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IMPACT OF EPA AND DHA SUPPLEMENTATION AND 15-LOX-1 EXPRESSION ON 

COLITIS AND COLITIS-ASSOCIATED COLORECTAL CANCER 

Jonathan Jaoude, B.S., M.A. 

Advisory Professor: Imad Shureiqi, M.D., M.S. 

ABSTRACT: Inflammatory bowel disease (IBD) patients not only suffer from colitis but also 

from increased morbidity and mortality of colitis-associated colorectal cancer (CAC). The 

enzyme 15-lipoxygenase-1 (15-LOX-1) is crucial to converting omega-3 fatty acid derivatives 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to resolvins, potent anti-

inflammatory products. 15-LOX-1 effects on the conversion of EPA and DHA to resolvins that 

subsequently exert anti-inflammatory and anti-tumorigenic effects have received little attention. 

To address this knowledge gap, we hypothesize that 15-LOX-1 expression in colonic epithelial 

cells is essential for resolvin biosynthesis from EPA and DHA to modulate immunophenotype, 

limit inflammation, promote resolution, and help prevent colitis and CAC. Mice were treated 

with dextran sodium sulfate (DSS) alone only to induce acute and chronic colitis, or with DSS 

following an azoxymethane injection to induce CAC. In the chronic colitis model, DHA diet 

and/or expression of 15-LOX-1 reduced inflammation and altered immune cell populations. In 

the CAC model, DHA reduces tumor numbers by 54% in the WT/DHA group and by 52% in 

the 15-LOX-1/DHA group. Increased levels of 17-HDHA, RvD1, RvD4, and RvD5 in the 15-

LOX-1/DHA group were inversely correlated to tumor number. EPA diet with and without 

expression of 15-LOX-1 reduced tumors by 47-48%. In conclusion, our study strongly supports 

the critical role of 15-LOX-1 for RvD production from DHA. CAC suppression occurred with 

DHA supplementation with and without 15-LOX-1 transgenic expression and seems to be less 

dependent on the production of RvDs. Further in-depth mechanistic studies are therefore needed 

to be better define the role of resolvins in CAC and colonic tumorigenesis in general.  
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1. Introduction 

 Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth 

leading cause of cancer death in the world (1). Inflammatory bowel disease (IBD) patients not 

only suffer from colitis but also from increased morbidity and mortality for colitis-associated 

colorectal cancer (CAC).  A global meta-analysis measured a 0.3% incidence rate per year for 

CAC (2), and a CRC prevalence of 3.7% with colitis patients (3). Though the incidence rate and 

prevalence of CAC seem low, IBD is the third highest risk factor for developing CRC. An 

estimated 10-15% of deaths in IBD patients are related to colorectal cancer (4). Evidently, it is 

important to treat IBD as a preventative measure to reduce CAC. 

 Fish oil and its omega-3 polyunsaturated fatty acid (PUFA) derivatives eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA) are widely promoted as agents that prevent 

chronic inflammation and cancer. EPA and DHA are also approved by the U.S. Food and Drug 

Administration (FDA) for treatments of hyperlipidemia (5). However, the effects of fish oils and 

omega-3 PUFAs on cancer are polarized between beneficial and harmful (6, 7). EPA inhibited 

polyp formation in a randomized clinical trial with familial adenomatous polyposis patients (8). 

Intraperitoneal treatment with 17-HDHA, a DHA derivative, has been seen to reduce colon 

epithelial damage and macrophage infiltration in a DSS mouse model (9). On the contrary, fish 

oils enriched with DHA induced severe colitis and adenocarcinoma formation in SMAD3-/- 

mice (10).  

 Chronic inflammation mechanistically promotes CRC; halting chronic inflammation 

could help prevent tumorigenesis (11, 12). Oxidative metabolites of EPA and DHA, resolvin E 

series (e.g., RvE1) derived from EPA and resolvin D series (e.g., RvD1) from DHA, are among 

the most studied pro-resolving mediators (13-17). Endogenous EPA can be converted to three 

known resolvins, RvE1-E3, and DHA to six known resolvins, RvD1-D6 (18). RvE1 displayed 
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potent anti-inflammatory actions on colitis (19) and attenuates TNF-stimulated nuclear factor-

κB activation (20). In DSS-induced colitis mice, RvD1 and RvD2 prevent colitis by suppressing 

major pro-inflammatory mediators (TNF-α, IL-1β, and NF-κB, etc.) and reducing colon damage 

(21). RvD5 reduced neutrophil recruitment in intestinal ischemia reperfusion injury, therefore, 

protecting tissue and enhancing resolution (22). 

 The enzyme 15-lipoxygenase-1 (15-LOX-1) is crucial in converting EPA and DHA to 

potent anti-inflammatory resolvins (23). The RvE precursor, 18-HEPE, is catalyzed by aspirin-

acetylated COX-2, a functionally similar enzyme to 15-LOX-1 (24). RvD precursor, 17-S-

HpDHA, is generated from DHA by 15-LOX-1 (25, 26). 15-LOX-1 has been widely shown to 

promote inflammation resolution in various experimental models (27). The enzyme is 

downregulated in human cancers of the lung (28), esophagus (29), breast (30), endometrium 

(31), urinary bladder (32), pancreas (33), and especially the colon (34-37). In addition, 15-LOX-

1 is repressed in 128 human cancer cell lines representing 20 different human cancer types (28). 

Repressed 15-LOX-1 is transcriptionally mediated (38) and independent of substrate availability 

(39). More recently, 15-LOX-1 was established to hold a tumor suppressive role, especially in 

colorectal tumorigenesis (23, 40). Re-expression of 15-LOX-1 in colorectal cancer cells via 

pharmaceutical agents, plasmids, or adenoviral vectors inhibited cancer cells from growing in 

vitro and in vivo (35, 41-46). Expression of human 15-LOX-1 in mouse epithelial colon cells 

inhibited colorectal tumorigenesis (43) and colitis-associated colorectal tumorigenesis (47, 48). 

 However, 15-LOX-1 effects on EPA and DHA modulating anti-inflammatory and anti-

tumorigenic mediators have received little if any research attention. In our preliminary studies, 

EPA anti-tumorigenic effects on AOM/DSS-induced colorectal cancer were dependent not only 

on the availability of the substrate but also on the activity of the initial oxidative metabolizing 
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enzyme, 15-LOX-1, and subsequent resolvin generation. Interestingly, more preliminary studies 

show that DHA without 15-LOX-1 might lose anti-tumorigenic effects.  

