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Abstract 

Inducible epithelial resistance against acute viral pneumonia and chronic 

asthma 

By Shradha Wali, M.S.  

Advisory Professor: Scott E. Evans, M.D. 

        Viral pneumonia remains a global health threat despite worldwide vaccination 

and therapeutic programs. The influenza pandemic of 1918 and SARS-CoV2 

pandemic of 2019-2020 are cautionary reminders demanding the need for novel 

treatment strategies. Moreover, in addition to causing acute disease, respiratory 

virus infections are often complicated by chronic lung pathologies, such as asthma 

induction, progression, and exacerbation. We have reported that mice treated with a 

combination of inhaled Toll-like receptor (TLR) 2/6 and TLR 9 agonists (Pam2-ODN) 

to stimulate innate immunity are broadly protected against respiratory pathogens, 

but the mechanisms underlying this protection remain incompletely elucidated. Here, 

we show in a lethal paramyxovirus model that Pam2-ODN-enhanced survival is 

associated with robust virus inactivation by reactive oxygen species (ROS), which 

occurs prior to internalization by lung epithelial cells. We also found that mortality in 

sham-treated mice temporally corresponded with CD8+ T cell-enriched lung 

inflammation that peaks on days 11-12 after viral challenge, when the viral burden 

has waned to a scarcely detectable level. Pam2-ODN treatment blocked this 

injurious inflammation by reducing the viral burden. Alternatively, depleting CD8+ T 

cells 8 days after viral challenge also decreased mortality. Notably, Pam2-ODN 



ix 
 

treatment of mice lacking CD8+ T cells at any point of SeV infection showed a similar 

degree of protection demonstrating Pam2-ODN mediated protection independent of 

CD8+ T cell response. Further, Pam2-ODN treatment protected SeV challenged 

mice from progressing to asthma-like disease by initiating acute anti-viral effects. 

Interestingly, mice aerosolized with Pam2-ODN after viral clearance displayed 

reduced eosinophilia that was associated with reduced lung epithelial IL-33 

production. Findings from this study reveal opportunities for targeted 

immunomodulation to protect susceptible individuals from mortality of respiratory 

virus infections and preventing progression to chronic asthma.  
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Chapter I: Introduction 

1.1 Global burden of respiratory viral infections  

            Viral pneumonias remain a global health threat with seasonal influenza and 

emerging pandemic viruses such as SARS-CoV-2 inflicting morbidity and mortality in 

vulnerable subjects [1-3]. In addition to causing acute disease, respiratory virus 

infections are often complicated by chronic lung pathologies such as asthma 

initiation, progression, and exacerbation [4-8]. Therefore, novel therapeutic anti-viral 

strategies need to be developed to effectively prevent and treat respiratory virus 

infections and their associated chronic lung diseases.  

        Nearly 80% of asthma exacerbations are associated with respiratory viral 

infections [4-6, 8] but the mechanisms that link asthma exacerbations and virus 

infections remain incompletely understood. In this regard, Michael Holtzman’s group 

found that in mice, infection with Sendai virus (SeV), a parainfluenza virus, causes 

long-term effects after viral clearance based on a “hit and run” strategy [6, 8-10]. 

Specifically, initial SeV infection (with viral replication peaking at 5 days and 

clearance from lungs by 14 days) is linked to changes in expression of epithelial 

immune response genes, inflammation, and subsequent acute hyperreactivity [8, 

10]. Additionally, this transient SeV infection triggers potentially lifelong asthma-like 

disease characterized by goblet cell metaplasia, eosinophils, and airway 

hyperreactivity [6, 8, 9].  

        Therefore, controlling viral infections and associated disease severity could be 

an appealing approach to prevent virus-induced asthma-like disease and 
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exacerbations. However, none of the current strategies to treat asthma, such as 

corticosteroids and β2-adrenoceptor agonists, target virus-induced asthma 

exacerbations [11-13]. Additionally, despite multiple global vaccination programs to 

improve public health, these respiratory illnesses continue to significantly increase 

health care burden across the world [14-18]. Therefore, to inform future therapeutics 

for effective anti-viral programs, we must first note the challenges currently faced in 

designing anti-viral vaccination strategies.  

 

1.2 Current challenges in anti-viral vaccine design  

        Currently licensed influenza vaccines focus on antibody generation specific to 

viral membrane proteins that mediate viral entry into host cells [17, 19]. However, 

due to antigenic drift resulting in mutated viral membrane proteins, strain-specific 

antibody generation is required, necessitating evaluations and reformulations 6-8 

months a year to keep pace with antigenic drifts [17, 19]. Further, since systemic 

immunity is poor in the elderly population, current vaccines tend to be less 

efficacious in this group. This can be countered by using adjuvants or increasing the 

antigen dose, however, vaccine studies or systems biology approaches to improve 

immunogenicity in the elderly are lacking [16, 17]. Further, when animal-origin 

viruses acquire the ability to infect humans resulting in an antigenic shift, there 

ensues a lack of immunity against the novel virus [15, 17, 20]. The inability to predict 

the virus strains or subtypes that will result in future pandemics and the consequent 

delay in vaccine generation has generated great interest in a “universal influenza 

vaccine”  that can produce broad, cross-reactive immunity, reducing the need for 
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annual vaccine evaluations [16, 20]. In this regard, recent advances have been 

made to understand how host innate immune cells can be induced to generate long-

lasting and heterologous immunity, which will be discussed in the next section.  

 

1.3 Trained innate immunity  

        For a long time, innate immunity was known to be non-specific and lacking 

memory, in contrast to adaptive immunity which is highly specific and long-lasting. 

However, invertebrate animals that lack adaptive immunity, display a prolonged 

functional state of their innate immunity after sufficient priming. Over the last few 

years, Mihai Netea’s group has studied a similar phenomenon in detail, terming it 

‘trained innate immunity’. Studies on trained immunity using BCG, polio vaccine, and 

measles virus, among other immune stimuli, have shown generation of long-term 

protection against bacterial and viral challenges through epigenetic, metabolic, and 

functional changes in innate immune cells [21-23]. Perhaps an important functional 

change is the induction of memory in innate immune cells such as macrophages, 

monocytes, and NK cells that protect against secondary infections [21, 24, 25]. This 

protection is shown to persist even in the absence of adaptive immune 

compartments [21]. Training of macrophages and monocytes with BCG and β-

Glucan causes metabolic shifts in these cells from oxidative phosphorylation to 

aerobic glycolysis that allow a faster supply of energy and metabolites after a 

secondary challenge. Further, trained macrophages undergo epigenetic changes 

that result in quick access to transcription factors, controlling the production of 
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proinflammatory genes, upon secondary infections [23, 26]. Therefore, epigenetic 

priming may be an important mechanism explaining the underlying characteristics of 

protective immune memory. One such epigenetic priming mechanism is the 

activation of gene transcription upon initial stimuli, which may be accompanied by 

specific chromatin marks acquisition such as H3K4me1, H3K4me2, H3K4me3 in 

macrophages [22, 27]. These chromatin marks appear to persist at least partially 

when the stimulus is removed [27]. This enhanced epigenetic status in the innate 

immune cells tagged by the chromatin marks such as H3K4me1 results in a robust 

response upon a secondary stimulus or challenge [27].   

        NK cells have shown both trained innate memory characteristics and classical 

immunological memory that is mediated by T and B cells [22, 28]. Studies in mice 

showed hapten-induced contact hypersensitivity was dependent on NK cells that 

were shown to be persisting for at least 4 weeks [29]. Additional studies using 

murine cytomegalovirus (MCMV) infection in mice showed evidence of 

immunological memory independent of T and B cells [29, 30]. This memory was 

mediated by NK cells that upon reinfection, produce IFN-γ and perforins, thus 

inducing a protective response [30, 31]. This NK cell memory is at least partially 

driven by epigenetic changes. One study with human CMV showed epigenetic 

priming of the IFNG gene locus in NK cells, which acquires specific chromatin marks 

[28, 29]. Upon reinfection, these NK cells then show greater IFN-γ generation thus 

leading to protective immune response [28, 29]. 
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        While modulation of trained immunity is generally shown to induce broad and 

long-term memory in animal studies, functional changes must be induced in the 

hematopoietic stem and precursor cells as these cells give rise to multiple 

generations of memory-consisting innate immune cells [21-24, 27]. Given the 

difficulties of effective vaccine design, the modulation of trained immunity can offer 

promising new treatments in the context of emerging new respiratory viruses such 

as SARS-CoV2.  

        This thesis project is focused on understanding how pharmacologic stimulation 

of the lung mucosal defenses can attenuate acute viral pneumonia and chronic 

asthma. Therefore, it is important to understand the lungs’ mucosal immune 

response to viruses and anti-viral defense mechanisms, providing insights into the 

design of future therapeutics. 

 

1.4 Pathogenesis of respiratory virus infections 

        This thesis project is mostly focusing on the mouse model of parainfluenza 

virus, Sendai (SeV) infection, but I also use influenza virus (H3N2 strain) in some 

experiments. Both influenza and parainfluenza infections are common infections 

found in children and adults leading to significant morbidity and mortality. To date, 

SeV infection in mice appears to resemble the response to human pathogens such 

as influenza, parainfluenza, and RSV and human type 2 immune response seen in 

asthma [8]. Since RSV replication in mice is difficult, the SeV mouse model offers an 

alternative model to study virus-induced pathogenesis that appears to resemble 
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human disease. I will briefly explain the pathogenesis of respiratory virus infection in 

this section. Influenza, SeV, or SARS-CoV-2 target the lung epithelium for infection 

by binding to the viral receptors on the lung epithelial cells [32-34]. The presence of 

viral RNA in the cells leads to the activation of intracellular signaling pathways, 

initiating an acute innate immune response via TLR signaling, RIG-I activation, or 

inflammasomes [35]. These pathways culminate in the activation of IRF3 or 7, which 

activates IFN-α/β transcription for viral clearance [35-37]. Activation of type I IFNs 

also leads to proinflammatory cytokine and chemokine production via NF-κB 

activation [35, 36]. Further, viral RNA in the cytoplasm can induce a conformational 

change in RIG-I that interacts with MAVS protein, which in turn activates IRF3 and 

NK-κB to produce type I IFNs and proinflammatory cytokines, respectively [38]. In 

addition, inflammasome proteins are induced via NF-κB activation [38]. In the 

presence of viral RNA, the NLRP3 inflammasome pathway gets activated which 

cleaves and activates caspase-1 producing IL-1β and IL-18, thereby augmenting the 

inflammation cascade [38]. Further, infection of lung epithelial cells leads to increase 

in damage-associated molecular patterns (DAMPs) that are recognized by dendritic 

cells, that migrating to the draining lymph nodes to activate cytotoxic CD8+ T cells 

and CD4+ T helper cells and memory CD8+ T cells [38]. The chemokines and 

cytokines produced by NK-κB activation lead to the recruitment of neutrophils and 

differentiation of monocytes from peripheral blood to monocyte-derived alveolar 

macrophages [38]. Both neutrophils and macrophages amplify the inflammation 

during the on-going viral infection.  
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        In the case of the novel SARS-CoV2 infection in humans, the virus uses the 

ACE-2 receptor on the lung epithelium for viral entry [32]. Upon transmission, 

symptoms appear to be minimal, with viral shedding restricted to the upper 

respiratory tract [32, 39]. However, the second week onward, viral replication in the 

lower respiratory tract and secondary viremia is seen with an attack on other organs 

and cells that express the ACE-2 receptor such as the kidney, heart, and 

gastrointestinal tract [32, 39]. This process of viral shedding correlates with clinical 

deterioration following disease onset in the second week. It appears that disease 

exacerbation in the late stage is not only due to direct viral damage but also a result 

of immune-mediated lung injury [39]. The progression to COVID-19 severe disease 

in humans is associated with reduced lymphocyte counts and increase neutrophils in 

the blood [32, 39]. This is also correlated with increased IL-6, MCP-1, MIP1A, and 

TNF-α in the blood plasma [32, 39]. Reduced lymphocyte counts and inflammatory 

cytokines appear to be associated with mortality of COVID-19 patients [32, 39]. 

However, the data regarding immune response and pathogenesis of SARS-CoV2 

are evolving and several reports indicate different patterns of clinical manifestations 

depending on age, underlying health, and environmental conditions associated with 

severe disease induced by SARS-CoV2.   

 

1.5 Host immune response to respiratory virus infections 

        Alveolar Macrophages: Residing within the alveoli airspaces are 

macrophages ideally located to respond to infectious agents in the respiratory tract. 

Phenotypically, alveolar macrophages are classified as classically activated (M1) 
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pro-inflammatory type producing high levels of TNF-α, IL-1β, and iNOS in response 

to virus infections, and alternately activated (M2) anti-inflammatory type, 

predominantly involved in tissue repair and maintaining homeostasis by TGF-β 

production [40]. Under homeostatic conditions, macrophage interactions with 

epithelial cells help to keep the alveolar macrophages in a suppressive, anti-

inflammatory state [41, 42]. However, virus infection of epithelial cells and the 

subsequent death of infected epithelium leads to enhanced phagocytic activity in 

macrophages [41]. In addition to phagocytosis, macrophages release pro-

inflammatory cytokines and chemokines such as CCL5, TNF-α, MCP-1, and IL-6, 

which in turn leads to additional immune cell recruitment to the lungs, ultimately 

resulting in viral clearance  [41-43]. Macrophages can also act as a sink by 

absorbing the virus and preventing its spread to nearby cells [44]. The precise role of 

alveolar macrophages in viral infections is shown in depletion studies using 

clodronate-loaded liposomes that selectively induce macrophage death [42, 45]. 

