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CORTICAL DYNAMICS OF LANGUAGE 

 

Kiefer James Forseth, B.S., B.Mus. 

Advisory Professor: Nitin Tandon, M.D. 

 

ABSTRACT 

The human capability for fluent speech profoundly directs inter-personal communication and, by 

extension, self-expression. Language is lost in millions of people each year due to trauma, stroke, 

neurodegeneration, and neoplasms with devastating impact to social interaction and quality of 

life. The following investigations were designed to elucidate the neurobiological foundation of 

speech production, building towards a universal cognitive model of language in the brain. 

Understanding the dynamical mechanisms supporting cortical network behavior will significantly 

advance the understanding of how both focal and disconnection injuries yield neurological 

deficits, informing the development of therapeutic approaches. 
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INTRODUCTION 

People can generate the name for an object and articulate that word with remarkable 

speed, precision, and fluency. This involves an integrated multistage process that seamlessly 

translates conceptual representations in the brain to acoustic output – a defining human faculty 

that allows for eloquent communication. The cortical substrates that support naming form a 

network from inferior parietal, temporal, ventrolateral prefrontal, medial frontal, insular, and 

sensorimotor areas. The study of this complex network has been largely mediated by analysis of 

lesions, neurodegenerative disease, behavioral response, functional imaging, and non-invasive 

electrophysiology. With these tools, much has been learned about language in the brain; 

however, these predominant methodologies lack the temporal or spatial resolution to discern the 

neural mechanisms driving networks characterized by rapid, transient dynamics with strong 

interactions between distributed cortical substrates. In contrast, invasive human 

electrocorticography affords direct access to fine spatiotemporal scale recordings of human 

cortical activity via subdural pial surface electrodes or penetrating depth electrodes. I integrate 

structural and functional imaging with electrocorticographic recordings and direct cortical 

stimulation to delineate the specific neuroanatomic architecture and functional organization of 

the human speech production network. 

Traditional models of speech production agree that linguistic components are organized 

hierarchically and assembled sequentially – this conclusion is informed by the nature of common 

speech errors (e.g. word exchange)1, by chronometric studies of picture naming2, and by speech 

disruption motifs in aphasic patients3. However, the interaction of these components defines a 

fundamental dichotomy in literature between serial1,4,5 and parallel6,7 processing. Building on 

several earlier serial models1,4, Bock and Levelt proposed four processing levels: message 

selection, lexical selection, positional encoding, and finally phonological encoding. Critically, the 

flow of information in this model is unidirectional5,8. In contrast, Dell proposed a parallel 

processing model with spreading activation across three levels in which distinct speech units – 

semantic features, lexical nodes, and phonological segments – exhibit bidirectional interactions6. 
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The most immediate advantage of this model was a viable explanation of word and phrase 

blending errors (e.g. “Shout for help!” / “Yell for help!” becoming “Shell for help!”), as well as 

cognitive intrusions (e.g. Freudian slips). The debate between serial and parallel processing has 

evolved into an unresolved conflict between feedforward-only9,10 and fully-interactive models11,12, 

a conflict perpetuated by the challenge of formalizing neurobiological correlates for linguistic 

processing levels and by the difficulty in characterizing the interactive behavior of cortical 

substrates13. Large-scale electrocorticography has the unique potential to ground this debate in 

empirical network dynamics, establishing a translation from psycholinguistic theory to the brain. 

While psycholinguists have been primarily concerned with abstract cognitive models that 

govern the selection and planning of spoken words, motor control theorists have focused on 

developing models of articulatory execution rooted at the intersection of systems engineering 

and neurobiology14–16. Many such models depend critically on the pairing of feedforward (learned 

expectation) and feedback (sensory experience) mechanisms. For example, the directions into 

velocities of articulators (DIVA) model computes both an acoustic and somatosensory 

comparison of expected target and actual state to generate a real-time error map that monitors 

ongoing articulation16. In recent years, several attempts have been made to integrate 

psycholinguistic and motor control theories17–20 culminating in the hierarchical state feedback 

control (HSFC) model21. This model posits that distinct internally generated acoustic and 

somatosensory targets correspond to syllabic and phonological features, respectively. These 

targets and their associated motor programs together constitute the phonological level of 

psycholinguistic theory, interposed between the lexical level and external acoustic output. Direct 

evidence for many of the functional connections hypothesized in these grand models is still 

absent, requiring precise quantification of relative timing between distant substrates and the 

robust demonstration of directional informational flow as well as causal interruption with 

functional ablation. 

Electrocorticography presents a rare window into the inner mechanics of language in the 

human brain. Patients undergoing presurgical evaluation for refractory epilepsy are implanted 
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with intracranial electrodes and clinically observed for an extended period in the epilepsy 

monitoring unit. These electrodes record directly from the brain, providing physicians and 

scientists with powerful insights into human neurophysiology. The recorded signal constitutes the 

full summation of cortical oscillatory activity with millimeter spatial and millisecond temporal 

resolution; this allows for spectral decomposition of the temporal signal at each electrode into 

functional neural bands. For example, the high-gamma band (60-120 Hz) – thought to arise from 

focal summation of recurrent inhibitory inter-neuronal activity coupled with a surge in spike rate22–

26 – strongly correlates with the blood-oxygen level dependent signal from fMRI27,28 and indexes 

local cognitive processing22,29–31. With electrocorticography, it is uniquely possible to study 

properties of these distinct frequency channels in local cortical regions with respect to other 

channels, to other regions, and to behavioral response. Additionally, these intracranial electrodes 

allow for direct electrical stimulation that transiently mimics focal lesions, allowing for the 

comparison between functional activation and lesion studies in each patient. 

Despite general agreement on the enumeration of cognitive processes that lead from 

intention to articulation, no consensus has yet emerged governing the network architecture and 

dynamics that implement these processes. The overall goal of my thesis work was to discern 

how the speech production network in the human brain coordinates its distributed substrates to 

accomplish fluent verbal communication. I have studied this network with the unique advantages 

of electrocorticography – guided by neuroimaging – in a large cohort including both penetrating 

and surface electrodes: excellent spatiotemporal resolution, direct full spectrum recordings, 

complete cortical coverage, and focal current injection. I identify the substrates contributing to 

the speech production network, measure information flow between its nodes, and selectively 

perturb functionality. Insights into the network dynamical properties of the brain creates a new 

framework for the understanding of language disorders and provides generalizable perspectives 

on cognitive processes.  
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GENERAL METHODS 

All study designs were approved by the committee for the protection of human subjects 

at The University of Texas Health Science Center at Houston. Patients participated in all research 

voluntarily with informed consent. This research did not influence their clinical care. 

ELECTRODE IMPLANTATION 

Two types of electrodes were implanted by my mentor, Dr. Tandon, at Memorial Hermann 

Hospital (Figure 1). The first method involves accessing the brain via a craniotomy, then placing 

grids of platinum-iridium electrodes (top-hat design; 3-mm diameter cortical contact) embedded 

in silastic sheets (PMT, Chanhassen, MN) at strategic locations across the lateral and ventral 

pial surface. The second method, increasingly favored in American neurosurgical practice, 

employs a surgical robot (ROSA, MedTech, France) to aid in the insertion of linear depth probes 

(PMT) – each with multiple platinum-iridium contacts (0.8 mm diameter, 2 mm length cylinders; 

separated from adjacent contacts by 1.5 to 2.43 mm) – along stereotactic trajectories. Grid and 

depth electrodes have distinct access to cortical structures: grid electrodes predominantly record 

from gyri on the lateral or ventral surface, while depth electrodes – frequently implanted bilaterally 

– are also able to record from cortical sulci, the medial bank of the hemisphere, and the insula. 

These two surgical approaches generate complementary coverage of the neuroanatomic 

substrates implicated in speech production. 

STRUCTURAL IMAGING 

The localization of electrodes relative to the cortex is accomplished by the registration of 

pre- and post-operative imaging. Pre-operative structural MRI scans are obtained using a 3T 

whole-body MR scanner (Philips Medical Systems)32; these scans are then processed with 

FreeSurfer33 to yield pial surface reconstructions. Post-operative CT scans are subsequently 

registered to the structural MRI and imaging artifacts caused by the metal electrodes are 

exploited to estimate position relative to the cortex in AFNI34. Grid electrode positions are 

manually confirmed with intra-operative photographs35. 
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ELECTROPHYSIOLOGY ACQUISITION 

Electrocorticography data were collected with a sampling rate of either 1 kHz and 

bandwidth of 0.15 to 300 Hz using Neurofax (Nihon Kohden) or with a sampling rate of 2 kHz 

and bandwidth of 0.1 to 700 Hz using NeuroPort NSP (Blackrock Microsystems). Continuous 

audio recordings of each patient were performed with both an omnidirectional microphone (Audio 

Technica U841A, 30 to 20,000 Hz response, 73 dB SNR) placed adjacent to the presentation 

laptop and a cardioid lavalier microphone (Audio Technica AT898, 200 to 15,000 Hz response, 

63 dB SNR) clipped to clothing near the mouth. These recordings were analyzed offline to 

transcribe patient responses, as well as to determine the time of articulatory onset and offset. 

Hemispheric language dominance was evaluated by intracarotid sodium amytal injection36, fMRI 

laterality index37, or cortical stimulation mapping38; the remaining patients were assumed to be 

left hemisphere language-dominant. Only electrodes unaffected by epileptic activity, artifacts, or 

electrical noise were used in subsequent analyses. Trials in which the patient answered 

incorrectly or did not respond were eliminated. Additionally, trials in which significant epileptic 

activity was observed were removed. 

 

 

Figure 2: Schematic for surface-based mixed-effects multilevel analysis 

Figure 1: Process of registering the cortical surface with surface grid (top) and penetrating depth (bottom) electrodes. 
The final electrode representations registered to the cortical surface are shown on the right for 2 distinct patients. 
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INVERSE MODEL OF ELECTRODE RECORDING ZONES 

Response properties of individual electrodes were mapped to patient-specific cortical 

models via a surface recording zone39,40. This zone both constrained the surface-based spatial 

registration of individual cortical models to a standard atlas and constrained the weighted 

estimate of cortical contributions to the observed signal at each electrode. 

The definition of electrode recording zone was tailored to the type of electrode. For grid 

electrodes, the central coordinate of each electrode was matched to its closest node on the 

cortical envelope. This seed was then grown to a geodesic radius of 1.5 mm, matching the 

dimensions of the electrode. Each of the vertices within this region was mapped to its closest 

vertex on the pial surface model. These seeds were then grown along the surface to a maximum 

geodesic radius of 10 mm, constituting the surface electrode recording zone. For depth 

electrodes, the central coordinate of each electrode was simply mapped directly to the closest 

vertex on the pial surface model. This seed was then grown to a maximum geodesic radius of 10 

mm to define the surface electrode recording zone. 

For both electrode types, the inverse model within the recording zone was defined by the 

same piecewise inverse function. Cortex directly adjacent to electrodes (e.g. beneath grid 

electrodes or alongside depth electrodes) was assigned a maximal weight of 1; more distant 

cortex was weighted according to exponential decay with a full-width half-maximum at 2.3 mm; 

cortex more than 10 mm from the center was assigned a minimal weight of 0. Individual electrode 

statistics were subsequently propagated onto the cortical surface with this inverse function. 

SURFACE-BASED REGISTRATION TO STANDARD ATLAS 

All group analysis was performed in standard space on the MNI N27 cortical surface. 

