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ABSTRACT
DISCOVERY OF NOVEL UBIQUITIN- AND METHYLATION-DEPENDENT INTERACTIONS
USING PROTEIN DOMAIN MICROARRAYS
Jianji Chen, M.S.
Advisory Professor: Mark T. Bedford, Ph.D.
Post-translational modifications (PTMs) drive signal transduction by interacting with "reader"
proteins. Protein domain microarray is a high throughput platform to identify novel readers for
PTMs. In this dissertation, | applied two protein domain microarrays identifying novel readers
for histone H2Aub1 and H2Bub1, and H3TM K4me3. Ubiquitinations of histone H2A at K119
(H2Aub1) and histone H2B at K120 (H2Bub1) function in distinct transcription regulation and
DNA damage repair pathways, likely mediated by specific "reader" proteins. There are only
two H2Aub1-specific readers identified and no known H2Bub1-specific readers. Using a
ubiquitin-binding domain microarray, | discovered the phospholipase A2-activating protein
(PLAA) PFU domain as a novel H2Bub1-specific reader. PFU domain interacts with H2Bub1
in the context of histone acid extracts but not recombinant nucleosomes, suggesting that
PLAA may require additional partners for chromatin binding or PLAA only interacts with free
H2Bub1. PLAA knockout cells show decreased H2Aub1 and H2Bub1, and an accumulation
of a 15 kDa ubiquitin-like protein in the cytoplasm. PLAA co-localizes with laser
microirradiation-induced DNA damage sites, suggesting PLAA's function in DNA damage
repair. PHD fingers recognize the histone H3 N-terminal tail harboring either H3K4me3 or
H3K4meO0. Structural studies have identified common features among different H3K4me3
effector PHDs: Cleaved initiator methionine: a groove that fits the R2 residue, and an aromatic
cage that engages the K4me3. We hypothesize that some PHDs engage with non-histone
ligands whose N-termini adhere to the three rules. A search of the human proteome revealed
a striking enrichment of chromatin-binding proteins, and we termed these H3 N-terminal

mimicry proteins (H3TMs). We selected seven H3TMs and synthesized the methylated forms

Vil



of their N-termini. Using a methyl reader microarray, we found that they can bind known PHD
and Tudor H3K4me3 effector proteins. We focused on the interaction between the kinase
VRK1 and the PHF2 PHD domain. Several H3TMs peptides, in their unmethylated form,
interact with NuRD complex components. These findings provide in vitro evidence that
methylation of H3TMs can promote novel interactions with PHD finger- and Tudor domain-
containing proteins and block interactions with the NuURD complex. We propose that these

interactions can occur in vivo as well.
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CHAPTER 1 INTRODUCTION

1.1 PROTEIN-PROTEIN INTERACTIONS

1.1.1 Functional significance

DNA, RNA, and protein are three information-carrying biomolecules that constitute the central
dogma of molecular biology (Crick, 1970). Carrying the genetic information from DNA and
RNA, protein is the workhorse molecule in all living organisms. Proteins have three primary
cellular functions, catalyzing chemical reactions as enzymes, transducing molecular signaling
as ligand binders, and forming subcellular structures as building blocks. Execution of protein
function relies on the interactions between proteins and other molecules, including protein,
DNA, RNA, lipids, carbohydrates, and small molecules. Among all the intermolecular
interactions, protein-protein interaction (PPI) is the best-known mechanism that orchestrates
proteins' cellular functions in several different ways (Phizicky and Fields, 1995, Rao et al.,

2014).

First, PPI confers substrate specificity. For example, valosin-containing protein (VCP)/p97 is
an ATPase that extracts ubiquitinated target proteins in diverse cellular processes. VCP

interacts with mutually exclusive ubiquitin-binding cofactors that determine the substrate
specificity (Buchberger et al., 2015, Meyer et al., 2012). Second, PPI serves as an allosteric
switch for enzymatic activity. A scaffold protein, Ste5, binds the mitogen-activated protein
kinase Fus3 and activates Fus3 autophosphorylation by 50-fold (Bhattacharyya et al., 2006).
Third, via PPI, effector proteins read the molecular signals presented by associated proteins
and translate the signals into downstream biological functions. Protein post-translational
modifications (PTMs) are revolutionarily conserved signals that relay the molecular messages
between various proteins responding to alterations in the cellular microenvironment (Deribe

etal., 2010b). Deciphering the PPI networks between histone PTMs and their effector proteins



has become a central topic in the field of epigenetics (Jenuwein and Allis, 2001a). Various
histone PTMs and corresponding effector protein families have been recently reviewed (Chen
et al., 2019) and will be discussed in Chapter 3 of this dissertation. Lastly, PPI controls the
formation and breakdown of subcellular structures. Monomeric actins polymerize into
polarized filaments, termed F-actin, which makes up the cytoskeleton and drives cell motility

(Olson and Sahai, 2009).

1.1.2 Mass spectrometry-based detection method

In the past few decades, genomic studies have identified many disease-associated gene
mutations, but the underlying molecular mechanisms remain unknown. PPI plays an essential
role for proteins to execute their functions. Therefore, identifying the pivotal PPI networks has
proven to be a powerful approach to better understand the signaling transduction from histone

codes to downstream pathways in healthy and pathological conditions.

There are two primary experimental methodologies to map the PPl network, protein domain
array-based approach (discussed in Chapter 3) and mass spectrometry (MS)-based
approaches. The MS-based approach is an unbiased discovery method with superior
sensitivity. There are three ways to capture the bait protein's PPl networks, affinity purification
(AP), proximity labeling (PL), and cross-linking (XL), as reviewed recently (Richards et al.,

2021).

AP-MS approach uses a tagged bait protein, enabling efficient purification without
immunoprecipitation-compatible antibodies (Chang, 2006, Puig et al., 2001). The bait protein
can be expressed exogenously in bacteria or endogenously via ectopic overexpression. The
primary limitation is the necessity of mild lysis conditions, potentially missing those transient

and weak protein interactions (Rigaut et al., 1999).



Complementary to AP-MS, the PL-MS approach utilizes a bait protein fused to a non-selective
labeling enzyme, such as biotin ligase, which allows biotinylation of all nearby proteins within
a 10-20 nm range (Gutierrez et al., 2016). Biotinylated proteins are then enriched via
streptavidin binding, making this approach better suited for detecting transient or weak protein
interactions. One critique for this method is the high background signals due to non-selective

labeling of all proteins nearby (Lobingier et al., 2017).