Other studies have made use of GM-CSF-/- mice or administration of diphtheria toxin 

to CD169-diphtheria toxin receptor mice to study macrophage function in viral 

infections [41, 46, 47]. Mice depleted of macrophages by any of these methods have 

shown similar results with increased viral burden, enhanced inflammation, and 

disease severity, implicating their role in controlling viral infections [40, 43]. Overall, 

numerous studies have shown alveolar macrophages to be necessary and 

protective in function against viral infections.  

        Neutrophils: Another group of innate immune cells that respond quickly to an 

infection or injury are neutrophils. They arrive from the blood circulation to the lungs 
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by the action of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α and 

chemokines such as CXCL1, CXCL2, and CXCL8 [48]. Neutrophils actively 

phagocytose virus particles and other dead cells containing virus particles [49]. Upon 

phagocytosis, neutrophils use a variety of enzymes, ROS, and anti-microbial 

peptides to kill pathogens [48, 49]. Another mechanism used by neutrophils is the 

release of neutrophil extracellular traps (NETs), after undergoing a form of 

programmed cell death. These NETs consist of proteases, chromatin, histones, and 

other anti-microbial peptides that inactivate virus particles, hence preventing the 

dissemination of viruses [48]. Several studies have shown that the recruitment of 

neutrophils and their activities are essential for controlling respiratory virus infections 

[48, 49]. However, there are also reports indicating excessive activity of neutrophils 

releasing ROS, enzymes, and myeloperoxidase that can injure lung epithelium 

during viral infections, leading to uncontrolled inflammation and host damage [50]. In 

addition to performing phagocytosis, neutrophils secrete chemokines and cytokines 

that can in turn not only recruit more neutrophils but a host of other immune cells to 

the injury site [48, 50]. It is therefore essential to carefully dissect the aspects of 

neutrophil functions to generate a well-balanced anti-viral therapy. 

        Natural Killer (NK) cells: NK cells are generally recruited between the time of 

neutrophil and T cell infiltration following a virus infection [51]. NK cells can 

differentiate between normal cells and virus-infected cells by up/downregulation of 

their unique receptors (inhibitory and activating) [52]. They are cytotoxic in function, 

killing virus-infected lung epithelial cells by secretion of IFN-γ and Granzyme B [51, 

53].  Also, NK cells engage in a unique antibody-dependent cell-mediated 
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cytotoxicity (ADCC), in which antibodies bind to viral particles on infected cell 

surfaces, marking them for clearance via cell death [40, 41, 43, 51]. Most NK cell 

depletion studies are associated with an increased viral burden in mouse lungs and 

enhanced disease severity, implicating their role in controlling virus infection [51]. 

However, NK cells producing IFN-γ have also been shown to be injurious to lung 

epithelium during RSV infection [54]. Further, several influenza virus strains are 

shown to evade NK cell-mediated killing by activating the inhibitory receptor 

signaling that prevents the infected cells from being marked for death [55]. Hence, 

optimal NK cell activity seems to be dependent on virus strains for effective viral 

clearance from lungs or lung pathology [51].  

        Invariant Natural Killer T (iNKT) cells: Representing a diverse group of T 

cells that have the capacities of both NK and T cells is iNKT cells, which express a 

unique CD1d receptor on their cell surface that recognizes self-lipids during 

respiratory viral infections [36, 45, 53]. iNKT cells can perform effector responses by 

cytotoxic activities and secretion of cytokines. iNKT cells have been shown to boost 

early immune responses, reducing viral titers, and also controlling inflammatory 

monocytes in a highly pathogenic influenza mouse model [40, 53, 56]. CD1d 

deficient mice infected with influenza also showed that iNKT cell led IFN-γ 

production was necessary for optimal NK cell and CD8+ T cell activity [56]. Overall, 

iNKT cells appear to be mostly beneficial in controlling acute respiratory virus 

infection. 

Lymphocytes 
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        B and CD4+ T cells: The primary function of B cells in virus infections is to 

produce virus-specific antibodies that can neutralize, inactivate, and opsonize viral 

particles and also initiate other adaptive immune mechanisms that ultimately lead to 

viral clearance [35, 40]. The presence of neutralizing antibodies to rhinovirus and 

influenza in the serum has been correlated with protection from disease severity in 

patients [15, 16, 19, 20, 57]. Neutralizing antibodies prevent infection of respiratory 

epithelium by blocking viral surface proteins from attaching to the host cell receptors, 

and binding to infected cells marking them for death by ADCC [35, 58]. Another anti-

viral mechanism of antibodies is to tag the virus for inactivation by the complement 

system and phagocytosis by macrophages and/or neutrophils (antibody-dependent 

cellular phagocytosis; ADCP) [35]. For an effective B cell response during viral 

infection, CD4+ follicular T helper (Tfh) cells are required as they help in maturation 

and proliferation of neutralizing antibody-producing B cells in secondary lymphoid 

organs. The presence of Tfh cells after vaccination in young adults is correlated with 

the production of influenza-specific IgG and IgM antibodies [15, 17, 20, 57]. While B 

cells have proven to be largely useful for generating anti-viral immunity, the partial 

cytotoxicity required for viral clearance results in untoward consequences to the 

physiology of the epithelium. 

        CD8+ T cells: Numerous studies on CD8+ T cells' role in respiratory virus 

infections have shown them to be essential for viral clearance by cytotoxicity of 

infected cells. This is clearly shown in studies using athymic and/or Rag1-/- mice 

which display impaired virus clearance and, therefore, do not recover from the 

infections [59-61]. Similarly, adoptive transfer of influenza-specific activated CD8+ T 
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cells into SCID mice led to reduced virus load and enhanced mouse survival [35, 

57]. To induce cytotoxicity of infected cells, CD8+ T cells use a variety of 

mechanisms such as engagement of death receptors expressed on virus-infected 

cells and release of cytotoxic factors like perforin and granzyme B to create holes in 

the cell membrane and initiate apoptosis of infected cells [40]. Despite the essential 

functions of CD8+ T cell-mediated viral clearance, the respiratory epithelium is 

significantly compromised if CD8+ T cell response is unregulated and can lead to 

catastrophic damage to the host. This is substantiated by multiple studies in Rag1-/- 

mice displaying delayed lung injury and mortality of influenza infections [59, 61-63]. 

Further, the adoptive transfer of RSV-specific CD8+ T cells in Rag1-/- mice led to 

increased morbidity and mortality [63]. Additionally, CD8+ T cell depletion studies 

showed impaired viral clearance but decreased lung injury [60, 61, 63, 64]. While the 

adaptive immune response to virus infections is essential for the resolution of 

infection and creates a long-term memory response against secondary infections, 

but if unregulated it can cause sufficient damage leading to host death.  

 

1.6 Host survival of viral pneumonia 

        The primary goal for protection against viral pneumonia associated illness is 

host survival. One way of achieving host survival is to enhance virus elimination from 

the host, a concept termed ‘host resistance’ [65, 66]. The other way is to mitigate 

damage to host tissues caused by a virus infection, a concept termed ‘host 

tolerance’ [65, 66]. Most host leukocytes promote viral clearance by apoptosis of 

virus-infected cells causing excessive inflammation to the extent of destroying lung 
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physiology, resulting in acute respiratory distress and ultimately host death. Often, 

the factor that is required for viral clearance is also the cause for immunopathology, 

as was discussed earlier in this chapter about several leukocytes involved in 

controlling viral infections. Therefore, it is important to consider interventions that 

can eliminate the virus (host resistance) and control the damage done by the 

resistance mechanisms (disease tolerance), thereby enhancing host survival of viral 

infections [65-68]. Incidentally, lung epithelial cells, the target of most respiratory 

viruses, possess their own anti-viral defense mechanisms that have been largely 

overlooked as an alternative intervention against virus infections and related 

immunopathology [33]. Therefore, we will now discuss the lung epithelium defense 

mechanisms and how they can be harnessed to control viral infections and prevent 

chronic virus-induced asthma.  

 

1.7 Anti-viral defense of respiratory epithelium 

        The lung epithelium for a long time was considered only essential for 

maintaining structural integrity and carrying out the function of gas exchange in the 

lungs. However, accumulating evidence suggests that lung epithelial cells are 

capable of mediating host defense against pathogens [69, 70]. Airway epithelial cells 

can enhance the host’s barrier defense by the production of mucus, anti-microbial 

peptides, and reactive oxygen species (ROS) in response to several inflammatory 

insults, including viruses [71-73]. In addition to direct pathogen killing, alveolar 

epithelial cells communicate with the resident lung leukocytes by secretion of 

cytokines and chemokines that recruit leukocytes from lymphoid organs to the site of 
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infection [43, 45, 74]. While the epithelium signaling capacity to leukocytes has been 

explored, the innate anti-microbial capacity has received extraordinarily little 

attention. Our lab and several others have explored the inducibility of epithelial cells 

to kill pathogens as an important mechanism of innate resistance to infection. 

Therefore, further understanding of epithelial manipulation-based intervention is 

warranted for the prevention and treatment of various respiratory diseases.  

        Innate immune sensing of respiratory viruses: The lung epithelium, acting 

as an interface between the environment and the host, is constantly exposed to 

pathogens. Respiratory epithelial cells can recognize various pathogens through 

pathogen recognition receptors (PRRs) signaling on the plasma membrane or within 

endosomal vesicles [75, 76]. PRRs recognize specific conserved microbial patterns, 

collectively referred to as pattern-associated molecular patterns (PAMPs) [58, 75]. 

The lung epithelial cells express a variety of membrane and cytosolic PRRs such as 

Toll-like receptor (TLR), NOD-like receptor (NLR), C-type lectins, and retinoic acid 

inducible gene-I (RIG-I) among various other sensors. However, since this thesis 

project is focused on TLR stimulation mediated anti-viral immunity, we will only 

discuss TLR mediated immune sensing and anti-viral signaling. The lung epithelium 

expresses all known human TLRs including ones expressed on the plasma 

membrane and in the endosomes [75]. Viral proteins are recognized by cell surface 

TLRs 2 and 4 [76]. Intracellular TLRs 3, 7, 8, and 9 located in endosomes recognize 

viral nucleic acids [76]. TLR activation upon virus detection leads to recruitment of 

cytosolic Toll/IL-1R (TIR) adaptor proteins such as MyD88 (utilized by all TLRs 

except TLR 3), TRIF (utilized by TLR 3 and 4) or TRAM (utilized by TLR4) to the 
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cytosolic TLR domain [76]. These signaling cascades lead to the assembly of the 

Myddosome complex comprising of different IRAK and TRAF proteins, which 

eventually signal through NF-κB, activating the transcription of pro-inflammatory 

cytokines such as type I IFN [76]. TLR sensing of the virus eventually leads to the 

production of anti-viral proteins in epithelial cells and the production of cytokines and 

chemokines leads to the recruitment of innate and adaptive immune cells which 

ultimately clear the virus.  

        Physical Barrier: The lungs’ mucosal surface is almost entirely covered with 

epithelium and consists of tight junctions (TJs), desmosomes, gap and adherens 

junctions (AJs) which regulate cell-cell activity [36, 69, 77]. TJs are important to 

maintain epithelial integrity and ensure communication between cells. AJs are 

located below TJs providing adhesive contacts for neighboring cells. Gap junctions 

are channels located between cells that allow ions and small metabolites to diffuse 

between cells. Desmosomes are intercellular junctions that form strong adhesive 

bonds between cells providing mechanical strength [36, 69, 77]. Therefore, by 

forming a strong physical barrier and the network of junctions between cells, the 

epithelium provides efficient first-line defense against viruses. Further, the 

mucociliary apparatus provides another layer of mucosal protection by trapping 

pathogens in the mucus and expelling them from the lungs with the aid of cilia [36, 

70, 77]. To maintain tissue homeostasis, goblet cells of the epithelium continuously 

secrete mucus, mainly consisting of mucins made of glycoproteins to form a 

structural network and produce anti-viral substances [36, 69, 73, 78]. While 

increased mucin production during viral infections helps in viral elimination, 



16 
 

continuous and excessive airway mucus production can lead to airway obstruction, a 

prominent feature of asthma [79].  

        Type I and III interferons: Activation of type I interferons (IFN) is one of the 

main results of TLR recognition of virus infections [76]. For many years, TLR-

mediated signaling leading to IFN production was mainly studied in phagocytic cells 

and the contribution of epithelial cells was less certain [36, 58, 75, 80]. However, it is 

now known that almost all cell types, including lung epithelial cells, can produce type 

I interferons. Most TLR signaling events have been linked to Interferon regulatory 

factor (IRF) 3 and IRF7 activating IFN stimulated genes (ISGs) that in turn code for 

anti-viral proteins [36, 73]. These ISGs encode for different anti-viral proteins such 

as Mx1, PKR, and Oas1, among several others, which function to control viral 

replication by inducing an anti-viral state [81]. For example, mouse studies showed 

Mx1 inhibits viral replication by blocking viral RNA transcription and a deficiency of 

this protein leads to susceptibility to influenza infection [82]. Similarly, Oas1 enzyme 

activates latent ribonuclease (RNAse L) resulting in viral RNA degradation and 

inhibition of protein synthesis [83].  

