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Abstract  

STATISTICAL METHODS FOR RESOLVING INTRATUMOR HETEROGENEITY WITH SINGLE-

CELL DNA SEQUENCING 

Alexander Davis, BA 

Advisory Professor: Nicholas E. Navin, PhD 

Tumor cells have heterogeneous genotypes, which drives progression and treatment 

resistance. Such genetic intratumor heterogeneity plays a role in the process of clonal 

evolution that underlies tumor progression and treatment resistance. Single-cell DNA 

sequencing is a promising experimental method for studying intratumor heterogeneity, but 

brings unique statistical challenges in interpreting the resulting data. Researchers lack 

methods to determine whether sufficiently many cells have been sampled from a tumor. In 

addition, there are no proven computational methods for determining the ploidy of a cell, a 

necessary step in the determination of copy number. In this work, software for calculating 

probabilities from a multinomial distribution was written to estimate the number of cells 

that must be sequenced (chapter 2). Two new methods were developed for predicting the 

number of mutations which would be discovered in additional single-cell sequencing of a 

tumor (chapter 3). Theoretical reasoning suggested that additional single-cell sequencing 

will always result in additional mutation discoveries, demonstrating the necessity a 

different approach to guide judgments of whether sufficiently many tumor cells were 

sequenced. To test computational methods for inferring ploidy from single-cell whole 

genome sequencing data, estimates were compared with fluorescence-based 
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measurements of DNA content (chapter 4). Previously proposed methods for quantum 

estimation were found to correctly infer ploidy from most cells, enabling inference of 

precise copy number in copy number aberrations. Additionally, a weighting procedure 

based on a probabilistic model of sequencing read counts (described in chapter 3) reduced 

the error rate of ploidy inference in high-ploidy samples. The lessons learned and 

methodology proposed in this work may be useful in research and clinical applications of 

single-cell DNA sequencing. 
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1. Introduction 

A tumor consists of the cancer patient’s own cells, and shares almost all of their DNA 

sequence. The median number of mutations in the protein-coding regions of a breast tumor 

genome is only 36, and even a lung adenocarcinoma, with its genome likely damaged by 

smoking, has a median of only 240 mutations in protein-coding regions, according to data 

from The Cancer Genome Atlas (Kandoth et al. 2013). This is much less than the difference 

between two individuals: an individual’s genome has over twenty thousand variants in 

protein-coding regions which are not present in the reference genome, according to the 

1000 Genomes Project data (Auton et al. 2015). The tumor cells are therefore recognizably 

the patient’s own. Nevertheless, these mutations are enough to break down the systems 

maintaining homeostasis of cell number, and enable uncontrolled growth of the tumor. 

In almost all tumors, the cancer cells are descended from a single initiating cell, and 

consequently share all the mutations which were present in that initiating cell. Evidence for 

the single-cell origin of tumors has come from multiregion sequencing studies, in which 

some mutations were found to be shared throughout the tumor in each of 50 breast 

cancers (Yates et al. 2015), 44 melanomas (Shi et al. 2014), and 100 lung tumors (Jamal-

Hanjani et al. 2017). However, despite these shared mutations inherited from the tumor 

initiating cell, the tumor cells do not have exactly the same mutations. The mutations that 

differ between tumor cells constitute genetic intratumor heterogeneity, and the mutations 

that are not present in all cells are called “subclonal”. 
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Subclonal mutations constitute the majority of somatic mutations in some tumors, 

and a small minority in others. However, just as it takes a relatively small number of 

mutations to make cells cancerous, even a few subclonal mutations may make the cells that 

carry them more malignant than the rest of the tumor, by causing more invasive behavior 

or resistance to chemotherapy or radiation treatment. After treatment, these resistant cells 

tend to be the ones that survive, and new tumors that form from them will not respond to 

the original treatment. In this process, called “clonal evolution” (Nowell 1976), the patient’s 

disease changes over time due to the changes in frequency of subclonal mutations. In clonal 

evolution, intratumor heterogeneity plays a central role in the processes of tumor 

progression and treatment resistance. The work in this dissertation is aimed towards 

addressing challenges in the statistical analysis of sequencing data to obtain information 

about intratumor heterogeneity. 

Techniques for studying genetic intratumor heterogeneity 

Early research on intratumor heterogeneity used flow cytometry, which could detect 

cell subpopulations that differed in ploidy (Ewers et al. 1984; Hansen et al. 1980; Hedley et 

al. 1985), and karyotyping, which could detect subclones with large-scale chromosomal 

aberrations (Heppner 1984). Heterogeneity of copy number of individual genes could be 

detected using fluorescence in situ hybridization, a technique in which fluorescent probes 

bind to individual genes, and the number of copies of the gene in an individual cell is 

counted under a microscope. For example, an early FISH study detected, in some breast 

tumors, cell subpopulations with dozens of copies of ERBB2 (Kallioniemi et al. 1992). 

However, in a single-gene study, it is difficult to tell whether the cells with the ERBB2 
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amplifications constitute a subclone, since the amplification may have occurred multiple 

times independently. Resolving subclones and their interrelationships can be accomplished 

with multiplexed FISH (Chowdhury et al. 2013). For example, multiplexed FISH with 

probes for eight different genes was used to quantify subclonal diversity in breast cancer, 

and show that aneuploid tumors had more intratumor heterogeneity (Oltmann et al. 2018). 

Instead of studying coarse cytogenetic features or a few target genes, comprehensive 

and high-resolution evaluation of intratumor heterogeneity is now possible using next-

generation sequencing. One method to observe genetic intratumor heterogeneity is 

multiregion sequencing: cutting the tumors into pieces and preparing DNA sequencing 

libraries from each piece. For example, an early multiregion sequencing study of two 

pancreatic cancer patients found that metastatic tumors originated from region-specific 

subclones of the primary tumor (Yachida et al. 2010). In another early study of two kidney 

cancer cases (Gerlinger et al. 2012), evidence of convergent evolution was found: the same 

gene could have different loss-of-function mutations in different regions of the tumor, an 

observation which was confirmed in multiregion sequencing studies of larger cohorts of 

kidney cancer patients (Gerlinger et al. 2014; Turajlic et al. 2018). Since these early studies, 

much larger cohorts are being studied with multiregion sequencing. The TracerX lung 

clinical trial aims to apply multiregion sequencing to 824 lung cancer patients (Jamal-

Hanjani et al. 2014), and the TracerX Renal trial aims to enroll 320 patients (Turajlic and 

Swanton 2017). These and other large multiregion sequencing studies promise to provide 

valuable information about intratumor heterogeneity and its correlation with clinical 

outcome. However, the method has the disadvantage that regions of the tumor are 

themselves heterogeneous, and naive analysis which treats genotypes of regions as if they 
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are genotypes of subclones produces misleading results (Alves et al. 2017). Another 

approach is deep sequencing of a sequencing library from a tumor, thereby detecting 

mutations which are present at low frequency in the library. Deep sequencing was first 

applied to single genes (Campbell et al. 2008), but later used to determine the frequencies 

of mutations throughout the exome (Shah et al. 2012). Deep sequencing requires clustering 

of mutation frequencies to determine which mutations are in the same cells as each other 

(Roth et al. 2014), making it difficult to resolve subclones which are present at similar 

frequencies. Though both multiregion sequencing and deep sequencing have disadvantages 

for observing intratumor heterogeneity, they are complementary. What appears to be one 

subclone when a sample is analyzed individually can be revealed as two separate subclones 

when sequencing data from two different regions are analyzed together (Sun et al. 2017). 

Single-cell DNA sequencing is a technique which reveals the genotypes of individual 

cells. Single-cell exome sequencing enables detection of single-nucleotide variants (SNVs) 

and indels in individual cells, but the studies to date have sampled only a few patients per 

study, and sequenced less than one hundred tumor cells per patient (Bryant et al. 2018; 

Hou et al. 2012; Li et al. 2017; Peng et al. 2019; Wang et al. 2014b; Wu et al. 2016; Yu et al. 

2014). Single-cell whole genome sequencing (scWGS) has been scaled up much more than 

whole exome, and recent scWGS datasets include thousands of cells from individual 

samples (Andor et al. 2020; Conterno Minussi et al. n.d.; Laks et al. 2019). These high-

throughput scWGS data have low coverage per cell, with only a few percent of the genome 

being covered, and are therefore better suited to detection of large copy number 

aberrations (CNAs) than to detection of SNVs. Single-cell DNA sequencing removes the 

problems of interpretation associated with clustering mutation frequencies, but introduces 
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problems of its own, due to the limited number of cells which can be sequenced from each 

sample, and the technical difficulties of sequencing the extremely small amount of DNA 

present in a single cell. Improving the interpretation of single-cell DNA sequencing data is 

the aim of the methods proposed in this dissertation. 

Statistical analysis of single-cell DNA sequencing data 

Analyzing single-cell DNA sequencing data is in many respects just like analyzing any 

other sequencing data. The same tools for alignment to the human reference genome can 

be used, and calling copy number aberrations involves segmentation tools which were 

previously used for microarray data (Baslan et al. 2012). 

However, single-cell DNA sequencing also brings unique challenges and 

opportunities. Besides the opportunity to resolve intratumor heterogeneity, it also removes 

confounding factors presents in bulk sequencing. One confounding factor is imperfect 

tumor purity due to the presence of noncancerous cells in the tumor stroma. Another 

confounding factor is subclonal heterogeneity (Van Loo and Campbell 2012). Although the 

point of single-cell sequencing is to study tumor heterogeneity, a sequencing library from a 

single-cell does not contain a mixture of subpopulations from multiple cells the way a bulk 

sequencing library does. 

Single-cell DNA sequencing data also brings unique challenges. One challenge is 

coverage nonuniformity: differences in sequencing coverage of different parts of the 

genome, which are exacerbated by the methods used to amplify the minute amounts of 

DNA present in individual cells (Zhang et al. 2015). Another challenge is incomplete 

sampling of the tumor population. Some subclones may not be represented due randomly 
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being left out of the sample of cells that was sequenced, and others may not be represented 

because they were not in the region of the tumor which was sampled. Both kinds of 

omission complicate interpretation of single-cell DNA sequencing studies of intratumor 

heterogeneity. 

Completeness of sampling 

In a single-cell DNA sequencing study of intratumor heterogeneity, the conclusion 

drawn may depend on the number of cells sequenced. For example, a previous single-cell 

sequencing study has addressed whether chemoresistant subclones observed in a tumor 

sample after chemotherapy were also present prior to chemotherapy (Kim et al. 2018). 

Whether the chemoresistant subclones are detected in the pretreatment sample may 

depend on the number of cells from it which are sequenced. Other studies of intratumor 

heterogeneity, using multiregion sequencing, have quantified the degree of diversity in a 

tumor, and tested for correlations between diversity and patient survival (Negrao et al. 

2018; Turajlic et al. 2018). If single-cell sequencing is used instead of multiregion 

sequencing for such a study, the degree of diversity reported may depend on the number of 

cells sequenced. These issues necessitate methodology for deciding whether sufficiently 

many cells have been sequenced from a sample. 