Electrode locations and recording zones were transformed to standard space with a nonlinear 

surface-based registration41,42. This registration was used to generate coverage maps, define 

regions of interest, and to enable group statistics at each vertex of the cortical surface in the 

mixed-effects multilevel analysis39,40. 
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MIXED-EFFECTS MULTILEVEL ANALYSIS 

To generate statistically robust and topologically precise estimates of percent change in 

power across the cortex, I used a surface-based mixed-effects multilevel analysis (SB-MEMA) 

leveraging the electrode recordings zones and nonlinear transform to standard space defined 

previously. This method addresses universal challenges for grouped analysis of human invasive 

electrophysiology: a) accurate localization and spatial localization of cortical sources39,40; b) data 

integration across the cohort, accounting for sparse sampling and anatomic variability41–43; c) 

statistical modeling of population-level effects, mitigating outlier inferences and accounting for 

intra- and interpatient response variability that violate the assumptions of simpler models44,45. 

The model consisted of two levels: the individual and the group (Figure 2). At the 

individual level, an estimate of percent change in power at each electrode was fitted with a mixed-

effects model informed by the sampling variance. The resulting effect and significance estimates 

were propagated onto the patient-specific cortical model using the surface recording zone of 

each electrode. These patient-specific maps then underwent surface-based registration to the 

standard atlas. Finally, a mixed-effects model at the group level generated the effect and 

significance estimates for each vertex on the MNI N27 atlas39,40.  

 

 

Figure 6: Examples of coherent and scrambled images of common objects 

 

Figure 7: Examples of coherent and scrambled images of common objects 

Figure 2: Schematic for surface-based mixed-effects multilevel analysis at a peri-articulatory window in 25 patients. 
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NAMING WHAT YOU SEE 

What the brain does as we speak (in review) 

Forseth KJ, Pitkow X, Fischer-Baum S, and Tandon N 

BACKGROUND 

Speech production is a defining human faculty that enables eloquent communication. The 

ubiquity of word generation with remarkable speed, precision, and fluency belies its complexity. 

Articulating even a single word requires the selection of a conceptual representation, the 

construction of a word form, and the execution of a complex articulatory plan with associated 

output monitoring. Despite general agreement on the enumeration of cognitive processes that 

lead from intention to articulation8, no consensus has yet emerged describing the neurobiological 

architecture that implements these processes. 

The cortical basis of speech production has been probed by analyses of deficits 

secondary to lesions46 and neurodegenerative diseases47, as well as by analyses of intact 

language systems through functional imaging48,49, structural mapping50, and noninvasive 

electrophysiology51. Much of this work has focused on localizing specific cognitive processes to 

discrete neuroanatomic substrates, yet these efforts have yielded competing interpretations – 

even in landmark regions like Broca’s area52. An alternative framework shifts the focus from 

patterns of isolated activity in separable substrates to patterns of dynamic interaction between 

such cortical nodes53–55. Evaluation of this theory has been hampered by limitations inherent to 

the predominant methodologies available for studying the neurobiology of language. These 

methods lack the temporal or spatial resolution to discern the neural mechanisms driving 

networks characterized by rapid, transient dynamics across distributed substrates. Invasive 

human electrocorticography uniquely affords direct, high-resolution recordings of human cortical 

Figure 3: Examples of coherent and scrambled images of common objects 
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activity; however, such opportunities are rare and prior language studies have been limited in 

scale and cortical coverage56–58. 

I overcame these limitations by using large-scale human electrocorticography (134 

patients, 25810 electrodes, 40278 trials) to elucidate the neurobiology of language production. 

This cohort included both subdural surface grid and stereotactic depth electrodes, encompassing 

the entirety of language-dominant cortex (Figure 4). With this global perspective, I generated a 

comprehensive spatiotemporal atlas of a classical language paradigm: picture naming with 

scrambled images as a low-level control (Figure 3). I characterized functionally distinct regions 

within this atlas by pre- and post-articulatory encoding of established psycholinguistic variables 

including visual, semantic, lexical, and phonologic correlates. I further developed a grouped 

dynamical model to resolve discrete neural states that were distinguished by unique patterns of 

distributed cortical interaction. These data reveal the network architecture of speech production, 

informing and constraining the neurobiological instantiation of extant language models. 

Figure 4: Electrodes in left language-dominant cortex. (A) Staged implants with grid (light blue) and depth (dark blue) 
electrodes, showing trajectories through frontal-insular (left), supratemporal (middle), and midtemporal (right) 
structures. (B) All grid and depth electrodes in standardized space. (C) Aggregate cortical coverage. 
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In addition to providing new insights for language production theory, this approach 

investigates the broad utility of linking cognitive processes to network states rather than to activity 

in isolated substrates59. I critically evaluate the thesis that complex behaviors comprise 

sequences of network states60, each defining a set of reference dynamics to coordinate the 

generation and transmission of information throughout the cortex61. Speech production is an ideal 

testbed, requiring the coordination of multiple cognitive systems and resulting in an observable 

behavior. Elaborating the structural and functional properties of states during speech production 

provides a basis for understanding the generalizable dynamical principles governing cognition62. 

SPECIFIC METHODS 

The autoregressive hidden Markov model (ARHMM) combines autoregressive (AR) 

stochastic linear dynamics with the discrete switching latent states of a hidden Markov model 

(HMM)63. This method enables single-trial analysis that does not require manual alignment of 

trials by picture presentation or articulation onset. Furthermore, it obviates the dubious 

assumption underlying all cross-trial averaging metrics that the same cognitive processes are 

occurring at the same times in all trials. All latent parameters – the time series of network states, 

their transition probabilities, and the dynamics of each state – are inferred directly from neural 

data. In this work, I have expanded on this framework with the implementation of a grouped 

training method (gARHMM) that enables the inference of a single set of generalized latent 

parameters across the entire patient cohort. 

An AR process is a random process with temporal structure, where the current state 𝒙! 

of a system is the sum of a linear combination of previous states and a stochastic innovation 𝒗! 

drawn from zero-mean isotropic white noise. The linear dynamics of such a system can be 

described by 𝑁" matrices of AR coefficients 𝐴" at different time delays 𝜏, which can be combined 

into a tensor 𝑨 = {𝐴"}. The stochastic elements are specified by a covariance matrix 𝑄. 

𝒙" =	 , 𝐴"𝒙!#"

$!

"	&	'

+ 𝑄' (⁄ 𝒗! 
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Since this model is linear, it is a poor approximation of nonlinear neural dynamics. This limitation 

motivated the subsequent extension of this model to include switching dynamics. 

The defining property of a first-order Markov model is that transition probabilities between 

states depends only on the previous state. In a hidden Markov model, this dynamic is unobserved 

– each state emits observable quantities with some associated probability. Autoregressive 

hidden Markov models combine the stochastic linear dynamics of AR processes with the partial 

observability of a hidden Markov model. Here I use a discrete latent state 𝑧 and assume 

autoregressive Gaussian emissions conditioned on that latent state. Each latent state 𝑧 indexes 

a different stochastic linear process with a state-specific dynamics tensor 𝑨* and a state-specific 

process noise covariance 𝑄*. The switching characteristics allow an ARHMM to approximate a 

stochastic nonlinear dynamical system. 

In the context of invasive electrophysiology, the observations are high-gamma power at 

a fixed number of regions (e.g. visual cortex, mid-fusiform gyrus, pars triangularis, pars 

opercularis, subcentral gyrus, and superior temporal gyrus). The AR coefficients 𝐴*"+, specify 

the Granger causal dynamical relationship between regions 𝑗 and 𝑘 at time lag 𝜏 in state 𝑧. For 

a given state 𝑧 at time 𝑡, the multivariate high-gamma power signal 𝒙 is modeled as 

𝒙! =	,𝐴*""𝒙!#"

$!

"&'

+	𝑄*"
' (⁄ 𝒗! +	µ*" 

where µ* is a state-dependent bias. Probabilistic inference on observed neural data determines 

the unobserved latent parameters: the time series of network states 𝑧!, their transition 

probabilities Φ*"#$*", and the linear dynamics parameters of each state {𝑨*, 𝑄*, µ*}. 

The model was trained with iterative estimation of the state time series and state 

dynamics across all patients using the Baum-Welch expectation-maximization algorithm64,65. 

Initial conditions for 𝑨 and 𝑄 were informed by the lagged correlation of multivariate AR 

clustering66,67. The state-dependent biases µ* were drawn randomly from a standard Gaussian. 

State transitions were sampled from a uniform prior. 
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A random 80% of trials from each patient were used for training the latent dynamical 

parameters. 10-fold validation on the training set was used to select hyperparameters. The model 

contains 2 hyperparameters that constrain its architecture: model order 𝑁" and state number 𝑁-. 

Both were evaluated with log-likelihood and AIC. The return for increasing model order plateaued 

after 𝑁" = 3. Additional states exceeding 𝑁- = 6 trivially split the background state during inter-

trial periods. I trained a second model with interaction terms forced to zero – otherwise, the 

architecture was preserved. This mean-only model converged to a stable solution, but its 

performance was inferior to the complete model featuring interactions between regions. 

The remaining 20% of trials from each patient were allocated to the testing pool to assess 

model fit. Performance of the model, measured with log-likelihood, was equivalent on training 

and testing sets. In addition, I iteratively held out each patient from training to ensure that the 

model was not overfit to individual-level effects. I report the state sequences generated by the 

model for all trials in the testing set. 

The ARHMM classifies dynamical states by the network connectivity encoded in their AR 

coefficients. These dynamics can be captured by partial directed coherence (PDC) in the 

frequency domain68 – a measure of Granger causal information flow. For each state 𝑧, the 

pairwise PDC between regions 𝑗 and 𝑘 is defined as 

𝜋*+,(𝑓) = 	
𝐴̅*+,(𝑓)
‖𝑨=*,(𝑓)‖

 

where 

𝐴̅*+,(𝑓) = 	

⎩
⎪
⎨

⎪
⎧ 1 −	,𝐴*"+,𝑒#(./0"

$!

"&'

			for	𝑗 = 𝑘

−	,𝐴*"+,𝑒#(./0"
$!
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									otherwise

 

represents the transfer function at frequency 𝑓. In this text, the directed graph for each state is 

shown with nodes representing regions and edges representing causal interactions. 
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Figure 5: Spatiotemporal atlas of picture naming. (A) SB-MEMA of peak high-gamma power relative to articulation 
with brightness indicating areas that were significantly more active for coherent images than scrambled images. (B) 
10 regions of interest were delineated. (C) High-gamma power for stimulus and articulation aligned windows (p<10-3). 
(D) Raster plots of single-trial high-gamma power sorted by reaction time (post-stimulus, pre-articulation) or 
articulatory duration (post-articulation onset). (E) Boxplots of average gamma power in the 4 seconds after picture 
presentation for coherent (left) and scrambled (right) stimuli (* p<0.05, ** p<10-2, *** p<10-3). Scatter plots of average 
high-gamma power against reaction time for coherent images. Regression lines are overlaid for correlations that were 
both significant during coherent trials and significantly greater than during scrambled trials (p < 10-3). (F) Same 
analysis was repeated for the 1 second after articulation onset against articulatory duration. 
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FINDINGS 

Cortical activity was integrated across the cohort to produce a spatiotemporal atlas of 

cued word production in the language-dominant hemisphere (Figure 2). These global mean 

dynamics were resolved with surface-based mixed-effects multilevel analysis of high-gamma 

power in narrow time windows, generating a series of effect sizes and confidence estimates for 

every point on the standard Colin pial surface. The resulting frames together constitute a high-

resolution movie (Figure 5A). I further investigated the response properties of this distributed 

cortical network for naming within regions of interest constrained by the SB-MEMA atlas (Figure 

5B). The mean regional response was analyzed in 3 adjacent time windows: post-stimulus, pre-

articulation, and post-articulation (Figure 5C). A broad swath of language-dominant cortex was 

sequentially recruited during picture naming. The cortical response began in the calcarine sulcus, 

then spread both dorsally to the intraparietal sulcus and ventrally to the middle fusiform gyrus. 