        Another group of IFNs called type III interferons are secreted by epithelial cells 

in different mucosal surfaces [37]. Both types of IFNs are known to induce ISGs that 

in turn trigger anti-viral peptide generation, apoptosis of infected cells, and activation 

of different immune cell pathways resulting in the recruitment of innate and adaptive 

immune cell types [81, 84, 85]. Increasing evidence suggests that type III IFNs are 

the dominant IFN response in the airways, especially under type I IFN deficiency 

[37, 86]. While type I IFNs are also known to induce immunopathology during viral 
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infections, type III IFNs are known to only induce an anti-viral state without much 

damage to the host [81, 84, 86, 87]. However, both type I and III IFNs appear to be 

important for viral clearance, and depletion or lack of either type of IFNs results in 

increased viral replication and impaired viral clearance leading to increased mortality 

from viral infections [37, 45, 76, 81, 84, 87].  

        Reactive Oxygen Species: The lung epithelium also produces ROS primarily 

by mitochondrial, NADPH oxidase (NOX), and Dual oxidases (Duox) sources in 

response to infectious stimulus [88-93]. Hydrogen peroxide and superoxide can 

promote virus elimination either directly by oxidative damage to virus particles or 

indirectly by acting as signaling molecules to promote innate and adaptive immune 

mechanisms [88, 92, 93]. Superoxide derived from NOX2 in epithelial cells can 

promote cell death by autophagy [92]. High ROS levels can reinforce the repression 

of mammalian target of rapamycin (mTOR) by activation of AMP-activated kinase 

(AMPK) [92]. Inhibition of the mTOR pathway is known to reduce viral burden by 

inducing autophagy, cell death of infected reservoirs, and regulating CD8+ T cell 

memory [92]. However, most of these mechanisms of ROS-mediated anti-viral 

activity are derived from studies focusing on phagocytes such as neutrophils and 

macrophages. The ability of the lung epithelium in generating ROS as an anti-viral 

defense mechanism has not been explored significantly. We will cover this area of 

investigation in Chapter 6 on anti-viral mechanisms by lung epithelial cells.  

        Enhanced recruitment of host leukocytes: After virus sensing by TLR 

recognition, lung epithelial cells secrete a variety of proinflammatory cytokines and 
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leukocyte recruiting chemokines. These include cytokines like TNF-α, IL-1β, IL-6, 

GM-CSF, and chemokines like CXCL5, CXCL2, CCL20 that recruit neutrophils, 

macrophages, NK cells to the site of infection [89]. This process certainly is required 

for the host immune response to clear the virus. However, beyond the function of 

alerting the host immune system for viral clearance, epithelial cells produce 

cytokines like IL-33, IL-25, and TSLP that particularly promote T helper 2 adaptive 

immune response that in many cases can turn maladaptive [6, 9, 94]. Production of 

epithelial IL-33 represents a potential link to airway CD4+ Th2 type inflammation 

associated with asthma. So far, mouse studies have indicated a correlation between 

IL-33 deficiency and failure in dendritic cell (DC) activation and migration to the 

draining lymph nodes [79, 95-98]. Several studies have shown IL-33 activated DCs 

when adoptively transferred exacerbate lung inflammation in allergen-induced 

asthma mouse models [99-101]. Therefore, epithelium targeted therapies seem to 

be a rational approach to controlling lung inflammation caused by epithelial IL-33 

response upon virus or allergen assault.  

 

1.8 Inducible epithelial resistance  

        Since respiratory epithelium is the target for many viruses, our lab hypothesized 

that the epithelium can be alternately harnessed to stimulate the local lung innate 

immune defense mechanisms. Although innate immune activation in the lungs is low 

at baseline, as reflected by the low level of anti-microbial activity without prior 

stimulation, there is generous evidence about the inducibility of local lung epithelial 

cells to perform anti-microbial activities traditionally carried out by leukocytes [36, 43, 
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69, 70, 77]. In this regard, our lab used this evidence and found that local stimulation 

of the lung microenvironment in mice with nontypeable Haemophilus 

influenzae (NTHi) lysate leads to broad resistance against multiple pathogens [71-

73, 102, 103]. This broad resistance against various pathogens occurred rapidly 

within hours of aerosolization and did not rely on adaptive immune response [71]. 

This bacterial lysate-induced broad resistance was dependent on TLR signaling 

[103]. All TLR signaling requires adaptor proteins such as MyD88 or TRIF [76]. We 

found that NTHi-induced resistance was MyD88 dependent and not TRIF dependent 

[103]. This evidence of MyD88 dependency of innate resistance focused our future 

studies on TLRs among all PRRs. But, the lack of TRIF-dependent effect of the 

protection indicated that only a few TLR subsets were necessary for inducible 

resistance. This provided the basis for testing different synthetic TLR ligands in 

combination against multiple pathogens. However, individual TLR ligands failed to 

induce a strong resistance against pneumonia [103]. Therefore, to determine 

whether a combination of TLR ligands conferred protection, 21 non-redundant 

combinations of the several synthetic TLR ligands were tested in mice against 

pneumonia. Although not all tested TLR agonist combinations protected against 

pneumonia, a few combinations provided the protection that was statistically 

significant than PBS treatment [103]. However, no combination was as superior or 

effective as the combination of TLR2/6 (Pam2CSK4) and 9 (ODN2395) which 

resulted in 100% mouse survival against bacterial pneumonia [72, 102, 103]. 

Similarly, pathogen killing was associated with a synergistic combination of 

Pam2CSK4 and ODN2395 [103]. Further, the lab found that class C ODNs and not 
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class A or B ODNs provided synergistic interactions with Pam2CSK4 for maximum 

resistance against bacterial pneumonia [103]. An explanation for this phenomenon 

may come from the functions and structure of class C CpG ODNs. Class C ODNs 

have characteristics of both class A and B ODNs, and it may be hypothesized that 

stimulation with Class C ODN results in both IRF-7 and NF-κB pathways required for 

the protective Pam2-ODN effect. Interestingly, by fluorescent microscopy, we found 

that Pam2CSK4 and ODN2395 co-localize intracellularly in endosomes in lung 

epithelial cells [103]. To this effect, several studies have shown that TLR2 and TLR9 

cooperate in controlling several pathogens including Mycobacterium tuberculosis, 

Helicobacter pylori, and herpes simplex virus [104-106]. However, further studies are 

required to uncover the synergistic interactions of TLR 2 and 9 signaling 

components.  

        To date, our lab has shown that mouse inhalation of an aerosolized 

combination of Pam2CSK4 and a class C ODN-M362 (together this combination is 

called Pam2-ODN) led to resistance against respiratory pathogens including viruses 

[71, 72, 102, 107, 108]. Further, we have shown that stimulated innate resistance 

with Pam2-ODN in the lungs is dominantly carried out by the epithelium as anti-

microbial resistance is still intact in mice deficient of individual leukocytes 

(neutrophils, macrophages, dendritic cells, NK cells, and lymphocytes) [102]. This is 

further supported by mice showing no resistance against other treatment routes 

(intraperitoneal or intravenous) suggesting that resistance mechanisms are local [72, 

73]. In addition, mice conditionally deleted of MyD88 (required for TLR signaling) 

only in lung epithelial cells showed no benefit from Pam2-ODN stimulation, strongly 
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indicating the role of lung epithelial cells in driving the protective Pam2-ODN 

response [102, 103]. Further, in vitro stimulation of isolated lung epithelial cells with 

bacterial lysates or Pam2-ODN showed efficient pathogen killing ability [107, 109]. 

Therefore, our lab described this broad innate resistance as ‘Inducible epithelial 

resistance’. 

        This evidence of the inducibility of lung epithelial cells to efficiently kill 

pathogens seems a rational approach to treating respiratory virus-related illness. In 

this thesis project, we will focus on uncovering mechanisms of enhanced survival of 

respiratory virus infections by therapeutic stimulation of lung epithelial cells to initiate 

anti-viral effects. Further, we also focus on the prevention of virus-induced chronic 

asthma-like disease by viral killing and viral-killing independent mechanisms.  
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Chapter 2: Specific Aims 

2.1 Working model and hypothesis   

        Using the knowledge on cooperative abilities of TLR signaling to induce 

protective responses, our lab found that combinatorial treatment with TLR2/6 (Pam2-

CSK4) and TLR 9 (ODN-M362) agonists showed the maximal protection against a 

broad set of pathogens [71, 72]. Further, we have shown prevention of chronic virus-

induced asthma in mice treated with Pam2-ODN [110]. However, the mechanisms 

underlying protection against viral pneumonia-related mortality, chronic asthma-like 

disease, and anti-viral killing mechanisms by Pam2-ODN stimulation of lung 

epithelial cells has not been fully elucidated by our group. Therefore, this thesis 

project will focus on understanding three aspects of respiratory virus infections – 1) 

enhancing the host survival during viral infections, 2) preventing virus-induced 

asthma-like disease, and 2) uncovering virus-killing mechanisms by Pam2-ODN 

stimulation of lung epithelial cells. The central hypothesis of this project is that 

“Inducible epithelial resistance enhances mouse survival of respiratory viral 

infections by reducing viral burden by epithelial ROS production and prevents 

progression to virus-induced asthma-like disease by controlling IL-33 

production”. To address this hypothesis, studies under the following aims will be 

performed.  
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2.2 Specific Aims 

        Aim 1: Determine Pam2-ODN mediated enhanced survival of viral 

pneumonia in mice. Rationale and Hypothesis: Several studies have indicated that 

the host immune response during viral infections is often also the cause of fatal 

immunopathology [21, 65, 66]. And, our preliminary studies using the SeV mouse 

model have shown that peak mortality of SeV pneumonia occurs at the time of 

lymphocytic lung inflammation. I hypothesize that CD8+ T cell inflammation 

contributes to mouse mortality of SeV pneumonia which can be prevented by Pam2-

ODN pretreatment and we will address this hypothesis in three sub aims 1a) 

Determine the kinetics of CD8+ T cells in Pam2-ODN treated and untreated SeV-

infected mice. 1b) Identify the antiviral and immunopathology causing role of CD8+ T 

cells by depletion studies. 1c) Determine the role of Pam2-ODN induced ROS in 

reducing the lymphocytic inflammation during SeV infection.  

        Aim 2: Determine mechanisms of Pam2-ODN mediated prevention of 

virus-induced asthma. Rationale and Hypothesis: Our lab has previously shown 

that Pam2-ODN aerosolization in mice protects against SeV-induced asthma-like 

disease with reduced airway hyperreactivity, mucus metaplasia, and eosinophils. 

Interestingly, asthma is also reduced in mice aerosolized with Pam2-ODN after viral 

clearance by viral-killing independent mechanisms, which are not elucidated. 

Therefore, I hypothesize that Pam2-ODN treatment after SeV clearance can reduce 

asthma by reducing lung IL-33. To address this hypothesis, studies under the 

following sub aims will be performed. 2a) Determine the kinetics of IL-33 reduction in 

mice treated with Pam2-ODN and SeV challenged. 2b) Determine the cellular 
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source of IL-33 in lung cells during SeV infection. 2c) Determine whether IL-33 is 

reduced in SeV challenged mice treated with Pam2-ODN after viral clearance.  

        Aim 3: Determine the viral-killing mechanisms of Pam2-ODN treatment in 

lung epithelial cells. Rationale and Hypothesis: Our lab has reported that Pam2-

ODN induced ROS is essential for protection against viral infections in vivo and in 

isolated lung epithelial cells. I hypothesize that Pam2-ODN induced ROS directly 

inhibits SeV particles thereby reducing SeV replication in the lung epithelial cells. To 

address this hypothesis, studies under the following sub aims will be performed. 3a) 

Determine whether Pam2-ODN reduces SeV burden before or after SeV entry in 

lung epithelial cells. 3b) Determine the role of Pam2-ODN-induced ROS in SeV 

inactivation before or after SeV entry in lung epithelial cells.  
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Chapter 3: Materials and Methods 

The following chapter is based on my publications, used with permission granted by 

mBIO and British Journal of Pharmacology and American Thoracic Society.  

Copyright © 2019 Kirkpatrick et al 

Kirkpatrick, C.T., Y. Wang, M.M. Leiva Juarez, P. Shivshankar, J. Pantaleon Garcia, 

A.K. Plumer, V.V. Kulkarni, H.H. Ware, F. Gulraiz, M.A. Chavez Cavasos, G. 

Martinez Zayes, S. Wali, A.P. Rice, H. Liu, J.M. Tour, W.K.A. Sikkema, A.S. Cruz 

Solbes, K.A. Youker, M.J. Tuvim, B.F. Dickey, and S.E. Evans, Inducible Lung 

Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To 

Protect against Viral Infections. MBio, 2018. 9(3).                                              

Reprinted with permission of the American Thoracic Society. 