 More specifically, limited attention has been placed on the effects of 15-LOX-1 on EPA 

and DHA regarding the immune system. Immune cells play critical roles in CRC and CAC (49). 

Omega-3 PUFAs are emerging as potent immune-regulators in CRC and CAC (50). In a double-

blind clinical trial with breast cancer patients fed with EPA and DHA enriched fish oils, CD4+ 

levels remained stable and suggesting beneficial immune response (51). An in vitro study 

showed EPA reducing indoleamine 2,3-dioxygenase 1 (IDO) levels, an important proponent in 

tumor immune escape by reducing T cell proliferation and survival (52). 

 The current study examines the role of 15-LOX-1 as a host factor in modulating the 

effects of DHA on the immune response to colitis, and EPA and DHA on tumorigenesis. We 

hypothesize that 15-LOX-1 expression in colonic epithelial cells is essential for resolvin E-

series and D-series biosynthesis from EPA and DHA to alter immune cell polarization, limit 

inflammation, promote resolution, and ultimately help prevent colitis and CAC. Findings of this 

study could provide important information to aid future chemopreventive strategy development 

with these fish oil products and have immediate clinical relevance for individuals who are 

consuming DHA and EPA as dietary supplements. 

 

2. Materials and Methods 

2.1. Genetic mouse models 

          Mouse care and experimental protocol were approved and conducted in accordance with 

the guidelines of the Animal Care and Use Committee of the University of Texas MD Anderson 

Cancer Center. We have generated a novel mouse model with targeted humanized 15-

lipoxygenase-1 (15-LOX-1) induced overexpression in colonic epithelial cells via a Rosa26 or  
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CAG promoter. The strategy for generating a new inducible 15-LOX-1 mouse model is shown 

in Figure 1. Two mouse models can be generated from one construct. In this work, we used the 

Rosa26 promoter-driven inducible 15-LOX-1 (designated at Rosa-i15-LOX-1) mice with a 

genetic C57/BL6 background, which conditionally overexpressed 15-LOX-1 by upstream loxP-

flanked stop sites and followed by IRES driven eGFP reporter gene (Figure 1). This novel 

Rosa-i15- LOX-1 mouse model was generated in collaboration with PolyGene Transgenetics 

(Switzerland). B6.Cg-Tg(CDX2-Cre)101Erf/J (designated as CDX2-Cre, Catalog # 009350) 

mice were purchased from Jackson Laboratory. CDX2-Cre mice specifically express Cre 

recombinase mainly in the epithelial lining of the intestine, especially the colon. Breeding Rosa-

i15-LOX-1 mice with CDX2-Cre mice generated CDX2-Cre; Rosa-i15-LOX-1 (designated as 

CDX2-Cre/Rosa-i15-LOX-1) mice that removed the loxP flanked stop site upstream of the 15-

LOX-1-IRES-GFP cassette to overexpress 15-LOX-1 in the mice colon. For this work, the 

breeding scheme generated CDX-Cre/Rosa-i15-LOX-1 mice and CDX2-Cre/WT mice. 
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2.2. Mouse Genotyping 

 Genomic DNA was extracted from mouse ear snips using the method as follows: 1) 

mouse ear (around 3×3 mm) per mouse was cut and then digested in 250µl 0.05M sodium 

hydroxide at 95 °C heat block for 30 minutes; 2) after cool down, 25µl of 1M Tris pH 8.0 with 

10mM EDTA buffer was added in the digested sample; and 3) the sample was vortexed and 

centrifuged at 12000 rpm for 10 minutes. The supernatant of the sample was used for mouse 

genotyping. The mice genotyping was performed by measuring genomic 15-LOX-1 coding 

sequence with qPCR method using around 10ng genomic DNA in 10µl reaction. Mouse actin 

was also measured at the same time by qPCR to exclude the possibility of false negatives. 15-

LOX-1 and actin probes for qPCR were purchased from Integrated DNA Technologies (IDT, 

Catalog # Hs.PT.51.21032869 for human 15-LOX-1 and Catalog # Mm.PT.51.9990212 for 

mouse actin). 2×Master Mix, ABI Prism TM (Catalog # KK4707) was purchased from Kapa 

Biosystems. 

 

2.3. Treatment and Induction of Colitis in Mice 

 CDX2-Cre/WT (WT) and CDX-Cre/Rosa-i15-LOX-1 (15-LOX-1) mice were randomly 

assigned to the control diet (Envigo; Teklad Custom Diet Diets, Catalog # TD.120422), or the 

control diet supplemented with 1% ethyl ester DHA (EE-DHA, Envigo; Teklad Custom Diet, 

Catalog # TD.160450). Pure EE-DHA was purchased from NU-CHEK PREP INC (Catalog # 

U-84E). Feeding started 8 weeks prior to colitis induction and continued until they were 

euthanized. Diet was stored at 4°C in sealed bags and replaced every other day to ensure quality 

and prevent autooxidation. Body weight was measured weekly. 
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 For induction of colitis, mice 27 weeks of age received 3.0% dextran sodium sulfate 

(DSS) (molecular weight, 36,000–50,000; MP Biomedicals, Santa Ana, CA, USA) in drinking 

water for 7 days, followed by regular drinking water until sacrificed. For the acute colitis 

experiment, mice were sacrificed at peak inflammation, 1 day after the completion of DSS or 

when the mice developed sufficient morbidity to require euthanasia (n = 5-7 per group). For the 

chronic colitis experiment, mice were sacrificed 21 days after the completion of DSS to allow 

for chronic colitis development or when the mice developed sufficient morbidity to require 

euthanasia (n = 5-7 per group). Then the mice were killed, and colon tissue from each mouse 

was used for RNA, protein, immunohistochemistry staining, and flow cytometry immune cell 

profiling analyses. As shown in Figure 2, DSS was properly administered and caused body 

weight loss, a standard indicator for effective colitis induction. For the chronic colitis 

experiment, body weights also showed sufficient time allotted for full or partial resolution. Anal 

bleeding and stool consistency grades were also assessed (data not shown). 