Next, a complement of distinct foci in frontal cortex were engaged: pars triangularis, pars 

opercularis, the supplementary motor area, and the superior frontal sulcus. Significant peri-

articulatory activity followed in the subcentral gyrus with dorsal extension throughout lateral 

sensorimotor cortex. The superior temporal and posterior middle temporal gyri were mostly 

quiescent in the pre-articulatory interval, but engaged throughout articulation. 

I then quantified the relationship between behavior – reaction time and articulatory 

duration – and neural response in each region of interest for both coherent and scrambled images 

(Figure 5D-F). Visual cortex, the intraparietal sulcus, and the middle fusiform gyrus responded 

at a fixed delay from picture presentation; in contrast, frontal cortex broadly responded later 

during trials with longer reaction times. Of the regions that were significantly more responsive to 

coherent images than scrambled images, cumulative high-gamma power and reaction time were 

significantly correlated in the middle-fusiform gyrus (r = 0.082, p < 10-6), pars triangularis (r = 

0.278, p < 10-6), pars opercularis (r = 0.166, p < 10-6), the supplementary motor area (r = 0.082, 

p < 10-6), and the superior frontal sulcus (r = 0.219, p < 10-6). Cumulative post-articulatory high-

gamma power and articulatory duration were significantly correlated in the superior frontal sulcus 
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(r = 0.072, p < 10-4), the subcentral gyrus (r = 0.199, p < 10-6), and the superior temporal gyrus 

(r = 0.182, p < 10-6). The middle fusiform gyrus, pars triangularis and opercularis, and the 

supplementary motor area remained significantly more engaged for coherent versus scrambled 

images in the post-articulatory timeframe despite having no association with articulatory duration. 

This holistic view of the cortical dynamics of picture naming was uniquely afforded by 

large-scale intracranial electrophysiology spanning the entirety of language-dominant cortex. 

While there was a clear progression of activity across the cortex, many regions were jointly active 

for extended periods. These dynamics are inconsistent with the narrow assignment of linguistic 

operations to focal and isolated substrates. Instead, they may be better explained by the proposal 

Figure 6: Linear mixed-effects models of behavior and regional high-gamma power with psycholinguistic predictors. 
(A) Correlations with reaction time and articulation length in 19465 trials. (B) Models of regional high-gamma power 
response in pre-articulatory (-2150 to 0ms) and articulatory (0 to 850ms) time windows (p<10-2). (C) Cortex attributable 
to electrodes in each region colored by the predictor with the largest significant t-value. 
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that cognitive computation that is orchestrated across transient, distributed, and overlapping 

networks – a thesis I further evaluate in subsequent analyses. 

Having characterized the mean spatiotemporal extent of high-gamma power, I evaluated 

the trial-by-trial effects of distinct linguistic representations on regional activity (Figure 6). Linear 

mixed-effects models were constructed as a function of visual complexity69, semantic 

familiarity70, lexical frequency71, lexical selectivity70, and phonological density72. These models 

were validated on behavioral measures (Figure 6A): reaction time was best explained by lexical 

selectivity (ß = 63.54ms, p < 10-6), while articulation length was best explained by phonological 

density (ß = -62.66ms, p < 10-6). 

I applied these models to high-gamma power in each region of interest during time 

windows before and after the onset of articulation. Visual cortex activity was related to visual 

complexity of the stimulus (ß = 0.116, p < 10-5), consistent with localized feature processing. In 

the pre-articulatory period, semantic familiarity was uniquely related to middle fusiform gyrus 

activity (ß = -0.071, p < 10-3). Lexical frequency was also encoded in the middle fusiform gyrus 

(ß = -0.077, p < 10-4), as well as in pars triangularis (ß = -0.063, p = 0.0053) and opercularis (ß 

= -0.116, p < 10-4). Lexical selectivity was related to activity in pars triangularis (ß = 0.069, p < 

10-3), the supplementary motor area (ß = 0.070, p = 0.0014), and the superior frontal sulcus (ß = 

0.069, p = 0.0011). After the onset of articulation, phonologic density of the spoken response 

was encoded in perisylvian regions: subcentral (ß = -0.061, p < 10-4), superior temporal (ß = -

0.078, p < 10-6), and posterior middle temporal gyri (ß = -0.085, p = 0.0043). 

I have established that language engages a distributed network of regions with concurrent 

activity and separable linguistic correlates; however, the analyses thus far assume that cognitive 

operations are locally computed in isolated substrates and time-locked to observable events. 

This assumption confounds attempts to distinguish the neurobiological correlates of interactivity 

that are foundational to psycholinguistic models of speech production11. To relax this assumption 

and directly resolve interactions between regions, I implemented a grouped autoregressive 

hidden Markov model (gARHMM, Figure 7A). Critically, this model learns a single set of latent 
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dynamical parameters across the patient population and emits state sequences of network 

interactions for each trial63. 

17 patients had concurrent coverage of the core language network: visual cortex, middle 

fusiform gyrus, pars triangularis, pars opercularis, subcentral gyrus, and superior temporal gyrus. 

The hyperparameters – model order (𝜏 = 3) and number of states (𝑁* = 6) – were determined by 

10-fold cross-validation (Figure 7B) of the training dataset (80% of trials uniformly sampled from 

all patients). Latent dynamical parameters were then optimized on the training dataset and 

applied to the held-out test dataset. This model performed significantly better (p < 10-6) than a 

Figure 7: Autoregressive hidden Markov model applied to single-trial high-gamma power in 17 patients with electrodes 
over visual cortex, middle fusiform gyrus, pars triangularis and opercularis, subcentral gyrus, and superior temporal 
gyrus. (A) Latent states z and observations x evolve with autoregressive state dynamics A, regional process 
covariances Q, and state transition probabilities F. (B) Hyperparameter selection with 10-fold cross-validation on the 
training set. (C) Model comparison of training and validation performance with mean-only model. (D) Hold-out analysis 
showing that performance is robust to exclusion of individual patients and generalizes well to all patients. (E) State 
sequence rasters on held-out testing data. Each active state is represented by a unique color. Trials were sorted by 
reaction time (left) or articulatory length (right). (F) Interregional dynamics specific to each state expressed as partial 
directed coherence (PDC, edges) between regions (nodes). Significance was evaluated via bootstrapping at p<10-3. 
(G) State transition probabilities that surpass the uniform distribution of non-self-transitions. 
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model of the same design but lacking interactions between regions (Figure 7C). Model training 

was unbiased by data from any single patient and testing generalized to data from held-out 

patients (Figure 7D). 

I identified 6 dynamical states – 5 states during speech production and a background 

state between trials (Figure 7E). The 5 active states demonstrated a consistent temporal 

precession relative to both picture presentation and articulation. These states lend themselves 

in number and timing to established psycholinguistic nomenclature8: visual processing, 

conceptualization (activation and selection of a lexical concept), formulation (staged form 

encoding to produce gestural scores), articulation, and monitoring. The Granger-causal 

interactions between regions that define the dynamics of each state were quantified with partial 

directed coherence (Figure 7F). A second model trained on trials with scrambled images also 

identified 5 states, but with differences in network architecture and state frequency (Figure 8). 

Each state featured significant contributions from a complex network of pairwise regional 

interactions that were essential for optimal modeling of neuronal dynamics; the most salient 

interactive properties of these states are described here. The first state, visual processing, was 

concentrated in the ~250 ms immediately following picture presentation and its dynamics were 

dominated by outflow from visual cortex. This was followed by the second state, 

conceptualization, from ~250 to ~500 ms in a distributed network organized by outflow from the 

middle fusiform gyrus and pars triangularis. The network architecture of these two states was 

significantly altered during scrambled trials (Figure 8C); in particular, the outflow from the middle 

fusiform gyrus was largely replaced by outflow from visual cortex. The third state, formulation, 

recruited a decentralized perisylvian network that remained engaged through the onset of 

articulation and accounted for the majority of variance in reaction time (ß = 7.41, p < 10-6). The 

network architecture of this state was similar for coherent and scrambled trials, but it occurred 

significantly more frequently in response to coherent images (p < 10-6, Figure 8D). The fourth 

state, articulation, was engaged in the ~400 ms around articulatory onset with dynamics 
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dominated by outflow from subcentral gyrus. The fifth and final state, monitoring, was active 

throughout articulation relied predominantly on outflow from the superior temporal gyrus. Both 

articulation and monitoring featured convergent network architectures and state frequencies for 

coherent and scrambled images. These results are consistent with my thesis that the 

fundamental unit of linguistic computation in the brain is not a set of discrete functional regions, 

but a sequence of dynamical network states. 

I also computed state transition probabilities that describe the rate of observed pairwise 

switching (Figure 7G). These revealed a locally interactive state switching behavior conserved 

across trials of varying reaction time and articulatory length. For every state, the most likely 

transition was to the next state. Transitions from formulation to any other state were common, 

while transitions directly from visual processing or conceptualization to articulation or monitoring 

were below chance. Together, the restricted set of cognitive state transitions and the imbricated 

set of interactive state dynamics ground the discreteness-interactivity axis11 of speech production 

models3,8,10 in the neurobiology of human cortex. 

 

Figure 8: Network activity contrast in coherent and scrambled picture naming. (A) The fraction of trials engaging a 
given state as a function of time from stimulus presentation for coherent (left, light colors) and scrambled (right, muted 
colors) images. (B) Pairwise interactions, quantified with partial directed coherence, and nodal outflows that were 
greater during coherent trials are shown in the top row; those greater during scrambled trials are shown in the bottom 
row. The significance of every interactional coefficient and nodal outflow (p<10-3). (C) Cosine similarity of each network 
state pair. The first two states were different during coherent and scrambled images, while the latter three states were 
similar. (D) Distribution of state frequency (* p<0.05, ** p<10-2, *** p<10-3). 
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DISCUSSION 

Language involves the coordinated activity and interaction of diverse cortical substrates, 

yet prior electrocorticographic investigations have studied this broad network in 

fragments30,57,58,73–75. Complete coverage of the cortical surface with intracranial electrodes 

requires upwards of 10,000 contacts76. Furthermore, grid and depth electrodes have distinct 

stereotypic coverage probabilities: grid electrodes predominantly record from gyri on the lateral 

or ventral surface, while depth electrodes are more likely to record from cortical sulci, the ventral 

temporal surface, the medial bank of the hemisphere, and the insula. This unique database of 

intracranial recordings from both grid and depth electrodes yielded the magnitude, density, and 

homogeneity of coverage necessary to assemble a comprehensive spatiotemporal map of 

speech production encompassing the entirety of language-dominant cortex. I used this resource 

to finely characterize the activity at specific network nodes and the evolving interactive dynamics 

between nodes. Such an approach is imperative for definitively resolving the processes that lead 

from intention to articulation8. 