Copyright © 2020 American Thoracic Society. All rights reserved. 

The American Journal of Respiratory Cell and Molecular Biology is an official journal 

of the American Thoracic Society. 

 (https://www.atsjournals.org/doi/10.1165/rcmb.2020-0241OC) 

Wali, S., J.R. Flores, A.M. Jaramillo, D.L. Goldblatt, J. Pantaleon Garcia, M.J. Tuvim, 

B.F. Dickey, and S.E. Evans, Immune Modulation to Improve Survival of Viral 

Pneumonia in Mice. Am J Respir Cell Mol Biol, 2020. 

Copyright © 2020 British Journal of Pharmacology 
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Goldblatt, D.L., J.R. Flores, G. Valverde Ha, A.M. Jaramillo, S. Tkachman, C.T. 

Kirkpatrick, S. Wali, B. Hernandez, D.E. Ost, B.L. Scott, J. Chen, S.E. Evans, M.J. 
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3.1 Mice and cell culture 

        All in vivo experiments were performed using 6- to 10-week-old C57BL/6J mice 

of a single-sex (male or female) purchased from (Jackson laboratory) or bred in-

house according to the Institutional Animal Care and Use Committee of MD 

Anderson Cancer Center, protocol 00000907-RN01. Mouse lung epithelial (MLE-15) 

cells were kindly provided by Jeffrey Whitsett, Cincinnati Children’s Hospital Medical 

Center, and cultured in DMEM with 2% Fetal Bovine Serum (FBS), 1% insulin, and 

transferrin. MLE-15 cells were authenticated by the MD Anderson Characterized Cell 

Line Core Facility. To harvest tracheal epithelial cells, mice were anesthetized to 

expose and excise tracheas. These tracheas were then digested in pronase (1.5 

mg/ml, Sigma Aldrich) overnight at 4º C. Tracheal epithelial cells were then isolated 

and cultured on collagen-coated transwells in Ham’s F12 media supplemented with 

differentiation growth factors and hormones as previously described [111]. 

 

3.2 TLR treatments and viral challenge 

        For in vitro treatments, cells were treated with Pam2CSK4 (2.2 µM) and ODN 

M362 (0.55 µM), 4 h before SeV inoculation as previously described (ref). For in vivo 
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treatments, 10 ml solution of Pam2CSK4 (4 µM) and ODN M362 (1 µM) in endotoxin-

free water was delivered by Aerotech II nebulizer (Biodex Medical Systems) driven 

by 10 l/min along with CO2 (5%) in air for 30 minutes as previously described [112]. 

SeV was purchased from ATCC (Manassas, VA) and grown in Rhesus monkey 

kidney cells obtained from Cell Pro labs (Golden Valley, MN). For in vitro challenges, 

multiplicity of infection (MOI) = 1 was used. Unless otherwise stated, mice were 

challenged with 1 x 108 plaque-forming units (pfu) in PBS inserted into the 

oropharynx of mice, under isoflurane anesthesia as described [110]. Mice were 

weighed before and daily after challenge as a measure of morbidity and criteria for 

euthanasia.  

 

3.3 Bronchoalveolar lavage and differential Giemsa staining 

        After deep anesthesia, mouse tracheas were exposed, cannulated with a 20-

gauge syringe, and instilled with 1.5 ml of PBS. Approximately 1 ml of BAL fluid was 

collected per sample. The BAL fluid was then spun down at 4º C at 300 g to collect 

the cells in the pellet. The cell pellet was resuspended in 1 ml of ice-cold PBS and 

200 μl of this cell suspension was then subjected to cytocentrifugation at 300 g for 5 

min. Cells were stained with Giemsa stain for differential count determination and 

total cells were counted by hemocytometer.  

 

3.4 Flow cytometry 
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        For in vivo experiments, mouse lungs were perfused with 5 to 10 ml ice-cold 

PBS, dissected, cut into 1 mm3 piece, and digested with collagenase/DNAse I (5 

mg/ml, Worthington biochemical) for 30 min at 37° C. After digestion, single cells 

were collected by passing through a 70 µm filter. These single cells were washed 

with FACS staining buffer (PBS supplemented with 1% FBS) and stained for specific 

cell types, as indicated in the antibody table (Table 1). For in vitro experiments, 

MLE-15 cells were seeded on 24 well plates for treatment with Pam2-ODN and SeV 

inoculation. Cells were trypsinized and washed with FACS staining buffer 2X. Cells 

were blocked in 5% donkey serum for 30 min before proceeding to stain with Rabbit 

SeV antibody (MBL International) overnight at 4° C, followed by staining with 

secondary Alexa488 anti-rabbit antibody (Jackson Immunologicals) for 1 h. Cells 

were fixed and acquired on BD LSRII (BD Biosciences) for Alexa488 positive cells.  

 

3.5 SeV Immunofluorescence 

        MLE-15 cells were grown on chamber slides (Labtek), treated with Pam2-ODN 

for 4 h before inoculation with SeV (MOI 1). Cells were then fixed with 2% 

paraformaldehyde before staining with a rabbit anti-SeV antibody (MBL 

International) and detected using a secondary anti-rabbit antibody. For each 

experimental condition, specimens were imaged using an Olympus BX60 

microscope using identical parameters for time of exposure, color intensity, contrast, 

and magnification. Images were then loaded on ImageJ software to calculate the 

mean fluorescence intensity for each group.  
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3.6 Hematoxylin and eosin staining  

        Mouse lungs were fixed by intratracheal inflation with 10% formalin for 24 h, 

and then transferred to 70% ethanol embedded in paraffin. Tissue blocks were then 

cut into 5 µm sections, mounted onto frosted glass slides, deparaffinized with xylene, 

washed with ethanol, then rehydrated and stained with hematoxylin and eosin for 

morphological changes.  

 

3.7 Epithelial proliferation assays 

        Mice were injected intraperitoneally with 0.1 ml EdU (1 mg/mouse). After 24 h, 

mouse lungs were inflated and fixed with 10% formalin for 24 h at 4° C, and then 

lungs were embedded in paraffin. Paraffin sections were cut into 5 µm transverse 

sections of the axial airway, between lateral branches 1 and 2. Lung sections were 

then stained following the Click-iT EdU Imaging Kit protocol for EdU (Abcam,) 

followed by staining with DAPI for 30 min at room temperature. Images were 

collected using an Olympus BX60 microscope using identical parameters for all 

conditions. Some lung sections were subjected to antigen retrieval and then stained 

for Ki67 (1:1000; Invitrogen) or cCasp3 (1:500; Cell Signaling). EdU, Ki67, or 

cCasp3 positive cells were quantified using a cell counter plugin in ImageJ and 

normalized to DAPI positive cells in every field of view (number of fields surveyed 

per mouse sample = 3).   
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3.8 CD8+ T cell depletion 

        Anti-CD8-β antibody (200 µg/mouse, Bioxell) was delivered to mice 

intraperitoneally at indicated time points. CD8+ T cell depletion was confirmed by 

flow cytometry analysis 24 to 48 h after depletion.  

 

3.9 Viral burden quantification  

        For in vivo experiments, mouse lungs were collected 5 days after SeV 

challenge. RNA from mouse lungs was extracted using the Qiagen RNeasy kit. 500 

ng of total RNA was converted to cDNA using Biorad iScript cDNA conversion kit. 

Viral burden was determined by reverse transcription quantitative PCR (RT-qPCR) 

of the Sendai Matrix (M) protein normalized to house-keeping gene 18SRNA. 18S 

forward primer – GTAACCCGTTGAACCCCATT; reverse primer – 

CCATCCAATCGGTAGTAGCG. SeV M gene forward primer –

ACTGGGACCCTATCTAAGACAT; reverse primer – 

TAGTAGCGGAAATCACGAGG. The Limit of quantification (LOQ) was established 

for the SeV qPCR assay as the highest dilution of the template still maintaining the 

linearity of the assay. The threshold cycle (CT) value of the LOQ was set as the 

lower limit for the assay. 

 

3.10 ROS inhibition in vitro and in vivo 
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        NADPH oxidase activity was inhibited by exposing the cells to GKT137831 

(10 µM; Selleckchem) 12 h prior to treatment with Pam2-ODN or PBS. Mitochondrial 

ROS production was inhibited using the combination of FCCP (400 nM, Cayman 

Chemicals) and TTFA (200 µM, Cayman Chemicals) for 1 h before Pam2-ODN or 

PBS treatment. For in vivo experiments, mice were aerosolized with 10 ml TTFA 

(200 mM) and FCCP (800 µM) 2 h before Pam2-ODN aerosolization and 2 h before 

SeV challenge and then again 4 days after SeV challenge.  

 

3.11 Viral attachment assays  

        For most enveloped viruses, internalization into epithelial cells is inhibited at 4º 

C without affecting viral binding to epithelial cells [34]. MLE-15 cells were cultured in 

24 well plates or chamber slides for treatment with Pam2-ODN for 4 h. Cells were 

placed on ice 30 min before inoculation with SeV to prevent viral entry into the cells. 

After 4 h inoculation on ice, cells were vigorously washed 5X with media to remove 

unattached virus. Cells were then harvested to measure SeV burden using 

immunofluorescence or flow cytometry. For RT-qPCR assays, epithelial cells were 

treated with Pam2-ODN or PBS, followed by SeV infection on ice (to prevent viral 

entry into cells). Virus particles were allowed to attach to the epithelial targets for 4 h 

on ice. These cells were then extensively washed to remove unattached virus 

particles, and then the cells were lysed by passing through a syringe 10X. The 

liberated virus particles were then transferred to naïve epithelial cells that had no 

prior exposure to Pam2-ODN. SeV M gene expression was assessed by qPCR after 

24 h of SeV replication in the new cells. In some experiments, mitoROS inhibitors 



32 
 

(FFCP-TTFA) were used before Pam2-ODN treatment to determine the role of 

Pam2-ODN induced ROS in SeV inactivation prior to internalization. 

 

3.12 IL-33 Immunohistochemistry 

        Mouse lungs were fixed, embedded, sectioned, and deparaffinized, then 

exposed for 10 min to 3% H2O2 in 90% methanol, and then heated for 10 min in 10 

mM sodium citrate, pH 6.0, for antigen retrieval. Slides were rinsed in water, blocked 

in horse serum (Jackson ImmunoResearch, West Grove, PA) for 1h, then rinsed 

again and incubated with goat anti-mouse IL-33 (R&D Systems, Minneapolis, MN; 

1:1000) diluted in blocking solution at 4° C overnight. After incubation, secondary 

antibody - biotinylated horse anti-goat IgG (Vector) was added for 2 h at room 

temperature. Tissue sections were then washed with PBS, counterstained with H&E, 

and mounted with VectaMount (Vector).  

 

3.13 IL-33 Immunofluorescence 

        Lungs were frozen in OCT and cut into 10-µm sections. Sections mounted on 

glass slides were thawed, washed with water, blocked with donkey serum (Jackson 

ImmunoResearch), then incubated with primary antibodies overnight at 4°C. Primary 

antibodies used were: rabbit anti-prosurfactant protein C (EMD Millipore, Burlington, 

MA; 1:1000), rabbit anti-keratin 14 (KRT14, RB-9020-P0, Thermo Fisher, Waltham, 

MA; 1:500), rat anti-mouse CD68 (BioLegend, San Diego; 1:200). This was followed 

by the addition of secondary antibodies conjugated to Alexa 555 (Cy3), Alexa 488 
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(FITC), and DAPI (Jackson ImmunoResearch) for 2 h. A confocal microscope 

(A1plus, Nikon) was used to acquire all images. For quantitative studies, random 

images were acquired by investigators blinded to subject identity. Percentages of IL-

33 positive cells were counted using ImageJ. To measure IL-33 fluorescence 

intensity, the left lung was sectioned at the axial bronchus between lateral branches 

1 and 2 using a precision cutting tool then imaged using an upright microscope 

(Olympus BX 60) with a 40X lens objective and identical parameters of exposure 

time, color intensity, contrast, and magnification. Images were uploaded to ImageJ, 

and a red (IL-33) background intensity threshold was established by first measuring 

fluorescence intensity for background regions (those without blue nuclear staining) 

and regions of interest (double-positive red and blue staining). The threshold was 

then set as the mean between maximal background regions and mean regions of 

interest and subtracted from all fields.  

 

3.14 Type I Interferon ELISA 

        Mouse tracheal epithelial cells were grown at an air-liquid interface. Cells were 

treated with Pam2 and ODN as described earlier and infected with either influenza A 

or SeV. Cell supernatants were collected at various times post-infection and used for 

IFN-β ELISA (R&D Systems) according to the ELISA manufacturer’s instructions.  

 

3.15 IL-33 ELISA  
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        Mouse lungs were snap-frozen in liquid nitrogen and stored in -80 ºC. Mouse 

lung samples were homogenized in protein lysis buffer with protease inhibitors and 

EDTA (Thermo Fisher). Homogenized samples were kept on ice for 30 mins to 

separate the protein components from cell debris. Samples were then spun at high 

speed at 4 ºC to collect the supernatant containing the total protein. Total protein 

from the samples was measured using a BCA kit (Thermo Fisher) and 3 µg of total 

protein was used for IL-33 ELISA (R&D Systems). The ELISA manufacturer’s 

instructions were followed for the rest of the assay. Data collected was represented 

as total protein per µg of tissue.  

