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Impact of Intratumor Heterogeneity and the Tumor Microenvironment in 

Shaping Tumor Evolution and Response to Therapy 

 
Akash Mitra, B.S. 

Advisory Professor: P. Andrew Futreal, Ph.D. 

 Intratumor heterogeneity (ITH) is a crucial challenge in cancer treatment. 

The genotypic and phenotypic heterogeneity underlying diverse cancer types 

leads to subclonal variation, which may result in mixed or failed response to 

therapy. The heterogeneity at the tumor level, along with the tumor 

microenvironment (TME), often shapes tumor evolution and ultimately clinical 

outcome. Given that modern treatment paradigms increasingly expose patients 

with metastatic disease to multiple treatment modalities through the course of 

their disease, there exists a need to characterize robust and predictive biomarkers 

of response to therapy. In order to accurately characterize tumor evolution, we 

need to account for both intra-tumoral genomic factors as well as how these 

factors interact with the components of the tumor microenvironment to allow for 

response and resistance to various forms of therapy.  

 Through multidimensional profiling of a tumor and its cellular ecosystem 

we assessed spatial heterogeneity in response to ICB in metastatic melanoma and 

highlighted the effects of copy number alterations being associated to varied 

immune phenotypes. We characterized localized regions of immune activation 
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by both T and B cells however, sub-regions with chromosome 7 gain displayed a 

distinct lack of immunocytic infiltrate but evidence of neutrophil activation that 

was recapitulated in TCGA samples and was associated with lack of response to 

ICB across three separate cohorts. 

Through a longitudinal sampling strategy paired to a clinical trial, we 

characterized the impact of heterogeneity on therapy outcomes after combination 

ICB agents in multiple sarcoma histologies. Amongst the genomic, 

transcriptomic and immune-based molecular correlates analyzed, elevated 

intratumoral levels of B cells were most significantly correlated with response at 

both time-points, as measured by both gene expression and immunostaining. 

Responsive tumors were also associated with higher diversity and richness of the 

intratumoral T cell repertoire at baseline. 

In order to characterize the effects of the immune-tumor 

microenvironment, we used multiplex immunofluorescence to quantitatively 

analyze T-cell subsets and sequenced the T-cell receptors of matched Barrett’s 

Esophagus (BE) and Esophageal adenocarcinoma (EAC) samples from our 

patient cohort. Through our work we identified a more infiltrated and diverse 

immune microenvironment in EAC as compared to BE, however this was 

primarily characterized by an immunosuppressive T-cell infiltrate, the clonal 

expansion of which may have been limited with public antigenicity. 
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In summary, our work frames the spatial and temporal molecular features 

of heterogeneity characterized across tumors and their surrounding 

microenvironment, and how their interplay in turn may influence disease 

progression, tumor evolution and response to therapy. 
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Chapter 1 INTRODUCTION 
 
1.1 Intratumor Heterogeneity (ITH) 

 
Cancer originates from histologically normal cells that progress towards neoplasia through 

the accumulation of various genetic and epigenetic reprogramming events. In particular, 

normal cells progress towards hyperplasia and dysplasia with an increase in cell numbers 

and size, and loss of cellular orientation(Douglas Hanahan, 2000). The majority of these 

changes are reversible until the first pre-invasive step of carcinoma in-situ which may then 

lead to invasive carcinoma. Various molecular changes occur through these steps and 

beyond in the context of metastasis and while different tumor types may exhibit different 

alterations for transformation events, most share a common feature of variability present 

within the cells of a single neoplastic lesion which may downstream lead to tumor 

progression(Fidler, 1978, Heppner, 1984). This variability or heterogeneity may result in 

changes in antigen expression, cellular behavior, metastatic potential and therapeutic 

response(Axelson et al., 2005, Brown et al., 2014). 

While cells acquire somatic alterations in an evolutionary process across time, the majority 

of these aberrations are relatively benign passenger events that confer no selective 

advantages to these cells(Kandoth et al., 2013, Lawrence et al., 2014). Cancer cells, 

however, may eventually acquire driver mutations though these mutations may not 

uniformly be seen within a tumor(Lawrence et al., 2014, Kandoth et al., 2013). 

Additionally, increasing evidence has shown that low frequency sub-clones can assist and 

aid in the growth of dominant clones. These types and distributions of mutations present in 

tumors may be viewed through the lens of space, wherein tumor cells may exhibit differing 

mutational events in a spatially distributed manner or through the context of time and 
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exposure to therapeutic interventions. Multiple facets may govern the shaping of the cancer 

genome including interactions of tumor cells with accompanying cells present in the tumor 

microenvironment.  

1.2 Tumor Microenvironment (TME) 
 
Bidirectional communication between cells and their microenvironment is essential for 

healthy tissue and cellular homeostasis. Tumors do not exist in silos, but rather in 

conjunction with normal cells found in the surrounding stroma. Infiltrating immune cells 

which form the hallmark of an effector immune response in tumors have been implicated 

as early as 1863 with the work of Virchow demonstrating infiltrating leukocytes as a 

hallmark of cancer and thereby establishing the role of inflammation and cancer(Balkwill, 

2001). While ITH leads to aberrant genomic changes in cancerous cells, tumors are also 

shaped by microenvironmental populations and their stromal contributions or activation 

states. Moreover, this reprogramming occurs in a cyclic manner with environmental and 

oncogenic signals changing over the course of cancer progression and metastasis.  