Despite general agreement on the processes required to convert a picture to its spoken 

name3,77, the instantiation of these processes in neural dynamics is unknown. Psycholinguists 

and neurobiologists have long engaged in parallel approaches for the study of speech 

production, probing the hidden internal processes of language generation and exploring the 

functional contributions of discrete neuroanatomic substrates. Picture naming has demonstrated 

exceptional utility in these pursuits. Varying stimulus complexity of isolated representational 

levels – semantic, lexical, and phonological – yields behavioral data which outline the veiled 

architecture of speech production. Reaction time variations following challenges to the production 

system with level-specific interference at early and late windows suggest at least two separate 

steps in lexical access10,78,79. Error types and rates constrain the interactions between 

representational levels in formalized models of production1,4,6 and, through the anatomic 

correlates of distinct aphasic patterns, establish connections to neurobiology80. Functional 

imaging in subjects with intact language, derived from measures of blood flow and metabolism, 
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has catalyzed the spatial categorization of nodes in a complex and distributed language 

network49. The breadth of recruited substrates argues against localizationist accounts of 

production81,82 in favor of network-dependent cognitive processes21,83, but measuring internodal 

communication requires fine temporal scale. Electrophysiology directly captures the dynamical 

behavior of neural substrates with radically improved temporal resolution40,45,84. In compiling an 

extensive dataset of intracranial recordings during picture naming, I am able to integrate cognitive 

models of speech production with the neurobiology of distributed and interactive cortical 

networks. I reveal 5 states engaged during picture naming, remarkably concordant with the 5 

cognitive stages named in the seminal work by Indefrey and Levelt: visualization, 

conceptualization, formulation, articulation, and monitoring8. Each of these states is dually 

characterized by timing within a trial-specific transition sequence and by functional network 

structure comprising directed information exchange. 

The state characteristics inform two fundamental and disputed properties of conflicting 

production models: the seriality of separable cognitive processes and the interactivity between 

representational levels3,11,85. These findings are concordant with a concerted serial propagation 

of rapidly evolving network dynamics. A consistent sequence of states is observed from picture 

presentation through articulation and state switching is tightly constrained within pre- and post-

formulation periods. Distant interactions, reflecting the unique pattern of information exchange 

during each state, underline the distributed basis of cognitive processes. Some states (e.g. 

visualization and monitoring) are directed by singular foci while others feature a balanced 

distribution of largely reciprocal connections (e.g. formulation). Local interactions are manifest in 

substrates shared between states – most notably in ventral lateral prefrontal cortex during 

conceptualization, formulation, and articulation. These reflect a functionally heterogeneous 

population of neurons contributing to the signal measured in each region. Interactions 

complement traditional analysis of high-gamma power by providing a fundamentally distinct 

measure of cortical response. This is exemplified by superior temporal gyrus which produces 

minimal change in power prior to articulation, but which strongly influences the pre-articulatory 
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formulation state86. These results comprehensively delineate the neurobiology of picture naming 

in language-dominant cortex, robustly motivate the use of seriality in computational models of 

speech production, and establish a concrete mechanism for representational interactions in 

language networks. 

This work presents two complementary accounts of temporal dynamics. The first, mean 

high-gamma activity, is local and rooted in physical space; the second, network connectivity 

patterns, is global and defined in state space. In a similar manner to piecewise linear 

approximation of a curve, this second account uses the switching characteristic of the hidden 

Markov model to approximate the high-dimensional state space of neural dynamics87,88. Each 

state then represents a set of reference dynamics at informative inflections of state space. 

Fluctuations around these reference dynamics provide a generic mechanism by which to 

disseminate information in a structured manner throughout complex networks61. The pairwise 

measures of information flow that I quantify are thus an average of interregional exchanges, 

amalgamating transmissions between small groups of neurons. This perspective integrates 

distributed interactions89 with modular cognitive processes8. 

Neural state sequences comprise a powerful framework by which to model cognition. I 

provide empirical evidence consistent with this framework; the dynamical model identifies 5 

states in speech production. Specifying fewer states results in refolding a pair of states together; 

specifying more states results in degenerate splitting of the baseline state. Said another way, 

simplifications of state space produce coarser structures that exhibit functionally similar 

behavior90. A hierarchically organized neural state structure may reveal increasing dynamical 

detail with improved observation of the system. This behavior suggests that incorporating data 

from additional regions, latent parameters for patient-specific network variability, and 

progressively finer-scale cortical recordings could result in further decomposition of the observed 

states (e.g. formulation might splinter into morphologic, phonologic, and phonetic encoding). 

Uncovering dynamical systems in the brain provides an improved understanding both of granular 

processes, such as picture naming, and of cognition more generally.  
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NAMING WHAT YOU HEAR 

A lexical semantic hub for heteromodal naming in middle fusiform gyrus (Brain) 

Forseth KJ, Kadipasaoglu CM, Conner CR, Hickok G, Knight RT, and Tandon N 

BACKGROUND 

Semantic memory is the understanding of objects, people, places, and ideas independent 

of reference to a specific instance91,92. This repository of conceptual associations is accessible 

by multiple lead-in processes that, when used in the service of language, drive lexical retrieval 

to enable speech production8. Semantic memory enables us to fluently name aloud an object 

that I see or hear described; yet it is easily disrupted, resulting in tip of the tongue phenomena in 

healthy individuals93 and pervasive anomias following a variety of brain injuries 94. 

Prior studies of semantic memory have been largely mediated by analysis of disease47,95–

97, functional imaging48,98–102, and non-invasive electrophysiology103. Vascular lesions caused by 

middle cerebral artery strokes largely affect perisylvian cortex104, while regions within watershed 

zones (e.g. ventral temporal cortex) are typically only impaired by global cerebral ischemic 

effects. Degenerative conditions like semantic dementia affect a diffuse set of cortical structures, 

challenging the precise localization of neural processes95. Experiments in healthy subjects are 

confronted by anatomical limitations as well: mastoid air cells  result in susceptibility artifacts that 

degrade echo-planar imaging of ventral temporal cortex105,106, repetitive transcranial magnetic 

stimulation is unable to access the ventral pial surface96, and magneto-encephalography is 

relatively insensitive to magnetic fields oriented tangentially to the detectors107. 

Figure 9: Coherent and reversed auditory stimuli 
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Direct electrocorticography with implanted intracranial electrodes yields millimeter spatial 

and millisecond temporal resolution of cortical activity. High-gamma activity in these recordings 

is especially relevant to the study of cognition22,29,30. This activity arises from the focal summation 

of post-synaptic currents coupled with a surge in spike rate22,23, indexing local processing24–26. 

High-gamma activity correlates strongly with the fMRI blood-oxygen-level dependent (BOLD) 

signal and, with its superior temporal resolution, can precisely characterize inter-regional 

timing27,28. Additionally, intracranial electrodes allow for direct electrical stimulation that 

transiently mimics focal lesions, enabling study of both normal functional activation and multiple 

lesions in each patient. 

In the context of speech production tasks, I hypothesize that various input modalities 

feeding into the semantic memory system drive a pre-phonologic network hub to achieve lexical 

retrieval from semantic content. This hub should act as a convergence zone for networks 

supporting word production. A precise spatiotemporal delineation of cortical regions recruited for 

heteromodal naming tasks will isolate this lexical semantic convergence hub. I used 

electrocorticography in a large cohort (n = 64) of patients to categorize cortical responses during 

cued naming tasks using visual or auditory inputs: picture naming and naming to description. 

Each experiment was paired with a modality-specific non-semantic control: scrambled images 

and reversed speech. A subset of patients also underwent fMRI prior to surgery (n = 36) and/or 

direct cortical stimulation after electrode implantation (n = 30). First, SB-MEMA was used to yield 

a precise cortical effect estimate of high-gamma and BOLD signals across the population with 

electrocorticography and fMRI data, respectively. Second, these activity maps were used to 

direct a region-of-interest analysis that evaluated the timing, magnitude, and spectral profile of 

the distributed cortical response. Third, naming disruption caused by direct cortical stimulation 

was integrated across the cohort. 

SPECIFIC METHODS 

Functional images were collected using a gradient-recalled echo-planar imaging 

sequence with 33 axial slices of 3 mm thickness and an in-plane resolution of 2.75 x 2.75 mm 
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(TE 30 ms, TR 2015 ms, flip angle 90°). Stimuli were presented in a block design with two runs 

of each task (8 blocks each, 136 TR volumes, 20 s of task – picture naming or naming to 

definition, and 14 s of control – scrambled images or reversed speech)27. Stimulus presentation 

was coincident with the onset of each functional image volume. 

Language cortex was mapped as needed for clinical needs. Concurrent monitoring was 

carried out in all cases to detect any induced seizures. This procedure was conducted in 30 

patients (23 with grid electrodes, 7 with depth electrodes). Trains of 50 Hz balanced 0.3 ms 

period square-waves were delivered to adjacent electrodes for 3-5 seconds during the task108. 

Stimulation was applied using a Grass S88X Stimulator with an SIU (Grass Technologies, West 

Warwick, RI). At each electrode pair, stimulation was begun at a current of 2 mA and increased 

stepwise by 1 mA until either an overt phenomenon was observed, after-discharges were 

induced, or the 10 mA limit was reached. Stimulation sites were defined as positive for language 

tasks if stimulation resulted in articulation arrest or anomia. Furthermore, stimulation sites 

causing movement or sensation were separately recorded. Patient responses and behavior were 

evaluated by clinical experts present in the room during the entire mapping session. 

Figure 10: Surface-based group fMRI. Regions surviving a significance threshold (P < 0.01, corrected) are shown 
scaled by the model confidence – those with a preference for the semantic condition are shown in warm color and for 
the control condition in cool color. 
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FINDINGS 

Two group analyses were performed – one of fMRI data, the other of electrocorticography 

data – using SB-MEMA. The fMRI maps contrast task vs. control for both auditory and visual 

stimuli (Figure 10). Electrocorticography maps were computed separately for each condition 

relative to stimulus onset and articulation, revealing the temporal evolution of activity across the 

cortex (Figure 11). Finally, a conjunction of task vs. control contrasts from electrocorticography 

was generated to isolate areas with heteromodal high-gamma power (Figure 12). 

SB-MEMA of fMRI in 36 patients (Figure 10) revealed 6 distinct regions that demonstrate 

significantly enhanced BOLD signal during naming to definition compared to that during reversed 

speech: posterior middle temporal gyrus, ventral temporal cortex (middle fusiform and inferior 

temporal gyri), intraparietal sulcus, precuneus, supplementary motor area, and inferior frontal 

gyrus. BOLD signal was also enhanced during picture naming in occipital cortex – terminating 

ventrally in middle fusiform gyrus, laterally in lateral occipital cortex, and dorsally in the 

intraparietal sulcus. Auditory and visual modalities showed overlapping regions of significance in 

middle fusiform gyrus, intraparietal sulcus, supplementary motor area, and inferior frontal gyrus. 

These results were concordant with the conjunction of contrasts generated with 

electrocorticography (Figure 12). 