 

3.16 Statistics 

All statistical analysis was performed using GraphPad Prism software (Version 8 for 

Windows, GraphPad Software, La Jolla, CA). Data are representative of one 

experiment from at least three independent experiments and presented as mean +/- 

standard error of biological replicates. To determine pairwise differences in viral 

burden or cell numbers, Student’s t-test was used. Mouse survival analysis of viral 

challenges was analyzed using Log-rank, Mantel-Cox test. One-way analysis of 

variance (ANOVA) with multiple comparisons was used to determined differences 

between multiple experimental conditions. 
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Table 1: List of antibodies used  

Antibodies  Vendor Catalog numbers 

CD3 Tonbo 65-0031-U100 

CD4 Tonbo 60-0042-U100 

CD8 Tonbo 25-0081-U100 

Live dead  Tonbo 13-0870-T500 

CD25 Biolegend 102038 

Foxp3 Treg kit eBiosciences 72-5775 

CD8-Depleting Ab  Bioxell BE0223 

CD19 Biolegend 115507 

B220 BD Biosciences 562922 

Anti-SeV virus Ab MBL International PD029 

Ki67 Invitrogen MA5-14520 

cCasp3 Cell signaling 9662S 
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Chapter 4: Determine Pam2-ODN mediated enhanced survival of viral 

pneumonia in mice. 

The following chapter is based on my publication, used with permission granted by 

American Thoracic Society. The figures and data shown in this chapter are entirely 

my work. 

Reprinted with permission of the American Thoracic Society. 

Copyright © 2020 American Thoracic Society. All rights reserved. 

The American Journal of Respiratory Cell and Molecular Biology is an official journal 

of the American Thoracic Society. 

(https://www.atsjournals.org/doi/10.1165/rcmb.2020-0241OC) 

Wali, S., J.R. Flores, A.M. Jaramillo, D.L. Goldblatt, J. Pantaleon Garcia, M.J. Tuvim, 

B.F. Dickey, and S.E. Evans, Immune Modulation to Improve Survival of Viral 

Pneumonia in Mice. Am J Respir Cell Mol Biol, 2020. 

 

        Our lab has previously found the survival benefit of Pam2-ODN aerosolization 

in the influenza mouse model, but the mechanisms of host survival remain 

incompletely elucidated [107]. Using the SeV mouse model, we found host mortality 

https://www.atsjournals.org/doi/10.1165/rcmb.2020-0241OC


37 
 

of infections occurring after viral clearance, as discussed in this chapter. Therefore, 

to elucidate the mechanisms of host survival of viral pneumonia, we characterized 

the cellular changes in the host occurring after infection in mice with or without 

Pam2-ODN treatment and the results are presented below.  

 

4.1 Pam2-ODN treatment enhanced mouse survival of SeV infections is 

associated with reduced lung viral burden 

        Aerosolized Pam2-ODN treatment one day prior to SeV challenge increased 

mouse survival of SeV challenge (Figure 1A) like the protection afforded against 

lethal influenza pneumonia [107]. The survival benefit was associated with reduced 

lung SeV burden, as measured by SeV M gene expression (Figure 1B).  
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Figure 1: Pam2-ODN treatment enhanced mouse survival of SeV infections is 

associated with reduced lung viral burden (A) Survival of mice treated with PBS 

or Pam2-ODN one day prior to SeV virus challenge. (B) Mouse lung SeV burden 5 

days after infection assessed by qPCR for Sendai Matrix (M) gene (Relative 

quantification, RQ to 18S) relative to 18S. n=10 mice per group in survival plot (A), 

n=4 mice/group in virus burden experiments. *p<0.05, **p<0.005. 

 

4.2 Mouse mortality of SeV infections occurs after viral clearance from the 

lungs 

        Investigating the natural progression of infection revealed that SeV lung burden 

was maximal on day 5 and gradually decreased until falling below the limit of 

quantification (LOQ) by day 11 (Figure 2A). Pam2-ODN pretreatment reduced SeV 

burden on all assessed days (Figure 2A). Although the lethality of SeV infection was 

exquisitely dependent on the inoculum size, we strikingly found that peak mortality 

paradoxically occurred around days 10 to 12 after infection irrespective of inoculum 

size, even though SeV is essentially undetectable that long after challenge (Figure 

2A). This temporal dissociation between peak virus burden and peak mortality led to 

the hypothesis that SeV-induced mortality may not be exclusively driven by 

excessive virus burden but may also result from untoward SeV-induced host 

immune response.  
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Figure 2: Mouse mortality of SeV infections occurs after viral clearance from 

lungs (A) Time course of lung SeV burden in mice treated with PBS or Pam2-ODN. 

(B) SeV inoculum dependent mouse survival. Data are representative of three 

independent experiments. n=10 mice per group in survival plot (B), n=4 mice/group 

in virus burden experiments. LOQ, limit of quantification. *p<0.05.  
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4.3 Pam2-ODN treatment reduces epithelial cell death and proliferation during 

acute SeV infection 

        We found increases in lung epithelial cleaved caspase 3 (cCasp3), a marker for 

programmed cell death, on days 7 to 11 after SeV infection (Figure 3A, upper panel). 

Virus infection-related epithelial cell injury and death are typically associated with 

proliferative repair mechanisms [113]. Staining the infected mouse lung tissue for 

Ki67 and EdU revealed maximum signals for both markers in the second week after 

infection (Figure 3B-E, upper panel). These events of lung epithelial cell death and 

proliferation coincided with the peak of mortality (day 12, Figure 1E). Further, 

hematoxylin and eosin staining of lung tissues infected with SeV showed profound 

increases in inflammatory cells from days 7 to 10 with evidence of damaged airway 

and parenchymal tissue (Figure 4). However, Pam2-ODN pretreatment of mice 

reduced epithelial cell injury and proliferation (Figure 3A-E, lower panel). This 

temporal association of epithelial injury and death after viral clearance supported the 

hypothesis that mouse mortality caused by SeV infection is due in part to the host 

immune response to SeV infections. Therefore, to explore this hypothesis, the host 

leukocyte response to SeV infection was characterized. 
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Figure 3: Pam2-ODN pretreatment reduces epithelial cell death and 

proliferation during acute SeV infection. Cleaved caspase 3 (cCasp3) (A) or Ki67 

(B) positive cells in mouse lung epithelium after SeV infection with or without Pam2-

ODN treatment (lower panel). n=5 mice per condition. Data are representative of two 

independent experiments. Scale bar = 100 µm. *p<0.05.  
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Figure 3 continued: Pam2-ODN pretreatment reduces epithelial cell death and 

proliferation during acute SeV infection. EdU positive cells in axial (C), small 

airways (D), and parenchyma (E) after SeV infection with or without Pam2-ODN 

(lower panel). Data are representative of two independent experiments. Scale bar = 

100 µm. *p<0.05.  
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Figure 4: Mouse lung histology following SeV challenge with or without Pam2-

ODN. 
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4.4 Pam2-ODN treatment reduces SeV induced lung CD8+ T cells. 

        Differential Giemsa staining of bronchoalveolar lavage (BAL) cells revealed 

increased neutrophils on days 2 to 5 and increased macrophages on days 5 to 8 

(Figure 5A, B, solid grey line) after SeV challenge. Congruent with our prior studies, 

inhaled treatment with Pam2-ODN in the absence of infection led to a rapid rise in 

neutrophils that was resolved within 5 days (Figure 5A, dashed line). The neutrophil 

response to SeV challenge was modestly increased among mice pretreated with 

Pam2-ODN (Figure 5A, solid dark line). Pam2-ODN-treated, SeV-challenged mice 

showed almost no difference in macrophage number compared to PBS-treated, 

SeV-challenged mice (Figure 5A, solid dark line). A rise in lymphocytes was 

observed on days 8 to 11 in PBS-treated, SeV-challenged mice (Figure 5C, solid 

grey line), temporally corresponding with peak mortality. However, Pam2-ODN 

treated, SeV-challenged mice displayed significantly reduced lymphocyte numbers 

at every time point assessed (Figure 5C, solid dark line). Specific lymphocytes (B 

cells, CD4+, or CD8+ T cells) in the lungs of SeV infected with or without Pam2-ODN 

were determined by flow cytometry showing only modest differences between the 

groups [114]. The biggest difference between groups was in CD8+ T cells, with 

Pam2-ODN-treated, SeV-challenged mice displaying a significantly lower number 

and percentage of CD8+ T cells than PBS treated, SeV-challenged mice (Figure 5D, 

E). Since the greatest difference after Pam2-ODN treatment was in CD8+ T cell 

levels and there was a tight correlation between peak mortality and the increase in 

lung CD8+ T cells on days 8 to 11, we investigated the role of CD8+ T cells in SeV-

induced mortality.  
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Figure 5: Pam2-ODN pretreatment reduces SeV induced lung CD8+ T cells. 

Differential Giemsa staining of BAL cells showing (A) neutrophils, (B) macrophages, 

and (C) lymphocytes from mice challenged with SeV with or without Pam2-ODN 

pretreatment. Data are representative of three independent experiments. *p<0.05 

compared to PBS+SeV. 
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Figure 5 continued: Pam2-ODN pretreatment reduces SeV induced lung CD8+ 

T cells. (D) Flow cytometry for CD8+ T cells from disaggregated mouse lungs 11 

days after SeV infection with or without Pam2-ODN. (E) Lung CD8+ T cells 11 days 

after SeV challenge in mice pretreated with PBS or Pam2-ODN. Data are 

representative of five independent experiments for (D) and (E). *p<0.05 compared to 

PBS+SeV.  
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4.5 Pam2-ODN treatment reduces CD8+ T cell-associated SeV induced 

immunopathology 

        To understand the apparent contributions of host immunopathology to mouse 

outcomes, we depleted CD8+ T cells on day 8 -- after virus burden was substantially 

reduced but before peak mouse mortality (Figures 2A, 6A). Mice depleted of CD8+ T 

cells displayed significantly enhanced survival of SeV challenge compared to mice 

with intact CD8+ T cells (Figure 6B). Depletion of CD8+ T cells was confirmed by flow 

cytometry in disaggregated lung cells 10 days after SeV challenge (Figure 6C). This 

supported our hypothesis that CD8+ T cells contribute to fatal SeV-induced 

immunopathology.  
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Figure 6: Pam2-ODN treatment reduces CD8+ T cell-associated SeV induced 

immunopathology. Experimental outline (A), survival (B), and percentage of CD8+ 

T cells (C) from disaggregated mouse lungs 10 days after SeV challenge following 

pretreatment with PBS or Pam2-ODN and with or without CD8+ T cells depleted on 

day 8 of SeV challenge. n=16 mice/group for survival in experiment A and n=4 

mice/group in experiment (B). ****p<0.0001 compared to PBS in (C), ***p<0.0005 

compared to PBS in (B) and (C), †p<0.05 compared to PBS, *p<0.05 compared to 

PBS. 
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4.6 Pam2-ODN treatment protects against SeV infections despite lack of CD8+ 

T cells 

        To assess the role of CD8+ T cells throughout infection, mouse CD8+ T cells 

were depleted prior to and during SeV challenge (Figure 7A). This depletion resulted 

in significantly reduced survival of SeV infection (Figure 7B), compatible with the 

known antiviral functions of CD8+ T cells. However, it is notable that Pam2-ODN 

treatment still significantly enhanced survival of SeV challenge even in the absence 

of CD8+ T cells (Figure 7B). This finding was congruent with our previous studies 

showing Pam2-ODN inducible resistance against bacterial pneumonia despite the 

lack of mature lymphocytes (Rag1-/-).  
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Figure 7: Pam2-ODN treatment protects against SeV infections despite the 

lack of CD8+ T cells. Experimental outline (A), survival (B) of mice SeV challenge 

following PBS or Pam2-ODN treatment, and with or without preinfection CD8+ T cell 

depletion. **p<0.005 compared to PBS, #p<0.005 compared to α CD8 Ab-PBS, 

†p<0.05 compared to PBS.   
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4.7 Summary and discussion 

        While Pam2-ODN treatment provided a significant host survival benefit in SeV 

infection, we observed this survival benefit occurring after the time when PBS-

treated mice had cleared the virus. This observation prompted the hypothesis that 

host mortality is not the exclusive result of direct viral injury to the lungs, but due at 

least in part to the host response to the virus infections. We observed enhanced 

survival of SeV infections in mice depleted of CD8+ T cells 8 days after infection 

(Figure 6), revealing the importance of balancing the dual functions of CD8+ T cells 

in anti-viral immunity and in causing fatal immunopathology. Our findings suggested 

that the surge in CD8+ T cells within the lungs after most virus has been cleared 

causes physiologic impairment via lung injury and cell death [59, 61-63].  