Fibroblasts and macrophages contribute towards a growth suppressive state within the 

TME at early stages, however through tumor education, these cells can be re-programmed 

to a pro-tumorigenic state(Qian and Pollard, 2010). Tumor associated macrophages 

(TAMs) can support primary tumor growth, angiogenesis and invasion, and can secrete 

growth signaling factors such as EGF which participates in a paracrine signaling loop 

through tumor-induced CSF-1(Pyonteck et al., 2013). Myeloid derived stem cells 

(MDSCs) and regulatory T-cells also create an anti-inflammatory phenotype in response 

to tumor activated cytokine axes including TGF-B and CXCL5-CXCR2(Almand et al., 

2001). These immune-regulatory cells can inhibit antigen presentation by dendritic cells 
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(DCs), inhibition of T and B-cell proliferation and activation and inhibition of NK-cell 

derived killing(Gabrilovich et al., 2001, Gabrilovich et al., 2012, Sinha et al., 2005, Liu et 

al., 2007). Cancer associated fibroblasts (CAFs), activated through tumor induced TGF-B 

signaling, can secrete VEGF, thereby supporting angiogenesis through tumor 

growth(Kalluri and Zeisberg, 2006). 

1.3 The immune system and cancer  

Dysregulated microenvironments through the context of tissues with chronic inflammation 

have been linked to higher levels of cancer incidence. In particular, through a retrospective 

study of 417 cancer-free patients with liver cirrhosis, 27% of individuals went on to 

develop hepatocellular carcinoma over a follow up time of 12 years(Sangiovanni et al., 

2004). Additional work in the context of inflammatory bowel disease and colitis has also 

shown a causal link from inflammation to the incidence of tumorigenesis through 

colorectal cancer(Beaugerie et al., 2013). An unresolved inflammatory response can lead 

to the accumulation of stromal cell-types that eventually become dysregulated and lead to 

the formation of a pro-tumorigenic niche.  

However, the immune system can act in paradoxical formats in the context of cancer. In an 

analysis of chronically immunocompromised organ transplant recipients, Stewart and 

colleagues observed an increase incidence of multiple tumor types including lung, GI, skin 

and genital cancers(Stewart, 1995). The balance of a suppressive immune system and 

inflammation have both been shown to increase pro-tumorigenic functions, thereby 

underscoring the need of better understanding the opposing functions of immune cells in 

cancer. 

1.4 Cancer immunology 
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Tumor cells traditionally function through driver genes or through the activation of 

oncogenes and inactivation of various tumor suppressor genes. However, the yin and yang 

of the immune system functions in tandem with the tumor ecosystem to induce both pro-

tumorigenic and pro-immunogenic factors. Moreover, while the majority of cancer 

immunotherapies involve shifting the balance in favor of immune-activation and T/NK-

cell killing, only a subset of patients benefit from such immunotherapies, emphasizing the 

need for better molecular stratification of patients and therapeutics. 

Cancer cells may typically be recognized as foreign cells by the immune system as a result 

of mutated peptides, neoantigens, that are present on the surface of cancer cells(Yarchoan 

et al., 2017). Briefly, the cancer immunity cycle implies release of cancer cell antigens 

which are then presented by DCs for the priming and activation by T-cells which leads to 

trafficking of cytotoxic lymphocytes (CTLs) from secondary lymphoid structures to tumor 

periphery.(Chen and Mellman, 2013) Once in the tumor ecosystem, CTLs recognize cancer 

cells and secrete interferon-gamma to initiate tumor killing.  

However, tumors may employ multiple strategies to evade immune attack which includes 

losing the ability to present neoantigens through the loss of the human leukocyte antigen 

(HLA)(Douglas Hanahan, 2000, Schumacher and Schreiber, 2015).  Since neoantigen 

presentation and an effector T-cell driven immune response is driven through Class 1 HLA 

presentation on the cell surface for recognition by T-cell receptors, certain tumors evolve 

mechanisms to downregulate HLA genes thereby facilitating immune evasion. 

Additionally, tumors may employ immune checkpoints at the priming and activation stage 

including CTLA4:B7.1, PD-L1:PD-1, PD-L1:B7.1 as well as prevent infiltration of CTLs 

into the tumor bed through the secretion of VEGF and endothelin B receptors(Lippitz, 
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2013, Franciszkiewicz et al., 2012, Riella et al., 2012). Recognition of tumor cells by T-

cells may also be impaired through reduced MHC expression on cancer cells and tumor-

killing evaded through PD-L1:PD-1, PD-L1:B7.1, TIM-3, BTLA, VISTA, LAG-3, IDO 

and other factors(Chen et al., 2012, Mellman et al., 2011, Greaves and Gribben, 2013). 

Given the dawn of next generation sequencing and a better understanding of the genomic 

and molecular factors that govern tumors and their immune evasion, their lies a need to 

better understand predictors of response and resistance for cancer immunotherapies in 

order to allow for better patient stratification for improving overall outcomes in patients, 

and reducing immune related toxicities. 

1.5 Immune checkpoint blockade (ICB) 

The goal of cancer immunotherapies is to initiate or re-invigorate a self-sustaining cycle of 

cancer immunity and to potentially overcome negative feedback loops that may be 

employed by cancer cells. In the current age of personalized therapy, Topalian and 

colleagues have discussed the concept of the “common denominator” approach in the 

context of ICB(Topalian et al., 2015). A large number of mutational diversity and causal 

driver mutations have been identified through  the vast profiling of tumors over the past 20 

years. ICB takes advantage of the mutational diversity by exposing the plethora of antigens 

created for potential immune recognition. However, through the implication of immune 

checkpoints, the innate and adaptive immune systems are often held in check with their 

effector and activated functions being suppressed.  

Seminal work by Leach and colleagues laid the groundwork for blocking the cytotoxic T 

lymphocyte antigen 4 (CTLA-4), that led to spontaneous tumor regression in murine 

models and eventually the clinical development and approval of the first in man anti-
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CTLA-4 agent for patients with metastatic melanoma(DR Leach, 1996, Hodi et al., 2010). 

