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Abstract

Subclonal evolution of chronic lymphocytic leukemia after allogeneic T-cell therapies

Haven Garber, MD

Advisory Professor: Jeffrey Molldrem, MD

Intratumoral genetic heterogeneity describes the molecular differences among subclones
within a tumor and is a major barrier to effective therapy in many solid and liquid cancers, including
chronic lymphocytic leukemia (CLL). Rare, treatment-resistant subclones can expand to compose
relapsed disease during tumor evolution. Examination of malignant evolution in the context of
specific treatment provides insight into the molecular lesions that mediate therapeutic response
and resistance. Both chemotherapy and targeted therapy were shown to precipitate CLL
subclonal evolution. We hypothesized that allogeneic T-cell immunotherapies, including
allogeneic stem cell transplant (alloSCT) and donor lymphocyte infusion (DLI), would impact
malignant evolution through the application of selective immunologic pressure imposed by donor
T cells. Here, we tested this prediction in a cohort of 24 CLL patients treated with
nonmyeloablative HLA-matched alloSCT and DLI utilizing whole exome sequencing of purified
CLL. Our cohort included 11 patients who relapsed after alloSCT, and we studied sequential
samples in these patients to examine leukemic evolution. We identified clear patterns of linear
and branched evolution in 8/11 patients after alloSCT/DLI that included CLL-specific drivers in
every case. In two patients, leukemic evolution was coincident with DLI, suggesting
immunoediting of leukemic subclones. To investigate complementary changes in immunity, we
analyzed the post-alloSCT T cell repertoires of CLL transplant recipients at multiple time points
after engraftment and observed restricted diversity. Last, we adapted and employed a strategy to
identify and track candidate graft-versus-leukemia T cells that expanded and contracted
coincident with loss of specific tumorigenic lesions. We provide novel evidence of ongoing genetic

subclonal evolution of CLL post-alloSCT.
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Chapter 1: Introduction

Intratumoral heterogeneity and clonal evolution in cancer: Intratumoral heterogeneity (ITH)

refers to the biologic heterogeneity among cancer cells within a single patient’s disease and
presents a major barrier to the effective treatment of cancer [1]. Cancer develops from a founder
clone that has acquired ‘hallmark’ neoplastic capabilities, including the ability to sustain chronic
proliferation and to resist cell death [2]. Over time, daughter cells of the founder clone blindly
acquire new genetic and epigenetic alterations, some that further enhance their biological
fithess and some that enable them to evade various cancer treatments. By the time cancer is
diagnosed, this process has given rise to billions of tumor cells that can be grouped into related,
but heterogeneous population subsets or subclones. Cancer has been compared to the
Darwinian model of evolution wherein cancer subclones with variable fithess undergo natural
selection resulting in shifts within the tumor population over time [3]. Cancer treatment has been
equated to artificial selection, which can serve as a population bottleneck and temporarily
reduce ITH [4]. However, population heterogeneity is regenerated through the acquisition of
mutations in the daughter cells of the therapy-resistant clones.

There is evidence for ITH in both solid and liquid tumors. In a study of ITH in
glioblastoma, 4-6 tumor fragments at least 1 cm apart were subjected to copy humber and gene
expression profiling (GEP). On average, only 31% of copy number alterations (CNAS) were
shared between all fragments from the same tumor. Moreover, in 6 of 10 cases with GEP data,
fragments from the same tumor were classified into at least 2 distinct glioblastoma subtypes [5].
In a separate study, ITH in glioblastoma, particularly in TP53 mutated disease, was identified as
the source of treatment-resistant subclones that expanded at the time of tumor recurrence [6].
One of the first studies to evaluate genomic ITH in AML utilized whole genome sequencing and
deep targeting sequencing on matched primary tumor and relapse (post-chemotherapy)

samples from eight patients [7]. Multiple clusters of mutations were detected in the primary
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disease in 5 of 8 patients. For example, in the first patient, four distinct clusters of mutations
(though related by founder events) were identified: clone 1 (the founder clone) made up 13% of
the leukemia population, clone 2 (53%), clone 3 (29%), and clone 4 (5%). The relapsed disease
was comprised entirely of clone 4, which had acquired additional mutations, including in the
candidate drivers ETV6 and MYO18B. As illustrated by this patient case, ITH underlies clonal
evolution, which is a frequent mechanism of therapy resistance to both cytotoxic and targeted
therapies. Examples of ITH and clonal evolution in the context of targeted therapy include the
outgrowth of CD19 negative subclones after CAR T cell therapy in B-ALL [8] and the selective
expansion of KRAS mutant subclones under therapeutic pressure with panitumumab, an anti-
EGFR antibody [9].

Chronic lymphocytic leukemia: Chronic lymphocytic leukemia (CLL) is the most common

adult leukemia and is characterized by the proliferation of mature B cells in the blood, bone
marrow, and lymphoid tissues. CLL is typically a disease of older adults with a median age of
diagnosis of 70, though ~ 10% of patients are between ages 45 - 54 when diagnosed. Most CLL
cases are preceded by monoclonal B cell lymphocytosis, a common condition marked by the
asymptomatic proliferation of clonal CD5+CD19+ B cells that progresses to CLL in ~1% of
patients [10]. The cell of origin in CLL is debated but is proposed to be a mature CD5+ B cell
[11] or a hematopoietic progenitor cell [12].

Relative to most cancers, the prognosis of CLL is excellent though several adverse
features exist. One adverse prognostic feature is the presence of an unmutated immunoglobulin
heavy-chain variable region (IGHV) gene, which accounts for ~ 50% of cases [13]. Deletion of
17p (including the TP53 locus) and/or TP53 mutation are also adverse features in the context of
older chemoimmunotherapy and newer targeted therapies [14-16]. Next-generation sequencing
(NGS) has been used to identify several recurrent driver alterations in CLL including

chromosome losses (13q, 11q, 17p), gains (trisomy 12 and amp 2p), and mutated genes
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(SF3B1, ATM, TP53, NOTCH1, POT1, CHD2, XPO1), but there is considerable interpatient
heterogeneity and the most frequently mutated gene (SF3B1) is present in ~ 25% of cases [17].
CLL stage is assessed using the Rai or Binet staging systems, which evaluate for
lymphadenopathy, hepatosplenomegaly, and progressive cytopenias including anemia and
thrombocytopenia. Early stage CLL is characterized by isolated clonal B cell lymphocytosis and
lymphadenopathy. Progressive anemia and thrombocytopenia signify advanced disease. The
first rule for clinicians treating early stage CLL is to “watch and wait.” This is because CLL can
exhibit indolent behavior for years before causing symptoms and early treatment can actually
worsen survival by precipitating more aggressive disease [18]. Treatment is reserved for
patients with B symptoms (fever, night sweats, weight loss), threatened end organ function,
bulky splenomegaly or lymphadenopathy (> 10 cm), and progressive cytopenias. The “watch
and wait” rule still applies despite the growing armamentarium of targeted CLL drugs that have
been approved within the past few years. These agents, including ibrutinib and venetoclax, have
revolutionized CLL treatment and have improved the survival of CLL patients regardless of age
and disease subtype. For example, in the RESONATE-2 trial that compared frontline treatments
for CLL patients ages 65 and older, the estimated 5 year overall survival (OS) was 83% for
ibrutinib vs. 68% for chlorambucil (HR 0.45; 95% CI 0.266-0.761) [19].

CLL is an ideal model for investigating ITH and subclonal evolution for several reasons:
(i) most patients have a relapsing, remitting disease course that spans many years permitting
longitudinal study at multiple time points (ii) the leukemia is often accessible in the peripheral
blood and (iii) CLL cells have a classic surface immunophenotype (CD5+CD19+, monoclonal
kappa or lambda restricted) enabling enrichment or purification from other cell types. Landau et
al. studied the subclonal evolution of CLL in the context of chemotherapy and demonstrated that
the majority of patients (57 of 59) experienced leukemic subclonal evolution after chemotherapy,
with frequent therapeutic selection of TP53 variant subclones [17]. In contrast, subclonal
evolution was observed in only 1 of 6 untreated patients. In addition, treatment of CLL with
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ibrutinib was found to trigger clonal shifts in the canonical resistance mutation BTK (C481S) and
in its protein partner PLCG2 [20]. The delineation of CLL subclonal evolution caused by
therapeutic selection provides the mechanistic basis for the “watch and wait” strategy that CLL
clinicians have practiced for decades.

Allogeneic stem cell transplant and Donor lymphocyte infusion: Allogeneic stem cell

transplant (alloSCT) is the transplantation of multipotent hematopoietic stem cells and mature
leukocytes from donor bone marrow, peripheral blood, or umbilical cord into patients with
malignant hematologic disorders or nonmalignant bone marrow failure disorders. The goal is
reconstitution of normal donor-derived hematopoietic and immune function in the transplant
recipient/host. AlloSCT was originally conceived after World War Il as a means to reconstitute
hematopoiesis in soldiers suffering from radiation-induced bone marrow failure [21]. Initial
attempts resulted in high mortality due to the lack of human leukocyte antigen (HLA) matching;
however, in the 1970s, Thomas et al. published a report detailing early success of sibling donor
alloSCT for acute leukemia [22]. Further investigation of alloSCT for leukemia revealed the
donor graft was doing more than reconstituting hematopoiesis and that transferred donor T cells
were participating in the elimination of donor leukemia through a phenomenon known as the
graft-versus-leukemia (GVL) effect [23]. Unfortunately, the GVL effect frequently came at the
cost of graft-versus-host disease (GVHD). GVHD is divided into acute and chronic disorders
that, in the matched HLA setting, are mediated by donor T cell recognition of minor
histocompatibility antigens (mHAS) presented on the surface of normal host cells. mHAs are
MHC-bound peptides that derive from polymorphisms between the transplant recipient and
donor genomes, the majority of which are single nucleotide polymorphisms (SNPs). Donor
immune cells recognize mHAs as non-self and cause GVHD, which manifests as multiorgan
tissue inflammation/fibrosis including in the Gl tract, liver, skin, lungs, and mucosal surfaces.

GVHD is treated with systemic immunosuppression using agents like glucocorticoids
and calcineurin-inhibitors (cyclosporine, tacrolimus). These agents are tapered as GVHD
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subsides and, in some cases, withdrawal of immunosuppression is accompanied by leukemia
remission providing evidence of the GVL effect [24-26]. Studies of T-cell replete versus T-cell
deplete alloSCT also highlight the importance of the GVL effect since a higher incidence of
disease relapse was observed among recipients of T-cell depleted transplants [27-30]. Finally,
trials of donor lymphocyte infusions (DLI) for relapsed leukemia provide the strongest evidence
of the GVL effect. DLI is a treatment composed of unselected, polyclonal donor lymphocytes
(from the original alloSCT donor) that is usually administered in the absence of conditioning
chemotherapy [31, 32]. DLI can induce disease remission in CLL, acute myeloid leukemia
(AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML), which has the
highest rate of DLI response (~70-80%) [33-37]. T cells operative in GVL eliminate leukemia
cells through the recognition of leukemia-associated antigens (LAAs), mHAs, and leukemic
neoantigens [38-41]. LAAs are nonpolymorphic self antigens that are overexpressed or
mislocalized in malignant cells [42]. Leukemic neoantigens are tumor-specific antigens that
result from exonic somatic alterations [43, 44].

AlloSCT and DLI are original forms of cancer immunotherapy as they rely on donor T
cells for their anti-tumor effect. Cancer immunotherapy no longer needs an introduction and now
represents an integral part of the standard treatment for multiple tumor types [45]. The
remarkable and durable cancer remissions achieved by checkpoint inhibitors and chimeric
antigen receptor T cells in a subset of patients have proven the potency and the memory of
antitumor immunity [46, 47]. Similarly, alloSCT remains a standard of care therapy for many
forms of leukemia because it, too, can cure a subset of patients with chemorefractory and
otherwise lethal disease. New therapies have largely replaced alloSCT for CLL because of its
attendant toxicity, though alloSCT remains a viable treatment option, particularly for the most
refractory cases [48].

A clinical trial at MDACC demonstrated CLL’s susceptibility to the GVL effect. Patients
with refractory CLL were treated with a nonmyeloablative, HLA-matched alloSCT and 20 of 43
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patients (47%) who received immune manipulation after transplant (DLI and/or withdrawal of
immunosuppression) for persistent/recurrent disease experienced a complete remission.
Overall, the estimated 5-year survival rate was 51% [49]. Similarly, the CLL3X trial studied
reduced-intensity alloSCT in patients with poor-risk CLL. Among 90 patients, the relapse
incidence with a median follow-up of 6 years was 46% and 6-year OS was 58% [50]. Single-
center studies at the Fred Hutchinson Cancer Center and Dana Farber Cancer Institutes
reported similar results for alloSCT in CLL [51, 52]. We chose to study CLL in the context of
nonmyeloablative, HLA-matched alloSCT as a model of subclonal evolution since approximately
half of cases prove sensitive to the GVL effect while the remaining half are resistant.

Hypothesis and Specific Aims: Treatment-driven selection of subclones within a tumor

population can cause a patient’s malignancy to evolve, often leading to more aggressive
disease. To improve the durability of cancer therapy and to design rational combinations, it is
important to understand how various treatments impact malignant evolution. Longitudinal
genomic analyses from pre- and post-treatment tumor samples can provide insight into the
genetic factors that confer treatment resistance and responsiveness. The evolution of leukemia
after chemo- and targeted therapies has been investigated [17, 20, 53-56], however, the impact
of alloSCT on subclonal evolution is unknown.

We investigated the therapeutic selective pressure imposed by alloSCT and DLI and
hypothesized that allogeneic T cells reshape the subclonal architecture of CLL by eliminating
immunogenic subclones and permitting the expansion of immune evasive subclones. In turn, we
expected that leukemia exerts selective pressure on anti-tumor donor T cells, characterized by
their increased clonal frequency within the T-cell repertoire at the time of disease response (see

proposed model below).
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The primary objective of this proposal was to analyze longitudinal samples from a cohort of CLL

patients that were treated with alloSCT and DLI. We did so via the following specific aims:

AIM 1. To characterize the hierarchical architecture of CLL subclones and clinical evolution after
alloSCT and DLI
AIM 2. To identify T-cell clones that mediate anti-CLL activity and characterize their phenotype

and persistence in longitudinal patient samples

Here, we tested this hypothesis utilizing whole exome sequencing (WES) of purified
leukemia from a cohort of 24 CLL patients treated with alloSCT/DLI. In the same cohort, we
assessed for reciprocal changes within the allogeneic T cell compartment. Our cohort included
11 patients who relapsed after alloSCT, and in these patients, we sampled longitudinal time
points to examine leukemic and T cell coevolution. We provide evidence of ongoing CLL
subclonal evolution after alloSCT/DLI and provide a strategy to track candidate GVL T cell
clones through their expansion within the T cell repertoire during periods of leukemia response.
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Chapter 2: Genomic evolution of CLL after alloSCT

Background: We hypothesized that allogeneic T-cell immunotherapies, including alloSCT and
DLI, would cause subclonal leukemic evolution through the application of selective immunologic
pressure. To test this prediction, we initially focused on 11 CLL patients who relapsed after
HLA-matched, honmyeloablative alloSCT and for whom longitudinal post-transplant leukemia
samples were available. Using whole exome sequencing (WES), we compared the allelic
fraction (AF) of somatic mutations and CNAs over time at pre-alloSCT and serial post-alloSCT
time points to assess for molecular changes in the disease.

Methods: Patient samples Patient and healthy donor samples were obtained after appropriate

informed consent through institutional review board approved protocols at The University of
Texas MD Anderson Cancer Center (MDACC). Patient peripheral blood (PB) and bone marrow
(BM) mononuclear cells were separated using histopaque 1077 prior to initial cryopreservation
(FBS with 10% DMSOQ) and were stored in liquid nitrogen until the time of analysis. The clinical
charts of CLL patients with stored longitudinal samples were reviewed and patients with
eventual post-transplant relapse were selected for the initial analysis. For 20/24 patients, HLA
testing was conducted at the MDACC HLA typing laboratory. For 4 patients with only serologic
HLA typing available, refined HLA typing was inferred from exome data using the winners output

from Polysolver [57]. Cell purification PB mononuclear cells and BM aspirate cells were thawed

and stained with the following antibodies prior to electrostatic droplet-based cell sorting: anti-
CD19 FITC (clone SJ2SC1), anti-CD5 PE (clone UCHT?2), anti-lg A light chain Pacific Blue
(clone MHL-38), anti-lg « light chain Pacific Blue (clone MHL-49), anti-CD3 PE/Cy7 (clone SK7),
anti-CD8 PE/Cy7 (clone SK1) all from BioLegend and Sytox Red live/dead stain. CD19+CD5+
CLL cells and CD3+ T cells were sorted on the FACSAria Fusion using a 70 uM nozzle at 70 psi
with a purity mask (Y32-P32-Ph0) after excluding debris, doublets, and dead cells. Cells were

thawed and stained in phosphate-buffered saline containing 2% FBS. Sorted cells were
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collected in RPMI before DNA isolation. DNA extraction and WES Genomic DNA was extracted

from CLL cells and pre-alloSCT T cells (for germline DNA) using the QlAamp DNA Blood Mini
Kit (Qiagen). Tumor and germline DNA concentration and quality were measured using
fluorometric quantification (Qubit, ThermoFisher, and Fragment Analyzer, Advanced Analytical).
Libraries were constructed from genomic DNA using the KAPA Library Preparation Kit (Roche).
Exome capture was performed using the NimbleGen SeqCap EZ Exome Enrichment Kit v3.0
(Roche). Multiplex sequencing of samples was conducted on the lllumina HiSeq 2000 using 76
base pair paired-end reads at the MDACC Sequencing and Microarray facility. The mean target
coverage was 120X per tumor sample (range: 39 — 389; SD +/- 45) and 112X per germline
sample (range: 50 — 162; SD +/- 31). Paired-end sequencing reads in FASTQ format were
generated from BCL raw data using lllumina CASAA software and aligned to the human
reference genome (UCSC Genome Browser, hg19) using Burrows-Wheeler Aligner on default
settings with the following exceptions: seed length of 40, maximum edit distance of 3, and
maximum edit distance in the seed of 2 [58]. Aligned reads were processed using the GATK
Best Practices of duplicate removal, indel realignment, and base recalibration. Sequencing was
targeted to an overall coverage of 120X for target samples and 100X for matched germline
samples. Variant calling Somatic single nucleotide variants (SSNVs) located within the exome
were identified using MuTect [59]. These data were further filtered using the following criteria: (i)
minimum total read count in the tumor > 20 (ii) minimum total read count in the germline > 10
(iii)) minimum alternate allele frequency in the germline < 0.01 and (iv) variants in positions listed
in ESP6500 [60] and 1000G [61] with minor allele frequencies > 0.01 were removed. For the
CLL evolution analyses, only somatic non-silent mutations detected recurrently across
longitudinal samples with an allelic fraction (AF) > 0.05 were considered. To categorize clonal
versus subclonal sSNVs, we determined the mean AF at which recurrent CLL driver genes

(initial AF filter at 0.25) appeared in the sort-purified pre-transplant leukemia, which was
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calculated to be 0.477. sSSNVs were considered clonal if the AF was greater than two standard
deviations (SD, 0.066) below the mean, which set the threshold at an AF > 0.34. For the AF
scatter plots, synonymous mutations and variants located within non-coding RNA and 5°/3’
untranslated regions at an AF > 0.15 were included to aid visualization of mutation clusters.
Small somatic insertions and deletions (indels) were identified using Pindel [62]. The following
stringent filtering criteria were added to increase specificity of the indel calls: (i) present within
exons of reported CLL driver genes [56, 63] at an AF > 0.05 and (ii) events manually viewed
and confirmed using the integrated genome viewer [64]. Substitutions and indels were
annotated using ANNOVAR [65] based on known genes within UCSC. To assess donor cell
contamination of post-transplant leukemia, donor samples for 6 patients were sequenced to a
depth of 112X at the exome (3 samples from donor pheresis products and 3 samples from host
PB drawn when the host had full donor chimerism at a time of molecular remission). Platypus
[66] was used to detect variants, primarily single nucleotide polymorphisms (SNPs), in the donor
sample. The Platypus calls from germline donor exomes were then compared to the MuTect
exonic calls from host sort-purified leukemia to determine the AF of any overlapping variants.

Detection of copy number alterations: Genome-wide copy number calls for the leukemia

samples and their patient matched germline DNA were derived from exome data using Circular
Binary Segmentation [67], followed by an in-house tool, exome CN, for generating log2 ratio
scores. A segment of gain had a log2 score of >0.5 while a segment of loss had a log2 score of
<-0.5. These calls were all verified by manual inspection. For integration of CNA and mutation
data in the scatter plots, we converted the log2 value to an absolute copy number and assumed
a diploid genome in the germline. The copy number data were intersected with the somatic non-
silent mutation data for each patient to confirm that evolution of somatic SNVs was due to

variation in AF rather than change in copy number. CLL immunoglobulin heavy chain (IGH)

CDR3 analysis To investigate the clonality and relatedness of early and late disease, the CDR3

region of the IGH was directly analyzed for CLL patients 3 and 9 using longitudinal sort-purified
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CLL samples. Targeted massively parallel sequencing was conducted by Adaptive
biotechnologies and the data were analyzed using the Immunoseq analyzer software.

Results: Patients To test our hypothesis that allogeneic T cells impose selective pressure on

heterogeneous leukemic subclones, we focused on 11 CLL patients who relapsed after alloSCT
and for whom a pre-transplant and longitudinal post-transplant CLL samples were available
(CLL patients 1-11, Tables 1 and 2). All patients were heavily pretreated with chemotherapy,
including with fludarabine, cyclophosphamide, and rituximab (FCR). This is a critical detail
because 10 of the 11 patients also received FCR as their conditioning chemotherapy prior to
alloSCT. In this context, we would expect that any observed post-alloSCT disease evolution
would be attributable, at least in part, to the graft rather than the conditioning chemotherapy
because of the recent and significant exposure to FCR. After alloSCT, the median time to
retreatment for the 11 patients was 396 days (range, 124-1072 days). We analyzed serial
samples for each patient (median, 4; range, 2-12) and, for some patients, our investigation of
longitudinal post-alloSCT leukemia spanned several years (median, 4.4; range: 1.7-8.6).