        Previous reports support the concept of counter-balanced immune protection 

and immunopathology by CD8+ T cells during virus infections [59, 62, 63]. Some 

reports have shown that antigen-experienced memory CD8+ T cells enhance RSV 

clearance, but also mediate severe immunopathology [59, 62-64]. However, our 

study is the first to demonstrate the survival advantage in paramyxovirus respiratory 

infection of either stimulating the lungs’ mucosal defenses early in the infection or of 

suppressing the CD8+ T cells later in the infection. Our findings are also congruent 

with reports on the role of CD8+ T cells in non-respiratory viral infection models, such 

as in West Nile virus infection, where CD8+ T cell-deficient mice display decreased 

mortality [61].  
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        While host survival of viral infections certainly improved by suppression of CD8+ 

T cell-associated immunopathology late in infection, some CD8+ T cell-depleted 

mice were still susceptible to SeV infection i.e. we didn’t achieve 100% survival upon 

depletion of CD8+ T cells on day 8 of SeV infection. This indicates there are other 

mechanisms of virus-induced host mortality that play a complementary role to CD8+ 

T cell-associated immunopathology. These might include direct viral cytopathic 

effects that result in epithelial apoptosis or secondary bacterial infections. Several 

other virus infection studies in mice have suggested excessive activity of NK cells 

and neutrophils to be associated with enhanced host mortality [48, 50]. 

Investigations to resolve the contributions of various factors in inducing host 

mortality of virus infections will be the scope of future studies.  

        A limitation of our study is also in addressing the pathology of virus infections 

that led to mouse mortality. Epithelial cell death and proliferation remain largely 

associated with the timing of CD8+ T cell infiltration and mouse mortality peak. 

Therefore, the next step in this area of research will be to address the effect of CD8+ 

T cell depletion on SeV-induced lung epithelial cell death and proliferation. I 

hypothesize that the increase in SeV-induced epithelial cell death may reach a 

threshold level where essential functions performed by lung epithelial cells are 

impaired. To this effect, some groups have studied the failure of respiratory function 

in mice infected with lethal influenza strains that succumb to the infection. Mice 

infected with the PR/8 strain of influenza succumbed between days 9-12 (similar to 

SeV infected mice in our model) with mortality corresponding to alveolar damage 

reaching a threshold level beyond which the mice cannot survive [115]. Although 
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there was no evidence of replicating virus on day 9 onward in infected mouse lungs, 

the mouse mortality coincided with the loss of type I pneumocytes and reduced 

ability to take oxygen and expel carbon dioxide from the infected lungs [115]. Thus, 

poor gas exchange and reduced arterial blood oxygenation could eventually result in 

compromised lung function leading to host death. These data indicating poor 

respiration between days 9 to 12 also coincided with poor gross pathology in mice 

characterized by necrotizing bronchiolitis, diffuse alveolar damage (DAD), fibrin 

deposition, and hyaline membrane formation along the alveolar lining. Further, the 

post-mortem report of patients that succumbed to influenza infection revealed DAD 

with viral RNA present only in a few patients [116]. Another possible contributor to 

poor respiration is the indirect effect of edema resulting from poor barrier function 

[115, 117]. Sepsis is found to be associated with severe disease during viral 

infections, which might result from secondary bacterial infections or a dysregulated 

pro-inflammatory host response to virus infections. One study found that progression 

to bacterial sepsis was 6 fold higher in patients with influenza pneumonia [118]. Data 

collected from influenza-infected mouse models and infected humans support our 

findings that mortality from respiratory virus infection results from a dysfunctional 

immune response or impaired viral clearance. In this regard, a clear advantage of 

Pam2-ODN treatment in mice is the rapid and robust reduction in lung viral burden 

that leads to reduced host immune response (CD8+ T cells) and reduced epithelial 

cell death. This is a clear advantage of early viral clearance enhancing mouse 

survival by reducing the gross pathology of virus infections.  
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        While findings from our study and others reveal that the harmful effects of CD8+ 

T cell-mediated immunopathology may supersede the benefits of T cell-mediated 

viral clearance, the question arises of what might be the adaptive value of the 

vigorous late CD8+ T cell response. One possibility is that it might ensure that the 

infection does not flare again, but that seems implausible since the host has 

successfully defended itself against the initial infection, and innate immune 

mechanisms presumably remain intact and are possibly primed [21, 24, 27], in 

addition to the multiple adaptive immune mechanisms that increasingly come into 

play. The possibility that the immunopathology simply results from an error on the 

part of the immune system also seems implausible given the substantial rate of host 

mortality, suggesting there is likely an adaptive value to the response. A third 

possibility, that the persistence of pockets of low level infection might lead to chronic 

lung pathology, is supported by a recent study showing that sites of viral RNA 

remnants following influenza infection are linked to chronic lung disease [7]. Thus, a 

trade-off may exist between the adaptive value of a vigorous CD8+ T cell response 

to prevent chronic lung disease and the acute mortality it can cause. Manipulating 

this balance therapeutically will need to account for both the benefits and costs of 

the response. It is particularly appealing to develop inducible anti-microbial 

strategies that do not rely on conventional T cell-mediated microbial clearance and 

are also effective in vulnerable immune-deficient populations. 
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Chapter 5: Determine mechanisms of Pam2-ODN mediated prevention of virus-

induced asthma 

The following chapter is based on my publication, used with permission granted by 

the British Journal of Pharmacology. The figures and data shown in this chapter are 

entirely my work. 

Copyright © 2020 British Journal of Pharmacology 

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=97fcf6ae-454f-492e-a5a7-

bfec333d5889 

Goldblatt, D.L., J.R. Flores, G. Valverde Ha, A.M. Jaramillo, S. Tkachman, C.T. 

Kirkpatrick, S. Wali, B. Hernandez, D.E. Ost, B.L. Scott, J. Chen, S.E. Evans, M.J. 

Tuvim, and B.F. Dickey, Inducible epithelial resistance against acute Sendai virus 

infection prevents chronic asthma-like lung disease in mice. Br J Pharmacol, 2020. 

177(10): p. 2256-2273. 

            

        Our lab has found that SeV-induced asthma-like disease can be mitigated by 

Pam2-ODN treatment one day prior to SeV challenge. While it is clear that the 

treatment of mice with Pam2-ODN one day prior to SeV challenge reduced viral 

burden (Figure 1, 2) and that probably directly had effects on reducing virus-induced 

asthma-like symptoms (mucus metaplasia, airway hyperreactivity, and eosinophilia). 

However, Holtzman and group showed that SeV infection in mice is translated into a 

chronic asthma-like disease requiring a persistent IL-33 production in the lungs [6, 8, 

9]. Therefore, our data showing reduced SeV induced asthma-like disease 

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=97fcf6ae-454f-492e-a5a7-bfec333d5889
https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=97fcf6ae-454f-492e-a5a7-bfec333d5889
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suggested that IL-33 may be reduced by Pam2-ODN treatment and it was important 

to elucidate this in multiple ways and to understand the cellular source of IL-33 

during SeV infection.   

5.1 Pam2-ODN treatment reduces IL-33 production from lung cells during SeV 

infection  

        We measured IL-33 protein levels in homogenized lung samples at different 

times during SeV infection with or without Pam2-ODN to understand the time course 

of IL-33 production in the lungs. We found that SeV infection leads to an increase in 

IL-33 in mouse lungs from day 21 onward up to day 49 (Figure 8A-C) in comparison 

to naïve mice or mice treated with Pam2-ODN alone. Of the time points assessed, 

the highest IL-33 production by SeV infected mice was on day 49, with Pam2-ODN 

treated SeV infected mice consistently reduced IL-33 production at all time points 

(Figure 8A-C). By immunohistochemistry, we found naïve or Pam2-ODN alone 

treated mice showed faint staining for IL-33 in lung cells. Mice challenged with SeV 

without Pam2-ODN treatment showed a dramatic increase in the frequency and 

intensity of IL-33 in the lung cells (Figure 8D). However, Pam2-ODN treated, SeV 

challenged mice displayed drastically reduced IL-33 staining consistent with the 

ELISA results from day 49 (Figure 8D). Further, to quantify the fluorescence intensity 

of IL-33, we used immunofluorescence staining of mouse lung sections and found 

Pam2-ODN treated SeV challenged mice displayed drastically reduced IL-33 

intensity (Figure 8E).  
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Figure 8: Pam2-ODN treatment reduces IL-33 production from lung cells 

during SeV infection. IL-33 protein levels from homogenized mouse lungs at day 

21 (A), 35 (B), and 49 (C) after SeV challenge with or without Pam2-ODN treatment, 

determined by ELISA. *p<0.05 by unpaired Student's t ‐test.  
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Figure 8 continued: Pam2-ODN treatment reduces IL-33 production from lung 

cells during SeV infection. (D) Images of mouse lungs from day 49 with or without 

SeV challenge and with or without Pam2-ODN treatment. The brown color is 

immunohistochemical staining for IL‐33. Arrow points to an intensely stained Type 2 

pneumocyte, and the arrowhead points to a faintly stained macrophage. Scale bar = 

100 μm.  
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Figure 8 continued: Pam2-ODN treatment reduces IL-33 production from lung 

cells during SeV infection. (E) Same groups as in (D) showing quantification of 

total IL‐33 immunofluorescence intensity. **p< 0.01 unpaired Student's t ‐test; n = 6–

8 mice, with three fields examined per mouse.  
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5.2 SeV infection in mice leads to the production of IL-33 from mainly type II 

alveolar epithelial cells.  

        Immunohistochemical staining for IL-33 in lung cells indicated localization 

(corners of polygonal alveoli) and morphology (cuboidal and protruding into the 

alveolar lumen) of type II alveolar cells (Figure 8B). This finding was congruent with 

reports about substantial IL-33 expression in type II alveolar epithelial cells in naive 

mice [119, 120]. Therefore, we performed immunofluorescence co-localization of IL-

33 staining with lineage markers and found high IL-33 expression in SeV-challenged 

mice occurring exclusively in type II alveolar cells, with 97% of IL-33-positive cells 

also positive for pro-SP-C (pro-surfactant protein C). We found no measurable IL-33 

staining in Krt14-positive basal cells of the conducting airways (Figure 9B) or in 

CD68-positive alveolar macrophages (Figure 9C) (N = 100 cells in 3 mice for each 

lineage marker). This definitively proved that the predominant source of IL-33 during 

SeV infection is the alveolar lung epithelium.  
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Figure 9: SeV infection in mice leads to the production of IL-33 from mainly 

type II alveolar epithelial cells. (A-C) Images of the lungs of mice challenged with 

SeV and then killed 49 days later. (A) Fluorescence staining for pro‐surfactant 

protein C (proSPC) to identify type II alveolar cells (green), IL‐33 (red), and DAPI to 

identify nuclei (blue). Inset shows IL‐33 expression in a type II alveolar cell. (B) 

Fluorescence staining for cytokeratin 14 (Krt14) to identify airway basal cells (white 

arrowhead), IL‐33, and DAPI as in (A), shows no apparent expression of IL‐33 in 

basal cells. (C) Fluorescence staining for CD68 to identify macrophages (yellow), 

and IL‐33 and DAPI as in (A), shows no apparent expression of IL‐33 in 

macrophages (scale bar for (A-C) = 200 μm, and for inset in (A) = 30 μm; n = 3 

mice/antibody pair)  

 

 

 

https://bpspubs-onlinelibrary-wiley-com.elibrary.mdanderson.org/doi/full/10.1111/bph.14977
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5.3 Pam2-ODN treatment after viral clearance reduced eosinophils by reducing 

IL-33 production in lung cells.  

        While it became clear that Pam2-ODN pretreatment reduced asthma features 

by way of reducing the viral burden and IL-33 production in the lungs. This proved 

the capacity of Pam2-ODN treatment in preventing the progression of SeV infections 

to asthma-like disease. We now wanted to know whether Pam2-ODN treatment after 

virus clearance from the lungs can reduce asthma-like disease on day 49, thus 

acting as an immunomodulator. Therefore, we aerosolized mice with Pam2-ODN 20 

days after SeV challenge (when virus is no longer detected in the mouse lungs – 

Figures 1 and 2) and measured eosinophils as a measure for asthma features. We 

found reduced eosinophilia on day 49 in mice treated with Pam2-ODN on day 20 

after SeV challenge in comparison to untreated SeV challenged mice (Figure 10A). 

There was no significant difference in BAL eosinophils between mice treated with 

Pam2-ODN on day -1 or day +20 (Figure 10A). Therefore, Pam2-ODN treatment 

certainly has an immunomodulatory capacity to reduce eosinophilia. We next 

hypothesized if the reduction in eosinophilia is due to a reduction in IL-33 by Pam2-

ODN treatment on day +20. Therefore, we measured IL-33 protein levels from 

homogenized lungs by ELISA and found that IL-33 is reduced on day 49 by Pam2-

ODN treatment on day +20 of SeV challenge. Like in the case of eosinophilia, there 

was no significant difference in IL-33 levels from mice treated with Pam2-ODN on 

day -1 or day +20 (Figure 10B). Therefore, these datasets provide evidence that 

Pam2-ODN treatment after viral clearance can reduce asthma features such as 

eosinophils and IL-33 production.  
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Figure 10: Pam2-ODN treatment after viral clearance reduced eosinophils by 

reducing IL-33 production in lung cells. (A) Eosinophils after differential Giemsa 

staining of BAL cells on day 49 of SeV challenge with or without Pam2-ODN 

treatment at day -1 or day +20. (B) IL-33 protein levels determined by ELISA on day 

49 of SeV challenge with or without Pam2-ODN treatment on day -1 or day +20.  