Single-cell sequencing requires a view of a tumor as a population of cells, and the cells 

which have been sequenced as a sample of individuals from that population. From that 

perspective, relevant methods from outside of cancer biology may help determine the 

number of cells which must be sequenced. If cells are viewed as belonging to mutually 

exclusive subclones, then the relevant methodology is that used in ecology when sampling 
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organisms belonging to mutually exclusive species. On the other hand, if the goal is to 

observe subclonal mutations, then the relevant methodology is that used in population 

genetics, when studying single nucleotide polymorphisms. 

If it is assumed that sampling of cells is random, that there are a specific number 𝑘 of 

subclones, and specific numbers for the frequency of each subclone are assumed, then the 

probability of sampling all of them can be calculated from a multinomial distribution. These 

are strong simplifying assumptions, and should make the problem easy, but there was a 

surprising lack of software for this simple calculation. For example, R has a function 

“pbinom”, which can be used to calculate the probability of observing a single subclone, but 

there’s no function “pmultinom” which would answer similar questions about multiple 

subclones. It seems that the only scientific software which implements the relevant 

multinomial probability calculation is Mathematica, but it is too slow for practical use. For 

example, for 50 cells and 7 equally frequent clones, calculating the probability of sampling 

at least 2 cells from each clone takes over twelve hours (using Mathematica 12.1.1.0 on a 

1.6 GHz processor). Several algorithms have been proposed which scale linearly with the 

sample size (Ewens and Wilf 2007; Sobel and Frankowski 2004). Another algorithm for 

multinomial probabilities was proposed by Levin (1981), using a series expansion which 

should quickly converge when the number of cells sequenced is large. Levin’s algorithm 

had apparently never been implemented in software, except a partial implementation 

which would calculate only the first four terms of the series (Macrae 2018). A fast 

implementation of Levin’s algorithm, plus a GUI for using it, is the subject of chapter 2. 
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Such multinomial calculations are useful but planning experiments, but are of limited 

use in judging the completeness of an experiment which has been performed. The issue is 

that the multinomial calculation requires an assumption about the number of subclones, 

and thus cannot answer the natural question of whether, given a sample, there are 

additional unobserved subclones which were not represented in the sample. To answer 

this question, the observed sample must be used to estimate the amount of unobserved 

diversity. Methods to infer unobserved diversity have been developed in population 

genetics and ecology. For example, Carothers (1973) reports an experiment in which 

researchers waited at fixed spots in the city of Edinburgh and wrote down the registration 

numbers of taxicabs which passed by. 172 different taxicabs were observed, 116 of which 

were observed only once, and 48 of which were observed twice. These data were analyzed 

by Chao (1984), who estimated a lower bound of 172 + 1162/(2 × 48) ≈ 312 on the 

number of taxicabs in the city. In fact, the city of Edinburgh had 435 taxicabs, according to 

police records. Though Chao’s lower bound was not tight, it still shows that data on the 

observed taxicabs enabled inference of at least 140 unobserved taxicabs. 

Analogously, it may be possible to estimate the number of unobserved subclones, 

from a sample of single cells. However, a more important question is whether there are 

unobserved subclones which are present at sufficiently high frequency to be observed in a 

second sample. The reason this question is more important is that the answer can inform 

the decision about whether to sample additional cells. Similar questions have been 

addressed in population genetics. Ionita-Laza et al. (2009) attempted to estimate how 

many single nucleotide polymorphisms (SNPs) would be observed in the 1000 Genomes 

Project, on the basis of previous sequencing studies. They assumed a probability model in 
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which the frequency of SNP is drawn from a beta distribution, and estimated the 

parameters of the beta distribution based on past data. The beta distribution is justified by 

population genetic theory in the case of a constant population size and no selection. But in 

fact, the human population has been exponentially increasing, and taking this into account 

results in a much larger prediction of the number of unseen variants (Gravel et al. 2011). 

Such mistakes due to model misspecification suggest the use of a non-parametric 

method which is not dependent upon a specific model. A non-parametric method which 

was first proposed by Good and Toulmin (1956) results in the following prediction 

formula: 

Predicted number of new mutations

= number of mutations observed once ×
size of new sample

size of old sample

− number of mutations observed twice × (
size of new sample

size of old sample
)

2

+ number of mutations observed three times × (
size of new sample

size of old sample
)

3

− ⋯ 

According to this formula, a mutation observed only once adds to the prediction, 

whereas a mutation observed twice subtracts from the prediction. This is analogous to how 

in the estimate of Chao (1984) of the number of taxicabs in Edinburgh, the number of 

taxicabs observed once was in the numerator, and the number of taxicabs observed twice 

was in the denominator. In both cases, the observations seen only once–the ones that just 

barely made it into the sample–provide the evidence for unobserved diversity. The 

importance of such singleton observations presents a problem for using the method with 
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single-cell sequencing data, since in single-cell exome sequencing, mutations observed once 

are mostly false positives (Wang et al. 2014b). 

My efforts to adapt these methods to single-cell exome sequencing data, and use them 

to decide whether sequencing additional cells is required, are the subject of chapter 3, in 

which I propose a model-based prediction using a population genetic model appropriate 

for cancer cell populations (Durrett 2013), and a non-parametric prediction which does not 

use low-frequency mutations. 

Quantum estimation for obtaining integer copy number 

Detection of CNAs from scWGS data proceeds by counting the number of reads which 

align to small regions of the reference genome called “bins”. The number of reads in a bin, 

called the bincount, is a sum of contributions from each copy of the corresponding portion 

of the genome which is present in the cell. Mathematically, 

𝑁𝑗 = 𝑟𝐶𝑗 + 𝜖𝑗  (1) 

where 𝐶𝑗  is the copy number, 𝑟 is the average contribution of a single copy to the bincount, 

and 𝑁𝑗  is the bincount. 

To obtain estimates of the copy numbers from the observed bincounts, the bincounts 

are multiplied by a constant such that the average of the resulting values is equal to the 

average copy number, and then each value is rounded to the nearest integer. This 

procedure requires an estimate of average copy number, which can be obtained using 

measurements of DAPI fluorescence. Fluorescence measurements are available whenever 
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the single cells were separated using fluorescence activated cell sorting. However, when 

fluorescence measurements are unavailable, average copy number is unknown. 

Estimating copy number when the average is not known is a statistical problem of 

quantum estimation. A quantum is an unknown unit, of which the data are multiples, 

corrupted by noise. Quantum estimation is mostly used in archaeology. For example, 

Hewson (1980) reported a collection of small objects from Ghana, which may have been 

used as weights. Their weights of the objects were found to be approximately integer 

multiples of 17.5 grams, suggesting that this may have been a unit of measurement used 

hundreds of years ago in Ghana. 

In the analysis of scWGS data, the quantum is the number of reads contributed to a 

bincount by a single copy, which is the parameter 𝑟 in (1). (1) is a linear model, and if 𝐶𝑗  

were known estimating the quantum would be a simple univariate reression problem, but 

since 𝐶𝑗  are unknown it is more analogous to a mixture model with the unusual property 

that the mixture components are equally spaced (Broadbent 1955). DG Kendall proposed a 

method of quantum inference, the cosine quantogram, which he describes in an 

Encyclopedia of Statistical Sciences article which provides a good overview of the subject of 

quantum estimation (Kendall 1986). The cosine quantogram is the following functional 

statistic: 

𝜙(𝑠) = √
2

𝑛
Re (∑ 𝑒2𝜋𝑠𝑋𝑗

𝑗

) 
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where 𝑛 is the sample size, and 𝑋𝑗 are the observed data. Re denotes the real part of a 

complex number. In more familiar statistical terminology, if 𝜓(𝑡) is the empirical 

characteristic function, then 𝜙(𝑠) = √
2

𝑛
Re(𝜓(2𝜋𝑠)). The empirical characteristic function 

has many other applications (Feuerverger and Mureika 1977), and can be thought of as the 

Fourier transform of the empirical distribution. In fact, it can be computed by applying the 

fast Fourier transform to a histogram. 

Kendall shows that 

𝐸[𝜙(𝑟)] ≈ √2𝑛𝑒−2𝜋2𝜎2/𝑟2
 

whereas, for other values 𝑠 which are not close to 𝑟 or integer multiples of 𝑟, 

𝐸[𝜙(𝑟)2] ≈ 1 

Therefore, the quantum 𝑟 can be recognized as a peak in this cosine quantogram, against a 

background level of 1. 

Adapting these ideas to single-cell sequencing requires some consideration of the 

varying reliability of segment means, as well as the nature of count distributions. I describe 

the requisite statistical modeling of copy number data in chapter 4, and the application to 

inferring copy number in chapter 5. 
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2. Sample size calculations for single-cell sequencing experiments 

from a multinomial distribution 

This chapter consists of the text of the following paper: 

Davis, A., Gao, R., & Navin, N. E. (2019). SCOPIT: sample size calculations for single-cell 

sequencing experiments. BMC bioinformatics, 20(1), 566. 

The paper is licensed under the Creative Commons license, which permits reprinting in this 

dissertation (or in any other medium). 

Background 

Biological tissues consist of a heterogeneous mixture of cells, including a variety of 

cell types in normal tissue or subclones in tumor tissue. This heterogeneity can be resolved 

using single-cell DNA or RNA sequencing methods (Navin 2015,Baran-Gale2018). Single-

cell sequencing studies require sufficiently many cells to be sampled so that normal cell 

types or cancer subclones of interest (both hereafter referred to as “subpopulations”) are 

represented in the sample. In most studies, however, the total number of cells is 

determined arbitrarily by the limits of an instrumentation run, or by budget constraints, 

which may result in the sampling of too few or too many cells. Here, we have developed an 

interactive web tool, called SCOPIT (Single-Cell One-sided Probability Interactive Tool), 

which provides assistance for planning experiments, using calculations from a multinomial 

distribution. 

https://creativecommons.org/licenses/by/4.0/
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Implementation 

The first fact used for calculating multinomial probabilities is the well-known 

equivalence between the probability mass function of a multinomial distribution and 

conditional probabilities of a Poisson distribution. This equivalence was first noted, to our 

knowledge, by Fisher (1922). 

 

Theorem 1:  Assume that 

𝑁 ∼ Multinomial(𝑝, 𝑛) 

where 𝑁 and 𝑝 are length 𝑘 vectors, and ∑ 𝑝𝑖
𝑘
𝑖=1 = 1. Also assume that 

𝑋𝑖 ∼ Poisson(𝜆𝑖) 

for 𝑖 = 1 to 𝑘, where 𝜆𝑖 = 𝛼𝑝𝑖 for some 𝛼. Furthermore, assume that 𝑋1 … 𝑋𝑘 are 

independent. Let 𝐸 be a set of possible values of a random vector. Then for any event E, 

𝑃(𝑁 ∈ 𝐸) = 𝑃 (𝑋 ∈ 𝐸 |∑ 𝑋𝑖

𝑘

𝑖=1

= 𝑛) 

The second fact is a relationship between conditional Poisson probabilities, and an 

expression involving the sum of truncated Poisson random variables. The following is a 

slight variant of a theorem due to Levin (Levin 1981). 
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Theorem 2:  Let 𝑋𝑖
(𝑎𝑖,𝑏𝑖)

 be a truncated Poisson random variable, with probability mass 

function 

𝑃(𝑋𝑖
(𝑎𝑖,𝑏𝑖)

= 𝑥) = 𝑃(𝑋𝑖 = 𝑥|𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖) 

where 𝑋𝑖 is a Poisson random variable with rate 𝜆𝑖. For a vector 𝑎 and 𝑏, let 𝑋(𝑎,𝑏) be the 

vector containing all of these truncated Poisson random variables. Let 𝐸 be the set of 

vectors 𝑥 such that 𝑎 < 𝑥𝑖 ≤ 𝑏. 