Both AP-MS and PL-MS approaches induce a tag/enzyme at the N- or C-terminus, which
potentially affects the bait protein's PPI profiles and cellular functions (Sastry et al., 2009). In
contrast, the XL-MS method freezes PPl networks via a chemical cross-linker such as
formaldehyde, which reveals the structural information by linking the peptides near the binding
interfaces without introducing artificial tags (Yu and Huang, 2018). This approach's primary
limitation is that variously linked peptides pose a significant challenge to data analysis to

consider all the possible combinations (Liu et al., 2015, Lu et al., 2018).

All three MS-based approaches complement each other and are proven to be powerful tools

to characterize novel PPl networks in an unbiased manner.

1.2 OVERVIEW OF HISTONE H2A/H2B MONO-UBIQUITINATION

1.2.1 Protein ubiquitination

Ubiquitin is a 76-amino acid polypeptide. Ubiquitination is a process by which ubiquitin forms
an isopeptide bond between its C-terminal glycine and a lysine residue from the target protein
(Buetow and Huang, 2016, Komander and Rape, 2012). In addition, , Ubiquitin itself has seven
lysine residues and an N-terminal methionine which can all be subjected to ubiquitination,

enabling the formation of a variety of poly-ubiquitin branches/chains. A substrate can be post-



translationally modified by mono-ubiquitin or polymeric ubiquitin chains. Komander and Rape
first proposed the ubiquitin code hypothesis that different ubiquitin modifications harbor unique
conformations that dictate various cellular outcomes (Komander and Rape, 2012). K48 linked
poly-ubiquitin chains target the modified substrates for proteasomal degradation, while K63-
linked poly-ubiquitin chains and mono-ubiquitin regulate substrates’ localization or interaction

with other proteins.

All four core histones H2A, H2B, H3, and H4, and the linker histone H1 are heavily modified
by mono- or poly-ubiquitination (Tweedie-Cullen et al., 2009). Among all the histone
ubiquitination marks, mono-ubiquitination of histone H2A at K119 (H2Aub1) and H2B at K120
(H2Bub1) are relatively well characterized. H2Aub1 and H2Bub1 differ because of their
unique sets of E3 ligases and deubiquitinases, distinct functions in gene transcription
regulation, and DNA damage response. Notably, there are only two H2Aub1-specific effector
proteins identified and no known H2Bub1-specific reader proteins (Zhang et al., 2017b,

Cooper et al., 2016a).

1.2.2 Histone H2A Mono-Ubiquitination at K119

Writers and Erasers

Ubiquitination of H2A at K119 is an abundant epigenetic mark, as 10% of all nucleosomal
H2As have this modification (West and Bonner, 1980, Kalb et al., 2014c, Goldknopf et al.,
1975, Goldknopf and Busch, 1977). There are two major E3 ubiquitin ligases for H2Aub1, the
really interesting new gene 1A/1B (RING1A/RING1B) from the polycomb repressive complex
(PRC1) and the DAZ Interacting Zinc Finger Protein 3 (DZIP3) along with the N-CoR/HDAC1/3
complex (Li et al., 2006, Gray et al., 2016, Kalb et al., 2014c, Zhou et al., 2008). There are
two major H2Aub1 DUBs, USP16 and breast cancer type 1 susceptibility protein (BRCA1)-

associated protein 1 (BAP1) (Sahtoe et al., 2016, Gu et al., 2016).



Readers

The remodeling and spacing factor (RSF1) is a H2Aub1-specific reader protein. ChIP-Seq
analyses show overlapping binding profiles of RSF1, H2Aub1, and RING1B. RSF1 knockout
caused H2Aub1 chromatin organization changes and transcriptional upregulation of H2Aub1-
associated genes, indicating RSF1 facilitates H2Aub1-mediated gene silencing by

maintaining a stable nucleosome pattern at promoter regions (Zhang et al., 2017b).

The other H2Aub1-specific effector protein is Jarid2, a PRC2 cofactor that was first identified
in Drosophila using an AP-MS approach (Cooper et al., 2016a). Jarid2 is required for PRC2
complex recruitment to the H2Aub1-modified chromatin and PRC2-mediated H3K27me3
mark (Kalb et al., 2014b, Cooper et al., 2016b). This discovery provided a mechanistic
rationale for the positive-feedback-loop model between two repressive histone marks,

H2Aub1, and H3K27me3, deposited by PRC1 and PCR2, respectively.

Functional characterization

Enriched at the promoters of target genes, the H2Aub1 functions as a transcriptional repressor
that blocks transcription elongation by preventing FACT complex recruitment and recruiting
PRC2 complex. The latter deposits the repressive H3K27me3 mark. H2Aub1 also recruits the
RSF1 complex that maintains repressive chromatin conformation (Zhou et al., 2008, Cooper

et al., 2016a, Kalb et al., 2014a, Cooper et al., 2014).

H2Aub1 is involved in DNA damage repair through its ability to repress local transcription at
the regions flanking damage sites and also promotes homologous recombination

(Kakarougkas et al., 2014).



1.2.3. Histone H2B Mono-Ubiquitination at K120

Writers and Erasers

Ubiquitination of histone H2B at K120 is present on 1% of all nucleosomal H2Bs (West and
Bonner, 1980). RNF20/RNF40 complex is the major E3 ubiquitin ligase for H2Ub1, while
MDM2 and BAF250/ARID1 also display H2Bub1-specific E3 ligase activity (Zhu et al., 2005,
Kim et al., 2009, Minsky and Oren, 2004, Li et al., 2010). There are nine H2Bub1-targeting
DUBs in human cells, USP3, USP22, USP27X, USP36, USP42, USP43, USP44, USP49, and
USP51 (Nicassio et al., 2007, Zhang et al., 2008, Zhang et al., 2013, Hock et al., 2014, Gu et
al., 2016, Lan et al., 2016, DeVine et al., 2018, He et al., 2018, Zhao et al., 2008, Atanassov
etal., 2016). As the DUB module of the SAGA complex, USP22 is the best-characterized DUB
for H2Bub1. Additionally, USP22, USP27X, and USP51 function in distinct pathways, but they
compete for the same cofactors, ATXN7L3 and ENY2, to be enzymatically activated
(Atanassov et al., 2016). This finding suggests a regulatory mechanism that balances the

activities of different DUBs by limiting the availability of their shared adaptor proteins.