**p<0.01; ***p<0.005; One-way ANOVA with multiple comparisons.  
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5.4 Summary and discussion 

        In the previous chapter, we found the major mechanism of Pam2-ODN 

inducible resistance via reduction of pathogen burden, thereby enhancing the host 

survival of respiratory infections. However, a major consequence of acute respiratory 

viral infections is the development of the chronic asthma-like disease. Holtzman and 

colleagues have demonstrated that an acute SeV infection in mice leads to the 

production of IL-33 from the airway and type II epithelial cells [6, 9]. And, this IL-33 

production is necessary for the development of asthma characterized by 

eosinophilia, airway hyperreactivity, and mucus metaplasia [9]. Using the SeV 

model, our lab has found that Pam2-ODN treatment can prevent the progression to 

asthma-like disease by primarily reducing the viral burden. In this study, we found 

further evidence that Pam2-ODN can prevent progression to asthma by additionally 

reducing IL-33 production from lung epithelial cells at all times assessed (Figures 8, 

9). The finding that IL-33 was predominantly produced by type II alveolar epithelial 

cells because of SeV infection was important given that IL-33 was essential in the 

development of SeV-induced chronic asthma. Holtzman’s group showed IL-33 to be 

expressed in both airways and type II epithelial cells in mice upon SeV infection [9]. 

Interestingly, we found IL-33 expression only in type II alveolar epithelial cells and 

none in airway basal cells [110]. Further, Holtzman’s group also showed IL-33 to be 

expressed by airway basal cells in human COPD patients, which is not reproducible 

in the mouse model of SeV induced asthma disease [9]. Our findings prompted us to 

investigate whether there are additional benefits to Pam2-ODN treatment other than 

the reduction in pathogen burden. Interestingly, we found reduced eosinophils on 
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day 49 of SeV infection when mice were challenged with SeV and then treated with 

Pam2-ODN after viral clearance (day +20) (Figure 10A).  

        Given our prior observations that Pam2-ODN inducible resistance is local, it 

made sense to investigate the extent of epithelial IL-33 reduction in this approach of 

late Pam2-ODN treatment after viral clearance. Indeed, we found reduced IL-33 on 

day 49 of SeV infection, suggesting that Pam2-ODN treatment may possess 

immunomodulatory functions that work by lowering epithelial IL-33. Further, this is 

an important proof-of-principle finding that suggests therapeutic stimulation of lungs’ 

mucosal responses may redirect the lungs microenvironment into non-inflammatory 

and protective response and/or induce tolerance against the impact of acute SeV-led 

disease. One way to understand the mechanisms of epithelial IL-33 reduction by 

Pam2-ODN treatment is by analyzing transcriptomic changes in the lung at the 

single-cell level. Future investigations in the lab combining cellular, transcriptomic, 

and epigenetic changes upon Pam2-ODN treatment are required to uncover the 

immune gene activity in lung epithelial cells and may explain IL-33 regulation in lung 

epithelial cells.  

        These studies may prove helpful in informing future therapeutics on unique 

epithelial-driven mechanisms on reduction in organ injury and may help in defining 

host resistance vs host tolerance functions of Pam2-ODN treatment.  
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Chapter 6: Determine the viral-killing mechanisms of Pam2-ODN treatment in 

lung epithelial cells 

The following chapter is based on my publications, used with permission granted by 

mBIO and American Thoracic Society. The data and figures presented in this 

chapter are entirely my work. 

Reprinted with permission of the American Thoracic Society. 

Copyright © 2020 American Thoracic Society. All rights reserved. 

The American Journal of Respiratory Cell and Molecular Biology is an official journal 

of the American Thoracic Society. 

(https://www.atsjournals.org/doi/10.1165/rcmb.2020-0241OC) 
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B.F. Dickey, and S.E. Evans, Immune Modulation to Improve Survival of Viral 
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        Our findings from chapters 4 and 5 indicate that pretreatment of mice with 

Pam2-ODN initiates anti-viral effects to enhance host survival, and therefore 

prevents infected mice from developing asthma-like symptoms. As the antiviral 

protection consistently correlated with reduced viral burden in vivo, (Figure 1 and 2) 

and as the reduced virus burden likely contributes to the reduced CD8+ T cell levels 

(Figure 4), we next sought to determine how Pam2-ODN-induced responses cause 

antiviral effects. We investigated at what stage of viral entry into lung epithelial cells, 

does Pam2-ODN mediate anti-viral effects. Viral entry into epithelial cells is via 

attachment to receptors on lung epithelial cells, which mediates the virus entry into 

the cells. Therefore, we investigated whether the anti-viral effect of Pam2-ODN 

occurs before or after virus internalization to epithelial cells.  

        Further, our lab had previously investigated host survival of virus-infected cells 

with or without Pam2-ODN pretreatment and found that Pam2-ODN treated virus-

infected cells demonstrated enhanced survival. More interestingly, Pam2-ODN 

treatment of cells alone displayed greater enhanced XTT conversion and 

MitoTracker Red signals without any virus infection [107]. This led to the finding that 

Pam2-ODN treatment-induced ROS that proved to be necessary for Pam2-ODN 

mediated anti-viral protection [107]. Therefore, using the SeV model of viral 

pneumonia, we also investigated whether Pam2-ODN induced ROS is also 

necessary for anti-SeV protection in isolated lung epithelial cells and in mice.  

6.1 Pam2-ODN treatment leads to extracellular inactivation of virus particles 
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        Assessing the effect of Pam2-ODN on SeV burden in immortalized mouse 

epithelial cells (MLE-15) and primary mouse tracheal epithelial cells (mTEC), we 

found that Pam2-ODN treatment reduced SeV burden at every time point measured, 

reflecting the inducible antiviral capacity of isolated epithelial cells (Figure 11). 

Further, we investigated whether the principal Pam2-ODN effect occurred before 

(extracellular) or after (intracellular) virus internalization into their epithelial targets. 

SeV inoculation was carried out at 4º C preventing SeV internalization while allowing 

SeV attachment to epithelial cells. Using multiple methods to determine the effect of 

Pam2-ODN on SeV attachment, we found no differences in the attachment of SeV to 

lung epithelial targets (Figure 12A-D).  
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Figure 11: Pam2-ODN pretreatment reduced virus burden in isolated lung 

epithelial cells. SeV M gene expression assessed by qPCR at various time points 

upon SeV inoculation with or without Pam2-ODN pretreatment in MLE-15 (A) or 

mTCEs (B). *p<0.05, **p<0.01. 
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Figure 12. Pam2-ODN inhibits SeV without altering attachment. (A) Flow 

cytometry to measure virus attachment to epithelial cells 4 h after SeV challenge. (B) 

Representative examples of immunofluorescence for virus attachment.  
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Figure 12 continued. Pam2-ODN inhibits SeV without altering attachment. (C) 

Percentage of SeV positive epithelial cells from (A). (D) Mean fluorescence intensity 

of SeV-exposed epithelial cells 4 h after SeV challenge.  

 

        Even though similar numbers of virus particles were attached to epithelial cells, 

when these attached virus particles were liberated from the epithelial cell targets, 

virus particles from Pam2-ODN-treated epithelial cells were less able to 

subsequently infect other naive epithelial cells (Figure 13A-C). As the number of 

attached virus particles was the same, this difference in SeV burden in cells that 
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received liberated virus particles from PBS vs Pam2-ODN treated cells indicated that 

SeV is inactivated prior to epithelial internalization (Figure 13A-C). 

      

  

Figure 13. Pam2-ODN inhibits SeV prior to epithelial internalization. (A) 

Experimental outline showing viral attachment and prevention of virus internalization 

by epithelial cells. SeV M gene expression in untreated MLE-15 cells (B) or primary 

tracheal epithelial cells (C) challenged with the liberated virus (uninternalized virus 



73 
 

particles) from cultures that had been pretreated with PBS or Pam2-ODN prior to 

SeV infection 24 h after transfer of liberated virus to new cells. Data are 

representative of five independent experiments. *p<0.05  

 

6.2 Pam2-ODN-induced epithelial ROS protect against SeV infection and CD8+ 

T cell immunopathology  

        The anti-influenza response initiated by Pam2-ODN requires epithelial 

generation of ROS from both NADPH-dependent dual oxidase and mitochondrial 

sources [107]. Extending these findings to the SeV model in lung epithelial cells, an 

NADPH oxidase inhibitor (GKT 137831) fully abrogated the Pam2-ODN-induced 

anti-SeV response (Figure 14A). Similarly, treatment with a combination of FCCP 

(an uncoupler of oxidative phosphorylation) and TTFA (a complex II inhibitor) 

obviated the Pam2-ODN-induced anti-SeV response (Figure 14B) [107, 109] in 

isolated lung epithelial cells.  
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Figure 14: Pam2-ODN induced reactive oxygen species protects against SeV 

virus infection in isolated lung epithelial cells. SeV burden in MLE-15 cells with 

or without treatment with Pam2-ODN and/or NADPH inhibitors (A) or mitoROS 

inhibitors (B). Data are representative of three independent experiments. **p<0.01, 

*p<0.05  
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Figure 15: Pam2-ODN induced reactive oxygen species protects against acute 

SeV virus infections in mice. (A) Experimental outline.  

 

        Further, congruent with these in vitro studies, mice treated with FCCP and 

TTFA before Pam2-ODN treatment and SeV challenge (Figure 15A) demonstrated 

reduced survival (Figure 15B), increased SeV burden (Figure 15C). Since we had 

earlier found that SeV induced immunopathology and mouse mortality was 

associated with lung CD8+ T cells on day 10, we found that mtROS blockade in 

Pam2-ODN treated, SeV challenged mice displayed enhanced lung CD8+ T cells on 

day 10 (Figure 16). Further, it was found that Pam2-ODN induced epithelial 

generation of mitochondrial ROS were required for inactivation of SeV before 

epithelial entry (Figure 17). 
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Figure 15 continued: Pam2-ODN induced reactive oxygen species protects 

against acute SeV virus infections in mice. (B) Survival of SeV challenge in mice 

treated with PBS or Pam2-ODN and/or mtROS inhibitors. (C) Lung SeV burden 
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measured on day 5. n=13 mice/group in experiment (B). Data are representative of 

three independent experiments. **p<0.01 compared to PBS, †p<0.05 compared to 

Pam2-ODN-treated mice without ROS inhibition, *p<0.05 compared to PBS. 

 

Figure 16. Pam2-ODN induced reactive oxygen species reduce SeV induced 

CD8+ T cells. Lung CD8+ T cells assessed on day 10. Data are representative of 

three independent experiments. *p<0.05, ns – not significant. 
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Figure 17: Pam2-ODN induced ROS is essential for SeV inactivation prior to 

epithelial internalization. SeV M gene expression in untreated MLE-15 cells 

challenged with liberated virus from cells that had been pretreated with PBS or 

Pam2-ODN burden and mitoROS inhibitors. ***p<0.0001; p<0.005 
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6.3 Role of Type I IFN in Pam2-ODN mediated anti-viral effects 

        In addition to ROS mediated anti-viral protection by Pam2-ODN treatment, we 

also investigated whether Pam2-ODN treatment-induced type I IFN as an anti-viral 

mechanism. Prior studies from our lab have demonstrated that there was no 

association of inducible resistance with type I IFN sensitive genes by microarray 

analysis [103, 108]. This was evident in isolated lung epithelial cells and mouse lung 

homogenates after Pam2-ODN treatment [71, 72, 103]. Hence, it was likely that type 

I interferons were not involved in Pam2-ODN induced resistance against viral 

pneumonia. However, these studies only demonstrated that Pam2-ODN treatment 

alone did not lead to induction of type I IFN responsive genes, not whether Pam2-

ODN treatment alone and/or together with a viral challenge led to the induction of 

type I IFNs. Therefore, it was hypothesized that type I IFNs are induced in lung 

epithelial cells after Pam2-ODN pretreatment and subsequent viral challenge.  