Subsequent work highlighted the role of blocking Programmed Death-1 (PD-1) and it’s 

ligand, PD-L1 in the treatment of diverse cancer types. Anti CTLA-4 agents are used to 

enhance the priming of in lymphoid organs while the anti-PD-1/PD-L1 axis reverses 

inhibition of intratumoral T-cells and improves antigenic response(Ribas, 2012, DR Leach, 

1996). Moreover, Wei and colleagues have shown distinct mechanisms through 

combination therapy that is implicated in the re-activation of previously phenotypically 

exhausted T-cells(Wei et al., 2019). The 5 year survival rate for diseases such as metastatic 

melanoma have dramatically improved with the advent of ICB however, this finding is 

extended only to a subset of patients afflicted with melanoma and an even smaller subset 

of cancer patients overall(Larkin et al., 2019). Several groups have recently undertaken the 

task of elucidating pre- and early on-treatment predictors of various ICB agents through 

advances in tumor and host-immune factor sequencing(Chen et al., 2016a, Reuben et al., 

2017, Roh et al., 2017, Snyder et al., 2014a, Rizvi et al., 2016, Hellmann et al., 2018, Hugo 

et al., 2016, Zaretsky et al., 2016, Cloughesy et al., 2019, Ock et al., 2017, Riaz et al., 

2017b, Samstein et al., 2019, Mandal et al., 2019). 

1.6 Cancer Immunogenomics – Neoantigen Prediction 

The advent of next generation sequencing has led to many advances in discovering and 

characterizing normal as well as malignant genomes. Early efforts by the Cancer Genome 

Project and The Cancer Genome Atlas program, have allowed us to understand drivers and 

dependencies in cancer genomes and how they manifest and evolve through disease and 

therapy. The work initially started with genomic next generation sequencing (NGS) 

technologies that allowed for the detection of single nucleotide variants, insertions and 
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deletions, copy number alterations and structural variants present in the cancer 

exome/genome. This was eventually expanded upon to include other modalities including 

evaluating the transcriptome through RNA-sequencing and the epigenetic landscape 

through bisulfite/methylation-based sequencing. Through a multidimensional lens, we can 

characterize multiple molecular markers to understand the mechanisms through which 

cancer cells establish and expand their niche. 

While cancer cells may possess several alterations, neoantigens represent somatic 

mutations that can be presented by DCs and recognized by the immune system as 

foreign(Chen and Mellman, 2013). Over the course of the past decade, large amounts of 

data have been used to generate and predict candidate neo-antigens in silico to allow for 

more efficient therapeutic targeting. Briefly, somatic mutations are called using variant 

callers with sequences spanning the somatic point mutation being translated into mutated 

peptides with k-mer amino acids varying in length from 8-11 amino acids(Lundegaard et 

al., 2008, Karosiene et al., 2013). Following which, we can perform HLA-typing and 

binding affinities of the predicted mutated peptides can be computed against patient 

specific HLA molecules through the use of neural networks and large 

databases(Lundegaard et al., 2008, Karosiene et al., 2013). A candidate short list of 

predicted neoantigens can then be computed by sub-setting the IC50 binding affinities 

under a particular nanomolar threshold.  

1.7 Cancer Immunogenomics – T-cell Receptor Profiling 

An active effector immune response is employed through the engagement of T-

lymphocytes against neoantigens. T-cells recognize and bind to these foreign molecules 

through the use of antigen binding receptors. The vast amounts of diversity present in the 
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immune repertoire is caused due to V(D)J recombination which results in the somatic 

recombination  of the gene segments present in the variable (V), diversity (D), and joining 

(J) region of the T-cell receptor (TCR) loci(Market and Papavasiliou, 2003, Schatz, 1992). 

Following recombination, a sub-sample of nucleotide are removed from the junction sites 

and the alpha and beta subunits combine to form one TCR(Market and Papavasiliou, 2003). 

The uniqueness of the TCR rearrangement is determined by the complementary-

determining regions 3B (CDR3B), which is the junctional site of VDJ recombination, 

accounting for the most variability in the TCR repertoire(Janeway CA Jr, 2001). 

Through recent advances in targeted repertoire sequencing, we can now sequence the 

CDR3 region of the TCRα and TCRβ subunits to investigate TCRs present in the TME or 

in the peripheral blood of patients. Immuno-sequencing of the TCR allows for the 

comprehensive assessment of the repertoire and enables us to correlate immune responses 

pertaining to tumor growth or shrinkage present within a tumor and its ecosystem, or 

through the patient as a whole. However, given that genomic material for TCR-sequencing 

may not always be available, several groups have implemented algorithms to probe RNA-

sequencing data for TCR rearrangements(Bolotin et al., 2015, Li et al., 2016a). Following 

the sequencing or de-convoluting the immune repertoire, multiple ecology-based 

characteristics can be employed to detect the clonality and diversity of the repertoire. The 

richness of the repertoire can be obtained through the total number of unique nucleotide 

rearrangements present in a sample. Simpsons clonality allows us to determine the shape 

of the repertoire, wherein values approaching 1 indicate a highly monoclonal and values 

approaching 0 indicating a highly polyclonal repertoire(Simpson, 1949). Simpsons 

clonality is defined as the square root of the sum of all observed rearrangements of the 
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square fractional abundance of each rearrangement(Simpson, 1949). Additionally, it can 

also be computed as the square root of Simpsons Dominance (D)(Simpson, 1949). Values 

for Simpsons Dominance are also categorized in the same 0 (highly polyclonal) to 1 (highly 

monoclonal) range. Simpsons dominance can be transformed to Simpsons diversity 

through either the complement (1-D) or the reciprocal (1/D)(Simpson, 1949). The former 

ranges from 0 (highly monoclonal) to 1 (highly polyclonal) while the latter is characterized 

between 1 and the richness of the repertoire. Additionally, the Shannon entropy can also 

be used to represent diversity with high entropy samples being highly diverse and low 

entropy samples having lower diversity(Schneider-Hohendorf et al., 2016, CE, 1963). 

