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HISTOLOGICAL AND FUNCTIONAL CHARACTERIZATION OF CERVICAL SPINAL CORD INJURY AFTER 

GRADED CONTUSION 

by 

Chrystine Marie Gallegos, B.A. 

Advisory Professor: Qi Lin Cao, M.D. 

 

Most spinal cord injuries (SCIs) are cervical contusions and result in deficits for both locomotion and 

reaching and grasping functions. Previous studies have characterized histological and functional 

deficits in locomotion using primarily thoracic contusions, but most patients have cervical injuries. 

Damage to descending long spinal tracts (dLSTs) is one well-established cause of functional loss after 

SCI and has been explored in laceration and transection models, but these are not clinically relevant. 

In this study, I will explore the histological and functional deficits after graded cervical hemicontusion 

SCI and examine the potential contribution of different histological deficits to forelimb function after 

injury. B6 mice received a clinically relevant cervical hemicontusion graded at either 50, 70, or 90 

kDyne force and were then tested weekly in complex horizontal ladder (cHL), rotarod, grooming, and 

either pellet reaching or pasta handling. Our results showed greater injury severity significantly 

increased missteps in cHL, reduced stepping time in rotarod, and decreased grooming ability. 

Histological analyses revealed that injury severity significantly increased the injury size by fibronectin-

immunoreactivity (IR) and gray matter loss by MAP2-IR. There was a significant correlation between 

lesion size and gray matter loss and injury severity. Correlations between histology and behavior 

outcomes showed a significant correlation between the percentage of missteps in cHL, injury severity, 

and lesion size. Additionally, both rotarod score and grooming score correlated with injury severity, 

lesion size, and gray matter loss. This study characterizes a clinically relevant injury model, shows that 

graded cervical hemicontusions result in degrees of functional and anatomical loss, and serves as a 
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baseline to aid future studies in identifying therapeutic targets to promote functional recovery after 

cervical SCI and improve the quality of life for patients with SCI.  
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Chapter 1 – INTRODUCTION 

1.1 – SCI Prevalence  

Spinal cord injuries (SCI) can dramatically change lives in less than one second, leaving 

patients with permanent disabilities due to lasting motor and sensory functional loss. SCIs are 

devastating assaults, and happen when the vertebrae housing the spinal cord are damaged, typically 

due to automotive accidents, falls, violent crimes, or recreational sporting accidents (Singh et al., 

2014; Armour et al., 2016; Center, 2019; Loy and Bareyre, 2019). According to the National Spinal 

Cord Injury Statistical Center (NSCISC), there are an estimated 291,000 individuals living in the United 

States currently with SCI and approximately 17,730 new SCI cases annually (Center, 2019). Around 

80% of SCIs occur in men and 20% in women, and while the average age at injury is about 35 years 

old, the most common age is about 19 years old (Center., 2019). SCIs can occur by contusion, 

compression, laceration, dislocation, or distraction mechanisms  (Ko, 2019), but contusion and 

compression injuries are the most common forms of SCI in humans (DeVivo and Chen, 2011; Cheriyan 

et al., 2014; Warren et al., 2019). SCIs are classified based on the neurological level and severity of 

injury, and 54.5% of SCIs occur at the cervical level while 34.8% occur at thoracic, 10.2% at lumbar, 

and <0.5% at sacral SCIs (Center., 2019). Correspondingly, patients with quadriplegia make up 52.4% 

of individuals with SCI while 43.5% of patients have a paraplegic status; less than one percent of 

patients recover after SCI (Center., 2019). These demographics demonstrate the prevalence of 

cervical SCI and quadriplegia clinically and emphasize the importance of cervical SCI research.  

The top priorities for individuals with SCI are improving or regaining mobility, bowel and 

bladder control, sexual function, and pain management (Simpson et al., 2012; Lo et al., 2016). 

However, while motor function is a top priority in general, individuals with quadriplegia rank hand 

and arm function as a top priority in contrast to individuals with paraplegia ranking general mobility 

as a top priority (Simpson et al., 2012; Lo et al., 2016). Every day, humans perform innumerable tasks 
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requiring reaching and grasping capabilities. Correspondingly, regaining hand and forearm function is 

one of the top priorities for quadriplegic patients as recovering these functions even partially would 

greatly improve their quality of life (Lo et al., 2016).  

 

1.2 Animal SCI Models  

Animal studies are used to explore the pathophysiological changes after different 

mechanisms of SCI and the effects of therapeutic interventions. Rodents are the animal model of 

choice, comprising 88.4% of SCI models, with rats (72.4%) used most overall and mice (16%) the 

second most commonly used species (Sharif-Alhoseini et al., 2017). Recently, emphasis on mouse SCI 

models is increasing as transgenic options and viral targeting offer more experimental manipulability 

(Cheriyan et al., 2014; Flynn et al., 2017; Atasoy and Sternson, 2018; Noristani et al., 2018; Nishi et al., 

2020). More than half of SCIs occur at the cervical level in patients (Center., 2019), but approximately 

81% SCI models use thoracic injuries (Sharif-Alhoseini et al., 2017). Common injury mechanisms 

include contusion (41%), transection (32.5%), and compression (19.4%) (Sharif-Alhoseini et al., 2017). 

More research is critically needed using clinically relevant cervical SCI models such as contusion injury.  

Lacerations account for 32.5% of SCI models, and cervical laceration injuries, including dorsal 

hemisection and dorsal column transection (Schrimsher and Reier, 1993; Onifer et al., 2005; 

Lewandowski and Steward, 2014; Kumamaru et al., 2019), lateral hemisection (Anderson et al., 2004; 

Anderson et al., 2005; Khaing et al., 2012), dorsal quadrant transection (Houle et al., 2006), or specific 

tract injuries (Fink and Cafferty, 2016) by, have been widely used (Geissler et al., 2013; Sharif-Alhoseini 

et al., 2017). These injury models often cause a complete lesion in the targeted descending tract(s) 

and provide very useful information regarding the roles of these tracts in forelimb function (Geissler 

et al., 2013; Sharif-Alhoseini et al., 2017; Ahmed et al., 2019). Additionally, these injury models are 

very useful to examine a variety of therapeutic approaches (Anderson et al., 2018) to promote axonal 
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regeneration and functional recovery after SCI (Fink and Cafferty, 2016). However, these laceration 

injury models are not clinically relevant since very few SCI patients have laceration injuries and the 

majority of patients have contusion injuries. Adopted from thoracic contusion injury, the central 

contusion has been extended to the cervical spinal cord, producing bilateral gray and white matter 

damages and distinct forelimb functional deficits (Aguilar and Steward, 2010; Guo et al., 2019; 

Reinhardt et al., 2020). These studies demonstrate the feasibility and reproducibility of bilateral 

cervical SCI and provide a paradigm of functional deficits for future studies. However, bilateral 

contusion injury in the cervical region can only be induced in lower cervical segments with high 

mortality and labor-intensive post-injury animal care (Steward and Willenberg, 2017). To overcome 

these pitfalls, the unilateral cervical contusion has been developed in both rats and mice (Lee et al., 

2012; Streijger et al., 2013). The unilateral contusion injury recapitulates the main pathophysiological 

changes of contusion SCI and delivers specific forelimb functional deficits on the injury side of the 

cervical spinal cord but still allows the animal to reach food and water.  Unilateral cervical contusion 

has been increasingly used to evaluate mechanisms of neuronal and axonal response to injury and 

potential therapeutic approaches for cervical SCI repair (Dai et al., 2011; Lee et al., 2012; Fakhoury, 

2015; Mondello et al., 2015; Chhaya et al., 2019; Erskine et al., 2019; Marquardt et al., 2020). Previous 

work by Streijger et al. 2013 characterized hemicontusions of the cervical spinal cord in C57BL/6 mice 

with varying dwell times and discovered that the length of time the spinal cord was compressed 

correlated with reduced performance in behavioral tests and found large amounts of white and gray 

matter loss using erriochrome cyanine staining (Streijger et al., 2013). This demonstrates that the 

length of time the tissue is under stress impacts the injury and subsequent motor function, and also 

shows that SCI results in white and gray matter loss. The specific contributions of white matter and/or 

gray matter loss to functional deficits are not yet known, although the damage to neurons in the gray 

matter and severing of axons in the white matter are implicated in the functional deficits after SCI. 



4 
 

How lesions of descending long spinal tracts (dLSTs) and descending propriospinal tracts (dPSTs) 

contribute to functional deficits is also not yet known for either unilateral or bilateral cervical 

contusion SCI. Further exploration of how injury severity affects forelimb function as well as their 

axonal connections would be helpful to predict functional outcomes in recovering SCI patients, but 

also to develop targeted therapies specific to recovering those missing functions. Models using graded 

contusion SCI by varying force severities are clinically relevant and could help us understand the 

functional and anatomical distinctions characterizing between different injury grades.   

 

1.3 – SCI Pathophysiology 

Pathophysiology for SCI is comprised of roughly two injuries: primary injury and secondary 

injury. The primary injury includes the initial mechanical injury to the spinal cord and the damaging 

events of the acute phase. The initial physical trauma occurs after contusion, compression, laceration, 

dislocation, or distraction of the spinal cord (Ko, 2019). In the immediate seconds to minutes after 

injury, the acute phase begins a damaging cascade of events including shearing ascending and 

descending axons, damaging neuron cell bodies, and breaching the blood-spinal cord-barrier, all of 

which contribute to the release of factors for necrosis, apoptosis, and alarmin responses (Silva et al., 

2014; Tran et al., 2018). The secondary injury overlaps with the primary injury but occurs during the 

subacute and chronic phase in the minutes, months, and years after injury, and is characterized by 

chronic inflammation and infiltration by macrophages, monocytes, and leukocytes, upregulation of 

inhibitory chondroitin sulfate proteoglycans, free radicals, and other damaging reactive molecules 

(Little, 2006; Silva et al., 2014; Tran et al., 2018). The consequences of both primary and secondary 

injuries are neuronal loss, demyelination due to the cell death of oligodendrocytes, axonal lesioning, 

and eventually cavitation and formation of the glial scar in the injury center as well as permanent 

locomotor and sensory loss below the lesion (Fakhoury, 2015; Tran et al., 2018).  
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1.4 – Spinal Tracts 

The spinal cord is composed of gray matter, which hosts the spinal neurons and their 

processes, and white matter, which contains ascending and descending axons for afferent and 

efferent tracts, respectively. Descending long spinal tracts (dLSTs) in the spinal cord originate in 

different parts of the brain, for example the corticospinal tract (CST) from the motor cortex, the 

rubrospinal tract (RST) from the red nucleus, and the reticulospinal tract (RtST) from the reticular 

formation including the raphe nucleus (Haines et al., 2018). Interneurons in the spinal cord can be 

generalized to two subclasses, local and propriospinal interneurons (Figure 1). Local interneurons 

project short distances ipsilaterally, contralaterally, or commissurally and aid in reflex and central 

pattern generation , while propriospinal interneurons project intersegmentally to a vertebral level 

higher or lower than their cell body and aid in circuitry genesis and coordination (Saliani et al., 2017; 

Zholudeva et al., 2018; Zavvarian et al., 2020). Propriospinal neurons project tracts that connect 

between segments but also connect the cervical to lumbar areas. Recent evidence demonstrates that 

these distant connections by spinal neurons contribute to stability in locomotion and coordination 

(Ruder et al., 2016). The CST has been implicated in modulating skilled forelimb movement by specific 

spinal interneurons (Ueno et al., 2018) and a sequential spatiotemporal activation of cortical neurons 

(Wang et al., 2017). Furthermore, projections by the RtST to commissural interneurons and 

propriospinal neurons demonstrates that RtST projections play a role in coordination by commissural 

interneurons (Mitchell et al., 2016).  