 

2.4. Treatment and Induction of CAC in Mice 

 CDX2-Cre/WT (WT) and CDX-Cre/Rosa-i15-LOX-1 (15-LOX-1) were randomly 

assigned to the control diet (Envigo; Teklad Custom Diet Diets, Catalog # TD.120422), or the 

control diet supplemented with 1% EE-DHA or supplemented with 1% EE-EPA (Envigo; 
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Teklad Custom Diet, Catalog # TD.160450 for 1% EE-DHA diet or Catalog # TD.160449 for 

1% EE-EPA diet). Pure EE-EPA was a free gift from S.L.A. Pharma INC. Differentials feeding 

started at 8-10 weeks of age and continued until they were euthanized. Diet was stored at 4°C in 

sealed bags and replaced every other day to ensure quality and prevent autoxidation. Body 

weight was measured weekly. The following models are based on a previous study by our group 

to induce CAC in mice (48). 

 For induction of CAC in mice fed with 1% EE-DHA, mice 12–14 weeks of age were 

injected intraperitoneally with azoxymethane in saline solution (AOM, Catalog # A5486, 

Sigma-Aldrich, St. Louis, MO, USA) at 10.0mg/kg. The mice received 3 cycles of 1.2% DSS in 

drinking water for 7 days, followed by 14 days of regular drinking water with the last cycle of 

DSS followed by 25 days of regular drinking water (n = 15 mice per group). The mice were 

killed approximately 13 weeks after AOM injection or when the mice developed sufficient 

morbidity to require euthanasia. The entire intestinal tract was removed, washed in cold PBS, 

and processed to assess for tumor burden as previously described (47). Colon tissue from each 

mouse was used for RNA, protein, immunohistochemistry staining, and eicosanoid and resolvin 

profiling analyses. 

 For induction of CAC in mice fed with 1% EE-EPA, mice 12–14 weeks of age were 

injected intraperitoneally with AOM at 10.0mg/kg. The mice received 3 cycles of 1.2% DSS in 

drinking water for 5 days, followed by 16 days of regular drinking water with the last cycle of 

DSS followed by 25 days of regular drinking water (n = 11-16 mice per group). The mice were 

killed approximately 13 weeks after AOM injection or when the mice developed sufficient 

morbidity to require euthanasia. The entire intestinal tract was removed, washed in cold PBS, 

and processed to assess for tumor burden as previously described (47). Colon tissue from each 

mouse was used for RNA, protein, and immunohistochemistry staining analyses. 
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2.5. Isolation of Lamina Propria Cells 

 Colon lamina propria cells were isolated as previously described with modifications 

(53). The colon was carefully separated from the cecum and Peyer’s patches were removed. The 

colon was opened longitudinally, washed in cold PBS, and cut into 1 cm pieces. Epithelial cells 

were separated from the underlying lamina propria by incubation in HBSS containing 5mM 

EDTA and 2mM DTT for 20 minutes at 37°C with gentle rotation in a water bath shaker (150 

rpm). Cells were removed using 10% FBS in RPMI through a 100μm strainer. Epithelial cell 

separation was repeated two times. Lamina propria tissue was pulse-vortexed and washed two 

times in PBS. The remaining tissue was finely chopped with a razor blade and digested in a 

solution of 200μg/mL Collagenase type VIII (Catalog # C2139, Sigma-Aldrich), 150μg/mL 

DNase I (Catalog # DN25, Sigma-Aldrich), and 25μg/mL Dispase in serum-free RPMI. 

Digestion solution with tissue was vortexed intensely for 20 sec then incubated for 20 min at 

37°C with gentle rotation in a water bath shaker (150 rpm). Digested tissue was collected with a 

40μm strainer. Tissue digestion was repeated two times or until connective tissue was no longer 

visible. Leukocytes were isolated from the supernatant using a Percoll (Catalog # 17089101, GE 

Healthcare Life Sciences) gradient separation method in which the cells were resuspended in 

40% Percoll and under layered with 80% Percoll followed by centrifugation at 1000g or ~3000 

RPM for 20 min at 20°C without brake. The interface was collected to wash with PBS and 

resuspended for red blood cell lysis (Catalog # 420301, Biolegend). Cells were resuspended in 

cell staining buffer (Catalog # 420201, Biolegend) for flow cytometry analysis. Cells numbers 

were determined using a Bright-Line Hemacytometer (Hausser Scientific) to have at least 1.0 

E6 cells/mL per tube for staining. 
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2.6. Antibodies and Flow Cytometry 

 Lymphocytes extracted from the colon lamina propria were used for staining. I-A/I-E-PE 

(M5/114.15.2, Catalog # 107607), CD45-PerCP/Cy5.5 (30-F11, Catalog # 103131), CD49b-

PE/Dazzle 594 (DX5, Catalog # 108923), CD11b-PE/Cy7 (M1/70, Catalog # 101215), CD4-

FITC (GK1.5, Catalog # 100405), CD25-BUV785 (PC61, Catalog # 102051), CD11c-BUV711 

(N418, Catalog # 117349), CD3-BUV650 (17A2, Catalog # 100229), Ly-6C-BUV510 (HK1.4, 

Catalog # 128033), F4/80-BUV421 (BM8, Catalog # 123131), Ly-6G-APC/Fire 750 (1A8, 

Catalog # 127651), and CD45R/B220-AF700 (RA3-6B2, Catalog # 103231) were purchased 

from Biolegend; CD8a-BUV737 (53-6.7, Catalog # 564297) was purchased from BD 

Biosciences to use in extracellular staining. If cells were to be analyzed the next day, they were 

fixed in a fixation buffer (Catalog # 420801, Biolegend). Intracellular mouse staining was 

performed according to the manufacturer’s protocol (True Nuclear Transcription Factor Buffer 

Kit, Catalog # 424401; Biolegend) with FoxP3-AF647 (MF-14; Catalog # 126407, Biolegend). 

Fc receptors were blocked according to the manufacturer’s protocol (TruStain fcX (93); Catalog 

# 101319, Biolegend). Dead cells were excluded using the Zombie UV fixable viability kit 

(Catalog # 423107, Biolegend). Respective UltraComp eBeads compensation beads were 

purchased from Thermo Fisher (Catalog # 01-2222). 

 The single 15-color flow cytometry panel and analysis were performed with a 

LSRFortessa X-20 (BD Biosciences) at the MD Anderson flow cytometry core facility and the 

data were analyzed using FlowJo software (Tree Star). 