Mathematically, its defined as the sum of frequency of each clone multiplied by the log2 

base of the same frequency over all productive rearrangements in a sample.  

1.8 Cancer Immunogenomics – Immune Deconvolution 

Immunohistochemistry (IHC) or multiplexed immunofluorescence (mIF) profiling allows 

us to quantitate the characterize the presence of various immune and non-immune markers 

present within tumor bed and it’s periphery. However, sampling all immune markers may 

not be feasible with a certain block of tissue. In order to quantitate the various immune 

components, present within a sample, recent algorithms have taken advantage of RNA-

sequencing technologies to deconvolute various immune and stromal compartments 

present within a sample. Newman and colleagues released the first version of their tool, 

CIBSERSORT, which was built on microarray data in 2015(Newman et al., 2015). 

Following which, several groups have built algorithms and classifiers to characterize cell 

composition from complex tissue(Aran et al., 2017, Finotello et al., 2019, Sturm et al., 

2020). Li and colleagues developed TIMER to probe tumor infiltration lymphocytes from 
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the TCGA and their interactions with cancer cells(Li et al., 2016b). Becht et al developed 

MCP-counter to allow for the robust identification of multiple immune and stromal cell-

based populations(Becht et al., 2016). Additionally, Newman and colleagues re-built 

CIBERSORT absolute to allow for an absolute quantification of immune and stromal cells 

as well as CIBERSORTx for implementation on single cell RNA-seq data(Chen et al., 

2018a, Newman et al., 2019). In addition to characterizing specific cell populations, an 

absolute quantification of the cell populations allows us to understand relationships and 

interactions between different immune and stromal cell types and could be further 

correlated with tumor shrinkage and growth. These analyses could be performed in 

addition/in conjunction with typical transcriptomic workflows involving differential 

expression and gene set enrichment analysis.  

1.9 Co-evolution of tumor genomics with immune landscape 

Significant work through various groups have extended our understanding of genetic 

factors influencing tumor evolution(Nowell, 1976, Greaves and Maley, 2012). More 

recently, non-genomic features have been implicated in the evolution of cancer cells.  

Epigenetic dysregulation through means such as promoter hypermethylation, altered 

enhancer activity changes in chromatin configuration can influence transcription and gene 

expression(Flavahan et al., 2017). Alterations in the cancer genome can induce transient 

changes in gene expression and regulate highly plastic gene expression networks. 

Dysregulation of the cancer epigenome has been implicated wherein increased global 

enhancer expression was depicted across multiple cancer types with enhancer activity 

being correlated with the fraction of the genome being affected by CNAs(Chen et al., 

2018b). While preliminary work has been undertaken in the potential consequences of the 
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CNAs and its impact on chromatin state, the evolutionary context of epigenetic 

dysregulation still requires further work.  

The cellular transcriptome has also been shown to be implicated through alternative 

splicing, alternative promoter usage, gene fusions and aberrant oncogenic signaling, to 

ultimately affect the genomic determinants of cancer(Kahles et al., 2018, Demircioglu et 

al., 2019, Group et al., 2020, Shiraishi et al., 2018). Through a variance component 

analysis, the PCAWG group found that CNAs was the most determinant genomic event 

influencing gene expression(Group et al., 2020). Additional work has revealed that RNA 

variants through editing enzymes also result in diversity within tumors that may ultimately 

impact protein function(Chen et al., 2013, Baysal et al., 2017). 

Transcriptomic variation has been leveraged due to its ability to implement expression 

based biomarkers to predict clinical and therapeutic outcome (Carter et al., 2006). Multi-

region sequencing studies help us further elucidate the ITH that may be caused due to gene 

expression through paired genomic and transcriptomic sequencing. Biswas and colleagues 

identified a dominant role of CNAs in influencing gene expression and the ITH described 

as a result of copy number events was strongly correlated to the ITH observed through gene 

expression(Biswas et al., 2019). Additionally, through further granular modalities like 

single cell sequencing, we can capture epigenetic and transcriptomic changes that may 

govern tumor evolution.  Through work conducted in model organism, Lafave et al 

described the epigenetic and landscape of lung adenocarcinoma cells en-route to metastasis 

revealing important changes in chromatin state, loss of cellular identity and alterations in 

transcription factors(LaFave et al., 2020). Through this work, the authors were able to not 

only determine the stemness of cells undergoing metastasis, but also the diverse 
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transcriptional and epigenetic landscapes that may influence the evolutionary trajectory of 

a tumor combined with their ability clinically correlate these findings to survival in human 

patients.  

Given that a genomic silo of cancer evolution may not always be representative, 

remarkable breakthroughs in cancer immunotherapies have occurred as a result of 

disrupting signaling between cancer and immune cells. In the context of therapeutic 

intervention, particularly with the advent of ICB, it is now well known that various non-

genetic factors can influence response and resistance to therapy. Given that a directed 

adaptive immune response is directed through a neoantigen specific genetic route, tumor 

cells undergo negative selection pressures to evade immune detection and elimination. 

Mutations in the B2-microglobulin gene (B2M), a component of the MHC, can disrupt 

antigen presentation in response to immune attack(Rooney et al., 2015, Zaretsky et al., 

2016). In a seminal study conducted by McGranahan et al, HLA Loss of Heterozygosity 

(LOH) was detected in 40% of lung adenocarcinomas with a subclonal alteration in 65% 

of cases(McGranahan et al., 2017).  CNA of non-HLA loci can also promote immune 

evasion through copy number loss of neoantigens capable of stimulation an effector T-cell 

response(Rosenthal et al., 2019). Multi-region sampling also went on to show immune-

excluded tumor regions to be characterized through copy number amplifications of MYC 

target genes and WNT signaling in ovarian cancer(Jiménez-Sánchez et al., 2017). 

