_2500 promoter 
region fused to atxA-His6 and incorporated in to the plcR 
locus 

This work 

   

Plasmids   

pUTE657 Expression vector derived from pDR111 and pBC16 with 
IPTG-inducible Phyper-spank; Specr Ampr 

(Hammerstrom et al., 
2011) 

pUTE839 pHT304-18z-derived atxA promoter-lacZ fusion vector; 
contains sequence from −770 to +99 

(Dale et al., 2012) 

pUTE843 pHT304-18z-derived atxA promoter-lacZ fusion vector; 
contains sequence from −72 to +99 

(Dale et al., 2012)
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pUTE991 pUTE657-derived expression vector for AtxA-His (6xHis-
epitope on the C-terminus of AtxA) the atxA ribosome 
binding site and coding region controlled by Phyper‐spank 

(Hammerstrom et al., 
2011) 

pUTE992 pUTE657-derived expression vector for AtxA-FLAG (FLAG-
epitope on the C-terminus of AtxA) the atxA ribosome 
binding site and coding region controlled by Phyper‐spank 

(Hammerstrom et al., 
2011) 

pUTE1022 pUTE657 - derived expression vector for AtxA385-475- 
FLAG (FLAG tag on the C-terminus) 

(Hammerstrom et al., 
2011) 

pUTE1034 pUTE657 - derived expression vector for HPr and EI; the 
ptsH ribosome binding site, ptsH coding region, ptsI 
ribosome binding site, and ptsI coding region controlled by 
Phyper-spank 

This work 

pUTE1098 pUTE657-derivative expression vector for GlcT-His6 (C-
terminally tagged GlcT); the AtxA ribosome binding site, glcT 
coding region controlled by Phyper-spank 

This work 

pUTE1141 pUTE657-derivative expression vector for His6-EI (N-
terminally tagged EI); the AtxA ribosome binding site, ptsI 
coding region controlled by Phyper-spank 

This work 

pUTE1142 pUTE657-derivative expression vector for His6-HPr (N-
terminally tagged HPr); the AtxA ribosome binding site, ptsH 
coding region controlled by Phyper-spank 

This work 

pUTE1143 pAW285-derived, His6-HPr (N-terminally tagged HPr) This work 

pUTE1144 pAW285-derived, His6-EI (N-terminally tagged EI) This work 

pUTE1145 pAW285-derived, His6-HPr His6-EI (N-terminally tagged HPr 
and EI) 

This work 

pUTE1151 pAW285-derived, His6-HPr His6-EI (N-terminally tagged HPr 
and EI) HPr H14A 

This work 

pUTE1152 pAW285-derived, His6-HPr His6-EI (N-terminally tagged HPr 
and EI) HPr H14D 

This work 

pUTE1153 pAW285-derived, His6-HPr His6-EI (N-terminally tagged HPr 
and EI) HPr S46A 

This work 

pUTE1154 pAW285-derived, His6-HPr His6-EI (N-terminally tagged HPr 
and EI) HPr H14A S46A 

This work 

pUTE1155 pAW285-derived, His6-HPr His6-EI (N-terminally tagged HPr 
and EI) HPr  H14D S46A 

This work 

pAW285 Xylose-inducible expression vector; Cmr (Wilson et al., 2009) 
   
   
   

Apr, ampicillin resistant; Cmr, chloramphenicol; Spr, spectinomycin. 
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Table 2-2 Primers used in this study 

Name SEQUENCE (5’ TO 3’) Short Description 

NB063 AAACTGCAGGATACGAACATTGGAAATTGGAATGCG ccpA KO, PstI cut site 
(upstream of start site) 

NB064 TTTTTATACTTACATCTCATCGCACACTCCTTC ccpA KO, middle primer   

NB065 CGATGAGATGTAAGTATAAAAAAGCTCACAGCGATTGC  ccpA KO, middle primer   

NB066 AAAGTCGACGCTGGCAATGTGAAACAATATGATCC ccpA KO, SalI site (downstream 
of gene termination) 

NB067 AAAGACTCGAGGAATATGCAGTGAGGCTCTTATGATT LFR lef promoter for GFP 
construct, XhoI 

NB070 AAAGAGAATTCAAGATGAAGATCGACAAAATGGCTC 
RFR, downstream of lef gene 
for GFP construct, EcoRI 

NB071 GCGCGTCGACCTCTAGATTTAAGAAGGAGATATAC Amplify GFP, SalI 

NB072 GTAACTAGCGACTCAGGAATTGATGCTCGTCCAGCAACTCTACTT HPr His14  Asp 

NB073 AAGTAGAGTTGCTGGACGAGCATCAATTCCTGAGTCGCTAGTTAC HPr His14  Asp 

NB074 GCATGCATTATATGCTTTTAACTAGTTCAACAACTTCTTCAGC Primer 1 (end of ptsI gene) to 
amplify ptsHI with His6-HPr and 
atxA RBS SphI site 

NB075 ATGCACCACCACCACCACCACGAAAAAATCTTTAAAGTAACTAGCGAC
TCAGG  

Primer 2 (add His6 to HPr) to 
amplify ptsHI with His6 on HPr 
and atxA RBS 

NB076 GTCGACAGGAAAGGAGAATCAATTATAGACATGCACCACCACCACCA Primer 3 (add atxA RBS and SalI 
cut site) to amplify ptsHI with 
His6 on HPr and atxA RBS  

NB077 GCATGCCAGTGTCGACATAAAGACGGGACCACTCAAAG 
LFR lef promoter for GFP 
construct, SphI, SalI 

NB078 GTCGACACTGGCATGCGGGACCAGCCATTATGAAGCAAC 
RFR, downstream of lef gene 
for GFP construct, SphI,SalI 

NB079 
AAAGCATGCTAGTGGTGATGGTGATGATGTTTGTATAGTTCATCCATG
CCATG 

Amplify GFP-His6, SphI, paired 
with NB071  

NB144 ATGTTAAGAGTGTGGTGGTGGTGGTGGTGCATTATTCTCCTAATCCTTC
GTTTTTCATAG 

Add His6 tag sequence to 5’ end 
of ptsI, overlap with NB145 

NB145 CTATGAAAAACGAAGGATTAGGAGAATAATGCACCACCACCACCACCA
CACTCTTAACAT 

Add His6 tag sequence to 5’ end 
of ptsI, overlap with NB144 

NB150 AAGGATCCTTAGTGGTGGTGGTGGTGGTGTATTATCTTTTTGATTTCAT
GAAAATCTCTTTCTG 

BamHI site, stop codon,  C-
terminal His6 atxA 

NB151 TTTCACAGCTAAGGAAAGGAGAATCAATTATAGACATGCTAAC atxA RBS and overlap with 
GBAA_2500 promoter 

NB152 TTCTCCTTTCCTTAGCTGTGAAATCTAAAGGATGATAATATCT GBAA_2500 promoter with 
overlap to atxA RBS  
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NB153 TTGGATCCTCTACTATACAATAGCTCGCAACGTAATTG GBAA_2500 promoter and 
BamHI site 

ES40 AACTGCAGTGTTGCGGAAACGTTAAAGA PstI site, used to knockout plcR 

ES41 CGGGATCCCGATTCAATTCGGCTCACTT Used to knockout plcR  

ES42 CGGGATCCTTGAAAACGCAATTGCAAAC plcR knockout LFR 

ES43 ACGCGTCGACTCGTATCTCCTGCCCAATTC SalI cute site, plcR knockout 
LFR  

LH17 GTTAACTTAAAAGCTATCATGGGCGTTATG HPr Ser46  Ala 

LH18 CATAACGCCCATGATAGCTTTTAAGTTAAC HPr Ser46  Ala 

LH44 GGTAGTCGACAGGAAAGGAGAATCAATTATAGACATGAGTAATTATCT 
AGAAATTAAAAAAG 

SalI, atxA RBS, GlcT F (48C) 

LH47 TCAGCATGCTTAGTGGTGGTGGTGGTGGTGTCCTCCCACATGCTCTGC
TTTCAC 

glcT, His6, STOP, SphI R (48C) 

MT10 GGTAGTCGACATTTAAAGGAGATAAATTATCATG ptsH RBS (SalI) (used to make 
pUTE1034) 

MT13 GGGCATGCATCGACTCAGGTTTTTTTATTAATTA ptsI stop codon (SphI) (used to 
make pUTE1034) 

TH235 GAGATCTAGACTAGTAGCACTTGGTGGTAAAG LFR ptsHI KO, XbaI 

TH245 CGACTCAGGTTTTTTTATTAATTACATGATAATTTATCTCC LFR ptsHI KO 

TH246 GGAGATAAATTATCATGTAATTAATAAAAAAACCTGAGTCG RFR ptsHI KO 

TH244 CAGCCTCGAGTTCATACGGAAGCTTTATCGCAC RFR ptsHI KO, XhoI 

TH310 GTAACTAGCGACTCAGGAATTGCTGCTCGTCCAGCAACTCTACTTG HPr His14  Ala (___ is the 
changed sequence) 

TH311 CAAGTAGAGTTGCTGGACGAGCAGCAATTCCTGAGTCGCTAGTTAC HPr His14  Ala (___ is the 
changed sequence) 
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The relationship of the PTS with AtxA and virulence in Bacillus anthracis 
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3.1 Introduction 

 The high resolution structure of the AtxA protein suggests carbohydrate import and 

metabolism may be important environmental signals for AtxA activity (Hammerstrom et al., 

2015). The structural organization of AtxA is conserved among a class of transcriptional regulators 

subject to phosphorylation by the PTS known as PRD-containing regulators (Stulke et al., 1998, 

Hammerstrom et al., 2015). At the N-terminus of the protein are two helix-turn-helix domains, 

indicative of DNA binding; in the center of the protein are two PTS regulatory domains, typically 

targets for PTS phosphorylation; and at the C-terminus, a domain resembling EIIB of the PTS, 

sometimes a target for phosphorylation and/or protein-protein interactions (Hammerstrom et 

al., 2015). AtxA is phosphorylated at two histidine residues within the PRDs, and the EIIB domain 

is necessary for homomultimerization. Phosphorylation of the H199 within PRD1 allows for AtxA 

activity as a positive transcription regulator, and phosphorylation at H379 within PRDII inhibits 

AtxA multimerization and activity (Hammerstrom et al., 2015, Hammerstrom et al., 2011, 

Tsvetanova et al., 2007).  

 PRD-containing regulators are subject to phosphorylation by up to three components of 

the PTS (Stulke et al., 1998). Most transcriptional regulators with PRDs are activated through 

phosphorylation by His15-P at a conserved histidine. When a readily metabolizable substrate, 

such as glucose or fructose, is present, His-15 is in its dephosphorylated form, and therefore 

doesn’t phosphorylate PRD-containing regulators, resulting in their inactivity (Deutscher et al., 

2014). The EIIA and EIIB components of cognate PTS systems can phosphorylate a cognate PRD-

containing regulator to deactivate the protein activity. In the presence of the associated sugar the 
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phosphate is transferred from the EII components to the incoming sugar, and EII doesn’t 

phosphorylate the PRD-containing regulator, thus relieving the repression and activating the 

regulator (Galinier & Deutscher, 2017). 

AtxA, like other PRD-containing regulators is subject to phosphorylation; however, the 

conditions under which it is phosphorylated, and the system responsible for the phosphorylation 

in B. anthracis have not been elucidated. Evidence of the involvement of the PTS in AtxA activity 

exists in the non-native host B. subtilis. In a B. subtilis strain engineered to express AtxA, and a 

reporter for AtxA activity, a pag‐lacZ reporter, the PTS appears to play an inhibitory role in AtxA 

activity (Tsvetanova et al., 2007). AtxA activity at the pagA-lacZ reporter was increased in the 

ptsHI mutant of B. subtilis, suggesting HPr may responsible for phosphorylated AtxA and inhibiting 

its activity. PTS-mediated regulation of PRD-containing regulators may differ between organisms 

(Joyet et al., 2015) and thus I sought to explore the relationship of the PTS and AtxA in the native 

host, Bacillus anthracis.  