 

2.7. Mouse intestinal tumorigenesis evaluation 

 The mice were euthanized, the intestines from the rectum to the base of the cecum were 

removed, opened, washed with phosphate-buffered saline, and fixed with 10% neutral formalin 
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overnight. Tumors were counted under a stereotype microscope (Nikon SMZ1000). The colons 

were rolled up using a paper clip with a small loop to make Swiss rolls. The rolls were cut in 

half and placed in a paraffin cassette for embedding in paraffin for further analysis such as 

immunohistochemistry staining (IHC), and hematoxylin and eosin staining (H&E). 

Classification and grading of H&E-stained sections were performed by an experienced lab 

member. 

 

2.8. Colitis Scoring 

 H&E stained sections were examined microscopically as previously described (54). To 

evaluate the severity of inflammation, an experienced lab member blinded to the treatment 

protocol randomly selected and inspected 10 fields (magnification ×100) in each section, and 

graded as follows: grade 0, normal colonic mucosa; grade 1, loss of one-third of the crypts; 

grade 2, loss of two-thirds of the crypts; grade 3, lamina propria covered with a single layer of 

epithelial cells with mild inflammatory cell infiltration; and grade 4, erosions and marked 

inflammatory cell infiltration. After grading the 10 fields, the mean grade was calculated for 

each mouse section and expressed as a histological score. 

 

2.9. Immunohistochemical Analysis 

 IHC was performed as described before (55, 56). Colon tissues from the indicated 

experimental mice were fixed in 10% buffered formalin, embedded in paraffin, and cut into 

5µm sections. The tissue sections were deparaffinized and rehydrated and antigen retrieval was 

performed with antigen unmasking solution (Vector Laboratories). Then, the sections were 

incubated in blocking buffer (phosphate-buffered saline with 1.5% goat serum and 0.3% Triton 

X-100) for 1 hour at room temperature and incubated with primary antibodies in a humidified 
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chamber at 4°C overnight. For IHC, the following primary antibodies were used: F4/80 (1:250; 

Catalog # 70076S, Cell Signaling); and Ki67 (1:300; Catalog # RM-9106-S1, Invitrogen, 

Carlsbad, CA). Subsequently, the tissue sections were incubated with biotinylated secondary 

antibodies (VECTASTAIN ABC kit; Vector Laboratories) for 1 hour, followed by incubation 

with avidin-coupled peroxidase (Vector Laboratories) for 30 minutes. 3, 3’-diaminobenzidine 

(DAB; Agilent Dako) was used as the chromogen, and the slides were counterstained with 

Mayer’s hematoxylin (Agilent Dako). 

 

2.10. Macrophage Quantification 

 F4/80 stained sections were examined microscopically. To evaluate the number of 

macrophages, an experienced lab member blinded to the treatment protocol randomly selected 

and inspected 10 fields (magnification ×100) in each section, and graded them as follows: grade 

0 – 0% stained cells; grade 1 – 1-25% stained cells; grade 2 – 25-50% stained cells; grade 3 – 

50-75% stained cells; and grade 4 – over 75% stained cells. The percentages refer to the ratio of 

positive signal (brown) to total signal (brown plus hematoxylin blue) per field. After grading the 

10 fields, the mean grade was calculated for each section and expressed as a histological score. 

 

2.11. Proliferation Quantification 

 Ki67 stained sections were examined microscopically. To evaluate the proliferation zone 

length, an experienced lab member blinded to the treatment protocol randomly selected and 

inspected 10 fields (magnification ×100) in each section, and measured the length of 

consecutive Ki67 positive cells in the colonic crypts. After grading the 10 fields, the mean grade 

was calculated for each section and expressed as a proliferation zone length (μm) per mouse. 
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2.12. Eicosanoid and Resolvin Profiling Analysis 

 Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analyses were performed 

using an Agilent 6460 Triple Quad mass spectrometer (Santa Clara, CA) equipped with an 

Agilent 1200 HPLC as previously described (57-59). Eicosanoids were separated using a 

Kinetex C18 2.0×100 mm column (Phenomenex, Torrance, CA). The mobile phase consisted of 

0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). For the analysis of 

PGE2, LXA4, LXB4, 15-HETE, and 13-HODE, the separation was achieved using a linear 

gradient of 20–98% of B with a total time of 33 min. The flow rate was 400μL/min with a 

column temperature of 30°C. The sample injection volume was 15μL. Samples were kept at 4 

°C during the analysis. The mass spectrometer was operated in the electrospray negative ion 

mode with a gas temperature of 350°C, gas flow rate of 10L/min, and nebulizer pressure of 

30psi. The temperature of the sheath gas was 350°C and sheath gas flow rate was 12L/min. The 

capillary voltage was -3500V. Fragmentation for all compounds was performed using nitrogen 

as the collision gas. All eicosanoids were detected using electrospray negative ionization and 

multiple-reaction monitoring (MRM) mode. The MRM transition for PGE2 was m/z 

351.2→271.2, LXA4 was m/z 351.2→115.2, LXB4 was m/z 351.2→221.1, 15-HETE was m/z 

319.2→219.2, and 13-HODE was m/z 295.2→195.2. The results were expressed as nanograms 

of eicosanoid per mg of protein. 

 Resolvins were separated using an Agilent XDB C18 4.6×50mm column. The mobile 

phase consisted of 10mM ammonium acetate in water (A) and methanol (B). For the analysis of 

RVD1, RVD2, RVD3, RVD4, RVD5, RVE1, 17-HDHA and 18-HEPE, the separation was 

achieved using a linear gradient of 20–90% of B with a total time of 20 min. The flow rate was 

300μL/min with a column temperature of 30°C. The sample injection volume was 15μL. 

Samples were kept at 4°C during the analysis. The mass spectrometer was operated in the 
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electrospray negative ion mode with a gas temperature of 350°C, gas flow rate of 10L/min, and 

nebulizer pressure of 20psi,, The temperature of the sheath gas was 350°C and sheath gas flow 

rate was 12L/min. The capillary voltage was -2900V. Fragmentation for all compounds was 

performed using nitrogen as the collision gas. All resolvins were detected using electrospray 

negative ionization and MRM mode. The MRM transition for RVD1 was m/z 375.1→215.1, 

RVD2 was m/z 375.2→174.9, RVD3 was m/z 375.0→147.0, RVD4 was m/z 375.0→101.0, 

RVD5 was m/z 359.0→199.0, and 17-HDHA was m/z 341.3→201.1. The results were 

expressed as nanograms of resolvin per mg of protein. 