Axons in the white matter, including the descending and ascending long tracts and 

propriospinal tracts, are damaged and severed during SCI. Functional loss after SCI has been attributed 

to the severing of spinal tracts during SCI and the damage to spinal neurons both during necrosis from 

physical trauma and primary injury as well as apoptosis due to a proliferative inflammatory response 

(Tran et al., 2018). Injury models using thoracic and lumbosacral SCI models demonstrate that white 
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matters are significantly damaged after SCI due to the severing and shearing of axons during the 

primary injury (Cao et al., 2005; Wen et al., 2015; Nishi et al., 2020). Recently, Wang et al. 2017 used 

a viral targeting system to specifically ablate corticospinal neurons (CSNs) in uninjured mice and 

cohesively demonstrated CSNs are recruited sequentially to partake in skilled movement circuits and 

that the CST is involved in reaching and grasping motions (Wang et al., 2017). Using mice without SCI 

importantly demonstrates the spatiotemporal organization and recruitment pattern of CSNs, but does 

not answer how, or if, spinal local and propriospinal interneurons contribute to different steps of the 

reaching and grasping motion.  

 

 

Figure 1 | Interneuron flow chart. Graphical depiction of the different levels of classification for spinal 

interneurons (Saliani et al., 2017; Zholudeva et al., 2018; Zavvarian et al., 2020). Created with 

BioRender.com. 
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1.5 – Aims and Hypothesis  

In this study I will characterize the histological and functional deficits after graded cervical SCI, 

and examine how different histological deficits may contribute to the specific forelimb functional 

deficits with a focus on the potential contributions of cervical dPSTs in forelimb function after cervical 

SCI. The long-term goal of this study is to identify the optimized therapeutic targets for the recovery 

of forelimb function after cervical SCI. Hindlimb deficits after cervical (Dunham et al., 2010; Streijger 

et al., 2013), thoracic (Cao et al., 2005; Ichiyama et al., 2008), and lumbar (Wen et al., 2015) deficits 

have been explored, however the cervical spinal cord largely innervates the forelimb, thus more 

analysis of the forelimb functional deficits after SCI are needed to examine the mechanism of 

functional loss after cervical SCI. Transection and laceration models offer a clean analysis and have 

contributed significantly to the SCI field by examining axonal connections, plasticity, and sprouting 

after injury and during regeneration, but are not clinically relevant. Contusions are the most common 

mechanism of injury and the cervical region is the most common injured region (Center., 2019), so 

more research into the anatomy of the spinal cord after contusion is needed to examine potential key 

players in axonal loss and neuronal death, as well as therapies to promote plasticity and regeneration. 

Graded SCI models offer an additional advantage because this allows us to sensitively explore degrees 

of functional loss and anatomical loss between different severities of contusion mechanism.  

The roles of descending tracts in forelimb and hindlimb function have been explored, but 

more research for the contribution of propriospinal tracts to functional deficit after SCI is necessary 

and could help us identify ways to develop routes around the SCI lesion area and create circuitry 

detours that could reconnect caudal spinal cord components. The potential of dPST regeneration and 

plasticity in locomotion recovery remains understudied.  

This study is important to examine the roles of dPSTs in forelimb function and functional 

deficits after cervical SCI. Currently, there are no effective treatments to paralysis after SCI and while 
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dLSTs have been explored, more work is needed to assess the involvement of dPSTs. This study can 

help learn and understand mechanisms for these functional deficits and help identify potential 

therapeutic targets for future studies. Further elucidating which tracts play significant roles – whether 

cortical or propriospinal – could help us better develop treatments for promoting functional recovery.  

In this study, we will examine the contribution of dPSTs in forelimb locomotion deficits after 

clinically relevant cervical contusion SCI. We hypothesize that cervical dPSTs play an important role in 

forelimb function and that damage to dPSTs combined with the severing of dLSTs contributes to 

forelimb functional deficits after cervical SCI. We will test this hypothesis by examining the functional 

deficits in different injury severities by behavioral assays and by examining different degrees of 

anatomical damage histologically after graded contusion. The purpose of behavioral assays is to 

confirm our injury model was effective and repeatable. The purpose of histological analysis is to 

examine the anatomical details for injury size, gray matter loss, and descending propriospinal neurons 

which we correlated with functional loss.  

We found that different grades of cervical contusion SCI resulted in different degrees of 

functional loss for the rotarod, complex horizontal ladder, and grooming tests. We concluded that our 

tests for forelimb specific function by pasta handling and pellet reaching were not effective for 

assessing graded SCI in mice. Injury size and gray matter loss assessed by fibronectin- and MAP2-IR, 

respectively, confirmed that our injury model was effective at delivering different injury severities. In 

this thesis, the following sections will discuss the methods used, the results found, and the significance 

of our findings and potential future studies.  

There currently is no effective treatment for SCI patients. This study will help us understand 

mechanisms for functional deficits and could aid in identifying therapeutic targets to promote better 

functional recovery and significantly improve the quality of life for SCI patients.  
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CHAPTER 2 – MATERIALS AND METHODS 

This chapter is based upon: Gallegos C, Carey M, Zheng Y, He X, and Cao QL (2020) Reaching 

and Grasping Training Improves Functional Recovery After Chronic Cervical Spinal Cord Injury. 

Frontiers in Cellular Neuroscience. Volume 14: Issue 110. DOI: 10.3389/fncel.2020.00110. Portions of 

the text are granted open-access to the authors from Creative Commons Attribution 4.0 International 

Public License (CC BY; “Public License”). Copyright © 2020 Gallegos, Carey, Zheng, He and Cao. 

All animal care, behavioral testing, and surgical interventions were performed in strict 

accordance to the approval of the Animal Welfare Committee at the University of Texas Health 

Science Center at Houston. Figure 2 represents an experimental timeline for the animal training, 

behavioral tests, and surgical procedures.  

 

 

Figure 2 |Experimental timeline of behavioral testing and surgical procedures. Created with 

BioRender.com. 
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2.1. Spinal Cord Contusion Injury 

 The surgical procedures for SCI were performed as previously described (Chen et al., 2013; 

Fan et al., 2013; Gallegos et al., 2020). Age-matched male and female adult (90-120 days) C57BL/6 

[Charles River, Stock no. 000664; body weight, 23.83 ± 2.18 g (female) and 27.94 ± 4.05 g (male)] were 

used in this study. Three different severities of SCI contusion were performed with 12 mice in each 

group (total n = 36 mice). Briefly, mice were anesthetized with a mixed solution of ketamine [80 

mg/kg, intraperitoneal (ip)] and xylazine (10 mg/kg, ip), and a dorsal laminectomy at the fifth cervical 

vertebral level (C5) was performed to expose the spinal cord. To prevent lateral torsion as described 

previously (Lee et al., 2010; Lee et al., 2012), the spinal column was stabilized using steel stabilizers 

inserted under the transverse processes one vertebra above and below C5 as described in previous 

contusion models (Hill et al., 2009; Chen et al., 2013; Wu et al., 2017). Mice were then moved to an 

Infinite Horizons Spinal Cord Impactor (Infinite Horizons LLC, Lexington, Kentucky, US) and carefully 

positioned below the impactor to receive a unilateral contusive SCI in the preferred paw side as 

determined by the baseline forelimb behavioral tests (described below in 2.2.1) and then mice were 

randomly distributed into one of the three injury groups. The software (IH Spinal Cord Impactor v5.0) 

was set to deliver the appropriate contusion impact force level: mild, 50kD; moderate, 70kD; severe, 

90kD (Figure 3). Two mice in each group died during surgery (total mice dead, n = 6). Afterward, the 

incision was sutured in layers, bacitracin ointment (Qualitest Pharmaceuticals, Huntsville, Alabama, 

US) was applied to the wound area, 0.1 mL of gentamicin [stock solution 20 mg/ml, subcutaneous 

(sc); ButlerSchein, Dublin, Ohio, US] was injected, and the animals recovered on soft bedding on a 

water-circulating heating pad. Mice received a mixed solution of gentamicin antibiotic and 

buprenorphine analgesic agent (0.05 mg/kg, sc; Reckitt Benckise, Hull, England), once a day for 3 days. 

Mice were monitored carefully post-operatively, and if mice appeared weakened were given 1-2mL 

Ringers saline solution (0.03% bacteriostatic saline solution, sc).  



11 
 

 

Figure 3 | Illustration of injury model. Mouse (far left) with C5 indicated (red arrow) and 

representation of IH Impactor injury device. Depiction of group separation with indicated unilateral 

contusion force levels; 3 groups total, 10 mice per group. Created with Biorender.com. 

 

2.2. Behavioral Assessments  

2.2.1. Forepaw Assessments  

In the mouse and rat models, cervical SCI affects the forelimbs primarily, although some 

deficit is observed in the hindlimbs and generally resolves in 1-2 weeks depending on injury severity. 

As the majority of SCIs occur in the cervical region, we wanted to evaluate the functional deficits 

observed in the three different injury severity levels – 50, 70, 90kD – over time.  

2.2.1.1. Pasta Handling 

Forepaw dexterity and reaching and grasping kinematics have been well explored in previous 

studies (Allred et al., 2008; Tennant et al., 2010; Whishaw et al., 2017). In this study, pasta handling 

was used to evaluate forepaw function in the mouse after graded SCI over a period of nine weeks. 

Mice were trained in the pasta handling task with a custom-built enclosure of a mirror floor (20 cm 
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diameter single plane circle mirror, Hobby Lobby) and 12 cm long x 12 cm wide x 21 cm height matte 

white foamboard with nonporous coating for cleaning. The front wall was made of clear, thin 

plexiglass to allow for video recording. Angel Hair pasta (DeCecco; Angel Hair No. 9) pasta was 

sterilized with ethidium oxide treatment. After sterilization, pasta was cut into 2.8cm lengths with 

markings every 0.7cm using Crayola Washable Marker (Broad Line Non-Toxic Markers, Classic Colors, 

10 count). Mice showed no preference to marked or unmarked pasta and readily ate all pasta 

provided.  

The following food restriction schedule was used during baseline training: night 1, mice were 

totally fasted; nights 2-5, mice received 5% chopped chow each night. The chow percentage was 

found by adding up the total weight of all mice in one cage, and then taking 5% of this value. Weight 

was carefully monitored over the study and was not allowed to drop within 85% of baseline weight. 

After injury during experimental time points, mice were fasted only overnight, ~18-22 hours. We 

found that after <18 hours fasting time, mice did not have an increased level of motivation to eat. 

Water was always provided ad lib.  