Given that not all neoantigens may stimulate a functional T-cell response, substantial work 

by the TRACERx consortia characterized clonal neoantigens that must be targeted for 

effective response to ICB(McGranahan et al., 2016). In a multi-region study, Joshi et al 

described the spatial heterogeneity present in the TCR repertoire and correlated the number 
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of T-cells clones found in tumor regions to the clonal mutations thus emphasizing the 

importance oof neoantigens in stimulating an early response in tumor evolution(Joshi et 

al., 2019). Moreover, the clonality of T-cells within a tumor has also been associated with 

improved response to anti PD-1 therapy in the context of metastatic melanoma(Tumeh et 

al., 2014, Roh et al., 2017).  Important to note that clonal diversity of neoantigens can also 

influence the antitumor immune response. In particular, a mouse model of UV induced 

melanoma illustrated increased clonal diversity of a developing tumor is associated with 

evasion of an anticancer immune response(Wolf et al., 2019). This clonal diversity can 

provide negative selection pressures to a growing tumor and shape it’s clonal composition.  

1.10 Hypothesis and Specific Aims 

Hypothesis: Integrative spatiotemporal approaches for biomarker discovery and immune-

tumor evolution 

While past studies have focused and succeeded on identifying genetic biomarkers and 

non-genetic/immune biomarkers to therapy response and tumor evolution, there is a lack of 

information about mechanistic links between genetic and immune biomarkers and how they 

work in combination with the TME to shape tumor evolution, and response and resistance to 

therapy. To this end, our studies focus on a multiplatform approach incorporating genomic 

data through whole exome sequencing or deep targeted panel sequencing, transcriptomic data 

through RNA-sequencing or targeted Nanostring gene expression profiling, epigenetic 

profiling through the EPIC 450K methylation array, immunological data through 12 marker 

IHC or mIF combined with TCR-sequencing along with proteomic approaches through the 

reverse phase protein assay. The genomic data allows us to unravel genetic somatic mutational 

and copy number events at play along with understating the mutational signatures that may 
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govern response and tumor evolution in these contexts. The transcriptome allows us to 

additionally deconvolute the various immune and stromal components present along with 

identifying gene fusions that may also be candidate neoantigens.  

I hypothesize that through this multimodality approach, we are able to paint an 

integrative picture that allows us to discern tumor biology and evolution, along with the 

characterization of the tumor-immune microenvironment and how they work in tandem to 

shape response and resistance to ICB. This work is performed in three sub-projects that aim to 

understand spatial heterogeneity in a single patient, genetic and immunological biomarkers for 

response and resistance to ICB, and to understand the co-evolution of tumors along with their 

immune contexture. 

Specific Aims 

Aim 1: To characterize spatial intratumor heterogeneity within metastatic melanoma and 

investigate cellular interaction within a tumor ecosystem by integrative analysis of 

multidimensional profiling  

Aim 2: To delineate genetic and immunobiological biomarkers of response and resistance to 

ICB through longitudinal sampling in the context of metastatic sarcoma 

Aim 3: To characterize the landscape of immune microenvironment of Barrett`s esophagus and 

high-grade dysplasia by multiplex immunofluorescence and TCR sequencing 

Rationale 

ITH has been recognized as a crucial challenge in cancer treatment. Sequencing of tumors in 

spatially distinct regions showed considerable amount of heterogeneity within tumors. 

Recently, single cell sequencing has been utilized to decipher genotypic and phenotypic states 

that exist within bulk tumors. However, previous approaches of multi-region sequencing and 
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single cell sequencing required the process of tissue dissociation or micro-dissection, which 

led to loss of three-dimensional spatial information of a tumor. Through multidimensional 

profiling of a three-dimensional dissection of a single tumor, we can obtain rich information 

about the cellular ecosystem within a single tumor at an intermediate resolution between a bulk 

tumor and a single cell. Additionally, ITH has been implicated in lack of response to multiple 

therapeutic interventions. Given that response rates to ICB remain modest, there exists an 

unmet need to find biomarkers predictive of response to ICB and to better understand 

resistance mechanisms. Through longitudinal pre-treatment and early on-treatment sampling, 

we aim to discover biomarkers of response and resistance by identifying predictive signatures 

from the pre-treatment biopsies and better understand the dynamic changes that tumors 

undergo through therapy. Given that cancers exploit local environments composed of immune 

cells and stroma, we need to incorporate non-genetic/immune markers to characterize 

evolutionary changes within tumors. Through comprehensive immunophenotyping, we can 

uncover the immunologic compositions present in pre-tumorigenic stages and how this may 

play out in invasive carcinoma. 
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Aim 1: To characterize spatial intratumor heterogeneity within metastatic melanoma and 

investigate cellular interaction within a tumor ecosystem by integrative analysis of 

multidimensional profiling  

Biospecimen collection 

Patient data, tumor samples, and matched peripheral blood leukocyte samples were obtained and used 

in accordance with research protocols approved by the local Institutional Review Board of the 

University of Texas MD Anderson Cancer Center. Biospecimens were retrieved, collected and analysed 

under UT MD Anderson Cancer Center Institutional Review Board approved protocols in accordance 

with the Declaration of Helsinki. 

Sample processing – spatial intratumoral analysis 

We developed a 3-dimensional model for processing a whole resected metastatic lesion. The lesion 

measured 2.5cm x 2.4cm x 1.5cm and was obtained from abdominal wall soft tissue. 