 

2.13. Statistical Analysis 

 Two-way ANOVA analysis of variance was used to analyze data involving the 

simultaneous consideration of two factors. All tests were 2-sided and conducted at a 

significance level of P < 0.05. The data are presented as means ± standard error of the mean 

(SEM) and analyzed using Prism 9.0 software (GraphPad Software). The significance of 

correlation between DHA products and total tumor number per mouse was assessed by 

Spearman correlation coefficient test using SAS software, version 9.4 (SAS Institute). 

 

3. Results 

3.1. Characterization of the Novel Rosa-i15-LOX-1 Mouse Model 

 We first characterized the novel Rosa-i15-LOX-1 mice by breeding them with CDX-Cre 

mice to produce Rosa-i15-LOX-1/CDX2-cre (15-LOX-1) mice. Colon crypts were scraped 

from the indicated mice for 15-LOX-1 expression measurement by Western blot and 15-LOX-

1’s enzymatic products 13-HODE and 15-HETE levels by LC-MS/MS measurement. We found 

that 15-LOX-1 mice, but not the mice with other genotypes as indicated, expressed 15-LOX-1 
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(Figure 3A) and produced higher levels of 13-HODE and 15-HETE in colon epithelial cells 

(Figure 3B and C). Our results indicated that Rosa-i15-LOX-1 was successfully generated. 

 

3.2. Effects of 15-LOX-1 and DHA on Acute and Chronic Colitis 

In the acute DSS-induced colitis experiments, decreasing inflammation trends were 

observed in all experimental groups compared to the WT/Control diet groups, but no statistical 

significance was found 

between any of the groups 

(Figure 4A). 

 In the chronic DSS-

induced colitis experiments 

(Figure 4B), we found that 

experimental 15-LOX-
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1/Control diet mice group (1.8 ± 0.092, p = 0.0105) reduced their inflammation scores by 31% 

and that WT/DHA mice group (1.9 ± 0.011, p = 0.0730) improved their inflammation scores by 

29%, compared to the WT/Control diet mice group (2.7 ± 0.12). In addition, 15-LOX-1/Control 

diet mice significantly reduced inflammation, compared to the WT/DHA mice group (2.3 ± 

0.12; p = 0.0246). Our results suggested that 15-LOX-1 and DHA alone significantly inhibited 

DSS-induced chronic colitis but had no significant effect on DSS-induced acute colitis. 

Unexpectedly, we did not observe an additive effect in mice with 15-LOX-1 and fed with DHA. 

 

3.3. Effects of 15-LOX-1 and DHA on Immune Cells 

 A 15-color flow cytometry panel was designed to analyze immune cell subsets and 

characterize immunophenotype modulation in acute and chronic colitis experiments (Table 1). 

Colon samples with the same genotype were randomly pooled to 3 samples (2-3 colons/sample) 

per group for acute colitis and 1-2 samples (2-3 colons/sample) per group for chronic colitis 

before flow cytometry analysis. 

Table 1. Immunophenotyping of mouse immune subsets by flow cytometry. 

Immune cell subset Phenotype 

Macrophage CD11b+F4/80+ 

Neutrophil CD11b+Ly6G+Ly6Clo 

Monocyte CD11b+Ly6G-Ly6Chi 

Helper T cell CD3+CD4+ 

Regulatory T cell CD3+CD4+CD25+Foxp3+ 

Cytotoxic T cell CD3+CD8+ 

B cells B220+ 
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Plasmacytoid Dendritic Cell (pDC) CD11c+B220+  

Conventional Dendritic Cell 1 (cDC1) CD11c+CD8+ 

Conventional Dendritic Cell 2 (cDC2) CD11c+CD4+CD11bhi 

Hematopoietic cell CD45+ 

Live/Dead Viability 

Note: Hematopoietic cells were initially counted from all detected cells using single cells, live cells, 

and CD45+ gates. From the hematopoietic subset, CD11b+ were gated to subsequently gate for 

monocytes, macrophages, neutrophils, and MDSCs. From the hematopoietic subset, CD11c+ were 

gated to subsequently gate for dendritic cells. From the hematopoietic subset, CD11b-/c- were gated 

to subsequently gate for T cells and B cells. 

 

 An immunophenotype modulating the immune system was examined in the acute colitis 

experiments (Figure 5). Some immune cells showed changes, but without statistical 

significances. In the innate cell populations, large standard errors within groups confounded 

detecting potential changes in the acute colitis immune cell profile. The monocyte population 

showed an increase in the 15-LOX-1/Control diet mice group and decrease in the 15-LOX-

1/DHA mice group. However, there were no statistical significances to support the mentioned 

differences (Figure 5).  

 As expected, the adaptive immune system showed little change except for cDC2. In the 

15-LOX-1/DHA mice group, we can see cDC2 increased compared to the other groups. Within 

the higher levels of helper T cells in the 15-LOX-1/Control diet mice group, we observe a lower 

number of regulatory T cells, though without statistical significance. 

 In the chronic colitis experiment, the chronic colitis experiments showed more 

differential results among immune cell populations (Figure 6). In the innate cells, high 

neutrophil count was sustained in the WT/DHA mice group, while the other groups remained  
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comparable to the WT/Control diet mice group. Macrophage counts were lower in all groups, 

with the lowest in the 15-LOX-1/DHA mice group. The monocyte populations showed lower 

levels in the WT/DHA and 15-LOX-1/DHA mice groups, while the 15-LOX-1/Control diet 

mice group remained high and comparable to the WT/Control diet mice group.  

 As expected in chronic inflammation, more differences were observed in the adaptive 

immune system. In the cDC2 population, the 15-LOX-1/DHA mice group was the only group 

that sustained high levels while the other groups showed levels close to negligible (p < 0.0001). 

The B cell population showed higher and comparable levels in the WT/DHA and 15-LOX-

1/DHA mice groups compared to the WT/Control diet and 15-LOX-1/Control diet mice groups. 