WES of post-alloSCT CLL The post-alloSCT setting poses unique challenges for genomic

analyses as there are potentially 3 types of exomes present: (i) host germline DNA (varies with
hematopoietic chimerism) (ii) host tumor DNA and (iii) donor germline DNA. To maximize tumor
purity and to minimize contamination by host and donor germline DNA, we sort-purified the
autologous pre-alloSCT T cells (CD3+, for germline) and CLL cells (CD19+CD5+) prior to DNA
extraction and WES (Figure 1). We then examined the level of donor DNA contamination in the
post-alloSCT purified CLL samples from 6 patients to confirm the detected variants were host
tumor variants and not SNPs in donor DNA that were called against the host germline DNA.
We directly assayed for donor SNPs in 23 post-transplant CLL samples using the
strategy described in the ‘Variant Calling’ methods section. For 2 patients (CLL patients 1 and
4), there was no donor contamination observed. For 3 patients (CLL patients 2, 3, and 5),
genetic contamination from the alloSCT donor was detected at a low level in 6 of 8 samples.
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The donor variants, which are disparate SNPs between host and donor, were detected in the
sorted CD19+CD5+ fraction at a mean allelic fraction (AF) of 0.047 (SD + 0.014) in CLL patient
2,0.048 (SD £ 0.018) in CLL patient 3, and 0.052 (SD £ 0.014) in CLL patient 5 (Figure 2A). As
a positive control, we analyzed the post-transplant FFPE BM sample from CLL patient 3, which
was taken at a time point when clinical hematopathology reported CLL in more than 50% of

examined cells and full donor chimerism in T and myeloid cells. Since the leukemia was not

Figure 1
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Figure 1. Sort purification of CLL and T cells
Gating strategy for the FACS of CD19+CD5+ CLL cells for leukemic DNA and CD3+ T cells for

germline DNA. Cells were also evaluated for Ig k or Ig A light chains to verify monoclonal

expression.
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Table 1. CLL prognostic features and prior treatments for the alloSCT cohort

Cytogenetics prior

Disease status

Cytogenetics prior CD19/CD38+ )
CLL |Ageatdiag./| IGHV | Therapies prior to to AlloSCT to AlloSCT (FISH) | AjoscT prior to
_ (for 11q, 13q, and AlloSCT
case Sex status AlloSCT {by G banding - . (as %age of ) .
GTG) 17p deletions and lymphs) (% CD19/5+ in
trisomy 12 ) ymp EM
deliigid active disease
. I3
1 53M unmutated FC, Chl, R, VCP del13q13g21 nof tested 51.2% (99%)
2 58F unmutated F, FCR, RA diploid negative 6.2% acte disease
(36.9%)
F, Chl, R, RA . active disease
3 4TF unmutated FCR diploid nof tested 37T 1% (88.2%)
4 48M unmutated F,FCR, CFAR diploid not tested 34.2% CR
5 ATM unmutated F. FCR diploid not tested 82.0% m"’&g;‘?a‘se
6 B4F unmutated R, FCR, RA diploid negative 54 3% m"[’fadéiz?se
7 54M unmutated Chl, FCR diploid not tested 11 5% 3‘3“[“1%"23;]"'56
8 56M unmutated | PChI, F. R, FCR diploid no trisomy 12 3.1% ECT'[‘“SEQ"?EE?S&
F, C, RA, Hyper- R active disease
] B4M unmutated CVADIMT X-Ara-C diploid nof tested 35% (44.4%)
10 50M unmutated PR, FCR del13g12g22 del 13g 63.1% aCT':gezﬂszse
11 50F unmutated | P, FCR, CFAR del11g13q23  |del11gand del17p|  60.2% 3°Ti:992f§§?se
F, FCR, R-CHVP, CVP- ) ]
12 44M unmutated R, OFAR, Hyper- del11g13g22.2 negative 7 3% ECTI}:':BG;‘S‘]?&EGS&
CWADIMTX-Ara-C -5%])
Chi+P, R, FC, R- del13q14q21 [2]; Active disease
13 58M unmutated | CHVP, FCR + CD23 delii1g21 [1]; del 11q and del 13q 96.2% (79 4%)
Mab, OFAR diploid [17] )
complex: 45 XY -
Chl, FCR, CFAR, 1,del{3){q26.2),-5, active disease
14 S4M unmutated OFAR inv(E)(p21.3q25) add( del 17p 96.9% (68%)
9){p13),-17 -18,+3mar
Chl, Chi+P, FC, FCR, active disease
15 41M not tested RA del1igi3 nof tested 63.4% (83.7%)
FCR, Hyper- o active disease
16 53M not tested CVADMT X-Ara-C diploid not tested 80.6% (19.4%)
17 55M unmutated FCR, RA del11g14 not tested 58.6% “t"[‘?ezdﬁz?se
FCR, RA, ) ) active disease
18 43F unmutated pentostalin:CR frisomy 12 trisomy 12 37.5% (58%)
CP, FCR, OFAR, . ) active disease
19 53M unmutated hyper-CVAD-R diploid trisomy 12 4 6% (79%)
o del 13q14.3, del active disease
_CHY .
20 49F unmutated R-CHVP, A, FCR diploid 13q34, del 17p 29.2% (17.9%)
FCR, OFAR, Hyper- o active disease
21 44M unmutated CVAD-R diploid del 17p 97.9% (82.7%)
CHVP, R, F, R- o active disease
22 4TM unmutated ESHAP, Hyper-CVD diploid del 11q 14.8% (92.9%)
23 57M unmutated FC.FCR. A add(11)q22 del 11g, del 13g 92 2% “t"’ég‘ifase
45 X <Y [13], active disease
24 H2M not tested FCR, AR diploid [7] del 11q 96_5% (17.1%)

Abbreviations: A, alemtuzumab; C, cyclophosphamide; Chi, chlorambucil, ESHAP, etoposide, methylprednisone, cytarabine, cisplating F,
fludarabine; Hyper-CWVADIMT X-Ara-C, fractionated cyclophosphamide, doxorubicin, vincristine, and dexamethasone alternating with high-
dose methotrexate and cytarabine; O, oxaliplatin; P, prednisone; R, rituximah; ¥, vincristine.
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Table 2. Patient and donor alloSCT characteristics

AlloSCT AlloSCT Time from [Response at | Failure-free Acute Chronic
CLL | AlloSCT HLA conditioning nditionin diagnosis [ 2 months |survival post{ # of GVHD GVHD coD
case | source matching |(MA, NMA, or Cczdetai(lJed)g to AlloSCT post- AlloSCT | DLls | (grade Il | (moderate
RIC) (yrs) AlloSCT* (days) or IV)** | or severe)
identical by rooressive
1 brother | serology and NMA FC 9.9 PD 124 6 no no P diiease
PCR-SSP
2 MUD 10 of 10 NMA FCRA 3.1 PR 396 2 yez'siti':ge no N/A
3 sister 10 0f 10 NMA FCR 55 PD 450 1 [YeS:Sta%e | derate | Progressiwe
3 skin disease
4 | mup 10 0of 10 NMA FCRA 104 | CRiw/ MRD 7 3 no severe GVHD and
infection
9 of 10 progressive
5 sister (1 mismatch NMA FCR 6.2 PR 165 5 no no disease and
at DQB1) infection
progressive
6 | sister 10 0f 10 NMA FCR 24 sD 1072 o |Yes stage no disease,
3 skin Richter's
syndrome
es. stage progressive
7 | sister 10 0f 10 NMA FCR 55 PR 396 I e no disease and
infection
progressive
8 sister 10 of 10 NMA FCR 3.6 PR 177 2 no no disease and
infection
identical by FTT and
9 brother | serology and RIC FA + M* 6.3 CRi w/ MRD 406 1 no moderate infection
PCR-SSP
10 brother 10 of 10 NMA FCRI 1.1 PR 619 3 no no N/A
progressive
11 cord 10 of 10 NMA FCRT 7.4 PR 690 0 no sewvere disease and
infection
12 MUD 10 of 10 NMA FCRA 7.9 CR 2320 0 no sewvere unknown
13 | MuD 10 0f 10 RIC FR + M 6.0 sD 3124 0 no moderate | Progresshe
disease
14 | mMub 10 0f 10 RIC FR+ M 11.3 PR 3955 0 yeg'sitiige moderate N/A
15 sister 10 of 10 NMA FCR 18.1 PR 4687 0 no no N/A
16 | sister 10 of 10 NMA FCR 6.4 CR 4500 0 ye; 'sf(tiige no N/A
90f10 es, stage
17 | MUD | @mismatch|  NMA FCR 3l PR 4808 0 |YHain®| moderate N/A
at C locus)
18 MUD 10 of 10 MA BEAM+AR 8.1 PR 3311 0 no no N/A
19 MUD 10 of 10 NMA FCRI 13.9 PR 2521 0 no no N/A
20 brother 10 of 10 NMA FCR 1.6 CR 3821 0 no no N/A
21 MUD 10 of 10 NMA FCR 5.9 PR 2662 0 no moderate N/A
steroid
. refractory
22 sister 10 of 10 RIC FR+M 7.8 SD 426 0 no sewere GVHD and
infection
steroid
. yes, stage refractory
+ .
23 sister 10 of 10 RIC F+M 9.4 PR 463 0 3 skin severe GVHD and
infection
24 | brother 10 of 10 NMA R+1 75 PR 3501 0 ye;;(tiige no N/A

Abbreviations: A, alemtuzumab; BEAM, carmustine, etoposide, cytarabine, melphalan; C, cyclophosphamide; COD, cause of death; cord, umbilical cord
graft; CR, complete remission; CRi w/ MRD, complete remission with incomplete marrow recovery and evidence of minimal residual disease; F, fludarabine;
FTT, failure to thrive; I, ibritumomab tiuxetan; M, melphalan; MA, myeloablative; MUD, matched unrelated donor; NMA, nonmyeloablative; PD, progressive
disease; PR, partial remission; R, rituximab; RIC, reduced-intensity conditioning; SD, stable disease; SSP-PCR, sequence-specific amplification (PCR) for
HLA typing; T, low dose TBI (2 Gy).

* Responses graded according to the guidelines set by the International Workshop on CLL

** GVHD graded according to the NIH consensus criteria

# patient had 2 transplants from his brother; first with FCR condioning (failed engraftment) and next with FA + M
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sort-purified, a large number of donor SNPs (n = 3184) were detected among the CLL somatic
calls at a mean AF of 0.13 (SD + 0.047) (Figure 2A, inset). Of note, the CLL driver mutations
that were detected in this sample (ATM, XPO1, and SF3B1 mutations) appeared well above the
level of contamination at AF’s of 0.36, 0.33, and 0.28, respectively.

Our sequencing pipeline flags all variants present in the dbSNP database [68] and
correctly labeled > 97% of the contaminating donor variants as SNPs. Importantly, our approach
resulted in concordant detection of mutations in serial samples as is shown over 7 years for CLL
patient 10 (Figure 2B). For this patient, the WES data demonstrated the absence of post-
transplant disease evolution despite our detection of donor cell contamination in the initial post-

alloSCT CLL sample (represented with an asterisk). Taken together, these data indicate that our

A CLL Patient 2 CLL Patient 3 CLL Patient 5
1.09 oz 1.0 T 1.09 ——
g_.é”- :Eo.o- :EM-
2% 25 2s
‘é > 0.64 E > 0.6+ O > 0.6+
£3 £3 £3
%go.o- %2 0.4+ %2 0.4+
3;'6’02- . igo_z. E.go.z. N
i host do;lor e host do;;or o ho'st do;ror
B s
19 -8 SAMHD1
- PBRM1
0.84 - SOX11
= Allo SCT -7 USP8
2 061 / N4BP1
[
w - -~ LRRIQ1
g - MPDZ
< ~e- OLFML3
-u~ COL22A1
-o- NLRP7
- SH3RF3

25



Figure 2. WES of post-alloSCT CLL is feasible despite donor chimerism

Overlapping SNVs found in both the normal donor cells and host post-transplant, sort purified
samples are plotted at the AF detected in the host and donor samples for CLL 2, CLL 3, and
CLL 5 (A). The inset for CLL 3 shows overlapping SNVs found in normal donor cells and host
unsorted post-alloSCT BM as a comparison. (B) Recurrent, somatic exonic mutations and their
corresponding AFs are plotted to demonstrate the concordance in WES across ~7 years of
PB/BM samples from CLL 10 whose disease showed no evolution after transplant. The timing of
alloSCT is indicated (the first sample, on the Y-axis, is a pre-alloSCT sample) and the asterisk
denotes the post-SCT CLL sample where the greatest degree of donor SNP contamination was

detected.

strategy resulted in reliable detection of host-specific somatic CLL mutations in post-transplant
leukemia samples.

CLL subclonal evolution occurs after DLI

To examine leukemic evolution after alloSCT, we compared the AF of somatic mutations
detected in longitudinal CLL patient samples. Clear patterns of evolution emerged, and in 2
patients (CLL 5 and CLL 8), evolution coincided with DLI administration for relapsed disease.
The clinical course and WES windows are shown for CLL 5 (Fig. 3A) and CLL 8 (Fig. 3B). Sort
purified CLL was sequenced at 5 time points (blue asterisks) in both patients (Figs. 3C and 3D).
Branched leukemic evolution was observed with a branch point between time points 3 and 4,
when CLL 5 received 3 DLIs (Fig. 3C). Outgrowth of a leukemic subclone containing non-silent
mutations in EGR2, NOTCH1, XPO1, and a new mutation in ASXL1 (p.M1345V) was seen post-
DLI in concert with the elimination of a related subclone containing the EGR2 mutation as well
as a distinct NOTCH1 nonsense mutation (p.S2492X) among several other variants.

CLL 8 experienced a similar relapsing and remitting clinical course (Fig. 3B). Branched
leukemic subclonal evolution again coincided with DLI treatment (Fig. 3D). The pre-alloSCT
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leukemic clone, harboring missense mutations in RAG1, HERC2, CHD11, and LIFR as well as a
chromosome 11q deletion, contracted after the lymphocyte infusion, while a subclone expanded
to compose the relapsed disease. This refractory subclone shared the RAG1, HERC2, and
CDH11 mutations, implying they were acquired prior to the branch; however, the late subclone
carried additional mutations in TP53 and ASXL1 as well as an amplification of chromosome
region 2p (Fig. 3E).

We performed this analysis in all 11 patients with available longitudinal post-alloSCT
samples and observed branched CLL evolution in 5 patients, linear evolution in 3 patients, and
no evolution in 3 patients (Figure 4). Notably, studies of CLL evolution after chemotherapy have
also demonstrated mixed patterns of branched and linear evolution (6, 7). In summary, the data
support our hypothesis that allogeneic T cells shape leukemic subclonal architecture after

transplant.
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Figure 3
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Figure 3. Branched evolution of CLL subclones occurs after DLI in patients CLL5 and

CLLS8

Clinical course for CLL 5 (A) and CLL 8 (B). The y-axis indicates disease burden as the

percentage of lymphocytes within the bone marrow aspirate sample that are CD19+CD5+ CLL

cells. Pre-transplant disease is represented as a dotted line and post-transplant disease as a
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solid line. Administered treatments are indicated with arrows and number of cycles. Numbered
asterisks (blue) delineate the time points when WES of sort purified CLL cells was performed.
Longitudinal AF plots for CLL 5 (C) and CLL 8 (D). Recurrent, somatic exonic nonsynonymous
mutations are shown over time for the 5 time points indicated by the asterisks in A and B.
Previously reported CLL candidate driver genes are bolded, and the protein substitutions are
listed. Clonal mutations (green), mutations enriched after DLI (red), and those that diminish after
DLI (dark blue for AF changes by > 0.15 and light blue for AF changes by <0.15) are shown.
Mutations in black represent additional mutations seen in the disease course for CLL 8 (E)
Model of subclonal evolution for CLL 8. MRCA denotes the most recent common leukemic
ancestor. Abbreviations: A, alemtuzumab; F, fludarabine; FCR, fludarabine, cyclophosphamide,
rituximab; hCVAD, hyperfractionated cyclophosphamide, vincristine, doxorubicin,
dexamethasone; MP, methylprednisolone; MRD, HLA-matched related donor; MUD, HLA-

matched unrelated donor; P, prednisone; R, rituximab; Chl, chlorambucil.

Figure 4. AF scatter plots for CLL patients 1-11 showing somatic variants across 2 time
points for each patient's course

The earlier time point is on the x-axis and the later time point is on the y-axis. The dotted
diagonal line shows y=x, indicating no change in AF over time. Red and blue circles highlight
clusters of mutations that include nonsynonymous mutations with a >0.2 AF change over time.
Linear evolution is defined by clusters of nonsynonymous mutations with an AF > 0.2 arising
after alloSCT and branched evolution is defined as both an increase and decrease in clusters of
nonsynonymous mutations with an AF > 0.2 post-alloSCT. According to these criteria, patients
were categorized as follows: CLL patients 1, 3, 5, 8 and 9 — branched, CLL patients 2, 4, and 6

— linear, CLL patients 7, 10 and 11 — no evolution.
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Figure 4
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CLL drivers evolve after alloSCT

We anticipated there would be immunoediting of the leukemic subclones by allogeneic T cells;
however, given that CLL subclonal selection had likely already occurred after prior treatments
[17], it was unknown whether the post-alloSCT/DLI relapsed disease would differ substantially
from the pre-alloSCT leukemia, particularly with regard to driver lesions. To answer this
guestion, we looked for changes in CLL drivers over time in the 11 patients with sequential
samples available post-transplant.

We observed marked evolution of variants in established CLL driver genes and
chromosome regions after alloSCT (Figure 5). For example, CLL patient 2 demonstrated linear
evolution of CLL post-alloSCT, and the relapsed leukemia contained mutations in the drivers
BCOR and MAP2K1 [69] as well as a novel mutation in EWSR1 (p.T100S). CLL patient 6 also
demonstrated linear evolution post-alloSCT and acquired an 18p deletion late in her course.

After alloSCT, 44% of CLL drivers remained unchanged in their AFs, 36% expanded,
and 20% contracted. Six of 11 patients experienced the emergence of at least one previously
undetectable driver post-transplant, including mutations in EGR2, XPO1, SF3B1, and TP53 as
well as novel mutations in DDX3X (p.L320F) and ATM (p.N1094S). We also detected 2 new
missense mutations in SAMHDL1 [70] (p.P227L in CLL patient 2 and p.M240V in CLL patient
10), both found clonally throughout their courses.

The canonical drivers evolved in the context of subclonal expansions/contractions along
with additional sSNVs. AF scatter plots that highlight the evolving subclones are shown in
Figure 4. These data suggest that selective pressure on the CLL population continues after

alloSCT.
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Figure 5
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Figure 5. Evolution of CLL drivers and enrichment for novel mutations occurs after
alloSCT and DLI

Heatmap indicating shifts in reported CLL driver lesions over time. The 11 CLL patients with
longitudinal samples are shown with driver gene mutations shaded by AF (blue) and copy
number alterations by log2 value (losses in red, gains in green). Each column represents a
longitudinal time point in a patient’s course and the bar above indicates the number of years
between the first and last WES time point. Solid bars in bold indicate interval alloSCT. *The IGH
CDR3 region of the early and late disease from CLL patient 3 was directly sequenced and was

identical.
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Chapter 3: Identification of a new candidate CLL driver through study

of leukemic evolution

Background: When we began our study of peri-alloSCT CLL, the landscape of somatic
mutations in untreated CLL was newly reported [71-74]. The landscape of somatic mutations
and CNAs in heavily pretreated CLL remained unknown. In the first patient (CLL1), we
uncovered a unique pattern of molecular disease evolution that led us to investigate a
previously unreported alteration in CHEK2. While performing these experiments, a new report
was published that listed CHEK2 as a potential CLL driver, further supporting our hypothesis
that the alteration we were investigating could have biologic relevance [17].

Methods: Microarray For CLL patient 1, genomic DNA from sort-purified populations of T cells

(pre-alloSCT germline) and CLL cells was analyzed at 750,000 SNPs and 1.9 million non-
polymorphic probes after hybridization to Affymetrix Cytoscan HD arrays (Affymetrix, Santa
Clara, CA). Arrays were scanned using the GeneChip Scanner 3000 7G System at the MDACC
SMF. Data were analyzed using the Affymetrix Chromosome Analysis Suite. Reverse

transcription and CHEK2 cDNA sequencing Total RNA was isolated using the RNeasy Mini Kit

(Qiagen) from a BM aspirate, which was collected at a time point when > 90% of BM cells were
CLL, confirmed by pathology and flow cytometry for CLL patient 1. cDNA was prepared using
iScript Reverse Transcription Supermix (Bio-Rad, Hercules, CA) according to the
manufacturer’s protocol. Primers were designed to amplify the cDNA from the region of interest
within CHEK2: AAACTCCAGCCAGTCCTCTC (forward) and TCTTTTCAGCAGTGGTTCATCA
(reverse). Purified amplicons were sequenced from both strands using Big Dye terminator
chemistry and an ABI 3730XL sequencer at the MDACC SMF Core facility. Chromatograms
were viewed using FinchTV (Perkin Elmer, Waltham, MA) and sequences were compared to the

germline reference sequence using Lasergene 12 software (DNASTAR, Madison, WI). CHK2

Co-Immunoprecipitation and Analytical Ultracentrifugation The plasmids 3XFlag-Chk2(P92L)
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and Myc-Chk2(P92L), were generated by site-directed mutagenesis of 3XFlag-Chk2 and Myc-
Chk2, respectively, using the QuickChange Il XL kit (Agilent, Santa Clara, CA) and the following
primers: 5GAGCCTACCCCTGCCCTCTGGGCTCGATTATGGGCC-3' and
5-GGCCCATAATCGAGCCCAGAGGGCAGGGGTAGGCTC-3'. For oligomerization assays,
HCT116 Chk2 -/- cells were co-transfected with 1 pg 3XFlag-Chk2 [wild-type (WT), I1157T, or
P92L] and 1 pg Myc-Chk2 (WT, 1157T, or P92L) using Lipofectamine 2000. Cells were
harvested 32 hours later and lysed in Mammalian Cell Lysis Buffer (MCLB); 50 mM Tris-HCI pH
8.0, 150 mM NacCl, 0.5% NP40, 5mM EDTA, 2 mM DTT, 1 mM PMSF, 1 uM microcystin-LR, 1X
Protease Inhibitor Cocktail (Sigma, St. Louis, MO), and 1X Phosphatase Inhibitor Cocktail Set Il
(Millipore, Billerica, MA). Protein from lysates was pre-cleared with Protein A Agarose
(ThermoFisher) and then immunoprecipitated with anti-Flag M2 affinity gel (Sigma) or anti-c-
Myc agarose (Santa Cruz Biotechnology, Dallas, TX) for 3 h at 4°C, and the resin was washed
4x with MCLB. Pre-cleared lysates and resin containing the immunoprecipitated proteins were
boiled in Laemmli buffer for 5 min, and proteins were resolved by SDS-PAGE followed by
Western blotting with the indicated antibodies. Antibody incubations were performed at the
following dilutions in 1X PBST: 1:5000 mouse anti-Flag M5 (Sigma), 1:100 rabbit anti-c-Myc
(Santa Cruz Biotechnology), 1:5000 HRP goat anti-mouse IgG (BD Pharmingen), and 1:5000
HRP goat anti-rabbit IgG (BD Pharmingen). Blots were visualized using SuperSignal Dura

Substrate (ThermoFisher) and a Syngene G:box. Analytical ultracentrifugation Chk2 proteins

(WT, P92L, 1157T, and D368N) were purified from E.coli by the Center for Biomolecular
Structure and Function at MDACC. Sedimentation equilibrium analytical ultracentrifugation
(SEQ) experiments were performed at 20°C using a Beckman XL-I instrument with an AnTi 60
rotor. All samples were prepared in 20 mM HEPES, 200 mM NacCl, 2 mM TCEP at pH 7.5 and
loaded into sample chambers with Epon double sector centerpieces and sapphire windows.
SEQ scans were recorded using absorbance at 280 nm after 48 h incubation at 8000 rpm. The
protein partial specific volume and solvent density were calculated using Sednterp 1.09 [75, 76].
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Data analysis was performed using Sedphat 10.58d [77]. For each protein, the SEQ profiles
were fitted to a monomer-dimer equilibrium model. A F-statistics error mapping approach [78]
was used to determine the 99% confidence intervals for the dissociation constant.

Results:

Candidate driver CHEK2 ¢.C275T (p.P92L) affects Chk2 dimerization

An unusual pattern of post-transplant subclonal evolution in CLL patient 1 facilitated the
identification of a novel pathologic mutation in CHEK2. The AF plot and corresponding interval
therapies for CLL patient 1 are shown in Figure 6A. Branched subclonal evolution was observed
and the late disease contained a recurrent mutation in the CLL driver EGR2 (p.D411H) as well
as the characteristic CLL chromosome loss — deletion 13qg. There was an 11q deletion in the
pre-transplant and early post-transplant leukemia that was not detected in the late disease,
implying that a rare subclone with diploid 11g may have expanded late in the patient’s course.
To verify this result, we re-analyzed the samples using high-resolution microarray and
confirmed post-alloSCT evolution of the chromosome 11q deletion as well as convergent
evolution of distinct 13q deletions (Figure 6B). The branched leukemic evolution in CLL patient 1
suggested the 11q and 13q deletions emerged later in the patient’s disease rather than early in
leukemogenesis — the latter scenario being far more common (Figure 6C) [17]. Among the
genetic lesions in the inferred most recent common leukemic ancestor, the CHEK2 missense
mutation (c.C275T; p.P92L) emerged as a potential pathogenic lesion and was confirmed to be
expressed by Sanger sequencing of the mutant transcript (Figure 6D). Chk2, a serine/threonine
protein kinase integral to the DNA damage response, is implicated in breast cancer and other
solid malignancies [79, 80]. Importantly, CHEK2 was added to list of most recurrently mutated
CLL genes by Landau et al. who detected CHEK2 mutations in 5 of 538 patients. Two of these
mutations affected the same forkhead-associated (FHA) domain of Chk2 as in our patient but

neither altered proline 92 [17].
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Figure 6. Candidate driver CHEK2 c.C275T (p.92L) affects Chk2 dimerization.

(A) AF plot for CLL patient 1. Recurrent, somatic exonic nonsynonymous mutations are plotted
over time across 8 time points. Samples from time points 2, 3, 5, and 6 were unsorted, which
accounts for the lower AF of mutations in these samples. Clonal mutations (green), mutations

enriched after therapy (red), and those that diminish after therapy (dark blue) are shown and
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CLL drivers are bolded. Interval treatments are listed. (B) Microarray B allele frequency plots for
purified CLL samples from Patient 1 along chrllq (left) and chrl3q (right) at the 5 longitudinal
WES time points indicated in blue. Each data point represents a single SNP and the red bars
span the breakpoints of chromosomal deletions. (C) Model of subclonal evolution for CLL
patient 1. (D) Sanger sequencing chromatograms of CHEK2 using patient-derived, reverse-
transcribed leukemic mRNA. The heterozygous CHEK2 ¢.C275T (p.P92L) mutation is validated
within the CLL transcript in both the forward (left) and reverse (right) directions. (E) Blots show
increased co-immunoprecipitation of WT and P92L Chk2 with the P92L mutant. HCT116
CHEK?2 -/- cells were co-transfected with plasmids expressing the indicated Flag-tagged and
Myc-tagged forms of Chk2 (WT, I1157T, and P92L). Lysates were incubated with resin
conjugated to antibodies recognizing either the Flag (IP: Flag) or Myc (IP: Myc) tag. Protein from
total lysates and immunoprecipitations was resolved by SDS-PAGE and immunoblotted with
Flag (IB: Flag) and Myc (IB: Myc) antibodies. (F) The P92L mutant has a lower Kq than WT
Chk2. The Kq's of recombinant WT, 1157T, D368N (kinase dead), and P92L Chk2 purified from

E.coli were measured by analytical ultracentrifugation.