 

6.4 Pam2-ODN mediated anti-viral immunity is mediated in a Type I IFN 

independent manner  

        When mouse tracheal epithelial cells (mTECs) were treated with Pam2-ODN 

and PBS alone, at various times post-treatment, we found no induction of IFN-β 

(Figure 18). As expected, PBS treated, virus challenged (Flu or SeV) mTECs 

produced copious amounts of IFN-β congruent with prior reports on IFN induction 

upon viral infection (Figure 18). These data suggest that while virus infection of 

epithelial cells led to the production of IFN-β, Pam2-ODN pretreatment of virus 
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challenged cells significantly decreased IFN-β probably due to reduced viral burden 

associated with Pam2-ODN treatment. As congruent with prior microarray gene 

expression data from our lab, Pam2-ODN treatment alone did not produce any IFN 

at any time points assessed in lung epithelial cells [107].  
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Figure 18: Pam2-ODN treatment alone or with viral challenge does not induce 

type I IFN production. IFN-β levels from mouse tracheal epithelial cells treated with 

Pam2-ODN or PBS 4 h prior to SeV (A) or Flu challenge (B). *p < 0.05 versus PBS-

treated samples; †p < 0.02 versus PBS-treated and virus-infected cells. 
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        Since Pam2-ODN treatment alone or with virus challenge did not produce 

significant IFN-β in lung epithelial cells, we wanted to confirm that Pam2-ODN 

mediates anti-viral immunity via type I IFN independent pathway. To assess the role 

of IFN signaling in Pam2-ODN mediated anti-viral immunity, we used IFNAR-/- mice 

that lack type I IFN signaling. While PBS treated, Flu challenged IFNAR-/- mice 

displayed enhanced susceptibility to Flu challenge, Pam2-ODN pretreatment of 

IFNAR-/- mice rescued these mice from mortality of Flu challenge (Figure 19A). 

Further, the increased virus burden in IFNAR-/- mice was associated with increased 

mortality of Flu infection (Figure 19A, B). However, Pam2-ODN treatment of IFNAR-/- 

mice displayed significantly reduced virus burden and did not differ from the WT 

mice further confirming that type I IFN signaling is not required for controlling virus 

burden by Pam2-ODN (Figure 19B). These data were remarkably interesting 

because not only were type I IFN not required for Pam2-ODN mediated protection, 

but Pam2-ODN treatment rescues these mice from mortality of virus infections 

despite the lack of IFN signaling.  
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Figure 19: Pam2-ODN inducible anti-viral resistance is independent of type I 

IFN signaling. (A) Viral burden assessed by Influenza NP gene expression from 

mice treated with Pam2-ODN or PBS before influenza A challenge in IFNAR-/- or 
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C57BL/6J mice. (B) Mouse survival of influenza A challenge in IFNAR-/- or C57BL/6J 

mice pretreated with Pam-ODN or PBS.  

 

6.5 Summary and discussion 

        These data revealed that mouse lung epithelial cells can be therapeutically 

stimulated to induce robust antiviral responses reducing viral burden and this can, in 

turn, enhance mouse survival during viral infections. Knowing that Pam2-ODN-

inducible resistance required ROS production to protect against influenza [107], we 

studied the role of ROS in Pam2-ODN-mediated reduction in SeV burden and found 

that ROS inhibition led to the loss of Pam2-ODN mediated anti-viral effects in 

isolated lung epithelial cells (Figure 14). In vivo ROS inhibition not only led to 

attenuation of Pam2-ODN’s anti-viral effect but allowed increased lung CD8+ T cell 

numbers, implicating Pam2-ODN-induced ROS in preventing both identified 

mechanisms of mouse mortality in SeV pneumonia (Figures 15, 16). ROS inhibition 

led to the loss of Pam2-ODN-inducible in vitro inactivation of SeV prior to epithelial 

internalization (Figure 17), demonstrating for the first time that epithelial ROS directly 

contribute to virus inactivation. While our group has demonstrated inducible 

resistance against multiple respiratory pathogens including viruses [73, 102, 103] 

these studies demonstrate for the first time when in the virus lifecycle the anti-viral 

effects begin (viz., prior to internalization), and substantiate the role of ROS in 

protection against SeV (Figures 12, 13).  
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        The antiviral protection afforded by Pam2-ODN pretreatment did not require 

type I IFN signaling, which was congruent with our prior microarray data that did not 

show any IFN inducible genes (Figure 18, 19). Further, Pam2-ODN treatment 

enhanced mouse survival of viral infections despite the lack of type I IFN signaling, 

suggesting its applicability in IFN deficient populations (Figure 19). Importantly, this 

finding also placed importance on novel type I IFN independent mechanisms such 

as induction of epithelial ROS from mitochondrial as well as NADPH oxidase 

sources. Production of ROS as a microbicidal mechanism has been widely reported 

in phagocytic cells [89-93]. However, this mechanism has not been extensively 

studied in non-phagocytic cells where it apparently acts predominantly extracellularly 

rather than intracellularly as in phagocytes. These findings of viral inactivation by 

epithelial ROS production reveal an essential component of inducible epithelial 

resistance. Future investigations in the lab will include understanding the role of type 

III IFNs and inflammasome activation as possible additional anti-viral mechanisms 

utilized by Pam2-ODN treatment. 
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Chapter 7: Discussion and Future Directions 

        In this thesis project, we have demonstrated that therapeutic stimulation of the 

lung epithelium enhances mouse survival of acute SeV infections by reducing virus 

burden and attenuating host immunopathology. Further, Pam2-ODN treatment 

before or after viral clearance prevented the progression to SeV-induced chronic 

asthma by reducing the viral burden and reducing IL-33 produced by lung epithelial 

cells.  

        Our findings are potentially informative in the context of treating viral pneumonia 

in human subjects, including those suffering from lung injury associated with SARS-

CoV-2 (Figure 20). Of note, the median period from SARS-CoV-2 exposure to 

respiratory distress is 9 to 13 days, identical to the period from viral inoculation to 

death from pneumonitis in this study of SeV pneumonia in mice [2]. Further, it was 

recently reported that dexamethasone treatment confers a survival advantage to 

COVID-19 requiring respiratory support and in those recruited after the first week of 

their illness [121]. This suggests a stage of disease dominated by immunopathology, 

rather than active viral replication, similar to our observation in the SeV model nine 

days after viral challenge. It will be interesting to test the effects of dexamethasone 

on CD8+ T cell activity and host mortality in the SeV model.  

        Host survival of acute infections is the goal when defining immunity against 

infectious diseases. However, there are additional life-long host changes that can be 

life-threatening long after the host survives the infection. One such example is where 

respiratory viruses can induce molecular and structural changes in the lungs’ 



87 
 

microenvironment leading to chronic asthma [4-6]. Therefore, the outcome of any 

interventional strategies against respiratory viral infections must not only be host 

survival but also inducing host tolerance by limiting the health impact caused by 

virus infections. In that regard, Pam2-ODN treatment of mice before viral challenge 

seems to be a reasonable approach to prevent the progression of virus-induced 

asthma. This approach relied heavily on host resistance of infection by limiting 

pathogen burden. However, we also tested the efficacy of Pam2-ODN in mitigating 

the SeV-induced asthma-like disease long after viral clearance from the lungs (thus 

relying on non-viral killing mechanisms). Very interestingly, we found reduced 

asthma-like features when mice were treated with Pam2-ODN 20 days after SeV 

infection, revealing the immunomodulatory capacity of Pam2-ODN treatment. Since 

lung epithelial IL-33 is essential for SeV-induced asthma, it was important to find the 

extent of IL-33 reduction in late Pam2-ODN treatment. The reduction in lung 

epithelial IL-33 in mice treated with Pam2-ODN on day +20 of SeV challenge (Figure 

10), indicates that Pam2-ODN treatment perhaps directly limits the damage caused 

by viral infections at the epithelial level. However, other possible immunomodulatory 

mechanisms may play a role as well since we don’t fully understand the mechanism 

of lung IL-33 production after an acute respiratory virus infection. 

        Several possible explanations for IL-33 reduction in our model may be inferred 

from prior literature on IL-33. IL-33 has been traditionally identified as a nuclear 

alarmin released because of cells underdoing necrosis during infections or other 

assaults [6, 9, 79, 94, 101]. Virus-led host inflammation and injury may lead to 

necrosis and as a result, IL-33 is released as a damage signal to initiate repair and 
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proliferative mechanisms in the lungs. The mice that survive the SeV infection begin 

to produce IL-33 from day 21 to 49 (Figure 8) (long after acute cell death events - 

Figure 3), possibly for an indefinite time. Indeed, when mouse lungs undergo repair, 

SeV-induced proliferation of lung epithelial cells and appearance of progenitor basal 

stem cells was observed on day 14 (after viral clearance) [122]. These basal stem 

cells continue to persist on day 49 of SeV infection and possibly long after that. 

Further, these basal stem cells are normally present in young mice, not abundantly 

found in adult mice, and function to restore homeostasis and give rise to type II 

alveolar epithelial cells [6, 9, 113, 122]. And, our finding that type II epithelial cells 

are the dominant source of IL-33 production during SeV infection might indicate that 

Pam2-ODN treatment can reprogram the transcriptional machinery in these 

epithelial basal stem cells to initiate a restorative epithelial cell fate that does not 

lead to injurious IL-33 production. The reprograming may occur at a transcriptional 

and/or epigenetic level where changes are persistent, long-lasting, and durable. It 

remains to be seen however, how the lung epithelial compartment is changed at the 

cellular and transcriptional level by Pam2-ODN treatment. Therefore, it can be 

broadly hypothesized that Pam2-ODN treatment in addition to inducing broad anti-

microbial responses in the lungs, may also induce a favorable transcriptional 

program in the lung epithelium initiating reprogrammed cell repair and proliferation 

pathway to restore homeostasis in the lungs (indicative of host tolerance).  

        Indeed, prior investigations on transcriptomic changes in mouse lungs and 

isolated lung epithelial cells after Pam2-ODN revealed a flux of differentially 

expressed genes (DEGs) that may play a role in inducing a broad anti-microbial 
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resistance and/or disease tolerance upon a secondary assault [108]. If we combine 

the lung transcriptomic changes with chromatin mapping analysis, we could 

potentially find epigenetically poised genes that may have unrealized potential for 

disease tolerance or protective immune activity. The concept of realized and 

unrealized epigenetic potential was recently reported in detail in structural cells 

where low expression of immune active genes coupled with higher open chromatin 

marks suggested unrealized epigenetic potential which turned on after a systemic 

viral infection [123]. Similarly, in our model of Pam2-ODN pretreatment, we could 

hypothesize that the lung epithelial genes with an immune or protective function that 

are lowly expressed in homeostatic conditions may be epigenetically poised for 

higher expression upon subsequent infection. These immune function genes may be 

epigenetically pre-programmed for a rapid response to a variety of immunological 

challenges such as virus infection in the form of higher cytokine/chemokine 

production. It will be interesting to also study the effect of Pam2-ODN-induced 

epithelial ROS in inducing transcriptomic and epigenetic changes in the lungs for the 

rapid response upon a secondary assault. These are several lines of future 

investigation in the laboratory to better understand the broad protection afforded by 

Pam2-ODN treatment. 

        The discovery that skin epithelial basal stem cells can remember acute 

inflammation and insults to induce persistent and durable protection against 

secondary insults is remarkable supporting evidence to our anti-asthma 

investigations by Pam2-ODN treatment [124]. Therefore, another related mechanism 

could be that Pam2-ODN induced lung epithelial responses remain persistent and 
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durable for a long time due to epigenetic training and memory. The support for this 

hypothesis also comes from multiple studies of trained innate immunity in the 

hematopoietic system [24, 25, 27]. One could hypothesize that Pam2-ODN 

treatment before or after viral challenge can induce persisting memory in the lung 

epithelium of prior insults (virus challenge or Pam2-ODN treatment) that can lead to 

faster resolution and durability against secondary insults. Comprehensive studies to 

explore these hypotheses require the use of single-cell sequencing and screening of 

epigenetic and transcriptional changes in the lungs’ epithelium after Pam2-ODN 

treatment. Further, structural cells such as endothelium and fibroblasts need to be 

investigated for their involvement in long-term memory since substantial evidence 

indicating their role in the regulation of systemic leukocyte immune response has 

now been gathered [123].  

        Another possible area of investigation is at the IL-33 and group 2 innate 

lymphoid cells (ILC2) axis. Epithelial IL-33 produced can activate lung dendritic cells 

and/or ILC2 to initiate a maladaptive type 2 immune response in the airways. The 

latter series of events may also be an important area of investigation to understand 

how targeting lung epithelial cells may redirect or reprogram the host leukocyte 

population to be less inflammatory or maladaptive, especially by the control of lung 

epithelial cytokines such as IL-33. Indeed, our lab has found that Pam2-ODN 

treatment also reduces eosinophilic inflammation and airway hyperreactivity in non-

pathogenic models of asthma (unpublished data). Therefore, there is clear evidence 

of immunomodulation that may or may not use the same anti-microbial strategies 
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used to induce host resistance. Defining resistance and tolerance mechanisms by 

targeting the lungs' epithelial responses will be an area of future investigation.            

        Taken together, our findings provide mechanistic insights into the antiviral 

responses generated by the lung epithelium, prevention of host immunopathology, 

and asthma-like disease that may inform future therapeutics to target 

immunomodulation as a means to improve the outcomes of respiratory infections in 

vulnerable population. 
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Figure 20: Strategies to improve the outcome of respiratory virus infections. 

Two ways to enhance survival of respiratory virus infections – 1) By early stimulation 

of innate immunity which leads to epithelial ROS inactivating virus particles prior to 

internalization into epithelial targets, thus reducing viral replication and lung damage 

and in turn enhancing host survival. 2) By the suppression of host immune response 

after virus-induced inflammation in the lungs is established, thereby decreasing lung 
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damage associated with host CD8+ T cells and enhancing host survival. Figure 

created with BioRender.com. 
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