T cells were shown to be decreased in only the 15-LOX-1/DHA mice group. Within this group, 

T helper cell counts were higher in the WT/DHA and 15-LOX-1/DHA mice groups. T 

regulatory cells were negligible in the WT/DHA and 15-LOX-1/DHA mice groups compared to 

the WT/Control diet mice group, while the 15-LOX-1/Control diet mice group showed 

comparable levels to the WT/Control diet mice group. Cytotoxic T cells remained at comparable 

levels to the WT/Control diet mice group except for the 15-LOX-1/DHA mice group, which 

showed lower levels (Figure 6). However, due to the small sample number limitations and large 

standard errors, all the results for chronic colitis are still preliminary. Nevertheless, even if 

definite conclusions cannot be drawn, the data could be indicative of changes. Future studies 

should include more samples per group, which might help find connections between immune 

cells changes and phenotypes. 

 

3.4. Effects of 15-LOX-1 and DHA on CAC 

 Reduction in tumor numbers (mean ± SEM) was observed in both mice groups that were 

given DHA diet (WT/DHA and 15-LOX-1/DHA mice groups) compared to 8.6 ± 1.5 
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tumors/mouse in the WT/Control diet mice group (Figure 7A and 7B). A 54% reduction in 

tumor numbers occurred in the WT/DHA mice group (3.9 ± 0.97 tumors/mouse; p = 0.0348) 

and 52% reduction in the 15-LOX-1/DHA mice group (4.2 ± 0.90 tumors/mouse; p = 0.0479). 

In addition, we found that both 15-LOX-1 and DHA decreased large tumor numbers (tumor 

diameter >3mm) (Figure 7C). 

 Inflammation scores (mean ± SEM) showed improvement in all three experimental 

groups compared to the WT/Control diet mice group (2.3 ± 0.075) (Figure 7D). The 15-LOX-

1/Control diet mice group reduced inflammation by 18% (1.9 ± 0.073; p < 0.0001), WT/DHA 

mice group by 33% (1.6 ± 0.13; p = 0.0362), and 15-LOX-1/DHA mice group by 29% (1.7 ± 

0.13; p = 0.0015). Though we observed an 11% decrease in the 15-LOX-1/DHA and a 15% 
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decrease in the WT/DHA mice groups compared to the 15-LOX-1/Control diet mice group, 

there were no statistical differences. 

 

3.5. Effects of 15-LOX-1 and DHA on Resolvin Production 

             Resolvin D-series and their precursor, 17-HDHA, were measured using LC-MS/MS 

analysis (mean ± SEM). All target products were dependent on mice having 15-LOX-1. Without 

15-LOX-1, little to no resolvins were produced. 

 The precursor for resolvin D-series, 17-HDHA increased by a factor of 2.7 between the 

15-LOX-1/Control diet (32.4 ± 3.66 ng/mg protein) and 15-LOX-1/DHA (87.6 ± 7.74 ng/mg 
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protein) mice groups (p < 0.0001; Figure 8A). RvD1 (0.567 ± 0.045 ng/mg protein; p = 0.0052; 

Figure 8B), RvD4 (1.18 ± 0.0932 ng/mg protein; p < 0.0001; Figure 8E), and RvD5 (32.4 ± 

2.41 ng/mg protein; p < 0.0001; Figure 8F) showed significant increases in the 15-LOX-1/DHA 

mice group compared to 15-LOX-1/Control diet mice group. More specifically, RvD1 increased 

by a factor of 1.6, RvD4 increased by a factor of 2.7, and RvD5 increased by a factor of 2.6. 

However, there was no significant difference for RvD2 and RvD3 between the 15-LOX-1 mice 

groups fed with control or DHA diets. 

 Correlation analyses of total tumor number per mouse were performed on 17-HDHA and 

resolvins that showed the following Spearman correlation coefficients: 17-HDHA (r = -0.46; p = 

0.003), RvD1 (r = -0.46; p = 0.0029), RvD4 (r = -0.36; p = 0.028), and RvD5 (r = -0.47; p = 

0.002) demonstrating inverse linear regression of correlations with total tumors per mouse 

(Figure 8G-J). 

 

3.6. Effects of 15-LOX-1 and DHA on Eicosanoid Products 

            Eicosanoid products were measured using LC-MS/MS analysis. No statistical 

significances were observed between any of the groups for PGE2, LXA4, or LXB4 (Figure 9A-

C). In addition, their production was not dependent on 15-LOX-1 expression. Both 15-LOX-1 

enzymatic products 13-HODE and 15-HETE productions were dependent on mice expressing 

15-LOX-1 (Figure 9D-E). 13-HODE showed significant decrease by a factor of 1.7 between the 

15-LOX-1/Control diet (309.6 ± 38.10 ng/mg protein) and 15-LOX-1/DHA mice groups (185.9 

± 17.45 ng/mg protein; p = 0.0021; Figure 9D). 15-HETE showed significant decrease by a 

factor of 4.8 between the 15-LOX-1/Control diet (446.4 ± 38.21 ng/mg protein) and 15-LOX-

1/DHA mice groups (92.42 ± 11.75 ng/mg protein; p < 0.0001, Figure 9E). 
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 Correlation analysis with total tumors per mouse was performed on 13-HODE and 15-

HETE (Figure 9F-G). 13-HODE showed a stronger inverse correlation (r = -0.2200) than 15-

HETE (r = -0.0403) with total tumors per mouse. However, they both did not reach statistical 

significance (p = 0.3888; p = 0.8792, respectively). 

 

3.7. Effects of 15-LOX-1 and EPA on CAC 

 Tumor numbers (mean ± SEM) were significantly reduced in all experimental groups 

compared to the WT/Control diet mice group (Figure 10A and B). Compared to the 

WT/Control diet mice group (4.2 ± 0.98 tumors/mouse), tumors were reduced by 47% in the 

WT/EPA mice group (2.2 ± 0.66 tumors/mouse; p = 0.003), 48% in the 15-LOX-1/Control diet 
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mice group (2.2 ± 0.26 tumors/mouse; p = 0.004), and 48% in the 15-LOX-1/EPA mice group 

(2.2 ± 0.33 tumors/mouse). 