 The following baseline training schedule was used to determine paw preference: days 1-3, 

mice were introduced to single plane mirrors (10 cm diameter circle mirrors; Hobby Lobby) and pasta 

pieces in the home cage to minimize neophobic response, mirrors remained in the home cage for the 

duration of the experiment to continually acclimate mice to the reflective surface, as we found the 

mirrored bottom of the enclosure severely disrupted behavior without continued habituation; days 

4-8, mice were habituated to the pasta handling enclosure for 20 minutes or the total length of eating 

time, whichever came first, and were given 3 test length (2.8cm) pasta pieces and as many short 

(0.7cm; maximum of 10 pieces) pasta pieces as possible during the remaining training time; days 9-

13, mice were given 3 test length pasta pieces and timed for the total amount of eating time for all 3 

pieces, during this time the “guide” and “grasp” paws were determined and recorded for each mouse. 
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The “guide” paw was the paw usually closest to the mouth when eating long pasta pieces and was 

used as the preferred paw for behavioral tests and contusion injury; the “grasp” paw was the paw 

further from the mouth when eating long pasta pieces (Tennant et al., 2010).   

 In this study, we attempted to determine the level of forelimb function for the preferred paw 

at different cervical SCI severities. We performed the pasta handling test each week and recorded 

mice eating 3 pieces of pasta in the enclosure (Sony Handycam HDR-CX440, Digital HD Video Camera 

Recorder). The time to eat each piece and total time in enclosure was recorded. The pasta handling 

test was not effective to determine forelimb function as after injury, instead of using the forelimb to 

reach and grasp the pasta as was predicted, mice instead used their mouth (“mouth pulling”) to pick 

up the pasta. Alternatively, the mouse would use the other paw, initially the “support” paw instead 

to handle pasta resulting in a “failure to contact” the pasta.  

2.2.1.2. Single Pellet Reaching  

 The single pellet reaching test is a well-established method to assess forepaw and forelimb 

function in mice and rats (Farr and Whishaw, 2002; Xu et al., 2009; Wang et al., 2017). In this study, 

single pellet reaching was used to evaluate the function in the preferred paw after injury over a period 

of nine weeks. Mice were trained in the single pellet reaching task with a plexiglass skilled forelimb 

chamber (catalog #5401, Maze Engineers). Chocolate pellets (Product# F05301Dustless Precision 

Pellets, 20mg, Rodent Purified Diet; Bio-Serv) were used for the task and placed in a custom made 

pellet holder created by cutting off the end of a transfer pipette near the bulb (diameter = 1.3cm; 

height = 1.2cm) and mounting it on a flat plastic piece at a 25° angle. The holder was then attached 

to the pellet shelf using a binder clip.  

 The following food restriction schedule was used during baseline training: night 1, complete 

overnight fast (test within 20-22 hours); nights 2 and 4, mice received 2.5% chopped chow; nights 3 

and 5, mice received 5% chopped chow. Food was returned promptly after testing and animals were 
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allowed full access for nights 6 and 7. The chow percentage was calculated as described in Section 

2.2.1.1. Water was always provided ad lib.  

 The following baseline training schedule was used to determine paw preference and train 

animals in the skilled reaching task: days 1-3, pellets were dropped into the home cage to introduce 

the new food and minimize neophobic response; days 4 and 5, habituate mice in training enclosure 

with lots of pellets near reaching front for 15 minutes each day; days 6-20 fill pellet holder with 5-7 

pellets and place centered to reaching hole, continuously refill holder so always containing 5-7 pellets 

and complete for 40 pellets or 15 minutes, whichever comes first, determine paw preference in 

reaching task and introduce the video recorder. We found it very important to allow the mice time to 

habituate to the video recorder as its initial presence reduced the number of pellets reached by 50% 

in some non-habituated animals. To speed this process up, a large black circle was cut from cardstock 

and taped to the home cage. The camera was placed on a tripod 7.2cm from the pellet reaching hole 

at a 30° angle.  

 In this study, we attempted to determine which of the kinematic steps of reaching and 

grasping were lost or preserved in different injury severities. We performed the single-pellet reaching 

test each week and recorded mice for 15 minutes or the total time for eating 40 pellets, whichever 

came first. The time to eat and number of pellets reached was recorded. The pellet reaching task was 

not effective because the mice used the uninjured paw for reaching instead, so in the future the holder 

should be offset to the reaching hole.  

2.2.2. Locomotor Assessments 

Mice were habituated and tested for 3 days in the rotarod (RR), complex horizontal ladder 

(cHL), and grooming tests 3 days prior to SCI. The RR, cHL, and grooming tests were completed after 

food was returned from forelimb testing and were performed every week beginning at 1wPI and 
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continuing until 9wPI. Animals were coded, and behavioral assessments and analyses were performed 

by two investigators blinded to the treatment groups.  

2.2.2.1. Rotarod   

 The rotarod test is sensitive to deficits in coordination and locomotion (Stanley et al., 2005). 

The rotarod device (Ugo Basile) was set in 5 lanes with 5.5cm gaps for each lane and the time (seconds) 

on the rod was counted for each animal. Five trials were performed and the 3 highest scores were 

averaged for each animal. During baseline training, each mouse should perform above 120s per trial 

(Stanley et al., 2005). False starts, or scores <5 seconds, should not be counted except in the first week 

PI as some animals will be too injured to perform. The rotarod test was performed weekly and the 

average rotarod score for each mouse was calculated. As mice will fall off, especially in the weeks 

after injury, it is important to distinguish by careful observation if the mouse is jumping off or falling 

off of the rotarod.  

2.2.2.2. Complex Horizontal Ladder (cHL) 

The complex horizontal ladder (cHL) test is sensitive to locomotor deficits after cervical SCI as 

it requires adequate sensorimotor function to feel the ladder rungs and contact the rungs during 

stepping (Soblosky et al., 2001; Gensel et al., 2006; Metz and Whishaw, 2009). The device consists of 

a walkway enclosed by Plexiglas walls (8 cm tall, 80 cm long and 3.5 cm apart) raised 15 cm above 

ground (height of 2 empty, inverted rat cages). Wooden applicator sticks (1mm diameter) were 

inserted into holes drilled along the lower edge (every 0.5 cm) at random intervals to prevent 

memorization of the locomotor task, requiring an increased level of active engagement in the cHL task 

rather than spacing every 0.5cm as is traditional (Metz and Whishaw, 2009). Rungs did not shift or 

rotate while in place but were still easily removed after testing. Mice were habituated to the cHL 

apparatus in 3 training sessions where each session consisted of 5-10 complete transits. The ends of 

the runway were blocked off with red enrichment cylinders to prevent animals from escaping at the 
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end and to encourage the animal towards the “target” end point, which was the home cage placed at 

the end of the walkway. The animals were free to explore and move about the apparatus, and sugared 

cereal was available in a goal box at the left or right side (respective to MMS paw preference). The 

mice were trained to travel from the start point towards the goal box without turning around and, if 

required, gently guided by the experimenter. A testing session consisted of 1 successful walk without 

turning or backwalking and was recorded on a video camera angled perpendicular to the rungs. The 

percentage of missed steps (# misstep / # total steps x 100) were calculated using slow motion video 

playback for each walk and the average of both walks was the percentage of missteps for each week. 

2.2.2.3. Grooming 

The grooming test is sensitive to sensorimotor deficits induced by cervical SCI and was 

performed as previously described (Bertelli and Mira, 1993; Soblosky et al., 2001). Briefly, cool tap 

water was applied to the animal’s head and back with soft gauze, and the animal was placed in a 

clean, clear glass cylinder (12.5cm diameter; 30 cm height; or a 4L beaker). Two mirrors were placed 

behind and beside the cylinder forming the back and left walls, respectively. The camera was placed 

21cm diagonally from the corner made by the mirror intersection at the level with the cylinder bottom 

(0 degrees). Grooming activity was recorded with a video camera (Sony Handycam HDR-CX440, Digital 

HD Video Camera Recorder) for 2 minutes total. Scoring was done according to the highest point 

reached by the forelimb: 0, the animal was unable to contact any part of the face or head; 1, the 

animal’s forepaw touched the underside of the chin and/or the mouth area, but not the nose; 2, the 

animal’s forepaw contacted the area between the nose and the eyes, but not the eyes; 3, the animal’s 

forepaw contacted the eyes and the area up to, but not including, the front of the ears; 4, the animal’s 

forepaw contacted the front, but not the back, of the ears; 5, the animal’s forepaw contacted the area 

of the head behind the ears (full range of motion). Slow motion video playback was used to score each 

forelimb independently. 
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2.3. Anterograde Tracing for descending Long Spinal Tracts 

Fifteen mice (3 groups; 5 mice/group) were used for anterograde tracing. After the final 

behavioral tests at 9 weeks following SCI, mice were again anesthetized with a mixed solution of 

ketamine and xylazine. A midline sagittal incision was performed to excise the skin and subdermal 

tissue away from the skull. A mouse micro drill was used to open the skull, and then mice were moved 

to a stereotaxic injection instrument with a micro glass needle to deliver either virus or BDA into the 

motor cortex, red nucleus, or reticular formation as described in Table 1. Mice were sacrificed after 3 

weeks and the brain and spinal cord was removed and collected for histology. 

 

Injections 

Anterograde 

Tracer 

Concentration Injection Volume Target Brain 

Region 

Coordinating 

Spinal Tract 

AAV5-CAG-RFP 2.30E + 13 

(gc/ml) 

8 injection points;  

0.25 uL/point 

Contralateral 

Motor Cortex 

Corticospinal 

Tract (CST) 

AAV5-CAG-GFP 2.10E + 13 

(gc/ml) 

2 injection points;  

0.5 uL/point 

Ipsilateral Pontine 

Reticular Nucleus 

Reticulospinal 

Tract (RtST) 

Biotinylated 

Dextrin Amine  

10% BDA 

 

1 injection point;  

1 uL/point 

Contralateral Red 

Nucleus 

Rubrospinal 

Tract (RST) 

 

Table 1 | Anterograde tracers used in cortical injections. Concentrations, target brain region, and 

target coordinating spinal tract indicated in right columns.  
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2.4. Retrograde tracing by Cholera Toxin B  

 Fifteen mice (3 groups; 5 mice/group) were used for CBT tracing. At 9 weeks PI, mice were 

anesthetized with a mixed solution of ketamine and xylazine, and a midline dorsal laminectomy was 

performed at C7 to expose the spinal cord. Mice were moved to a stereotaxic injection instrument 

with a micro glass needle and Cholera Toxin B (CTB; Sigma, Catalog #C9903-2MG) was injected on the 

hemisection ipsilateral to the injury at C7 up and down (0.5uL/injection; 1% diluted in 1XPBS). 

Afterward, the incision was sutured in layers, bacitracin ointment (Qualitest Pharmaceuticals, 

Huntsville, Alabama, US) was applied to the wound area, 0.1 mL of gentamicin [stock solution 20 

mg/ml, subcutaneous (sc); ButlerSchein, Dublin, Ohio, US] was injected, and the animals recovered 

on soft bedding on a water-circulating heating pad. Mice received a mixed solution of antibiotic, 

gentamicin, and analgesic agent, buprenorphine (0.05 mg/kg, sc; Reckitt Benckise, Hull, England), 

once a day for 3 days. Mice were monitored carefully post-operatively and were given 1-2mL Ringers 

saline solution (0.03% bacteriostatic saline, sc) if they appeared weak. Mice were sacrificed after 2 

weeks and the brain and spinal cord were removed and collected for histology. 