Readers

To date, there are no known H2Bub1-specific effector modules.

Functional characterization

H2Bub1 drives transcriptional activation by maintaining an open chromatin conformation,
facilitating transcription elongation by RNA polymerase |l together with FACT complex,
promote active transcription marks, H3K4me2/me3 and H3K79me1/me2 by Set1 and DOT1L,
respectively (Shiloh et al., 2011, Fierz et al., 2011, Pavri et al., 2006, Kim et al., 2009).
However, the H2Bub1-specific effectors that mediate the crosstalk between H2Bub1 and

those two epigenetic marks remain elusive.



H2Bub1 is required for efficient DNA damage repair by non-homologous end-joining (NHEJ)
and homologous recombination (HR) repair pathways (Nakamura et al., 2011, Moyal et al.,
2011). Besides, antibody class-switch recombination repair requires the removal of H2Bub1
by the SAGA complex, as H2Bub1 inhibits ATM- and DNAPK-induced yH2AX formation
(Ramachandran et al., 2016, Li et al., 2018). However, H2Bub1-specific effectors for all the

above functions are still yet to be determined.

1.3 PLAA IN UBIQUITIN MAINTENANCE

1.3.1 Doa1 to PLAA: Evolutionary Conservation From Yeast to Human

Melittin, a bee venom peptide, is a phospholipase A2 (PLA2) stimulatory peptide. In search of
the mammalian PLA2 stimulator, Clark et al. first purified a mammalian protein using anti-
melittin antibodies. They thus named the protein phospholipase A2 activating protein (PLAA)
(Clark et al., 1988, Clark et al., 1987). They also found that melittin displays a high degree of
sequence homology with PLAA between residues 503-538 (Bomalaski et al., 1990, Clark et
al., 1991). Inflammatory mediators, including LPS, IL-1B, and TNFa, stimulated PLAA protein
expression levels and increased PLA2 activity and prostaglandins (PGE2) levels. PGE2 was
produced from arachidonic acid (AA) that was hydrolyzed from phospholipids by PLAZ2.
Treatment with PLAA-specific antisense oligonucleotide caused reduced PLA2 levels
(Ribardo et al., 2001). However, the molecular mechanism by which PLAA regulates PLA2

remains elusive.

PLAA'’s yeast ortholog, Doa1, also known as Ufd3, was first discovered as a critical player in
the ubiquitin fusion degradation (UFD) pathway, together with Ufd1, Ufd2, Ufd4, and Ufd5
(Johnson et al., 1995). Both Doa1 and PLAA consist of an N-terminal WD40 domain, a central

PFU domain, and a C-terminal PUL domain.



WD40 domain is a UBD and required for Doa1’s functions

Pashkova et al. solved the crystal structure of the Doa1 WD40 (residues 1-300) domain with
ubiquitin. The WD40 repeat B-propeller binds to mono-ubiquitin with a Kd of 220 uM,
determined by chemical shift perturbation. Mutations of residues on the interaction surface
disrupted ubiquitin binding and caused growth defects in yeast. Surprisingly, mutations in both

WD40 and PFU domains caused synthetic growth defects (Pashkova et al., 2010).

PFU domain is a novel ubiquitin-binding module

Wilkinson and colleagues first identified Doa1 as a novel K29-linked polyubiquitin binding
protein and mapped the minimal UBD residing between residue 350 and 450. They named
this domain the PLAA family ubiquitin-binding (PFU) domain, as this region displays high
sequence homology between Doa1 and PLAA (Mullally et al., 2006, Russell and Wilkinson,
2004). Furthermore, a Doa1-PLAA chimera protein, consisting of the Doa1 WD40 domain and
PLAA PFU and PUL domains, complemented the ubiquitin depletion phenotypes and growth
defects observed in Doa1-null yeast, suggesting an evolutionarily conserved function of PFU

and PUL domains (Mullally et al., 2006).

The PFU domain of human PLAA is a relatively weak mono-ubiquitin binder with a Kd of 1

mM, determined by chemical shift perturbation (Fu et al., 2009a).

PUL domain interacts with Cdc48

PUL domain contains six Armadillo-repeats. Several groups demonstrated that the Doa1 PUL
domain interacts with Cdc48 (Decottignies et al., 2004, Ghislain et al., 1996, Ogiso et al., 2004,
Mullally et al., 2006). Structural studies showed Doa1 PUL domain binds the Cdc48 C-
terminus with a Kd of 3.5 uM, determined by isothermal titration calorimetry. The PUL domain

mutations that disrupt the interaction with Cdc48 caused the depletion of the cellular ubiquitin



and disruption of protein degradation, suggesting that Doa1-Cdc48 interaction is required to

maintain ubiquitin homeostasis (Zhao et al., 2009).

1.3.2 Functional Characterization of PLAA/Doa1
PLAA/Doa1 is involved in four distinct pathways, ubiquitin homeostasis, DNA damage repair,
lysosome damage response and mitochondrial membrane protein quality control (Johnson et

al., 1995, Lis and Romesberg, 2006, Papadopoulos et al., 2017, Wu et al., 2016).

Apart from other UFD regulators (Ufd1, Ufd2, Ufd4, and Ufd5), only Doa1-null mutant showed
an abnormally low content of free ubiquitin and defective degradation of Ub-P-Bgal (Johnson
etal., 1995). Ub-P-Bgal is a model protein that is targeted and degraded by the ubiquitin fusion
degradation pathway (Johnson et al., 1992). Notably, overexpression of ubiquitin rescued the
defective degradation of Ub-P-Bgal in Doa1-null cells, indicating Doa1 regulates degradation

of Ub-P-Bgal indirectly by controlling the availability of free ubiquitin.

Doa1 regulates the concentration of free ubiquitin partially by processing K48-linked
polyubiquitin trimers (K48-UB3). Lis et al. found that reduced free mono-ubiquitin coincided
with the accumulation of K48-UB3 but not K63-Ub3 in Doa1-null cells (Lis and Romesberg,
2006). The affinity purified Doa1 complex displayed deubiquitinase activity towards K48-linked
tri-ubiquitin in vitro. However, it was unknown whether Doa1 itself or its associated protein(s)
had the K48-Ub3 specific deubiquitinase activity. This study only tested K48-Ub3 and K63-
Ub3, and it remained unknown whether Doa1 can hydrolyze other types of polyubiquitin, such
as K29-Ub3, because Doa1 was originally found to bind K29-linked polyUb (Russell and

Wilkinson, 2004).