Processing consisted of the following steps: 

1) Following resection, the specimen was measured and oriented according to its largest diameter. 

Lateral (short axis, “left”/”right”) orientation was preserved by differential inking of the outside surface 

with red or blue ink. 

2) The specimen was serially sectioned perpendicularly to its largest axis resulting in 8 slices of 2mm 

to 3 mm thickness. The cut surface was then painted prior to each cut to preserve the true orientation. 

3) Alternate slices were submitted for FFPE (4 slices; odd numbered slices) or frozen (4 slices; even 

numbered slices) processing. FFPE slices were used for pathological assessment and 

immunohistochemistry analysis. Frozen slices were embedded in optimal cutting temperature 

compound (OCT) and used for DNA, RNA and protein extraction and downstream analyses. 
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4) For frozen sections, H&E staining was performed for histological quality control (QC). Frozen 

sections were further squared into a 0.2-0.4cm grid as shown in Fig. 1B and Extended Data Fig.3, 

generating a total of 67 sub-regions of tumor. Due to the variation in tumor shape throughout three-

dimensional space, each tumor slice presented a distinct cross-sectional area and thus a unique grid was 

applied to each frozen tumor slice (slice n) and the immediately adjacent FFPE slices (slices n-1 face 

B and n+1 face A). Thus, whilst sub-region numbering generally proceeded bottom-to-top and right-

to-left, specific slice sub-region numbering is not directly comparable between slices. Each piece was 

labeled and numbered. 

5) Histopathological review for assessment of viable tumor, inflammatory infiltrate, necrosis and 

connective tissue of each sub-region piece was performed by a pathologist. 

5.1) Designation of sub-regions as located at the tumor core or margin was performed by 

inspection of all regions annotated on SOX10-stained IHC slides to infer a volumetric estimate 

of tumor content and location. Three-dimensional variation throughout the frozen slices was 

accounted for by considering the immediately adjacent FFPE slices (i.e.: above AND below, 

when both were available) in order to arrive at a consensus call to categorize tumors as core or 

margin. 

5.2) Immune infiltrates were evaluated using CD45-LCA positive cell density measured by 

digital image quantification using the Aperio ImageScope software. CD45+ density was then 

categorized as low, medium or high by binning into lower, middle, or upper tertiles considering 

all regions analyzed. Several additional factors required consideration before arriving at a final 

semi-quantitative categorization as having focal, low, moderate or high immune infiltration: 

between-slide variation in staining efficiency, spatial distribution of immune cell content 

(focal, broad, intra/peri-/extra-tumoral), and a consensus estimate for genomic frozen slices by 

considering the adjacent FFPE sections on both sides for which the higher immune content was 

assigned precedence. 
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6) Frozen section squares were submitted for dual DNA and RNA extraction, and for protein extraction. 

7) DNA samples were submitted for T200 targeted sequencing (n=38), methylation (n=38), whole 

exome sequencing (n=6) and TCR sequencing (n=46). RNA samples were submitted for gene 

expression profiling by RNA sequencing (n=48) and TCR sequencing (n=46). 

Sample processing – longitudinal time points 

Archival formalin-fixed paraffin-embedded specimens from the lung metastasis (pre-treatment) and 

right gluteal mass (post-PD-1 inhibitor) were obtained from the institutional pathology department and 

utilized for tumor evaluation by a Pathologist, DNA/RNA extraction, and immunohistochemistry as 

described below. 

A single cell suspension was generated from the post-PD-1 inhibitor time point tumor by gentle 

mechanical digestion of fresh tumor material, followed by enzymatic digestion with 2mg/mL 

collagenase A (Roche, Cat. No. 11 088 793 001) and DNase I (Roche, Cat. No. 11 284 932 001) in 

serum-free RPMI-1640 (Gibco, Cat. No. 11875119) for 1 hour at 37°C with agitation. The 

cryopreserved single cell suspension was thawed and purified for viable cells by negative selection 

using the MACS Dead Cell Removal Kit (Cat. No. 130-090-101) and a LS Column (Cat. No. 130-042-

401) on the QuadroMACS Separator (Cat. No. 130-090-976, all Miltenyi Biotec). The purified single 

cell suspension was stained with SYTOX blue dead cell stain (Cat. No. S34857, Thermofisher 

Scientific), anti-human CD45 PerCP-Cy5.5 (clone HI30, Cat. No. 564105, BD Biosciences), anti-

human CD3 FITC (clone SK7, Cat. No. 340542, BD Biosciences) and anti-human melanoma (MCSP) 

APC (Cat. No. 130-091-252, Miltenyi Biotec) prior to cell sorting on a BD FACSAria III flow 

cytometer (BD Biosciences) to enrich for a live T cell fraction (CD45+CD3+) and live tumor fraction 

(CD45-MCSP+)(Campoli et al., 2004). 

Nucleic acid extraction 
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DNA and RNA isolation were performed using the AllPrep DNA/RNA/miRNA Universal kit (Cat. No. 

80224, Qiagen) for fresh frozen samples and the AllPrep DNA/RNA FFPE kit (Cat. No. 80234, Qiagen) 

for FFPE samples according to the manufacturer’s instructions. Tumor viability of 80% estimated from 

corresponding IHC samples was set as a minimum threshold for genomic analyses. Samples with DNA 

integrity numbers (DIN) greater than 7 were used for targeted panel sequencing and EPIC array 

methylation profiling. RNAseq was performed on samples with a minimum RNA integrity number 

(RIN) of 5.5 except for two cases (6A10 and 8A3) with RINs greater than 3. A minimum of 700ng of 

RNA were required for all samples undergoing RNAseq. 