 

2.5. Immunohistochemistry 

Two or three weeks after retrograde or anterograde tracing injections, respectively, mice 

were anesthetized with a mixed solution of ketamine (80 mg/kg, ip) and xylazine (10 mg/kg, ip), and 

perfused transcardially with 0.01 M phosphate buffered saline (PBS, pH 7.4), followed by 4% 

paraformaldehyde (PFA) in PBS. The injured spinal cord segments and brains were removed, post-

fixed in 4% PFA overnight, cryoprotected in 20% sucrose overnight, and 30% sucrose overnight at 4° 

C and embedded in OCT compound (Fisher Scientific). The spinal cords were cryosectioned in 20 um 

slices either transversely or longitudinally and mounted serially (10 slides/series) on Super Frost Plus 
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Gold Slides. The cortex and midbrains were cryosectioned in 20 um slices coronally proceeding 

rostrally to caudally and mounted serially while skipping every 40 um (3 slides/series; ~3 series/block).  

For immunofluorescent staining, slides were briefly warmed on a hot plate and then blocked 

with 10% donkey serum in 1XPBS containing 0.2% Triton X-100 (PBST) for 1 hour at RT. The sections 

were then incubated in PBST containing 5% donkey serum and either triple-stained with 1) polyclonal 

goat anti-mCherry (mChy; a marker for red fluorescent protein; 1:400; Sicgen), polyclonal chicken 

anti-Green Fluorescent Protein (GFP; a marker for green fluorescent protein; 1:400; Chemicon), and 

CY5-streptavidin (CY5-strep; a marker for biotinylated dextran amine also called BDA; 1:200; Jackson 

ImmunoResearch Lab); 2) polyclonal rabbit anti-mChy (1:200; Abcam), polyclonal chicken anti-GFP 

(1:400; Chemicon), and polyclonal goat anti-Cholera Toxin B Subunit (CTB; marker for spinal 

retrograde tracing; 1:10,000; List Biological Labs #703); 3) rat monoclonal anti-glial fibrillary acidic 

protein (GFAP; a marker for reactive astrocytes; 1:200; Invitrogen), polyclonal chicken anti-

microtubule associated protein 2 (MAP2; a marker for neuronal parikarya and dendrites, 1:500; 

Millipore), and rabbit polyclonal anti-fibronectin (FN; a marker for fibronectin in the injury core; 1:200; 

Sigma); or double-stained with polyclonal goat anti-CTB (1:10,000; List Biological Labs) and polyclonal 

rabbit anti-neuronal nuclei (NeuN; a marker for the nucleus of mature neurons; 1:1,000; Millipore); 

or single-stained with 1) polyclonal rabbit anti-FN or 2) polyclonal chicken anti-MAP2 overnight at 4° 

C (Table 2).  

After three washes of 5 min in PBS, sections were incubated in PBST containing 5% donkey 

serum, donkey anti-goat IgG Rhodamine Red-X (1:200; Jackson-IummonRes Lab; Baltimore, MD, 

United States), donkey anti-chicken IgY (IgG) FITC-conjugated F(ab’)2 fragments (1:200), donkey anti-

rabbit TRITC-conjugated IgG (1:200), donkey anti-rat TRITC-conjugated IgG (1:200), donkey anti-goat 

Cy5-conjugated IgG (1:200), donkey anti-rabbit Cy5-conjugated IgG (1:200), or donkey anti-chicken 

Cy5-conjugated IgY (IgG) F(ab’)2 fragments (1:200) for 1 h at RT. Hoechst 33258 (1:1000; 20mM, 
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Anaspec; Cat. #AS83219) was used to stain nuclei during secondary antibody incubation. The sections 

were rinsed in PBS and coverslipped with ProLong® Gold antifade reagent. A Zeiss AxioObserver Z1 

inverted fluorescence microscope was used to capture representative images at 10x and 20x 

resolution. Photomicrographs were assembled using ImageJ (v.1.52p, NIH) and Inkscape (v.1.0). 
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Primary Antibodies 

Material Dilution Source  Catalog Number  

Chicken polyclonal anti-glial fibrillary 

acidic protein (GFAP) 

1:200 Millipore  AB5541 

Chicken polyclonal anti-green fluorescent 

protein (GFP) 

1:400 Chemicon  AB16901 

Chicken polyclonal anti-microtubule 

associated protein 2(MAP2) 

1:500 Millipore AB5543 

Goat polyclonal anti-Cholera Toxin B 

Subunit (CTB) 

1:10,000 List Biological Labs #703 

Goat polyclonal anti-mCherry (mChy) 1:400 Sicgen  AB0081-200 

Mouse monoclonal anti-GFAP 1:400 Sigma  G3893 

Rabbit polyclonal anti-fibronectin (FN) 1:200 Sigma F3648 

Rabbit polyclonal anti-GFAP 1:400 DAKO Z0334 

Rabbit polyclonal anti-mChy 1:200 Abcam 16743 

Rabbit polyclonal anti-neuronal nuclei 

(NeuN) 

1:1,000 Millipore ABN78 

Rat monoclonal anti-mouse CD68 1:200 Bio-Rad MCA1957GA 

Rat monoclonal anti-GFAP 1:200 Invitrogen 13-0300 

CY5-Streptavidin 1:200 Jackson 

ImmunoResearch  

016-170-084 

Table 2 | Primary antibodies used in immunofluorescent histology staining and imaging. Dilutions, 

vending company, and catalog number indicated in right columns.  
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2.4. Histological Analysis  

 To assess the anatomical effects of graded spinal cord injury, IHC images were quantified for 

injury size, gray matter lost, and CTB neurons.  

2.4.1. Quantification of Injury Size – Fibronectin  

 Injury size was quantified in ImageJ (NIH) using the average of 3 longitudinal samples that had 

the largest areas of fibronectin (FN) immunoreactivity (IR). Transverse longitudinal images were 

captured every 200um for all slices with FN-IR staining 20x resolution on a Zeiss AxioObserver Z1 

inverted microscope with the tiling and stitching function. For the longitudinal quantification, the 

sample with the greatest area of FN-IR and one adjacent section rostrally and caudally was measured 

for each animal using an area average approach (Soderblom et al., 2013; Jeong et al., 2017). The 

largest area was found by outlining the bright FN+ staining in ImageJ with a freehand drawing tool 

and then automatically measured and the value recorded. The FN-IR average of each group was found 

to give the size of injury.  

Five mice were in each injury group (3 groups total). Of the fifteen spinal cords analyzed, one 

mouse from the 50kD injury group was excluded due to tissue damage during histological processing. 

2.4.2. Quantification of Gray matter Loss – MAP2  

 The amount of gray matter lost by microtubule associated protein 2 (MAP2) in longitudinal 

samples was calculated by a subvolume approach (Oorschot, 1994; Cao et al., 2005) in ImageJ. 

Transverse longitudinal images were captured every 200um for the entire thickness of the spinal cord 

using 10x resolution on a Zeiss AxioObserver Z1 inverted microscope with the tiling and stitching 

function. The region of interest (ROI) for each slice was found by using a rectangular selection which 

limited the image to a 4mm length (2mm rostral and caudal to the epicenter; rectangle midline at 

epicenter) containing both the ipsilateral and contralateral widths. The epicenter was defined by the 

region of MAP2-IR negative area midway through the spinal cord containing DAPI clustering at the 
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epicenter of the injury area. Once the ROI was defined, the image was converted to 8-bit format, 

thresholded to only include the MAP2-IR areas, and the thresholded area was measured automatically 

by ImageJ and the value was recorded for each slice containing MAP2 in a sample (approximately 5-8 

slices per sample). Each slice was multiplied by the distance to the adjacently analyzed slice (200um) 

to generate a subvolume for each slice of the spinal cord (5-8 slices per spinal cord). The subvolumes 

were summed together to create a total gray matter volume for each animal. The MAP2-IR volume of 

the control animals was averaged together, and the volume of gray matter lost was found by 

subtracting the MAP2-IR volume of each injury animal from the MAP2-IR average volume of the 

control animals (Gray matter Lost = Control MAP2-IR Average – Injury Animal MAP2-IR).  

Five mice were in each injury group (3 groups total) and three spinal cords from control mice 

without injury were used. Of the eighteen spinal cords analyzed, 3 were removed due to tissue 

damage during histological processing; one animal from the 70kD group and two animals from the 

50kD group.  

2.4.3. Quantification of descending Propriospinal Spinal Tracts by CTB retrograded tracing. 

 The number of descending propriospinal neurons rostral to the injury were quantified in 

samples 2mm rostral (R2mm) to the lesion (approximately C3, or 2000um rostral to the epicenter) in 

ImageJ. Cross-sectional images were captured using 20x resolution on a Zeiss AxioObserver Z1 

inverted microscope with the tiling and stitching function. The image used for counting was created 

by exporting each channel for NeuN and CTB separately (Rhodamine and CY5, respectively). The 

brightness and contrast for NeuN was adjusted to exclude the high background levels due to poor 

cryopreservation. The CTB channel image was converted to 8-bit and the NeuN image was overlayed 

at 15% opacity. CTB-IR neurons were counted manually in ImageJ using the Cell Counter Plug-in for 

the ipsilateral and contralateral sides separately for each animal and the values recorded.  
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2.5. Statistical Analysis 

 Statistical analyses were performed with SPSS v.25 (behavioral RM ANOVA, post-hocs; IHC 

analysis) or GraphPad Prism v.8 (regressions and correlations). Graphs represent the mean ± standard 

error of the mean. Behavioral and histological quantification graphs were made in Microsoft Excel and 

heat maps and correlational plots were generated in GraphPad Prism.  

2.5.1. Behavioral Statistics  

All forelimb and locomotor behavioral testing was performed before injury as a baseline and 

again 1wPI to ensure adequate injury deficit in locomotion. All analyses were performed by 

experimenters blinded to the treatment groups. 

The mean cHL misstep percentages, RR and grooming scores were tallied by experimental 

group and plotted as a function of time PI. Performance change over time for cHL misstep percentage 

and RR score was analyzed using repeated-measures ANOVA with the between groups factor. The 

differences among the groups and each group over the 9wPI testing weeks were performed using 

Tukey’s Honestly Significant Difference (HSD) post hoc test and one-way ANOVA.  

The mean grooming scores were tallied by experimental group and plotted as a function of 

time PI. Grooming score change over time was analyzed using the Kruskal-Wallis H-test.  

2.5.2. IHC Statistics  

 The mean area of FN and mean volume of MAP2 were tallied by experimental group by 

experimenters blinded to the group. The differences of MAP2 and FN between injury groups were 

statistically analyzed in SPSS v.25 using a one-way ANOVA with Tukey’s HSD post hoc.  

2.5.3. Correlation plots 

 The relationship of behavioral test to histology outcome was analyzed in GraphPad Prism for 

rotarod vs. fibronectin, rotarod vs. MAP2, cHL vs. FN, cHL vs. MAP2, grooming vs. FN, and grooming 

vs. MAP2. A simple linear regression was performed to assess the rate of change in behavioral 
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performance for each animal from 1-9 weeks PI, which was given by the best-fit slope value. 