Doa1 is a DNA damage "responder" by making ubiquitin available for pathways that regulate
DNA replication machinery and histone H2B ubiquitination (Lis and Romesberg, 2006). Doa1-
null cells displayed reduced H2Bub1. Moreover, Doa1 depletion abolished DNA damage-
induced PCNA ubiquitination and H2Bub1. Interestingly, overexpression of ubiquitin only
reversed the defective PCNA ubiquitination but not the H2Bub1 in Doa1-null cells, suggesting
Doa1 modulates H2Bub1 via a mechanism beyond merely providing ubiquitin. This study
solely focused on H2Bub1, and it was unknown how Doa1 depletion affected other histone
ubiquitination marks. This result specifically interested me because | have found that PLAA is

required for maintaining H2Bub1 levels in mammalian cells in Chapter 4.

Doa1 also functions as a ubiquitin receptor for the mitochondrial-associated degradation
(MAD) pathway and it forms a complex together with Cdc48, Ufd1, and Npl4 (Wu et al., 2016).
Doa1 facilitates complex recruitment by interacting with ubiquitinated proteins on the
mitochondrial outer-membranes. Doa1 has two UBDs, WD40 and PFU domains. Mutations of
the critical residues in WD40 and PFU domains repressed the turnover of different subsets of
substrates, suggesting that these two UBDs have unique binding characteristics towards

ubiquitinated substrates, the mechanisms of which have yet to be determined.

PLAA is involved in the clearance of damaged lysosomes by forming the endo-lysosomal
damage response (ELDR) complex together with VCP/p97, YOD1, and UBXD1
(Papadopoulos et al., 2017). Upon localization to the ruptured lysosomes, the ELDR complex
selectively removes K48-Ub conjugates but not K63-Ub conjugates. Depleting of PLAA and
other two co-factors by siRNA led to the accumulation of lysosomes decorated by K48-Ub
conjugates. This was consistent with another study done in yeast that discovered purified

Doa1 displays a DUB activity towards K48-Ub but not K63-Ub (Lis and Romesberg, 2006).
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Ubiquitin binding activity is necessary for Doa1's functions.

Depletion of Doa1 leads to decreased mono- and polyubiquitin, suggesting Doa1 is involved
in ubiquitin homeostasis maintenance. Doa1-null yeast also displays increased sensitivity to
protein misfolding and translation inhibition (Mullally et al., 2006). Notably, the Ub binding-
deficient Doa1 mutant (F417D and F434D) only partially rescued the Doa1-null phenotypes,

compared to wildtype Doa1, suggesting a functional Doa1 requires its ubiquitin-binding activity.

1.3.3 Implication of PLAA in Neurological Dysfunction

Homozygous mutations in PLAA cause severe neurological disorders in humans (Falik Zaccai
et al., 2016, Hall et al., 2017). Zaccai et al. reported that PLAA L752F mutation causes
progressive microcephaly and leukoencephalopathy in patients at ages 2 to 4 months (Falik
Zaccai et al.,, 2016). They discovered that this homozygous mutation abolishes PLAA's
function to induce PLA2 activity. As a result, the production of prostaglandin E2 (PGE2), a
process catalyzed by PLA2, was also decreased. PLAA-null mice were perinatal lethal with
reduced levels of PGE2 in the brain and lung of PLAA-null embryos. These results provided
evidence that inefficient PGE2 signaling underlies the developmental defect caused by a non-

functional PLAA.

Hall et al. discovered another hypomorphic PLAA mutation, G23V, that also causes severe
developmental delay and seizures in affected infants (Hall et al., 2017). They found the G23V
mutation impairs PLAA's function in the ubiquitin-mediated trafficking of membrane proteins
for lysosomal degradation, causing reduced synaptic vesicle numbers and altered
neurotransmission. PLAA-null embryos also died in mid-gestation while PLAA G23V/G23V
are viable. The G23V mutation destabilized PLAA, with the mutant protein's abundance at

only 30% of the wild-type counterpart. These results elucidated PLAA's role in regulating
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membrane components' turnover in both central and peripheral synapses, which provided

mechanistic insights on PLAA G23V mutation-caused neurological dysfunction.

1.4 HISTONE H3K4 RECOGNITION MODULES

Serving as a central hub and carrying a variety of histone PTMs, histone N-terminal tails
orchestrate the recruitment of protein complexes that change the chromatin landscape at the
target gene loci (Jenuwein and Allis, 2001a, Kouzarides, 2007, Ruthenburg et al., 2007b,
Taverna et al., 2007, Strahl and Allis, 2000a). A combination of different PTMs on histone tails,
including methylation, acetylation, and phosphorylation, has been termed the “histone code”
(Jenuwein and Allis, 2001a). Single or combinatorial histone codes dictate the formation of
specific chromatin-associated protein complexes that are involved in chromatin remodeling
and transcriptional regulation. As an active transcription mark, histone H3K4me3 is found at
the transcription start site (TSS) of almost every active gene (Bernstein et al., 2005, Ng et al.,
2003, Pokholok et al., 2005, Santos-Rosa et al., 2002, Schneider et al., 2004, Schibeler et
al., 2004). Transcriptional initiation encoded by H3K4me3 is accomplished by the direct
recruitment of reader modules from the transcription machinery and chromatin remodeling
complex (Vermeulen et al., 2007, Wysocka et al., 2006). There are two major H3K4me3
reader families: the royal superfamily (chromodomains of CHD1 and Tudor domains of
JMJD2A), and the PHD-finger superfamily (Sims et al., 2005, Flanagan et al., 2005, Maurer-
Stroh et al., 2003, Bienz, 2006, Huang et al., 2006a). This study is focused on the PHD-finger
superfamily because of its unique ability to recognize histone H3 N-terminal tails in a

modification-specific manner.
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1.4.1 PHD Domain Superfamily Proteins