 Tumors categorized by size observed all groups reducing all tumor sizes but with the 

largest decrease in the larger tumors (Figure 10C). The 1 – 2 mm tumor incidence decreased in 

the WT/EPA mice group by 23% (1.4 ± 0.50 tumors/mouse), 15-LOX-1/Control diet mice 

group by 32% (1.3 ± 0.30 tumors/mouse), and 15-LOX-1/EPA mice group by 41% (1.1 ± 0.35 

tumors/mouse), compared to the WT/Control diet mice group (1.9 ± 0.41 tumors/mouse). The 2 

– 3 mm tumor incidence decreased in the WT/EPA mice group by 79% (0.1 ± 0.1 

tumors/mouse), 15-LOX-1/Control diet mice group by 73% (0.2 ± 0.1 tumors/mouse),  
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and 15-LOX-1/EPA mice group by 85% (0.1 ± 0.1 tumors/mouse; p = 0.02), compared to the  

WT/Control diet mice group (0.7 ± 0.3 tumors/mouse). Large tumors (> 3 mm) were not 

observed in the WT/EPA mice group (p = 0.001) or the 15-LOX-1/EPA mice group, and 

minimally observed in 15-LOX-1/Control diet mice group (0.1 ± 0.1 tumors/mouse; p = 0.04),  

compared to the WT/Control diet mice group (0.5 ± 0.4 tumors/mouse). 

 Inflammation, proliferation zones, and macrophage number paralleled the tumor number 

trend. A decrease was observed in all experimental groups regarding inflammation score 

compared to WT/Control diet mice group (Figure 10D). Inflammation scores were reduced by 

53% (0.7 ± 0.1) in the WT/EPA mice group, by 67% (0.5 ± 0.1) in the 15-LOX-1/Control diet 

mice group, and by 61% (0.6 ± 0.1; p < 0.0001) in the 15-LOX-1/EPA mice group, compared to 

the WT/Control diet group (1.5 ± 0.09). 

 As shown in Figure 10E, proliferation zones were measured to determine the growth 

capacity of crypts. Longer proliferations zones are associated larger growth capacity in crypts, 

which is a strong risk factor for tumorigenesis. Compared to the WT/Control diet mice group 

(81.7 ± 3.01 μm), the WT/EPA mice group reduced proliferation zone length by 37% (51.4 ± 

3.52 μm), 15-LOX-1/Control diet mice group by 23% (62.9 ± 2.82 μm), and 15-LOX-1/EPA 

mice group by 46% (43.8 ± 2.30 μm; p < 0.0001).  In addition, the 15-LOX-1/EPA mice group 

showed statistically significant reduction compared to the 15-LOX-1/Control diet (p < 0.0001) 

mice group. 

         In Figure 10F, compared to WT/Control diet mice group, all experimental groups 

demonstrated reduced macrophage numbers, but they were comparable to each other. The 

WT/EPA mice group was reduced by 23% (2.1 ± 0.16; p = 0.0005), 15-LOX-1/Control diet 

mice group by 24% (2.1 ± 0.17; p = 0.0003), and 15-LOX-1/EPA mice group by 23% (2.1 ± 

0.095; p = 0.0005) compared to the control group (2.7 ± 0.23). 
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4. Discussion 

We found evidence that EPA, DHA, and expression of human 15-LOX-1 in colonic 

epithelial cells modulates chronic colitis and colitis-associated colorectal tumorigenesis in mice. 

Studies of specific 15-LOX-1 functions in mouse models require transgenic expression of 

human 15-LOX-1 because the mouse homolog 12/15-LOX produces both 12-HETE and 13-

HODE, which elicit opposing biological effects on tumorigenic processes (60, 61). It has also 

been shown to both inhibit (62) and activate TNF-α-iNOS signaling (63); possibly by 13-HODE 

(64) and 12-HETE (63), respectively. Together, highlighting the importance of determining the 

precise impact of human 15-LOX-1 expression in colonic epithelial cells. 

In the acute colitis experiment, the lack of differentiated inflammation scores and 

immune cell profiles may be secondary to non-optimal DSS dosing, causing too much damage 

to the gut epithelial cells (Figure 4A and 5). Though some damage to the epithelial lining is 

necessary to induce colitis, a loss of epithelial cell function interrupts gut homeostasis (65). 

Nevertheless, we do see a consistent increase in cDC2 in the 15-LOX-1/DHA mice group. 

cDC2s secrete higher levels of IL-12, which increases bacterial antigen presentation to CD8+ T 

cells, T helper type 1 cells, and natural killer cells (66). This mechanism is partially supported 

with some CD8+ T cell samples increased in the 15-LOX-1/DHA mice group. DHA or 15-LOX-

1 expression could not combat the strong physical disruption of DSS, but rather, contribute 

more so in the resolution phase of chronic colitis. 

In the chronic colitis experiment, all experimental groups exhibited improved 

inflammation scores upon euthanasia. This can certainly be attributed to the 3 weeks given to 

mice for recovery mechanisms to elicit function. Unlike the acute experiments, we observe more 

differentiated inflammation scores and immune profiles (Figure 4B and 6). Interestingly, mice 

with 15-LOX-1 mice or WT mice fed with DHA reduced inflammation the most, while 15-
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LOX-1/DHA did not improve inflammation scores as much. Improved inflammation from 15-

LOX-1 expression supports findings from previous studies (27). Though we expected to observe 

an additive effect when combining 15-LOX-1 expression and DHA, data shows omega-3 

PUFAs can be metabolized by several tissue types (67). Emerging evidence links interactions 

between 15-LOX-1 and tumor associated macrophages (TAMs) (27, 67). 15-LOX-1 expression 

can be induced in TAMs following engulfment of apoptotic cells and support anti-inflammation 

(68). This mechanism may explain how DHA without expression of the 15-LOX-1 transgene 

can still elicit an anti-inflammatory response. More importantly, the delicate balance between 

monocytes/macrophages and neutrophils can swing the immune cell profile into a potent anti-

inflammation phenotype (69, 70). This phenotype is defined as low neutrophil levels, 

polarization to M2 macrophages, and high monocyte count. A critical aspect of the resolution 

phase is timely removal of neutrophils. Apoptosis or necrosis of neutrophils regulate TNF and 

nitric oxide production from monocyte-derived macrophages and increase their phagocytic 

index (71). This switch enhances efferocytosis and alters macrophages to “wound heal” by 

promoting matric deposition, tissue remodeling, and tissue repair (72). For this experiment, 

follow up experiments will use more markers to determine their M1 or M2 polarization.  