D’Agostini-Pearson and Shapiro-Wilk tests were performed to assess if distribution was normal or 

lognormal in fit. All data were normally distributed so the Pearson correlation test was used to assess 

the correlations of injury severity, slope of behavioral tests, and IHC data. An additional set of tests to 

assess normality and correlation following the same parameters for normality and correlational 

testing were performed separately to test the behavioral scores at 9wPI with the histology values and 

injury severities. Correlations were considered weak if rp = <0.6, moderate if rp = 0.6-0.8, and strong if 

rp = >0.8.  
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Chapter 3 – RESULTS 

Increasing the severity of SCI contusion results in more missteps in complex horizontal ladder  

To test the effects of graded unilateral cervical contusion on locomotor deficits, animals were 

assessed weekly using the complex horizontal ladder (cHL) (Soblosky et al., 2001; Gensel et al., 2006; 

Metz and Whishaw, 2009). The cHL test measures the number of missteps an animal makes over a 

horizontal ladder missing rungs at irregular intervals, creating an uneven rung pattern encouraging 

the animal to actively participate in the assessment to prevent missteps rather than walking using 

typical gait (Metz and Whishaw, 2009). Normally, uninjured mice are able to perform with 25% 

missteps or less, so we used 25% as our baseline threshold and confirmed each mouse was capable 

of <25% missteps prior to injury. Following SCI, sensorimotor function is significantly impaired and the 

ability to step correctly is reduced, resulting in an increase in missteps in the cHL.  

Differences in the percentage of missteps between the 50, 70, and 90kD groups over the nine 

weeks of behavioral testing were assessed using a Repeated Measures ANOVA and Tukey’s Honestly 

Significant Difference (HSD) post hoc testing with the between subjects factor as experimental group 

and the within subjects factor as repeated measures on time. The effects of time and group on the 

percentage of missteps were significant (p = <0.000 and p = <0.000, respectively); a Greenhouse-

Geisser adjustment for sphericity was used to account for variance. The interaction of time and group 

was also significant (p = 0.037). This indicates that contusion severity had different effects on the 

percentage of missteps depending on the week post-injury (PI), so follow-up one-way ANOVA’s with 

multiple comparisons by Tukey’s HSD post hoc testing was performed (Figure 4). The percentage of 

missteps was significantly increased in the 70kD group compared to the 50 kD group at 1-3 weeks PI. 

The 90kD group had significantly more missteps than the 50kD and 70kD group at all 1-9 weeks PI.  

All groups had an increased number of missteps after SCI. The percentage of missteps in cHL were 

directly related to injury severity. Specifically, as the force of contusion severity increased (kD), the 
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number of missteps also increased. The percentage of missteps in the preferred forelimb improved 

significantly over time in the 90kD group from 1 to 7 weeks PI (F = 33.199, p = <0.000) and in the 50kD 

group from 1 to 6 weeks PI (F = 176.495, p = <0.000). The 70kD group had not yet reached a plateau 

in cHL performance and was still improving at 8 weeks PI (F = 163.07, p < 0.000).  

 

 

Figure 4 | Percentage of missteps for complex horizontal ladder (cHL) for 9 weeks post-injury (PI) for 

mice in 90kD, 70kD, and 50kD groups after unilateral contusion spinal cord injury (SCI). Mice in all 

injury grades had impaired stepping ability on the paw ipsilateral to the lesion. There were significant 

differences in the percentage of missteps in the one-way ANOVA at all weeks PI. Results represent 

mean ± standard error of the mean; n = 10 mice per group. ^^P < 0.01, ^^^P < 0.001 represent 70kD 

> 50kD; **P <  0.01, ***P < 0.001 represent 90kD > 50kD; +P < 0.05, ++P <  0.01, +++P < 0.001 represent 

90kD > 70kD. 
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Contusion severity reduces time in rotarod score 

 To test how the ability to perform the rotarod test was affected by graded SCI, animals were 

assessed weekly in the rotarod test. The rotarod test assesses for forelimb and sensorimotor function 

and is sensitive to locomotor deficits (Stanley et al., 2005). The rotarod test measures the time spent 

on the rotarod, a spinning rod in middair with gradually increasing speed, from placement to drop 

time. Normally, uninjured mice can walk >120 seconds (Stanley et al., 2005), so we used 120 seconds 

as our baseline threshold to make sure all mice were capable of walking at least this time length. 

Following SCI, sensorimotor function is impaired so mice will fall off the rotarod easier, reducing the 

amount of time spend on the rotarod and lowering the score.  

 Differences in rotarod score between the 50, 70, and 90kD groups over the nine weeks PI 

were assessed using a RM ANOVA and Tukey’s HSD post hoc testing with the between subjects factor 

as experimental group and the within subjects factor as repeated measures on time. The effects of 

time and group on rotarod score were significant (p = <0.000 and p = 0.0003, respectively); a 

Greenhouse-Geisser adjustment for sphericity was used to account for variance. The interaction of 

time and experimental group on rotarod score was also significant (p = 0.026). This indicates that 

contusion severity effected the rotarod score depending on the week PI, so follow-up one-way 

ANOVA’s with multiple comparisons by Tukey’s HSD post hoc testing was performed (Figure 5). The 

70kD group had lower rotarod scores than the 50kD group at 8 and 9 weeks PI. The 90kD group had 

significantly lower rotarod scores than the 50kD group at all 1-9 weeks PI. The 90kD group also had 

significantly lower rotarod scores compared to the 70kD group at weeks 3, 4, and 8 weeks PI.  

 All groups had a reduced rotarod score after SCI.  The rotarod scores by seconds were 

inversely related to injury severity. Specifically, as the contusion force increased (kD), the seconds on 

the rotarod decreased. The rotarod scores improved significantly in the 90kD group from 1 to 3 weeks 

PI (F= 27.816, p = <0.000), in the 70kD group from 1 to 5 weeks PI (F = 43.095, p = <0.000), and in the 
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50kD group from 1 to 5 weeks PI (F = 40.28, p = <0.000). There was no marked improvement in rotarod 

score after 6 weeks PI in any injury group.  

 

 

Figure 5 |Time score for rotarod for 9 weeks post-injury (PI) for mice in 50kD, 70kD, and 90kD groups 

after unilateral contusion spinal cord injury (SCI). All groups had impaired performance in the rotarod 

due to injury and fell off the rod easier than uninjured animals, which typically score at least 120 

seconds or more (Stanley et al., 2005). There were significant differences in rotarod score in the one-

way ANOVA at all weeks PI. Results represent mean ± standard error of the mean; n = 10 mice per 

group.  ^P < 0.05 represent 70kD < 50kD; *P < 0.05, **P <  0.01, ***P < 0.001 represent 90kD < 50kD; 

+P < 0.05, ++P <  0.01 represent 90kD < 70kD. 
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Grooming score reduced in all injury severity groups after unilateral contusion  

 To test if injury severity impaired grooming ability, animals were assessed weekly in the 

grooming test (Bertelli and Mira, 1993; Soblosky et al., 2001). The grooming test is typically used to 

assess sensorimotor deficits in mice and rats after peripheral, spinal, or cortical injury and can largely 

detect functional deficits. The grooming test measures the functional cleaning ability in a forepaw 

using a scoring system based on how high the mouse can reach up its face, and is scored 0-5. Normally, 

uninjured mice can score between 4 and 5, indicating the cleaning ability to the forehead and behind 

the ears. During our baseline analysis, we found that mice typically scored around a 4 as was 

consistent with other cervical SCI mice studies (Hilton et al., 2013), so we used 4 as our baseline 

threshold to make sure all mice could clean to the forehead. This indicates that mice might already be 

performing lower than the “standard” even at the baseline testing.  

 Differences in grooming score between the 50, 70, and 90kD groups over the nine weeks PI 

were assessed using a Kruskal-Wallis test with follow-up pairwise comparisons adjusted with a 

Bonferroni correction for multiple tests. Significant differences were found at 1 (p = 0.018), 2 (p = 

0.030), 8 (p = 0.029), and 9 (p = 0.015) weeks PI. The 90kD group had significantly lower grooming 

scores than the 50kD group at 1 (p = 0.043) and 9 (p = 0.036) weeks PI. The 90kD group had 

significantly lower grooming scores than the 70kD group at 1 (p = 0.043), 8 (p = 0.034), and 9 (p = 

0.036) weeks PI. Overall comparisons at 2 weeks PI indicated significance but there were no significant 

differences found at the pairwise comparisons level.  

 All groups had reduced performance in grooming after SCI in the ipsilateral side while the 

contralateral side was unaffected. The grooming scores were not obviously related to injury severity. 

Specifically, with increased contusion force (kD), the 90kD group performed overall worst but the 50 

and 70kD groups performed largely similarly. The grooming scores improved moderately over the 

study for some animals, and the maximum grooming score achieved in any group was a 2 while the 
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lowest was a 0. Most animals scored a 1 at any time point PI, suggesting that the grooming test is not 

as sensitive as the rotarod and cHL to deficits after graded cervical SCI.  

 

 

Figure 6 | Grooming scores for 9 weeks post-injury (PI) for mice in 50kD (n =  5), 70kD (n =  5), and 

90kD (n =  5) groups after unilateral contusion spinal cord injury (SCI). Mice in all injury grades lost 

forelimb function in the paw ipsilateral (A) after injury, while the contralateral paw (B) was 

unaffected. Results represent mean ± standard error of the mean (SEM); *p < 0.05.  
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The effect of graded SCI on forelimb function in pasta handling and single pellet reaching 

 To test if forelimb function in task specific assessments was affected after graded cervical 

hemicontusion, animals were trained before injury in the pasta handling (Allred et al., 2008; Tennant 

et al., 2010; Whishaw et al., 2017) and single pellet reaching (Farr and Whishaw, 2002; Xu et al., 2009; 

Wang et al., 2017) tasks. The pasta handling test has been used to assess deficits in forelimb function 

in mice (Tennant et al., 2010) and rats (Allred et al., 2008; Tennant et al., 2010; Whishaw et al., 2017). 

The single pellet reaching task has been used to analyze the kinematic movements in reaching and 

grasping in fine kinesthetic detail (Farr and Whishaw, 2002) with great success. The single-pellet 

reaching task has well been established as a “gold standard” in forelimb function (Farr and Whishaw, 

2002).  

 In pasta handling, normally mice handle long pieces of pasta by using a designated paw as a 

“guide” and place this paw on the end of the pasta proximal to the mouth and place the “grasp” paw 

farther away at the distal end of the pasta. For short pieces, mice usually keep their paws together at 

the same distance on the pasta (Tennant et al., 2010). Impaired reaching typically involves a switching 

of the guiding and grasping paws, holding the paws together on long pieces and apart on short pieces, 

or changes finger orientation when gripping the pasta. The pasta handling task was not efficient at 

detecting forepaw reaching and grasping specific deficits after SCI. Rather than using any “atypical” 

reaching behaviors such as altering the finger placement or gripping patterns on the pasta, the mice 

used their uninjured paw and mouth to pick up and eat the pasta, making quantification largely 

impossible. We used this task by allowing the mice to finish 3 pieces of pasta without a time limit, and 

in the future using a time limit of 15 or 20 minutes would be extremely prudent to reduce time cost 

in this experiment. This assessment may work better in SCI rats or in head-fixed mice after SCI.  

 In pellet reaching, normally mice perform 10 steps during a reaching and grasping attempt 

(Farr and Whishaw, 2002). Mice will typically have a preferred paw that they will almost always use 
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for reaching; this was the paw injured in our SCI model. Impaired reaching and grasping involves 

missing steps or misperforming steps of the reach and grasp. The pellet reaching task was not efficient 

at detecting forepaw deficits in reaching and grasping after SCI and instead of using the preferred 

paw, mice would use their opposite paw. In another group of animals, we tried to offset the pellet 

holder which would force the mouse to use their preferred paw, but mice were unable to reach the 

pellets due to SCI even in mild injury groups (50kD). We used this task by allowing mice to reach for 

40 pellets or after being in the enclosure for 15 minutes, whichever came first. We strongly suggest 

an automated method to perform pellet reaching as actively placing pellets individually is limiting on 

the researcher and is a high time cost at the beginning of the experiment during training. Pasta 

handling and pellet reaching may be useful in models of graded cervical SCI in rats or in head fixed 

mice, but in our hands these tests were not effective to detect differences in forelimb performance 

between injury grades.  