Cancer gene panel DNA sequencing 

Samples with cancer cell purity greater than 80% based on pathologic assessment were used for cancer 

gene panel DNA sequencing. Mean sequencing coverage was 861x in tumors and 1,314x in germline 

samples. Paired-end reads in FASTQ format were generated by the Illumina pipeline and aligned to the 

reference human genome hg19 build using the Burrows-Wheeler Alignment Tool (BWA, v0.7.5) with 

default settings(Li and Durbin, 2009). Aligned reads were further processed using GATK with best 

practices for removing duplicates, indel removal and recalibration(Van der Auwera et al., 2013). 

To detect potential single nucleotide variants, MuTect (v1.1.4) was used with default parameters 

including a variant allele frequency of >10% in tumor DNA, variants present on both strands, a high 

read count of tumor DNA and the removal of positions listed in dbSNP 129(Cibulskis et al., 2013). 

Pindel (v0.2.4) was used to identify small insertions and deletions(Ye et al., 2009). Copy number was 

called using Sequenza (v2.1.2)(Favero et al., 2015). Tumor purities and ploidies were calculated from 

Sequenza calls using the sequencing data with default parameters. The content of the cancer gene panel 

is given in Supplementary Data 2. 

Whole exome sequencing 
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Exome sequencing data was generated using methods as previously described, including library 

preparation using the Agilent SureSelect XT Target Enrichment protocol (#5190-8646) prior to 

sequencing on an Illumina HiSeq 2000/2500 v3 system using 76bp paired-end reads3. Raw sequencing 

data was then processed using Saturn V, the next generation sequencing data processing and analysis 

pipeline developed by the Department of Genomic Medicine at the UT MD Anderson Cancer Center. 

BCL files were pre-processed using CASAVA (Consensus Assessment of Sequence and Variation, 

v1.8.2) for demultiplexing and converting to FASTQ. The files were aligned using the Burrows-

Wheeler Alignment Tool (BWA, v0.7.5) using the hg19 reference genome build(Li and Durbin, 2009). 

Picard (v2.5.0) was used to convert SAM files to BAM files and remove duplicates. BAM files were 

realigned and recalibrated using GATK. Mean coverage was 181X for tumors and 81X for matched 

germline DNA. MuTect and Pindel were used to identify somatic point mutations and small insertions 

and deletions respectively(Cibulskis et al., 2013, Ye et al., 2009). Somatic mutations in HLA genes 

were called using POLYSOLVER (v1.0)(Shukla et al., 2015). Data was annotated by ANNOVAR 

(v20180118) using the NCBI Reference Sequence Database(Wang et al., 2010). 

Phylogenetic tree construction 

Mutations that passed our WES Mutect filtering criteria were considered for the purpose of constructing 

phylogenetic trees. A tumor power of 0.8 was used to filter mutations that reflected the power to detect 

a mutation at 0.30 allelic fraction. Trees were built using binary presence/absence matrices built from 

the distribution of mutations within the tumor samples. A representative sub-region sample was chosen 

from the four frozen slices of the on-PD-1 inhibitor tumor (Figure 1B), thus producing a total set of 6 

samples being compared (pre-treatment x1, on-PD-1 inhibitor x4, post-PD-1 inhibitor x1). Since the 

most-inferior section (section 8) of the on-PD-1i tumor was largely necrotic, we sampled two regions 

from the preceding frozen section (final samples: 2A2, 4A11, 6A3, 6A16). In order to compare the 

three timepoints at bulk tumor level, we combined the multiple on-PD-1 inhibitor tumor sub-samples. 

The R Bioconductor package phangorn (v2.5.5) was utilized to compute the hamming distance under 
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the neighbor joining tree method, and generated unrooted trees(Schliep, 2011). The distance was 

computed after 100 bootstrap iterations with the bootstrap value reflected on the branch. We identified 

somatic mutations using MuTect and both DNA copy-number changes and tumor purity using 

Sequenza(Cibulskis et al., 2013, Favero et al., 2015). We estimated the cancer cell fractions identified 

with a particular mutation, accounting for tumor purity, using PyClone (v0.13.0), which was used to 

infer cancer cell fractions and assign clonal clusters(Roth et al., 2014). Further clonal evolution was 

evaluated through ClonEvol (v0.1)(Dang et al., 2017). 

RNA sequencing 

Paired-end transcriptome reads were aligned using TopHat2, to the UCSC hg19 reference genome(Kim 

et al., 2013). Gene read counts were generated using Htseq-count(Anders et al., 2015). Bioconductor R 

package DESeq2 (v1.24.0) was used to normalize the read counts and for downstream analysis, vsn 

(v3.52.0) was used for variance stabilization(Love et al., 2014, Lin et al., 2008). Differential gene 

expression analysis between the heavy and low infiltrated samples were performed after adjusting for 

variation in tumor content due to core or margin location by excluding samples with very low tumor 

purity (i.e.: sampling predominantly surrounding stroma). Genes with significant changes in expression 

were assessed by including the top 1,000 most variant genes after performing median absolute 

deviation. The genes were clustered based on Euclidean distance and the samples based on Pearson 

correlation with complete linkage. DAVID (v6.8) online functional annotation tools, showed immune-

regulated pathways from the most variable genes with an FDR cutoff of 1%(Huang et al., 2007). 

Pathway analysis was performed on the most differentially expressed genes. ssGSEA was run through 

GSVA (v1.32.0). Pathway level enrichment was run on the output of DESeq2 for each condition 

through DOSE (v3.10.2) and ClusterProfler (v3.12.0)(Hänzelmann et al., 2013, Yu et al., 2015, Yu et 

al., 2012, Yu, 2018). Cell type-specific gene expression was evaluated using immune and melanoma-

specific markers. All heatmaps were constructed using ComplexHeatmap (v2.0.0)(Gu et al., 2016). 