We sought to determine the consequence of the Chk2 P92L substitution. The FHA
domain affected by the Chk2 P92L substitution mediates dimerization and activation of the
kinase [81, 82]. A neighboring FHA domain substitution (1157T) is implicated in the Li-Fraumeni
syndrome, breast cancer, and other tumors [80, 83], and was found to impair Chk2 dimerization,
auto-phosphorylation, and activation of the protein [81, 82]. We hypothesized that the P92L
mutation would be similarly disruptive.

To interrogate the P92L substitution, we co-expressed Flag- and Myc-tagged Chk2
proteins in HCT116 cells lacking Chk2 and evaluated the homo- and heterodimerization of
mutant (1I157T and P92L) and wild-type (WT) Chk2 by co-immunoprecipitation. In agreement
with prior studies [81], the 1157T mutation impaired both homo- and heterodimerization when
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compared to WT Chk2. In contrast, the P92L substitution from CLL patient 1 significantly
strengthened both homo- and heterodimerization of the kinase when compared to WT Chk2
(Figure 6E). To confirm this unexpected observation, we measured the dissociation constants
(Kq) of purified recombinant WT and mutant Chk2 proteins by analytical ultracentrifugation. This
experiment validated our co-immunoprecipitation results as the Kq for Chk2 P92L was 5 uM
compared to 15 uM for WT Chk2 and 36 uM for Chk2 1157T (Figure 6F and Figure 7). Taken
together, these data suggest that the CHEK2 candidate driver mutation (c.C275T, p.P92L) may
prevent Chk2 dimers from dissociating and phosphorylating downstream substrates. Moreover,
through an in-depth longitudinal study of late-stage, post-transplant leukemia in a single patient,
we identified Chk2 as a candidate CLL driver, a finding that required hundreds of patients using
a statistical approach [17].
Figure 7
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Chapter 4: Mutation load and neoantigen burden do not predict CLL

response to alloSCT

Background: Our study of CLL disease evolution required patients who were nonresponders to
alloSCT and who had sufficient post-alloSCT disease for longitudinal sequencing analyses.
Next, we included CLL patients who had a complete response (CR) to alloSCT to assess
whether molecular disease features could predict transplant response. Pre-alloSCT CLL from
responders was sort-purified and subjected to WES and the pre-transplant samples from the
disparate response cohorts were compared.

Methods: Immunoglobulin heavy chain variable gene (IGHV) mutation status The somatic

mutation status at the IGHV locus was determined by the MDACC clinical molecular diagnostics
lab. For patients without documentation of the CLL mutation status and with adequate sample
available, testing was performed according to an established protocol [13, 84]. Briefly, RNA was
extracted from sort-purified CLL cells using the RNeasy Mini Kit (Qiagen), reverse transcribed,
and multiplex PCR amplification of IGH transcripts was performed using consensus variable and
segment primers. The presence of > 2% variation in the sequenced V-segment of clonal IGH
sequences from wild type sequences was considered positive for somatic hypermutation.

Neoantigen prediction To predict potential neoantigens for each patient, a peptide list was

generated from each missense mutation that was identified from the exome sequencing data at
each sample time point. Peptides included all possible 9- and 10-mer peptides containing the
alternate amino acid that resulted from the missense mutations [85]. The binding affinities for
each wild type and mutant peptide to the patient-specific HLA molecules (HLA-A and HLA-B)
were then tabulated using NetMHCpan (v.2.8) [86]. Peptide-HLA complexes with IC50 values
less than 150 nM were considered strong binding neoepitopes and those with IC50 between

150 nM and 500 nM were considered intermediate binding neoepitopes. Subclonal analysis The

Sequenza package v3.0 [87] was used on the paired tumor-normal BAM (Binary Alignment
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Map) files to estimate the global parameters of cellularity and ploidy as well as allele-specific
CNA profiles. The reads with low-quality mapping were excluded with the parameter -q30.
Randomly selected samples from previously published FCR refractory/remission CLL WES data
sets [17] were downloaded from dbGaP following institutional approval and converted to BAM

format using the SRA Toolkit from NCBI. Statistical analysis Statistical analysis was performed

using GraphPad Prism software. FFS post-alloSCT was defined as the number of days from
transplant to re-treatment. Data were censored at the last date of MDACC follow-up. The
Kaplan-Meier method was used to generate OS and failure-free survival (FFS) curves.
Differences between groups were assessed using the log-rank test. The Mann-Whitney test was
used to compare differences in mutation and copy number data between groups. Categorical
variables were compared using Fisher’s exact test. The Wilcoxon rank sum test was used to
compare pre-treatment CLL samples from the alloSCT and chemotherapy
responder/nonresponder cohorts analyzed using Sequenza v3.0. For the pre/post FCR samples
from the Landau et al. data sets [17], paired Wilcoxon signed rank test was used. Two-tailed P
values were calculated and P values of less than .05 were considered statistically significant.
Results:

CLL alloSCT patients

To identify molecular predictors of transplant response, we added 13 CLL patients to the cohort
who experienced a CR to alloSCT (patients 12-24, Tables 1 and 2). Of these 13 patients, 11
had a durable CR (> 2 years) with a median post-transplant OS of 9.8 years. CLL patients 22
and 23 had a CR to alloSCT and neither patient experienced disease relapse; however, both
patients died within 1.5 years of alloSCT from steroid refractory GVHD and so they were not
considered to have had a durable CR.

Overall, the cohort was relatively young at the time of CLL diagnosis (median age 53),
likely because younger patients tend to have more aggressive disease [88] and are more fit for

transplant. All patients demonstrated FCR-refractory disease prior to alloSCT, and all but 1 of
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the 24 patients received nonmyeloablative or reduced-intensity conditioning (Table 2). Notably,
all 21 patients that were tested had CLL with an unmutated immunoglobulin heavy-chain
variable region (IGHV) gene, which is among the strongest adverse risk factors in CLL (3
patients had insufficient sample) [89]. We utilized WES to an average depth of 120X to detect
exonic sSNVs in the leukemia. We detected a mean of 41.2 (SD + 15) sSSNVs (exonic silent,
non-silent, and sindels) per case (Figure 8A).

The patients in our cohort had leukemia enriched with variants in recognized CLL drivers
(Figure 8B) [17, 63]. A median of 3 drivers was observed per case (range, 2-9; 88% clonal, 12%
subclonal), and 10 patients harbored 5 or more drivers in their pre-alloSCT leukemia. Moreover,
the prevalence of CLL drivers that adversely impact OS was increased in our cohort [89-92]
compared to the 501 untreated patients from Landau et al. [17], including 10 patients with TP53
mutations and 6 patients with loss of 17p (both P < .01 by Fisher’'s exact test).

We compared several metrics between the 11 patients with a durable CR and the 11
patients with an early relapse (within 2 years) post-transplant. We did not detect any significant
differences between groups with respect to the number/composition of exonic mutations, copy
number changes, or the leukemic neoantigen burden (Figure 9). Importantly, the
inclusion/exclusion of data from CLL patients 22 and 23, who had a CR but died within 1.5 years
of alloSCT due to severe GVHD, did not affect the results. In summary, we observed aggressive
molecular features in our cohort of 24 patients with chemorefractory CLL; however, they were

not predictive of transplant outcome.
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Figure 8. Somatic variants detected in the alloSCT patient cohort (n=24)

(A) Total numbers of somatic exonic silent and non-silent SNVs and indels are listed for each
patient’s pre-alloSCT leukemia (allelic fraction (AF) > 0.05). The percentage of mutations that
are subclonal is also indicated (triangle). (B) The landscape of somatic variants in genes and
chromosome regions recognized to be CLL driversis shown for the CLL alloSCT cohort.
Variants are shaded according to their corresponding variant AF or exome-derived copy number

log2 ratio.

Figure 9. Mutation load and neoantigen burden do not predict response to alloSCT

(A) Post-transplant OS for patients in our cohort with a durable CR (>2 years) or early relapse.
(B) Comparison of total exonic mutations and total clonal exonic mutations (inset) between the
transplant early relapse and durable CR groups. Bars indicate mean +/- standard deviation. (C)
Comparison of copy losses and gains between the durable CR and early relapse groups. The
Mann-Whitney test was used to compare differences. Copy number changes were similar
between groups except at the T-cell receptor and immunoglobulin loci where copy number
anomalies were probable artifacts from using sorted T cells as the normal reference. (D)
Comparison of the total and strong binding (inset) neoantigen burden between CLL transplant
early relapse and durable responder groups. (E) Post-transplant OS for patients with either wild

type TP53/chrl7p or those with mutant TP53/17p loss.
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Structural heterogeneity differs between CLL alloSCT responders and nonresponders

Next, we used the WES data to evaluate tumor heterogeneity contributed by larger
chromosomal aberrations such as CNAs and loss of heterozygosity (LOH) using the Sequenza
algorithm [87]. Cellularity, as defined in Sequenza, is the fraction of tumor cells in a patient
sample. Sequenza derives the cellularity parameter from WES data using two sources: normal
cells (for germline analysis) and the tumor sample, which is assumed to be a mixture of normal
and tumor cells. The program determines copy number variation and allele fraction at SNP sites
across the exome and compares tumor and normal samples segment by segment to find the
most likely cellular fraction (with values ranging between 0 and 1, where a value of 1 indicates a
purely clonal tumor sample). Somatic mutated alleles are not used in the calculation. Since pre-
transplant sorted leukemia cells were used for the analysis, we postulated that when cellularity
was close to one, the tumor sample was pure according to copy humber and SNP
heterogeneity. Accordingly, when the cellularity was lower than one, it implied the tumor sample
was composed of at least two structural clones.

While there were not significant differences in total CNAs between the CR and NR
cohorts (Figure 9C), we did observe a significant difference in structural heterogeneity between
the response groups. Specifically, the CR cohort had CLL that was more structurally clonal and
AF change in the responder cohort was due to homogenous copy gain/loss within the CLL
population (P=.003917, Wilcoxon rank sum test). In the NR cohort, AF change was contributed
by subclonal CNAs rather than clonal CNAs, resulting in increased subclonal structural
heterogeneity (Figure 10A and B). These data suggest that structurally heterogeneous CLL may
be more resistant to alloSCT.

To understand whether the differences in structural heterogeneity were limited to the
alloSCT setting, we performed similar analyses on CLL samples collected before and after
chemotherapy using previously published data sets [17]. We evaluated tumor ‘cellularity’ of

pretreatment samples from 10 randomly selected relapsed patients and compared them to
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pretreatment samples from 15 patients that went into remission following FCR chemotherapy.
There were no statistically significant differences between these two response groups in the
Sequenza analysis (P=.8673, Wilcoxon rank sum test) (Figure 10C). Within the FCR relapse
cohort, the cellularity of purified CLL was higher for post-FCR samples compared to pre-FCR
paired samples (P=.02116, Wilcoxon’s signed rank test, paired) (Figure 10D). These data
suggest that chemotherapy can successfully eliminate some, but not all leukemia subclones,

which may drive the tumor cells to a more clonal, chemorefractory population.

Figure 10. Structural heterogeneity of pre-transplant CLL differs between alloSCT
response groups

(A) B allele frequencies of non-synonymous SNPs generated from WES data by Sequenza
v3.0. CD19+CD5+ leukemia cells from pre-transplant samples from CLL patients 2 and 16 were
analyzed. CLL patient 2 sample has high structural heterogeneity while the pre-transplant
sample from CLL patient 16 is almost entirely clonal. (B) Comparison in structural heterogeneity
between the nonresponder and responder cohorts, P=.003917 by Wilcoxon rank sum test. (C)
Cellularity of sort-purified CLL cells from patients that went into remission (n=15; denoted as
Chemo responder) following FCR treatment versus those who eventually relapsed (n=10;
denoted as Chemo NR). Sequenza v3.0 analysis of WES data from pre-treatment samples was
performed using data sets that were previously generated [17], P=.8673, using Wilcoxon rank
sum test. (C). Comparison of tumor cellularity in paired samples from FCR relapsed patients

before and after treatment. P=.02116 by paired Wilcoxon signed rank test.
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CLL patient 2 (NR), Cellularity 0.16

CLL patient 16 (CR), Cellularity 0.98
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Chapter 5: Post-alloSCT T cell repertoires

Background: Having observed significant and frequent post-alloSCT evolution of the leukemia
population, we then assessed for reciprocal changes in the allogeneic T cell compartment.
Delayed and impaired T cell reconstitution post-alloSCT is a well-known complication of the
procedure that can lead to severe infection in the transplant recipient. T cell reconstitution post-
alloSCT is influenced by many factors including conditioning type, graft type (related vs.
unrelated vs. umbilical cord), infection, CMV/EBYV reactivation, GVHD, recipient/donor age, and
the post-alloSCT immunosuppression utilized to prevent/treat GVHD [93-95]. In some transplant
recipients, defects in the T cell repertoire can persist for years. We assessed several features of
the bulk allogeneic T cell repertoires in the responders and nonresponders from the CLL cohort,
including T-cell receptor (TCR) clonality. We also utilized the post-alloSCT, longitudinal T cell
repertoires of the CLL transplant recipients to track candidate anti-CLL T-cell clones identified
through the techniques discussed in Chapter 6.

Methods: Bulk TCR Sequencing CD3+, CD4+, and CD8+ cells from post alloSCT samples

were purified using the methodology described in the ‘Cell purification’ section (Chapter 2).
Fractionation of CD3+ T cells was performed when sample quantity was sufficient. Genomic
DNA was extracted from sorted cells using established protocols (QIAamp Blood mini Kit,
Qiagen). TCR sequencing was performed using the immunoSEQ hs TCRB kit from Adaptive
Biotechnologies and sequencing was performed on a MiSeq System (lllumina) at the
Sequencing and Microarray Facility at MDACC. A subset of the samples was shipped to
Adaptive Biotechnologies for deep bulk TCR sequencing (hs TCRb vB3 assay). The Adaptive
Biotechnologies assay utilizes multiplex PCR with primers that anneal to the V and J segments,
resulting in amplification of rearranged VDJ segments from each cell. T cell repertoires were
analyzed using the immunoSeq analyzer software available through Adaptive Biotechnologies

and using the tcR and ComplexHeatmap R packages [96]. Sample overlap was assessed using
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two methods (i) scatter plot of clonotype abundance in each sample analyzed using the Pearson
coefficient (ii) heatmap of the Morisita-Horn similarity index [97]. The Morisita-Horn index is a
population overlap measure that compares the presence and frequency of T cells in 2
repertoires; values approaching 1 indicate highly correlated repertoires while values near 0
indicate that the 2 samples share very few T cells with the same TCR. Shannon Clonality is 1-
normalized entropy and is also known as 1-Pielou’s Evenness Index (see equation below) [98].
Simpson Clonality is the square root of Simpson’s D. Simpson’s D is the sum over all observed
productive rearrangements of the square fractional abundances of each rearrangement (see
equation below) [99].

—1% Piloga [P)]
R

r
log

b

SIMPSON CLONALITY = |Z P! SHANNOMN CLOMALITY =1-

Where R = the total number of productive T cell rearrangements, i = each rearrangement, and
Pi = the productive frequency of rearrangement i.

Both the Shannon Clonality and the Simpson Clonality range from 0 to 1, where O represents a
completely even sample and 1 represents a monoclonal sample.

Results:

We studied the post-alloSCT T cell repertoires in 19 of the 24 patients from the CLL WES cohort
(Table 3). The remaining 5 patients had insufficient material for analysis. For many patients,
serial samples were available that spanned several years. The multiplex PCR and NGS
approach (Adaptive Biotechnologies) can replicate the historical method of assessing T cell
repertoire diversity by CDR3 length (CDR3 spectratyping) but also permits deeper analyses
since each T cell clone is resolved to its exact TCR Vbeta sequence. Importantly, the assay

dedicates the highest sequencing fidelity to the hypervariable CDR3 segment (Figure 11).
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Table 3. Post-alloSCT T cell samples and TCR Vp repertoire diversity

Time point Total Fraction Productive Max

Sample  (mins from Sample T cell template productiv rearange Simpson Shannon productive
ID aloSCT) Type subset s ments  clonality clonality frequency

01CLL1 36.8 P8 cD3 110994 0.80 14020 0.1683 0.4223 0.10
02 CLL1 39.1 P8 cD3 58797 0.81 8737 0.1704 0.3966 0.10
03 CLL1 11.9 BM  unsorted 31431 0.84 11039 0.0779 0.1844 0.04
04 CLL1 147 P8 unsorted 78261 0.84 12492 0.1144 0.3237 0.05
05 CLL3 1.2 P8 cD3 21541 0.79 6150 0.1214 0.2183 0.10
06 CLL3 11.0 B8M cD3 31518 0.88 12776 0.1817 0.2387 0.16
07 CLL3 143 BM cD3 30056 0.84 9985 0.0755 0.1564 0.06
08 CLL3 16.4 BM cD3 12162 0.85 5241 0.1046  0.145 0.09
09 CLL4 8.5 BM cD8 28586 0.61 682 0.44 0.6383 0.30
10CLLA 85 BM co4 7307 0.84 3063  0.104 0.1416 0.07
11CLLa 85 P8 cD8 67274 0.52 1325 05049 0.7034 0.37
12 CLLA 85 PB cD4 1820 0.82 1101  0.058 0.0487 0.03
13 CLLS 11.2 BM cD8 5493 0.52 242 0.4896 0.5906 0.40
14 CLL4 11.2 BM cD4 4562 0.82 2063 0.1098 0.1431 0.07
15CLLE 11.2 P8 cD8 47615 0.55 999 05305 0.7168 0.39
16 CLL4 11.2 P8 cD4 8963 0.82 4841 0.0745  0.0999 0.05
17 CLLd 16.1 BM cD8 17811 0.78 1902 02303  0.4297 0.14
18 CLLA 16.1 BM cD4 13691 0.81 7461  0.0636 0.09 0.04
19 CLL4 16.0 P8 cD8 2012 0.77 302 0.2442  0.329 0.14
20CLL4 16.1 PB cD4 51311 0.82 22745 0.0734  0.1447 0.04
21CLLS 23 PB cD3 73512 0.80 30172 0.0219  0.0693 0.01
22 CLLS 73 BM co3 79008 0.80 19922 0.0673 0.1745 0.05
23CLLS 16.1 BM cD3 36534 0.78 14709  0.043  0.1017 0.02
24 CLLS 352 BM cD3 46527 0.78 20923 0.0409 0.0791 0.03
25 CLLS 352 P8 cD3 63888 0.79 36745 0.0182  0.0372 0.01
26 CLLS 352 P8 cos 66445 0.80 31445  0.042 0.0921 0.03
27 CLLS 373 PB cD8 65816 0.80 34060 0.0352 0.0727 0.02
28 CLLS 40.7 P8 cos 59008 0.79 29366 0.0317 0.0733 0.02
29 CLLS 427 PB cD8 39835 0.79 23423  0.0232 0.0409 0.01
30 CLLS 495 PB cD8 58381 0.79 32270 0.0235 0.0492 0.01
31 CLLS 54.8 BM cD3 24428 0.79 13555 0.0229  0.038 0.01
32 CLL6 3.0 BM cD3 2789 0.80 1600 0.0738 0.0744 0.05
33 CLL6 347 PB cD3 807 0.72 352  0.0932 0.0764 0.03
34 CLL6 434 BM CD3 11357 0.82 4388 0.0718  0.1412 0.04
35 CLLY 17.1 B8M cD3 11866 0.78 870 0.1926 0.3488 0.11
36 CLL7 225 P8 cD3 68487 0.79 15090 0.0905  0.2399 0.05
37 CLL7 225 PB cD3 75041 0.79 15857 0.0936 0.2498 0.05
38 CLL7 225 P8 cDs 43009 0.78 2330 0.1773  0.3991 0.10
39 CLL7 225 pB cD8 41388 0.78 2444 0.1711  0.3932 0.09
40 CLL7 225 P8 cD4 132964 0.79 38533  0.0315 0.1216 0.01
41CcLLs 1.0 BM cD3 115610 0.76 18681  0.119 0.2954 0.08
42cus 1.0 BM cD8 54610 0.69 2884 0.1713  0.3751 0.10
43CLL8 5.8 BM cD3 92314 0.78 25662 0.0931 0.2151 0.05
44CLL8 15.2 BM cD3 33422 0.79 10892 0.0949 0.2171 0.04
45CLL8 27.4 BM cD3 63231 0.84 7608  0.152 0.3582 0.08
46 CLLS 27.4 P8 cD8 60243 0.88 6359 0.2288 0.4312 0.16
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47 CLLS 129 BM cbDs 83603 0.94 1394 0.2795 0.5286 0.16
48 CLL9 143 8™ cD8 3069 0.81 544 0.1174  0.1877 0.05
49 CLL10 48.8 BM unsorted 124 0.24 27 0.216  0.0241 0.13
S0 CLL10 58.2 PB CcD3 48444 0.81 15397 0.0509 0.1446 0.03
51CLL10 583 BM CcD3 7689 0.83 2514 0.0698 0.1331 0.04
52 CLL10 689 PB Ccb3 1482 0.78 625 0.0745 0.0762 0.03
53 CLL10 80.7 PB CD3 244 0.50 110 0.0999 0.0083 0.02
54 CLL12 1.6 BM cbs 2081 0.62 302 0.3159 0.324 0.29
55 CLL12 25 PB cbg 4279 0.73 515 0.2992 0.3763 0.23
56 CLL12 2.5 PB unsorted 48974 0.82 2935 0.2361 0.4266 0.14
57 CLL12 6.1 PB cD8 7761 0.72 852 0.1728 0.2975 0.10
58 CLL12 9.6 BM cD8 6079 0.93 343 0.2326 0.3995 0.11
59 CLL13 1.1 BM Ccb3 857 0.77 533 0.0708 0.0347 0.05
60 CLL13 285 PB unsorted 17734 0.82 7227 0.0791 0.1386 0.05
61CLL13 176 PB CcD4 9211 0.84 6192 0.0211 0.0203 0.01
62 CLL13 17.6 PB CcD8 3143 0.84 1747 0.1336 0.1177 0.13
63 CLL14 5.7 P8 CcD3 100028 0.86 13261 0.2848  0.4875 0.26
64 CLL14 5.7 PB Cco3 97003 0.84 13469 0.2695 0.4758 0.24
65 CLL14 84 PB cD4 23551 0.81 14005 0.031 0.042 0.03
66 CLL14 84 PB cog 12788 0.75 2843 0.2346 0.3513 0.18
67 CLL14 147 P8 CcD4 63663 0.82 35619 0.0155 0.0379 0.01
68 CLL14 147 pB Ccos 14013 0.78 4609 0.1764 0.2767 0.11
69 CLL14 50.8 PB unsorted 11654 0.79 1365 0.2735 0.4731 0.16
70 CLL1S 191 PB CD4 67362 0.81 35633 0.0203  0.0594 0.01
71 CLL1S 19.1 PB cos8 71662 0.92 5185 0.18  0.4465 0.09
72 CLL1S 359 PB CD4 23852 0.78 12794 0.0246 0.0548 0.01
73 CLL1S 359 PB cDg 39886 0.88 2352 0.2488 0.4978 0.13
74 CLL1S 47.7 P8 cD4 31325 0.79 17040 0.0253 0.0581 0.01
75 CLL15 47.7 P8 cD8 40186 0.85 2465 0.2457 0.5023 0.12
76 CLL16 6.5 PB cbs 63965 0.85 7341 0.1489 0.3761 0.07
77 CLL16 18.0 P8 cbs8 54643 0.82 10516 0.1333  0.3429 0.07
78 CLL16 276 PB CcD8 25788 0.78 1309 0.274  0.4697 0.22
79 CLL17 5.7 PB unsorted 33679 0.79 20749 0.0148 0.0254 0.01
80 CLL17 36.8 PB CcD4 22414 0.79 11593 0.0361 0.0656 0.02
81CLL17 368 PB cbs 2655 0.81 588 04271 04148 0.41
82 CLL17 628 PB Cb4 77195 0.81 39842 0.0141  0.0445 0.01
83 CLL17 62.8 PB CD8 9389 0.80 1824 0.3483  0.4621 0.23
84 CLL1S 10 ©PB cD3 13283 0.76 1966 0.1194 0.2537 0.05
85 CLL19 253 PB CD4 2346 0.77 1303 0.0639 0.0611 0.04
86 CLL19 253 PB CcD4 1901 0.74 1082 0.0593 0.0479 0.04
87 CLL1S 253 PB cbs 18820 0.80 2037 0.1713 0.3417 0.13
88 CLL19 573 PB unsorted 22999 0.79 4263 0.1422 0.3 0.09
89 CLL20 n/a Lp cD3 47300 0.84 14609 0.2108 0.2198 0.21
90 CLL20 23.7 PB co8 9826 0.82 5778 0.0219 0.0285 0.01
91 CLL20 55.7 PB cD8 58367 0.80 25303 0.0279  0.0646 0.02
92 CLL21 7.5 PB cog 47305 0.78 9754 0.0704 0.2168 0.03
93 CLL21 223 PB cos 49712 0.73 4770 0.0941 0.2832 0.04
94 CLL21 379 PB CD8 5921 0.74 1265 0.0905 0.1775 0.03
95 CLL22 13 pPB Ccb4 16601 0.81 9592 0.0256  0.0437 0.02
96 CLL22 13 P8 cbs 15172 0.83 4747 0.1616  0.2182 0.15
97 CLL22 28 P8 co8 517 0.63 298 0.061 0.0067 0.01
98 CLL22 8.93M and Pt unsorted 1070 0.76 601 0.0611 0.0383 0.03
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Figure 11
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Figure 11. CDR3 length plot for patient CLL 14

(A) Four longitudinal post-alloSCT T cell samples from CLL patient 14 were subjected to TCR
sequencing (time points are from 6 (red), 8 (purple), 15 (green), and 51 months (blue) post-
transplant). A CDR3 length histogram of the productive TCR rearrangements is displayed using
data from the 4 samples and shows a persistently oligoclonal repertoire. CLL patient 14
experienced a CR to alloSCT and has been in remission for > 14 years as of August 2020. His
course has been complicated by chronic extensive sclerodermatous GVHD and he was treated
with tacrolimus for over a decade. (B) Representative rows from a table displaying the unique
clonotypes identified within the T cell repertoire of CLL patient 14. Clonotypes are ranked by the
productive frequency within a given sample. The TCR variable beta chain, including the CDR3
segment, is depicted by the amino acid and DNA sequences as well as the V, D, and J gene

families. Duplicate sequences indicate that the clone was found in multiple samples.
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A clone’s unique variable beta chain sequence can be used to follow it across
longitudinal samples over time and its expansion/contraction can be quantified. We were
particularly interested in the variation within the T cell repertoire between 3 and 24 months post-
alloSCT when the GVL effect occurs in responding patients (though there is considerable
deviation and it can happen earlier or later). Samples more distant from transplant were useful
for monitoring ongoing T cell reconstitution. As mentioned in the ‘Background’ section, post-
alloSCT T cell reconstitution is complex and is affected by multiple variables. At present, it is not
possible to examine bulk T cells over time and link an observed pattern of variation in the
repertoire to a specific entity such as GVHD, GVL, or infection (apart from CMV/EBV
reactivation [100, 101]). Nonetheless, we did see significant expansion and contraction of very
frequent T cell clones post-alloSCT in both responders and nonresponders (Figure 12). The
portion of the T cell repertoire occupied over time by the top 20 most frequent clones was far
higher in the transplant recipients compared to the healthy donors.