 

3.2 Results 

3.2.1 Toxin synthesis and virulence in a PTS-deficient B. anthracis mutant is diminished. 

I wanted to determine if the PTS affects AtxA-mediated toxin gene expression in B. 

anthracis. I generated a ptsHI-null mutant, UT439, from the parent B. anthracis strain, ANR1. 

Culture supernates from cultures grown in CA medium with 0.08% dissolved bicarbonate in 5% 

atmospheric CO2 (CACO3), conditions reported to allow high levels of toxin production (Haines et 

al., 1965), were probed with anti-LF, anti-EF, and anti-PA sera using western blotting.  As shown 
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in Figure 3.1, the toxins were readily detected in culture supernates of the parent strain, but were 

not detected in culture supernates of the ptsHI-null mutant harboring an empty vector. Ectopic 

expression of ptsH or ptsI in this mutant was not sufficient to restore toxin synthesis. However, 

when both ptsH and ptsI were present on the complementation vector, toxin production was 

restored to a level similar to that of the parent strain.   



 

 

44 

 

 

  

Figure 3-1 Toxin production by parent and mutant strains. Culture 

lysates and supernates were obtained during the transition phase 

(4h) of growth from cultures grown in CACO
3 medium. Samples of 

culture supernatants were concentrated 10X and subjected to SDS-

PAGE followed by western blot with α-LF serum, and α
-
THE

TM
His 

mAb to detect HPr and EI.  ΔptsHI (UT439) was complemented with 

EV (empty vector pAW285) or genes ptsH (pUTE1143), ptsI 

(pUTE1144), or ptsHI (pUTE1145) as indicated.  
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To determine if the PTS plays an important role in the toxin-dependent A/J model, I 

compared the virulence of the parent strain to that of the ptsHI-null mutant UT439. A/J mice are 

complement-deficient and are susceptible to toxin-mediated infection with the non-capsulated 

Sterne-type strain, ANR-1. Our previous studies have demonstrated that an atxA-null mutant is 

avirulent in this model when mice are injected via the tail vein with up to 109 spores (Dai et al., 

1995). As shown in Figure 3-2, all mice infected with the parent strain were moribund within 96 

hours and B. anthracis was recovered from the liver, lung, and spleen. All mice infected with 

UT439 survived the seven-day experiment with no symptoms of disease, and B anthracis was not 

recovered from tissue of the collected organs. 

The structure of AtxA, the phosphorylation events in the AtxA PRDs to control AtxA 

activity and dimerization, the decrease in toxin production in vitro, and the drastic effect on 

virulence in vivo, support the hypothesis that the PTS is required for AtxA activity.  

  

  



 

 

46 

 

   

Figure 3-2. Virulence of parent and ptsHI mutants. A) Survival curves of mice infected intravenously with vegetative B. anthracis are 

shown. A/J mice were injected i.v. with 2.75 X 10
3
 CFU of the parent (black solid line; n = 6), and 3 × 10

3
 CFU of ptsHI-null (gray solid 

line; n = 6), vegetative cells. B) CFU/g of tissue collected.  
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3.2.2 Influence of PTS sugars and the PTS proteins HPr and EI on AtxA activity in vivo.  

The influence of the PTS on PRD-containing regulators differs in response to specific 

sugars (Deutscher et al., 2006). When a PTS substrate is present in the medium, the cognate EII 

PTS components are stimulated to relay phosphate to the incoming sugar, thus affecting the flux 

of phosphate through the system. To ascertain whether AtxA activity is affected by the presence 

of PTS substrates (PTS sugars) compared to sugars transported by alternative means (non-PTS 

sugars), I assessed AtxA activity in cultures grown in CACO3 medium supplemented with 0.1% 

glycerol and 0.1% of the specified added sugar. Our in vivo assay for AtxA activity employs strain 

UT376 (pUTE991). In this strain atxA is deleted from its native locus and expressed from an IPTG 

inducible promoter, and the lef promoter at the native locus is fused to a promoter-less lacZ gene 

(Hammerstrom et al., 2011). In this strain, transcriptional control of atxA is uncoupled from AtxA 

function, allowing quantitative assessment of AtxA activity upon IPTG-induction. β-galactosidase 

activity was measured in cell lysates from cultures grown in the presence of the PTS substrates 

(glucose, fructose, or mannitol) and in the presence of non-PTS sugars (glycerol or melibiose). As 

shown in Figure 3-3, there was no significant difference in AtxA activity in the cultures containing 

PTS and non-PTS sugars. These data indicate that engagement of the PTS components and flux 

of phosphate through the system does not influence AtxA activity. 

To further investigate the potential role of the PTS in AtxA function, I used the Plef-lacZ 

reporter system to compare AtxA activity in the PTS-containing strain UT376 (pUTE991) and PTS-

null mutant, UT408 (pUTE991). Cultures of the strains were grown in CACO3 medium, AtxA 

expression was induced using IPTG, and activity at the Plef-lacZ reporter was determined. The 



 

 

48 

 

PTS mutant in this case had variable growth and made loading the proper protein amount 

difficult. Proteins levels were normalized to the internal loading control, the β-subunit of RNA 

polymerase. β-galactosidase activity was comparable between the PTS-containing strain and the 

PTS-lacking mutant in cultures containing similar levels of AtxA (Fig. 3-4), supporting the 

conclusion that the PTS does not function to activate AtxA activity. 
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Figure 3-3. AtxA activity at the lef promoter in the presence of PTS sugars. 
Cultures of the B. anthracis reporter strain UT376(pUTE991) were grown in CACO

3
 

medium containing 0.1% glycerol and 0.1% added sugar as indicated. Gly is 
glycerol, glu is glucose, fru is fructose, mtl is mannitol, and mel is melibiose. Cells 
were collected from cultures at late exponential phase (4h growth) for AtxA 

activity assays and western blotting with α-THE
TM

His antibody. AtxA activity was 
assessed as β-galactosidase activity from a Plef-lacZ transcriptional fusion. Data 
represent the average of three independent experiments. A student’s T-test was 
performed to determine significant differences between AtxA activity in glycerol 
compared to the other sugars. All p- values in this assay were greater than 0.05 
and were not noted on the graph.  
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Figure 3-4. AtxA activity at the lef promoter in the absence of the PTS. Cultures of the B. 
anthracis reporter strains UT376(pUTE991) (PTS+) and the ptsHI-null mutant (PTS-) 
expressing atxA from a plasmid UT417(pUTE991) were grown in CACO

3
 medium. Cells were 

collected from cultures at late exponential phase for AtxA activity assays and western 

blotting with α-THE
TM

His antibody. AtxA activity was assessed as β-galactosidase activity 
from a Plef-lacZ transcriptional fusion. β-galactosidase activity presented is the average of at 
least three separate experiments. A representative western is shown. A student’s T-test was 
performed, the p-value was greater than 0.05 and was therefore not noted on the graph.  
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3.2.3 In vitro phosphorylation of AtxA 

The B. subtilis transcriptional antiterminators GlcT and SacY are two examples of PRD-

containing regulators subject to phosphorylation by HPr, for which the protein activity is 

independent of HPr phosphorylation. GlcT and SacY are phosphorylated by HPr, but this 

phosphorylation does not control protein activity (Crutz et al., 1990, Stulke et al., 1997).  The 

observation that AtxA activity is unaffected by different sugars in the medium, and that AtxA 

activity was the same in the parent and ptsHI mutant, led me to ask whether AtxA, like GlcT and 

SacY, may be phosphorylated by the PTS despite PTS-independent activity. 

To detect EI- and HPr-mediated phosphorylation of AtxA in conditions similar to those 

reported for other PRD-containing proteins, His6-tagged proteins were purified from B. anthracis 

and incubated in various combinations with 32P-labeled-PEP using conditions previously reported 

(Joyet et al., 2010, Tortosa et al., 2001, Martin-Verstraete et al., 1998). In vitro transfer of 

phosphate from PTS proteins to PRD-containing regulators has been demonstrated for many 

PRD-containing regulators (Joyet et al., 2010, Schmalisch et al., 2003, Tortosa et al., 2001).  

Reactions were subjected to SDS-PAGE followed by phosphor-imaging to assess protein 

phosphorylation (Fig. 4). The B. anthracis homologue of GlcT, a well-studied PRD-containing 

regulator from B. subtilis, was used as a positive control. As seen in Figure 3-5, EI was successfully 

labeled with the 32P-PO4 when incubated alone or with other proteins (lanes 1 and 5-11). A 

radiolabeled band corresponding to phosphorylated HPr was detected when HPr and EI were 

incubated together (lanes 5 and 8-11), but not when HPr was incubated without EI (lanes 2 12,  
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Figure 3-5. In vitro phosphorylation assay with the PTS proteins HPr and EI. Proteins 
present in each lane are indicated by “+”. Hexa-His EI, HPr, GlcT, and AtxA were induced in B. 

anthracis and purified via nickel-affinity purification. 
32

P-PEP was mixed with the proteins and 
incubated at 37° C for 30 min. A) Samples were separated on 10% poly-acrylamide-SDS gels 
and stained with Coumassie blue. B) The proteins were subjected to SDS-PAGE, dried, and 
exposed to a phosphor-imaging screen. Proteins present in each lane are indicated by the 

table. 
1
Ten fold more AtxA was added to the reaction. 

2
Purified AtxA was treated with calf-

intestine alkaline phosphatase followed by removal of the phosphatase, prior to incubation. 
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and 13), indicating transfer from phosphorylated EI to HPr, as expected. Phosphorylated GlcT was 

detected when incubated with EI and HPr (lane 8), indicating that the purified PTS proteins were 

functional in transferring 32P-PO4 to a PRD-containing regulator in our system. We did not detect 

phosphorylated AtxA when the protein was incubated with 32P-PEP and any combination of the 

PTS proteins, including a reaction containing excess AtxA (lane 10). To exclude the possibility that 

AtxA was purified in its fully phosphorylated form, and therefore unable to accept 32P-PO4, 

purified AtxA was treated with agarose-bound alkaline phosphatase prior to incubation with HPr 

and EI. Again, phosphorylated AtxA was not detected (lane 11). 

Although HPr successfully phosphorylated B.a. GlcT under the conditions I used, there is 

a possibility that my in vitro phosphorylation assay for AtxA phosphorylation was not working. 

AtxA is a recalcitrant protein that requires high salt concentrations to remain soluble in solution, 

and may not be in its native conformation under these buffer conditions. To date our lab has not 

been successful in establishing an assay to assess AtxA activity in vitro, therefore I was unable to 

determine via AtxA activity if purified AtxA is in its functional form. To control for the possibility 

that AtxA is not in the native conformation in vitro and cannot be phosphorylated by HPr in vitro 

I wanted to take an in vivo approach to detect phosphorylated AtxA as had initially been done by 

Tsvetanova (2007).  Several approaches may be taken to detect phosphorylation of proteins. 

Using radiolabeled 32P phosphorylated proteins may be detected in vitro or in vivo. Mass 

spectrometry can measure the difference in mass of a protein in its unphosphorylated and 

phosphorylated forms. A technology called PhosTagTM may be added to SDS-PAGE gels to slow 

the mobility of phosphorylated through the gels such that unphosphorylated and phosphorylated 
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forms of the protein form distinct bands. The ability to generate antibodies toward specific amino 

acid residues in the phosphorylated form has improved the field and provided a relatively easy 

way to distinguish phosphorylated proteins from their unphosphorylated state.  

3.2.4 In vivo phosphorylation of AtxA 

Phosphorylated histidine residues have historically been difficult to study due to the 

unstable nature of the high energy phosphoramidate bond’s susceptibility to acids and other 

nucleophiles. Due to the acid-labile nature of phosphorylated histidine residues mass 

spectrometry is not yet an option to detect proteins phosphorylated at histidine residues. Many 

scientists have tried to raise antibodies against phosphorylated histidine residues, but again, the 

bond appears to be too labile and could not successfully stimulate production of a pan-His-P 

antibody. In recent years the Miur lab at Princeton University successfully generated a pan-

specific antibody for the detection of phosphorylated histidine (70). I took several approaches to 

detect phosphorylated AtxA in vitro and in vivo including using the pHis antibody to try to detect AtxA 

in vivo.  