𝑃 (𝑋 ∈ 𝐸 |∑ 𝑋𝑖

𝑘

𝑖=1

= 𝑛) = 𝑃 (∑ 𝑋𝑖
(𝑎𝑖,𝑏𝑖)

𝑘

𝑖=1

= 𝑛)
∏ 𝑃𝑘

𝑖=1 (𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖)

𝑃(∑ 𝑋𝑖
𝑘
𝑖=1 = 𝑛)

 

 

Proof.   By Bayes’ theorem, 

𝑃 (𝑋 ∈ 𝐸 |∑ 𝑋𝑖

𝑘

𝑖=1

= 𝑛) = 𝑃 (∑ 𝑋𝑖

𝑘

𝑖=1

= 𝑛| 𝑋 ∈ 𝐸)
𝑃(𝑋 ∈ 𝐸)

𝑃(∑ 𝑋𝑖
𝑘
𝑖=1 = 𝑛)

 

Substituting 𝑃 (∑ 𝑋𝑖
(𝑎𝑖,𝑏𝑖)𝑘

𝑖=1 = 𝑛) for 𝑃(∑ 𝑋𝑖
𝑘
𝑖=1 = 𝑛|𝑋 ∈ 𝐸) and ∏ 𝑃𝑘

𝑖=1 (𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖) for 

𝑃(𝑋 ∈ 𝐸) yields the theorem. 

This theorem enables a fast calculation of the multinomial probability. The rate-

limiting step is calculation of the probability distribution of ∑ 𝑋𝑖
(𝑎𝑖,𝑏𝑖)𝑘

𝑖=1 . Levin (Levin 1981) 

provided two suggestions for computing this probability distribution: the first by 

convolution of the distributions of each 𝑋𝑖
(𝑎𝑖,𝑏𝑖)

, and the second using an Edgeworth 

expansion of the probability distribution of ∑ 𝑋𝑖
(𝑎𝑖,𝑏𝑖)𝑘

𝑖=1 . We implemented both suggestions, 

which are used for different values of 𝑛. For small values of 𝑛, convolution is performed, 
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using The Fastest Fourier Transform In The West (Frigo and Johnson 2005). For large 

values of 𝑛, an Edgeworth expansion is used. However, whereas Levin (Levin 1981) used 

the first four terms in the expansion, we continue adding terms until the last term added is 

sufficiently small. 

SCOPIT also computes Bayesian posterior probability distributions for the 

multinomial probabilities. The multinomial probabilities described above are a function of 

the population frequencies. When the true population frequencies are not known, but 

observed frequencies from a previous experiment are available, SCOPIT computes a 

posterior distribution for the frequencies. The prior used for the frequencies is 

Dirichlet(0, … ,0), following Jaynes and Bretthorst (2003) for an experiment in which the 

possible outcomes are not known in advance. The resulting posterior is 

Dirichlet(𝑛1, … , 𝑛𝑘), where 𝑛𝑖  is the number of cells observed from population 𝑖. Possible 

frequency vectors are randomly drawn from this posterior using the R package rBeta2009 

(Cheng et al. 2012; Hung et al. 2011). Then, the desired multinomial probability is 

calculated from each sampled frequency vector, resulting in samples from the posterior 

distribution of possible multinomial probabilities. A posterior distribution over the number 

of cells required is calculated in the same way. 

Results 

Estimating required sample size using the multinomial distribution. 

We make the simplifying assumption that a successful experiment requires sampling 

a sufficient number of representatives from each subpopulation of interest in the tissue. 
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Defining 𝑐 as the required number of representatives from each subpopulation, 𝑁𝑖 as the 

number of cells of subpopulation 𝑖 which are sampled, and 𝑘 as the number of 

subpopulations of interest, then the probability of meeting this condition is 

𝑃(𝑁1 ≥ 𝑐, 𝑁2 ≥ 𝑐, … , 𝑁𝑘 ≥ 𝑐) 

Assuming that a fixed number of cells are chosen at random from the population, the 

distribution of 𝑁1, … , 𝑁𝑘 is multinomial. To calculate this probability, we created an R 

implementation of a previously described algorithm (Levin 1981), described further in the 

Implementation section. Our implementation is available for R scripting in the package 

“pmultinom”, available from CRAN (Table 1). 

Table 1: R functions in the package “pmultinom” for calculating multinomial probabilities 

Function Arguments Description 

pmultinom lower, upper, 

size, probs, 

method 

Probability that a multinomial random vector is 

elementwise greater than “lower” and elementwise 

less than or equal to “upper”. “size” and “probs” 

specify the parameters of the multinomial 

distribution. Either “lower” or “upper” may be left 

unspecified. 

invert.pmultinom lower, upper, 

probs, 

target.prob, 

method 

Returns the “size” parameter required for 

pmultinom to reach the target probability 

“target.prob”. 
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Our web tool, SCOPIT, provides an interactive interface for multinomial calculations. 

SCOPIT provides both prospective and retrospective calculations, described below. 

Prospective calculations. 

SCOPIT’s prospective mode is intended to estimate the number of cells that must be 

sampled in a single-cell sequencing experiment. Ideally, the number of cells can be decided 

by finding a number of cells, 𝑛∗, such that the above multinomial probability is above a 

specified success probability, 𝑝∗. Such a calculation would require specifying the frequency 

of each subpopulation of cells in the tissue, but the precise subpopulation frequencies are 

usually unknown before performing the experiment. 

The strategy implemented in the prospective mode is to specify the frequency of the 

rarest subpopulations that the researcher intends to find, as well as 𝑘, the number of 

populations with approximately this frequency. Both numbers are relevant, since it is 

harder to find, for example, 10 subpopulations with frequency 1%, than it is to find only 

one. 

The required number of cells is defined as follows: 

𝑛∗ = min {𝑛 | 𝑃(𝑁1 ≥ 𝑐, 𝑁2 ≥ 𝑐, … , 𝑁𝑘 ≥ 𝑐) ≥ 𝑝∗} 

SCOPIT reports 𝑛∗ along with a plot of the probability as a function of the number of cells 

sequenced (Figure 1A). 

This mode requires only one subpopulation frequency to be specified: the minimum 

frequency among all subpopulations of interest. The SCOPIT interface does enable the user 

to add additional subpopulations with higher frequencies, but the user will find that these 
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additional subpopulations have negligible effects on 𝑛∗, unless they are very close in 

frequency to the rarest subpopulations. This phenomenon justifies specifying only the 

lowest frequency. 

 

Figure 1: SCOPIT interface. A. Interface for prospective calculations. Orange lines identify the 

number of cells required and the target probability of detecting a specified number of each 

subpopulation. b. Interface for retrospective calculations. The number of cells which were 

sequenced is entered, and is marked on the plot with a dotted green line. In this example, the 

orange line is far to the left of the dotted green line, suggesting that more cells were 
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sequenced than required to detect these three subpopulations. To quantify confidence in the 

results, a dotted black line is plotted that shows the lower end of a 95% credible interval for 

the probability. The plot title states the upper end of a 95% credible interval for the number of 

cells required 

Retrospective calculations 

After an experiment has been performed, estimates of the subpopulation frequencies 

are available as input parameters. It is then possible to use SCOPIT in retrospective mode 

to estimate how many cells would be required, in a hypothetical replicate experiment, to 

detect all 𝑘 observed subpopulations, with 𝑐 representatives from each. In retrospective 

mode, the information required from the user consists of the total number of cells 

sequenced in a previous experiment, and the number of cells observed from each 

subpopulation. With this information, SCOPIT will calculate, for each number of cells 𝑛, the 

probability 𝑃(𝑁1 ≥ 𝑐, 𝑁2 ≥ 𝑐, … , 𝑁𝑘 ≥ 𝑐), assuming the true subpopulation frequencies are 

equal to the empirically observed ones. For example, in Figure 1B, we use single cell DNA 

data from a triple-negative breast tumor (Gao et al. 2016) in which the authors sequenced 

𝑁 = 84 single cells and detected two major clonal subpopulations. Using SCOPIT we 

estimated that only 19 cells were required to detect the two subpopulations with a 0.95 

probability, suggesting that this study sequenced about 4 times the number of cells that 

were necessary. 

Because the retrospective analysis involves uncertainty about the true frequencies of 

each population, SCOPIT provides measures of uncertainty using Bayesian credible 

intervals at a 95% confidence level. For the number of cells required, SCOPIT reports the 
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upper end of a one-sided credible interval, which is interpretable as the highest number of 

cells consistent with the data. For the probability of obtaining a sufficient number of cells 

from each population, SCOPIT plots the lower end of a one-sided credible interval, 

interpretable as the lowest probability consistent with the data. In the example described 

above, the credible interval boundaries were close to the estimated values, indicating that 

the estimated values were strongly supported by the data provided. 

The retrospective tool is useful for planning a second experiment, assuming that all 

the subpopulations of interest were observed in the first experiment, and that the 

underlying subpopulation frequencies are consistent in both experiments. Although the 

exact subpopulation frequencies are not known, overconfident conclusions on the basis of 

limited information can be avoided using the credible intervals provided by the 

retrospective tool. 

Comparison with independence approximation 

Another previous software tool for estimating single cell sample sizes is an 

unpublished web application (https://satijalab.org/howmanycells). The previous tool is 

based upon two simplifying assumptions: that the subpopulations have equal frequencies, 

and that the observed frequencies of each subpopulation are statistically independent. 

Under these assumptions: 

𝑃(𝑁1 ≥ 𝑐, 𝑁2 ≥ 𝑐, … , 𝑁𝑘 ≥ 𝑐) = 𝑃(𝑁 ≥ 𝑐)𝑘 

where N represents the number of cells sampled from an arbitrary subpopulation. To 

compare the independence approximation method to SCOPIT, the required number of cells 

https://satijalab.org/howmanycells


 22 

was calculated with and without the independence assumption (Table 2). The calculations 

performed under the independence assumption underestimated the required number of 

cells by at most 1 cell and were highly similar. These data suggests that using independence 

approximation is an alternative approach that can also be used for estimating single cell 

sample sizes. 

Table 2: Comparison of Independent Approximation and Exact Calculations. The number 

of cells required to achieve a 95% certainty of sampling sufficiently many cells from each 

subpopulation. The number of cells was calculated in two ways: by an exact calculation, and 

by an approximate calculation in which the counts of different subpopulations were assumed 

to be independent 

Subpopulation 

frequency 

# of 

subpopulations 

Cells required 

(exact) 

Cells required 

(approx.) 