SB-MEMA of electrocorticography in 61 patients (Figure 11) during the auditory task 

revealed that early auditory cortex was active in the 250 ms after stimulus onset during both 

naming to definition and reversed speech. Naming to definition resulted in a greater magnitude 

and volume of activation in auditory sensory cortex than did reversed speech, consistent with the 

greater processing demands of phonologically structured stimuli109–112. High-gamma power was 

concentrated in the early window (-1000 to -500 ms) preceding articulation at posterior middle 

temporal gyrus, ventral temporal cortex (middle fusiform and parahippocampal gyri), intraparietal 

sulcus, precuneus, middle frontal gyrus, and inferior frontal gyrus (pars triangularis and 

opercularis). High-gamma power peaked in the late window (-500 to 0 ms) preceding articulation 
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at the supplementary motor area. Notably, no significant high-gamma power was noted in the 

anterior fusiform gyrus or ventral temporal pole for any time window during naming to definition, 

despite significant coverage in these regions from 29 patients. 

To isolate activity specific to common semantic features from activity related to modality-

specific sensory processing or to articulation, I performed a conjunction of two contrasts: [naming 

to definition vs. reversed speech] + [picture naming vs. scrambled images] in the 1000 ms 

preceding articulation. Activity in 4 regions was enhanced for both auditory and visual semantic 

contrasts: the middle fusiform gyrus, intraparietal sulcus, supplementary motor area, and inferior 

frontal gyrus (Figure 12). Notably, there was no significant intersection of these heteromodal 

semantic contrasts in posterior middle temporal gyrus – the activity here was uniquely enhanced 

during the naming to definition task, while activity in lateral occipital cortex was uniquely 

enhanced during the picture naming task. 

High-gamma power derived from electrocorticography provides correlative – but not 

causal – evidence for the engagement of specific regions in a cognitive process; in contrast, 

transient lesions induced by direct cortical stimulation provide a direct causal measure of 

Figure 11: Surface-based group electrocorticography. Columns are 
organized by time windows: post-stimulus (250 ms width) or pre-
articulation (500 ms width). 

 

Figure 12: Conjunction of SB-MEMA maps 
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cognitive disruption. I compared the functional maps of lexical semantic processing from fMRI 

and electrocorticography with language disruption from direct cortical stimulation in 30 of these 

patients (Figure 13A), 23 with grid electrodes and 7 with depth electrodes. 

Stimulation positive sites (i.e., sites where stimulation caused a functional deficit) specific 

for naming to definition were principally localized to lateral temporal cortex (Figure 13B). Those 

specific for picture naming were predominantly located in posterior ventral temporal cortex 

(Figure 13C). Sentence repetition was primarily disrupted by peri-Sylvian stimulation (Figure 

13D). Motor positive sites were localized to pars 

opercularis and sensorimotor cortex (Figure 13E). 

To isolate cortical regions where stimulation 

disrupted semantic processing irrespective of 

modality, I performed a conjunction of these functional 

maps: [positive for picture naming and naming to 

definition] + [negative for sentence repetition and 

sensorimotor effects] (Figure 13F). This revealed 2 

loci. The first locus was the middle fusiform gyrus, 

which has also been characterized as the basal 

temporal language area113,114. This region was well-

aligned with the corresponding functional locus 

observed in both fMRI (Figure 10) and 

electrocorticography (Figure 11). The second locus 

was posterior middle temporal gyrus, overlapping with 

the corresponding functional locus defined by the 

contrast of naming to definition and reversed speech; 

however, this region did not show increased functional 

activity for picture naming or scrambled images in any 

pre-articulatory time window. 
Figure 13: Surface-based group direct cortical 
stimulation with several distinct tasks. 
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DISCUSSION 

There is accumulating evidence for the involvement of ventral temporal cortex in semantic 

memory from neuropsychological studies47,97, electrical stimulation of cortex113,114, positron 

emission tomography48,98–101, magnetoencephalography103, and intracranial evoked response 

potentials115,116. These studies broadly implicate the entire ventral surface from the temporal pole 

through the fusiform gyrus. A consensus on the focal neurobiological substrate underlying a 

lexical semantic hub in ventral temporal cortex has yet to emerge117. Furthermore, a number of 

recent influential reviews disregard this region and assign semantic function solely to lateral 

perisylvian regions118–121. 

I studied object naming using three complementary methodologies: fMRI (n = 36), 

electrocorticography (n = 64), and direct cortical stimulation (n = 30) during both auditory verbal 

and visual nonverbal stimuli, each paired with a modality-specific nonsense control. Large-scale 

integrated electrocorticography combining both surface and depth electrodes is particularly well-

suited for the study of distributed language networks given the complete coverage of the cortical 

surface with high spatiotemporal resolution. These data provide compelling large-scale evidence 

for audio-visual cortex supporting semantic cognition in the middle fusiform gyrus.  

The ventral temporal lobe is especially at risk in surgical approaches for mesial temporal 

lobe epilepsy. A major advantage of newer minimally invasive approaches such as laser 

interstitial thermal ablation is the reduction of cognitive deficits, particularly naming, for epilepsy 

in the language dominant hemisphere. The fact that the middle fusiform cortex is typically spared 

in such approaches supports its role in semantic memory122,123. 

The inferior frontal gyrus is widely accepted to be involved in semantic selection and 

phonological processing functions112,124,125, which are thought to be segregated along an anterior-

posterior axis126,127. In this study, population maps from both fMRI and electrocorticography 

revealed that the inferior frontal gyrus was the frontal lobe region coactive for semantic contrasts 

in both sensory modalities. Furthermore, disruption of this region with direct cortical stimulation 

resulted in heteromodal naming deficits. These deficits were also seen with stimulation during a 
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sentence repetition task, emphasizing the role of the inferior frontal gyrus as an interface between 

lexical semantic and articulatory networks. These results are consistent with pars triangularis 

exerting top-down control over the semantic network. 

The ventral temporal cortex has been a region of interest in semantic memory since early 

studies of semantic dementia identified patients with intact sensory processing and deficits in 

conceptual knowledge47. Studies in non-human primates reveal that large numbers of auditory 

and visual fibers converge at the temporal pole128,129, suggesting that this region may also be an 

integrative locus. Subsequently, studies of direct cortical stimulation revealed that disruption of 

the basal temporal language area – defined as fusiform gyrus within 30-70 mm of the temporal 

pole – results in speech arrest114. This effect was also observed following stimulation of 

parahippocampal gyrus and anterior inferior temporal gyrus113. Positron emission tomography 

studies provided the first observations of functional activity in the ventral temporal cortex to both 

visual and auditory stimuli48,100,103,115,130. The atrophy and hypometabolism observed in semantic 

dementia has been localized to the anterior fusiform gyrus95,96. 

I identified four regions with activity common to semantic conditions: middle fusiform 

gyrus, the intraparietal sulcus, supplementary motor area, and inferior frontal gyrus. The timing 

of supplementary motor area activity suggests a role in early articulatory planning while inferior 

frontal gyrus interfaces between lexical semantic and phonological networks. This suggests that 

the remaining two regions – middle fusiform gyrus and the intraparietal sulcus – are critical for 

semantic encoding. The spatial extent of significant BOLD signal found with fMRI and significant 

high-gamma power found with electrocorticography were well-aligned. Direct cortical stimulation 

of ventral temporal cortex revealed a middle fusiform region that produced heteromodal naming 

deficits. This region was slightly anterior to that identified by functional activity, but both were well 

within the bounds of the basal temporal language area113,114. The functional activity identified by 

fMRI and electrocorticography showed less substantial heteromodal overlap in the intraparietal 

sulcus than was found in the middle fusiform gyrus. This could be due to the focus in this study 

on common object naming as opposed to action naming, which may favor parietal cortex45,83,131. 
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The data does not support that the activity in middle fusiform gyrus and the intraparietal 

sulcus represents ancillary “visual imagery”132–134. First, the timing of activity in these regions 

shows that they engage only at the end of the auditory stimulus. Despite the serial presentation 

of evocative descriptors in the naming to definition task, no visual imagery occurs until its 

completion. Second, direct stimulation to this region causes heteromodal naming deficits – 

incongruous for a region performing a facultative process. 

Several prominent theories hold that posterior middle temporal gyrus is a central site for 

semantic representation119, a secondary region engaged with inferior frontal gyrus in semantic 

control127,135, or a lexical interface112. Using both fMRI and electrocorticography, only naming to 

definition against reversed speech produced a significant semantic contrast in posterior middle 

temporal gyrus; however, direct cortical stimulation at posterior middle temporal gyrus disrupted 

both naming to definition and picture naming. These results are most consistent with lexical 

processing at posterior middle temporal gyrus. 

Neuropsychological studies suggest a key role of the temporal pole in heteromodal 

semantic processing. With three distinct methods, I demonstrate no semantic-specific activity in 

the ventral temporal pole for either naming to definition or picture naming. First, no significant 

BOLD signal is reported in either fMRI semantic contrast. Second, electrocorticography further 

reveals that the observed artifact in ventral temporal pole is well-aligned with articulation and 

best explained by temporalis muscle movement136,137. Third, direct cortical stimulation of the 

temporal pole does not disrupt either naming to definition or picture naming. This evidence 

strongly suggests that the temporal pole does not support semantic memory for objects. 

Semantic memory underpins our understanding of objects, people, places, and ideas. 

These results demonstrate that auditory and visual features processed in distinct sensory 

cortices converge in a shared lexical semantic network – including middle fusiform gyrus – prior 

to articulation. This underappreciated locus of semantic processing is at risk in resections for 

temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex – 

it may explain the range of anomic states seen in these conditions.  
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PREDICTION IN PERCEPTION AND PRODUCTION 

Language prediction mechanisms in human auditory cortex (Nature Communications) 

Forseth KJ, Hickok G, Rollo PS, and Tandon N 

BACKGROUND 

Humans efficiently extract speech information from noisy acoustic signals and segment 

this into meaningful linguistic units. This complex and poorly understood process is fluidly 

accomplished for a wide range of voices, accents, and speaking rates138. Given the quasi-

periodic and hierarchical structure of speech139, the computational load associated with its 

decoding can be reduced by utilizing temporal prediction140. Anticipating the arrival of salient 

acoustic information could enable optimal potentiation of neural networks141 and discretization of 

the continuous signal into linguistic elements142–144. This perspective, the active sensing 

framework145, anticipates interactions between bottom-up sensory input and top-down predictive 

modulation of neuronal dynamics. Evidence for cortical entrainment – the synchronization of 

extrinsic quasi-periodic stimuli and intrinsic neural activity – in the auditory domain146 and during 

speech perception147–151 has driven speculation that cortical oscillations may enable temporal 

prediction. In addition, speech production is also thought to rely upon predictive mechanisms. 

Several prominent models require that the brain anticipate the sensory consequences of 

speech16,21 and this central tenet has been buttressed by strong evidence19,152,153. It remains 

unclear, however, which levels of auditory cortical processing are involved in this process and 

where such mechanisms are instantiated in the cortex. 

I elucidate the mechanisms by which auditory cortex anticipates rhythms and, further, 

whether such mechanisms may extend to optimize the processing of quasi-rhythmic acoustic 

input during language perception. To investigate the neurobiology of prediction in early auditory 

Figure 14: Sample 3 Hz modulated white noise stimulus with buried pure tone 
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cortex, I use two tasks: amplitude-modulated white noise and spoken naming to definition. The 

white noise stimulus comprises a rhythmic pattern followed by a constant amplitude interval; 

patients are tasked with detecting the occurrence of a peri-threshold tone in the latter interval. 