PHD fingers are characterized by a conserved zinc-coordinating Cys4-His-Cys3 motif
(Aasland et al., 1995). On one hand, PHD fingers exhibit high sequence variability, providing
various binding specificity towards H3K4me0 and K3K4me2/3 as the two major PHD ligand
classes (Fiedler et al., 2008, Ramén-Maiques et al., 2007, van Ingen et al., 2008, Hung et al.,
2009, Taverna et al., 2006, Wang et al., 2009a, Frottin et al., 2006, Wen et al., 2010, Ooi et
al., 2007, Org et al., 2008, Chakravarty et al., 2009, Lan et al., 2007) and towards H3R2meO,
H3R2me2, and H3K14ac as minor ligands (Zeng et al., 2010, Chignola et al., 2009). On the
other hand, PHD fingers share two adjacent ligand-binding surfaces that stabilize the
positively charged side chains of R2 and K4. These two residues determine whether the H3
N-terminal R2-T3-K4 motif can interact with PHD fingers (Ruthenburg et al., 2007a). A clear
example of this can be observed in BPTF (PHD), whose R2 is anchored in place by hydrogen
bonds and electrostatic interactions with negatively charged D27 while its K4me3 is stabilized
by van der Waals and cation-p interactions within an aromatic cage. Notably, the free N-
terminal amine forms a pair of hydrogen bonds with adjacent backbone carbonyls, enhancing
the binding specificity of BPTF-H3K4me3 (Wysocka et al., 2006, Ruthenburg et al., 2011).
The free N-terminus of histone H3 is generated by enzymes that facilitate the cleavage of the

initial methionine (iMet) (Brandt et al., 1974, Song et al., 2003).

1.4.2 Initiator Methionine Cleavage

Initiator methionine cleavage is a co-translational process that is mediated by the methionine
aminopeptidase (MAP). There are two MAPs in yeast and humans, MAP1 and MAP2
(Giglione et al., 2004, Bradshaw et al., 1998). Around two-thirds of proteins in the human

proteome undergo initial methionine cleavage. The specificity of this process is determined
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by the size of the P1’ residue, which is the amino acid that is adjacent to the iMet (Frottin et
al., 2006, Sherman et al., 1985, Windfield, 2017b). The initiator methionine is usually cleaved
when the P1’ residues have side chains with a gyradius of 1.29 Angstroms (A) or less. Seven
amino acids are permissible for iMet cleavage: glycine, alanine, serine, threonine, cysteine,
proline, and valine. Histone H3 has alanine (A1) at the P1’ position; therefore, its iMet can be
cleaved, generating a free N-terminus that stabilizes the H3-PHD finger interactions

(Ruthenburg et al., 2011, Wysocka et al., 2006, Frottin et al., 2006).

1.5 HISTONE MIMICRY

Non-histone proteins with a histone-like sequence motif are called histone mimics. These
proteins have the ability to mimic the H3 amino tail’s interaction with modification-specific
recognition modules (Marazzi et al., 2012, Sampath et al., 2007). One example of these
mimics is the histone H3 methyltransferase G9a, which carries a '*ARKT"'®® motif that is
similar to the "ARKS'™ motif of histone H3. Similar to H3K9, the K165 residue can be
methylated by G9a, and G9a K165me2/3 interacts with the H3K9me2/3 effector HP1

(Bannister et al., 2001, Sampath et al., 2007).

Another example is the nonstructural protein 1 (NS1) of the influenza A virus H3N2 subtype.
NS1 has a C-terminal 2 ARSK?* motif that resembles the N-terminal 'ARTK* motif of histone
H3. This C-terminal motif interacts with the human PAF1 transcription elongation complex
(hPAF1c), suppressing antiviral gene expression by blocking hPAF1c-mediated transcription
elongation (Marazzi et al., 2012). NS1 K229me2, like dimethylated H3K4, interacts with the
double chromodomains of chromatin remodeler, CHD1 (Qin et al., 2014). In addition, we have
identified an internal H3-like "*ARTK'"® motif in PRMT6 that can be automethylated at the R
residue (not shown). Notably, the ART/SK motifs of both NS1 and G9a are located at the C-

terminal regions rather than N-terminal regions like histone H3, which suggests methylation
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of the H3-mimicking motifs are critical, and location of the motifs, to a lesser extent, for
hijacking chromodomains (Qin et al., 2014, Sampath et al., 2007). This also aligns with
characterization of chromodomains as specialized methyl-lysine reader domains (Yap and

Zhou, 2011).

In contrast, PHD fingers, the H3 N-terminal methyl-lysine reader families, have no known non-
histone ligands identified. We started the project by asking whether there are proteins in the
human proteome that have an H3-like N-terminal motif and whether they can interact with
known H3K4me3-reader proteins in a methylation-dependent manner, which could

dramatically expand the PHD interaction network.

15



CHAPTER 2: MATERIALS AND METHODS

Development of ubiquitin-binding domain and methyl reader domain microarrays:

Protein domain microarray generation and probing have been published (Espejo and Bedford,

2004a). There are 150 ubiquitin-binding domains and 225 methyl reader domains on the two

microarray chips, respectively (Table 1 and Table 2).

Table 1: Proteins on the ubiquitin-binding domain microarray.
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Table 2: Proteins on the methyl reader domain microarray.
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Probe Design and Synthesis: Ubiquitination and methylation (and unmodified form) probes
were synthesized and purified by LifeSensors and CPC Scientif Inc., respectively (Table 3).

The peptides, received in powder form, were dissolved in milli-Q water and stored at -20 °C.

Table 3: Peptide probes used in this dissertation

Protein (location) Probe Sequence Information Vendor

Histone H2A (112-129) Biotin-Ahx-QAVLLPKK(Ub)TESHHKAKGK LifeSensors

Histone H2B (113-125) Biotin-Ahx-EGTKAVTK(Ub)YTSSK LifeSensors

VRK1 (2-13) PRVK(me3)AAQAGRQS-Biotin CPC Scientific Inc.
BCL11B (2-13) SRRK(me3)QGNPQHLS-Biotin CPC Scientific Inc.
TSHZ1 (2-13) PRRK(me3)QQAPRRSA-Biotin CPC Scientific Inc.
HIVEP1 (2-13) PRTK(me3)QIHPRNLR-Biotin CPC Scientific Inc.
PCLAF (2-13) VRTK(me3)ADSVPGTY-Biotin CPC Scientific Inc.
MAPK8(2-13) SRSK(me3)RDNNFYSV-Biotin CPC Scientific Inc.
MEF2C(2-13) GRKK(me3)IQITRIMD-Biotin CPC Scientific Inc.
HIRIP3(2-13) AREK(me3)EMQEFTRS-Biotin CPC Scientific Inc.
Histone H3 (2-19): ARTK(me3)QTARKSTGGKAPRK:-Biotin ~ CPC Scientific Inc.