0.1 6 186 186 

0.2 3 85 85 

0.3 2 53 53 

0.1 8 191 191 

0.2 4 87 87 

0.4 2 39 39 

0.1 9 193 193 

0.3 3 55 55 

0.1 10 195 194 

0.2 5 89 89 

0.5 2 30 30 
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Discussion 

SCOPIT’s function is to calculate the number of cells that must be sampled in a single-

cell sequencing experiment, on the basis of input subpopulation frequencies, and under the 

assumption of random sampling. To achieve this goal, we implemented a fast multinomial 

probability calculation approach that is provided as open access software through the R 

package ‘pmultinom’. This method enables calculations at speeds sufficient for interactive 

plotting. The retrospective sample size calculation performed by SCOPIT is distinct from 

estimation of the number of undiscovered subpopulations (Gotelli and Colwell 2011) or the 

number likely to be discovered in further sampling (Shen et al. 2003), and can instead be 

interpreted as the required sample size of a replicate experiment which would detect the 

same subpopulations as the original experiment. 

To determine the number of cells required, SCOPIT calculates the probability of 

sampling sufficiently many representatives of each subpopulation. The probability 

calculated by SCOPIT is relevant to a wide variety of analyses and technologies, but specific 

technologies introduce additional experimental design considerations. For example, in 

single-cell differential expression analysis, it is important not only to sample sufficiently 

many cells, but also to sample sufficiently many transcripts from each cell. Other tools have 

been developed to calculate the probability of detecting a specific transcript (Svensson et 

al. 2017), to calculate the power to detect differential expression (Jenkins et al. 2018), and 

to determine the number of cells and reads required to find accurate low-dimensional 

representations of single-cell RNA sequencing data (Svensson et al. 2019). Accommodating 
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the unique aspects of other technologies and analyses is an important topic for future 

research in the design of single-cell sequencing experiments. 

A previous tool is available for calculating the number of cells to sequence 

(https://satijalab.org/howmanycells) and a direct comparison to SCOPIT shows that it 

generates results that are highly similar to SCOPIT, despite using independent 

approximations instead of exact probabilities. However SCOPIT offers several additional 

features, including the ability to enter multiple cell type frequencies, and interfaces to 

perform both prospective estimates of the sample sizes for planning experiments and 

retrospective calculations which include measures of confidence in the result. 

While SCOPIT can be used to decide how many cells to sample from a tissue, another 

important question is how many spatial regions to sample to capture the diversity of the 

population. In the case of sampling from tumor tissue, the question of how widely to 

sample can be addressed by simulating the generation of intratumor heterogeneity (Sun et 

al. 2017), followed by simulating sampling. However, simpler statistical calculations which 

avoid detailed simulations are currently not available and represent an important future 

direction. 

Conclusions 

This study reports a useful tool for estimating sample size calculations for planning 

single cell sequencing experiments prospectively and retrospectively. We expect that 

SCOPIT will have applications in many diverse areas of biology, and for planning 

experiments on a variety of single cell technologies (scDNA, scRNA and scATAC-seq). 

https://satijalab.org/howmanycells
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3. Predicting Mutation Discoveries 

Introduction 

In single-cell sequencing of cancer, a sample of cells are taken from a tumor to detect 

the subclonal mutations in each individual cell.  In analysis of single-cell exome sequencing 

data, mutations will be removed from the analysis if such mutations are present in too few 

cells. The cutoff to include a mutation has varied from two cells (Wang et al. 2014b) to five 

cells(Hou et al. 2012) in the literature.  The practice of removing mutations which do not 

meet the cutoff is called “consensus filtering.” Consensus filtering is necessary because 

many apparent mutations in single-cell exome sequencing data are actually caused by 

inaccuracies in DNA amplification (Wang et al. 2014b). 

Many single-cell sequencing protocols begin with preparing a suspension of cell 

nuclei from the tumor. Once single-cell sequencing data has been obtained, the option 

remains of sequencing additional cells from the same nuclear suspension. Whether 

expanding the sample size in this way is worth it depends on the number of new subclonal 

mutations that would be discovered in the second sample. Therefore it is important to be 

able to predict the number of such discoveries, using the data from the first sample.  Let 𝑐, 

for “cutoff”, be the number of observations of a mutation required for it to pass consensus 

filtering and be included in data analysis. A “discovery” is a mutation which is in fewer than 

𝑐 cells in the first sample, but 𝑐 or more cells in the expanded sample, where 𝑐 is the chosen 

cutoff. Mathematically, what must be predicted is 

𝛥𝑐 = |{𝑗: 𝑋𝑗 < 𝑐 and 𝑋𝑗 + 𝑌𝑗 ≥ 𝑐}|  (2) 
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where 𝛥𝑐 is the number of discoveries, 𝑗 is the index of a mutation, 𝑋𝑗 is the number of 

cells with the mutation in the first sample, and 𝑌𝑗  is the number of cells with the mutation in 

the second sample. 

The problem of predicting discoveries has been addressed before, for other 

applications.  The classic applications are related to quantifying biodiversity (Fisher et al. 

1943) and vocabulary size. For example, Efron and Thisted (1976) predicted the number of 

words which would be found in a hypothetical undiscovered work of Shakespeare, but 

which are not present in his known works.  Methods for the problem can be broadly 

divided into parametric and non-parametric methods. The early work of Fisher et al. 

(1943) assumed a parametric model of species frequencies. The first non-parametric 

method was proposed by Good and Toulmin (1956), whose prediction of the number of 

discoveries is a polynomial function of the size of the future sample. This polynomial 

served as the starting point for two other non-parametric methods: Orlitsky et al. (2016) 

weighted the terms of the polynomial to obtain a more stable estimate, and Daley and 

Smith (2013) constructed a rational function whose Taylor coefficients match the non-zero 

polynomial terms. An independent approach to non-parametric prediction was proposed 

by Shen et al. (2003), who built on existing non-parametric estimators of species coverage 

and species richness. A Bayesian non-parametric method has also been proposed, which 

can be considered to be in a third category between parametric and non-parametric, since 

it does not assume a specific distribution of species frequencies, but does assume that these 

frequencies are generated by a specific stochastic process, namely a two-parameter 

Poisson-Dirichlet process (Favaro et al. 2009). 
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These methods for predicting the number of discoveries make the assumption that a 

discovery requires only a single observation. In the present notation, this is the 𝑐 = 1 case.  

However, methods for predicting discoveries when consensus filtering is applied (the 𝑐 > 1 

case) are needed for predicting mutation discoveries in single-cell DNA sequencing.  Very 

recently, Deng et al. (2020) addressed this challenge with a generalization of the rational 

function method of Daley and Smith (2013). 

Two new prediction formulas for the 𝑐 > 1 case are presented below. The first 

prediction formula is a polynomial which generalizes the non-parametric method of Good 

and Toulmin (1956). The other is based on a population genetic model of the cells in the 

tumor, which implies a specific distribution of mutation frequencies. Since these formulas 

accommodate consensus filtering, they can be used for predicting the number of mutations 

which will be discovered in additional single-cell sequencing from a previously sampled 

tumor. 

The non-parametric prediction 

In the 𝑐 = 1 case, it is possible to predict discoveries without any assumptions about 

the unknown mutation frequencies, using a formula derived by Good and Toulmin (1956). 

The method of Good and Toulmin (1956) is unbiased under a Poisson approximation, 

regardless of the distribution of mutation frequencies (Efron and Thisted 1976).  However, 

no method has been reported which is unbiased when a cutoff is used, and 𝑐 > 1.  

Mathematically, the Poisson approximation is that 

𝑋𝑗 ∼ Poisson(𝜌𝑗) 
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𝑌𝑗 ∼ Poisson(𝑡𝜌𝑗) 

and that they are independent. 𝜌𝑗  is the expected number of mutations of type 𝑗 in the first 

sample, and 𝑡 is the ratio of the size of the second sample to the first. 

In this work, a new prediction formula was derived which is unbiased under the 

Poisson approximation in the 𝑐 > 1 case. It is equivalent to Good and Toulmin’s formula 

when 𝑐 = 1. Therefore, it can be regarded as an extension of Good and Toulmin’s method 

which accommodates consensus filtering. The formula for the prediction will follow 

directly from the following theorem: 

Theorem 3: Under the assumptions above, and defining 𝛥𝑐 as in (2), 

𝔼[𝛥𝑐] = − ∑ 𝔼

∞

𝑘=𝑐

[𝜂𝑘]𝐼−𝑡(𝑘 − 𝑐 + 1, 𝑐)  (3) 

Proof.  The expected number of discoveries is 

∑ ∑ ℙ

𝑐−1

𝑥=0𝑗

[𝑋𝑗 = 𝑥]ℙ[𝑌𝑗 ≥ 𝑐 − 𝑥] 

Using the Poisson assumption, replace ℙ[𝑋𝑗 = 𝑥] with 𝑒−𝜌𝑗𝜌𝑗
𝑥/𝑥! and the other probability 

with the following power series: 

ℙ[𝑌𝑘 ≥ 𝑐 − 𝑥] = ∑ (
𝑘 − 𝑥 − 1

𝑐 − 𝑥 − 1
)

𝑘≥𝑐

(−1)𝑘−𝑐
(𝑡𝜌𝑗)𝑘−𝑥

(𝑘 − 𝑥)!
 

After combining the 𝜌𝑗  terms and interchanging the order of summation, eliminate the sum 

over 𝑗 using 
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𝐸[𝜂𝑘] = ∑ 𝑒−𝜌𝑗

𝑗

𝜌𝑗
𝑘

𝑘!
 

Then, use the relationship between the beta function and the gamma function to obtain 

∑ 𝔼

𝑘≥𝑐

[𝜂𝑘](−1)𝑘−𝑐
1

𝐵(𝑘 − 𝑐 + 1, 𝑐)
∑ (

𝑐 − 1

𝑥
)

𝑐−1

𝑥=0

𝑡𝑘−𝑥

𝑘 − 𝑥
  (4) 

To prove that the coefficient on 𝔼[𝜂𝑘] is the same as in (3), begin with the definition of the 

incomplete beta function: 

𝐼−𝑡(𝑘 − 𝑐 + 1, 𝑐) =
∫ 𝑤𝑘−𝑐−𝑡

0
(1 − 𝑤)𝑐−1𝑑𝑤

𝐵(𝑘 − 𝑐 + 1, 𝑐)
  (5) 

The values at 𝑡 = 0 are zero in both (4) and (5). Expanding (5) with the binomial theorem 

reveals that the derivatives with respect to 𝑡 are equal as well. QED 

Replacing 𝔼[𝜂𝑘] with 𝜂𝑘  in (3) yields the following unbiased estimate of 𝔼[𝛥𝑐]: 

�̂�𝑐 = − ∑ 𝜂𝑘

∞

𝑘=𝑐

𝐼−𝑡(𝑘 − 𝑐 + 1, 𝑐)  (6) 

The estimate �̂�𝑐 defined in (6) is the proposed prediction of 𝛥𝑐. In the case when 

there is no cutoff and one observation is sufficient to detect a mutation, the prediction is 

�̂�1 = − ∑ 𝜂𝑘

∞

𝑘=1

(−𝑡)𝑘 

This is exactly the prediction proposed by Good and Toulmin (1956). 