The diversity of a T cell repertoire is a measure of its richness and evenness. Richness
relates to the total number of clones present in a sample, which can be used to estimate the
richness of the larger repertoire being measured. Evenness describes the degree to which one
or a few clones dominate a sample repertoire. Simpson Clonality and Shannon Clonality are
metrics that can be used to describe the overall shape of a T cell repertoire. Shannon Clonality,
which is derived from Shannon’s Entropy, is more sensitive to differences in sample size than
Simpson Clonality and we confirmed that with our data (Pearson correlation coefficient for
sample size vs. Shannon Clonality r=0.25 (P=.012) compared to r=-0.045 (P=.7) for Simpson
Clonality). Because our samples were not uniform, we used Simpson Clonality to compare the
shape of a T cell repertoire over time and between patients. Samples with very small numbers
of T cells (<5000 total T cells) can show a bias towards increased Simpson Clonality (Figure
13A). For this reason, we excluded the 19 samples with less than 5000 productive TCR
templates in the clonality analyses.
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The cryopreserved BM and PB samples varied in their cell number and viability. For
larger samples, we fractionated CD3 T cells into CD4 and CD8 subsets. For samples with low
cell number, unfractionated CD3 T cells were sequenced. We assessed the overlap between
CD8 and CD3 T cells that were sorted from samples taken at identical time points in several
patients and observed a high degree of overlap (Figure 13B). There was no drop out in CD8
clones more frequent than 0.1% of the population within the CD3 bulk samples. Similarly, at
some time points, only BM or PB samples were available, and we measured the overlap
between BM and PB samples taken from patients at identical time points to address cross-
source comparison. Again, sample overlap was high and all frequent T cells were detected in
both the BM and PB samples (Figure 13C). CD8 T cells were of particular interest because they
are thought to be the primary effectors of the GVL effect [102]. In addition, CD8 T cells were the
cells isolated through MHC class I-restricted, neoantigen tetramer-based, single T cell sorting
(Chapter 6). Despite this, we did collect data on CD4 T cells and observed a significantly lower
Simpson clonality (a more even distribution of T cell clones) within the CD4 subset compared to
the CD8 subset, which has been described previously (Figure 13D) [93]. Though the CD4 T cell
subset is more diverse post-alloSCT, it lags behind CD8 T cells in terms of absolute cell number
and the ratio of CD4:CD8 T cells is reduced and often inverted post-transplant [95].

The clonality of a given T cell sample describes the repertoire diversity at one time point
but the repertoire adapts in response to multiple insults (viral infection, vaccination,
autoimmunity, aging, etc.). In alloSCT recipients, the T cell repertoire diversity is dramatically
restricted initially, but, in general, diversity improves over time owing to thymopoiesis [93]. We
measured the clonality of serial T cell samples for the CLL cohort (Figure 14A). The median
range in clonality over time per patient was 0.08. As context, in a separate dataset that
monitored the peripheral blood T cell repertoire of 3 healthy donors at 8 time points over the

course of a year, the average range in Simpson clonality per patient was 0.006 (Figure 12, I-K).
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CLL patients 4, 16, and 17 experienced especially large changes in their T cell repertoire
diversity. The serial clonality data for CLL patient 4 are intriguing because the initial two T cell
samples were drawn in the context of CLL relapse post-alloSCT while the third sample was
drawn 3 months after a DLI, which effectively put the CLL into a durable remission.
Unfortunately, CLL patient 4 did experience severe chronic GVHD that resulted in his death 5
years post-transplant. CLL patient 16 experienced a CR post-alloSCT and is alive and well
without chronic GVHD. However, one possible confounder is that the last serial PBMC sample
for CLL patient 16 was drawn 3 months after he suffered a serious motor vehicle accident and
multiple orthopedic fractures, requiring surgery and prolonged rehabilitation. Finally, CLL patient
17 remains alive and disease-free, though he experienced extensive chronic skin GVHD
requiring systemic immunosuppression for over a decade post-alloSCT.

The median Simpson clonality at time points between 6-24 months post-alloSCT, the
window for the GVL effect, was similar between nonresponders and responders (median 0.1 vs.
0.1, Figure 14B). As a comparison, in a separate study the median clonality of the peripheral
blood T cell repertoire in 786 healthy donors was 0.02 (IQR 0.01-0.04; P<.0001 vs. CLL cohort)
[100]. Among patients with treatment responsive disease, we compared the Simpson clonality of
the last available time point between patients without chronic GVHD and those with chronic
GVHD and, even in this small cohort, a more restricted repertoire was observed in the patients
with chronic GVHD (Figure 14C).

Homeostatic peripheral expansion (HPE), a thymic independent process that involves
the expansion of mature donor T cells, is the predominant source of recipient T cells in the early
post-alloSCT period. Within the first year post-alloSCT, depending on multiple factors (e.g.
GVHD, recipient age, viral reactivation, etc.), thymopoiesis begins to generate a new, repertoire
of naive T cells from engrafted hematopoietic stem cells that are educated in the thymus [103].
If thymic output is robust, recipients can eventually build new T cell repertoires that have
minimal resemblance to the donor repertoire infused in the original graft [94]. For CLL patient
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20, we performed TCR sequencing on an aliquot of the leukapheresis product that composed
the original stem cell graft donated by the patient’s brother. We then compared the infused
donor T cell repertoire to the recipient T cell repertoire at 2 and 3 years post-alloSCT (Figure
15A). Surprisingly, the ‘healthy donor’ had a very frequent clone that composed 21% of the
leukapheresis product and a relatively oligoclonal repertoire (Simpson’s Index 0.211). In the
recipient at 3 years, however, the very dominant donor clone was present among CD8 T cells at
a frequency of only 0.028%, and the recipient had generated a new CD8 T cell repertoire
distinct from and more diverse than the original product (Figure 15B).

Consistent with these data, we compared the repertoire overlap of two peripheral blood
samples, taken 12 months apart in 3 healthy donors versus 3 complete responder CLL alloSCT
recipients (Figure 15C). In the healthy donors, the T cell repertoires at 0 and 12 months showed
a high degree of overlap (average Morisita index = 0.88) whereas the overlap in the transplant
recipients was intermediate (average Morisita index = 0.73). This supports the dynamism of the
post-alloSCT repertoire, especially among the low frequency T cell clones where naive T cells
reside. This can be overlooked when focusing only on the most frequent T cell clones as in
Figure 12. Importantly, though, the additional new T cells were not in sufficient quantities to
improve the T cell population diversity in these 3 transplant responders and the repertoires
remained oligoclonal.

Our results highlight the potential utility of tracking the adaptation of the donor repertoire to
the recipient environment over an extended timeframe. One can manipulate and expand
candidate GVL T cells from the graft ex vivo; however, there is no substitute for monitoring the
expansion/contraction of allogeneic T cells in the host and mining those rich data to identify
potential anti-leukemia clones and to uncover signatures of the GVL effect. We hypothesize that
donor GVL T cells participate in immunoediting of host leukemia, thereby triggering subclonal
evolution. However, our data confirm the GVL T cells are part of a very restricted repertoire that
is dramatically different than the input healthy graft.
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Figure 12. Top 20 T cell clonotypes

The top 20 most frequent T cell clonotypes at a given time point are shown for 8 patients [4
nonresponders (A-D) (though CLL patients 3 and 4 did respond to DLI) and 4 responders (E-H)]
and 3 healthy donors (I-K). The Y axis shows the productive frequency of the clonotypes as a
%age of the total T cell population and is not standardized across patients since the 20
clonotypes make up a different proportion of the total population in each patient (the top of the Y
axis is labeled). The X-axis represents time though the intervals between samples are not to
scale. Time points for each patient (in months since alloSCT) are as follows: CLL 1 (11, 14, 36,
39 months), CLL 3 (1, 11, 14, 16 months), CLL 4 (8, 11, 16 months), CLL 5 (2, 16, 35, 42, 49,
54 months), CLL 16 (6, 18, 27 months), CLL 17 (5, 36, 62 months), CLL 19 (1, 25, 57 months),
and CLL 21 (7, 22, and 37 months). CLL patients 3, 4, 17, and 21 all had significant chronic
GVHD. Longitudinal data for the 3 healthy donors was obtained from the Adaptive immunoSEQ
immuneACCESS project ‘TCRB Time Course 3 Subjects’ dataset. HD1 age 18-24, time points
3/16/11, 4/15/11, 5/12/11, 6/9/11, 8/19/11, 9/15/11, 10/14/11, 3/20/12. HD2 age 18-24, time
points 3/17/11, 4/15/11, 5/13/11, 6/9/11, 8/11/11, 9/8/11, 10/6/11, 3/27/12. HD 3 age 24-45, time

points 3/16/11, 4/15/11, 5/13/11, 6/9/11, 8/12/11, 9/9/11, 10/7/11, 4/3/12.
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Figure 13
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Figure 13. TCR repertoire analysis and reproducibility

(A) Shannon clonality versus Simpson clonality is graphed for all 98 T cell samples that
underwent TCR analysis. Samples with < 5000 productive T cell templates are highlighted by
red squares. (B) Scatter plots of the productive frequency of individual T cell clones in CD3 vs.
CDS8 sorted T cells from the same time point in 3 patients. The Pearson correlation coefficient, r,
is labeled for each plot. The Morisita index showing the overlap between all 6 possible samples
is also shown as a heatmap (red is index = 1 [complete overlap], blue is index = 0 [no overlap]).
(C) Scatter plots showing the productive frequency of individual T cell clones in BM vs. PB
sorted T cells from the same time point (sorted for the same type of T cell (CD3 or CD8 unless
indicated). (D) Scatter plots showing the productive frequency of individual T cell clones in BM
vs. PB (and CD3 vs. CD4) sorted T cells from the same time point. There were 11 time points at
which both CD8 and CD4 T cells were sorted from the same sample. The Simpson clonality for
CD8 compared to CD4 T cells is shown, P=.001 by Wilcoxon matched-pairs signed rank test.
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Figure 14

— CLL1
A
CLL3
e — CLL4
2 CLL5
g 0.4 CLL®
o CLL7
5 . - CLLS
@ 0.2
g 947 , R = CLLS
(2] o CLL 10
- = A
0.0 I 1 I 1
0 20 40 60 B0
Time (months since alloSCT)
B os- G
— P=.39
f 044 o
g
S 0.3 <
g 0.2 ™ : =
B 01 eew &=
a
0-0'—l""""'!T."'——;l"""
&
b"" b"@ &
o o ¥
U LY
& @ ,9&
& G
& <

— CLL12
® CLL13
0.6 - CLL14
> CLL15S
: CLL18
T 0.4 i
o CLL17
o
c : CLL12
go_z- \,/ — CLL20
s CLL 21
. x CLL22
0.0 T T T T
0 20 40 60 80
Time {months since alloSCT)
0.4+
B
23
§ P 04
‘é 0.2
o -
Eoi-
w
0.0 ; .
Q Q
S NS
G 6
R R
& &
& &
o ]
< ,\9

Figure 14. T cell repertoire diversity of post-alloSCT samples

(A) Simpson clonality over time for the alloSCT nonresponders (left) and responders (right). (B)

The Simpson clonality at time points between 6-24 months was compared between

nonresponders and responders using the Mann-Whitney test (for patients with multiple samples

in this time window, the clonalities were averaged and included as one value per patient). The

Simpson clonality for 786 healthy donors [100] is listed as median and interquartile range and

differed significantly from the Simpson clonality of the grouped CLL cohort (P<.0001). (C) The

Simpson clonality for patients with treatment responsive disease was compared at the last

available time point (median 48 months, range 16-62) between patients without or with chronic

GVHD. The Mann-Whitney test was used.
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Figure 15
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Figure 15. AlloSCT donor and host T cell repertoires

(A) TCR sequencing was conducted on an aliquot of the leukapheresis product that composed
the stem cell graft donated by the brother (MRD) of CLL patient 20 and compared to the host
repertoire at 2 and 3 years post-alloSCT. (B) Sample overlap between the stem cell graft and
the recipient T cell repertoire at 3 years by scatter plot (Pearson correlation coefficient = -
0.0002) and the Morisita overlap index. (C) Sample overlap between 2 sample time points, ~12

months apart for 3 healthy donors (left) and 3 CLL transplant complete responders (right).
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Chapter 6: Single cell TCR sequencing of candidate GVL clones

Background: The longitudinal T cell repertoires of alloSCT recipients showed shifts in T cell
diversity and repertoire composition over time, but, given the multiple variables, the sample size
was too small to identify signatures predictive of GVL. Next, we focused on individual T cell
clones with potential anti-leukemia activity. Donor T cells eliminate leukemia through the
recognition of tumor antigens including leukemia-associated antigens (LAAS), minor
histocompatibility antigens (mHAs), and leukemic neoantigens [38]. Our observation that
disparate subclones, which harbor the same mHAs yet different molecular lesions, demonstrate
differential sensitivity to allogeneic T cell therapy led us to hypothesize that LAAs and/or
neoantigens were mediating, at least in part, the leukemic evolution that we observed.

We used the leukemia exome data to predict personalized CLL neoantigens for the CLL
cohort patients. We then integrated the longitudinal TCR sequencing data with the single cell
TCR sequencing data to investigate candidate GVL clones. For single T cell TCR sequencing,
we adapted a technique that utilized tetramer-based single T cell sorting, multiplex nested PCR,
and NGS [104]. TCR sequencing is distinct from other types of single cell sequencing because it
requires uniquely high fidelity to account for the tremendous variability in the TCR CDR3 region.

Methods (abbreviated and detailed): Single T cell TCR sequencing Briefly (see detailed

protocol below), CD3+CD8+ tetramer positive cells were sorted into 96 or 384 well plates. RT-
PCR for TCR and gene expression of 17 transcripts associated with T cell ontogeny/activation
was performed based on a previously described protocol [104]. cDNA was generated using
Qiagen One Step RT-PCR kit with combined TCR/phenotyping primers, followed by two rounds
of nested PCR to amplify TCR and phenotyping gene sets. Barcoding and paired end addition
of lllumina compatible primers were performed to enable deep sequencing. Libraries were
pooled, gel purified, and quantified using a Qubit fluorometer. DNA quality was analyzed on a

TapeStation 4200. Normalized libraries were sequenced using an Illlumina MiSeq (using MiSeq
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Reagent kit v3, 600 cycles). Data were deconvoluted using a custom software pipeline that was
generously shared by Dr. Jacob Glanville at Stanford University and adapted by Dr. Sahil Seth
at MDACC. Briefly, the barcode tags were used to assign reads from a sequencing run to each
plate and well. Paired ends were assembled by finding a consensus sequence of at least 100
bases in the middle of the read. The paired TCR V, D, and J segments were then assigned by
VDJFasta [105]. T cell immunophenotyping Sorted T cells were stained with the following
antibodies: Sytox blue live/dead stain (ThermoFisher), anti-CD3 PE/Cy7 (clone SK7), anti-CD39
PerCPCy5.5 (clone Al), anti-CD69 BV650 (clone FN50), anti-CD107 BV711 (clone H4A3), anti-
CD197/CCR7 FITC (clone G043H7), anti-CD8a APC/Cy7 (clone HIT8a) (all from Biolegend),
anti-CD103 PE (clone M290) (BD Biosciences) and anti-CD45RA ECD (clone 2H4LDH11LDB9)
from Beckman Coulter. Tetramers against mutant PARPBP (for CLL 12) and mutant ACTN1 (for
CLL 8) were generated at Baylor College of Medicine, Houston, TX. CD3 positive T cells were
sorted on the FACSAria Fusion (BD Biosciences) after excluding debris, doublets, and dead
cells. Single cells were index sorted in 96 or 384 well plates followed by TCR sequencing and
gene expression analyses Single leukemia cell gene expression analysis for neoantigens Single
cells were generated using a Chromium controller and processed to generate gene expression
libraries per 10X Genomics guidelines. Gene expression and ATAC-Seq libraries were
generated from the pre-transplant sorted cells while only single cell gene expression libraries
were generated from the leukemia cells of CLL 8. Standard 10X Genomics Chromium 5’
libraries were generated after gel emulsification breakage and synthesis of first strand cDNA.
cDNA amplification was followed by cleanup using SPRIselect followed by another round of
amplification. The 10X libraries were pooled, normalized to 2nM, and sequenced on NovaSeq
6000 using a S2 kit (300 cycles) with 1% Phi-X spiked in the library. Single nuclei were
generated per vendor guidelines for ATAC-Seq. Single cell ATAC-Seq libraries were run on a
NovaSeq using an S1 kit (100 cycles). Single cell sequencing data were processed using Cell
Ranger (v3.1.0) software from 10X Genomics Inc. with default parameters. Filtered gene counts
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from Cell Ranger were analyzed and visualized through the Seurat R package with

recommended parameters [106, 107].

Single T cell TCR sequencing (detailed protocol) The complete, adapted protocol for the

single T cell TCR sequencing method is included here because it represented an important
contribution from the author to the Molldrem lab and the Jin Im lab. The protocol has since been
refined but remains central to the work of the ECLIPSE platform at MDACC.

Single T cell TCR sequencing protocol

Reagents:

- primers -these were ordered from Eurofins Genomics in quantities of ~55 nmol as salt-
free primers (list is in Table 4)
o Reaction 1:
= 38 forward Valpha primers
= 36 forward Vbeta primers
= TRAC reverse and TRBC reverse primers
o Reaction 2: (nested primers and adds common sequence)
= 36 forward Valpha primers
= 36 forward Vbeta primers
= TRAC2 and TRBC2 reverse primers
o Reaction 3:
» Includes forward and reverse barcoding primers as well as lllumina paired
end adaptor primers (Peprimer 1 and 2 aka lllumina PE1 and Illumina
PE2)
o Optional: phenotyping primers
o Optional: The sanger sequencing primers used were:
*» Forward: ACACTCTTTCCCTACACGACGCTCTTCCGATCT
» Reverse: CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
- PCR cyclers: can use either the old Bio-Rad PCR machine or the new Bio-Rad RT-PCR
machine
o Different plates are used for these machines
= New RT-PCR cycler: Bio-Rad hard-shell 96-well PCR plates — white shell
(HSP9601)

e When using this cycler, the ramp rate for the step-down to
annealing temp must be reduced to 0.5 degrees per second or
the PCR won’t work

= Old cycler: Bio-Rad hard-shell 96-well high profile semi-skirted PCR
plates, clear shell/clear wall (HSS9601)
- Qiagen 1 step RT-PCR mix (210212)
- Qiagen Hotstart Taq DNA (203205)
- Qiagen dNTP Mix (201900)
- Plate covers: Bio-Rad Microseal ‘B’ seals (MSB1001)
- DNA benchtop 100 bp ladder G8291 promega
- Multichannel pipettes:
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o Eppendorf 0.5 — 10 ul multichannel
o Eppendorf 5 — 50 ul multichannel

- Filter pipette tips (Art tips)

- Qiaquick Gel Extraction Kit (28704)

Protocol:
Sorting

1. Sort single T cells of interest (tetramer binding or otherwise), 1 cell per well, into the well
of a 96-well plate (use the plate appropriate for TCRseq with reaction #1 master mix [20
ul per well] already aliquoted); the volume from a single sort drop is negligible

a. Dr. Karen Clise-Dwyer recommends using the ‘single cell’ sorting mode to
increase the chance of getting exactly 1 T cell per well and further advises
sorting at a slow speed (500 events/sec)

b. The plate with TCRseq master mix already aliquoted should be brought to the
sorter (I always used the Aria 1) with the plate seal in place; remove plate seal
only immediately prior to sorting

2. Forreaction #1, you must decide if you are only assaying for TCR paired alpha/beta
chains for each cell or if you are also assaying for the phenotypic parameters; if
phenotyping is desired in addition to the paired TCR alpha/beta sequences, then the
phenotypic forward and reverse primers must be included in the 20 ul master mix for
reaction #1 (see below for example PCR master mixes)

Primer stocks
1. all primers were initially reconstituted with water at 100 uM
a. 10 uM working concentrations were also prepared for each primer

Alpha and Beta forward primer mixes for Reactions #1 and #2:

1. The 38 Valpha forward primers were combined at the volumes listed below and this mix
was stored at -20 in aliquots to be used in the PCR master mixes (same for the 36 Vbeta
forward primers for reaction #1 and the 36 Valpha forward/36 Vbeta forward primers for
reaction #2)

2. Reaction #1.:

a. Valpha forward mix:
i. 38 primers: JM_P1 001 ->JM _P1 038
1. Final concentration in PCR reaction: 0.06 uM
2. 10X=0.6 uM
3. For 1000 ul of 10X Valpha forward mix, combine 6 ul of each
primer (at 100 uM stock) (6 ul x 38 primers = 228 ul) + 772 ul of
water and store at -20 (] often made 4000 ul at a time and stored
in 1000 ul aliquots)
b. Vbeta forward mix:
i. 36 primers: JM_P1_039 ->JM_P1_074
1. final concentration in PCR reaction: 0.06 uM
2. 10X=0.6 uM
3. For 1000 ul of 10X Vbeta forward mix, combine 6 ul of each
primer (at 100 uM stock) (6 ul x 36 primers = 216 ul) + 784 ul of
water and store

3. Reaction #2
a. Valpha forward mix Rxn #2:
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i. 36 primers: JM_P2 001 ->JM_P2_ 036
1. final concentration in PCR reaction: 0.6 uM

2. 4X=24uM

3. For 2000 ul of 4X Valpha forward mix Rxn #2, combine 48 ul of
each primer (at 100 uM stock) (48 ul x 36 primers = 1728 ul) and
272 ul of water and store at -20

b. Vbeta forward mix Rxn #2:

i. 36 primers: JM_P2 037 ->JM_P2_072
1. final concentration in PCR reaction: 0.6 uM

2. 4X=24uM

3. For 2000 ul of 4X Vbeta forward mix Rxn #2, combine 48 ul of
each primer (at 100 uM stock) (48 ul x 36 primers = 1728 ul) and
272 ul of water and store at -20

Phenotyping primer mixes for Reactions #1 and #2:
- this is to incorporate the original 17 phenotypic parameters used in the original Han

protocol (GATA3, TBET, FOXP3, etc.)