  

Overview of histological changes after graded unilateral cervical contusion 

 The cervical unilateral hemicontusion in mice resulted in the formation of an astroglial scar 

with a fibrotic core. The lesion extended from the epicenter rostrally and caudally as determined by 

triple staining using fibronectin, a marker for fibroblasts in the lesion core; microtubule associated 

protein 2 (MAP2), a neuron specific marker; and glial fibrillary acidic protein (GFAP), a marker for 

reactive astrocytes (Figure 7). GFAP defined the lesion border while fibronectin defined the lesion 

core by filling in the cavity. Gray matter loss was defined by MAP2 and was evident ipsilaterally and 

mildly present on the contralateral side.  
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Figure 7 | Overview of histological effects of cervical hemicontusion spinal cord injury (SCI). Injury size 

was evaluated by immunohistochemistry staining against fibronectin (A2, B2, C2). The hemicontusion 

resulted in the formation of an astroglial scar with a large fibrotic core in all animals. Glial fibrillary 

acidic protein (GFAP) is a marker for reactive astrocytes that become hypertrophied after injury and 

can be seen throughout the white and gray matter (A1, B1, C1) and heavily concentrated around the 

fibrotic core forming an astroglial border around the fibrotic scar (A3, B3, C3). Representative images 

of the epicenter were taken for animals in the 50kD (A), 70kD (B), and 90kD (C) groups. Scale bar = 

200um.  
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Injury size by fibronectin is significantly greater in 70 and 90 kD contusion SCIs compared to 50 kD 

 To assess injury size, we used fibronectin, which is a well-established marker of the fibrotic 

core of the glial scar formed after contusive SCIs (Jeong et al., 2017; Cooper et al., 2018), allowing for 

a reliable measure of injury size (Figure 8). We found that the area of fibronectin extended farther 

rostrally and caudally in the 90kD animals than the 50 or 70kD animals when visualized in longitudinal 

sections. The 50 and 70kD mice formed a fibrotic scar that was more spherical rather than elliptically 

elongated as in the 90kD group.  

 Differences in fibronectin area between the 50, 70, and 90kD groups were assessed by a one-

way ANOVA with the between groups factor. The area of fibronectin was significantly different 

between the injury groups (p = 0.0001), so follow-up multiple comparisons by Tukey HSD post hoc 

testing were performed. There was significantly more fibronectin in the 70kD group compared to the 

50kD group (p = 0.009). The 90kD group had significantly more fibronectin than the 50kD group (p = 

0.00009) and the 70kD group (0.021). Our data showed that injury size shown by fibronectin-IR area 

is closely related to injury severity (rp = 0.90, p = 0.00002), suggesting fibronectin is a reliable marker 

of injury severity in mice. 
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 Figure 8 | Injury area by fibronectin-IR (mm2) in longitudinal samples after graded unilateral cervical 
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contusion. Representative images (A) of the fibronectin (FN)-immunoreactivity (IR) cells in the injury 

center at 400 and 200um dorsal (D), 400 and 200um ventral (V), and the epicenter in animals with 

either 50, 70, or 90 kD unilateral contusion injuries. The quantification of the injury size (B) showed 

that animals with more severe contusions had significantly larger lesion (p = 0.021, 0.00009, and 

0.009, respectively). Results in (B) represent mean ± standard error of the mean; n = 5 per group. Scale 

bar = 100um. *P < 0.05, **P < 0.01, ***P < 0.001.  

 

Gray matter loss significantly increases after cervical contusion SCI  

 To assess gray matter loss, we quantified the lost volume of immunoreactive MAP2, a marker 

for neuronal perikarya and dendrites. Typically, MAP2 will stain the gray matter “butterfly” in spinal 

cord cross-sections or the left and right gray matter columns of longitudinal sections (Figure 9). SCI 

results in neuronal loss and a reduction in gray matter volume at the injury center.  

      The difference in gray matter loss in injury groups compared to the control group was assessed 

using a one-way ANOVA with the between groups factor. The area of MAP2 was significantly different 

between the injury group and control group (p = <0.000), so follow-up multiple comparisons by Tukey 

HSD post hoc testing was performed. There was a significant amount of gray matter loss in the 50kD 

group (p = <0.000), the 70kD group (p = <0.000), and the 90kD group (p = <0.000) compared to the 

control group, indicating a significant gray matter loss in all injury groups.  

      The difference in gray matter lost between injury groups was assessed using a one-way ANOVA 

with the between groups factor. The area of MAP2 was significantly different between the injury 

groups (p = 0.0001), so follow-up multiple comparisons by Tukey HSD post hoc testing were 

performed. There was significantly more gray matter loss in the 90kD group compared to the 50kD 

group (p = 0.0004) or the 70kD group (p = 0.0004). There was no significant difference in gray matter 

loss between the 50kD or 70kD group compared to the other injury animals. The lost volume of gray 
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matter depends on both the injury area in the epicenter and the distance the injury spreads 

rostrocaudally. The distance of the longer injury observed in 90 kD group longitudinal section may 

lead to the significantly larger lost volume of gray matter in this group. Gray matter loss correlates 

with injury severity (rp = 0.85, p = 0.0005).  

 

 

Figure 9 | Effect of cervical contusion on gray matter. Gray matter volume lost quantified (E, graph) 

by MAP2 (mm3) in longitudinal samples (A) in 50kD (n = 3), 70kD (n = 4), and 90kD (n = 5) after graded 
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cervical contusion at C5. The subvolume of MAP2 (white) was quantified and summed for each sample 

to find the total volume, which was then subtracted from the gray matter volume of control animals 

(n = 3; D) Results represent mean +/- SEM. Scale bar =200 µm. ***p < 0.001. Scale bar = 200um.  

 

The propriospinal tracts after graded SCI by CTB retrograde tracing. 

 Descending propriospinal tracts (dPSTs) reside in the white matter of the spinal cord along 

with long descending tracts, while cell bodies reside in the gray matter. Propriospinal tracts connect 

neurons within spinal cord between segments for short distances (i.e. between C3 and C5) or long 

distances (i.e. between cervical and lumbar) (Laliberte et al., 2019).  The long descending tracts 

include corticospinal (CST), reticulospinal (RtST), and rubrospinal tracts (RST) (Haines et al., 2018). In 

mice, the CST is located dorsomedially to the central canal;  the Rostral RtST sits ventromedially and 

the caudal RtST sits ventrolaterally; the RST sits dorsolaterally and is anterolateral to the dorsal horn 

(Watson and Harrison, 2012). The long descending tracts in the white matter, are affected by 

contusion SCIs (Cao et al., 2005; Nishi et al., 2020), but the effect of SCI on dPSTs is not yet 

characterized. In this study, we completed the CTB tracing and will finish the quantification later to 

investigate whether different injury severities could cause differential loss in dPSTs between rostral 

cervical (C2-4) to caudal cervical (C6-7) after C5 graded SCI. We will further investigate how dPST loss 

could contribute to the different functional deficits after graded contusion SCI.  

 CTB was injected into C6-C7 to retrogradely label dPST neurons in the rostral cervical spinal 

cord in normal animals and injury animals after graded cervical unilateral contusion SCI (Figure 10, 

11).  Our results confirmed CTB as an effective retrograde tracer labeling dPST neurons in cervical 

spinal cord rostral to the injury and neurons in the brain for CST, RST or RtST, respectively. We will 

count the number of CTB+ neurons in the respective tracts to quantify the spared dPSTs and dLSTs 

including CST, RST and RtST after graded cervical SCI. Additionally, we have established the method 
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to anterogradely label different LDTs by AAVs expressing different fluorescence proteins and BDA in 

normal animals and in animals after hemicontusion (Figure 12, 13). We will use this approach to 

further confirm the loss of LDTs after graded SCI. We will also examine the projections of these LDTs 

in the cervical spinal cord and its relationship with dPST neurons in the normal or graded SCI animal. 

We will carefully analyze the potential correlation between anatomical and functional deficits to 

understand the roles of dPSTs and/or LDTs in functional deficits after cervical SCI. These data will 

provide invaluable information to develop new hypotheses for future studies and help to identify the 

therapeutic target for specific forelimb functional recovery after cervical SCI.  
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Figure 10 | Validation of spinal CTB retrograde tracing in uninjured control animals. Spinal tracts 

[A;(Watson and Harrison, 2012)] reprinted with permission under license. Cholera Toxin Subunit B 
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(CTB) was injected in uninjured control at cervical level 7 (C7). Representative images of CTB 

immunostaining (white) in control animals at C3 rostral (B) and approximately thoracic 1 (T1) caudal 

(C) to the injection. High magnification images capturing marked neurons (white) in the dorsal (d) and 

ventral (v) horns on the ipsilateral (left) and contralateral (right) sides.  Scale bar = 200 µm for main 

images; High magnification images scale bar = 50 um. License for (Figure 10.A): Title: The Location of 

the Major Ascending and Descending Spinal Cord Tracts in all Spinal Cord Segments in the Mouse: 

Actual and Extrapolated; Author: Megan Harrison, Charles Watson; Publication: The Anatomical 

Record: Advances in Integrative Anatomy and Evolutionary Biology; Publisher: John Wiley and Sons; 

Date: July 31, 2012; Copyright © 1999 John Wiley & Sons, Inc. License number 4873070881628 

granted to Chrystine Gallegos on July 20, 2020. Watson C, Harrison M (2012) The location of the major 

ascending and descending spinal cord tracts in all spinal cord segments in the mouse: actual and 

extrapolated. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 

295:1692-1697. 
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Figure 11 | Validation of spinal CTB retrograde tracing in grade SCI animals. Mice received different 

severities of hemicontusion injuries of either 50 kD (A), 70 kD (B), or 90 kD (C) at cervical 5 (C5). At 9 
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weeks post-injury (PI), CTB was injected at C7 caudal to the SCI and animals were sacrificed at 11-12 

weeks PI. Representative images of spinal cord cross-sections at C3 demonstrate CTB marked neurons 

in the dorsal (d) and ventral (v) horns on the ipsilateral (left) and contralateral (right) sides. High 

magnification images demonstrate CTB immunoreactivity. Scale bar = 200 um for main images; High 

magnification images scale bar = 50 um.  
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Figure 12 | Rostral cross-sections of spinal descending long tracts by anterograde tracing. AAV5-CAG-

mChy was injected into the contralateral motor cortex targeting the corticospinal tract (CST) in control 

(A1), 50kD (B1), 70kD (C1), and 90kD (D1) groups. The CST can be seen dorsomedially to the central 

canal. AAV5-CAG-GFP was injected into the ipsilateral pontine reticular nucleus targeting the 

reticulospinal tract (RtST) in control (A2), 50kD (B3), 70kD (C3), and 90kD (D3) groups. The RtST can 

be seen in the white matter ventrally to the central canal. Biotinylated dextrin amine was injected 

into the contralateral red nucleus targeting the rubrospinal tract (RST) in control (A3), 50kD (B3), 70kD 

(C3), and 90kD (D3) groups. The RST can be seen in the anterior white matter dorsolateral to the dorsal 

horn in control (A4), 50kD (B4), 70kD (C4), and 90kD (D4) groups. Scale bar = 200um.  
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Figure 13 | Longitudinal sections of spinal descending long tracts by anterograde tracing. AAV5-CAG-

mchy was injected into the contralateral motor cortex targeting the corticospinal tract (CST, red); 

AAV5-CAG-GFP was injected into the ipsilateral pontine reticular nucleus targeting the reticulospinal 

tract (RtST, green); and biotinylated dextrin amine (BDA) was injected into the contralateral red 

nucleus targeting the rubrospinal tract (RST, white) in control animals (A) and in 50kD (B), 70kD (C), 

and 90kD (D) experimental animals. Representative images show anterograde tracing in control and 

experimental groups for the CST (A1, B1, C1, D1), RtST (A2, B2, C2, D2), RST (A3, B3, C3, D3), and 

merged tracts (A4, B4, C4, D4). Images are oriented rostrally (top) to caudally (bottom) for every 

image. Scale bar = 500um.  
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Correlations between histology analysis and functional performance  

 To assess the more nuanced effects of graded SCI on histology and behavioral tests, 

comparisons were performed to assess the relationship between injury severity, functional 

performance over time and separately at 9 weeks PI, fibronectin area, and MAP2 volume lost (Figures 

14, 15, and 16).  