Peptide pull-down assays: Biotinylated peptides (6 ng) were immobilized on 25 ul of
streptavidin beads (Sigma, St Lous, MO, USA) in 500 pL of binding buffer (50 mM Tris-HCL
pH 7.5, 150 mM NaCl, 1mM EDTA, 1mM EGTA, 0.5 % NP-40) at 4 °C for 1 hr. The beads
were washed with binding buffer three times and incubated with 10 ug of glutathione S-
transferase (GST) fusion protein or 30 ug 293T cell lysates for 1 hr with rotation at 4 °C. After

three washes with binding buffer, the beads were boiled in 2X protein loading buffer and
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subjected to SDS-PAGE followed by western blot analyses. Western blot analysis was

performed as described previously (Kim et al., 2006a).

Nucleosomal pull-down assays: Three recombinant nucleosomes, unmodified dNuc,
H2AK119ub dNuc, and H2BK120ub dNuc, were generously provided by Dr. Zu-Wen Sun from
EpiCypher (Durham, NC). Mono-nucleosomes were assembled from recombinant human
histones expressed in E. coli and wrapped by the 601 positioning sequence linked with a &’
biotin-TEG group (Lowary and Widom, 1998). Nucleosomal binding assays were performed

under the same conditions as the peptide pull-down assays.

Antibodies: For western blots: anti-PLAA (Santa Cruz, 1:1000), anti-PLAA (Proteintech,

1:1000), anti-GFP (Santa Cruz, 1:1000), anti-H2B K120ub1 (Cell Signaling, 1:2000), anti-H2A
K120ub1 (Cell Signaling, 1:2000), anti-H3 (Abcam, 1:5000), anti-flag (Sigma-Aldrich,1;5000),
anti-VCP (Cell Signaling, 1:2000), anti-PHF2 (Cell Signaling, 1:2000), anti-MTA1 (Cell
Signaling, 1:2000), anti-ING2 (Proteintech, 1:1000), anti-SPIN1 (ThermoFisher Scientific,
1:2000), and anti-GST (Covance, 1:5000), HRP-conjugated streptavidin antibody

(ThermoFisher Scientific, 1:5000)

For immunofluorescence (IF): anti-yH2AX (Millipore, 1:200), anti-PLAA (Proteintech, 1:200),
anti-H2B K120ub1 (Cell Signaling, 1:200), F-actin (Sigma-Aldrich, 1:5000), Alexa Fluor 488
goat anti-rabbit 1gG, Alexa Fluor 488 goat anti-mouse IgG, Alexa Fluor 594 goat anti-rabbit

IgG, and Alexa Fluor 594 goat anti-mouse IgG (ThermoFisher Scientific, 1:500)

Cell culture: MCF-7, 293T, Hela, Huh-7, Hep-G2 and Hep-3B cell lines were tested to be
mycoplasma free using the MycoAlert™ kit (Lonza) and were cultured in DMEM (Gibco,

12100046) supplemented with 10% fetal bovine serum (Gibco, heat-inactivated), MEM non-
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essential amino acids (Gibco, 11140050) and penicillin-streptomycin (Gibco, 50 U/mL, final

concentration)

CRISPR/Cas9 plasmid construction and lentiviral packaging: 5 ug of the lentiCRISPRv2
plasmid was digested with 3 uL BsmBI (NEB, R0739) in 60 pL 1X NEBuffer™ 3.1 (NEB) for 1
hour at 55 °C and the 11 kb backbone fragment was purified by 0.8% agarose gel

electrophoresis and PCR & DNA Cleanup Kit (Monarch, T1030L).

A single guide RNA (sgRNA) targeting the Exon 1 of PLAA was designed using the Broad

Institute  GPP  (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design).

Oligos, synthesized by Integrated DNA Technologies (IDT), were phosphorylated using the
T4 PNK (NEB M0201S) in 10 uL T4 ligase buffer (NEB). The product was first denatured at
95 °C for 5 min, then slowly annealed to 25°C at 5 °C/min.

The annealed oligos and the 11 kb backbone were ligated using the Quick Ligase (NEM
M2200S) and transformed into Stbl3 competent cells. Plasmids were then sequenced to

ensure the oligos were cloned into the backbone correctly.

Production of lentivirus was performed in 293T cells by co-transfection of pVSVg (Addgene
#8454) and psPAX2 (Addgene, #12260) and the lentiviral plasmid using Lipofectamine 2000
(Invitrogen), as described (Sanjana et al., 2014, Shalem et al., 2014). The cell culture medium
was collected 48 hours after transfection, filtered through a 0.22 uM membrane and

centrifuged at 1500 g for 10 mins. The supernatant was aliquoted and stored at -80 °C.
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The MCF-7 cell line was infected with the lentivirus. Puromycin (1 ug/ml) was added to the

culture medium 48 hours after the infection. The cells were plated at a low density to get well

separated colonies. Single cell clones were manually picked and expanded for validation.

Table 4: Primers used in this dissertation

Primer

Sequence (5’ to 3)

PLAA Exon1-targeting sgRNA (F)
PLAA Exon1-targeting sgRNA (R)
PLAA KO Sequencing Primer (F)
PLAA KO Sequencing Primer (R)
PLAA WD40 N-term (F)

PLAA PFU N-term (F)

PLAA PFU C-term (R)

PLAA PUL C-term (R)

VRK1 K4A (F)

VRK1 K4A (R)

VRK1 TEV (F)

VRK1 TEV (R)

BCL11B K4A (F)

BCL11B K4A (R)

TSHZ1 K4A (F)

TSHZ1 K4A (R)

MEF2C K4A (F)

MEF2C K4A (R)

EGFP-N1_ Sequencing Primer (F)

CACCGGGCCACGAGCTGGACGTACG
AAACCGTACGTCCAGCTCGTGGCCC
GCTGAGGCCGATGATGAAT
GACTCGTCTGTGGTCAAGTTAG
TAAGTCGACATGACGAGCGGCGCAACC
TTAGCTCGAGCTCCTGGTACTAGAGAAGGA
ATAGGATCCACTACTACCACTAGAACCCGG
GCCCGCGGCTACAGCAAATTTAGGATAAA
GCCTCGTGTAGCAGCAGCTCAAG
ATGGTGGCCTCGAGATCT
TTTTCAGGGCAGCTCTGCAAAGAGACATC
TACAGGTTTTCCTGTCTTCCAGCTTGAGC
GTCCCGCCGCGCACAGGGCAAC
GTCCCGCCGCGCACAGGGCAAC
GCCGAGGAGGGCGCAGCAGGCC
GCCGAGGAGGGCGCAGCAGGCC
GGGGAGAAAAGCGATTCAGATTACGAGGATTATG
GGGGAGAAAAGCGATTCAGATTACGAGGATTATG