1. Reaction #1 forward phenotype mix:

a. Final concentration in PCR reaction: 0.1 uM

b. 10X=1uM

c. for 1000 ul of 10X forward phenotype mix, combine 10 ul of each primer (at 100
uM stock) (10 ul x 17 primers = 170 ul) and 830 ul water and store
d. use the same strategy for the 10X reverse phenotype mix
2. Reaction #2 forward phenotype mix: (JM_R2A 001 ->JM_R2A 017)
a. Final concentration in PCR reaction: 0.1 uM

b. 10X=1uM

c. for 1000 ul of 10X forward phenotype mix, combine 10 ul of each primer (at 100
uM stock) (10 ul x 17 primers = 170 ul) and 830 ul water and store
d. use the same strategy for the 10X reverse phenotype mix for reaction #2

(JM_R2B_001 -> JM_R2B_017)

e. ok to scale up batches to make 4000 ul at a time and store in 1000 ul aliquots

Master Mixes:

1. Reaction #1: no phenotyping

Component

Volume for 1 well of 96-well plate (made
112x for 1 96-well plate)

1. 5X RT-PCR buffer 4 ul
2. dNTPs 0.8 ul
3. 10X Valpha forward mix rxn #1 (see 2 ul
above)

4. 10X Vbeta forward mix rxn #1 (see 2 ul
above)

5. 10X TRAC reverse (a 1:3.33 dilution 2 ul
from 10 uM stock = 3 uM)

6. 10X TRBC reverse (a 1:3.33 dilution 2 ul
from 10 uM stock = 3 uM)

7. RT-PCR enzyme 0.8 ul
8. water 6.4 ul
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| Total volume =

| 20 ul

2. Reaction #1: yes phenotyping

Component Volume for 1 well of 96-well plate (made
112x for 1 96-well plate)

1. 5X RT-PCR buffer 4 ul

2. dNTPs 0.8 ul

3. 10X Valpha forward mix rxn #1 (see 2 ul

above)

4. 10X Vbeta forward mix rxn #1 (see 2 ul

above)

5. 10X TRAC reverse (a 1:3.33 dilution 2 ul

from 10 uM stock = 3 uM)

6. 10X TRBC reverse (a 1:3.33 dilution 2 ul

from 10 uM stock = 3 uM)

7. RT-PCR enzyme 0.8 ul

8. 10X Phenotyping forward 2 ul

9. 10X Phenotyping reverse 2 ul

10. water 2.4 ul

Total volume = 20 ul

3. Reaction #2: no phenotyping

Component Volume for 1 well of 96-well plate (made
112x for 1 96-well plate)

1. 10X PCR buffer 2ul

2. dNTPs 0.4 ul

3. 4X Valpha forward mix rxn # 2 (see 5 ul

above)

4. 4X Vbeta forward mix rxn # 2 (see 5ul

above)

5. 10X TRAC2 reverse (a 1:3.33 dilution 2 ul

from 10 uM stock = 3 uM = 10X)

6. 10X TRBC2 reverse (a 1:3.33 dilution 2 ul

from 10 uM stock = 3 uM = 10X)

7. HotStar Taqg 0.1 ul

8. water 2.5 ul

9. (template from reaction #1) 1 ul per well from plate #1

Total volume = 20 ul

4. Reaction #2: yes phenotyping - this is done separately from the TCR alpha/beta

reaction 2 in a different plate

Component

Volume for 1 well of 96-well plate (made
112x for 1 96-well plate)

1. 10X PCR buffer

2 ul

2. dNTPs

0.4 ul
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3. 10X Phenotype forward rxn #2 2 ul

4. 10X Phenotype reverse rxn #2 2 ul

7. HotStar Taq 0.1 ul

8. water 12.5 ul

9. (template from reaction #1) 1 ul per well from plate #1
Total volume = 20 ul

5. For reaction #3, you can choose to obtain the paired TCR alpha-beta sequences via
Sanger sequencing or through next-generation sequencing (NGS) via the Miseq.
Phenotypic markers can only be assessed using NGS. NGS is preferred for TCR alpha-

beta sequences since there are often 2 alpha chains expressed in a cell (see Han et al.).

Sanger sequencing is useful to pilot the reactions and for troubleshooting.
a. For Sanger sequencing (choose any forward and reverse alpha or beta barcode
primers and add in the Illlumina paired-end primers 1 & 2). The alpha and beta

reactions must be performed separately with a 3’ reverse alpha barcode primer

and a 3’ reverse beta barcode primer, respectively.

Component Volume for 1 well of 96-well plate (made
112x for 1 96-well plate)

1. 10X PCR buffer 2 ul

2. dNTPs 0.4 ul

3. 10X 5’ Forward barcode (e.g. 2 ul

JM_31 002) (1:20 dilution from 10 uM

stock = 0.5 uM = 10X)

4. 10X 3’ Reverse barcode for beta (e.g. 2 ul

JM_32_014) (1:20 dilution from 10 uM

stock = 0.5 uM = 10X)

5. 10X lllumina PE1 (1:2 dilution from 10 2 ul

uM stock = 5 uM = 10X)

6. 10X lllumina PE2 (1:2 dilution from 10 2 ul

uM stock = 5 uM = 10X)

7. HotStar Taqg 0.1 ul

8. water 8.5 ul

9. template 1 ul per well from plate #2

Total volume = 20 ul

6. For NGS reaction #3, a similar barcoding strategy described in the Han et al. publication
was used except that the plate and row barcodes were reversed (both within the forward
primer) as requested by our bioinformatics collaborator Sahil Seth

a. To accomplish this, dedicated 96-well plates were filled with the desired plate/row
barcodes as well as the desired alpha column and desired beta column barcodes
so that they could easily be added to the barcoding plate with a multichannel
pipette

b. Master mix was added first (see below) followed by the plate/row barcode and
then the column barcodes; the 1 ul template from reaction #2 was added last
(see attached TCR barcode example sheet). Barcoding for the phenotype
amplicons is done in a similar fashion in a separate plate.
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Component Volume for 1 well of 96-well plate (made
112x for 1 96-well plate)

1. 10X PCR buffer 2 ul

2. dNTPs 0.4 ul

3. 10X lllumina PE1 (1:2 dilution from 10 uM 2 ul
stock = 5 uM = 10X)
4. 10X lllumina PEZ2 (1:2 dilution from 10 uM 2ul
stock = 5 uM = 10X)

5. HotStar Taq 0.1ul
6. water 6.5 ul
volume = 13 ul

+ 2 ul alpha column barcodes (at 10X = 1.5 uM = a 1:6.666 dilution from 10 uM
working stock) + 2 ul beta column barcodes (at 10X = 0.5 uM = a 1:20 dilution
from 10 uM working stock) + 2 ul row/plate barcodes (at 10X =0.5uM =1 1:20
dilution from 10 uM working stock)
+ 1 ul template from reaction #2 plate = total volume = 20 ul for reaction #3
PCR programs:
Reaction #1
1. 50°C 30 min; 95°C 15 min; 94°C 30 s; 62°C 1 min, 72°C 1 min x 30 cycles; 72°C 5 min; 4°
Reaction #2
2. 95°C 15 min; 94°C 30 s; 64°C 1 min, 72°C 1 min x 25 cycles; 72°C 5 min; 4°; 35 cycles
for phenotyping only plate

Reaction #3

3. 95°C 15 min; 94°C 30 s; 64°C 1 min, 72°C 1 min x 36 cycles; 72°C 5 min; 4°
* | increased the # of PCR cycles in reaction #1 from 25 to 30 and this seemed to increase
efficiency though | did not rigorously test this effect
* When using the old PCR cycler, the ramp rate for the step-down to annealing temp (62 or
64°C must be reduced to 0.5 degrees per second)
For Sanger sequencing: (you must have used only alpha or only beta column reverse
barcodes since you have to sequence the alpha and beta separately)

- run each alpha and/or beta amplicon on a gel and extract the bright band at 350 — 380
bp using the Qiaquick gel extraction kit (total elution volume of 35 ul in 2 steps) (or if
you’re very confident or have QC’d other amplicons from the same run, skip the gel) and
send for Sanger sequencing using the forward and reverse Sanger sequencing primers
(at 1 uM) included in the above reagents list (sequences obtained using the reverse
primer were generally the better sequences)

- see attached for sample data

Pooling amplicons for NGS on the Miseq: (preferred)

- pool equal volumes from each well after reaction #3 (I pooled 2 ul from each well of the
96-well reaction #3 plate x 16 wells at a time = 32 ul of pooled amplicons)

- run pooled amplicons on a gel (I ran in an 8-lane gel to facilitate clean extraction)

- extract the bright bands at 350 — 380 bp using the Qiaquick gel extraction kit (I eluted in
35 ul total in 2 elution steps for each band)

- pool all extracted DNA together into 1 eppendorf in equal volumes (for 7 plates, | pooled
together 20 ul/plate x 7 plates = 140 ul)

- quantify library using TapeStation and then via gqPCR (Rebecca Thornton on South
campus helped me with this step) (e.g. the concentration of my first library by gPCR
was 47.8 nmol; the library was loaded onto the Miseq at a 1:10 dilution)

- sequencing is performed using 2 x 300 bp paired end reads on the Miseq (v3 lllumina
kit) with 10% PhiX
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TCR barcode example

Figure 16
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Figure 16. Example layout of TCRa and 8 barcoding primers in preparation for NGS of

single cell TCR transcripts



Figure 17.

500 bp
300 bp

Figure 17. Example gel of the final TCR amplicon at 350 - 380 bp after PCR reaction #3

Figure 18
Yereads #reads dominan % #reads secondary
row cowmn reads Vbeta Jbeta CDR3 beta match match talpha CDR3 alpha match match alpha
A 1 16068 TRBV25-1 TRBJ2Z-3 CASSDLKEAGDKPSTDTQYF  0.912 965 TRAV1D TRAJ1B CWVSDRGSTLGRLYF 0914 13728
A 2 274BB TRBW25-1 TRBJ2-5 CASSEASGSRETCQYF 0.933 3631 TRAV10 TRAJ1B CWVSDRGSTLGRLYF 0947 22359
A 3 99 TRAV10 TRAJ1B CVWSDRGSTLGRLYF 0.662 55
A 4 32124 TRBV25-1 TRBJ2-1 CASSEPGGGEQFF 0.944 15179 TRAV1O TRAJIB CVVKDRGSTLGRLYF 0945 15163
A 5 29071 TRBW25-1 TRBJ1-1 CASSGGHLNTEAFF 0.923 B715 TRAV10 TRAJIB CWVWSDRGSTLGRLYF 0947 18580
A & 128 TRAV10 TRAJ1B CVWSDRGSTLGRLYF 0.576 64 TRAV1O
A 7 66 TRAVI0O TRAJIB CVWSDRGSTLGRLYF 0551 27
A 8 32607 TRBV25-1 TRBJ2-7 CASSESRDRGSYEQYF 0.93 3053 TRAV10O TRAJIB CWVWSDRGSTLGRLYF 0.95 27858
A 9 93 TRAV10 TRAJIB CVWSDRGSTLGRLYF 0.79 64
A 10 67 TRAVI0O TRAJIB CVWSDRGSTLGRLYF 0.81 47
A 11 30385 TRBW25-1 TRBJ2-1 CASSERNGRYNEQFF 0.93 5102 TRAV10 TRAJ1B CWVSDRGSTLGRLYF 0.943 19422
A 12 27941 TRBV25-1 TRBJ1-1 CASSDWSSNTEAFF 0.937 10322 TRAV1O TRAJ1B CVWVSDRGSTLGRLYF 0.783 13253 TRAVE-2
B 1 13468 TREV25-1 TRBJ1-5 CASSGGIGNCPOHF 0.932 B210 TRAV10 TRAJ1B CVVSDRGSTLGRLYF 0.847  B167
B 2 33609 TRBV25-1 TRBJ2Z-3 CASSARRGPATDTOYF 0.936 19294 TRAV10O TRAJ1B CVWVSDRGSTLGRLYF 0945 12234
B 3 28345 TRBV25-1 TRBJ1-5 CASSEGGRGOQPOHF 094 11618 TRAVIO TRAJIB CVWSDRGSTLGRLYF 0933 14901

Figure 18. MiSeq output

Example MiSeq output from a pilot experiment using singly sorted invariant natural killer T
(iNKT) cells. The row and column numbers refer to each well of a 96 well plate where a single

iINKT cell was sorted per well.
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Table 4. Primers used for single T cell TCR sequencing

JM_P1.00t  CTGCACGTACCAGACATCTGGGTT o MM_P2.025  CCAGGGTTTTCCCAGT TCCAGCACCT —
IM_P1 002  GGCTCAAAGCCTTCTCAGCAGG M_P2028  CCAGGGTTTTCCCAGTCACGACATCGCT T
IM_P1003  GGATAACCTGGTTAAAGGCAGCTA MP2 02T CCAGGGTTTTCCCAGTCACGACACTAACCTTTCAGTTTGGTGATGCAA
IM_P100&  GGATACAAGACAAAAGTTACAAACGA MP2(28  CCAGGGTTTTCCCAGTCACGACCTT T
JMP1005  GCTGACGTATATTTTTTCAAATATGGA M P2 029 CCAGGG CACGACAATATCTGCTTCATTTAATGAAMAAAGC
IM_P1 006  GGAAGAGGCCCTGTTTICTIGET M_P2 00 CCAGGGTTTTCCCAGTCACGACCCAAGTTGGATGAGAAMAGCAGCA
IMP1T007  GCTGGATATGAGAAGCAGAAAGGA M P2031  CCAGGGTTTTCCCAGTCACGACCTCAGTTTGGTATAACCAGAAAGGA
JM_P1008  AGGACTCCAGCTTCTCCTGAAGTA M_P2_0a2 CACGACGGAAGACTAAGTAGCATATTAGATAAG
IM_PI009  GTATGTCCAATATCCTGGAGAAGGT M_P2_0n CACGACCTGT
IMP10I0  CAGT TCOAACGG MP2034  CCAGGGTTTTCCCAGTCACGACCCTCACTTGATACCAAAGCCCGT
IMPIOtt  CCTAAGTTGCTGATGTCCGTATAC MP2.035  CCAGGGTTTTCCCAGT TATTAAAGACAAAAACTC
IMPI012  GGGAAMAGCCCTGAGTTGATAATGT M_P2_008 CACGACGATTAATTGCCACAATAMCATACAGG
JM_P17013  GCTGATGTACACATACTCCAGTGG M P203T  CCAGGGTTTTCCCAGTCACGACGCCTGATGGATCAAATTTCACTCTG
JM_P1014  COCTTGGTATAAGCAAGAACTTGG MP2 008  CCAGGGTTTTCCCAGTCACGACTCTCACCTAAATCTCCAGACAAAGCT
IM_PI0IS  CCTCAATTCATTATAGACATTCGTTC MP2039  CCAGGGTTTTCCCAGTCACGACCCTGAATGOOCCAACAGETCTC
IM_PI0I6  GCAAAATGCAACAGAAGGTCGCTA M_P20I0  CCAGGGTTTTCCCAGTCACGACCTCTGAGCTGAATGTGAACGCLT
JM_P1017  TAGAGAGAGCATCAAAGGCTTCAC MP2 041  CCAGGGTTTTCCCAGTCACGACCGATTCTCAGGGCGGCAGTTCTCT
IM_PI0IB  OGTTCAAAT: M_P2042  CCAGGGTTTTCCCAGTCACGACTGGETACAATGTCTCCAGATTAMCAA PCR#2
IM_PI018  CCTGAAMAGTICAGAAAACCAGGAG M P24 CCAGGGTTTTCCCAGTCACGACCCCTGATGGCTACAATGTCTCCAGA
IMPI020  GGTCGGTATTCTIGGAACTTCCAG M P2 044 CCAGGGTTTTCCCAGTCACGACGTGTCTCCAGAGCAAACACAGATGATT Nested
MPIO2\  GC P2 045 TTTTCCCAGTCACGACGTCTCCAGATCAACCACAGAGGAT
UM_PI022  GTCAGAGAGAGCAAACAAGT M_P2 048 CCAGOGTTTTCCCAGTCACGACGTCTCTAGATTAAMCACAGAGGATTTC alpha
IM_P1_023 CAAAACAGAATGGAAGATTAAGC P2 047 TCACGACGGCTACAATGTATCCAGATCAAACA p
JM_P1024  CCAGATGTGAGT MP2 048 CCAGGGTTTTCCCAGTCACGACTCGCTTCTCTGCAGAGAGGACTGG d
IM_PI 025  GACTTTAAATGGGGATGAAAAGAAGA M_P2 045 CCAGGG! CACGACCGGTTCTTITGCAGTCAGGCCTGA an
IM_PI026  GGAGAAGT MP20SO  CCAGGGTTTTCCCAGTCACGACCCAGTGATCGCTICTTTGCAGAAA "~ bet
JMPI027  CCAATGAAATGGOCTCTCTGATCA MP2 051 CCAGGG TCACGACTCTCCACTCTGAMGATCCAGCGCA a
JM_PI028  GCAATGT T M_P20S2  CCAGGGTTTTCCCAGTCACGACGL ¢ TCCAT f d
IMPI020  GGTGGAGAAGTGAAGAAGCTGAAG 24_P2 083 TCACGACCTGCAGAGAGGCCTAAGGGATCT orwar
JM_P1030  GGATAAAAATGAAGATGGAAGATTCAC M P2 0S4 CCAGGGTTTTCCCAGTCACGACCTCCGCACAACAGTTCOCTGACTT nd 2
IM_PI031  CCTGATGATATTACTGAAGGGTGGA MMP208S  CCAGGGTTTTCCCAGTCACGACCAGATGGCTAYAGTGTCTCTAGATCAA a
IM_P1_032 AGAGAAAGTCATGAA M_P2 0% CCAGGGTTTTCCCAGTCACGACGTIGTCTCCAGATCCAAGACAGAGAA
IMPIT033  GGTGAATTGACCTCAMATGGAAGAC AP 05T CCAGGGTTTTCCCAGTCACGACGCAGAGAGGCTCAAMGGAGTAGACT reverse
IMPI03%  GCTAACTTCAAGTGGAATTGAAMGA Aa_P2_0%8 CACGACGCTAAGATGOCTAATGCATCATICTC .
UM_P1_035  GAAGCTTATAAGCAACAGAATGCAAC M_P20%  CCAGGGTTTTCCCAGT TCAGCAGAGATGCCTGATGCAACT primers
JM_P1036  GGAGCAGTGAAGCAGGAGGGAC MP2 080 CCAGGGTTTTCCCAGTCACGACTCTCAGCTCAACAGTTCAGTGACTA
IM_P1037  GAGAGACAATGGAAMACAGCAAMAAC M_P2_081 TCACGACGLT GGAGGGACGTAT
IM_P1 038 GCTGAGCTCAGGGAAGAAGAAGC PCR#1 mP202  CCAGGGTTITCCCAGTCACGACGATAACTTCCAAT
IMPI030  CTGAAATATICGATGATCAATTCTCAG M P2 0B CCAGGGTTTTCCCAGTCACGACGCTAAGTGCCTCCCAAATTCACCC
JM_P1 040  TCATTATAAATGAAACAGTTCCAAATCG A]pha M_P2_084 GATTTTCTGCTGAATTTCCCA
IMPI 041 AGTGTGCCAAGTCGCTTCTCAC MM P2 088 CCAGGGTTTTCCCAGTCACGACGGTACAGCGTCTCTCGGGAGAAGA
JM_P1042  CAGAGGAAACTYCCCTCCTAGATT and M_P2 088 TTTCTCATCAACCATGCAA
JM_PI043  GAGACACAGAGAAACAAAGGAAACTTC P2 08T TTTTCCCAGTCACGACTGGATACAGTGTCTCTCGACAGGE
IM P10 GGTACCACTGACAAAGGAGAAGTCC beta MM P2.088  CCAGGGTTTTCCCAGTCACGACCAMMCAGTCTCCAGAATAAGGACGGA
IM_PI045  GAGGGTACAACTGCCAAAGGAGAGGT M_P2 089 CCAGGGTTTTCCCAGTCACGACTACAAAGTCTCTCGAAAAGAGAAGAGGA
IMP1046  GGCAAAGGAGAAGTCCCTGATGGTT forward MP2om  CCAGGGTTITCCCAGTCACGACGGGGTACAGTGICTCTAGAGAGA
IM_PIOST  AAGGAGAAGTCCCSAATGGCTACAA P2 o7 TTTTCCCAGTCACGACGTTTCCCAT
JM_PI048  CTGACAAAGAAGTCCCCAATGGCTAC and 2 MP2 012 CCAGGGTTTTCCCAGTCACGACCAGACCCCAGGACCGGCAGTTCAT
IMP1040  CACTGACAAAGGAGAAGTCCCCGAT M P20T3  CAGACAGACTTGTCACTGGATTTAG
IM_PI0S0  AGACAATCAGGGCTGCCCAGTGA reverse MFP2om  CITTTGGGIGTGGGAGATCTCTG -
IM_P10ST  GACTCAGGGCTGOCCAACGAT MM_R2A_001 TTTCCC CG TGGATGTGCTT
UM_P10S2  CCAGAATGAAGCTCAACTAGACAA primers MM_R2A_002 T JCCAACACAGGAGCGCACTGG 7
JM_P1_053  GGTTCTCTGCAGAGAGGCCTGAG JM_R2A_003 T G AGCCAAGGCCCTGTCGT
JM_P1_054  GGCTGCCCAGTGATCGGTTCTC M_R2A_004 Y AGTCCAT ror
IM_P10S5  GACTTACTTCCAGAATGAAGCTCAACT MM_R2A_ 005 T GAGCTGGTGOGCACCGACA
IM_P1_056  GAGCAAAAGGAAACATTCTTGAACGATT M_R2A_008 TTTCCC CACGCAGGCGAGCTCGT
IM_PIOST  GGCTRATCCATTACTCATATGGIGTT MM_R2A 007 CCAGGGTTTTCCCAGT! JCTACACGGCCCCACCTGCCT
JM_P10SS  GATA AGTCCCCGATGGET M_R2A 008 v SCACAGAACTGAAACATCTTCAGT
UM_P1050  GATTCACAGTTGCCTAAGGATCGAT BM_R2A_009 T CCAAGCTGAGAACCAAGACCCA P
JM_P1_060  GATTCAGGGATGCCOGAGGATCG M_R2A_010 T CTCTTTTATGATGGCCCTGT henoty
JM_P1061  GATTCGGGGATGCCGAAGGATCG MM_R2A 011 v SATCAACCTGACAG :
IM_P1062  GCAGAGCGATAAAGGAAGCATCCCT IM_R2A 012 TITCC SAACCTGAACATCCATAAGCGGAA ping
IM_PI 063 TCCGGTATGCCCAACAATCGATTCT JMM_R2A_013 CCAGGGTTTTICCCAGTCACGACGGGTTCTCTTGGCTGTTACTGE rimers
IM_PI064  GATTTTAACAATGAAGCAGACACOCCT M_R2A 014 v SAGGCGCTCCCCAAGAAGAC p
IM_P1_0B5  GATGAAACAGGTATGOCCAAGGAMG M_R2A 015 CCAGGGTTTTCCCAGTCACGACCCGAGAAGCGGTACCTGAACC PCR#2
JM_P1_0B6  TATCATAGATGAGTCAGGAATGCCAAAG JM_R2A_016 Y CAACTTTGCAGCCCAGAAGA
JM_P1 067  GACTTTCAGAAAGGAGATATAGCTGAA M_R2A 017 T SCACAATATCAAAGAACAGGAGEC
JM_P1088  CAAGGCCACATACGAGCAAGGCGTC M_R2B_001 ATTTCAC SCGGTGTGGTGGET -
JM_P1_00S  CAAAGATATAAACAAAGGAGAGATCTCT MM R28_(02 AGCGGATAACAATTTCACACAGGACGTGTTGGAAGCGTTGCAGGCT
IMPI0T0  AGAGAAGGGAGATCTTTCCTCIGAGT M_R28_003 ACAATT ACCAGGATGGCCCAGCGGATGA
JM_PIOTY  GACTGATAAGGGAGATGTTCCTGAAG M_R26 004 AGCGGATAACAATTTCACACAGGATCAGCATTGTAGGCCCGGCACATC
JM_P1 072 GGCTGATCTATTICTCATATGATGTTAA M_R28_005 ACAATTT TGCGGTAGCATTICTCAGCY
JM_P1073  GOCACATATGAGAGTGGATTTGTCATT M_R2B_006 CAATTTC SGGCOGAGGCATTGCGCAGCT
JM_P10T4  GGYGCCCCAGAATCTCTCAGOCT M_R26_00T AATTT STGCATGT, 16
IM_PIOTS  COGTGAATAGGCAGACAGACTIGT M R2B_008 AGCGGATAACAATTTCACACAGGATTCTACAATGGTTGCTGTCTCA
UMPI0T6  ACCAGTGIGGCCTITIGGGTGIG — 2A_R2B_ 000 ATTT TCAAACTCACTCATGGCTTTGTA
IM_P2.001  CCAGGGTTTTCOCAGTCACGACAGGTCGTTITICTICATICCTIAGTC ™) JM_R28_010 ACAATT ACAGTCTCACTGTTGAAATTCA
JM_P2.002  CCAGGGTTTTOCCAGTCACGACACGAT TGACCTATGAACGG | JM_R2B_011 ACAATT CCTTTACAAACTGGGCCAC
JM_P2003  CCAGGGTTTTICCCAGTCACGACCTTTGAAGCTGAATTTAACAAGAGCC | MM_R2B_012 CAATT SAGAGTTCA
UM_P2004  CCAGGGTTTTCCCAGTCACGACCTCCCTGTTTATCCCTGCCGAC M_R26_013 CAATTTCACAC, TTTGAAGTAMAGGAGACAATTTG
IM_P2005  CCAGGGTTTTCCCAGTCACGACAAACAAGACCAAAGACTCACTGTTC | JM_R28 014 AGC CAATTTC AGAAGATGATCTGACTGCETG
UM_P2006  CCAGGGTTTTICCCAGTCACGACAAGACTGAAGGTCACCTTTGATACE | JM_R28.015  AGC ACAATT COGCACAACTCOGGTGACATCA
UM_P2.007  CCAGGGTTTTOCCAGTCACGACACTAAATGCTACATTACTGAAGAATGS | M _R28_016 ACAATTT! TGOCGTAGTTGGAGATAAG
JM_P2 008  CCAGGGTTTTOCCAGTCACGACGCATCAACGGTTTTGAGGCTGAATTTAAL M _R28_017 ACAATT SCACACTGCATGTCTGCCCT R
IM_P2.000  CCAGGGTTTTCOCAGTCACGACGAAMCCACTICTTICCACTIGGAGAA | Pepimer!  AATGATACGGCGACCACCGAGATCTACACTCYTTCCCTACACGACGCTCTICCGATCY
JMP2 010 CCAGGGTTTTCOCAGTCACGACTACAGCAACTCTGGATGCAGACAC | Pepdmer2  ARGCAGAAGACGGCATACGAGATCGGTC TCCTGCTGA YCrT T
UM_P2.011  CCAGGGTTTICOCAGTCACGACGAAGATGGAAGGTTTACAGCACA — ACACTCTTTCCCTACACGACGCTCTTCCGATCT
JMF2012  CCAGGGTTTTCCCAGTCACGACGACATTCGTTCAMTGTGGGCGAA  pmmw  CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT Paired end
IM_P2013  CCAGGGTTTTCCCAGTCACGACGGCAAGGCCAAGAGTCACCGT
IM_P2_0%4 CACGAC TCCGECA ;
IM_P2015  CCAGGGTTTTCOCAGTCACGACGCTGACCTTAACAAAGGCGAGACA adaptor prlmgrs
JM_P2 016 CCAGGGTTTTCOCAGTCACGACTTAAGAGTCACGCTTGACACTTCCA
IM_P2017  CCAGGGTTTTOOCAGTCACGACGCAGAGGTTTTCAGGCCAGTCET PCR#2 and sequencing
! E
x:g:z': cmmm;mrmca#nccmnmr Nested alpha and primers
UM_P2020  CCAGGGTTTTCOCAGTCACGACGOCTCGCTGGATAMTCATCAGGA
UM_P2021  CCAGGGTTTTCOCAGTCACGACACGACTGTCGCTACGGAACGCTA beta forward and 2
JM_P2022  CCAGGGTTTTCCCAGTCACGACCACAATCTCCTTCAATAAAAGTGCCA 2
M P2023 CACGACACGAATARGTGCCACTCTTAMTACCA | TEVETSE primers
UMP2 024  CCAGGGTTTICCCAGTCACGACGTTT T
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Table 4. continued