AtxA was first detected using an in vivo phosphorylation assay in which cultures of B. 

anthracis were grown in the presence of 32P and AtxA was purified, subjected to SDS-PAGE, and 

imaged using a phosphorimager  (Tsvetanova et al., 2007). Troy Hammerstrom published in his 

thesis that he had tried to replicate the work to detect AtxA in vivo but had been unsuccessful. 

Having made slight improvements to the protocol I tried to replicate the work of Tsvetanova and 

performed in vivo phosphorylation assays to detect AtxA. 
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I purified AtxA-His6 from cultures grown in LB air supplemented with 1 mCi of 32P (Fig 3-

9, panel A), and cultures grown in phosphate-free CACO3 supplemented with 32P (Fig 3-9, panel 

B). As a positive control, cultures expressing EI-His6 were grown in parallel and I purified 

radiolabeled EI-His6. Phosphorylated EI was detected under both conditions, however a band 

corresponding to AtxA was not observed in either case. A faint band was observed in Figure 3-6, 

panel B, which may have corresponded to AtxA but was not readily reproducible and therefore I 

did not feel confident in my ability to observe AtxA phosphorylation in vivo with and without the 

PTS present.  
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  Figure 3-6. In vivo phosphorylation to detect phosphorylated AtxA-His
6
. Cultures were grown in A) 

LB air supplemented, or B) phosphate-free CACO
3 

medium supplemented with 1 mCi PO
4 

. His
6
- 

tagged protein production was induced after two hours of growth. Samples were collected after 

two hours of induction and incubation with 32P-PO4. Cells were collected and the His
6
 protein was 

purified following the AtxA purification protocol. Following purification the proteins were subjected 

to SDS-PAGE and exposed on a phosphorimager.   
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I next tried to use the Phos-TagTM technology to detect phosphorylated AtxA-His6. The 

Phos-TagTM reagent is a dinuclear metal complex capable of binding phosphomonoester dianions 

with a high affinity and anion selectivity toward the phenyl phosphate dianion. When 

phosphorylated proteins move through a polyacrylamide gel copolymerized with Phos-TagTM, the 

complex interacts in a reversible manner with the phosphorylated residue and slows the proteins’ 

mobility through the gel (Kinoshita et al., 2006). The mobility shift generates two separate bands 

on the gel of the same protein: correlating to the phosphorylated and non-phosphorylated forms 

of the protein. Phos-TagTM acrylamide gels have been used to characterize phosphorylation 

patterns of proteins from Gram-positive and Gram-negative bacteria, both in vivo and in vitro 

(Barbieri & Stock, 2008, Tao et al., 2012). 

Using the Phos-TagTM PAGE guidebook I tested conditions to optimize SDS-PAGE with 

Phos-tagTM acrylamide such that phosphorylated and non-phosphorylated forms of AtxA would 

run at different rates and produce distinct bands on a western blot. Each protein behaves 

differently and the conditions must be optimized for each protein individually, therefore the use 

of a positive control such as phosphorylated EI was not possible. In Figure 3-7 western blots of 

Phos-tagTM and regular acrylamide gels were compared to determine if two distinct bands of AtxA 

could be detected in the Phos-tagTM gel as opposed to one band in the regular acrylamide gel. 

Cell lysates (fig 3-7, panel A) of cultures induced with 10 M IPTG to express native levels of AtxA, 

and of cultures induced with 40 M IPTG to overexpress AtxA, were subjected to SDS-PAGE and 

membranes probed with THETMHis-mAB. The phosphovariant of AtxA H199AH379A which is 

unable to be phosphorylated was used as a negative control. Protein levels of AtxA H199AH379A 
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appeared to be lower than the wild-type AtxA, but for the bands observed, a distinct second band 

corresponding to phosphorylated AtxA was not detected.  Two bands were detected in both gels, 

corresponding to the AtxA monomer and AtxA dimer as previously seen by our lab (15). I did not 

detect a separate band corresponding to phosphorylated AtxA.  

Purified AtxA, both the wild-type (WT) and H199AH379A (AA) phosphovariant, were also 

subjected to this analysis (fig 3-6, panel B). Additionally purified proteins were pre-treated with 

calf-intestine alkaline phosphatase as a negative control. Again, an additional band 

corresponding to phosphorylated AtxA was not detected when purified protein was subjected to 

PhosTagTM gel electrophoresis.  

Having tried in vitro, in vivo, and Phos-TagTM experiments, I next tried to use an antibody 

to detect phosphorylated histidine residues.  Dr. Thomas Miur’s lab at Princeton University was 

the first lab to generate a pan-specific pHis antibody. The Miur lab gifted me a portion of the 

antibody because it was not yet commercially available. To assess the phosphorylation state of 

AtxA in vivo I grew cultures in casamino acids medium in either air (CA-air) or in 5% atmospheric 

CO2 (CACO3). An atxA-null mutant, as well as a strain overexpressing the phosphoablative variant 

of AtxA (H199AH379A) were used as negative controls. Cells were collected and lysates subjected 

to SDS-PAGE followed by western blotting with pHis antibody. A band corresponding to AtxA 

(56kDa) was not observed on the α-pHis blot (Fig 3-7). AtxA is not very abundant in the cells, 

about 200 molecules of the protein are present (unpublished data from Malik Raynor). To test  
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Figure 3-7. Use of Phos-tag
TM

 technology to visualize phosphorylated AtxA
 
. A) Cell lysates of 

cultures expressing AtxA-His
6
 and B) purified proteins, were subjected to SDS-PAGE followed 

by western blotting with THE
TM

His-mAb. Where specified 100 mM Phos-tag
TM

 and 200 mM 

MnCl
2
 were added to 6% acrylamide gels. CIAP was used to pretreat purified proteins as 

specified in the lanes.    
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the possibility that AtxA was not detected in cell lysates because the antibody was bound 

to other, more abundant, phosphorylated proteins, I purified AtxA.   

 I purified wild-type AtxA-His and AtxA(H199AH379A)-His from cell cultures and subjected 

the samples to western blotting with α-pHis (Fig 3-8). The phosphohistidine bond is both heat 

and acid labile, therefore proteins were treated with heat, and TCA precipitated as negative 

controls. Both forms of the protein were detected using the antibody despite treatment with 

heat and tricarboxylic acid. This was surprising because previous reports suggest AtxA is only 

phosphorylated at H199 and H379 and the double alanine mutant should not be phosphorylated 

(Tsvetanova et al., 2007). In the Tsvetanova paper the authors grew B. anthracis cultures in LB 

medium supplemented with 32P-H3PO4 and subsequently purified AtxA from cell lysates using a 

recombinant antibody specific for AtxA. Wild-type AtxA and AtxA carrying single alanine 

substitutions at H199 and H379 were detected using a phosphorimager. No radioactive band was 

observed when AtxA H199AH379A was purified, suggesting that H199 and H379 are the only two 

sites of phosphorylation under those experimental conditions.  

Three possibilities exist for the observed binding of the pHis antibody to AtxA 

H199AH379A; 1) AtxA is phosphorylated at another histidine residue, 2) AtxA is phosphorylated 

at a tyrosine residue, such that the antibody interacts with the phosphorylated tyrosine as seen 

by Kee et al. (2013), or 3) the pHis antibody interacts with AtxA in a non-specific manner. 

Culture conditions varied between the previously published work and the experiment 

done in this work. The Tsvetanova study was carried out in LB medium. Radiolabeled phosphoric 
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acid was added at the transition into stationary phase and AtxA was purified from samples 

collected from stationary phase cultures. My experiments were performed using CA medium, 

and collected just before the transition into stationary phase, the point at which AtxA levels are 

highest as determined by a previous student in our lab.  It is possible that Tsvetanova didn’t 

observe phosphorylation of the purified double alanine mutant of AtxA due to a low abundance 

of phosphorylated species. Phosphorylated histidine are acid and heat labile. To rule out 

phosphorylation at other histidine residues I subjected purified AtxA-6XHis, AtxAH199AH379A-

6XHis and EI-6XHis to treatment with acid or heat. As demonstrated in Figure 3-8, panel A the 

treatments effectively abolished the phosphohistidine signal from purified EI, phosphorylated on 

a conserved H189, but did not prevent α-pHis interaction with AtxA wild-type or H199AH379A, 

suggesting the signal is not from phosphorylation of another histidine residue. 
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Figure 3-8. Probing cell lysates with α-pHis. Cell lysates of cultures grown in CA medium in air or in 

CO
2
 were subjected to SDS-PAGE and probed with the phosphor-histidine-specific antibody (pHis) 

or AtxA specific sera. Purified EI was included as a positive control. 
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Figure 3-9. Use of the α-pHis and α-pTyr to detect proteins phosphorylated at histidine and/or tyrosine 

residues. A) Purified proteins were subjected to TCA precipitation (TCA), heated (heat), or untreated (U), 

and subjected to SDS-PAGE. The membrane was stained with PonceauS stain, and then probed with the 

α-pHis.  B) Purified proteins were subjected to SDS-PAGE followed by PonceauS staining, and western 

blot to identify the proteins present and to detect any protein phosphorylated at a tyrosine residue. An 

antibody specific toward phosphorylated tyrosine residues was used, as well as  THEHis
TM

mAB antibody. 

The PonceauS stain and THEHis
TM

mAB blot are overlaid to show the presence of each protein. A positive 

control provided with the antibody, A-431 lysate, was run in the first lane of the blot presented.  
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In the publication describing pan-specific pHis antibody, the authors noted some cross 

reactivity with pTyr residues (Kee et al., 2013). Phosphorylated tyrosines are stable in both heat 

and acid. The detection of acid- and heat-treated AtxA with the pHis antibody may result from 

an interaction with a phosphorylated tyrosine. I purchased the pTyr antibody used in the pHis 

paper (Kee et al., 2013) and performed a western blot analysis with purified proteins. The pTyr 

antibody was used to probe purified EI-6XHis, AtxA-6XHis and H199AH379A-6XHis, untreated, 

and treated with calf intestine phosphatase (CIP). As seen in Figure 3-8 panel B, only the positive 

control that came with the purchased antibody was observed on the western blot, suggesting 

AtxA is not phosphorylated at a tyrosine residue.  

The results of Figure 3-8 showing interaction of AtxA with the pHis antibody regardless of 

treatment, as well as the negative results suggesting AtxA is not phosphorylated on a tyrosine 

residue, supports the conclusion that the pHis antibody interacts with AtxA in a non-specific 

manner.  

3.3 Discussion 

In this chapter data was presented demonstrating that the absence of the PTS proteins 

HPr and EI affects toxin production in culture and virulence in a toxin-dependent murine model 

for infection. I hypothesized that the PTS effect on toxin production was mediated by PTS control 

of AtxA phosphorylation and activity. Data obtained from physiological, genetic, and biochemical 

approaches do not support the hypothesis, but rather support the conclusion that the PTS does 

not affect AtxA activity in vivo and does not phosphorylate AtxA in vitro. Although AtxA 
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phosphorylation by the PTS in vivo could not be examined due to technical difficulties detecting 

phosphorylated AtxA, data obtained from the in vivo AtxA activity assays performed in the 

presence of various sugars and in the ptsHI-null mutant support the conclusion that the PTS is 

not involved in regulating AtxA activity. AtxA activity was the same at the Plef-lacZ reporter in 

both the parent and pts-null mutant, suggesting the presence of the PTS does not affect AtxA 

activity. AtxA activity is affected by phosphorylation of H199 and H379 as demonstrated 

previously (Tsvetanova et al., 2007, Hammerstrom et al., 2015, Hammerstrom et al., 2011) and 

therefore would be expected to change in the presence or absence of the kinase responsible for 

the phosphorylation. 