CGCAAATGGGCGGTAGGCGTG
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Plasmid construction: Human codon-optimized plasmids, GFP-PLAA, GFP-ANKIB1, VRK1-
GFP, BCL11B-GFP, MEF2C-GFP, TSHZ1-GFP, PCLAF-GFP, MAPK8-GFP were
synthesized by Biomatik (Ontario, Canada). Construction of GFP-tagged PLAA truncations
were done by polymerase chain reaction (PCR) using GFP-PLAA as a template. PCR uses a
combination of specific primers that are added to the template DNA to amplify genes in a

specific way (See Table 4 for primer sequences).

In vitro methylation assay: The GST-Set7/9 was expressed and purified as described
previously (Cheng et al., 2007). The recombinant MLL1 and PRDM?9 proteins were purchased
from Reaction Biology Corp (Malvern, PA) and Active Motif (Carlsbad, CA), respectively. In
vitro methylation reactions were performed in a final volume of 30 ul of 50 mM Tris-HCI (pH
8.5), 5 mM MgCI2, 4mM DTT, and 0.42 uM *H-labeled S-adenosyl-L- [methyl *H] methionine

(PerkinElmer Life Sciences) (Nishioka et al., 2002, Hamidi et al., 2018).

Live cell microirradiation imaging and immunofluorescence microscopy

Laser microirradiation imaging: Laser microirradiation and quantification of live-cell imaging of

laser damage recruitment were performed with Zeiss Zen software on a Zeiss LSM 880
confocal microscope (Zeiss) following standard protocols designed in previous studies (Gong
et al., 2015). In brief, cells were seeded onto (World Precision Instruments, FD35-100) and
co-transfected using PEI with 2 ng GFP-PLAA plasmid and 2ug RFP-53BP1. Media was
changed 4~6 hours after transfected cells and cells were cultured for another 24 hours. All
cells used for laser microirradiation and after the experiments (live-cell imaging and
immunofluorescence) were pre-sensitized by adding 10 uM BrdU in regular DMEM medium
for 20 hr or with 200ng/mL Hoechst33342 (Thermo Scientific, Cat# 62249) for 30 mins before

damage treatment. Live-cell imaging experiments were performed at 37°C and 5% CO2
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conditions maintained by a heated incubation system on the microscope. All images were
captured using a Zeiss 40X water objective lens. A 355-nm laser beam (30%) was used to
generate laser microirradiation. For each experiment, quantification data were collected
from >10 cells under each condition. Plots shown in figures are from one representative

experiment.

Immunofluorescence: After indicated treatments, cells were rinsed with 1X PBS and then

fixed/permeabilized with 100% Methanol at -20 °C for 10 mins (as required by H2Bub1
antibody) or fixed with 4% formaldehyde for 10 min at room temperature for all other
antibodies. Upon fixation, cells were blocked with PBS containing 3% BSA. After blocking,
cells were incubated with indicated primary antibodies and corresponding secondary
antibodies. Finally, the cells were stained with DAPI at room temperature. Confocal images

were acquired using a Zeiss LSM 880.
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CHAPTER 3: PROTEIN DOMAIN MICROARRAY AS A PLATFORM TO DECIPHER

SIGNALING PATHWAYS AND THE HISTONE CODE

Part of this chapter is based upon: J. Chen, C. Sagum, and M.T. Bedford, (2020) Protein
domain microarrays as a platform to decipher signaling pathways and the histone code.
Methods, Volume 184: pp. 4-12.

ISSN 1046-2023

Used with permission of Elsevier
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3.1 CELL SIGNALING THROUGH POSTTRANSLATIONAL MODIFICATIONS

PTM is the process of covalently adding a chemical group to an amino acid in a protein after
the protein has been synthesized. PTMs are usually enzymatically added to and removed
from the protein substrates. The most prominent types of PTMs are phosphorylation,
methylation, acetylation, glycosylation and ubiquitination, but this is by no means a complete
list (Deribe et al., 2010a). It has long been known that PTM patterns are altered in response
to extracellular signals like growth stimulation and intracellular signals like DNA damage. Thus,
activated and altered signaling cascades drive information from the cell surface to the nucleus,
and also from the nucleus to the cytoplasm. These transduction processes are critical for cells
within organisms to respond to information in their environment, and often culminate in
epigenetic changes and altered gene expression signatures (Badeaux and Shi, 2013). These
signals are transduced or relayed by effector proteins that often read one type of PTM and

deposit a different type of PTM, thus the term “signal transduction cascade”.

3.2 PROTEIN DOMAINS: INTERACTION HUBS THAT DRIVE SIGNALING CASCADES

The concept that distinct protein regions within a continuous peptide chain can form globular
structures was originally proposed by Donald Wetlaufer (Wetlaufer, 1973). This notion of
globular protein domains was expanded to include both structure and function (Richardson,
1981). Domains are the smallest functional and structural unit of a protein and are usually
between 30 to 100 amino acids in length. Protein domains are not only regions that are
expected to be stable as independent units, but they are also often conserved regions
between different proteins. Thus, different proteins can be grouped into a family if they share
the same domain, as the shared domain often confers similar functions. Protein domain
identification has been greatly improved with advances in bioinformatics techniques. This
provides the premise to predict novel domains/functions of a protein based on both sequence

and structural information. The discovery by the Pawson group in the mid 90s, that SH2
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domains are the modular units that engage phospho-tyrosine motifs (Songyang et al., 1993),
set the stage for the discovery of a large number of domain types that “read” different PTMs,
unique motif folds (like proline-rich sequences), phospholipids, metabolites and modified
nucleic acids (Figure 1 & Table 5). Therefore, domains can be considered the structural
“hubs” within proteins that drive interactions, and facilitate the formation of regulatable protein

interaction networks and propel signal transduction.
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Figure 1. Distinct domains, depicted with different colors and shapes are able to
recognize specific motifs. Some domains recognize motifs that harbor PTMs, while others
recognize distinct proline-rich sequences, nucleic acids or phospho-lipids. Y, tyrosine; S,
serine, T, threonine; K, lysine; P, proline; ¢-COOH, hydrophobic C-terminal; p,

phosphorylation; me, methylation; ac, acetylation; ub, ubiquitination; PIP, phosphoinositides.
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Table 5. List of major protein domains that participate in signal transduction