[CCTACACGAL GET T TCCGATCTT T TAAGCGAGEAGALCAGGGTTTTCCCAGTCACGAL IM_31_008—~— CCTACALGACGLTCTTCCGATCTACCTCAGGAATGTCCCAGGG TTTTCCCAG TCACGAC Jina_s1_o7s
[CCTACACGACGCTCTTCCGATCTOAT TTTTCCCAGTCACGAL IM_31_002 CCVACACGACOCT CTTCCOATCTOOGUAATGAATG TCCCAGGOTTTTCCCAGT CACGAL M _31_07%
[CCTACAC TTCCGATCTACCTCAGGAGCAGACCAGGGTTTTCCCAGTCACGAC 31 003 CCTACACGACGCTCTTCCGATCTGACGAGGGAATGTCCCAGGGTTTTCOCAGT CACGAC inm_31_077
CCTACAC CTTCCGATCTOGGGAAT GAGLAGACCAGGGT TTTOOCAGT CACGAC [ 31 004 CCTACACGACGCTCTTCOGAT CTAAAG GAGGAATG TCCCAGGGT TTTOOCAG TCACGAC iv_31_078
[CCTACACGACGETCTTCCGATCT GACGAGGGAGCAGACCAGGG T TTTCCCAGT CACGAL M1_31_005 I A A L CA G T CTTCCGATCTGTTG TTGGAATGTOCCABG BT TTTCCCAGTCACGAL Inu.n_on
[ccrmm(nmccmtctmmmscrmcmucw IM_31_006 CCTACACGACGCTCTTCCGATCTCTCAACTGAATGTCCCAGGGTTTTCCCAGTCACGAC 1im_31_080
[CCTACACGAL gu—-ﬂcﬂ"ﬂcﬂf AGHCC, TTITCCCAGTCACGAL M 31 007 CTGCT: CGLTCTTCCGATCTGLGTTCAGTCACTGGATTTAGAG TCTCTTAG p_u
CTACACGACGCTCTTCCGATCTCTCAACTGAGCAGACCAGGG TTTTCCCAGTCACGAL a_31_008 CTGLT. CTTCCGATCTTCCAGGAGTCACTOGATTTAGAGTCTCTCAG In_32_0C
[CCTACACGACGCTCTTCCGATCTTTTAAGCGATCGAACCAGGGTTTTCCCAGTCACGAC M _31 009 CTGCT CGCTCTTCCGATCTCATTATAGTCACTGGATTTAGAGTCTCTCAG I X
CCTACACGACGCTCTTCCGATCTGLTGLACGATCGAACCAGGGT TTTOCCAG TCACGAT M _31_010 CTGCTGARCCGCTCTTCCGATCTGACCTGTGTCACTGGAT TTAGAG TCTCTCAG M_32 004
[CCTACACGACGETCTTCLGATCTACCTCAGGAT COAALCAGOGTTTTCCCAG TCACGAL 31 011 CTGCTGAACCOLTCTTCCOATCTTTACCOOGTCACTGGATTTAGAGTCICTCAG in_32_005
[CCTACACGACGCTCTTCCGATCTCGGGAATGATCGAACCAGGGTTTTCCCAGTCACGAC _31 012 CTGCTGAACCGLTCTTCCGATCTATACTTAGTCACTGGATTTAGAGTCTCTCAG M_32_006
CCTACACGACGLTCTTCCGATCT GACGAGGGATCGAACCAGGGTTTTCOCAGT CACGAL i 31 013 CTGCTGAACCGLTCTTCOGATCTCTGCTAGGTCACT GGATTTAGAGTCTCTCAG IM_32_007
CTACACGACGCTCTTCCGATCTARAGGAGGATCOAACCAGGG T TTTOOCAGTCACGAL T 31 018 CTGCTGAACCOLTCTTCCOATCTTGGACGTGTCACTGGATTTAGAGTCTCTCAG Eu 2 008
[CCTACACGACGCTCTTCCGATCTGTTGTTGGATOGAMCCAGGGT TTTCCCAGTCACGAL M_31 015 CTGCTGAACCGLTCTTCCGATCTTAGGCTAG TCACTGGATTTAGAGTCTCTCAG M_32_009
CCTACACGACGCTCTTCCGATCTCTCAACTGATCGAACCAGGGTTTTCCCAGTCACGAC M 31 016 CTGCTGAACCGLTCTTCCGATCTOGGAATGGTCACTGGATTTAGAGTCTCTCAG M_32_010
CCTACACGACGCTCTTCCOATCTTTTAAGCGAAACAACCAGGGTTTTCCCAGTCACGAC iv_31_017 CTGCTGAACCGCTCTTCCGATE TCACCAACGTCACTGOATTTAGAGTCTCTCAG Im 2 011
CCTACACGACGCTCTTCCGATCTGCTGCACGAAACAACCAGGGTTTTCCCAGTCACGAC Iin_31_018 CTGCTGAACCOCTCTTCCGATCTGTGAGACGTCACTGGATTTAGAGTCTCTCAG v 32 012
CCTACACGACGCTCTTCCGATCTACCTCAGGAAACAACCAGGGTTTTCCCAGTCACGAL m_31_019 |CTGCTGAACCGETCTTCOGATCTGEGTTCAGAGATCT CTGCTICTGATGGETC I!u 32 013
|«vmmcmmcmuwwwmcmw Iv_31_020 CTGCT: CTTCCGATCTTCCAGGAGAGATCTCTGLTTCIGATGGCTC ine_32 014
[CCTACACGACGCTCTTCCGATCTGACGAGGGAAACAACCAGGGTTTTCCCAGTCACGAT _31_021 CTGCTGAACCGCTCTTCCGATCTCATTATAGAGATCTCTGCTTCTGATGGLTC =
CCTACACGACGCTCTTCCGATCTAAAGGAGGAAACAACCAGGGTTTTCCCAGTCACGAC IW_31_022 CTGCTGAACCGCTCTTCCGATCTGACKT! TCIGCTTC TC Column i ]
CCTACACGACGETCTTCCGATCTGTTGTTGGARACAACCAGGGTTTTCCCAGTCACGAC iM_31_023% |ETGETGAACCGETCTTCOGATCTTTACCGOGAGATCTCTGLTTCTGATGGLTC
CCTACACGACGCTCTTCCGATCTCTCAACTGAAACAACCAGGG TTTTCCCAGTCACGAL 31024 CTGCTGAACCGLTCTTCCGATCTATACTTAGAGATCTCTGCTTCTGATGGLTC barcodes :
CCTACACGACGCTCTTCCGATCTTTTAAGL CCAGGGTTTTCCCAGTCACGAL IM_31_025% CTGCTGAACCGLTCTTCCGATCTCTGCTAGGAGATCTCTGCTTC TC fof alpha _—
CCTACACGACGCTCTTCCGATCTGCTGEAL (| TITCCCAGTCACGAL 31 026 CTGCTGAACCGLTCTTCCGATCTTGGACG TGAGATCTCTGCTTCTGATGGETC i =
[CCTACACGACGCTCITCCGATCTACCTCAGGAGGTGOCCAGGGTTTTCCCAGTCACGAL iM_31_027 CTGCTGAACCGCTCTTCCGATCTTAGGCTAGAGATCTCTGLTTCTGATGGLTC beta’ and =
CCTACACGACGCTCTTCCGATCTC CCAGGGTTTTCCCAGTCACGAC lim_31_028 CTGCTGAACCGCTCTTCOGATCTCGGAATGGAGATCTCTGLTTCTGATGGCTC =
wmmacrm-mn- CCAGGGTTTTCCCAGTCACGAC M_31_029 |CTGCT GARCOGCTCTTCCGATCTCACCAACGAGATCTCTGLTTCTGATGGETC phenotype Ll
TCTTCCGATCTAA s TTICCCAGTCACGAC a_31_030 CTGCTGAACCGL TCTTCCOATCTGTOAGACOAGATCICTOLTTCTGATGACTC B,
AC TCITCCGATCTGTTGTT GGAGGTGCCCAGGGTTTTCCCAGTCACGAC iM_31_031 CTGCTGAACCGL TCTTCCGATCTGLGTT CAAGCGGATAACAATT TCACACAGGA [in_32_025
T, CGCTCTTCCGATCTCTCAACTGAGGTGLCCAGGGTTTTCCCAGTCACGAC 31 032 CTGCTGAACCGE TCTTCOGATCTTCCAGGAAGCGGATAACAAT TTCACACAGGA Ine_32 026
CCTACACGACGCTCTTCCGATCTTTTAAGCGATTGGTCCAGGGTTTTCCCAGTCACGAC m_31_033 CTGCTGAACCOLTCTTCCGATCTCATTATAAGCGGATAACAATT TCACACAGGA M_32_027
CCTACACGACGCTCTTCCGATCTGCTGCACGATTGGTCCAGGGTTTTCCCAGTCACGAL iv_31_034 CTGCTGAACCGLTCTTCCGATCTGACCT GTAGCGGATAACAATT TCACACAGGA M_32_028
CCTACACGACGCTCTTCCGATCTACCTCAGGATTGGTCCAGGG TTTTCCCAG TCACGAC IM_31_03% CTGCT CGCTCTTCOGATCTTTACCGL ATAACAATTTCACAC M D2
CCTACACGACGCTCTTCCOATCTCOGGAAT GATTGG TCCAGGGTTTTCCCAGTCACGAL Iv_31_036 CTGCTGAACCGL TCTTCCGATCTATACTTAAGCGGATANCAATT TCACACAG ™ B
[CCTACACGACGCTCTTCCGATCTGACGAGGGATTGGTCCAGGGTTTTCCCAGTCACGAC n1_31_037 CTGCTGAACCGCTCTTCCGATCTCT GCTAGAGCGGATAACAATT TCACACAGGA im_32 03
CCTACACGACGCTCTTCCGATCTAMGGAGGATTGGTCCAGGGTTTTCOCAGTCACGAL e |CTGCTGAACOGE TCTTCCGATCTTGGACG TAGCGGAT AACAATTTCACACAGGA Iv_32 032
CTACACGACGCTCTICCGATCTGTTGTTGGATTGaTCCAGGaTITICccasTeacsae  Plate and CTGCTGAACOOCTCTTCCGATCTTAGGCTANGCGGATAACAATTT CACACAGGA IM_32_033
CCTACACGACGCTCTTCCGATCTCTCAACTGATTGGTCCAGGGTTTTCCCAGTCACGAC CTGCTGAACCGLTCTT COGATCTCGGAATGAGCGGATAACAATTTCACACAGGA [IM_32_034
CCTACACGACGCTCTTCCGATCTTTTAAGCGACATTCOCAGGGTTTTCCCAGTCACGA:  TOW TG TGAACCGCTCTTCCGATCTCACCAMCAGCGGATAACARTTTCACACAGGA W32 035
CCTACACGACOCTCTTCCGATETGLTOLACGACATICCCAGGGTITICCCAGTCAAC  harcodes CTGLTG CTTCOGATCTGT GAGACAGOGGATAACAATTTCACACAGGA Im 32 036
CCTACACGACGLTCTTCCGATCTACCTCAGGACAT TCCCAGGGTTITCCCAGTCACGAL GACGOGGLGCAGTACCOGET GATAD —
CCTACACGACGCTCTTCCGATCTCGGGAATGACATTCCCAGGG TTTTCCCAGTCACGAC in_32_04e GCCTGTACGTOCACCOGGACT TBET ¥
CCTACACGACGCTCTTCCGATCTGACGAGGGACATTCCCAGGGTTTTCCCAG TCACGAC im_32_048 GGCTOCTGCTGCATCGTAGCTGCT FOXP3 ¥
CCTACACGACGCTCTTCCGATCTAAMGGAGGACATTCCCAGGGTTTTCCCAGTCACGAC IM_32_046 OCCGGGAGGAAGTGACTGGCTA RORC F
CCTACACGACGCTCTTCCGATCTGTTGTTGGACATTCCCAGGGTTTTCCCAGTCACGAT n_32_047 COGCAGCATGGTOGAGGTGCT RUNX1 F
CCTACACGACGCTCTTCCGATCTCTCAACTGACATTCCCAGGGTTTTCCCAGTCACGAL 32 048 GCGCTOGATOGTGGACGTOCT RUNX3 F
CCTACACGACGCTCTTCCGATCTTTTAAGCGAATTGGCCAGGGTTTTCCCAGTCACGAC IM_31_049 GCCAAACCAGAGOGGCCTOAG BCL6 F
CCTACACGACGCTCTTCCGATCTOCTOCACGAATTGGCCAGGOTTTTCCCAGTCACGAC n_31_050 CTCACATTTAAGTTTTACATGCCCAA w2 f
CCTACACGACGCTCTTCCGATCTACCTCAGGAATTGGCCAGOGTTTTCCCAGTCACGAL m_31_051 CCAGTTTTACCTGGAGGAGGTGA w10 ¥
[CCTACACGACGETCTTCCGATCTCOGGAAT GAATTGGLCAGGG TTT TCOCAG TCACGAC _31_052 GGGAGTTGCCTGGCCTOCAGAA IL12A '
CCTACACGACGCTCTTCCGATCTGACGAGGGAATTGOLCAGGGTTTTOCCAGT CACGAL im_31_053% CCCAGAACCAGAAGGCTOOGET 113 '
[CCTACACGACGCTCTTCCGATCTAAAGGAGGAA TTGGLCAGGGT T TCCCAGTCACGAC iv_31_0%4 GACAMGAACTTOOCCOGGACTG Phenotype IL27A ¥
CCTACALGACGCTCTTCCGATCIGTTG T TGGAAT TGGLCAGGGTTTTCCCAGTCACGAL im_31_05% GGCTTTTCAGCTCTIGCATOGTTTT IFNG ¥
CCTACACGACGCTCTTCCGATCTCTCAACTGAATTGGCCAGGGTTTTCCCAG TCACGAC i _31_056 CATGATCCGGGACGTGGAGCT forward TNFA ¥
CCTACACGACGCTCTTCCGATCTTT TAAGCGACGGTTCCAGGGTTTTCCCAGTCACGAL im_31_057 GCATATATATGTTCTTCAACACATCA and TGFB ¥
CCTACACGACGCTCTTCCGATCTGETGLACGACGGTTCCAGGG TTTTCCCAG TCACGAC IM_31_058 GTGTCTGTOGCOGGCTCACAC PERFORIN  f
CCTACACGACGCTCTTCCGATCTACCTCAGGACGGTTCCAGGGTTTTCCCAGTCACGAC IM_31_059 GGQANGCTCCATAAATGTCACCTT reverse GRANZYMEB F
CCTACACGACGCTCTTCCGATCTCGGGAATGACGGTTCCAGGGTTTTCCCAGTCACGAC _31_060 GOAGAAGGGGCTGAGATTOCAT rimers GATA3 R
[CCTACACGACGCTCTTCCGATCTGACGAGGGACGG TTCCAGGGTTTTICCCAGTCACGAL i_31_061 CTGGGTTTCTTOGAAAGTARAGATAT p TBET R
CCTACACGACGLTCTTCCOATCTAAMGGAGOACGGTT CCAGOG TTTICCCAG TCACGA M_31_062 GTCOGCTGCTTCTCTGRAGCCT PCR#1 yoXe3 R
[CCTACACGACGLTCTTCCGATCTGTTOTTGGACGG TTCCAGGGTTTTCOCAGT CACGAL 1_31_063 COATGOCACOGTATITGOCTTCAR RORC ”
CCTACACGACGCTCTTCCGATCTCTCAACTGACGG T TCCAGGGT TTTCCCAGT CACGAL M _31 064 GGTCATTAAATCTTGCARCCTGGTT RUNX1 "
CCTACACGACGETCTTCCGATCTTTTAAGCGAATCCTCCAGGG TTTTCCCAGTCACGAL iM_31_065 CGTTGRAACCTOGOCACCTGGTT RUNXY ]
CCTACACGACGCTCTTCCGATCTGCTGCACGAATCCTCCAGGGTTTTCCCAGTCACGAC M_31_066 GRAGANGOCGCAGGACGTGCACTT BCL6 A
[CCTACACGACGCTCTTCCGATCTACCTCAGGAATCCTOCAGGGT TTTCOCAGTCACGAC IM_31_067 GACAAMAGGTAATCCATCTOTTCAG L2 R
CCTACACGACGCTCTTCCGATCTCGGGAATGAATCCTCCAGGGTTTTCCCAGTCACGAL M_31_068 GTAGGCTTCTATGTAGTTGATGAAGA IL10 R
CCTACACGACGCTCTTCCGATCTGALGAGGGAATOCTCCAGGGTTTTCCCAGTCACGAC IM_31_069 COGTTCTTCAAGOGAGGATTTTTGT IL12A R
CCTACACGACGCTCTTCCGATCTAAAGGAGGAATCCTCCAGGG TTTTCCCAGTCACGAC n_31_070 CCCTOGCOAAAAAGTTTCTTTAAAT 113 R
CCTACACGACGCTCTTCCGATCTGTTGTTGGAATCCTCCAGGGTTTTCCCAGTCACGAT _31_0M GGACCAGGATCTCTTGCTGGAT ILLTA ®
CCTACACGALGCTCTICCGATCTCTCAALTGAAT CCTCCAGGOTTTTCCAGTCACGAL i 31 072 GGATGCTCTGSTCATCTTTAMGTT NG "
CCTACACGACGCTCTTCCGATCTTTTAAGCGAATG TCCCAGGGTTTTCCCAGT CACGAL iM_31_073 GGGCTACAGGCTTGTCACTCG TNFA "
CCTACACGACGLTCTTCCGATCTGLTGLACGAATG TOCCAGGG T TTTCOCAGTCACGAL M_31_00 CCCTOCACGGCTCAACCACT TGFB [
COGATATGOGGOCACCCAGET PERFORIN R
GTTTTOCCAGGGGEGCOGTCT GRANZYMEB—®
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Results:
Single cell analysis of candidate GVL T cells

We isolated CLL neoantigen-specific T cells using the tetramer-based, single cell
method described. We then mapped the TCR beta chain sequence obtained from the single cell
method onto the bulk Adaptive TCR beta chain data. This allowed us to visualize the
expansion/contraction of the relevant clones during periods of leukemia response or significant
subclonal leukemic evolution.

First, we predicted neoantigens for each patient at each time point across their specific
HLA molecules using the leukemia WES data. Next, we used public CLL RNA sequencing
(RNA-seq) data to evaluate leukemic expression of neoantigens of interest (particularly strong
binders with a predicted IC50 < 150 nM) [17]. Single cell RNA-seq and scATAC-Seq of sorted
pre-alloSCT CLL cells were then used to confirm expression of neoantigens using the vartrix
algorithm (Figure 19).

We analyzed pre-transplant, sort-purified leukemia cells from patient CLL 13, a complete
responder with a CLL driver SF3B1 K700E mutation, for whom there was sufficient material
available for both scRNA-seq and scATAC-Seq assays (Figure 19A and B). Both assays
confirmed expression of the SF3B1 K700E mutation. Similarly, we detected CHEK2 P92L (see
Chapter 3) in both scRNA-seq and scATAC-Seq assays in sorted pre-transplant cells from CLL
1, but not CLL 13, who was wild type for CHEK2 (Figure 19C and D). We were unable to
confirm the expression of all relevant neoantigens due to sample availability; however, these
data support the utility of single cell expression analyses for this purpose when sample quantity
is limited.

CLL patient 12 experienced a CR of heavily pretreated CLL after an HLA-matched,
nonmyeloablative alloSCT from a MUD. His course was complicated by fungal infection and

chronic GVHD of the gut and skin. His CLL never relapsed and he passed away 6 years post-
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alloSCT from unknown causes. We conducted WES of 2 pre-alloSCT samples from CLL patient
12, 106 and 17 days prior to his transplant (Figure 20A). In the interval between the samples, he
received a fourth cycle of chemotherapy with hyperCVAD in combination with rituximab and
alemtuzumab. WES of both samples confirmed mutations in TP53 (2 separate mutations),
SF3B1 (K700E), and PARPBP with high allelic fractions (Figure 20A). Pyclone analysis
estimated the presence of these mutations in nearly 100% of CLL cells in cluster O (Figure 20B).
Several exonic mutations formed predicted strong neoantigens in the context of the patient’s
HLA molecules including SF3B1 K700E and PARPBP N355I, which were both predicted to bind
to HLA A*02:05 (Figure 20C).