The initial observation of PTS involvement in AtxA activity was made in the non-

pathogenic B. subtilis. Tsvetanova and coworkers ectopically expressed AtxA and pagA-lacZ in B. 

subtilis and assessed AtxA activity at the pagA promoter in the parent and pts-null mutant of B. 

subtilis. In their experiments they observed an increase in pagA-lacZ expression in the PTS-null 

mutant compared to the parent strain, suggesting the PTS plays an inhibitory role in AtxA activity.  

My data assessing toxin expression and virulence in vivo contradict the findings of Tsvetanova. I 

found a decrease in toxin production and virulence in the absence of the PTS, not an increase. 

This difference in data suggests the findings may be host-specific and that the PTS may function 

differently in the two organisms. AtxA is native to B. anthracis and thus it is important to explore 

the relationship of the PTS and AtxA in the native organism.   
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Although we could not test AtxA phosphorylation in vivo in the presence and absence of 

the PTS, the likelihood that the PTS is responsible for AtxA phosphorylation is very small. 

Phosphovariants of AtxA such that H199 and H379 are changed to mimic phosphorylated 

residues (HD) or unphosphorylated residues (HA) have altered AtxA activity and 

homomultimerization patterns (Tsvetanova et al., 2007, Hammerstrom et al., 2015, 

Hammerstrom et al., 2011). These results suggest that phosphorylation of AtxA is effective in 

controlling AtxA activity, thus if the PTS was responsible for phosphorylation a difference in AtxA 

activity should have been observed in the PTS- strain relative to the parent, however it was not 

(Figure 3-4). It is more likely that AtxA is subject to phosphorylation by an unknown kinase of a 

yet to be identified system. Possible alternative systems and approaches to identifying the 

system and kinase is discussed in more detail in Chapter 6 of this work.  
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Transcription of atxA is influenced by the PTS in an HPr- and EI- dependent manner. 
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4.1 Introduction 

Although many studies of PRD-containing proteins have focused on protein function and 

regulation of activity, relatively little is known regarding potential influence of carbohydrate 

metabolism and signaling on transcription of the genes encoding these regulators. The above 

evidence supporting a role for the PTS in toxin production through a mechanism other than 

control of AtxA protein activity led me to question the relationship of the PTS with atxA 

transcription.  

Carbon catabolite repression (CCR) plays a role in regulating the transcription of genes 

related to carbohydrate import, metabolism, and utilization. In Gram-positive organisms CCR is 

carried out by CcpA binding to cre sites within promoters, mediated by HPrS46-P, and by control 

of PRD-containing regulators via phosphorylation by HPr and EII proteins (Deutscher et al., 2014). 

In B. anthracis CcpA mediates a two-fold increase in atxA transcription in response to glucose in 

the medium. However, the promoter of atxA does not have a cre site, and direct binding of CcpA 

to the atxA promoter was not observed (Chiang et al., 2011). In B. subtilis and other Gram-

positive bacteria, CcpA is activated in the presence of rapidly metabolized carbon sources; ATP 

stimulates HPr kinase to phosphorylate HPr at a conserved serine residue, and HPr-SerP interacts 

with CcpA to positively allow for binding of CcpA to target cre sites (Deutscher et al., 1995). To 

explore the possibility that the decrease in toxin production in the absence of the PTS was due 

to CcpA control on atxA transcription, I assessed the PatxA-lacZ reporter in parent, PTS-null, and 

ccpA-null mutants.  
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4.2 Results 

4.2.1 Transcripts of atxA are reduced in the absence of HPr and EI.  

Transcription of the PatxA-lacZ reporter was decreased in the ptsHI-null mutant 

compared to the parent, but was unaffected in the ccpA-null (Fig 4-1). Reporter activity in the 

ptsHI-null was restored when both HPr and EI were expressed, but not when either HPr or EI 

were expressed individually. In agreement with decreased levels of atxA transcript in the PTS-

null mutant, lethal factor was undetectable in the supernates of this strain, as well (Fig. 4-1). 

According to the model developed in B. subtilis, and the observation made by Chiang, et al. (2011) 

in B. anthracis, HPr is expected to play a role in enhancing transcription of atxA in the presence 

of glucose by mediating CcpA activity. The requirement for the presence of both HPr and EI to 

restore atxA transcription to the parent level, suggested a mechanism independent of CcpA.  

Generally, HPr affects transcription of genes through two pathways; by interacting with 

the catabolite control protein, CcpA in its HPrs-Ser46 phosphorylated form, and by 

phosphorylating PRD-containing transcriptional regulators. A third mechanism exists in B. 

subtilis, in which His15-phosphorylated HPr directly activates the transcription factor YesS similar 

to how HPrSer46P interacts with CcpA (Poncet et al., 2009b). The need for both EI and HPr to 

restore atxA transcription in the PTS mutant suggests HPr affects atxA transcription in an EI 

dependent manner; either through phosphotransfer to a downstream, PRD-containing regulator, 

or by direct interaction with a downstream regulator in its His14 phosphorylated form. To discern 

between these possibilities we generated phosphovariants of HPr and assessed their ability to  



 

 

70 

 

  

Figure 4-1. Transcription of PatxA-lacZ. Cultures of parent, PTS mutant, and PTS 

complementation strains carrying the PatxA-lacZ reporter pUTE843 were grown in 

CACO3 to transition phase and collected for -galactosidase assays and western blot 

analysis. A) β-gal activity from the PatxA-lacZ transcriptional fusion. B) Western blot of 

concentrated culture supernatants and cell lysates to detect lethal factor, HPr-His6, EI-

His6, and RNAPolβ. * p < 0.05, ** p < 0.01 
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complement the ptsHI-null mutant when co-expressed with EI. If phosphotransfer activity is 

necessary, any substitutions to HPr-His14 would not functionally complement the ptsHI mutant, 

however, if HPr directly interacts with a downstream regulator in its His14-phosphorylated form, 

mimicking phosphorylation using a His to Asp substitution should allow for a functional 

complementation of the PTS mutant.  

The phosphovariants with substitutions at H14 (H14A and H14D) were unable to 

complement the PTS-null phenotype (Fig 4-1), suggesting phosphotransferase activity associated 

with this residue is necessary for atxA transcription. A His to Ala substitution at HPr S46 did not 

affect atxA transcription, in agreement with no change in atxA observed in the ccpA mutant. The 

change measured by β-galactosidase assays was small, but significant, and enough to strongly 

affect toxin production. As shown in Figure 4-1, the decrease in atxA transcription observed in 

the PTS mutant and non-functional HPr complementation strains, correlated with undetectable 

toxin levels in the culture supernates. Overall these data support a model in which the PTS 

functions to phosphorylate a downstream regulator that directly or indirectly affects atxA 

transcription, and that this regulation is important for virulence factor production. 

4.2.2. The PTS affects transcription from the primary promoter of atxA P1. 

Transcription of atxA is initiated from two promoters; PI is the most predominant start 

site and is proximal to the translation start site, in contrast P2 is located approximately 600 bp 

upstream from P1 and is expressed weakly (Dai et al., 1995, Bongiorni et al., 2008). To further 

discern the PTS effect on atxA transcription, I determined at which promoter the PTS effect is 
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exerted. Using the transcriptional reporter assay with either the full length (P1 +P2) promoter 

region, or solely the proximal (P1) promoter region, I assessed activation of transcription at these 

loci in the parent and PTS-null mutant containing the reporter plasmid. As shown in Figure 4-2, 

transcription of atxA was decreased in the PTS-null mutant for both reporter constructs, 

regardless of the presence of P2, indicating that P1 is the promoter at which the PTS exerts its 

effect. 
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Figure 4-2. Relative expression of lacZ driven by atxA promoter regions P1+P2 (-770 bp to 

translational start) and P1 alone (-72 bp to translational start). Cultures of the B. anthracis 

harboring PatxA-lacZ constructs were grown in casamino acids medium containing 0.2% glucose 

and 0.9 % bicarbonate in 5% atmospheric CO2. Cells were collected from cultures at late exponential 

phase (4h growth) for analysis of β-galactosidase activity representative of activity from the atxA 

promoter regions. Graph is representative of three biological replicates. Student’s t-tests were 

performed to determine statistical significance between samples. * p < 0.05. 
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4.2.3. Using qRT-PCR to detect transcript levels of atxA 

 Transcription reporter systems are indirect methods for quantifying transcript levels. I 

attempted to assess atxA transcripts directly using quantitative reverse transcription PCR (qRT-

PCR).  I developed a TaqMan-based qRT-PCR assay to detect transcripts of atxA and, as an internal 

control, gyrB. Cultures of the parent, ptsHI-nulll mutant and the complemented strain 

ptsHI(pptsHI) were grown in CACO3 medium to early transition to stationary phase and cells were 

collected for RNA isolation and qRT-PCR analysis. All transcripts were normalized to gyrB. The 

results presented in Figure 4-3 indicated that atxA transcript levels were about five times lower 

in the ptsHI-null mutant as compared to the parent consistent with the results from the 

transcriptional lacZ-fusion (Fig 4-1). atxA transcript levels were restored when wild-type HPr and 

EI were expressed in the cell from a complementation vector. Consistent with the β-galactosidase 

assays, expression of wild-type EI with the phosphovariants of HPr H14A and H14D could not 

complement the ptsHI-null phenotype.  

 Problems arose in the qRT-PCR assay after some time had lapsed between experiments. 

The same strains (parent, ptsHI-nulll, ptsHI(pptsHI)) and conditions were used, however the 

results were no longer reproducible. The assay had become qualitative; simply, if atxA transcript 

was present, regardless of abundance, the signal would be amplified without any quantitative 

pattern. To troubleshoot and determine what had changed I took the following steps; 1) I 

streaked the cells on plates to see if there were multiple colony morphologies and if  
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Figure 4-3. Relative levels of atxA in the PTS mutants. qRT-PCR results of a Taqman assay. 

atxA transcripts were normalized to gyrB.  Data presented are on average of at least three 

biological replicates. Two technical replicates were performed per experiment. A 

student’s T-test was used to determine the significance between atxA in the PTS mutant 

complemented with WT HPr and EI and the mutant complemented with phosphovariants 

of HPr and WT EI.  Student’s T test * p < 0.05, ** p < 0.001 



 

 

76 

 

contamination had occurred, 2) I performed colony PCR using primers flanking the ptsHI operon 

to confirm the ptsHI deletion, 3) I performed qRT-PCR using another ptsHI mutant in the lab, 4) I  

performed qRT-PCR using strains that had been previously published to have two fold-increased 

and decreased atxA expression patterns, 5) I performed qRT-PCR using genomic DNA as the 

template to be sure the Ct value for atxA changed with varying amount of template, 6) I 

performed the analysis on two instruments simultaneously, and 7) I designed two new sets of 

primers and probes. None of my efforts were successful in identifying or fixing the problem. 

4.2.4. The PTS effect on atxA transcription affects virulence in a murine model for anthrax. 

 I sought to determine if the PTS and native regulated expression of atxA influenced B. 

anthracis virulence in a murine model for late stage anthrax infection in which toxin synthesis is 

critical. Our previous studies have demonstrated that an atxA-null mutant is avirulent in the A/J 

mouse model when mice are injected via the tail vein with up to 109 spores (Dai et al., 1995).  