Some basic properties of the resulting predictor are given by the following theorem: 
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Theorem 4:  Under the definitions and assumptions above, 

𝔼[�̂�𝑐] = 𝔼[𝛥𝑐]  (7) 

Var(�̂�𝑐) ≤ ∑ 𝔼

∞

𝑘=𝑐

[𝜂𝑘](𝐼−𝑡(𝑘 − 𝑐 + 1, 𝑐))2  (8) 

Proof.   (7) follows immediately from (6) using linearity of expectation. To obtain the 

inequality (8), use the fact that counts of a fixed number of elements in mutually exclusive 

subsets are negatively correlated. QED 

This theorem shows that regardless of the distribution of frequencies of mutation 

types, the prediction formula is an unbiased estimator of the expected number of 

discoveries. Furthermore, it shows that the variance of the predictor is related to the 

magnitude of the coefficients of 𝜂𝑘  in (6). 

The model-based prediction 

In human population genetics, the number of genetic variants which will be 

discovered in further sampling has been predicted from assumptions about human 

demographic history (Ionita-Laza et al. 2009). The method used cannot be directly applied 

to tumor cell populations, both because of consensus filtering, and because the 

assumptions about demographic history are not appropriate for tumor cell populations.   In 

this work, a new formula was derived for predicting mutation discoveries from tumor cell 

populations, using a model of tumor growth. The assumptions of the model are that the 

tumor population grew exponentially from a single cell, that cells randomly acquire 
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mutations according to an unchanging mutation rate, and that mutations have no effect on 

the rates of cell division or death. 

Under these assumptions, Durrett (2013) derived that 

𝐸[𝜂𝑘] ≈ 𝑛
𝜃

𝑘(𝑘 − 1)
  (9) 

where 𝑛 is the number of cells in the sample and 𝜃 is an unknown parameter that 

depends upon the rates of cell division, cell death, and mutation in the tumor.  Summing (9) 

from 𝑘 = 𝑐 to infinity yields a formula for the expected number of mutation discoveries in 

the second sample: 

𝐸[𝛥𝑐] ≈ 𝑛
𝜃

𝑐 − 1
 

Predicting with the formula requires estimating 𝜃. 𝜃 was estimated by minimizing the 

sum of absolute deviations between the predicted and observed values of 𝜂𝑘 . 

Mathematically, 

𝜃 = arg min
𝜃

∑|𝜂𝑘 − 𝐸[𝜂𝑘]|

∞

𝑘=𝑐

 

where 𝐸[𝜂𝑘] is understood to be a function of 𝜃, as in (9), and 

�̂�𝑐 = 𝑛
𝜃

𝑐 − 1
  (10) 

Using this formula, it is possible to calculate a prediction of the number of mutations 

which will be discovered when a sample of single cells from a tumor is expanded, by 

estimating 𝜃 using the data from the original sample. 
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Example application 

 

Figure 2: Example application. A. Frequency spectrum of mutations observed in individual 

kidney cells, with best fit from a model of tumor growth. B. Rarefaction curve for these 

mutations, extrapolated using the model, and using the proposed prediction method. 

To illustrate the non-parametric and model-based predictions, single-cell sequencing 

data from a kidney tumor (Li et al. 2017) were analyzed. Mutations have been detected in a 

sample of individual cells, and the goal is to predict the number of mutations which would 

be detected in an expanded sample of cells.  The number of mutations observed each 

number of times is shown in figure 2A.  Mutations were only considered if they were 

present 3 or more times. The cutoff of 3 was chosen by the authors of the original study in 

order to eliminate false positives, which are abundant in single-cell sequencing data. 
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Using (9) it is possible to check whether the data is consistent with the assumptions. 

The agreement between the model fit and the data are shown in figure 2A. 

2B shows rarefaction curves (Sanders 1968), extrapolated with predictions from each 

method, plotted as a function of the size of the expanded sample. The standard error of the 

non-parametric prediction, estimated with (8), begins to grow very large when the sample 

is expanded by 40% (47 cells total), at which point it loses log-concavity. Since this 

breakdown point is predictable, the prediction can still be used with confidence for 

expanded samples of less than 47 cells. When the original sample is expanded by 50% of its 

original magnitude (50 cells total), the predictions from each method are still within 1% of 

each other.  Therefore, the biological knowledge embodied in the model was superfluous, if 

all that is needed is to predict the effect of supplementing the current sample with a small 

additional batch. However, the model is required for obtaining predictions when the 

second sample of cells sequenced is the same size as the first. 

Discussion 

The formula (6) predicts the number of mutation discoveries in an expanded sample, 

without relying on a model for the mutation frequencies.  Predictions can therefore be 

made in a consistent way even for populations with different selection pressures and 

demographic histories, and without inferring the parameters of complex population 

genetic models.  In all such applications the unbiasedness property (7) holds, under a 

Poisson approximation for mutation counts.  This approximate unbiasedness property was 

already achieved by Good and Toulmin (1956).  The novelty of the prediction formula (6) is 

to accommodate the common practice of “consensus filtering”, ignoring mutations 
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observed in too few cells to be trusted.  Whereas Good and Toulmin’s method provided 

unbiased prediction of the number of mutations present in the sample, the formula (6) 

instead predicts the number of mutation present 𝑐 or more times.   The unbiased predictor 

(6) is very well suited to situations where a large sample is extended repeatedly by small 

batches.  What counts as “small” in a given application can be determined using (8).  

However, the prediction fails for large expanded samples, and in fact cannot accurately 

predict the number of mutation discoveries when the second batch is the same size as the 

first. 

More promising for long-term extrapolation was the model-based method, based 

upon a model of neutral evolution and exponential growth. However, the results show that 

the method cannot provide a rule for deciding whether to sequence another batch. Such a 

decision rule would specify that, if the number of predicted mutation discoveries is above 

some threshold, an additional batch should be sequenced. The reason the model-based 

method cannot provide such a decision rule is the linear form of the prediction function, as 

shown in equation (10) and figure 2B. This linear increase implies that each additional 

batch of cells sequenced is predicted to reveal the same number of subclonal mutations as 

the last. Therefore, as more cells are sequenced, the prediction cannot be expected to drop 

below the decision threshold. 

The neutral evolution and exponential growth model, therefore, suggests that a 

different approach is required to obtain a decision rule. It suggests that the decision about 

whether to sequence additional cells cannot be based on the amount of diversity which 
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would be observed, but must instead be based on the value of this observing this diversity, 

in light of the goals of the study. 
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4. Probability Model for Read Counts 

Introduction 

Single cell whole genome sequencing using direct tagmentation is a new technique. 

Using these data to detect copy number aberrations requires an understanding of the 

probability distribution of the read counts. The results below support the modeling 

assumption that variance is proportional to the copy number. During quantum inference, 

segments are given different weights which depend on their standard error, estimated 

using this modeling assumption. 

The constant index of dispersion model 

As an illustration, bincounts from six cells are shown in Figure 3. Three are from a 

xenograft, with sequencing libraries prepared using a tagmentation-based protocol 

developed by Zahn et al. (2017). The other three are from a breast tumor, with libraries 

prepared by Hanghui Ye using a more recent tagmentation-based protocol (Conterno 

Minussi et al. n.d.). 

Large segments of different bincounts are visible, corresponding to copy number 

aberrations. The segments appear thinner in Ye’s data, showing that he achieved better 

coverage uniformity, although it is not a fair comparison, since Zahn’s data are from his 

pioneering early experiments several years earlier. In all cells, the segments seem to get 

thicker higher up, showing that the variance of the counts increases as the copy number 

increases. 
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Figure 3: Bincounts from single cells. Left: three cells from a breast cancer xenograft, 

sequenced by Zahn et al. (2017). Right: three cells from a breast tumor, sequenced by 

Hanghui Ye. 

Each bin represents a portion of the human reference genome, and the cell sequenced 

contains a certain number of copies of this portion of the reference genome in its nucleus. 

The increasing relationship between variance and copy number is expected, because the 

read count in a bin is the sum of contributions from each copy. Mathematically, 

𝑁𝑖 = ∑ 𝑁𝑖𝑘

𝑐𝑖

𝑘=1

  (11) 
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where 𝑁𝑖 is the number of reads in bin 𝑖, 𝑐𝑖 is the number of copies of that bin in the cell, 

and 𝑁𝑖𝑘 is the number of reads aligning to that bin which originated from a specific copy 𝑘. 

Assuming that the contributions 𝑁𝑖𝑘 are independent and identically distributed, 

Var(𝑁𝑖) = ∑ Var

𝑐𝑖

𝑘=1

(𝑁𝑖𝑘) = 𝑐𝑖𝜎1
2 

where 𝜎1
2 is the variance of the contribution of a single copy. Therefore, segment variance 

should linearly increase with segment mean, and this relationship is observed for the six 

example cells (Figure 4). 

 

Figure 4: Linear relationship between segment mean and segment variance in example 

cells. 
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The slope is higher in the cells from Zahn’s early experiments, in concordance with 

the observation that the segments look wider in Figure 3. The slope is the ratio of the 

variance of the distribution to its mean, which is called the index of dispersion. The linear 

relationship between variance and mean suggests that the index of dispersion is a constant 

for a given cell, and therefore may be an effective measure of coverage nonuniformity. 

Zahn’s cells have higher index of dispersion, not only in these example cells, but in 

most cells from these samples (Figure 5). 

 

Figure 5: Index of dispersion for cells in two samples with different coverage 

nonuniformity. 
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In the above, index of dispersion was estimated after segmentation, by calculating the 

slope of segment variance as a function of segment mean. However, in practice I estimate 

index of dispersion from unsegmented bincounts, prior to segmentation. 

To do this, define 

𝐵𝑖 =
𝑁𝑖+1 − 𝑁𝑖

𝑁𝑖+1 + 𝑁𝑖
 

where 𝑁𝑖 is the count in bin 𝑖. Since the mean of 𝐵𝑖 is approximately 0 and the variance is 

approximately the index of dispersion except at a segment boundary, the index of 

dispersion can be recovered with a robust estimator of standard deviation. To obtain a 

robust estimate of the standard deviation of the 𝐵𝑖 values, I use L2E to fit a normal 

distribution (Scott 2001). 

Weighted quantogram 

The above observations about the distribution of the data also have implications for 

quantum estimation. 

Define the reads per copy, 𝑟, as the mean of the contribution of a single copy to the 

bincount. In the notation used in (11), 

𝐸[𝑁𝑖𝑘] = 𝑟 

𝑟 is a quantum, and the quantum model in this case is: 

𝑁𝑖 = 𝑟𝑐𝑖 + 𝜖𝑖 
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where 𝑐𝑗  is the copy number at bin 𝑗. However, it will be more convenient to work with the 

normalized bincount, obtained by dividing each bincount by the overall mean bincount of 

the cell. Furthermore, the individual observations will be segment mean bincounts, not 

read counts in individual bins. 

Let 𝑋𝑘 be the normalized average bincount of a segment, 𝜇 the average bincount 

across bins in the cell. 

By definition: 

𝑋𝑗 = 𝑁𝑗/𝜇𝑙 

where 𝑁𝑗  is the mean of the bincounts for bins in segment 𝑗. Now the quantum model is 

𝑋𝑗 = 𝑚𝑐𝑗 + 𝜖𝑗  

where 𝑚 = 𝑟/𝜇, which now serves as the quantum. 