We generated PARPBP and SF3B1 neoantigen tetramers (GLVDEQQEV and
GLSNFIIFI, both HLA A*02:05) and isolated CD8+, tetramer-binding T cells at 3 time points for
CLL patient 12 (Figure 20D). Unfortunately, sample viability was intermediate in the first and last
samples. Only 1 reliable TCR beta sequence was recovered for the SF3B1 tetramer in the
single cell sorts — CASSYAISVPSYNEQFF — and this sequence was found in only 1 of the 4
longitudinal adaptive bulk repertoire samples (75 days post-alloSCT) at a frequency of 0.94%.
For the PARPBP neoantigen tetramer, 5 TCR beta sequences were recovered (Figure 21A). Of
these 5 TCR beta sequences from the single T cell neoantigen tetramer sorts, 3 of them were
found at an appreciable frequency in all 4 time points from the longitudinal bulk TCR data
(Figure 21B). In the day +50 post-transplant sample, the PARPBP-tetramer binding clones were
present at expanded frequencies of 29%, 2.9%, and 7.3% of the T cell repertoire.

In an antigen-specific response, multiple T cell clonotypes are recruited [108]. In
addition, different nucleotide (DNA) sequences can encode for the same TCR Vbeta amino acid
sequence, known as ‘convergent recombination’, which can also indicate an antigen-specific T
cell response [109]. Within CLL patient 12’s longitudinal bulk TCR repertoire data, we did see
evidence of convergent DNA recombination for the PARPB neoantigen-specific T cell clones.
Specifically, there were 7 unique DNA sequences for CASSVTGGYNEQFF, 3 for
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CASSLLPESADTQYF, and 2 for CASSISGRSVPGELFF. However, convergent DNA
recombination was also seen for many other T cell clones in CLL patient 12’s repertoire that did
not bind the PARPBP neoantigen tetramer (Figure 21C). There are several potential
explanations: these T cells could be responding to other antigens including other CLL
neoantigens, LAAs, mHAs involved in GVHD/GVL, viral antigens, or it could be a general
feature of the post-alloSCT repertoire, a question that has not been investigated.

Finally, in addition to sequencing the TCR, we utilized flow cytometry and the single T
cell gene expression data to investigate the immunophenotype of the singly sorted, mutant
PARPBP tetramer-binding CD8+ T cells. Tetramer sorted T cells had either a central memory
(CCR7+, CD45RA-) (clones 3A19 and 3B19) or an effector phenotype (CCR7-, CD45RA+)
(clones 3E6 and 3E23) and an activated (CD69+CD107+) surface expression profile (Figure
21D). This is expected since post-transplant, reconstituting T cells are skewed towards an
antigen-experienced, effector memory phenotype [110]. Together, we identified neoantigen-
specific T cells whose expansion and contraction post-alloSCT coincided with clinical CR.
However, tumor cytotoxicity assays are necessary to confirm anti-CLL activity but were beyond
the scope of this work.

CLL patient 8 was discussed in Chapter 2 as an example of CLL subclonal genomic
evolution. Briefly, the patient’s leukemia persisted after a nonmyeloablative alloSCT from his
sister. He then received 2 DLlIs, also from his sister, and briefly responded but ultimately
relapsed and passed away from refractory CLL. Significant subclonal evolution was seen after
the 2 DLIs as shown in Figure 22A. Strong predicted neoantigens included those resulting from
somatic nonsynonymous mutations in ZCWPW1, ACTN1, and ADCY1 (Figure 22B). Single cell
RNA-seq confirmed expression of the ACTN1 alternate allele in the early post-alloSCT disease
but not in the late post-alloSCT disease (Figure 22C and D). The ADCY1 mutant allele was not

detected using single cell RNA-seq (data not shown), though emergence of an expressed TP53
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mutation was confirmed (Figure 22D, inset). Importantly, the single cell RNA-seq data aligned
with the WES data and showed clear post-alloSCT leukemic evolution at the population level.
A persistently restricted T cell repertoire was observed in CLL patient 8 post-alloSCT
(Figure 22E, left panel). A post-DLI bone marrow sample was subjected to neoantigen,
tetramer-based (ACTN1 M460I in HLA*B 15:01 and ZCWPW1 in HLA*A 02:01) single T cell
sorting and TCR sequencing. None of the ZCWPW1 neoantigen-binding TCR beta sequences
were found in the longitudinal TCR repertoire data. In contrast, similar to CLL patient 14, four of
the ACTNL1 (YCIARIAPY/HLA*B 15:01) neoantigen-binding T cell clones, with high relative
tetramer binding intensity, could be mapped onto the longitudinal repertoires, linked by the TCR
beta sequence. Leukemic subclonal evolution occurred between d+176 and d+463 and the
ACTN1 neoantigen-binding clones were found at expanded frequencies during that time window
(Figure 22E, right panel and arrows). Again, cytotoxic assays are needed to differentiate true
anti-CLL activity from TCR promiscuity or frequent clones stochastically landing in the tetramer
gate during single T cell tetramer sorting. Nevertheless, this work is proof of concept of a robust
method that links detailed information about a single T cell, including its antigen specificity and
immunophenotype, to the broader context of where the clone resides within the shape ofa T

cell repertoire and its adaptation over time.
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Figure 19. Single
leukemia cell expression
of neoantigens

(A) Clustering of gene
expression from sorted
leukemia cells from CLL
patient 13 using uniform
manifold approximation
and projection (UMAP).
Transcripts encoding
SF3B1 K700E were
detected using Vartrix, a
software tool from 10X
Genomics. The upper
panel indicates that 11
different gene expression
clusters were identified
within the CLL population.
The lower panel indicates

that the altered SF3B1

allele was detected in all clusters (red dots). (B) View of IGV reader from single cell ATAC-Seq

data from sort-purified leukemia from CLL patient 13. The SF3B1 K700E allele is detected in

CLL patient 13, but not in CLL patient 1 who was SF3B1 wild type. (C) Similar to A, UMAP

analysis of sort-purified leukemia from CLL patient 1 reveals 7 clusters with the CHEK2 P92L

mutant transcript found in all clusters. (D) As in B, the IGV reader view confirms expression of

the mutant CHEK2 allele in CLL patient 1 but not CLL patient 13.
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Figure 20. Neoantigen-specific T cells in CLL patient 12
(A) WES profile of purified CLL from 2 pre-alloSCT samples in CLL patient 12. (B) Pyclone

analysis of WES data from CLL patient 12. This tool estimates the cellular prevalence of given
somatic mutations. Of note, the PARPBP mutation is in cluster 0. (C) HLA type and subset of
predicted CLL neoantigens for CLL patient 12. (D) Tetramers for neoantigens in SF3B1 and
PARPBP (both HLA 02:05) were folded and 3 samples from CLL patient 12 were used to isolate

neoantigen specific T cells via single T cell sorting.

Figure 21. Integrating neoantigen tetramer-binding TCR B sequences with longitudinal,
bulk repertoire TCR B sequences for CLL patient 12

(A) TCR sequencing of mutant PARPBP, neoantigen tetramer-binding T cells revealed 5 unique
CDR3 sequences. (B) Three of the 5 unique CDR3 sequences from single T cell, neoantigen
tetramer sorting were found within the longitudinal bulk TCR sequencing data for CLL patient 12
and these clones are indicated by arrows. The 3 T cell clones were present at expanded
frequencies during the early post-SCT period and then contracted over time. (C) Convergent
DNA recombination data showing that many of the CDR3 amino acid sequences, including the
PARPBP neoantigen-binding clones, are encoded by multiple, unique DNA sequences. (D)
Immunophenotyping by gene expression and flow cytometry of PARPBP neoantigen tetramer

binding T cells (with CDR3 CASSVTGGYNEQFF).
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Figure 21
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Figure 22
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Figure 22. Neoantigen-specific T cells in CLL patient 8

(A) As in Figure 3D, recurrent, somatic exonic nonsynonymous mutations in purified leukemia
from CLL patient 8 are shown across 5 time points. (B) HLA type and subset of predicted CLL
neoantigens for CLL patient 8. (C) Single cell RNA-seq data from an early post-alloSCT purified
leukemia sample from CLL patient 8. UMAP analysis shows 9 clusters of CLL (left panel).
Expression of the mutant ACTN1 M460I transcript is found in nearly all of the clusters in
agreement with the WES data (right panel, red dots). (D) Single cell RNA-seq data from a late
post-alloSCT purified leukemia sample from CLL patient 8. UMAP analysis reveals 8 clusters of
CLL that are distinct from those in the earlier post-alloSCT sample in C (left panel). Surprisingly,
though the ACTN1 mutation was still detected in a subclone in the WES data, the altered allele
was no longer expressed in the late post-alloSCT disease (right panel). The inset shows
expression of the mutant TP53 allele (G244A), concordant with the WES evolution data. (E)
Longitudinal bulk TCR sequencing data (left) and neoantigen tetramer binding T cells for CLL
patient 8 (for ACTN1, M460I in HLA*B 15:01) (right). The arrows match a given neoantigen-
binding T cell clone to its longitudinal frequency within the post-alloSCT T cell repertoire of CLL
patient 8 using TCR beta chain sequences. Of note, significant subclonal evolution in the

patient’s disease was observed between d+176 and d+463 (time points 3 and 4 in the WES

plot).
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Chapter 7: Discussion and Future Directions

Discussion: Our study of patients who received a matched, nonmyeloablative alloSCT for
chemorefractory CLL revealed marked subclonal leukemic evolution after transplant. The
majority of patients (8 of 11) with recurrent or persistent disease post-alloSCT experienced
shifts in the molecular composition of their disease, which encompassed somatic point
mutations and CNAs. Branched and linear patterns of CLL evolution were observed post-
alloSCT, and these changes included recognized CLL driver lesions in every case.

In two patients (CLL patients 5 and 8), branched subclonal evolution coincided with DLI,
a treatment that consists of billions of donor lymphocytes that are infused in the absence of
conditioning chemotherapy. This is strong evidence that allogeneic T cells were responsible for
the changes in CLL disease architecture in these patients. For the remaining 6 patients who
experienced post-alloSCT disease evolution but who either didn’t receive a DLI or for whom the
timing of disease evolution in relation to DLI was less clear, it is important to emphasize that 5 of
those 6 patients received nonmyeloablative conditioning with alloSCT (CLL patient 9 received
reduced-intensity conditioning). Nonmyeloablative regimens were designed to optimize donor T
engraftment, relying on T cells to eradicate disease via the GVL effect rather than cytotoxic
chemotherapy [111]. Moreover, the nonmyeloablative regimen that these patients received was
either FC or FCR chemotherapy, a regimen all of the patients had received previously that
proved ineffective for their CLL. In this context, we expect that any observed post-alloSCT
disease evolution is attributable, at least in part, to selective pressure from the graft rather than
to chemotherapy alone.

In addition, our study provides a strategy to disentangle donor and host exomes post-
alloSCT. The resultant, reproducible longitudinal CLL exome and copy number data enabled us
to investigate a unique pattern of post-alloSCT CLL branched evolution in CLL patient 1. This

led to the discovery of a novel candidate driver mutation in the protein kinase, Chk2 (c.275T,
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p.P92L). Co-immunoprecipitation and ultracentrifugation techniques showed that the clonal
CHEK2 somatic mutation found in CLL patient 1 strengthened both homo- and
heterodimerization of the kinase. These data suggest impairment in Chk2 P92L function that
may be relevant in leukemogenesis and highlight the power of studying a single patient’s
disease longitudinally. We identified CHEK2 as a candidate driver in CLL through in-depth study
of one patient compared to the hundreds of patients it required using a bioinformatics approach.

Thirteen patients with a CR to alloSCT were added to the cohort to enrich the T cell
analyses and to enable comparison of CLL molecular features between responders and
nonresponders. The 24 patients in the final cohort had CLL with aggressive molecular features,
including enrichment for recognized CLL drivers (e.g. TP53 mutation/loss) and an unmutated
IGHV gene. This was expected since all 24 patients had chemorefractory leukemia. We did not
detect any significant differences between responders and nonresponders with respect to the
number/composition of exonic mutations, copy number changes, or the leukemic neoantigen
burden. However, a difference was observed in CLL structural heterogeneity between response
groups. Complete responders to alloSCT tended to have disease that was more structurally
clonal than nonresponders, meaning the copy number gains and losses detected in CR patients
tended to be homogeneously distributed throughout the CLL population. In contrast, alloSCT
nonresponders had CLL with one or more subclones containing private CNAs that were not
shared by the larger CLL population. This suggests that alloSCT may be more effective for
patients with structurally pure CLL and less potent in patients with CLL that is structurally
heterogeneous, a finding that warrants further study.

Next, we focused on the post-alloSCT donor T cells to assess for evolution of the T cell
repertoire in response to host CLL. Of the 24 patients with CLL WES data, 19 had sufficient
samples for TCR analyses. T cell reconstitution post-alloSCT is immensely complex and is its
own field of study. Multiple factors are at play including conditioning type, graft type (related vs.
unrelated vs. umbilical cord and matched vs. haploidentical), infection (bacterial, fungal, and
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viral), viral reactivation (EBV, CMV, etc.), GVHD, tolerance, post-alloSCT immunosuppression,
and thymic output. The TCR repertoire diversity in the CLL alloSCT cohort was markedly
oligoclonal compared to healthy donors. For many patients, this defect in the T cell repertoire
persisted for years.

TCR diversity was more dynamic over time in CLL transplant recipients than in healthy
donors; however, there was no clear pattern of clonality change in alloSCT responders versus
nonresponders. Among patients with disease response post-alloSCT, those with chronic GVHD
had a higher clonality (i.e. a more oligoclonal T cell repertoire) compared to patients without
chronic GVHD. Altogether, though, the sample size was too limited to identify a signature of the
GVL effect within the bulk, longitudinal TCR repertoire data. As discussed below, resolving a
pattern will require large numbers of patients to account for important clinical variables like viral
reactivation and GVHD.

Lastly, we focused on individual T cell clones within the expansive T cell repertoires to
test our hypothesis of coevolving host leukemia and donor T cell clones. Personalized
neoantigens were predicted for each patient using the WES data. Single tumor cell RNA
sequencing confirmed expression of neoantigens and corroborated subclonal leukemic
evolution post-alloSCT. We then adapted an established single T cell TCR sequencing method
to identify CLL neoantigen tetramer-binding CD8 T cell clones by their TCR beta chain
sequence. In two patients, these clones were mapped onto the respective patient longitudinal
bulk T cell repertoires. The candidate GVL T cell clones were present at expanded frequencies
within the post-alloSCT T cell populations during periods of disease response (CLL 14) and
disease evolution (CLL 8). However, tumor cytotoxicity assays are needed to confirm anti-CLL
activity. In summary, this work provides a robust method to link detailed information about a
single T cell, including its antigen specificity, TCR sequence, and immunophenotype, to its
position in the larger T cell repertoire. Importantly, the strategy permits tracking of a given clone
through its contraction and/or expansion within the repertoire during periods of leukemia
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response or in the context of other clinical parameters (e.g. GVHD, viral reactivation, disease
progression, etc.).

There is a growing body of literature with which to put these findings in context. In 1976,
Dr. Peter Nowell described a model of the evolution of heterogeneous tumor cell populations
within a patient’s malignancy. In this report, he called tumor subclones tumor ‘sublines’ and
warned that even personalized therapies could be thwarted by the emergence of treatment-
resistance sublines [112]. Recent advances in genetic sequencing and single tumor cell
analyses have revealed a clearer picture of the intratumoral heterogeneity that he predicted and
confirm that clonal evolution is precipitated by therapeutic intervention in both liquid and solid
tumors. For example, investigators studied serial samples of 14 patients with myelodysplastic
syndrome treated with lenalidomide and identified examples of both branching and linear
subclonal disease evolution post-treatment. In most patients, lenalidomide effectively eliminated
clones containing deletion 5q; however, related subclones emerged to compose the relapsed
disease and harbored mutations in characteristic MDS drivers including TET2, ASXL1, and
DNMTS3A [113]. A separate study utilizing WES in endocrine-resistant breast cancer
demonstrated clonal evolution of the disease after treatment with palbociclib and fulvestrant in
12 of 14 patients [114]. Genetic alterations that emerged after progression on therapy included
mutations in RB1 and FGFR2. Targeted sequencing of circulating tumor DNA in an additional
195 patients pre- and post-treatment revealed outgrowth of tumor clones containing mutations
in PIK3CA (16/195 patients) and ESR1 (25/195 patients, particularly Y537S).

With respect to subclonal evolution in CLL, Dr. Dan Landau and Dr. Catherine Wu lead
the field. In their initial article, an algorithm called ABSOLUTE was used to estimate the cancer
cell fraction of candidate CLL driver alterations detected in 149 CLL patient samples (80% of
patients were untreated, 20% had received prior chemotherapy) [56]. This analysis revealed
that some CLL drivers, including MYD88 mutations, trisomy 12, and deletion 13q, tended to be
clonal lesions implying they were acquired early in leukemogenesis, while others, like TP53
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loss/mutation, tended to be found at subclonal fractions, suggesting they were acquired late in
the CLL disease course. In addition, they conducted WES of serial CLL samples (median 3.5
years apart) in 12 patients receiving interval chemotherapy (most FC or FCR) and 6 CLL
patients receiving no intervening therapy. Of the 12 patients who received chemotherapy, 10
showed significant CLL clonal evolution including outgrowth of subclones containing delllq,
SF3B1 mutations, and TP53 alterations. In contrast, clonal evolution was seen in only 1 of the 6
patients who did not receive treatment in between the 2 time points. Of the 11 patients with
disease evolution, 5 had a branched pattern and 6 had a linear pattern. Lastly, they showed that
the presence of a subclonal driver alteration in CLL was associated with a shorter FFS post-
chemotherapy compared to patients without detectable subclonal drivers.

In a follow-up report, Landau et al. reported WES results from 538 CLL patients,
including 278 untreated patients from the CLLS8 trial that proved the superiority of FCR therapy
over FC [17, 115]. Again, the ABSOLUTE algorithm was employed to categorize clonal versus
subclonal CLL somatic alterations and in this cohort, chemotherapy was associated with the
emergence of subclones containing alterations in TP53, BIRC3, dell7p, delllq, DDX3X, and
MAP2K1. They also studied paired pre-treatment and relapse samples for 59 patients on the
CLL8 trial. Remarkably, clonal evolution was observed in 57 of the 59 patients after
chemotherapy. The clonal fractions of leukemic populations containing TP53 mutations/del17p
or IKZF3 mutations tended to increase at relapse post-chemotherapy though there was
substantial diversity among the emergent subclonal drivers. Subclones containing alterations in
SF3B1 or ATM were as likely to expand as they were to contract after chemotherapy while
predicted early events like trisomy 12, del13q, and delllq tended to remain clonal. Importantly,
the drivers in dominant post-chemotherapy subclones were detectable at low levels within the
pre-treatment disease in 42% of cases via WES or targeted sequencing implying that the
observed evolution represented true outgrowth of a pre-existing subclone rather than acquisition
of new lesions from genotoxic chemotherapy.
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Clonal evolution of CLL also occurs after targeted therapy with the Bruton’s tyrosine
kinase (BTK) inhibitor, ibrutinib [20, 116]. In this context, subclonal genetic diversity represents
the primary mechanism of treatment resistance. The vast majority of the CLL population is
susceptible to the drug; however, rare subclones harboring mutations in BTK (C481S) and
PLCG2, which encodes a protein downstream of BTK, expand under therapeutic pressure and
cause disease relapse. Notably, TP53 mutant CLL is susceptible to ibrutinib and, distinct from
the clonal evolution seen after chemotherapy, subclones with TP53 mutations were as likely to
increase as decrease during ibrutinib therapy [116].

There are no published reports of CLL clonal evolution in the context of alloSCT, but
there are 3 recent studies that describe clonal evolution of AML after alloSCT. In the first report,
targeted sequencing of 35 AML-specific genes was conducted in 15 patients at three
longitudinal time points: diagnosis, pre-alloSCT, and post-alloSCT relapse [117]. Considerable
heterogeneity was observed among the longitudinal mutation profiles. The authors concluded
that post-alloSCT relapse was characterized by reexpansion of the original disease clone in 4 of
9 patients and by expansion of a rare AML subclone in 5 of 9 patients. AML subclones that
expanded at relapse carried mutations in NRAS, DNMT3A, TET2, and TP53.

In a separate study, 15 paired AML samples from diagnosis and post-alloSCT relapse
were studied using WES [118]. There was heterogeneity in the landscape of somatic SNVs and
CNAs in post-alloSCT AML, and no shared driver mutations/CNAs were found to associate with
post-alloSCT relapse. In addition, there were no recurrent somatic mutations or CNAs in
immune related genes in the relapsed post-alloSCT AML. In general, the somatic alterations in
the post-alloSCT relapsed disease resembled those found in post-chemotherapy relapsed
disease. The major finding of the study came from longitudinal RNA sequencing of AML blasts
from 7 patients with post-alloSCT relapse. In this group, 221 genes were found to be
differentially expressed between the diagnosis and post-alloSCT relapse samples. Pathway
analysis indicated that 19 of the 30 highly enriched pathways involved the innate and adaptive
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immune response. The most obvious link to immunity was the downregulation of MHC class Il
genes (HLA- DPAL, DPB1, DQB1, and DRB1) in 6 of 7 patients in the post-alloSCT sample
compared to the diagnosis sample. This finding was verified using flow cytometry, IHC, and
single AML cell RNAseq in these and additional AML patients.

Post-alloSCT downregulation of MHC Class Il molecules in AML was corroborated in a
separate report [119]. Twelve patients had AML samples available at diagnosis and post-
alloSCT relapse, and SNP profiling of these cases demonstrated clonal evolution of CNAs in 9
of 12 patients. These CNAs were common AML driver events and were not linked to distinct
immune hotspots. GEP by microarray was then performed in 9 patients at diagnosis and at
post-alloSCT relapse. Deregulated pathways included those in T cell costimulation and antigen
processing/presentation via HLA class Il molecules. Subsequent flow cytometry analysis
revealed loss of surface expression of HLA-DR and HLA-DP in 28 of 69 (40%) patients between
diagnosis and post-alloSCT relapse. In both reports, a small subset of post-alloSCT AML blasts
were treated with IFN-gamma in vitro and MHC class Il protein expression was restored within
72 hours.

Clonal evolution of cancer in the context of a different form of immunotherapy (i.e. not
alloSCT) has also been studied. A recent report described clonal evolution in 68 melanoma
patients after immunotherapy with nivolumab, an anti-PD-1 checkpoint inhibitor [120].
Approximately 50% of the patients studied had progressed on prior ipilimumab, an anti-CTLA-4
checkpoint inhibitor. In the 50% of patients who had not received prior immunotherapy, higher
tumor mutation load (and higher clonal tumor mutation load) was associated with improved OS.
No single gene SNVs or CNAs were associated with either response or resistance to nivolumab.
In 41 patients, WES was performed on paired pre- and on-nivolumab melanoma samples. In
responders, after adjusting for tumor purity, there was a reduction in the melanoma mutation
burden and neoantigen load after the initiation of nivolumab compared to nonresponders in
whom these metrics did not change. In addition, all patients with CR/PR experienced
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contraction of 1 or more subclones on therapy while patients with SD/PD experienced
expansions of subclones on nivolumab. RNA-seq analysis showed differentially expressed
genes in the pre-treatment and on-treatment samples in several immune pathways in
responding versus nonresponding patients, including in HLA class Il expression, checkpoint-
related genes (OX40, TIGIT, VISTA), and genes involved in lymphocyte activation and cytolytic
activity. For patients with PD, there was no unifying expression signature of tumor-intrinsic
immune evasion. Finally, the investigators performed TCR sequencing through Adaptive
Biotechnologies on melanoma tumor-infiltrating lymphocytes (TIL). In ipilimumab-naive patients,
a decrease in the evenness metric (i.e. an increasingly oligoclonal repertoire) from the pre- to
on-nivolumab biopsy was associated with treatment benefit (CR/PR/SD vs. PD).

Several mechanisms of primary or therapy-acquired resistance to immunotherapy have
been described [121]. Some are rooted in intratumoral heterogeneity and the expansion of
subclonal immune escape variants while others are adaptive, such as tumor cells expressing
PD-L1 in response to interferon-gamma exposure. Immunotherapy resistance mechanisms
include but are not limited to the expression of immune checkpoint proteins [122-125], defects in
interferon-receptor signaling [126, 127], loss of Beta 2 microglobulin expression [128], somatic
HLA class | mutations [57, 129], tumor intrinsic beta-catenin signaling [130], tumor-intrinsic
MAPK signaling or loss of PTEN [131, 132], immunoediting [133, 134], and an immune-
suppressive tissue microenvironment [135-137].