To determine if the attenuation of virulence of the ptsHI-null strain (Fig 3-2) was due to 

transcriptional control of atxA I created UT447, a mutant in which atxA is expressed from a non-

PTS-controlled promoter (atxA*). Mice infected with UT447 succumbed to disease (Fig 4-3, panel 

A) and the bacterium disseminated to all tissues tested (Fig 4, panel B), but the infected mice 

exhibited significantly prolonged survival, indicating that native transcriptional control of atxA 

affects virulence. Mutant UT449 which contains atxA* but is deleted for ptsHI, was not further 

attenuated for virulence, suggesting that the avirulent phenotype of the ptsHI-null mutant UT439 

is due to the effect of the PTS on atxA expression. 
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Figure 4-4. Virulence of parent and ptsHI mutants. A) Survival curves of mice infected intravenously with vegetative B. 

anthracis are shown. A/J mice were injected i.v. with 2.75 X 10
3
 CFU of the parent (black solid line; n = 6), 4.5 × 10

3
 CFU 

of parent constitutively expressing atxA (ANR-1 atxA*) (black dashed line; n = 6), 3 × 10
3
 CFU of ptsHI-null (gray solid 

line; n = 6), or 3 × 10
3
 CFU of ptsHI atxA

*
(gray dashed line, n=6) vegetative cells. B) CFU/g of tissue collected. Two sample 

permutation analysis was performed to compare each strain to the other. ** p < 0.05 
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4.3 Discussion 

 The observation that toxin production was reduced in the ptsHI mutant strain, but was 

unaffected in the same PTS mutant strain when atxA expression was controlled by IPTG, led to 

the hypothesis that the PTS effects atxA transcription. Interestingly, the data obtained suggest 

PTS control of atxA is dependent on both EI and HPr, as opposed to the previously proposed 

model of control in which HPr influences atxA transcription through CcpA. The inability of HPr-

His14 phosphovariants to complement the ptsHI-null phenotype suggests phosphotransfer 

activity of HPr is necessary for atxA transcription. HPr-His14-P (His15 in B. subtilis) has been 

implicated in three main regulatory functions studied in B. subtilis and other Gram-positive 

organisms; 1) His15-P transfers phosphate to PRD-containing regulators to affect transcription of 

the PRD-regulator target genes, 2) His15-P interacts with the transcriptional regulator YesS in B. 

subtilis to influence expression of the pectin/rhamnogalacturonan genes, and 3) His-15-P 

phosphorylates and activates glycerol kinase (GlpK) to prevent inducer exclusion, because 

without the HPr-mediated phosphorylation GlpK interacts with transporters to enable inducer 

exclusion. Based on the necessity of HPr-His-P phospohotransfer activity, the most likely 

mechanism of HPr-mediated control of atxA transcription is HPr-mediated phosphorylation of a 

yet to be identified PRD-containing regulator. Interestingly, this would be the first example to my 

knowledge of a PRD-containing regulator controlling the transcription of another PRD-containing 

regulator.  

 The PTS effect on atxA transcription seems to be a 2- to 5- fold effect based on β-

galactosidase assays. The β-galactosidase assays are less direct in determining actual transcript 
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levels, as the assay is a read out of activation at the atxA promoter, as opposed to actual atxA 

transcript reads from qRT-PCR. The relevance of the PTS activity on atxA transcription is readily 

discernable in the effect on toxin protein levels (Fig 3-1 and Fig 4-1, panel B) and even more so in 

the attenuation of virulence of the PTS mutant in the murine model for late stage, toxin-

dependent, anthrax.  

 Further experiments are necessary to identify the intermediate factor involved in HPr-

mediated transcription activation of the atxA promoter P1. Transcript levels of atxA start to 

appear at early exponential phase and peak at transition to stationary phase (Saile & Koehler, 

2002). Crosslinking HPr to proteins during late exponential and transition to stationary phase, 

followed by purification and mass spectrometry of the HPr-protein complexes may aid in the 

identification of the intermediate factor. I made several attempts at purifying HPr-His6 after 

formaldehyde-crosslinking growing cells, but was unable to optimize the technique and did not 

detect positive controls such as CcpA and EI. Further optimization of the copurification technique 

is necessary.  

 Searching through the genome of B. anthracis, I found two potential PRD-containing 

regulators based on predicted domain annotations, GBAA_0790 and GBAA_5437, both of which 

are predicted to be involved in cellobiose metabolism, a sugar I have not yet tested. Another 

experiment that may lead to potential targets for identification of the unknown regulator would 

be to determine which, if any specific, PTS-sugars influence atxA transcription above baseline 

non-PTS glycerol. In a preliminary experiment (data not shown) using LB +/- glucose, fructose, or 
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mannitol I observed an increase in PatxA-lacZ production in the presence of glucose and fructose 

relative to LB only, but not mannitol, suggesting there is some specificity in sugar influence on 

atxA transcription.  Overall this work has uncovered a new level of regulation of atxA 

transcription and further work will help elucidate the molecular mechanism of control to further 

the field’s understanding of atxA and overall virulence factor regulation in B. anthracis. 
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Chapter V. 

 

 

 

 

 

The effects of phosphorylation of AtxA at H379 on virulence, solubility, and protein-protein 

interactions 
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5.1 Introduction 

The phosphorylation states of AtxA are known to dictate the protein activity. Using 

phosphoablative and phosphomimetic substitutions at the histidine residues subject to 

phosphorylation, it was determined that phosphorylation at residue 199 allows for AtxA activity, 

whereas phosphorylation at position 379 inhibits AtxA activity (Tsvetanova et al., 2007, 

Hammerstrom et al., 2011). Phosphorylation at position H379 has a dominant negative effect 

relative to phosphorylation at H199 on AtxA activity and prevents multimerization of the protein, 

and multimerization of AtxA appears to be important for activity (Hammerstrom et al., 2015).   

Protein-protein interactions also regulated the activity for some PRD-containing 

regulators. The B. subtilis transcriptional activator MtlR, is activated via sequestration of the 

protein to the cell membrane. The interaction between EIIBMtlR and the C-terminus of MtlR is 

required for full activation of MtlR activity (Joyet et al., 2015). ManR of L. monocytogenes 

interacts with the soluble protein EIIB domain of the MpoABCD mannose-type transporter 

system (Deutscher et al., 2014). In his initial studies of AtxA mutlimerization, Troy Hammerstrom 

used a crosslinking agent, bis (maleimido)hexane (BMH), to determine protein-protein 

interactions at cysteine residues within AtxA. He used full length AtxA as well as truncated 

versions of AtxA to study the crosslinking patterns. The truncation of AtxA that expressed only 

the C-terminal domain, AtxA385-475, had a different crosslinking pattern than the full length AtxA 

(Hammerstrom et al., 2011).   

In this chapter I aimed to determine if the H379D variant of AtxA was altered for virulence, 

solubility, and/or protein interactions.   
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5.2 Results 

 
5.2.1 B. anthracis producing AtxA-H379D is attenuated in a murine model for anthrax. 

 Previous studies showed that AtxA H379D does not multimerize and is inactive in vitro 

(Hammerstrom et al., 2015, Hammerstrom et al., 2011). To determine if mimicking 

phosphorylation affects AtxA activity in vivo I created an ANR-1 derived strain with an allelic 

variation at the native atxA locus to express AtxA-H379D, UT425, and compared the virulence of 

this strain and the parent ANR-1. Using our model for late-stage anthrax infection I injected three 

groups of mice in the tail vein; one group with 103 CFU of ANR-1, one with 103 CFU of UT425, and 

the last group with 104 CFU of UT425. Mice were monitored until they were found moribund or 

deceased. As shown in Figure 5-1, all mice infected with ANR-1 were moribund within 72 hours 

post infection. Mice infected with UT425 survived the 7 day with no signs of disease. These results 

suggest mimicking phosphorylation at H379 inhibits AtxA activity in vivo and is important during 

infection.  
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Figure 5-1. Virulence of parent and AtxA-H379D-expressing mutant. A) Survival curves of 

mice infected intravenously with vegetative B. anthracis are shown. A/J mice were injected i.v. 

with 2.75 X 10
3
 CFU of the parent (open circle; n = 6), 4.50 × 10

3
 CFU of ANR-1 engineered to 

express atxA H379D (open square; n = 6), 3.0 × 10
4
 CFU of ANR-1 engineered to express atxA 

H379D (open triangle; n = 6)) vegetative cells. 



 

 

85 

 

5.2.2 Solubility of AtxA H379D 

During my studies, and previous studies in the Koehler Lab, we observed that the AtxA 

phosphovariant H379D required more IPTG induction to obtain similar steady state levels of AtxA 

H379D compared to the wild-type AtxA. AtxA H379D may have decreased solubility and/or 

stability and would therefore require move overall production of the protein to detect levels 

similar to wild-type AtxA in the soluble fractions. It is possible that AtxA H379D interacts with 

membrane-bound proteins and is therefore found at lower levels in the soluble fractions of cell 

lysates compared to wild-type AtxA. Alternatively, if AtxA H379D is less stable that the wild-type 

AtxA it may be degraded faster, or coagulate and come insoluble.  

To assess solubility of AtxA H379D I collected both soluble and insoluble cellular fractions 

of lysates generated from cultures expressing wild-type AtxA and AtxA H379D, and assessed if 

relative amounts of the proteins in the fractions. As observed previously, and assessed if there 

was increased H379D AtxA in the insoluble fraction relative to the wild-type levels. As observed 

previously, when AtxA H379D expression was induced with the same concentration of IPTG as 

WT AtxA, 10 µM, there was less overall protein detected (Fig 5-2). Additionally, when comparing 

soluble and insoluble fractions, there was an increase in AtxA H379D in the insoluble fraction 

relative to the soluble fraction. However, the difference in proportion of soluble and insoluble of 

AtxA H379D relative to WT AtxA was not observed when more IPTG (40 µM) was used to express 

AtxA H379D. The  subunit of RNA polymerase was used as a control for a generally soluble 

protein and the ratio of this protein stayed consistent in the various samples. It is possible that  
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Figure 5-2. Solubility of AtxA. Solubility of AtxA. Cell lysates were collected at transition to 

stationary phase. Cells were rinsed with PBS. Cells were resuspended in KTE-PIC, disrupted by 

mechanical perturbation, and separated into soluble (S) and insoluble (I) cell fractions. 5X 

protein loading buffer was added to the soluble fractions. The insoluble fractions were 

treated with 8M urea and incubated for 3 hours. Fractions were subjected to SDS-PAGE and 

probed with THEHisTMmAB to detect AtxA. Relative levels of AtxA were determined using 

densitometry. The soluble fraction was arbitrarily set to 1 to determine the relative solubility 

of AtxA in each strain.  
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AtxA solubility decreases when H379 is phosphorylated and that insoluble AtxA is likely not able 

to interact with DNA to promote transcription of target genes, adding a layer of regulation.  

5.2.3 Protein-protein interaction of AtxA H379D 

 PRD-containing regulators MtlR of B. subtilis and ManR of L. monocytogenes interact with 

the EIIB domains of specific PTS systems in their respective organisms (Deutscher et al., 2014). In 

his work, Troy Hammerstrom found that when he expressed the EIIB-like domain of AtxA (AtxA385-

475) and used the cross-linker BMH, the EIIB-like domain crosslinked with a distinct pattern 

relative to the full-length AtxA. Based on his observations that mimicking phosphorylation at 

H379 leads to abrogation of AtxA dimers, I questioned if phosphorylated AtxA interacts with 

other proteins at the AtxA EIIB-like domain as occurs for MtlR in B. subtilis. I used BMH 

crosslinking in vivo as described by Hammerstrom, et al. (Hammerstrom et al., 2011) to crosslink 

wild-type AtxA-Flag, the EIIB-like domain of AtxA alone, AtxA385-475-Flag, and AtxA H379D-Flag.  

The results presented in Figure 5-3 did not reveal any interactions of AtxA H379D when 

crosslinked with BMH. As was previously observed (Hammerstrom et al., 2011), wild-type AtxA-

Flag formed dimers and higher order multimers, and AtxA385-475-Flag had multiple higher 

molecular weight bands. BMH crosslinks free cysteine residues within 13 Å of each other. AtxA 

has cysteine residues at positions 96, 161, 202, 356, 370 and 402. Troy determined that C402 is 

the residue crosslinked by BMH when two monomers of AtxA interact (Hammerstrom et al., 

2011). The EIIB-like domain alone forms protein-protein interactions with cysteine residues in 

close enough proximity to crosslink using BMH. It is possible that phosphorylation at H379 
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changes the conformation of the neighboring domain and therefore interferes with the 

crosslinking of the EIIB-like domain to the unknown proteins, or that full length AtxA H379D 

doesn’t interact with the same interaction partners as the EIIB-like domain alone.  
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Figure 5-3. BMH crosslinking of AtxA and AtxA variants. 