To estimate a quantum, Kendall (1986) proposed a method based on the empirical 

characteristic function �̂�(𝑡), essentially the Fourier transform of the sample distribution, 

defined as 

�̂�(𝑡) = ∑ 𝑒𝑖𝑡𝑋𝑗

𝑗

 

Kendall’s estimate of the quantum 𝑚 is equivalent to 1/�̂� = arg max
𝑎≤𝑠≤𝑏

 Re(�̂�(2𝜋𝑠)), 

where [𝑎, 𝑏] is a restricted search range defined based on domain knowledge. The function 

being maximized, Re(�̂�(2𝜋𝑠)), is equivalent up to a constant with a functional statistic that 
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Kendall calls a “cosine quantogram”. Therefore, I refer to this as the cosine quantogram 

(CQ) method. 

With this background, it is possible to adapt the CQ method to inferring copy 

numbers from single cell whole genome sequencing (scWGS) data. 

First of all, since 𝐸[𝑋𝑗] = 𝑚𝑐𝑗 and 𝑋𝑗 = 1, the ploidy, defined as average copy number, 

is 1/𝑚. Inference of the quantum 𝑚 can be reframed as inference of the ploidy 1/𝑚, which 

helps to define the search range. Since the search range should be the range of plausible 

ploidies, I made the choice to use 1 to 8, which contains the ploidy values observed in flow 

cytometry studies. 

Kendall’s method needs to be modified to use our knowledge of the different 

reliability of the different segment means. Taking another look at the example cells in 

Figure 3, it is clear that the segment means from small amplifications will not be accurate 

and cannot be expected to assist estimation. However, Kendall was considering cases 

where the observations could be considered to all have the same standard deviation. 

Kendall’s method is based on the empirical characteristic function, which is a linear 

combination of random variables. I use a different linear combination, in which the weight 

of a segment depends on its variance. Since the variance will decrease with segment size 

and increase with segment mean, this weighting will have the effect of downweighting 

unreliable segments, such as small amplifications. 

The variance of the terms of the empirical characteristic function can be derived 

using the observation that each cell has a characteristic index of dispersion, along with 
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some basic facts about the empirical characteristic function, described by Csörgö (1981) 

among other sources. 

Define 𝑈𝑗(𝑠) as contribution of a single observation to the empirical characteristic 

function �̂�(2𝜋𝑠): 

𝑈𝑗(𝑠) = exp(𝑖2𝜋𝑠𝑋𝑗) 

And its mean is given by 𝛹𝑋𝑗
, the characteristic function of 𝑋𝑗: 

𝐸[𝑈𝑗(𝑠)] = 𝐸[𝑒𝑖2𝜋𝑠𝑋𝑗] = 𝛹(2𝜋𝑠) 

Then, assuming Gaussian noise, 

Var(𝑈𝑗(𝑠)) = 1 − |𝛹(2𝜋𝑠)|2 = 1 − 𝑒−4𝜋2𝜎𝑗
2𝑠2

 

The weighted version of �̂�(2𝜋𝑠) would be 

𝐺(𝑠) = ∑ 𝑤𝑗

𝑗

(𝑠)𝑈𝑗(𝑠) 

Using weights proportional to 𝐸[𝑈𝑗]/Var(𝑈𝑗) yields 

𝑤𝑗(𝑠) =
1/(1 − 𝑒−4𝜋2𝜎𝑗

2𝑠2
)

∑ 1𝑗′ /(1 − 𝑒−4𝜋2𝜎𝑗′
2 𝑠2

)
 

According to the constant index of dispersion model proposed above, the variance of a 

segment mean is 

𝜎𝑗
2 =

𝛼

𝑙𝜇
𝐸[𝑋𝑗] 
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where 𝛼 is the index of dispersion and 𝑙 is the number of bins in the segment. 

Now, the ploidy estimate can be defined as 1/�̂� = arg max
𝑠

 Re(𝐺(𝑠)). 

I call this weighted analogue of the CQ method the weighted cosine quantogram 

(WCQ) method. The functional statistic 𝐺(𝑠) will be referred to as the weighted cosine 

quantogram. 
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5. Absolute Copy Number Inference from Single-Cell DNA 

Sequencing Data from Human Tumors 

Introduction 

Instability of genetic copy number is a common feature of human cancers, and likely 

plays a role in enabling tumor progression (Hanahan and Weinberg 2011). Copy number 

aberrations (CNAs) include gains and losses of individual chromosomes or chromosome 

arms, as well as focal amplifications and deletions. Additionally, many tumors also have 

abnormal overall DNA content, with ploidy that varies widely from less than 2N to more 

than 5N (Ewers et al. 1984; Hedley et al. 1985), possibly due to unequal cell divisions or 

endoreduplication. Copy number aberrations were originally detected with cytogenetic 

methods including fluorescence in situ hybridization (FISH) (Kallioniemi et al. 1992), 

which suffered from a limited number of sites which could be simultaneously quantified 

(Oltmann et al. 2018), and spectral karyotyping (Schröck et al. 1997), which suffered from 

low resolution. The adoption of microarrays (Pollack et al. 1999) and next-generation 

sequencing (Castle et al. 2010; Hayes et al. 2013) enabled megabase-level resolution of 

CNAs genomewide, but unlike cytogenetic methods represented an average of a large 

number of cells.  CNAs also vary among individual cells of the same tumor, and such 

subclonal CNAs have been measured using single-cell whole genome sequencing (scWGS) 

in order to resolve subclones of tumor cells in studies of progression to invasive breast 

cancer (Casasent et al. 2018; Martelotto et al. 2017), as well as in the development of 

chemoresistance in breast cancer (Kim et al. 2018; Su et al. 2019). 
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Sequencing provides estimates of relative copy number, not absolute copy number, 

and converting to absolute copy numbers requires an estimate of the ploidy, defined here 

as the average copy number throughout the genome.  Next-generation sequencing data 

produces millions of short reads, which are then aligned to the reference genome. Calling 

CNAs is done by dividing the reference genome into bins, and counting the number of reads 

that align to each bin. The bins are then joined into segments, which are sets of consecutive 

bins estimated to have the same underlying copy number. Normalizing the number of reads 

in a segment to the total number of reads sequenced yields a normalized read count, which 

is taken as an estimate of relative copy number: the copy number divided by the average 

copy number. Multiplying by the ploidy and rounding yields an estimate of absolute copy 

number. The statistical model underlying this estimation is 

𝑋𝑗 = 𝑚𝐶𝑗 + 𝜖𝑗  (12) 

where 𝑋𝑗 is a normalized read count of a segment of the reference genome, 𝐶𝑗  is the number 

of copies of this segment in the cell, and 𝜖𝑗  is random noise. Equation (12) a “quantum 

model”, meaning that the data are approximate multiples of unknown integers (Kendall 

1986). 𝑚, called a “quantum”, is an unknown parameter that represents the average 

contribution of a single copy to the normalized read count. 𝑚 can be estimated using any 

experiment which measures the ploidy of the cell, because the ploidy is equal to 1/𝑚. There 

also exist techniques to estimate a quantum directly from the observed data, and outside of 

genomics, such quantum estimation techniques are often used in archaeology, where the 

quantum is an ancient unit of length (Cox 2009) or weight (Hewson 1980). In whole 

genome sequencing, the problem is more complicated, since it is also necessary to take into 
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account tumor purity and subclonal heterogeneity (Ha et al. 2014; Van Loo et al. 2010). 

However, in single-cell sequencing, such confounding factors are absent. 

Fluorescence activated cell sorting (FACS) was used to isolate single cells in early 

single cell DNA sequencing methods, including DOP-PCR (Navin et al. 2011) and MDA 

(Wang et al. 2014a), and ploidy estimates could be obtained from the FACS data. More 

recent single-cell DNA sequencing methods have the advantage of being high-throughput 

and capable of profiling thousands of cells in parallel, but some are unable to measure 

ploidy of the sequenced cells, including droplet-based systems (Andor et al. 2020) . It is 

also not feasible to infer the quantum using a diploid cell as a reference, since the diploid 

cell would go through library preparation separately, and the contribution of a single copy 

to the read count would be different. Since in these techniques direct measurements of the 

ploidy or the quantum are not available, estimation of absolute copy number requires 

inferring ploidy directly from the data using quantum estimation.  The primary techniques 

for quantum estimation are the least squares method (Broadbent 1955, 1956), and the 

cosine quantogram method (Kendall 1986), which involves taking a Fourier transform of 

the data distribution. The least squares method is used for estimating ploidy in the scWGS 

processing pipeline Ginkgo (Garvin et al. 2015). In another processing pipeline, SCOPE 

(Wang et al. 2020), least squares is used to provide an initial estimate, which is then refined 

by local optimization using expectation maximization. A similar criterion to least squares, 

but using log distance to rounded values than squared distance, is used by Laks et al. 

(2019) to choose settings for HMMCopy, a copy number inference method based on hidden 

Markov models. These examples show that quantum estimation methods an essential part 
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of scWGS pipelines, and that even in sophisticated probabilistic methods, simple methods 

such as least squares play an important role as subroutines. 

Considering the importance of such quantum estimation methods in interpreting 

scWGS data, it is important understand their performance, and the circumstances under 

which they can be expected to work. The first progress on this question has been made in 

an extensive simulation study (Fan et al. 2019), which found effects of ploidy, coverage 

depth, and coverage nonuniformity on copy number inference.   However, there is no 

information available about the effectiveness of quantum estimation in real scWGS data, 

the conditions required for its success, and whether these conditions are met in practice.  

In this work, performance of quantum estimation in practice is measured, by comparing 

ploidy estimated from scWGS data to experimentally measured ploidy for the same cell. 

Furthermore, a novel method, weighted cosine quantograms (WCQ), was developed by 

weighting the terms in the cosine quantogram to account for the heteroskedasticity of 

segment means. 

Results 

The proposed procedure for estimating ploidy and integer copy numbers from scWGS 

data is illustrated in figure 6a. The input are normalized read counts from a scWGS 

experiment. The first step is segmentation, and estimation of the mean of each segment and 

its standard error. The segment means have a multimodal distribution which resembles a 

periodic signal, and a weighted Fourier transform of this distribution is calculated. The real 

part of the weighted Fourier transform is called the weighted cosine quantogram (WCQ). 

The location of the peak of the WCQ is the estimate of ploidy. Then, relative copy numbers  
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Figure 6: Proposed workflow for copy number inference, illustrated with two cells from 

a breast tumor. a Procedure for inference of absolute copy number from single-cell 

sequencing data. b Histogram of ploidies of cells observed during flow sorting, obtained by 

normalizing DAPI fluorescence. The measured ploidy of the sequenced cell is marked with a 

blue star. c The distribution of relative copy number estimates obtained from scWGS. d The 

weighted cosine quantogram of the distribution of relative copy number estimates. e Copy 

number profile obtained from scWGS. Relative copy number estimates are on the left axis, and 

absolute copy number estimates on the right axis. f-i Same as b-e, for a higher ploidy cell from 

the same tumor. 

are multiplied by the ploidy, and rounded to obtain estimates of absolute copy numbers.   