Neural encodings of prediction should uniquely persist during the latter period, while other cortical 

signals – including evoked response potentials and envelope tracking – would be limited to the 

rhythmic period. Next, I examine the cortical response to natural language speech for these same 

encoding signatures. Finally, to reveal causal involvement of specific neuroanatomic substrates, 

I apply chronometric stimulation to targeted structures during naming. 

The characterization and localization of predictive mechanisms for language function 

requires a methodology with high temporal resolution, fine spatial resolution, and direct access 

to neuronal populations in human early auditory cortex. I use large-scale intracranial recordings 

(37 patients), focusing on depth electrodes placed along the anteroposterior extent of the 

supratemporal plane (Figure 15). This innovative surgical approach enables simultaneous 

recordings from planum polare, Heschl’s gyrus, and planum temporale. These experiments yield 

crucial insights into the rapid, transient dynamics of predictive timing and predictive coding – 

prediction of when and what154 – in Heschl’s gyrus and planum temporale. 

Figure 15: Supratemporal depth probe trajectory and coverage map. (A) Grid electrodes (B) Depth electrodes (C) 
Dorsal view of the supratemporal plane with depth electrodes in Heschl’s gyrus and planum temporale, as well as the 
closest grid electrodes. (D) All anteroposterior supratemporal trajectories superimposed in Talairach space (E) 
Recording zone density from all electrodes (37 patients, 838 grid electrodes, 6669 depth electrodes). 
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SPECIFIC METHODS 

The white stimulus comprised two periods. In the first, wideband Gaussian noise was 

modulated (3 Hz, 80% depth) for 3 seconds. In the second, the modulation waveform ended on 

the cosine phase of the next cycle to yield 833 ms of constant-amplitude noise. Furthermore, 

50% of trials featured a peri-threshold tone (1 kHz, 50 ms duration, 5ms rise-decay time) that 

was presented at one of 5 temporal positions and at an amplitude level from 1 of 3 values. The 

temporal positions were separated by a quarter-cycle of the modulation frequency beginning with 

the constant-amplitude noise. The amplitude levels covered a range of 12 dB. On each trial, the 

patient was required to indicate via a key press whether a tonal signal was present during the 

unmodulated segment of the masking noise. All 37 patients each completed 100 trials. 7 patients 

also underwent testing with stimulus modulation frequencies of 5 and 7 Hz. 

Non-negative matrix factorization (NNMF) is an unsupervised clustering algorithm155. This 

method expresses non-negative matrix A Î Rmxn as the product of class weight matrix W Î Rmxk 

and class archetype matrix H Î Rkxn, minimizing: 

‖𝐀 −𝐖𝐇‖1(  

The factorization rank k = 2 was chosen for all analyses in this work. Two types of inputs were 

separately factorized: mean high-frequency power and low-frequency phase ITC. These features 

were calculated for the m electrodes in the supratemporal plane at n time points. Factorization 

thus generated a pair of class weights for each electrode and a pair of class archetypes – the 

basis function for each class. Class bias was defined as the difference between the class weights 

at each electrode. Response magnitude was defined as the sum of class weight magnitudes at 

each electrode. 

The supratemporal plane was clinically evaluated with stimulation mapping in 3 patients. 

Concurrent electrocorticographic monitoring was carried out in all cases to detect any induced 

seizures. Trains of 50 Hz balanced 0.3 ms period square waves were delivered to adjacent 

electrodes for 3 seconds during the task108. Stimulation was applied using a Grass S88X 



35 
 

Stimulator with a SIU (Grass Technologies, West Warwick, RI). At each electrode pair, 

stimulation was begun at a current of 2 mA and increased stepwise by 1 mA until either an overt 

phenomenon was observed, after-discharges were induced, or the 10 mA limit was reached. 

Stimulation sites were defined as positive for language tasks if stimulation resulted in articulation 

arrest or anomia. Furthermore, stimulation sites causing movement or sensation were separately 

recorded. Patient responses and behavior were evaluated by clinical experts present in the room 

during the entire mapping session. 

One patient underwent a pair of chronometric stimulation experiments, each performed 

separately at HG/TTS and PT. In the first experiment, the same clinical stimulation protocol was 

applied during sentence repetition at either the sentence onset or its conclusion. In the second 

experiment, patients attempted the auditory-cued naming task described above while single 

Figure 16: Cortical responses in a single patient to low- and high-level auditory stimuli. (A) Location of all electrodes 
implanted in this patient relative to a model of the pial surface. (B) The supratemporal plane, isolated from the cortical 
model and viewed from above. All electrodes along the supratemporal depth probe are shown, as well as the two most 
superficial electrodes from probes in lateral superior temporal gyrus. Four electrodes are highlighted in blue with labels. 
(C) Neural responses at the four highlighted electrodes: (1) HG/TTS, (2) PT, (3), mediolateral superior temporal gyrus, 
(4) posterolateral superior temporal gyrus. The first two columns show the spectral decomposition of the power and 
phase response, respectively, during white noise listening. The latter two columns show the power response during 
natural language listening and production, respectively. 
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balanced 0.3 ms period pulses were triggered throughout the spoken description. These triggers 

were either cued by acoustic edges (HG/TTS, 31 trials; PT, 21 trials) or, as a control, uniformly 

distributed (18 trials). The latter condition was matched for total current delivered during the 

entirety of each sentence. Patient performance was quantitatively assessed in both experiments 

by either repetition or naming success, respectively. 

FINDINGS 

I observed a sustained multispectral response of early auditory cortex during rhythmic 

amplitude-modulated white noise (80% depth at 3 Hz for 3 seconds, then constant amplitude for 

1 second). Heschl’s gyrus and the transverse temporal sulcus (HG/TTS; Figure 16A,B Electrode 

1) encoded stimulus features in high-frequency power and low-frequency phase (Figure 16C). 

These results were robust across the patient cohort, both in high-gamma power (Figure 17C) 

and in low-frequency phase (Figure 17D). Following a low-latency high-magnitude broadband 

response to stimulus onset, HG/TTS exhibited a sustained response to subsequent acoustic 

pulses. Phase space trajectories of high-gamma power (Figure 17G) and low-frequency phase 

(Figure 17H) revealed three clearly dissociable states corresponding to rest (pre-stimulus), 

stimulus onset, and sustained activity (beginning with the second pulse). Electrodes in lateral 

superior temporal gyrus (Figure 16A,B Electrodes 3 & 4) showed no evidence of a sustained 

response to the white noise stimulus (Figure 16C). In contrast, a sustained response was 

recorded in all patients with a supratemporal depth probe in the language dominant hemisphere 

(n = 22). Patients with homologous electrodes in the language non-dominant hemisphere (n = 5) 

demonstrated an equivalent sustained response. This was also observed for faster modulations 

of the temporal envelope (5 Hz and 7 Hz). 

High-gamma, beta, and low-frequency power together yielded a frequency-multiplexed 

encoding of acoustic envelope (Figure 17E). High-gamma power was in-phase with the stimulus, 

beta power was resynchronized at the trough of the stimulus, and low-frequency power was 

modulated by the rising slope of each pulse – the acoustic edge. These distinct and asymmetric 

bandlimited responses may represent separable cortical processes each engaged by the 



37 
 

stimulus156. Low-frequency phase was reset at the acoustic edge. Spectral decomposition of the 

low-frequency phase response (Figure 16C) demonstrated that phase reset was constrained to 

the theta band. Phase reset was not observed in beta or high-gamma frequencies. 

During the sustained response, I resolved the spatiotemporal topography of high-gamma 

power along the mediolateral extent of HG/TTS (Figure 17F). A traveling wave of cortical activity 

coincided with each acoustic pulse, beginning at medial HG/TTS adjacent to the inferior circular 

sulcus of the insula and propagating laterally across the supratemporal plane to the lip of the 

lateral fissure. Each wave began approximately 80 ms before the acoustic pulse maximum and 

ended approximately 80 ms afterwards, traversing HG/TTS at a speed of 0.1 m/s. While such 

spatial organization of neural activity is thought to be important for optimizing cortical 

computations157, prior reports of traveling waves in humans have been confined to lower 

frequencies158 and sleep studies159. The wave observed here is considerably slower than would 

be expected as a simple consequence of the cochlear onset latency gradient160. 

Patient performance in the tone detection task yielded evidence for the extension of the 

sustained response to subsequent rhythmic prediction (Figure 18A). Accuracy increased with 

Figure 17: Cortical response to rhythmic white noise. 
(A) 3 Hz amplitude-modulated white noise stimulus. 
(B) The most active electrode (blue) was selected 
from all electrodes (grey) in each patient with a 
supratemporal depth probe (n = 26). These were used 
for the following analyses. (C) Average percent 
change in high-gamma (p < 0.01).(D) Average 
absolute change in low-frequency inter-trial 
coherence from a pre-stimulus baseline. (E) Average 
amplitude of low (purple), beta (yellow), and high-
gamma (green) frequencies relative to stimulus phase 
during the sustained response (pulses 2-9) 
demonstrating frequency-multiplexed encoding of 
acoustic envelope (* p < 0.05, ** p < 0.01, *** p < 
0.001). (F) Spatial distribution of peak high-gamma 
power timing relative to stimulus phase demonstrates 
a traveling wave (velocity 0.1 m/sec) that begins 
medially at the insular boundary (top) and progresses 
to the lateral edge (bottom). The mean wave (dark 
lines) is superimposed over the wave at each pulse 
(light lines). (G, H) Phase space trajectory at a quarter 
period delay (83 ms) in high-gamma power (top) and 
low-frequency ITC (bottom). Time indicated by color: 
pre-stimulus baseline (black), red (first acoustic 
pulse), blue (pulses 2-9). 
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tone intensity, confirming that patients were engaged and that detectability was limited by the 

masking noise (Figure 18B). I then examined the most challenging condition – low intensity tones 

– for a variation in detectability modulated by temporal position (Figure 18C). If the rhythmic noise 

had no lasting effect on perceptual threshold, the detection rate would be equal across temporal 

positions. Instead, I found that detection was uniquely improved for the second temporal position, 

corresponding to the rising slope of the first missing pulse. Notably, this was the same acoustic 

feature – the rising edge – encoded by low-frequency phase reset in HG/TTS. 