 Injury severity showed a strong correlation with MAP2 volume lost (rp = 0.85, p = 0.0005) and 

fibronectin area (rp = 0.90, p = 0.00002), confirming the direct effect of injury severity on gray matter 

loss and injury size. There was also a strong positive correlation between MAP2 volume lost and 

fibronectin area (rp = 0.80, p = 0.0019), demonstrating the relationship between injury size and the 

effect on gray matter lost. This shows that the injury model worked at performing different severities 

of SCI that could be assessed histologically.  

 There was not a relationship between cHL performance over time and fibronectin area or 

MAP2 lost. However, at 9 weeks PI the percent missteps of cHL had a moderate relationship to injury 

severity (rp = 0.66, p = 0.0104) and fibronectin area (rp = 0.65, p = 0.0112). This suggests that greater 

tissue loss by fibronectin-IR area relates more missteps in cHL (Figure 14).  

 The performance in rotarod over time was moderately correlated to injury severity (rp = -0.65, 

p = 0.0127) and the area of fibronectin (rp = -0.69, p = 0.0060). At 9 weeks PI, rotarod performance 

had a moderate correlation to injury severity (rp = -0.77, p = 0.0013) and MAP2 volume lost (rp = -0.67, 

p = 0.0180), and a strong correlation to fibronectin area (rp = -0.89, p = 0.00002). This demonstrates 

that injury severity and fibronectin area may affect rotarod performance over time, but at 9 weeks PI 

both gray matter loss and injury size negatively affect performance (Figure 15).  

 Grooming score over time did not have any correlations with histological outcomes. However, 

grooming score at 9 weeks PI had a moderate correlation with injury severity (rp = -0.64, p = 0.0145), 

fibronectin area (rp = -0.61, p = 0.0214), and MAP2 volume lost (rp = -0.78, p = 0.0030). This suggests 
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that while grooming score measured over time did not associate histologically, when grooming score 

is correlated at 9 weeks PI injury size and gray matter loss negatively influence performance (Figure 

16).  

 These correlative results demonstrate the grooming is not efficient at detecting nuanced 

deficits between different injury severities. Instead, complex horizontal ladder and rotarod reflected 

sensitivity to functional deficit and correlated well with histological outcomes at 9wPI.  
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Figure 14 | Relationships between histology and complex horizontal ladder. Linear regression for 

percent missteps in 50, 70, and 90kD groups (A). Pearson correlational R values (B, D) and p-values (C, 

E) for scores at 9 weeks PI and the slope rate of change across time.  
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Figure 15 | Relationships between histology and rotarod score. Linear regression for percent missteps 

in 50, 70, and 90kD groups (A). Pearson correlational R values (B, D) and p-values (C, E) for scores at 9 

weeks PI and the slope rate of change across time. 
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Figure 16 | Relationships between histology and grooming score. Linear regression for percent 

missteps in 50, 70, and 90kD groups (A). Pearson correlational R values (B, D) and p-values (C, E) for 

scores at 9 weeks PI and the slope rate of change across time. 
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Chapter 4 – DISCUSSION 

Clinically-relevant cervical hemicontusion graded model  

 The majority of SCI patients have cervical injuries (54.5%; (Center., 2019) and clinically 

relevant cervical SCI animal models are critically needed to develop effective treatment for these 

patients. In this study, we created graded severities of cervical SCI contusions by using different 

impact forces and then characterized the functional and histological deficits. Our results show that 

the graded cervical SCI contusions produced histological damage unilaterally and specific forelimb 

functional deficits on the contusion side; these effects are closely related to injury severity.  

 This model is a valid representation of repeatable graded cervical SCIs and is more clinically 

relevant than other laceration/transection, compression, or pinch models. Laceration and transection 

models are injuries most commonly performed by cutting the dorsal funiculus, partial quadrant or 

total hemisections, or complete transections; in all of these injuries, any axonal connections caudal to 

the lesion are totally severed (Geissler et al., 2013). Laceration models are very valuable for assessing 

axonal regeneration and sprouting as the injuries can be incredibly tract specific, however, these 

models are not clinically relevant (Aguilar and Steward, 2010; Geissler et al., 2013; Fink and Cafferty, 

2016). Compression models are helpful to assess transient stenosis of the spinal canal during the 

compression and also because this model is first a contusion followed by the prolonged compression 

(Geissler et al., 2013; Sharif-Alhoseini et al., 2017). These models are good for mimicking the pressure 

the spinal cord is under during human SCI before surgical intervention can decompress the spinal cord 

and mimic the ischemic and decompressive environment (Geissler et al., 2013). Pinch and crush 

models are helpful to assess the inflammatory cascade and reactivity response (Orr et al., 2017) but 

the effects in functional deficits can be transient (Hilton et al., 2013) which suggests that this model 

can have a high degree of variability. Furthermore, this model is not representative of human SCI 

(Geissler et al., 2013). Lacerations and transections are better than contusions at assessing 
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regeneration and sprouting of specific tracts, while compressions are better to represent the spinal 

column under pressure before surgery. Pinch models are good for looking at plasticity and the 

spontaneous recovery response because the effect is not as prolonged as a contusion or hemisection 

model. Thus, contusions are the best model for representing the human SCI.  

 Current contusion models initially began using thoracic contusions (Aguilar and Steward, 

2010), and have since evolved to using more cervical models that are clinically relevant (Sharif-

Alhoseini et al., 2017). While these models are the most clinically accurate, they are also risky due to 

the proximity to the respiratory tracts (Aguilar and Steward, 2010; Geissler et al., 2013; Sharif-

Alhoseini et al., 2017) resulting in the majority of cervical contusions being hemicontusions (Sharif-

Alhoseini et al., 2017). Bilateral models previously have shown high mortality rates (Aguilar and 

Steward, 2010), although a recent successful bilateral mouse contusion did not have high mortality 

rates (Reinhardt et al., 2020). Even in this study, we had a 20% mortality rate during surgeries. The 

bilateral model is more clinically relevant than even the hemicontusion model, however, the time cost 

that goes into training each mouse is high. Using hemicontusion models has successfully represented 

human SCI very closely, and while rats are the closest model to human SCI to date, mouse SCI offers 

immense possibility with transgenic options and viral targeting (Aguilar and Steward, 2010).  

While there is no true comparable animal model to human cervical SCI, rodent models offer 

a significant level of manipulability for experimental details such as using tracing mechanisms, the 

different behavioral assessments, and the ability to process data histologically in a relatively short 

time frame compared to the human life span. Other studies have assessed compression dwell time to 

distinguish between injury grades (Streijger et al., 2013; Nishi et al., 2020) rather than contusion force. 

Previous assessments into the functional deficits after SCI in graded SCI demonstrate that C4 but not 

C6 injuries produce  a chronically reduced response (Hilton et al., 2013), and also performed 

behavioral assessments examining locomotion and forelimb function overall, but have not assessed 
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which specific steps are preserved or lost for reaching and grasping (Anderson et al., 2004; Aguilar 

and Steward, 2010; Streijger et al., 2013; Nishi et al., 2020; Reinhardt et al., 2020). More research into 

the effects of contusive cervical SCI on the specific steps in reaching and grasping is needed because 

even partial recovery of function can significantly improve the quality of life for a patient with SCI.  

This study uses a clinically relevant injury model, rigorously assesses a series of behavioral 

tests, and histologically analyzes the anatomical effects of graded SCI. Additionally, it helps to expand 

the field of knowledge for mouse models using cervical contusions, which is especially important right 

now with the advent of so many promising tracing and transgenic mouse lines available to further 

elucidate mechanisms of neuronal injury and recovery (Flynn et al., 2017; Zholudeva et al., 2018).  

 

Functional implications of behavioral tests after graded cervical SCI  

 Cervical unilateral contusion of different severities sufficiently produced different forelimb 

functional deficits in animals receiving injuries of 50, 70, or 90kD contusion forces. These deficits are 

different to deficits observed in thoracic and lumbar spinal mice and rats, as these injuries in rodents 

effect the hindlimbs (Cao et al., 2005; Nishi et al., 2007; Ichiyama et al., 2008; Wen et al., 2015). The 

cervical SCI contusion used in this model produced deficits, restricted to the forelimb, consistent with 

other mouse models (Anderson et al., 2004; Streijger et al., 2013). We used several behavioral tests: 

complex horizontal ladder, rotarod, grooming, pasta handling, and pellet reaching. We found that the 

different behavioral tests reflected a level of sensitivity previously unexplored in other cervical mouse 

studies. The complex horizontal ladder and rotarod tests were sensitive at detecting deficits in 

different injury severities, while the grooming test was not sensitive to the graded cervical deficits. 

While the grooming test is a well-established assay to detect sensorimotor deficit in the forelimb, 

these results suggest that grooming is not sufficient to measure functional changes after cervical 

contusion SCI in the mouse. This may be because mice also use their feet sometimes to groom if they 



56 
 

cannot reach the area with their forepaw. Following SCI, forelimb function is impaired so cleaning 

ability by forepaw is reduced because they are not able to reach as far up their head, lowering the 

score.  

In the rotarod assay, our results showed that graded SCI results in forelimb functional deficits 

in all groups during the first couple of weeks after SCI, although over the nine weeks PI all groups 

showed a level of recovery.  In contrast, the complex horizontal ladder may be better at measuring 

functional recovery changes over a longer period of time and with more sensitivity than rotarod. The 

rotarod performance plateaus at 5wPI while the cHL continues improving such that the 70kD never 

hit a performance plateau during our study. Further research should be done to assess the behavioral 

plateaus of different injury severities in different behavioral tests, as this will provide more 

information for functional analysis parameters for other studies. The disparity in the performance 

plateau between the cHL and rotarod may be due to the rotarod’s reliable design with the rod staying 

in the same place albeit at a changing speed. The irregularly spaced cHL is specifically designed to 

prevent memorization and reduce motor learning. This encourages active sensorimotor participation 

in a way more similar to “skilled reaching” rather than “walking”, as the mouse specifically has to feel 

for each rung across the platform. Rotarod does not offer this dynamic performance and relies only 

off an increase in speed, which mice can adapt to over time (Stanley et al., 2005; Farr et al., 2006) or 

develop compensatory strategies in the uninjured side (Nishi et al., 2020). The complex ladder stays 

irregular on purpose, to prevent learning or adaptive mechanisms. This suggests that the cHL may be 

a better test for assessing skilled forepaw function in the mouse, although it is still prudent to perform 

other assays such as the rotarod test as the rotarod is well established to detect locomotor difficulty.  