To illustrate inference of copy numbers using the weighted cosine quantogram (WCQ), two 

example cells from the same breast tumor are shown, which were isolated with FACS and 

then sequenced (figure 6b-d).  The first cell was observed to be hypodiploid during FACS 

(figure 6b).  After scWGS, the normalized read counts cluster around two values (figure 6c), 

and the WCQ has a peak at a ploidy estimate of 1.8 (figure 6d), consistent with the estimate 

from FACS. After converting to absolute copy numbers, the copy number profile shows that 

this cell, in most regions of the genome, has copy numbers of 1 or 2 (figure 6e). The second 

cell, according to FACS, is hypertriploid (figure 6f). In this cell, the distribution of 

normalized read counts has an additional mode between the two most prominent modes, 

which wasn’t present in the hypodiploid cell (compare figure 6g with c). Consequently, the 

WCQ’s highest peak is now at 3.4 (figure 6h). The hypertriploid cell has a similar copy 

number profile to the hypodiploid cell, but the most common copy number states are now 

2 and 4, with just a few regions at copy number 3, on chromosomes 1, 3, 4 and 9 (figure 6i), 
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which account for the additional mode. This additional mode provides the information 

which the WCQ uses to infer a higher ploidy.  In these two cells, the estimates of ploidy 

from the WCQ enable estimation of integer copy number using only the sequencing data, 

without requiring the FACS data. 

 

Figure 7: Comparisons of ploidy inferred computationally from scWGS data to ploidy 

inferred experimentally from FACS. a Computational inferences of ploidy (dots) compared 

to the most common ploidy among cells in the tumor, according to FACS (blue line). b-d 

Comparison of FACS with computational ploidy for individual cells from four samples. f 
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Clustering of cells from brca_n. g Illustration of fitting bivariate normal distributions, showing 

the 2 standard deviation contour of each distribution. h For each ploidy subpopulation of each 

sample, the mean ploidy estimates from a bivariate normal distribution fit. i For each ploidy 

subpopulation, the standard deviation of the computational ploidy estimates, and the Pearson 

correlation between the FACS and computational estimates, estimated from a bivariate 

normal distribution. 

To determine whether the WCQ ploidy estimates are reliable, the WCQ method was 

applied to scWGS data from individual cancer cells from 9 breast cancer patients, as well as 

one patient with colon cancer and one patient with brain cancer. The DAPI fluorescence 

values recorded during FACS were used to estimate the modes of the distribution of ploidy, 

and the WCQ results were compared to these modal values. The WCQ ploidy estimates of 

individual cells were concentrated at the modes of the ploidy distribution, except in brca_n 

where there was an additional concentration of values near the diploid peak (figure 7a).  

The average distance from WCQ ploidy estimates to the FACS mode varied between 

samples. To determine whether this variation is the result of error or intratumor 

heterogeneity, the FACS measurements of individual cells were examined next, using index 

sorting. Four samples are shown which are representative of the patterns in these data 

(figure 7b-d). In a colon tumor (colon_prim) with a very narrow distribution of WCQ ploidy 

estimates, although the FACS and WCQ estimates were the same on average, they were also 

uncorrelated, suggesting that the variation in each estimate is due to small random errors 

(figure 7b). However, in a breast tumor (tn25) with a wider distribution of WCQ ploidy 

estimates, the FACS and WCQ estimates were correlated, suggesting that the variation in 

both estimates reflects underlying intratumor heterogeneity of ploidy (figure 7c). In 
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colon_met, a liver metastasis from colon_prim, two aneuploid peaks were visible on FACS, 

and the FACS and WCQ estimates are generally in agreement about which ploidy 

population a cell came from (figure 7c). A breast tumor (brca_n) also had two populations 

with different ploidy, one of which was difficult to see in FACS since it overlapped with the 

diploid peak. In this tumor, some cells had FACS estimates of ploidy which were precisely 

double the WCQ estimates of ploidy (figure 7d). Though at first these appear to be errors, a 

clustering analysis shows that these cells have the same genotypes found in the low-ploidy 

population (figure 7e), suggesting that they are actually cells from the low-ploidy 

population in G2 phase. To summarize the results beyond these four examples, each 

distinct mode on a scatterplot was summarized with three numbers: its mean FACS ploidy, 

mean WCQ ploidy, and Pearson correlation coefficient (figure 7e).  Across samples, the 

difference in means for a mode on a scatterplot is near zero in most cases (figure 7h), the 

exceptions including brca_n as previously discussed, as well as scatterplot modes from two 

other samples.  Correlations between FACS and computational values for each scatterplot 

mode are shown in figure 7i.  

To confirm that the variation in WCQ ploidy estimates is biological in origin, ploidy 

estimates were compared to copy number profiles from scWGS.   In the colon metastasis 

(colon_met), the single-cell copy number profiles divide into several subclones with 

significant differences between them (figure 8f).  One subclone has amplifications 

throughout nearly the entire genome, relative to the other two. This subclone also has the 

highest ploidy, according to the computational and experimental estimates, and can be 

identified with the right-most peak observed in flow cytometry.  Within the major 

subclones, there are minor subclones, which also differ in ploidy. Most strikingly, the  
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Figure 8: Example application. a-d Dimensionality reduction labeled with ploidy. e Heatmap 

of cells from the colon metastasis colon_met labeled with ploidy and cluster. f Copy numbers of 

genes from single cells from the colon metastasis. 

highest-ploidy cells are related, and have extra copies of chromosomes 7p, 8q, and 15, even 

relative to other cells in the same major subclone. A similar pattern in which cells with 

similar genotypes have similar ploidy was found in other samples through dimensionality 

reduction (figure 8a-c).   To illustrate the advantages of absolute copy numbers over 



 55 

relative copy numbers, absolute copy numbers were estimated for each cell from 

colon_met. The frequency of estimated copy numbers for genes which are frequently 

affected by CNAs in colorectal cancer (Yaeger et al. 2018) are shown in figure 8f.  Using 

absolute copy numbers reveals diversity among levels of deletions, as well as among levels 

of amplifications. 

 

Figure 9: Benchmarking and trend in WCQ peak height. A Fraction of cells for which the 

computationally estimated ploidy differed by more than 1N from the experimentally 

estimated ploidy, using three different methods for computational ploidy inference: least 

squares, unweighted cosine quantogram (CQ), and weighted cosine quantogram (WCQ). B In 

cells from the sample pc for which the difference between WCQ and FACS ploidy was less than 

1N, the relationship between log WCQ peak height and the ratio of index of dispersion to 

reads sequenced is approximately linear. 

The WCQ differs from the least squares method used in Garvin et al. (2015) in that it 

weights segments according to confidence, giving the least weight to small, high-level 

amplifications. To determine the effects of these difference, cells with incorrect ploidy 
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inferences were counted, using the least squares method, as well as the unweighted cosine 

quantogram method proposed by Kendall (1986). An incorrect ploidy inference was 

defined as a difference of greater than 1 between the ploidy estimated from scWGS and the 

FACS estimate. Two samples (brca_n and bcr06_2) were excluded from this analysis 

because they may contain cells in G2 or M phase, in which case the computationally 

inferred and experimentally measured ploidies are not expected to match. The WCQ 

method made fewer errors than the least squares method in gbm_h and pe, high-ploidy 

samples with a high fraction of incorrect inferences, but in other samples there was no 

clear pattern about which method performs better (figure 9a). 

To determine the causes of failures of the WCQ ploidy estimates, two measures of 

data quality were examined for the scWGS bincounts from each cell: the index of dispersion 

and the mean. The ratio of index of dispersion to reads sequenced was tested as a metric of 

data quality, using cells from the tumor pc for which the computational and experimental 

ploidy estimates differed by less than 1. It was found that the logarithm of the height of the 

WCQ peak was linearly related to this ratio (figure 9b). (The figure, and the linear fit, 

exclude 5.8% of cells because they were outside the range of the plot.) Since a shorter 

quantogram peak may not be distinguishable from background, and since index of 

dispersion and number of reads sequenced vary among cells and samples, this trend may 

explain some of the failures of the WCQ ploidy estimates. 

Discussion 

These results show that, using the weighted cosine quantogram (WCQ), integer copy 

numbers can be estimated from scWGS data by exploiting the periodicity of the distribution 
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of read counts. Through the lens of absolute copy number, a breast tumor with an apparent 

subclonal whole-genome doubling was studied (brca_n), as well as a colon metastasis with 

two populations that differ in ploidy (colon_met). Integer copy number estimation at the 

gene level revealed heterogeneity in levels of amplifications and deletions that may not 

have been apparent in relative copy numbers. Although in the cases examined in this work 

the absolute copy number could have been estimated from FACS data, closely matching 

answers were obtained using the WCQ, opening up applications to high-throughput scWGS 

protocols that do not involve FACS. 

Integer copy number has been estimated from scWGS data in previous studies, using 

the least squares method, or essentially similar methods that use different measures of 

deviation besides squared distance. In this study, for the first time, such estimates have 

been systematically validated by experimental measurements of ploidy. Errors of ploidy 

inference were common in high-ploidy tumors, and could be reduced by weighting 

segments according to reliability during quantum estimation using the WCQ. 

The proposed method for integer copy number inference with the WCQ operates on 

one cell at a time, using read counts as input. The limitations of this approach were 

revealed by the analysis of error rates and peak heights, which showed that difficulties 

emerged at low sequencing depth and poor coverage uniformity, and high ploidy. These 

problems may be addressed by combining data from multiple cells (increasing the effective 

read count) or using allele-specific copy numbers (halving the effective ploidy). Both 

approaches are incorporated in the recent method CHISEL (Zaccaria and Raphael 2019), 

which uses phylogenetic inference to structure the sharing of information between cells 
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and to estimate allele-specific copy numbers. However, the results above show that in 

many cases of practical relevance, all the information required to infer absolute copy 

numbers is present in the read counts of an individual cell, and that integer copy numbers 

can reliably be estimated as an early preprocessing step, rather than jointly with analysis of 

the evolutionary history of the tumor. 

Methods 

Data analysis tools 

Data were analyzed using R (R Core Team 2019), with extensive use of dplyr 

(Wickham et al. 2019) and tidyr (Wickham and Henry 2019). Plots were made using 

ggplot2 (Wickham 2016) with the cowplot theme (Wilke 2019). Plots were combined with 

patchwork (Lin-Pedersen 2020). 

Analysis of flow cytometry data 

Fluorescence measurements from flow sorting and flow cytometry were exported in 

the CSV format, or in FCS format, in which case they were read using the R package 

flowCore (Ellis et al. 2009). Flow cytometry distributions were estimated using kernel 

density estimates. 

Analysis of single-cell DNA sequencing data 

Single-cell sequencing libraries were prepared with acoustic cell tagmentation 

(Conterno Minussi et al. n.d.), and sequenced using an Illumina platform to obtain short 

reads. Reads were aligned to the human reference genome version hg19, and duplicates 
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were removed using Picard MarkDuplicates. The reference genome was divided into 200kb 

bins, excluding regions that were not unique in 50bp windows (Derrien et al. 2012), and 

also excluding the ENCODE blacklisted regions. In each cell, the number of reads in each 

200kb bin was counted. Then, bincounts were corrected for GC content using loess, and 

square root transformed to stabilize variance. The transformed bincounts were then 

segmented using the fused lasso algorithm of Johnson (2013) with a penalty of 25. Unless a 

cell had at least one segment covering at least 40 bins, with a bincount at least four thirds 

of the average bincount, it was assumed to be a stromal cell and detection of CNAs was not 

attempted. Unless a cell’s segmented bincounts had Pearson correlation of at least 0.8 with 

at least one other cell from the same sample, it was assumed to be the result of a failed 

library preparation and detection of CNA’s was not attempted. Segments less than 40 bins 

long were not used for ploidy estimation. Segment medians, rather than means, were used 

as input for ploidy estimation. Bivariate normal mixture models were fit to scatterplots 

using L2E (Scott 2004). Linear models were fit using robustbase (Maechler et al. 2019). 