To isolate neural mechanisms supporting prediction in HG/TTS, I evaluated the 

persistence of the sustained response signature to a 3 Hz acoustic envelope after the stimulus 

rhythm ceased (Figure 18A). Low-frequency phase maintained the sustained state for one cycle 

after the last acoustic pulse (Figure 18D); by the second cycle, the temporal organization of 

cortical phase was not significantly distinct from pre-stimulus baseline. In contrast, the 

Figure 18: Low-frequency phase in early auditory 
cortex shows evidence of predictive encoding. (A) 
The stimulus was divided into 5 intervals: baseline 
(grey), onset (red), sustained (dark blue), early 
prediction (medium blue), and late prediction (light 
blue). Crucially, there is no modulation of white noise 
amplitude in either of the prediction intervals. Tones 
were presented in 50% of trials at 1 of 3 intensities 
and 1 of 5 temporal delays. (B) Performance 
accuracy at each intensity level, grouped across 
delay categories. For each condition, the raw data 
(left), interquartile range (middle), and kernel density 
estimate (right) are shown (* p < 0.05, ** p < 0.01, *** 
p < 0.001). (C) Accuracies in the low-intensity 
condition separated by temporal delay. Behavioral 
performance was uniquely increased at the first 
“missing” acoustic pulse edge – coincident with the 
phase reset we observe in neural low-frequency 
response. (D, E) The same electrode group shown in 
Figure 1B was used for the following analyses. Violin 
plots demonstrating engagement of low-frequency 
phase and high-gamma power during each interval. 
The sustained response in low-frequency phase was 
measured as average ITC; in high-gamma power, it 
was measured as a signed r2 from the Spearman’s 
correlation with a 3 Hz sine wave. (F) All electrodes 
on the supratemporal plane (n = 349) were evaluated 
for a significant sustained response during the 
rhythmic stimulus followed by low-frequency phase 
reset in the first prediction interval. Those with a 
significant predictive effect are shown in blue (n = 
36), predominantly found in HG/TTS. 
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relationship between high-gamma power and the acoustic envelope did not carry predictive 

information in either cycle after the last acoustic pulse (Figure 18E). Thus, prediction in early 

auditory cortex (Figure 18F) is best modeled by low-frequency phase reset at acoustic edges. I 

validated that this predictive effect is not an artifact of filter choice by replicating these findings 

with a variety of filter implementations. This neural mechanism is engaged within a single cycle 

of a rhythmic acoustic stimulus and remains active for at least one cycle afterwards. Such a 

neuro-computational solution for coupled perception and prediction provides a neurobiological 

basis for cognitive models of speech perception142–144,154. 

In a second experiment, patients (n = 25) named common objects cued by short spoken 

descriptions (e.g. they heard “a place with sand along a shore” and articulated “beach”)40. For 

each sentence (Figure 19A), I extracted a pair of key features suggested by the analysis of 

rhythmic white noise: acoustic envelope and edges. The former describes the instantaneous 

Figure 19: Edge detection and envelope tracking during natural language speech occurs focally in early auditory 
cortex. (A) Patients (n = 25) listened to short sentences describing common objects. Two features were extracted: 
acoustic envelope (light blue) and acoustic edges (dark blue). (B) The peak lagged Spearman’s correlation between 
acoustic and high-gamma envelopes. (E) The average low-frequency ITC following an acoustic edge. (C) Acoustic 
envelope cross correlated with low-frequency (purple), beta (yellow), and high-gamma (green) amplitudes. The effect 
size was slightly reduced for reversed speech (dotted lines). (F) Acoustic edges were better encoded by low-frequency 
phase than syllabic onsets (dashed lines). (D,G) Power and phase encodings of discrete acoustic signal events: the 
difference between 50 ms pre- and post-edge windows, as well as the difference between 50 ms windows centered 
on envelope peaks and valleys (* p < 0.001). 
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amplitude of speech, while the latter demarcates moments of rapid amplitude gain. I evaluated 

the engagement of neural substrates with a sustained response to the white noise stimulus 

during natural language speech. The cortical encoding of the speech envelope (Figure 19B) and 

of edges (Figure 19E) was localized to HG/TTS – the same supratemporal region that exhibited 

a sustained response and predictive signature for the white noise stimulus. Power in HG/TTS 

was significantly correlated with the acoustic envelope of speech (low-frequency, rs = -0.0620, p 

< 10-3; beta, rs = -0.0632, p < 10-3; high-gamma, rs = 0.0738, p < 10-3; Figure 5C) at a frequency-

specific delay (low-frequency, 135 ms; beta, 95 ms; high-gamma, 45 ms; Figure 19C). Low-

frequency phase organization in HG/TTS was significantly increased during the 125 ms following 

acoustic edges in speech (p < 10-3; Figure 19F). Furthermore, it was significantly greater following 

acoustic edges than following syllabic onsets (p = 0.0072; Figure 19F) – a similar characteristic, 

but derived from and specific to speech. The correlation between high-gamma activity and the 

speech envelope was significantly stronger at the electrodes that best tracked the white noise 

envelope (Figure 17A) than at neighboring electrodes (p < 10-3). Similarly, the increase in low-

frequency phase organization following acoustic edges in speech was significantly greater at 

electrodes demonstrating a predictive effect in the white noise task (Figure 18F) than at their 

neighbors (p < 10-3). These findings are concordant with the frequency-multiplexed encoding of 

acoustic envelope and the low-frequency phase reset at acoustic edges observed during the 

white noise stimulus. The neural response to acoustic edges was preserved during reversed 

speech, emphasizing the sublexical nature of this process. 

Natural language speech recruited a much broader set of neuroanatomic substrates than 

white noise, including planum polare, lateral superior temporal gyrus, and superior temporal 

sulcus. In a patient with both surface grid and depth electrodes, only speech induced significant 

activity in the lateral temporal grid electrodes. This higher-order auditory cortex is presumably 

engaged in the processing of higher-order features (e.g. phonemes161). 

Immediately posterior to HG/TTS in the planum temporale (PT; Figure 16B; Electrode 2), 

a distinct functional region generated a transient response to white noise (Figure 16C). This 
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region featured a high-magnitude increase in high-gamma power accompanied by broadband 

low-frequency phase reset that returned to pre-stimulus baseline activity after a single acoustic 

pulse. I separated this transient response the sustained response using non-negative matrix 

factorization – an unsupervised clustering algorithm uninformed by anatomical position – across 

all supratemporal electrodes (n = 349, Figure 6A,C). This analysis revealed a distinct 

anteroposterior response gradient from sustained activity in HG/TTS to transient activity in PT 

(Figure 20B,D,G). This spatial distribution was significant for both high-gamma power (Figure 

20B; rs = 0.4101, p < 10-4) and low-frequency phase (Figure 20D; rs = 0.7356, p < 10-16). 

Classification by both measures were strongly correlated (Figure 20E; rs = 0.4188, p < 10-6); only 

9 of 349 electrodes showed a mixed classification (i.e. sustained bias in high-gamma power with 

transient bias in low-frequency phase, or the reverse; Figure 20F). The sustained response was 

primarily characterized by either high-gamma power (n = 33 electrodes) or by low-frequency 

phase (n = 30 electrodes), with only 11 electrodes engaging both measures. This effect was 

confirmed with analysis of the Kullback-Leibler divergence from a uniform (e.g. non-modulated) 

activity response. The sustained response was noted in both language dominant and non-

dominant cortex, but the transient response was limited to dominant cortex (Figure 20G). 

Figure 20: Supratemporal responses (n = 349 electrodes) classified with 2-basis non-negative matrix factorization. (A) 
High-gamma power identifies a sustained (blue) and transient (red) response: normalized basis functions (dotted line) 
and the normalized group-average response for the top 10% of electrodes in each class (solid line). (B) Spatial 
distribution of activation (sum of class weights; point size) and bias (difference in class weights; point color) reveals 
anteroposterior gradient of functional response. The left panel shows electrodes in language dominant cortex; the right, 
in language nondominant cortex. (C, D) Separately, low-frequency ITC also revealed sustained and transient responses 
with the same spatial distribution. (E) The class bias determined by high-gamma power and low-frequency ITC analyses 
were significantly correlated. (F) Class biases greater than a value of 10 generated discrete classifications: sustained 
(n = 74), transient (n = 90), or mixed (n = 9). (G) Electrode classifications are shown on a standard supratemporal atlas, 
demonstrating a clear functional split between Heschl’s gyrus and planum temporale in language dominant cortex. 
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The spatial topology of early auditory cortical responses was further elucidated within a 

single patient who underwent two separate implants: one with surface grid electrodes and 

another with depth electrodes. Strong sustained encoding in HG/TTS and a robust transient 

response in PT were observed at electrodes along the supratemporal depth probe, but not at any 

subdural electrodes directly overlying superior temporal gyrus. In contrast to prior work using 

only surface grid electrodes162, this unique case indicates that the sustained and transient 

responses to sublexical features are selectively encoded in early auditory cortex – not in lateral 

superior temporal gyrus. 

I compared neural activity in both HG/TTS and PT during listening and speaking – 

externally and internally generated speech. In each patient with a supratemporal depth probe, 

the pair of electrodes with the strongest sustained and transient responses were identified during 

the rhythmic white noise condition. These criteria selected electrodes in HG/TTS and PT, 

respectively (Figure 21A). High-gamma power in these regions was analyzed relative to sentence 

and articulation onset for a representative individual (Figure 21B) and across the group (Figure 

21C). HG/TTS responded strongly during 

both listening and speaking, remaining 

active for the duration of each sentence 

and throughout articulation. PT also 

responded strongly following sentence 

onset; however, this region was quiescent 

during articulation. 

Figure 21: Functional dissociation in HG/TTS and PT 
during listening and speaking. (A) A pair of 
electrodes were selected in each patient for a 
sustained (blue) and transient (red) response to the 
3 Hz amplitude-modulated white noise stimulus. One 
representative patient was highlighted (bright) for 
single-trial analysis. (B) Single-trial raster plots of the 
percent change in high-gamma power during speech 
listening and production. (C) High-gamma power 
averaged across trials and then across patients 
(p<10-3). The mean activity from the representative 
individual is included as the dotted line. 



43 
 

I further characterized the spatial distribution of the transient response during speech 

listening and its suppression during speech production using non-negative matrix factorization. 

As for the white noise stimulus, high-gamma power yielded sustained and transient response 

types (Figure 22A) along a robust anteroposterior distribution (Figure 22E,G; rs = 0.4688, p < 10-

10). These were strongly correlated with the class biases for white noise listening (Figure 22B; rs 

= 0.5849, p < 10-23). When this factorization was applied to high-gamma power during articulation 

(Figure 22C,F,H), the sustained response was preserved (rs = 0.6663, p < 10-16) while the 

transient response type was suppressed (rs = 0.1094, p = 0.3279). Of the 37 electrodes 

demonstrating a transient response during speech listening, only 2 retained this classification 

during articulation  (Figure 22D). The functional dissociation at PT between externally and 

internally generated speech is consistent with the theory of predictive coding during speech 

production154 via motor-to-sensory feedback16,21,163. 

 

Figure 22: Supratemporal responses (n = 247 electrodes) classified with 2-basis non-negative matrix factorization. (A) 
High-gamma power identifies a sustained (blue) and transient (red) response: normalized basis functions (dotted line) 
and the normalized group-average response for the top 10% of electrodes in each class (solid line). (B) The class bias 
determined by factorizations of electrode responses to noise and sentence listening – homogenous and structure 
acoustic inputs – were significantly correlated. (C) The factorization from sentence listening was applied to the 
electrode responses at articulation. Sustained class bias was significantly correlated for listening and speaking, but the 
transient class biases were uncorrelated. (D) Class biases greater than a value of 10 generated discrete classifications 
for speech listening (S; sustained, n = 105; transient, n = 37) and articulation (A; sustained, n = 74; transient, n = 2). 
(E, F) Spatial distribution of activation (sum of class weights; point size) and bias (difference in class weights; point 
color) reveals anteroposterior gradient of functional response during speech listening (left) but not articulation (right). 
(G, H) Electrodes shown on a standard supratemporal atlas reveal that the transient response is localized to PT and 
is uniquely suppressed during articulation. 
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In 3 patients, language mapping using direct cortical stimulation was performed along the 

full extent of the supratemporal plane. Current was passed between adjacent pairs of electrodes, 

transiently mimicking a focal lesion. Three language tasks were used to identify eloquent cortex: 

spoken sentence repetition, spoken naming to definition, and picture naming. 