SH2 Src Homology 2
PTB Phosphotyrosine-binding domain
FHA Forkhead-associated domain
14-3-3 The 14" elution fraction of DEAE-cellulose chromatography and the migration

position 3.3 of subsequent electrophoresis

BRCT BRCA1 C Terminus domain

PBD Polo-box domain

ww Containing two conserved Tryptophans that are 20-22 amino acids apart
Tudor Named after the Tudors family for grandchildless phenotype

Chromo chromatin organization modifier domain

MBT Malignant brain tumor domain
PHD Plant homeodomain
BAH Bromo-adjacent homology

ANK Ankyrin repeats domain
PWWP Presence of a central core region 'Pro-Trp-Trp-Pro'

WD40 A 40 amino acid motif with a terminating ‘Trp-Asp’ dipeptide

Bromo Identified as a novel structural motif when studying the drosophila gene Brahma
(brm)
YEATS Yaf9, ENL, AF9, Taf14, Sas5 domain
UBA Ubiquitin-associated domain
uUBX An 80 amino acid module with unknown function found in ubiquitin-

related/unrelated proteins

UM Ubiquitin-interacting motif domain

VHS Originally found in VPS-27, Hrs and STAM proteins

CUE A homology region between yeast Cue1 and human Tollips proteins
PFU PLAA family ubiquitin-binding domain

GAT A homology region in eukaryotic GGAs and vertebrate TOMs proteins
2z ZZ-type zinc finger (Z2)

PTB Phosphotyrosine-binding domains

SH3 Src Homology 3
EVH1 WH1, RanBP1-WASP, or enabled/VASP homology 1 domain
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3.3 EARLY DEVELOPMENT OF PROTEIN MICROARRAYS

Some of the earliest protein screening approaches employed phage expression libraries to
identify novel protein-protein interactions (Cicchetti et al., 1992, Chan et al., 1996) and
discover kinase substrates (Fukunaga and Hunter, 1997). High-density arrays using
bacterially produced His-tagged proteins were also developed at about the same time, and
were used for protein ligand screening (Bussow et al., 1998) and enzyme substrate screening
(Lee and Bedford, 2002). The disadvantage of both approaches was that the recombinant
proteins were arrayed on large membranes, and not microarrayed on slides, which made
certain assays difficult, because enzymatic reactions or protein interaction probing
experiments need to be performed in very large volumes (30-50 ml). This issue spawned the
development of microarrays that could be used for miniaturized high-throughput screening,
in which proteins were spotted onto chemically derivatized glass slides at high density
(MacBeath and Schreiber, 2000, Zhu et al., 2001). More recently, large-scale protein domain
microarrays have become broadly available, and represent the commercialization of
pioneering work from Snydner’s group at Stanford University (Smith et al., 2005) and the Zhu
and Blackshaw laboratories at Johns Hopkins University (Jeong et al., 2012, Lu et al., 2013).
The ProtoArray™ is offered by Thermo Fisher Scientific and contains over 9,000 proteins on
a single slide. These human proteins are expressed in insect cells as N-terminal GST-tagged
fusions and printed onto nitrocellulose coated glass slides. The second commercially
available human proteome microarray is called HuProt™ and is available from CDI. This
microarray harbors over 16,000 proteins, which are also N-terminal GST-tagged fusions, but
in this case, the recombinant proteins are expressed in yeast cells and then printed directly
onto glass slides. A third type of protein array was generated by spotting protein-coding
plasmids onto slides, and then translating these coding regions into proteins using a cell free
reticulocyte lysate (He and Taussig, 2001, Ramachandran et al., 2004). These proteins are

fused to a tag that allows immediate immobilization in situ, and they are called nucleic acid
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programmable protein arrays (NAPPAs). Human NAPPA arrays with over 11,000 proteins are
available through the Protein Array Core of the BioDesign Institute in Arizona.

These three large human proteome array types - ProtoArray™, HuProt™ and NAPPAs —
provide a valuable resource for the screening of enzyme substrates and high-affinity protein-
protein interactions, and for epitope mapping. However, these array types have proven more
difficult to use for the screening of weaker protein-protein interactions that are driven by PTMs,
which generally display binding constants in the low uM range. This issue can be mitigated
to some degree by arraying much higher concentrations of the protein region that interacts
with the PTM motif. Furthermore, when making the recombinant proteins for the content of
microarrays, there is the concern that the proteins will not express well in bacteria, yeast or
insect cells, especially when attempts are made to generate full-length proteins that can be
rather large and prone to precipitation and inclusion body formation. This concern can largely
be alleviated by using protein domains. The nature of protein domains (small, well-expressed,
tightly folded and functionally stable) make them ideal for expression as recombinant proteins
that can be used for multiplexing. We were among the first groups to develop and use protein
domain microarrays in the early 2000s (Espejo et al., 2002, Espejo and Bedford, 2004b), and
their use has rapidly evolved over the past two decades. At MD Anderson Cancer Center we
have developed a core facility — the Protein Array and Analysis Core (PAAC) — to generate

libraries of different recombinant domains and array these libraries for discovery purposes.

3.4 THE DESIGN OF PROTEIN DOMAIN MICROARRAY FOR THE PAAC

The first step in generating protein domain microarrays is identifying all the domain types that
need to be generated for a particular project. This is done with the aid of web-based programs
that can predict the presence of protein domains in the proteins of interest, including EMBL
Pfam and InterPro, NCBI Conserved Domain and the CST PhosphoSite. Often, multiple

domains of the same type or of different types will lie close together. If this is the case, we
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Figure 24. Regulation of H3TMs’ interaction networks by K4me3. Proteins containing
PHD or Tudor domains often recognize the Histone H3K4me3, an active transcription mark,
and recruit associating activator protein complex (AC) to the chromatin. Repressor complex,
such as NuRD, interacts with chromatin by recognizing the unmodified Histone H3 tail. When
unmodified at K4 sites, H3TMs interact with the NuRD complex. K4me3 on H3TMs
disengages their interactions with the NuURD complex and turns on their interactions with AC

to execute H3TMs’ nuclear functions.
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