Gene copy numbers were estimated using the estimated copy number of the segment 

which contains the gene. 

Clustering and dimensionality reduction 

For clustering and dimensionality reduction, sequencing data was processed using a 

different pipeline, described previously by Casasent et al. (2018). The resulting normalized 

bincounts were transformed with a square root, segmented using the fused lasso, and then 

smoothed using averages within a ten-bin sliding window. Distances between pairs of cells 

were calculated using Manhattan distance between the first differences of the resulting 
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transformed profiles. Using these distance matrices, dimensionality reduction was 

performed using UMAP (McInnes et al. 2018), and the UMAP graph was used for graph-

based clustering with the Leiden algorithm (Traag et al. 2019). 
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6. Discussion 

The methods described in this dissertation contribute to the statistical analysis of 

single cell DNA sequencing data of tumors.   The first problem addressed was obtaining 

sufficiently many cells from each of the subclones of a tumor. I framed this problem as 

calculating probabilities from a multinomial distribution. An R package and a GUI for 

calculating probabilities from multinomial distributions were written to estimate the 

required number of cells.  The R package was novel since no previous software provided 

exact multinomial probabilities and scaled to the relevant sample sizes, even though the 

needed algorithm was already in the literature (Levin 1981). However, the exact 

multinomial calculation turned out not to be necessary, since the relevant multinomial 

probabilities could be approximated sufficiently well by products of binomial probabilities.  

But even though it was not required for its original purpose of planning single cell 

sequencing experiments, the R package, pmultinom, has apparently filled a conspicuous 

void in the R ecosystem. pmultinom was downloaded 311 times per month on average in 

2019, and has been used to answer a probability question on the Mathematics Stack 

Exchange (Lonza Leggiera 2019).  The package is apparently being used despite the fact 

that the version currently on the R package repository, CRAN, is somewhat out of date and 

only implements a 𝑂(𝑛log𝑛) algorithm. Since the software seems useful I plan to continue 

to improve the package and update the version on CRAN. 

After sequencing cells from a tumor, it must be decided whether sequencing 

additional cells from the same tumor is necessary.  I framed this problem as predicting the 

number of subclonal mutations that would be discovered if the size of the sample of cells 
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was doubled.  Both a non-parametric method and a model-based method were tested, but 

only the model-based method could make reasonable predictions when the sample size 

was doubled, whereas the nonparametric prediction suffered from a fast increase of 

variance with sample size.  The model-based method was similar to a previous method 

applied to statistical genetics of human populations (Ionita-Laza et al. 2009), but was novel 

in that it used a population genetic model appropriate for tumor cell populations (Durrett 

2013).   However, the population genetic model had an unwelcome implication: if single 

cell sequencing of a tumor is conducted in sequential batches (for example, flow sorting 

cells into 384 well plate, sequencing them, and repeating), then each batch will reveal just 

as many subclonal mutations as the last batch.  Therefore, predictions of the number of 

mutation discoveries in a hypothetical second experiment will never be able to serve as an 

argument that the first experiment was sufficient. Although this means that the research 

described here cannot meet its original goal, the result is important and worth publicizing, 

since it contradicts claims that have been made in the past. For example, the authors of the 

first single-cell exome sequencing study claimed that “statistic analysis showed that 

sequencing more cells would almost not increase the number of somatic mutations called 

from the cell population” (Hou et al. 2012). Their conclusion was based on a rarefaction 

curve that did not account for consensus filtering. But the neutral exponential growth 

model predicts that sequencing more cells would always increase the number of somatic 

mutations called. The claim that sequencing more cells is unnecessary will have to be made 

based on the specific aim of the study, and how much diversity must be observed in order 

to meet that aim. 
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In order to detect subclones in recent high-throughput single-cell whole genome 

sequencing (scWGS) datasets, I addressed the detection of copy number aberrations from 

these data, using the counts of sequencing reads in bins of the reference genome.  The first 

step was to determine the statistical properties of the bincounts.  It was found that the 

variance of the bincounts within a segment of the reference genome was proportional to 

the copy number within that segment. Furthermore, the index of dispersion varied 

between cells and especially between different experiments, providing a measure of the 

noise in the data.  This simple observation will be of great value to people who are using 

maximum likelihood or Bayesian methods, since it can guide the choice of a probabilistic 

model.  This model was calculating weights during quantum estimation. 

To address the problem of estimating copy number from the bincounts from scWGS,  I 

framed the problem as quantum estimation: estimation of an unknown quantum of which 

the data are small integer multiples.  Instead of the previously used least-squares method 

(Baslan et al. 2012), I chose to use the “cosine quantogram” method based on the empirical 

characteristic function, because mathematically it was easy to analyze using previously 

established theory, and conceptually it had a simple interpretation as extracting the 

principal frequency using a Fourier transform of the distribution of the data. Another 

option would have been a Bayesian analysis, which has been applied before in quantum 

estimation from archaeology data (Freeman 1976).  A Bayesian analysis would have had 

the advantage of easily taking into account the differences in reliability between segment 

means.  However, staying within the framework of the cosine quantogram method, I solved 

this problem by weighting contributions of segment means. The mathematical tractability 

of the cosine quantogram method was an advantage in enabling a simple derivation of the 



 64 

theoretically optimal weights.  Besides being theoretically justified, the weighting 

procedure also turned out to be practically useful in samples like the breast tumor “pe”, 

where the data did not determine the ploidy with perfect reliability in all cells. In these 

difficult samples, including the weights reduced the error rate of ploidy inference relative 

to an unweighted version of the method. 

In order to calculate error rates of ploidy estimation, it was necessary to have some 

way of validating ploidy estimates.  Besides testing the improvements from including 

weights, it was also important to test previous methods for ploidy estimation.  I used 

experimental measurements of ploidy for individual cells made prior to sequencing, using 

indexed flow sorting.  I found that the computational and experimental estimates of ploidy 

agreed in most cells in all samples, and that the weighting procedure reduced error rates.  

Besides testing novel methodology, I also provided the first systematic measurement of the 

performance of the least-squares method used by the popular software Ginkgo (Garvin et 

al. 2015). Ginkgo’s integer copy number estimates, based on the least-squares ploidy 

estimates, have been used in several studies (Alexander et al. 2018; Perez-Rodriguez et al. 

2019), but before this work the least-squares ploidy estimates had never been 

experimentally tested. 

The proposed method for estimating ploidy and copy numbers is fast and easy to 

implement. Furthermore, the method operates on one cell at a time, using the bincount 

data which are already computed in data processing pipelines. This makes it easy to 

integrate the method into existing pipelines.  However, the most challenging cases seem to 

be the ones with the highest ploidy.  Haplotype specific read counts would solve the 
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problem by cutting the “effective” ploidy in two, since for example a cell with ploidy 5 

should have an average copy number of around 2.5 for the maternal DNA, and likewise for 

the paternal DNA.  It is possible that such haplotype specific read counts can be obtained, 

since even in a relatively small segment there are thousands of SNP sites, which can be 

partitioned into haplotype blocks using 1000 Genomes Project data.  Estimating haplotype 

specific copy number would also be useful to distinguish tumor subclones which differ due 

to copy number neutral loss of heterozygosity.  Obtaining haplotype specific copy numbers 

is therefore an important next step in bioinformatics processing of single cell whole 

genome sequencing data. 

Ploidy estimates can be improved by calculating them for all cells jointly, instead of 

individually, borrowing strength in the estimate of each individual cell’s ploidy.  This can be 

expected to help since a stronger signal was obtained from cells from which more reads 

were sequenced, and considering multiple cells simultaneously is raising the effective read 

count.  Although cells are not guaranteed to have the same ploidy, closely related cells do, 

so borrowing strength can be done through a clustering or a phylogenetic structure.  A 

recent tool called CHISEL jointly estimates integer copy numbers with the phylogeny, and 

also attempts to calculate allele-specific copy numbers, using the phylogeny rather than the 

above-described strategy based on haplotypes (Zaccaria and Raphael 2019).  This kind of 

joint inference is very different from the strategy in the weighted cosine quantogram 

method, which treats integer copy number estimation as an early processing step 

performed on data from individual cells one by one, prior to joint analyses such as 

phylogeny inference.  Which approach will be most useful in the future depends upon how 

experimental methods develop. Low depth, low quality data from a large number of cells 
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demands a joint analysis. But, if the trend is towards getting better data from individual 

cells, then it will be more straightforward to calculate integer copy number as a 

preprocessing step like the WCQ proposed in this work. 

Estimating ploidy, and using it to convert bincounts to integer copy number 

estimates, is important for learning about clonal evolution.  For testing population genetic 

models, it is important to be able to obtain a frequency spectrum: for each 𝑘, the number of 

mutations present in 𝑘 cells. In my work on judging completeness of sampling, I relied on 

the frequency spectrum, and therefore had to use single-cell whole exome sequencing 

datasets. Reliable integer copy number estimation is one step towards being able to obtain 

reliable frequency spectra from scWGS datasets as well. Additionally, for phylogenetic 

inference, obtaining integer copy numbers enables inference of a phylogenetic tree using 

Steiner minimum trees, which have been used previously for fluorescence in situ 

hybridization measurements of copy number (Chowdhury et al. 2013).  However, a 

remaining problem is that copy number aberrations overlap with one another.  More work 

is required to deconvolute a copy number profile into a list of individual, potentially 

overlapping events. 

In this dissertation, two main contributions have been made to the statistical analysis 

of intratumor heterogeneity (ITH) with DNA sequencing.  Evidence has been obtained that, 

contrary to the assumptions made in previous research, it is not possible to saturate the 

diversity of a tumor. Therefore, the decision that sufficiently many cells have been 

sequenced will have to be made in consideration of the specific hypothesis being tested.  It 

has been found that the read count data from a single cell are sufficient to determine its 
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ploidy and estimate integer copy numbers.  These contributions represent steps towards 

the goal of understanding the message about clonal evolution communicated by ITH. 

Applications of this work are anticipated in the study of clonal evolution. Researchers 

testing population genetic models of tumor growth will benefit from the digitization of 

copy number aberrations accomplished by estimating integer copy numbers. Besides basic 

research, the connection between ITH and tumor evolution means that ITH may play a role 

in future cancer treatment. ITH has been shown to be a prognostic biomarker in the lung 

TracerX trial (Jamal-Hanjani et al. 2017), although not in TracerX renal (Turajlic et al. 

2018). The TracerX studies measured ITH by using multiregion sequencing to detect 

region-specific CNAs. Future clinical trials may prefer to use scWGS, which will require 

both estimation of the number of cells required, and estimating integer copy numbers from 

scWGS data. 
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