Multimerization of AtxA385-475. Cell lysates of atxA-null strains (UT376) containing wild-type AtxA-

FLAG (pUTE992), AtxA385-475-FLAG (pUTE1022-FLAG), and AtxA H379D (pUTE992H379D) induced 

using 30–50 M IPTG were treated with the cross-linking agent BMH. Cell lysates were subjected to 

SDS-PAGE (4–20%) and western blots with FLAG-specific antibody to detect various forms of AtxA.  
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5.3 Discussion  

In agreement with assessments of AtxA activity in lab cultures I found that expressing 

AtxA H379D, mimicking the phosphorylated state, rendered B. anthracis attenuated for virulence 

in the mouse model used.  

To further our understanding of AtxA in the H379-phosphorylated state I studied the 

solubility and protein-protein interaction of the phosphovariant AtxA H379D. AtxA H379D 

requires induction with more IPTG than the wild-type AtxA. When the same concentration of 

IPTG was used to induce the wild-type AtxA and AtxA H379D lower levels of overall protein were 

observed for AtxA H379D, and the ratios of AtxA H379D in the soluble and insoluble fractions 

were different than those of wild-type AtxA. However, when AtxA H379D expression was induced 

with higher concentrations of IPTG leading to similar levels of overall protein abundance as wild-

type AtxA, a difference in solubility was not observed.  These observations suggest an equilibrium 

may be reached when AtxA is relatively abundant in the cells compared to when AtxA is 

somewhat limited. It is possible that AtxA is not as stable when in the monomeric form and is 

therefore present in lower levels when expressed as AtxA H379D. A follow up experiment would 

be to perform a modified pulse-chase experiments in which AtxA H379D would be induced with 

IPTG, sometime later cultures would be collected and resuspended in IPTG-free medium 

supplemented with sub-inhibitory concentrations of chloramphenicol to prevent further protein 

synthesis, and samples collected at multiple time points to probed for AtxA.  

AtxA has been previously shown to form homomultimers in vivo. Troy Hammerstrom had 

observed that the EIIB-like domain of AtxA, AtxA385-475, crosslinked with BMH resulting in a 
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number of protein bands. Some of these bands may be homomultimers of AtxA385-475, but not all 

the bands had molecular weights equal to multiples of 16 kDa, the molecular weight of the EIIB-

like domain alone. The observed difference in banding patterns of the EIIB-like domain relative 

to full length AtxA suggested the EIIB-like domain is able to interact with other proteins. One 

possibility is that AtxA when phosphorylated at H379 is in a monomeric form and the EIIB-like 

domain may be free to mediate the interaction of AtxA with other proteins.  My results using 

BMH crosslinking with the H379D variant suggest this isn’t the case, or that cysteine residues of 

AtxA H379D interacting partners are not within 13 Å as is the case when the EIIB-like domain 

interacts on its own. A more general experiment to do in the future will be to perform a general 

crosslinking experiment to determine if AtxA interacts with other proteins besides itself, and to 

determine if the interactions change depending on the phosphorylation state of H199 and H379. 
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Chapter VI. 

 

 

 

 

 

Alternative systems that potentially influence AtxA phosphorylation and/or activity. 
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6.1 Introduction 

The model for PTS function in Gram-positive bacteria was largely determined in B. subtilis.  

A comparison of the predicted open reading frames of B. subtilis to the B. cereus sensu lato group 

suggests the pathogenic bacilli have evolved to have a greater capacity to use peptides and amino 

acids compared to carbohydrates and sugars (Table 6-1). The annotated B. anthracis and B. 

subtilis genomes show a large difference in the number of genes potentially involved in 

carbohydrate and peptide metabolism. B. subtilis contains 41 genes predicted to be involved in 

carbohydrate polymer degradation, whereas B. anthracis only has 15 (Ivanova et al., 2003, Read 

et al., 2003). B. anthracis appears to have an expanded capacity for amino acid and peptide 

utilization; there are 48 predicted proteases in B. anthracis compared to 30 in B. subtilis, there 

are 17 ABC-type peptide binding proteins in B. anthracis, and only four in B. subtilis (Ivanova et 

al., 2003, Read et al., 2003, Han et al., 2006). B. anthracis contains nine homologues of the BrnQ 

BCAA transporter whereas B. subtilis has only two. Similar trends exist for B. cereus and B. 

thuringensis as noted in Table 6-1.  

The metabolic state of cells influences gene regulation. CodY is a conserved 

transcriptional regulator in Gram-positive bacteria that responds to the metabolic state of the 

cell to mediate adaptation to changing nutrient availability. In most organisms studied CodY is 

activated by binding BCAAs and GTP. When bound by BCAAs CodY binds target promoter regions 

to repress transcription of target genes. Thus, when nutrients are abundant CodY represses 

targets. When nutrients become limited CodY is no longer bound to the activating metabolites 

and releases from its target promoters allowing transcription to occur (Kaiser & Heinrichs, 2018).  



 

 

94 

 

  

Table 6-1. Comparison of predicted ORFs among Bacillus species. Adapted from Han CS. et al, 

2006. The number of predicted ORFs related to sugar utilization and peptide/amino acid utilization 

in Bacillus species are listed. 
a
No and yes indicate the absence and presence, respectively, of genes 

in the pathway. 
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CodY has been implicated in regulation of virulence for a number of Gram-positive 

pathogens. In B. anthracis CodY, through an unknown mechanism, affects the stability of AtxA 

and a codY-null mutant has decreased toxin production and decreased virulence in a murine 

model of toxinogenic anthrax (van Schaik et al., 2009). In L. monocytogenes a codY-null mutant 

is attenuated in a murine model of systemic infection (Kaiser & Heinrichs, 2018). Under BCAA 

replete conditions, CodY represses a number of metabolic genes, but also activates flagellar 

genes involved in pathogenesis. A unique feature of CodY in L. monocytogenes is that CodY can 

bind DNA under BCAA depleted conditions as well. When BCAA levels are low CodY acts to 

directly activate a number of genes including the virulence regulator of L. monocytogenes PrfA. 

In S. aureus CodY is active under BCAA replete conditions and primarily acts as a repressor of 

virulence genes (Kaiser & Heinrichs, 2018). 

Branched chain amino acid transporters and biosynthesis genes have been implicated in 

virulence regulation beyond their role in activating CodY (Kaiser & Heinrichs, 2018). During 

systemic infection and nasal colonization, S. aureus requires two BCAA transporters, BrnQ1 and 

BcaP for optimal survival (Kaiser et al., 2015, Kaiser et al., 2016). BCAA biosynthesis plays a role 

in invasion of host tissues for S. pneumonia following intranasal colonization, and BCAA 

transporters are important for growth in models of systemic infection, pneumonia, and 

meningitis (Kaiser & Heinrichs, 2018). BCAA biosynthesis and transporter genes have not yet 

been studied for their role in B. anthracis virulence, however, recent data revealing AtxA strongly 

represses many of these genes imply the genes may be important for virulence. In cultures grown 

in the toxin-inducing medium CACO3, AtxA strongly represses the predicted BCAA biosynthesis 
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genes ilvA, ilvB2, ilvC2, ilvD, ilvE2, ilvE1, ilvB, ilvC1, leuA, and leuB 30-60 fold, and the predicted 

BCAA transporters brnQ3 and brnQ6 34- and 21- fold, respectively (Raynor et al., 2018). 

Interestingly, when B. anthracis is grown in bovine blood the genes encoding predicted amino 

acid transporters, brnQ2 and brnQ6 are induced 100- and 20- fold respectively, relative to growth 

in LB (Carlson et al., 2015).  The strong repression of BCAA-involved genes by AtxA led me to ask 

whether BCAAs affect AtxA activity directly.  

6.2 Results 

6.2.1 AtxA activity increases with increasing concentrations of BCAA in the medium. 

 The evidence suggesting AtxA phosphorylation and activity are unaffected by the PTS lead 

me to question what other system may be responsible for regulating AtxA activity and toxin 

production. Based on the over representation of peptide associated genes in the B. anthracis 

genome compared to B. subtilis, I hypothesized that peptides or amino acids are responsible for 

controlling AtxA activity. The finding that AtxA strongly influences transcription of genes related 

to BCAA biosynthesis and transport led me to assess the relationship of AtxA activity and BCAAs 

in the medium.  

 I grew cultures of UT376(pUTE991) in R medium, a defined medium containing the 

components of casamino acids medium and easily manipulated (Ristroph & Ivins, 1983).  I 

induced AtxA expression with IPTG and compared AtxA activity at Plef-lacZ in cultures containing 

varying concentrations of the three BCAAs. As seen in Figure 6-2 AtxA activity increased in a dose-

dependent manner. As BCAA concentration was increased AtxA activity was as well. Importantly 
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the growth rate of the cultures grown in 0.1 mM and 1 mM BCAA was the same, however the β-

galactosidase activity was increased about 2-fold in the presence of 1 mM BCAA.  

 To determine if the increase in AtxA activity could be elicited by a single BCAA I grew 

cultures in R medium, this time adding only a single BCAA to the medium and comparing AtxA 

activity. There was no significant increase in AtxA activity when 3 mM of any individual BCAA was 

added to the medium, relative to the culture that did not contain any BCAAs (Fig 6-3).  To follow 

up the observation that BCAAs increase AtxA activity I would like to determine if CodY mediates 

this effect. I generated a codY-null mutation in B. anthracis. At this point I handed over the project 

to an incoming post-doctoral trainee to continue the investigations of the relationship of BCAAs 

and virulence in B. anthracis.  
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Figure 6-1. AtxA activity in the presence of BCAAs.   

Cultures of the B. anthracis reporter strain UT376(pUTE991) were grown in R-medium 

supplemented with BCAAs as indicated. A) Growth curve B) β-galactosidase activity and western 

blots.  Cells were collected from cultures at late exponential phase (4h growth) for AtxA activity 

assays and western blotting with α-THE
TM

His antibody. AtxA activity was assessed as β-

galactosidase activity from a Plef-lacZ transcriptional fusion. Data represent the average of at 

least three independent biological replicates. Student’s T-test was performed to determine 

statistical significant between samples. *p value <0.05 
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Figure 6-2. AtxA activity in the presence of individual BCAAs.   

Cultures of the B. anthracis reporter strain UT376(pUTE991) were grown in R-medium 

supplemented with individual BCAAs as indicated. A) Growth curve B) β-galactosidase activity and 

western blots. Cells were collected from cultures at late exponential phase (4h growth) for AtxA 

activity assays and western blotting with α-THE
TM

His antibody. AtxA activity was assessed as β-

galactosidase activity from a Plef-lacZ transcriptional fusion. Data represent the average of at 

least three independent biological replicates. Student’s T-test was performed to determine 

statistical significant between samples. *p value <0.05 

 



 

 

100 

 

6.2.2 Development of an assay to identify metabolites that affect AtxA activity. 

 In addition to testing BCAAs and their role in AtxA activity, I wanted to take a more global 

approach and develop a screen that will help identify systems potentially responsible for AtxA 

phosphorylation. To do I used the Phenotype MicroarrayTM (PM) plates from Biolog (Hayward, 

CA). The PM plates are 96-well plates containing different compounds in each well that are 

designed to test for specific cellular phenotypes. My goal was to use the PM plates 1-3, which 

contain carbohydrates and nitrogen sources, to determine what, if any, compound has an effect 

on AtxA activity. I compared wild-type AtxA to AtxA H379A, the form of AtxA that cannot be 

inactivated by phosphorylation at H379 due to the alanine substitution. B. anthracis strain ANR-

1 tends to grow in clumps under a number of conditions, the specifics of which are unknown, and 

clumps make reading optical densities in a 96-well plate difficult. Therefore, for this assay I used 

B. anthracis strain 7702, a strain that usually grows uniformly in liquid culture. I generated strain 

UT428, a 7702-derivative engineered to express GFP from the lef promoter and removed atxA 

from its native locus. I expressed AtxA from an IPTG inducible promoter on plasmid pUTE991. 