Figure 23: Supratemporal responses during two chronometric stimulation experiments. The first patient is shown on 
the left and the second on the right. (A) Electrode positions relative to patient-specific neuroanatomy. Two pairs of 
electrodes localized to HG/TTS and PT demonstrated sustained (blue) and transient responses (red), respectively. (B) 
Average percent change in high-gamma power during auditory naming to definition: sentence listening (left) and 
articulation (right). The transient response is entirely suppressed during articulation. (C) Chronometric cortical 
stimulation mapping with 50 Hz balanced 0.3 ms period square waves for 3 seconds during sentence repetition. 
Successful trials are indicated by full boxes, failed trials by empty boxes, and trials with a single error (e.g. word 
replacement) by half-full boxes. Stimulation was delivered either at stimulus onset (top panel) or offset (middle and 
bottom panel). The patient was unable to repeat the stimulus when HG/TTS was stimulated during listening, but was 
unaffected when the HG/TTS was stimulated during production. In contrast, stimulation of PT during production induced 
failure. (D) Chronometric stimulation during auditory naming to definition at either acoustic edges (x’s; dotted lines) or 
uniformly distributed times (o’s; dashed lines). Baseline accuracies were 94% and 99% (gray bar). Stimulation at 
acoustic edges in HG/TTS (left blue bar) and PT (red bar) resulted in naming accuracies of 32% and 81% in the first 
patient and 64% and 95% in the second patient. Stimulation of HG/TTS delivered uniformly throughout the stimulus 
(right blue bar) resulted in naming accuracies of 61% and 86% (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Direct cortical stimulation revealed distinct functional deficits in HG/TTS and PT. 

Stimulation of HG/TTS disrupted speech comprehension impacting both sentence repetition and 

naming to definition; however, picture naming was unaffected. Patients reported stimulation-

evoked auditory phenomena including “buzzing” and “ringing.” Stimulation of PT disrupted 

articulation in all tasks, including picture naming. Furthermore, it evoked auditory hallucinations 

that included the sensation that “somebody’s talking” or “people [are] talking all around me … 

like a ballpark”, the abstract ideation of “a rolling of more words”, and an “echo” like the speaker 

was “underwater.” These hallucinations were not induced by stimulation of the lateral superior 

temporal gyrus. 

Prospectively, I implemented two stimulation experiments in two additional patients. The 

rhythmic white noise and auditory naming experiments were used to identify electrodes with 

sustained and transient responses in HG/TTS and PT, respectively (Figure 23A,B). In the first 

stimulation experiment (Figure 23C), the patients were asked to repeat a spoken sentence. The 

same stimulation current, frequency, and waveform used in the clinical standard above was 

applied at either the onset or the offset of the stimulus, disrupting processes related to 

comprehension or articulation, respectively. I found that stimulation of HG/TTS at stimulus onset 

interrupted speech perception, while the same stimulation at stimulus offset had no effect on 

articulation. In contradistinction, stimulation of PT at stimulus offset resulted in articulatory failure. 

These findings causally confirm the separable roles of HG/TTS and PT revealed by the analyses 

of passive electrocorticographic recordings. 

In the second experiment (Figure 23D), patients performed naming to definition with 

concurrent chronometric stimulation. During the presentation of each spoken description, 

stimulation was triggered at either acoustic edges or at a uniform rate. Stimulation intensity was 

greatly reduced from clinical mapping parameters; only a single 500 µs wide square wave pulse 

was delivered with each trigger (average 6.9 triggers per trial). Stimulation of HG/TTS at acoustic 

edges resulted in significantly worse task performance than equivalent stimulation of PT (32% 

vs. 81%, p < 10-3; 64% vs. 95%, p < 10-3). Furthermore, stimulation of HG/TTS at acoustic edges 
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also resulted in significantly worse task performance than uniformly distributed stimulation 

matched for total delivered current (32% vs. 61%, p = 0.0246, 64% vs. 86%, p = 0.0397). Patients 

exhibited baseline accuracies of 94% and 99% without stimulation during the task. These results 

further causally corroborate the findings that HG/TTS is especially attuned to acoustic edges and 

that PT is not engaged for speech comprehension. 

DISCUSSION 

These large-scale direct intracranial recordings and stimulations of the supratemporal 

plane have revealed the functional architecture of prediction in human early auditory cortex at 

fine-grained resolution. I demonstrate that a sustained response to speech engages a frequency-

multiplexed encoding of two sublexical features: envelope and edges. I also uncover a pair of 

distinct neuroanatomic substrates that perform two separate types of prediction: temporal 

prediction in bilateral HG/TTS and speech-specific suppression in language dominant PT. The 

identification and characterization of these mechanisms advances the understanding of how 

human cortex parses continuous acoustic input for both speech perception and production. 

Using electrodes positioned along the anteroposterior extent of the supratemporal plane, 

I localized the cortical signature of a sustained response during listening to strictly early auditory 

cortex: Heschl’s gyrus and the transverse temporal sulcus164. This signature was considerably 

more complex than that suggested by prior studies, comprising a frequency-multiplexed 

encoding of envelope phase – distinct for rising and falling amplitudes of the same magnitude – 

in low-frequency, beta, and high-gamma power. I also identified a separate, concurrent encoding 

of acoustic edges in low-frequency phase reset. This latter encoding uniquely persisted after the 

rhythmic stimulus ended, consistent with the behavior of a predictive neural mechanism (and 

inconsistent with the behavior of evoked response potentials). 

Importantly, identical cortical substrates engaged the same mechanisms during natural 

sentence listening. The speech envelope was tracked by bandlimited power and acoustic edges 

were demarcated by low-frequency phase reset. Furthermore, acoustic edges were more 

strongly encoded in cortical phase than syllabic onsets – a linguistic feature with similar frequency 
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and periodicity. This supports the assertion165 that these mechanisms are driven by sublexical 

acoustic processing, perhaps even from subcortical regions (e.g. medial geniculate nucleus). 

The organization of transient excitability states within neuronal populations has been 

thought of as a gating mechanism for cortical columns166–168. Discrete high excitability periods 

constitute windows of opportunity for input into sensory cortex, as evidenced by peri-threshold 

detection studies in somatosensory169, visual170, and auditory165,171,172 regions. During listening, 

such windows might serve to segment speech to facilitate comprehension173. More generally, the 

temporal organization of high excitability periods could serve to minimize temporal uncertainty in 

stimulus processing and detection141,174. This view was corroborated by a behavioral study of 

responses to the same white noise stimulus used in these experiments that revealed a striking 

relationship between detection accuracy and the preceding rhythmic stimulus175. With the direct 

intracranial recordings in this study, I found that low-frequency phase reset anticipates the first 

missing acoustic edge. These results constitute strong evidence for neural mechanisms in early 

auditory cortex supporting temporal prediction, a fundamental computational element in models 

of speech perception142–144,154.  results are consistent with the predictive encoding of when by a 

bandlimited complex of discrete computational channels, each arising from distinct patterns of 

hierarchical cortical connectivity154. 

Entrainment – the synchronization of intrinsic neural oscillations with extrinsic rhythmic 

signals – has been suggested to have an important role in a variety of cognitive processes 

including attentional selection141,145,176 and internal timekeeping170,177. Entrainment has also been 

implicated in speech perception by evidence that envelope distortions impair 

comprehension178,179 independent of spectral content180,181 and that the degree of neuro-acoustic 

entrainment modulates intelligibility182,183. While concurrent thalamocortical recordings are 

probably necessary to definitively separate entrainment from evoked response potentials, I 

demonstrate the neural mechanisms active during the sustained state are foundational to the 

hierarchy of acoustic perception – including language. 
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While the sustained response was constrained to Heschl’s gyrus and the transverse 

temporal sulcus, I observed a distinct transient response in planum temporale. The transient 

response was characterized by a brief spike in high-gamma power and rapid reset of low-

frequency phase immediately following acoustic onset. Interestingly, this response was not 

engaged during self-generated speech. Such preferential engagement for unexpected sound is 

consistent with predictive encoding during speech production16,21. Upon execution of a speech 

motor plan, a learned internal model generates an efference copy184,185 – an expected sensory 

result. When the acoustic input matches this efference copy, no cortical signal is generated; 

however, when a mismatch occurs (e.g. externally-generated sound or speech), an error signal 

results154. This is precisely what I observed in the planum temporale, distinct from the sustained 

response in Heschl’s gyrus. I corroborated these results with direct current injection at Heschl’s 

gyrus and planum temporale; stimulation of the former area selectively disrupted speech 

perception, while stimulation of the latter area selectively disrupted speech production. 

There is no direct evidence for internal predictive models instantiated in human cortex186. 

The results advance understanding of the neurobiology of predictive speech coding in two 

respects. First, functional studies have revealed single-unit preference in primary auditory cortex 

for listening or speaking in both non-humans187 and humans184. It has recently been asserted 

that these response tunings overlap – an “intertwined mosaic of neuronal populations”188 in 

auditory cortex. Instead, the complete anteroposterior mapping of the supratemporal plane in a 

large patient cohort enabled us to identify a distinct neuroanatomical organization in planum 

temporale. Second, several groups report cortical response suppression specific for self-

generated speech188–190. I reveal two distinct modes that enable this suppression: a partial 

reduction of activity in Heschl’s gyrus and a complete absence of the transient response in 

planum temporale. The stapedius reflex187 does not explain the latter mode, suggesting a neural 

mechanism of suppression. Altogether, I provide compelling evidence for efference copies – 

predictive encoding of what154 – and their essential role in speech production16,21.  
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CONCLUSIONS & FUTURE DIRECTIONS 

These experiments advance our understanding of the neurobiological foundation of 

speech production, building towards a universal cognitive model of language in the brain. I 

accomplish this aim with convergent evidence from functional and structural neuroimaging, large-

scale invasive electrophysiology of multiple experimental modalities, and direct stimulation of 

human cortex with focal current injection. 

This work provides novel insights for regions that have been marginalized in language 

studies. I demonstrate: a) the definitive role of middle fusiform gyrus in mediating conceptual 

representation, as suggested by prior work40,83, b) an expanded role of supplementary motor area 

for word formulation191 in addition to movement planning192, consistent with its structural 

connections to ventrolateral frontal cortex through the aslant track193, c) a putative role for the 

superior frontal sulcus in networks subserving retrieval of lexical semantic information102, and d) 

activation of dorsal sensorimotor cortex concurrently with subcentral gyrus, concordant with 

secondary representations of speech articulators194. 

The results thoroughly map the neurobiology of picture naming in language-dominant 

cortex, robustly motivate the use of seriality in computational models of speech production, and 

establish a concrete mechanism for representational interactions in language networks. 

Furthermore, I uncover evidence to better understand the integrated function of perisylvian cortex 

during both speech perception and production. 

Quantification of dynamical systems in the brain uncovers a possible mechanistic 

foundation for generalized cognitive processes. By modeling both activity in isolated network 

nodes as well as the interdependence between nodes, we can begin to unify localizationist and 

connectionist accounts of cortical function. This perspective yields a powerful conceptual 

framework for understanding normal language function, as well as the spectrum of specific 

disruptions secondary to various neurological insults. 

I hope to explore these new therapeutic targets with targeted and responsive multisite 

stimulation in my own neurosurgical practice.  
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