Neutrophils improve their anti-inflammatory function by recruiting high amounts of monocytes 

(73). Low amounts of monocyte recruitment worsened outcome in peritoneal bacteremia mice 

(74). 15-LOX-1 expression with control diet may have shown the largest improvement in 

inflammation by controlling the monocyte/macrophage and neutrophil balance. 

In addition, the 15-LOX-1/Control diet mice group showed higher levels of T regulatory 

cells. Their immunosuppressive role are beneficial to inflammation as they prevent self-

tolerance and excessive inflammation (75). Transfer of T regulatory cells has previously 

prevented development of colitis by reducing lamina propria infiltration and reappearance of 
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normal intestinal tissue (76). The 15-LOX-1/Control diet mice group also showed increased 

cytotoxic T cells. However, their exact function has not been determined as pro or anti-

inflammatory cells. One study reported high levels of cytotoxic T cells associated with 

ulcerative colitis progression (77). In other studies, cytotoxic T cells with PD-1 expression 

prevent response to intestinal self-antigen (78, 79), alluding to a potential beneficial role in anti-

inflammation. 

Our study has provided a general image of how 15-LOX-1 modulates colitis through the 

immune system. Follow up functional studies on immune cells along with cytokine and marker 

analysis are necessary to determine and verify the proposed immune phenotypes. 

 DHA inhibited tumorigenesis in both the WT and 15-LOX-1 mice groups of the CAC 

model (Figure 7). Tumor numbers per mouse and inflammation scores had similar trends 

among their groups. Both WT/DHA and 15-LOX-1/DHA mice groups showed similar 

reductions in inflammation, tumor numbers per mouse, and incidence of larger tumors. The 

results support our hypothesis and indicate that both 15-LOX-1 expression and dietary DHA 

inhibited CAC.  

 We used LC-MS/MS to measure which D-series resolvins play a role in inhibiting 

tumorigenesis with respect to 15-LOX-1 expression. We found that 17-HDHA and RvD1-5 

production are dependent on 15-LOX-1 expression. More specifically, 17-HDHA, RvD1, RvD4, 

and RvD5 levels further increased with DHA supplementation and 15-LOX-1 expression. On 

the other hand, RvD2 and RvD3 showed similar increases with 15-LOX-1 expression, 

regardless of diet type (Figure 8). Our study supports a previous study that DSS colitis mouse 

model treated with 17-HDHA elicit anti-inflammatory and pro-resolution effects (9). As 

previously reported, RvD1 and RvD2 were involved in preventing colitis (21). In our study, we 

found significant increase in RvD1, RvD4, and RvD5 production in colitis-associated 
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tumorigenic model. This study is the first to discover RvD4 as a mediator in CAC. Previous 

studies have only shown RvD4 in improving thrombosis (80), metastatic prevention (81), and 

asthma (82). None determined an association with 15-LOX-1. Lastly, RvD5 has only been 

tested once in a colon model to protect against experimental colitis, and ischemia/reperfusion in 

a 15-LOX-1 dependent manner (22). However, RvD5 has not been tested in a CAC model. Our 

results showed the first instance of D-series resolvins (RvD1, RvD4, and RvD5) and their 

precursor 17-HDHA having an inverse linear regression of correlations with CAC in mice. 

 As with DHA, supplementation of EPA and/or 15-LOX-1 expression inhibited tumor 

growth (Figure 10A-D). All experimental groups reduced tumor numbers to similar levels and 

effectively prevented tumors 2 mm or larger from developing. As expected, inflammation scores 

decreased in all experimental groups at similar levels parallel tumor growth reduction trends. 

These results are consistent with findings of a previous study investigating EPA in a murine 

CAC model (83). 

 Increase in the rate of proliferation and increase in proliferating cells outside the normal 

zone are predispositions to clinical gastrointestinal cancers (84). Crypts must maintain a balance 

between proliferation, migration, differentiation, and apoptosis (85). Longer proliferation zones 

would be conducive of colon cancer. In our study, all experimental groups observed shorter 

proliferation zones (Figure 10E). With 15-LOX-1/EPA establishing the shortest zone, a weak 

additive effect between 15-LOX-1 and EPA is suggested. The effects of EPA on proliferation 

has been recently reviewed (86), but we have investigated for the first time colonic cell 

proliferation in AOM/DSS-induced CAC with dietary EPA. 

 Lastly, macrophage density was decreased in all experimental groups to similar levels 

compared to the control group (Figure 10F); which supports that EPA is in fact reducing 

inflammation. Beneficial wound healing characteristics via IL-3 and IL-4 expression and 
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inhibiting TNF-α and IFN-γ could be modulated by EPA (87). Macrophages could also elicit 

harmful effects by disrupting the epithelial barrier permeability via IL-6 and nitric oxide, 

consequently increasing invasion of pathogens (88). However, follow up studies to determine 

their polarization would give more insight on their function. 

 Breaking the mechanistic link between inflammation and cancer starts with resolving 

inflammation (27). Endogenous anti-inflammation and pro-resolution do not elicit the same 

processes. RvDs are pro-resolving mediators that elicit function with stereochemically selective 

processes and multitargeted agonist binding (89). This can be observed in their routes of 

biosynthesis and their ability to interact with receptors. For example, mediators can bind to 

PMNs and macrophages separately to stimulate resolution (90, 91). More focus is being placed 

on determining each pro-resolving mediator’s stereochemical composition because it will 

validate their functional interactions with target tissue. In addition, their ability to stimulate 

inflammatory resolution without host systemic immune suppression supports their capacity as a 

separate process from endogenous anti-inflammation (92, 93). 

 Our findings strongly demonstrate the critical role of 15-LOX-1 in resolvin D-series 

production from DHA. This increase in 17-HDHA and RvD 1-5 by 15-LOX-1 was significantly 

associated with suppression of chronic colitis. 17-HDHA and RvD 1-5 colonic tissues levels 

negatively correlated with colonic tumor numbers. Nonetheless, CAC suppression occurred with 

DHA supplementation with and without 15-LOX-1 transgenic expression and seems to be less 

dependent on the production of RvDs. Thus, the relationship between the tested resolvins and 

colonic tumorigenesis seems to be intriguing but complex. RvDs in the context of CAC have not 

been previously tested. Further in-depth mechanistic studies are therefore needed to be better 

define the role of resolvins in CAC and colonic tumorigenesis in general. 
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