Strain UT428 is depicted in Figure 6-4 panel A. The design of exogenous expression of AtxA 

allowed me to bypass any effects the test compounds may have on atxA transcription and control 

the level of AtxA in the cells. The lef-gfp fusion allows for detection of AtxA activity in intact cells 

over time without having to perform β-galactosidase assays as had been done with lef-lacZ 

reporter strains.  

 Comparing wild-type AtxA activity to AtxA H379A should allow me to identify potential 

metabolites that affect AtxA phosphorylation at H379. In theory if a substrate stimulates the 
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phosphorylation of H379, then wild-type AtxA activity should decrease in the well containing the 

substrate, decreasing the GFP signal, while AtxA H379A activity should remain the same, 

producing GFP (simulated in panel B of Figure 6-3). 
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Figure 6-3. Design of Biolog PM Assay to determine conditions under which AtxA is 

phosphorylated at H379.  A) Graphic representation of the B. anthracis strain used in this assay. 

Native atxA has been deleted, and expression of an epitope tagged atxA occurs from an IPTG 

inducible promoter on a plasmid, a promoterless GFP is fused to the promoter of lef. B) Graphic 

representation of anticipated results showing GFP expression of the WT AtxA and AtxA H379A. 
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After many experiments to determine the proper growth conditions and shaking speeds I was 

able to obtain somewhat reproducible data. The assay is very crude and does not take into 

account all quantitative controls. Instead, the assay is meant to generate ideas of which 

substrates to test in our well-established flask based growth curves and activity assays. To control 

for differences in growth rate in the various conditions the OD600 of each well was measured and 

used to calculate the relative activities of the AtxA phosphovariants. To generate the numbers 

presented in Figure 6-4, I did the following. I took two readings at two time points: at the start of 

the experiment (T0) and eight hours later (T8).  Read 1 was to read GFP fluorescence, the 

excitation wavelength was 485 nm and read at 528 nm. Read 2 was the OD of the cells, 600 nm.  

I normalized the fluorescence readings to the cell densities for both time points 

((485,528))/((600)), and then subtracted T0 from T8 for each strain. Any numbers that were 

negative were adjusted to zero and not used. If a well contained a zero value for either strain, 

the well was not used in the analysis either. I then subtracted the wild-type signal from the H379A 

signal so that any well with a positive number had more activity in the H379A strain than the 

strain expressing wild-type AtxA. I did this experiment in duplicate to be sure the reads were 

reproducible. There were some wells that were positive in one assay and negative in the other, I 

did not include these in my analysis. The data I obtained from my experiment is presented in 

Figure 6-4. There were only six wells that elicited a reproducible and substantial difference in 

activity between WT AtxA and H379A. Dihydroxyacetone elicited the greatest difference, 2500 

units of activity. There are many improvements that can be made to this assay to increase 
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reproducibility. In the future improvements should be made and this experiment repeated with 

the PM3 plates containing nitrogen sources.  
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Figure 6-4. Activity of AtxA H379A relative to wild-type in the presence of specified substrates. 

Activity of AtxA was calculated using OD600 and OD485,528 and a comparison of activity of AtxA 

wild-type and AtxA H379A was performed. Presented is the relative difference of activity of 

H379A as compared to wild-type AtxA. These data were calculated from two independent PM 

assays and averaged.  
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6.3 Discussion 

 The observation that AtxA activity is affected by BCAAs is intriguing. The protein structure 

of AtxA does not have predicted BCAA binding sites, in fact, as discussed at length in this work, 

the structure of AtxA suggests a relationship with sugar import and metabolism as opposed to 

amino acids. CodY has been shown to affect AtxA protein stability via an unknown mechanism 

(van Schaik et al., 2009). The CodY protein contains a BCAA binding region and CodY activity is 

affected by BCAA concentrations in the cell (Shivers & Sonenshein, 2004). Although I did not 

observe a change in AtxA stability in cultures grown in various BCAA concentrations, it is possible 

that the increase in AtxA activity in the presence of higher levels of BCAA is due to increased CodY 

activity. The same experiments assessing AtxA activity with various BCAA levels will need to be 

performed in a codY-null background to determine if CodY is mediating this effect.  

The compound eliciting the greatest difference in AtxA activity between H379A and wild 

type AtxA was dihydroxyacetone, a compound that is produced during glycolysis in its 

phosphorylated form (DHAP). For DHAP to elicit a difference in AtxA activity is interesting 

considering my data suggesting sugar metabolism, at least metabolism that involves the PTS, is 

not involved in AtxA activity. In agreement with my findings that the PTS does not affect AtxA 

activity, the sugars, 2-Deoxy-D-Ribose and D-fucose, identified in this screen are predicted to be 

transported by dedicated ABC transporters, and not by the PTS. Interestingly, growth and AtxA 

activity was observed in the well containing sorbic acid, a common preservative of foods shown 

to inhibit growth of B. cereus and B. subtilis (Raevuori, 1976). Also of interest are two compounds 

in which the wild-type activity was much greater than the H379A activity (the negative numbers 
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in the graph). The methyl ketones acetoin (3-hydroxy-2-butanone) and its oxidized form 2,3-

butanedione result from decarboxylation of fatty acids are derived from pyruvate fermentation 

under anaerobic conditions (84). It is possible that changing H379 affects a residue nearby and 

that these compounds specifically affect stability, and/or activity of only the wild-type AtxA.  

Further experiments adding these compounds to cultures grown in flasks, using the 

UT376(pUTE991) lef-lacZ reporter should be performed to validate these findings.  
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Chapter VII. 
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7.1 General findings of this work 

In this work I explored the relationship of the sugar phosphotransferase system and AtxA 

activity and transcription in the pathogenic bacterium Bacillus anthracis. I have shown that HPr 

was unable to phosphorylate AtxA in vitro, that deletion of the genes encoding HPr and EI did not 

affect AtxA activity in its native host B. anthracis, and that AtxA activity stayed constant 

regardless of the sugar carbohydrate source added to the medium. AtxA phosphorylation does 

not appear to affect AtxA solubility drastically, nor does it change the pattern of AtxA protein 

interactions involving the cysteine residues in the C-terminus of the protein. In this work I present 

preliminary investigations probing the relationship of AtxA and branched chain amino acids. My 

data suggest further studies exploring BCAA transport and biosynthesis in the context of AtxA 

activity will be worthwhile in uncovering another mechanism of control and possibly a feedback 

loop of AtxA activity and regulation. Most importantly, the data I present support a model in 

which HPr and EI regulate atxA gene transcription. I propose that the regulation of the atxA gene 

transcription is achieved through the phosphorylation of a downstream transcriptional regulator 

that either directly or indirectly controls transcription initiation at the primary promoter of atxA. 

Transcriptional control of atxA by the PTS is important in a mouse model of late-stage anthrax 

infection, and bacterial load and time to death may not be directly related for B. anthracis 

pathogenesis.   

7.2 The unexpected relationship of the PTS and the master virulence regulator of B. anthracis  

PRD containing regulators have been well studied since the early 1990’s. Classically, these 

regulators control the transcription of genes involved in sugar import and metabolism. Many 



 

 

110 

 

studies have explored the relationship between regulator activity and carbohydrate availability 

(Deutscher et al., 2014, Galinier & Deutscher, 2017). I hypothesized that growing B. anthracis in 

various sugars would engage the PTS and modulate AtxA activity. However my results suggest 

that AtxA activity is not affected by the presence of the PTS sugars glucose, fructose and 

mannitol, nor is it affected when the PTS is not engaged by the use of melibiose or glycerol, 

suggesting that under the conditions tested the PTS does not play a role in modulating AtxA 

activity. 

             In order to determine if EI and HPr play a role in AtxA activity, through activation or 

inhibition, I assessed AtxA in the parent and ptsHI-null strain and compared AtxA activity in the 

presence and absence of EI and HPr. In B. subtilis AtxA activity was increased in the absence of 

HPr (Tsvetanova et al., 2007), thus I expected to see a similar phenotype. In B anthracis AtxA 

activity was unaffected by the absence of HPr and EI suggesting the previous observation may be 

specific to B. subtilis. For the PRD-containing regulator MtlR host-specific regulation of the 

protein has been observed. Despite the high degree of MtlR amino acid sequence conservation 

between L. casei, B. subtilis and Geobacillus stearothermophilus, the mechanisms for MtlR 

control in these organisms differ. In B. subtilis and G. stearothermophilus, MtlR is phosphorylated 

by HPr and EI at a conserved histidine in PRD2 to activate protein activity, whereas in L. casei it 

is not. In B. subtilis MtlR must be sequestered to the membrane via interaction with 

unphosphorylated EIIBMtl in order to be active (Joyet et al., 2015). The observation that AtxA is 

controlled differently in B. anthracis and B. subtilis raises the possibility that the systems may 

function differently in the two organisms. B. cereus a close relative of B. anthracis can cause food-
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borne illnesses, and in a few documented cases has caused anthrax-like disease (Hoffmaster et 

al., 2004, Brezillon et al., 2015, Klee et al., 2006). B. cereus G9241 expresses AtxA and AtxA2. 

Similar to AtxA in B. anthracis, in B. cereus G9241 AtxA forms homomultimers and AtxA2 does as 

well, but to a lesser extent (Scarff et al., 2016).  It will be interesting to study the relationship of 

the PTS and AtxA phosphorylation and activity in B. cereus G9241 as well as other Gram-positive 

organisms to determine if there is host-specific PTS involvement in regulating the PRD-containing 

regulator AtxA.  

Better characterization of the PTS in B. anthracis compared to B. subtilis is important for 

understanding basic physiological processes in this important pathogen. There is potential to 

exploit the PTS for potential interventions by understanding how virulence factor production is 

influenced by the PTS and somehow blocking activation, or stimulating inactivation. An 

understanding of the system in the pathogen is essential before a potential inhibitor could be 

identified or synthesized. Purified HPr from B. anthracis was functional in phosphorylating the B. 

anthracis homologue of the well-studied PRD regulator, GlcT, of B. subtilis (Fig 3-5), suggesting 

there is some functional overlap between the PTS in B. anthracis and B. subtilis. However, as 

noted in Table 6-1 the predicted open reading frames involved in PTS transport and carbohydrate 

catabolism differs between B. subilits and the three members of the Cereus group presented.  

7.3 Comparison of AtxA and other PRD-containing regulators  

The observations that AtxA is not post-translationally controlled by the PTS is not entirely 

surprising. The hypothesis that AtxA is subject to post-translational modification by the PTS is 
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based on the structure of AtxA, the phosphorylation of AtxA at two histidine residues within 

conserved PTS regulation domains, and the regulation on AtxA dimerization and activity that 

phosphorylation events exert (Hammerstrom et al., 2015, Hammerstrom et al., 2011, Tsvetanova 

et al., 2007). However, the initial observation of regulation by HPr in B. subtilis suggests AtxA is 

different than typical PRD-containing regulators. Phosphorylation of PRD-containing regulators 

by HPr almost always activates the regulator activity (Deutscher et al., 2014). In B. subtilis AtxA 

activity at the pagA, promoter is increased in the absence of HPr, suggesting that phosphorylation 

of AtxA by HPr serves a negative regulatory function, which is unique among PRD-containing 

regulators subject to phosphorylation by HPr (Tsvetanova et al., 2007). 