When we consider our CLL WES data through the lens of these important publications,
several similarities and differences emerge. Our first question was whether the CLL population
evolved post-alloSCT. The answer was unequivocally yes. Analogous to patients in the studies
referenced above, the majority of CLL patients experienced clonal shifts in their disease after
alloSCT manifested by expansions/contractions of subclones containing distinct exonic SNVs
and CNAs. Also similar to the other studies, we observed mixed patterns of branched and linear
evolution after alloSCT treatment. This observation is not trivial because the patients we studied
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were heavily pretreated with chemotherapy. Their CLL had likely already undergone multiple
subclonal sweeps between diagnosis and alloSCT. This serves as a reminder that a patient’s
clinical cytogenetic and NGS disease profile largely reflects the characteristics of the dominant
disease clone at a single time point but misses the subclonal heterogeneity that exists below the
limit of detection. The post-treatment disease may differ substantially from the pre-treatment
disease regardless of the number of prior therapies administered and how ‘refractory’ the
disease has become. Longitudinal profiling throughout a patient’s disease course is required to
understand the cancer being treated.

Next, we hypothesized that any observed subclonal evolution post-alloSCT would be
the result of selective immune pressure from donor T cells. We studied refractory and relapsed
post-transplant CLL expecting to find immune escape variant subclones containing somatic
alterations in genes and pathways implicated in immunotherapy resistance (interferon signaling,
antigen presentation, immune checkpoints, etc.). Within the WES data from alloSCT-resistant
disease, we did not find evidence of convergence towards altered immune pathways. The
exonic alterations seen in the relapsed CLL subclones included known recurrent CLL driver
lesions (similar to those that emerged post-chemotherapy), likely passenger mutations, and a
diverse set of private novel mutations that were not shared by other patients. This was the same
conclusion reached in the referenced AML alloSCT and melanoma nivolumab cohorts. There
are multiple potential explanations for this result. It is possible that the CLL nonresponder cohort
was too small to enable detection of an immune evasion signature within the WES data,
especially given the considerable interpatient CLL molecular heterogeneity. Alternatively, in light
of the RNA-seq data from the AML alloSCT studies [118, 119], it is possible that alloSCT
resistance in CLL is mediated by changes in gene expression and epigenetic mechanisms
rather than through somatic exonic alterations. For example, post-transplant downregulation of
MHC class Il molecules may also be implicated in CLL, a possibility that has not been
investigated. This does not diminish the importance of CLL subclonal evolution as a mechanism
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of transplant resistance, but it does highlight the potential importance of transcriptomic and
epigenomic subclonal heterogeneity. Notably, the Landau lab has recently established a
framework for this line of investigation [138]. It is possible that the imprint of selective immune
pressure from grafted allogeneic T cells exists within the transcriptome/epigenome of relapsed
CLL rather than in the exome. Lastly, a third possible explanation is that the leukemic evolution
we observed was merely a result of “mass extinction” after alloSCT and that the driving force
behind the emergence of new subclones was not immune selective pressure but rather
competitive release of stochastic residual leukemic cells [139].

AlloSCT complete responders were added to the CLL cohort to increase the power to
detect differences in CLL/T cell subclonal architecture that could predict transplant
sensitivity/resistance. Unlike in melanoma, urothelial, and non-small cell lung cancers, tumor
mutation burden and clonal neoantigen burden did not predict response to alloSCT
immunotherapy. Here, it is important to point out the differences between the autologous and
allogeneic settings. mHAs result from polymorphisms between the transplant recipient and
donor genomes, the majority of which are SNPs. The SNPs within host CLL cells (and normal
host cells) can be processed and presented within HLA-bound peptides and recognized as ‘non-
self’ by donor T cells. Our inability to detect significant differences in the neoantigen load
between response groups was unsurprising given that the mutation load of leukemia is low
when compared to solid tumors [140]. In addition, there are more than 100 times as many
mHAs, ‘allogeneic neoantigens,” compared to somatic mutation-derived CLL neoantigens in a
given related donor-recipient pair (> 200 times as many for MUDS) [141]. Possibly for the same
reason, we did not observe a reduction in CLL neoantigens between pre- and post-alloSCT
disease, an example of immunoediting that has been observed in solid tumors [120, 133, 142].

Differences in structural heterogeneity were observed between CLL alloSCT responders
and nonresponders. Responders tended to have more structurally ‘pure’ or clonal disease as
estimated by the Sequenza bioinformatics tool [87]. This result is preliminary and merits further
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investigation. The studies of post-alloSCT AML did not report data regarding structural
heterogeneity. If supported by additional evidence, this finding is counterintuitive. In general,
alloSCT is a treatment that is reserved for the most aggressive, refractory lymphomas and
leukemias. For example, it is the only treatment known to induce durable remissions in poor-risk
AML, therapy-related AML, and Richter transformation of CLL [143-145]. Additionally, TP53
alterations, which function to increase genome instability [146], predict worse outcomes in the
context of chemotherapy for CLL [147]; however, alloSCT success is independent of TP53
status (a finding supported by data from our cohort) [50]. Moreover, the Pyclone algorithm [148],
which estimates tumor clonal structure from somatic mutation data, detected no difference in the
number of pre-transplant CLL subclones within our cohort between responders and
nonresponders. Further investigation of structural heterogeneity is needed to determine its
relevance to alloSCT outcomes. In summary, there is ongoing genetic subclonal evolution of
CLL post-alloSCT; however, we did not observe convergence towards any somatically altered
immune genes or pathways within the exomes of transplant relapsed/refractory subclones.

We then focused on the post-transplant T cell repertoires. Post-transplant T cell
reconstitution is a fascinating and complex process that has been studied for decades. The
original methods used to study post-alloSCT T cell repertoires were TCR CDR3 spectratyping or
flow cytometry with Vbeta chain antibodies [149-158]. Over the past decade, NGS combined
with either 5’RACE or multiplex nested PCR has become the preferred technique as it yields far
greater repertoire resolution, including the precise TCR alpha/beta chain clonotype sequences
owing to high sequencing fidelity at the CDR3 region [93-95, 159-165]. The peripheral blood
TCR repertoire in a healthy adult is vast comprising ~107 unique TCR beta chains on ~10*?
circulating T cells [166]. This has led to sampling bias and computational challenges, yielding
conflicting results but several common themes have emerged.

First, studies using old and new methods agree that the post-alloSCT T cell repertoire is
severely restricted in its diversity. Despite tremendous interpatient heterogeneity, for nearly all
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patients, the post-transplant repertoire remains oligoclonal one-year post-alloSCT and, for many
patients (greater than 50% in one study), the T cell repertoire remains abnormal for years after
transplant [154, 160, 162, 163, 167]. Second, by absolute number, T cells recover relatively
quickly post-transplant (by ~ 30 days), but this is driven by CD8 T cells and CD4 T cells lag
behind. The normal ~ 2:1 ratio of CD4:CD8 T cells is sharply reduced and even inverted in
many patients post-alloSCT [95, 160, 164]. Interestingly, the CD4 T cell compartment in healthy
adults is more diverse than the CD8 compartment, a difference that is more pronounced in
alloSCT recipients [93, 117, 168]. Though the post-alloSCT T cell repertoire has not been
studied in CLL, we observed similar repertoire characteristics in the patients from our cohort
including very restricted repertoires up to 5 years post-transplant and increased diversity among
CD4 versus CD8 T cells.

There is less agreement among studies about the evolution of the repertoire post-
transplant and its overlap with the input donor repertoire apart from the wide variation seen
between patients. In general, the diversity and composition of the recipient repertoire matches
that of the donor very early post-transplant (~ day +15) and then becomes more oligoclonal and
less similar to the donor until day +100 [161]. From there, there is slow improvement in
repertoire diversity in a subset of patients between 6-12 months and especially after 12 months
[93, 95, 154]. Some studies argue that the overlap between the input repertoire and recipient
repertoire is minimal at the 1 year mark post-transplant [94] while others report that the
donor/recipient repertoires have peak similarity between 6-12 months with a decline thereafter
[160]. The mechanisms responsible for the post-transplant T cell repertoires are homeostatic
peripheral expansion (HPE) and thymopoiesis [103, 169]. HPE predominates in the first year
after transplant and consists of proliferating mature donor T cells that survive the conditioning
regimen. There is disagreement as to whether the cells immediately post-transplant derive from
the donor naive or memory compartments; however, there is greater consensus that the donor
T cells that ultimately persist in the recipient originate from the donor memory compartment
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[160, 164, 170]. This is likely influenced by the type of GVHD prophylaxis administered and both
groups of cells have been identified post-transplant. The phenotype that those donor-derived
cells assume in the recipient and their participation in GVL/GVHD has also been investigated
[171-173]. Reconstituting T cells are skewed towards an antigen-experienced, effector memory
phenotype [110]. Thymopoiesis slowly ramps up between 6-12 months post-alloSCT and can
generate a new, diverse repertoire of naive T cells; however, T-Cell Receptor Excision Circle
(TREC) analyses demonstrate that thymic output is affected by many factors including
donor/recipient age, GVHD, conditioning regimen, and CMV reactivation [153, 160, 163, 174].
Due to the retrospective nature of our study, we were unable to assess post-alloSCT T cell
reconstitution at uniform time points; however, with some notable exceptions, we did not
observe an increase in T cell repertoire diversity over time in our CLL cohort. Possible
explanations include poor thymic output, CMV reactivation, and GVHD (discussed below).
Major factors that consistently affect post-alloSCT T cell reconstitution include CMV
reactivation and GVHD - both acute and chronic — though chronic GVHD is far less studied in
this context. CMV serostatus and reactivation have been a particular focus of multiple elegant
studies. CMV is known to have a unique and seemingly oversized impact on even the healthy
adult T cell repertoire [100, 175, 176]. In the alloSCT setting, CMV reactivation critically affects
the recipient repertoire, possibly even resetting the trajectory of CD8 T cell reconstitution
indefinitely [94, 95, 160, 177]. CMV reactivation triggers massive clonal expansions of donor T
cells within the CD8 T effector memory subset (in both public and private TCR clonotypes)
thereby reducing the diversity of the CD8 T cell compartment [95]. Acute GVHD, too, functions
to impair T cell reconstitution, in part due to thymic damage. Donor CD8 T cell clonal
expansions are also seen in acute GVHD and most studies associate acute GVHD with reduced
repertoire diversity [149, 150, 154, 159, 161]. Importantly, though, T cells that mediate GVHD
traffic to tissue, and so the T cell clones undergoing contemporaneous expansion in the
peripheral blood may be distinct from those causing damage in the GVHD target organs [35].
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Within the CLL cohort, we did observe reduced T cell repertoire diversity among treatment
responsive patients with chronic GVHD compared to those without chronic GVHD. B cells are
also known to be important in the pathogenesis of chronic GVHD, however, we did not assess B
cell diversity in our study [178]. Within the CLL cohort, 14/24 patients (7 alloSCT nonresponders
and 7 responders) experienced CMV reactivation. In our cohort, T cell samples were limited in
patients who did not experience CMV reactivation; however, we did not observe an association
between repertoire clonality and CMV reactivation, likely due to insufficient sample size.

Finally, several of the most elegant T cell reconstitution studies have failed to address
the relationship between repertoire reconstitution kinetics and leukemia relapse. With the
exception of one report, which associated alloSCT response with higher T cell repertoire
diversity among non-GVHD patients (n=10) [159], those investigators who have examined this
relationship have found no association [94, 161]. We, too, did not identify a sighature of the GVL
effect within the post-alloSCT T cell repertoires of CLL patients in our cohort. A study of
immunosequencing in CMV [100] cautions that many more patients will be needed to reach
sufficient power to detect a GVL signal in the context of important variables like GVHD and CMV
reactivation. In detecting GVL characteristics, we also lack certain advantages inherent to other
studies: (i) tumor antigens are less potent than viral antigens [108] and (ii) since leukemia
occupies the same space as the bone marrow/peripheral blood, there is not a separate solid
tumor microenvironment to enrich for tumor-specific T cells [179]. More sophisticated
computational technigues than those utilized in our CLL cohort will also be required. While it is
unlikely that large numbers of public TCRs exist for leukemic antigens [180, 181], this author
hypothesizes that distinct features (e.g. pre-existing frequency/phenotype in the input donor
repertoire, min/max frequency in recipient, timing of expansion/contraction in relation to clinical
response/remission, stereotyped TCR motifs across HLA matches, pre-/post-response T cell
phenotype, etc.) of the GVL effect are discernible in the context of a dynamic, restricted post-
transplant T cell repertoire, a hypothesis discussed in the ‘Future Directions’ paragraph below.
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The last phase of this project involved identifying individual candidate GVL clones. Here,
we provide a strategy and proof of concept. Tumor-specific neoantigens are centrally important
in anti-tumor immunity [44, 133]. Breathtaking cancer responses in patients with advanced,
refractory solid tumors have been achieved through adoptive transfer of neoantigen-specific T
cells [129, 182, 183]. The potency of checkpoint blockade, too, is partially rooted in autologous
T cell recognition of neoantigens [184, 185]. The vast majority of neoantigens are patient-
specific since they derive from a unique set of driver/passenger exonic somatic mutations in the
context of each patient’s array of MHC molecules; however, a subset of neoantigens are
shared, including the HLA*02:01 neoepitope, HMTEVVRHC, in TP53 (p.R175H) [186].
Improvements in neoantigen prediction algorithms and techniques used to isolate neoantigen-
specific T cells continue to accelerate discovery [187]. To-date, only a small number of studies
have focused on leukemic neoantigens though this area is likely to grow.

There was one report that considered neoantigens in CLL. Rajasagi et al. studied 2 CLL
patients that experienced durable remissions post-alloSCT. They identified candidate GVL T
cells specific for neoepitopes in ALMS1 and C60RF89 (patient 1) and FNDC3B (patient 2) after
in vitro T cell restimulation with peptide pools [39]. In patient 2, a longitudinal analysis was
performed and candidate neoantigen T cells (FNDC3B (VVMSWAPPYV) in HLA*02:01) were
identified at a time point 6 months post-alloSCT that coincided with disease molecular
remission. The frequency of these cells in the bulk repertoire at that time point is difficult to infer
because the T cells underwent a 2-week in vitro restimulation prior to analysis; however, after
restimulation they were present in 0.05% of CD8 T cells by ELISPOT. In ALL, investigators
found that pediatric patients generated robust autologous anti-neoantigen immunity, including
against a shared neoantigen from the ETV6-RUNX1 fusion [188]. Finally in AML, candidate anti-
leukemic T cells targeting neoepitopes in nucleophosmin 1 (NPM1) [41, 189] and in the CBFB-
MYH11 fusion protein [40] have been identified. A major limitation of the AML studies is that the
investigators focused on expanding and testing anti-neoantigen T cells from healthy donors.
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The relevance of these antigens in vivo in either the autologous or the allogeneic settings
remains to be seen. There is considerably more evidence supporting the relevance of LAAs and
mHAs in GVL. For example, post-transplant leukemia responses have been associated with T
cells targeting the LAAs PR1 and WT1 [190-193] and with T cells targeting mHAs, including
UTA2-1 [194-196].

Our study of CLL neoantigen-specific T cells was limited by patient number and sample
availability. Despite this, we were able to confidently map candidate neoantigen-specific T cell
clonotypes onto the longitudinal post-alloSCT T cell repertoires of CLL patients 8 and 12, a
novel strategy. In addition, we found putative anti-PARPBP and anti-ACTNL1 T cells present in
expanded frequencies at the time of clinical leukemia response (CLL patient 12) and subclonal
contraction of ACTN1-containing tumor cells (CLL patient 8). Given the paucity of existing data
for neoantigen-specific T cell responses in the post-alloSCT setting, it is challenging to put our
results in context. There are many questions to answer regarding post-transplant neoantigen-
specific T cell responses: (i) what degree of expansion is expected and when? (ii) how many
neoantigens mediate clinical response? (iii) what is the relative importance of leukemic
neoantigens vs. mHAs vs. LAAs? (iv) how quickly does the population contract after total
leukemic or subclonal leukemic response? (v) at what frequency do the clonotypes persist long-
term? (vi) what is the phenotype of the cells over time (donor into recipient) and how many are
recruited to memory? (vii) do they become tolerized or exhausted over time? (viii) how many T
cell clonotypes (Vbeta sequences) participate in any given anti-neoantigen response and should
we expect T cell clonal dominance for a strong leukemic neoantigen? Variability in anti-tumor
immune responses is likely the rule, but other studies offer important insight.

For example, Chapuis et al. treated 11 relapsed or high-risk AML patients with WT1-
specific (RMFPNAPYL/HLA-A*0201) post-transplant T cell adoptive therapy and achieved
promising clinical results [197]. The median peak frequency of WT1-specific cells (as a
percentage of CD8 T cells) between 24-72h post-infusion was 3.1% in patients supplemented
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with IL-2 and was 1.5% at 14 days. The cells preferentially trafficked to the bone marrow. In a
subset of patients treated with IL-21 cytokine support, antigen-specific cells persisted beyond 1
year at a frequency greater than 0.05% and acquired a memory phenotype. A more recent
clinical trial further supports the clinical promise of WT1-specific T cells [192]. In a separate
study of adult T-cell leukemia, which is associated with the human T-cell lymphotrophic virus
type 1 (HTLV-1), T cells specific for an epitope (SFHSLHLLF/HLA-A*2402) within an HTLV-1
protein, known as HTLV-1 Tax, were investigated [198]. In post-alloSCT samples, donor-derived
anti-Tax T cells were present at frequencies of 0.09%, 0.03%, and 6.35% in patients who
experienced durable remissions. In addition, the anti-Tax T cell clonotypes contained a CDR3
stereotyped motif, either ‘P-D’ or ‘P-R’.

Finally, Dr. Jeffrey J. Molldrem et al. conducted an elegant study of antigen-specific T
cells in patients with CML [193]. The presence of T cells specific for the LAA PR1
(VLQELNVTV/HLA-A*0201) correlated strongly with response to both alloSCT and interferon
treatment. Of the 9 alloSCT patients studied, 6 had detectable PR1-specific CD8 T cells present
at frequencies between 0.38-12.8% (median 1.29% of CD8 subset). The cells persisted at
detectable frequencies in multiple patients and were functional against CML blasts. These
studies highlight the variability in the leukemia-antigen specific T cell response between patients
and antigens but demonstrate that expansions to > 1% and even >10% of the CD8 T cell
repertoire, as seen in CLL patients 8 and 12, are possible as is long-lived memory. Last, the
major liability of our otherwise robust single cell TCR seq and mapping strategy is the tetramer.
Other investigators have shared this concern [199]. The frequency of a given T cell clonotype in
a tetramer sort (as a percentage of CD8 T cells) and in the bulk TCR repertoire (as a
percentage of CD8 or even CD3 T cells) should match or at least correlate closely. For some of
the singly sorted neoantigen tetramer-binding clones, the frequency in the bulk repertoire was
10 times higher than that in the tetramer gate. The raises the strong possibility that some of the
cells in the tetramer gate were not antigen-specific. Potential solutions to this problem include
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the use of dual tetramers (same antigen in 2 colors), a method used by other groups [200], and
novel technologies including tetramer display on nanoparticles [187].

Our study has several other limitations. The primary limitation of all tumor immune
studies is that, at present, it is not possible to determine the cognate antigen from the sequence
or structure of a given T-cell clonotype. Many investigators are working from various angles
towards this advance, which promises to revolutionize the field [201, 202]. Second, gene
expression differences that contributed to the altered relapse phenotypes were outside the
scope of our study. This is especially vexing given the fascinating data regarding MHC class Il
downregulation in post-alloSCT AML. One low-tech solution would be to analyze MHC class Il
expression by IHC in pre- and post-transplant FFPE bone marrow specimens from CLL patients
in this cohort since most of the cryopreserved leukemia samples have been depleted. Third, our
study was retrospective in nature but ambitious in scope. Our small cohort size limited our ability
to detect differences between transplant responders and nonresponders, especially in light of
the significant interpatient heterogeneity in CLL. Moreover, outcome endpoints in alloSCT (OS,
FFS, etc.) are notoriously difficult [203]. Sample availability and viability at desired time points
also posed challenges. Intratumoral heterogeneity is a critical feature of tumors, but there is not
yet a precise way to measure it. Similarly, more sophisticated tools for GVL-specific T cell
repertoire analyses are needed. The GVL relevant fraction of the repertoire is likely in the low-
to mid-frequency range, but current methods give higher weight to the most and least frequent
clonotypes. Computational approaches that focus on discrete clonal expansions rather than the
overall repertoire shape (i.e. clonality) may be more useful [108]. Last, functional assays of our
candidate GVL T cell clones are needed. Nevertheless, the strengths of our study included
purified CLL samples, longitudinal time points, simultaneous malignant/immune compartment
analyses, available germline and alloSCT donor samples, reproducibility of tumor and T cell

sequencing techniques, detailed clinical information, and a robust TCR mapping strategy. These
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were sufficient to define genetic changes in the leukemic subclonal architecture after transplant
and to propose a novel method to investigate the GVL effect.

There are many paths to take from here. There are currently no published studies
addressing the impact of intratumoral heterogeneity, genetic or epigenetic, on alloSCT efficacy.
This is an important knowledge gap to fill and the Sequenza data from our small patient cohort
may offer a clue. Next, we hypothesize that there is a signature of GVL within longitudinal TCR
repertoire data of responding alloSCT patients. It true, the challenge lies in unraveling it from
confounders like GVHD and moderators like CMV. Moreover, GVHD is linked to GVL through
mHAs, though as with neoantigens, the quality of mHAs is likely as important as the quantity
[195]. Large numbers of longitudinal post-alloSCT T cell repertoires will be required, stratified by
at minimum, GVL vs. no GVL, GVHD vs. no GVHD (and grade), and CMV reactivation vs. no
CMV reactivation (and peak viral load) with accurate clinical annotation. All analyses must
account for HLA type. It would be helpful to have the input donor repertoire since any GVL clone
would be expected to derive from the low frequency, diverse naive T cell pool. Though they
were not a focus of our study, the post-alloSCT MHC class Il downregulation data (class |
expression did not change) remind us of the potential importance of GVL CD4 T cells. CD4 T
cells participate in tumor immunity in the autologous setting through both direct and indirect
mechanisms [204]. With regard to potential CD4 T cell neoantigens, class Il antigen prediction
algorithms are notoriously inaccurate, but revision is ongoing [205]. Reconstitution of the post-
alloSCT CD8 and CD4 compartments differ with CD4 T cells exhibiting greater diversity but
poorer overall recovery. In light of this, at least one longitudinal sample per patient should be
sort-purified so that CD4/8 T cells can be separately analyzed. In this study, we primarily utilized
the bulk repertoires as a map on which to place our tetramer-sorted T cell clonotypes. A reverse
strategy could also be useful. For example, candidate GVL clonotypes identified from the bulk
repertoire analyses could be singly sorted from companion samples using Vbeta antibodies if
the clones exist at a reasonable frequency. The sorted cells will be polyclonal, but the clone of
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interest can be uniquely identified by its Vbeta sequence. In this way, the phenotype of a
relevant clone can be ascertained along with its Valpha sequence for TCR transduction and in
vitro testing. In addition, mass spectrometry and RNA-seq data could be incorporated into a
filter for ranking candidate neoantigens [187]. In this context, if samples allow, studying post-
alloSCT T cell repertoires in CML patients may be informative because response rates are high
owing to potent GVL and leukemia antigens have been described (PR1,BCR-ABL) [193, 206].
This would again invite the criticism that alloSCT in CML is largely historical, but there is much
to learn about GVL and model systems are important. Finally, TCRs from important GVL clones
could have therapeutic potential in adoptive T cell therapy.

In conclusion, our study showed that there is ongoing CLL subclonal genetic evolution after
HLA-matched, nonmyeloablative alloSCT, including in known CLL drivers. The significant
molecular shifts that occurred coincident with DLI and in the context of a previously
administered, nonmyeloablative conditioning regimen argue that immune selective pressure
underlies the branched and linear patterns of disease evolution that we observed. Despite this,
we did not detect an exonic immunoevasive signature in the post-transplant expanded
subclones, which is consistent with studies of post-transplant relapsed AML that suggest an
epigenetic mechanism of escape. Our parallel study of post-transplant T cell repertoires in the
same CLL cohort confirms that the input healthy donor repertoire becomes dramatically
restricted upon reconstitution in the host though it remains dynamic. Additionally, we provide a
strategy to track candidate GVL T cell clones through their expansion and contraction within the
T cell repertoire during periods of leukemia response. A deeper understanding of the
mechanisms by which heterogeneous leukemic subclones are susceptible or resistant to
allogeneic T cell killing may improve patient stratification for alloSCT/DLI and account for the

uniquely durable transplant responses that occur in chemorefractory patients.
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