      While other studies typically employ cylinder testing to assess asymmetry after unilateral SCI (Nishi 

et al., 2020) or paw preference (Bulman-Fleming et al., 1997), we chose not to use this test because 

our preliminary studies showed that mice do not rear in a manner that requires forepaw support and 
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are perfectly comfortable to sit on their haunches for minutes at a time. Instead, we evaluated paw 

preference and the fine forelimb function of reaching and grasping by pasta handling and the single 

pellet reaching test. Our results show that pasta handling and pellet reaching are unsatisfactory 

measures for forelimb function after unilateral cervical SCI contusion. Pasta handling requires either 

head fixation (Whishaw et al., 2017) or should be set up in a similar chamber as the pellet reaching 

for it to work, as without any external restrictions mice will instead use their contralateral paw or 

mouth to engage the pasta pieces. For pellet reaching, we found that if pellets were directly aligned 

with the chamber opening, mice would use their preferred paw during training but after SCI resorted 

to their contralateral limb again. This demonstrates that mice are extremely adaptable to adverse 

situations with their forelimb. In a later study, we found that even if the pellet holder was offset from 

the reaching chamber opening forcing the mouse to use only their preferred side, mice were still 

unable to reach simply because the functional loss was too severe after SCI.  

We would suggest using the Modified Montoya Staircase to supplement single pellet 

reaching, which has been used successfully in this lab in rat cervical hemicontusion models (Gallegos 

et al., 2020). Using the Modified Montoya Staircase as a supplementary assessment could provide 

more parameters to assess the mouse on and also might allow for some quantification details due to 

the sensitivity of color coding pellets and different step levels. The step levels allow an assessment for 

range of motion, the number of pellets taken/displaced/lost allow for a measure of reaching ability, 

and the pellets eaten serves as a measure of grasping ability and accuracy rate. It would be worthwhile 

to research more than one forelimb functional assay in a graded SCI and assess the behavioral 

functions lost or preserved between groups as well as performance plateaus over time.  
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Histology deficits after graded SCI   

Our model produced an injury with scar formation in the injury center with a glial border and 

a fibrotic core. This is consistent with other mouse SCI models which also found lesions filled in with 

fibronectin surrounded by reactive astrocytes (Cooper et al., 2018; Nishi et al., 2020). Importantly, 

fibronectin indicates the lesion size and correlates with injury severity and gray matter loss, 

demonstrating that gray matter and white matter are damaged after injury and that the damage 

continues chronically in the secondary injury response. Reducing the inhibitory environment will be 

very important for promoting regeneration or sprouting of propriospinal axons or increasing the 

plasticity of nearby tracts that could be important for forming spinal detours around lesions.  

Gray matter volume was significantly impacted by injury severity, as is consistent with other 

SCI models assessing the gray matter volume (Streijger et al., 2013) and the fact that SCI affects the 

white and gray matter of the spinal cord (Reinhardt et al., 2020). Since the axon tracts for both 

descending cortical and propriospinal axons are in the white matter, it’s important to further elucidate 

the mechanisms of functional deficit to develop treatment for patients. This first starts by 

understanding the relationship functional testing has to histological outcomes as in this study, and, 

importantly, deeply assessing the preservation or loss of the 10 specific steps involved in a reach and 

grasp (Metz and Whishaw, 2002). By uncovering the mechanism of SCI functional deficit, we can work 

towards identifying therapeutic targets and creating treatments. By discovering which specific steps 

in reaching and grasping are affected by dLSTs versus dPSTs or the combination of both, we can 

explore potentials for detour circuits either by endogenous plasticity or by promoting plasticity 

through treatments. Taken together, the mechanism of functional deficits and the tract specific 

contributions will be vital to designing an effective treatment for SCI patients.  

We assessed the differences in gray matter loss by MAP2 volume and injury size by fibronectin 

area between the different injury grades. Our fibronectin quantification results confirmed that a 
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greater contusion force would produce a more severe SCI. This is consistent with previous studies 

demonstrating that increasing compression time is correlated to gray matter (Streijger et al., 2013) or 

MAP2 loss and injury severity, but there were no significant differences between the 50 and 70kD 

groups for gray matter volume lost. This is on par with assessing white matter loss between injury 

grades after 30kD contusion using varying dwell times for severities, which also found that there were 

no significant differences between the dwell times in this mild injury (Nishi et al., 2020).   

 Interestingly, we found differences in the shape of the fibrotic scar between all injury grades. 

We observed that the 90kD group showed a lesion that extended more rostrally and caudally while 

the 50 and 70kD groups maintained a spherical shape. The cavity was filled in for all injury groups as 

expected (Zhu et al., 2015; Cooper et al., 2018) and displayed the characteristic chronic scar.  

 

The relationship between histology and functional deficits 

 We wanted to see the relationships between functional performance and histological 

outcome between injury grades. We used fibronectin to assess injury size and MAP2 to look at gray 

matter loss. In the future, we will use CTB to assess the potential roles of dPSTs in forelimb functional 

deficit after SCI.  

After SCI, lesion areas are filled with fibronectin and an astroglial border surrounds the injury 

to contain it (Tran et al., 2018). Fibronectin is a very reliable marker in mice of the lesion size (Zhu et 

al., 2015). Typically the infiltration of fibronectin is assessed in hemisection, transection, or dorsal 

column laceration models as fibroblasts are thought to migrate with infiltrating pericytes after the 

dura of the spinal cord injury is broken during injury (Zhu et al., 2015; Cooper et al., 2018; Tran et al., 

2018). Assessing fibronectin is important as fibrosis is a major barrier to axonal growth and could 

secrete factors recruiting other inflammatory molecules or inhibitory agents into the area (Silva et al., 

2014; Tran et al., 2018). 
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In terms of the impact of gray matter damage to function deficits, there were no relationships 

found between MAP2 lost volume and cHL, rotarod, or grooming performance over time. MAP2 was 

able to predict rotarod and grooming performance but not cHL at 9 weeks PI, which implies that gray 

matter damage did not affect the rate of change of recovery during the weeks PI. This is interesting 

because previous studies suggest that neuronal loss is correlated to the functional deficits (Nishi et 

al., 2020), but this study demonstrates that neuronal loss might not impact function as much as white 

matter damage. Previous studies assessing ablation and tract specific damage indicate that gray 

matter damage may play a more significant role in spontaneous recovery or some level of gray matter 

remodeling by plasticity rather than long term functional improvements (Fink and Cafferty, 2016).   

We wanted to assess the correlation between injury severity and gray matter loss with the 

functional deficit, hypothesizing that different injury severity would have a different functional deficit. 

When we looked at the rate of change over time for each group, we found that only fibronectin was 

able to predict rotarod performance. This implies that while injury size did not influence the rate of 

change during the first nine weeks for cHL and grooming, it did impact the rotarod performance. We 

found that MAP2 was unable to predict any behavioral performance in the rate of change over time, 

which is interesting as typically it’s believed that the neuronal loss is a significant cause of the 

functional deficit after SCI (Nishi et al., 2020). Importantly, only our behavioral data at 9 weeks PI 

displayed a relationship between injury and functional deficit, which is consistent with other studies 

using behavior at 8 weeks PI for correlations with histology (Nishi et al., 2020).  

Overall, our correlational results suggest that gray matter loss and injury size are much better 

predictors of functional deficits at the end point of behavior, i.e. 9 weeks PI in this study, but are not 

good efficient predictors of the rate of change for performance in cHL, rotarod, and grooming across 

time. Finding a sensitive, specific behavioral test for forelimb functional deficit in mice is important, 

as currently in our study and in previous studies, mice are adaptive and develop compensatory 
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strategies post-injury (Stanley et al., 2005; Farr et al., 2006). Importantly, our results in gray matter 

loss by MAP2 demonstrate that different injury severities have different volumes of gray matter 

damage. In the future, we hope to explore the deeper relationships in communication damage by 

assessing white matter damage in dPSTs and dLSTs. It is likely that different injury severities 

comparably result in different amounts of white matter damage, so a graded SCI contusion model as 

in this study shows the potential of using clinically relevant cervical contusion models to sensitively 

detect the different anatomical and functional deficits between injury severities.  

 

Potential roles of descending spinal tracts after cervical SCI 

In this study, we have assessed the effects of graded SCI on injury size, gray matter loss, and 

behavioral deficits in the preferred forelimb after cervical hemicontusion. We next plan to use a 

retrograde tracing approach to quantify the number of descending propriospinal neurons rostral to 

the injury that project to cervical spinal cord segments caudal to the injury. We will be using cholera 

toxin subunit B (CTB) as a retrograde tracer and counting the neurons at C4 and C3, which are short 

propriospinal interneurons (PINs) as they connect close cervical segments, in contrast to long PINs 

connecting distant cervical and lumbar segments. Long tract PINs are implicated in coordination, 

central pattern generation, and forming locomotor detour circuits (Zholudeva et al., 2018), while the 

shorter tract PINs may be more implicated in task specific function such as fine skilled reaching and 

grasping. Recovering this ability is very important to patients with cervical SCI as it offers a significant 

level of independence and improved quality of life. The spinal cord neurons including dPST neurons 

play important roles in normal locomotion and functional recovery after SCI. PINs perform a variety 

of functions including modulating supraspinal and sensory signals as well as coordinating motor 

output (Flynn et al., 2017; Zholudeva et al., 2018; Laliberte et al., 2019; Zavvarian et al., 2020). 

Additionally, spared PINs in cervical spinal cord rostral to the injury could serve as neuronal relays for 
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detour circuits reconnecting the injured LDTs and their targeted spinal neurons below the injury. 

Newly formed detour circuits through PINs could play important roles in functional recovery after SCI, 

although more research is needed. 

 

Future directions and Conclusion 

In the future, we will assess CTB retrograde tracing and AAV and BDA anterograde tracing to 

analyze neuronal connections between propriospinal and long distances, respectively. We 

significantly need to find a behavioral test that is sensitive to forelimb functional deficits after SCI 

specifically in the reaching and grasping parameters. Currently, we have not found one that allows a 

deep analysis into which functions of the reaching and grasping steps are preserved. Discovering 

which functions are preserved and the anatomical correlates will help us develop targeted therapies 

to promote repair and regeneration after SCI. We will also use chemogenetics to turn propriospinal 

interneurons on and off and assess the impacts on functional recovery and deficits in normal animals 

and after graded SCI.  

Our study demonstrated the effects of graded cervical hemicontusion in mice in terms of 

functional deficits and anatomical correlates. We have explored the sensitivity of different behavioral 

test and observed that rotarod and cHL display the most promise in detecting subtle differences 

between injury grades. Our histological assessment confirmed our hypothesis that injury size and gray 

matter loss would be impacted by injury severity. We have also confirmed our hypothesis that 

different injury severity results in different functional deficits, but we would further like to assess the 

difference in reaching and grasping functional deficits specifically. This study demonstrates the 

differences in function and histology after graded SCI and provides a baseline for further studies 

assessing the extent of tract involvement and the role of descending propriospinal tracts after SCI.  
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