There are key characteristic differences that set AtxA apart from other PRD-containing 

regulators. Unlike other PRD-containing regulators, the regulon of AtxA does not appear to 

include PTS or PTS-related genes, nor any other notable genes related to carbohydrate 

metabolism (Bourgogne et al., 2003, Raynor et al., 2018). Additionally, PRD-containing regulators 

are defined by three qualifiers: evidence of predicted structure of duplicated domains in tandem; 

the regulator activity is affected by phosphorylation of specific histidine residues within those 

domains; and phosphorylation occurs via the PTS. AtxA has two of these qualifiers, but 

phosphorylation by the PTS was not detected and does not seem likely based on my work. Unlike 

classical PRD-containing regulators, the histidine residues subject to phosphorylation in AtxA are 

not highly conserved. In fact in an analysis of PRDs from classic, PTS-controlled PRD-containing 

regulators and PCVRs it appears PCVRs have diverged from PRD-containing regulators in the 

placement and conservation of histidine residues. In an amino acid sequence alignment 
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performed by Stulke (Stulke et al., 1998), PRDs are described to have a histidine residue at 

position seven of the PRD alignment presented and a conserved arginine at position 14 in the 

alignment (Fig 7-1 modified from Stulke, 1998). Interestingly, this histidine at position seven is 

phosphorylated for most of the proteins aligned (Fig 7-1 highlighted in red). When the alignment 

is modified to include the emerging class of PCVRs, the PCVRs appear to differ in histidine 

placement, as well as phosphorylation sites (for those regulators for which phosphorylation sites 

has have been identified) (Fig 7-1). 
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Figure 7-1. Alignment of PTS Regulation Domains. Modified from Stulke et al, 1998.  “I” denotes 

PRD1, the PRD proximal to the N-terminus and “II” denotes PRD2, proximal to the C-terminus. 

Group “1” are PCVRs in Gram-positive organisms; group “2” are PRD-containing transcriptional 

activators; group “3” are PRD-containing transcriptional antiterminators. Highly conserved 

sequences are highlighted in black. Residues with similarity are highlighted in gray. Red box 

indicates evidence of phosphorylation at the indicated histidine residue. 
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7.4 Transcriptional control of atxA by the PTS and its importance during infection. 

The overall model by which the PTS affects transcription in bacteria includes many aspects 

of HPr function. These activities include (1) HPr-mediated phosphotransfer to PRD-containing 

transcriptional regulators, (2) interaction of HPrSer46P with CcpA, and, in the case of B. subtilis, 

(3) interaction of HPrHis15P with YesS, a transcriptional activator of pectin/rhamnogalacturonan 

utilization genes (Poncet et al., 2009b). My results suggest that regulation of atxA transcription 

is achieved through control of an unidentified upstream regulator that is controlled by HPr and 

EI to affect transcription from the primary promoter of atxA. The B. anthracis genome does not 

indicate the presence of a YesS homologue and we have not been successful in identifying 

another PRD-containing regulator that affects atxA transcription. Two putative PRD-containing 

regulators have been identified in the genome, GBAA_0790 and GBAA_5437. In the future 

genetic deletions will be tested using the PatxA-lacZ reporter strain to determine if either of 

these putative PRD-containing regulators affects atxA transcription and could be the unidentified 

upstream regulator. 

 Interestingly a report by Chiang and coworkers (2011) showed CcpA elevated atxA 

transcript levels two-fold in response to the presence of glucose. My data did not reveal a 

significant difference in expression of the AtxA reporter PatxA-lacZ between the parent and ccpA-

null strain. It is possible that the conflicting data are due to strain differences or assay sensitivity. 

We note that CcpA control of the close atxA homologue mga in Group A Streptococcus has been 

reported, but there are many differences in regulation of mga and atxA transcription. For 
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example, mga is autogenously regulated (Almengor et al., 2007b), while atxA is not subject to 

such control, as indicted by evidence of transcriptional activity from the PatxA-lacZ reporter in 

the atxA-null mutant (Fig 4-1). 

Control of PCVRs by the PTS extends the influence of this sugar import system, such that 

in addition to regulating bacterial physiology, the PTS can also affect virulence gene expression 

in infected hosts. In this study, I found that the PTS-null mutant is attenuated for virulence and 

virulence was restored when atxA transcription was under control of a non-PTS responsive 

promoter. 

Interestingly, the data showed that placement of atxA under control of a different 

promoter results in attenuation for virulence relative to the parent ANR-1. These results are not 

entirely unexpected. In Listeria monocytogenes and Yersinia pestis altering virulence 

determinants such that they are constitutively active, attenuates virulence to different degrees 

(Mitchell et al., 2017, Krypotou et al., 2019). For B. anthracis, the attenuation of virulence does 

correlate with bacterial load in various tissues. In fact, strains expressing atxA from the non-

native promoter showed an increase in CFU per gram of infected organs relative to ANR-1-

infected mice. The attenuation of the strains expressing atxA constitutively intimates a more 

complex process leading to death of the host rather than simply a change in dissemination and/or 

proliferation. 
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7.5 Branched chain amino acids as a source of regulation for AtxA activity.  

 The observation that AtxA is not affected by carbohydrate availability and that the B. 

cereus group is predicted to have a decreased capacity in carbohydrate utilization and an 

increased capacity for protein/peptide utilization led me to question whether amino acids affect 

AtxA phosphorylation and activity. AtxA strongly represses the transcription of predicted BCAA 

transporters and biosynthesis operons and thus I started my exploration of the relationship of 

AtxA and amino acids with BCAAs. My preliminary experiments assessing AtxA activity at the Plef-

lacZ reporter demonstrate an increase in AtxA activity with increasing concentrations of BCAAs 

in the medium. Supplementation with single BCAAs did not elicit an increase in AtxA activity, 

suggesting the overall intracellular pool of BCAAs influences AtxA. CodY affects virulence factor 

production in a number of pathogenic bacteria, however, in most cases CodY directly impacts 

gene transcription. In the case of CodY and virulence factor production in B. anthracis, CodY 

appears to affect AtxA stability (van Schaik et al., 2009). An important follow up experiment will 

be to monitor AtxA activity in a codY-null mutant grown in varying concentrations of BCAAs.  

Further studies of BCAA and AtxA activity should be performed, including in vitro studies 

using bovine blood. When AtxA is active toxin is produced to suppress the host-immune 

response, allowing cells to freely metabolize and replicate in the host. B. anthracis produces 

proteases to free host-derived BCAAs for import into cells, rather than expending the energy to 

synthesize BCAAs in the cell. In congruence with this idea ABC transporters and two BCAA 

transporters were expressed during growth in blood (Carlson et al., 2015). It’s interesting to note 

that two of the six predicted BCAA BrnQ transporters are also highly repressed by AtxA during 
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grown in R medium (Raynor et al., 2018). BcaP is a non-homologous BCAA transporter for many 

Gram-positive bacteria, also repressed by AtxA. The functionality of the six predicted BrnQ and 

single BcaP proteins have not yet been established. The possibility remains that while AtxA 

suppresses two brnQ genes and bcaP, four other predicted transporters are transcribed. An 

important follow up study will be to test the predicted transporters for functionality as 

transporters in vivo. The possibility exists that the predicted transporters have roles as signal 

receptors and transmitters and don’t actually transport BCAAs into the cell, which would be 

interesting, as well. 

7.6 Improvements to the design and optimization of Plef-GFP and Biolog PM assay 

The observation that AtxA activity is affected by BCAAs does not preclude the involvement 

of other peptide- or amino acid- responsive systems as potential regulators of AtxA activity. It is 

therefore important to assess AtxA activity in the presence of multiple nitrogen sources. The 

phenotype microarray plates from Biolog present a good option for screening multiple media 

efficiently.  In this work I tried to optimize the conditions under which a Plef-GFP tag would 

provide an easy in vivo read out for AtxA activity that wouldn’t involve manipulation of the 96-

well plates after growth. Using the knowledge that BCAAs combined affect AtxA activity I would 

add all three BCAAs to one of the 96-well plates and use as a positive control in the comparison 

of plates grown with wild-type AtxA and H199A- the phosphovariant that cannot be activated via 

phosphorylation at H199.  
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To improve the Biolog assay, a fluorescent protein with a distinct emission spectrum from 

GFP could be used to normalize cell density and growth rate. This would be advantageous over 

the current method of normalization using the OD600 because of the clumping phenotype 

observed for B. anthracis cultures. 

7.7 Further studies 

 A number of follow up studies should be performed to better elucidate the 

mechanism by which the PTS affects atxA transcription and to identify the system responsible for 

AtxA phosphorylation. Further characterization of the relationship between AtxA and BCAAs 

would be beneficial, as well. Studies to better understand the mechanism by which the PTS exerts 

its control on atxA transcription would be useful in potentially developing therapies for anthrax 

toxemia. Knowing what sugars affect atxA transcription, we could use sugar analogs to occupy 

the receptors and prevent flux of phosphate through the system and potentially prevent 

activation of gene transcription. Homologues of PTS proteins have not been identified in the 

human genome and therefore present as potential target for antimicrobial agents. 

To identify HPr-interacting proteins as potential mediators of atxA transcription, and to 

further the field’s understanding of the PTS in B. anthracis, I propose using genome-wide yeast 

two-hybrid of B. anthracis genome to identify HPr-interacting partners. The yeast two-hybrid 

screen can be performed with two different set ups, HPr expressed alone, or with HPr and EI 

coexpressed to ensure EI phosphorylation of HPr, as was described in the experiments that led 

to the identification of YesS in B. subtilis (Poncet et al., 2009b). The yeast two-hybrid system can 
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also be used with AtxA to identify interacting partners and potentially the kinase responsible for 

phosphorylating AtxA.  

Improvements can be made to the phostag experiments to try and detect phosphorylated 

AtxA. The protein loading buffer should have a higher pH and resemble the loading buffer used 

for pHis antibody analyses which has been optimized for detection of proteins phosphorylated 

at histidine residues.  A single gel should be run in an electrophoresis box, as opposed to running 

two gels in the same box, to reduce resistance and heating, and the gel should be run at a very 

low voltage in the cold-room overnight. These improvements may help maintain the integrity of 

the very labile phosphohistidine bond to enable the interaction with the Phos-tag and allow for 

retardation of the phosphorylated form of the protein.  

Following up on the observation that BCAAs affect AtxA activity, a codY-null mutant 

should be tested to determine if the BCAA effect is mediated by CodY.  If it is not CodY-dependent 

it would be interesting to do in vitro DNA binding assays with AtxA in the presence of BCAAs to 

see if BCAAs increase AtxA binding to DNA. AtxA is not predicted to have a BCAA binding domain 

as seen in CodY however, the possibility for a new mechanism of BCAA-mediated increase in 

transcription factor activity exists. AtxA binds DNA in in vitro DNA-binding assays non-specifically, 

it will be interesting to see if adding BCAAs to the AtxA DNA mixtures to see if a change in DNA 

binding is observed.  
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7.8 Concluding remarks  

 In Figure 7-2 I present the updated model for AtxA regulation in B. anthracis based on the 

work I have presented in this dissertation. Through an unknown mechanism, HPr in its His14 -

phosphorylated form, phosphorylates an unknown transcriptional regulator, presumably a PRD-

containing regulator, to affect atxA transcription from the primary promoter, P1. My work has 

demonstrated that the PTS in B. anthracis does not affect AtxA activity, and is not likely the 

system responsible for phosphorylation in vivo. The kinase responsible for AtxA phosphorylation 

has not yet been identified, but the PM Biolog-based Plef-GFP assay developed aims to identify 

substrates that affect AtxA phosphorylation, and will lead to future investigation into potential 

kinases.  

I have shown that branched chain amino acids elicit an increase in AtxA activity in vivo. 

Recent data has demonstrated AtxA represses BCAA transporters and biosynthesis operons. 

Future work determining the relationship of the BCAA-related genes, intracellular levels of BCAAs 

and AtxA activity will be of importance to understand the mechanism of control. AtxA activity is 

increased in the presence of BCAAs, AtxA suppresses the transcription of genes responsible for 

synthesizing more BCAAs and for transporting them, thereby modulating BCAA levels in the cell 

to modulate AtxA activity.  

Overall the work in this dissertation has led to important findings in the field and has 

highlighted the need for further investigation into metabolism and virulence in B. anthracis. The 
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knowledge gained serves to improve the general knowledge of basic biology of this bacterium, 

as well as specific knowledge to potentially aid in the development of anti-virulence factor drugs.    
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Figure 7-2. Updated model for regulation of AtxA in B. anthracis. 

An updated model of the multiple levels of regulation of AtxA. Many factors have been shown 
to affect atxA transcription and post-translational stability and activity, but the mechanisms 
have not yet been defined (demonstrated by dotted arrows).  
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