ESTIMATE  (v1.0.13) was used to detect tumor purity and the presence of infiltrating stromal/immune 
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cells in tumor tissues using gene expression data(Yoshihara et al., 2013). Sample distances were 

visualized using Circlize (v0.4.8) and Plotly (v4.9.0)(Gu et al., 2014, Inc). Consensus clustering was 

performed using the Consensus Cluster Plus (v1.48.0)(Wilkerson and Hayes, 2010). Hierarchical 

clustering was used to group the 48 transcriptomic samples with a maximum cluster count of 20. The 

delta area plot was used to determine the relative increase in consensus clustering of samples within a 

given cluster, and to determine a value of k beyond which no appreciable increase was achieved. The 

tracking plot was used to depicts which samples were allocated to which cluster, and lack of correlation 

with geographic location of the sample. For validation across public datasets, we used RPKM/FPKM 

values to build linear models of expression, given the design matrix of binary responders and non-

responders using response classifications based on RECIST v1.1 criteria provided with each paper. In 

order to compare the most representative samples across all datasets, we restricted our analysis from 

the Riaz dataset to include only the on-treatment time point samples. Ribosomal L and S (RPL and RPS 

respectively) genes were excluded from downstream analysis, following which the expression values 

were log-transformed. Linear modelling was performed to fit a model of expression values for each 

gene, given the binary response status(Ritchie et al., 2015). Empirical Bayes moderation was then 

carried out by utilizing information across all genes to obtain precise estimates of gene-wise 

variability(Smyth, 2004). The differentially expressed genes were characterized by FDR-adjusted p-

values of less than 0.05 and log fold change in the positive direction for the non-responders. 

Downstream GO and KEGG pathway enrichment was performed using ClusterProfiler based on a 

logFC greater than 7 and an adjusted P-value of less than 1e-5(Yu et al., 2012). 

Methylation analysis 

We studied methylation levels through the pipeline integrated into the Bioconductor package, ChAMP 

(v2.14.0) using R(Morris et al., 2014). The data was imported as raw idat files and a variety of quality 

control plots were evaluated. The data was imported and filtered based on detection p-value (<0.01) 

and probes with less than 3 beads in 5% of samples per probes. Non-CPG probes and SNP-related 
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probes were then removed. Finally, multi-hit probes and probes located on the X chromosome were 

filtered out. 

Type II probe normalization was performed using BMIQ (v1.5)(Teschendorff et al., 2013). We also 

assessed the number and nature of significant components of variation by using singular value 

decomposition to look at batch effects and COMBAT (v3.32.1) for batch correction(Johnson et al., 

2007). For the identification of Differentially Methylated Regions (DMRs), the BumpHunter (v1.26.0) 

method was used to identify extended segments of the genome that show quantitative alteration in DNA 

methylation levels(Jaffe et al., 2012). 

We used the mean normalized value of beta to collapse probe level data to gene-wise data for integrative 

analysis. Genes on chromosome 7 were used to compare the correlation of expression and methylation. 

The gene level beta values for the most variable genes from expression were used to compare with copy 

number and expression data. 

TCR sequencing 

DNA-based: DNA sequencing of the variable region of the beta chain of the T cell receptor was 

performed by ImmunoSeq (Adaptive Biotechnologies, Seattle, WA)(Robins et al., 2009a, Carlson et 

al., 2013). RNA-based: RNA sequencing of the variable chain of the T cell receptor was performed 

using Immunoverse TCR (ArcherDX, Boulder, CO)(Chasseriau et al., 2004). The TCR clonality was 

used for linear regression. The top 5 clones with respect to DNA and RNA clonal fractions were 

calculated for each sample, and their residuals from the line of best fit were used as a measure of 

activation of TCR clones. Spearman’s rank correlation was performed between the residuals and the 

clonality measured from DNA-based TCR sequencing. The top clones were analyzed using both 

platforms independently and then concurrently. Plot3D was used to map the potential trajectory of the 

most dominant clones across all regions(Soetart, 2013). TCR statistics were computed using the R 

package tcR (v2.2.4)(Nazarov et al., 2015). 
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Stimulation of ZDNNC17 p.H507Y neoantigen specific T cells 

To evaluate the potential in vitro immunogenicity of the ZDNNC17 p.H507Y neoantigen, we 

synthesized 12 overlapping candidate 9-mer peptides (ELIM Biopharmaceuticals, Inc, Hayward, CA), 

spanning the neoantigenic point mutation, and used these peptides to elicit T cell responses from HLA-

A*0301 donor PBMC. Peptides were dissolved in 1× PBS at a concentration of 10 mg/mL. HLA-

A*0301-transfected K562 (A3-K562) cells pulsed with 2 μg/mL of each ZDNNC17 p.H507Y peptide 

were used as antigen presenting cells for stimulating CD8+ T cells from each of two HLA-A*0301 

donors using methods previously established in our lab81. For each peptide stimulation, irradiated (8000 

rads) peptide pulsed K562 cells were co-cultured in a 48 well plate with 1 million PBMC from each 

donor at a ratio of 1:20 in RPMI-1640 containing 25 mM HEPES, 2 mM L-glutamine, 10% human AB 

serum (CTL medium) and β2-microglobulin (3 μg/mL)(Pollack et al., 2014). Three rounds of PBMC 

stimulation with peptide pulsed A3-K562 were performed at 7-day intervals. During the first 

stimulation, IL-21 (30 ng/mL; Peprotech, Rocky Hill, NJ, USA) was included in the cell culture 

medium and during the second and third stimulation cycle, IL-21 (30 ng/mL), IL-2 (10 ng/mL; Bayer, 

Terrytown, NY, USA) and IL-7 (5 ng/mL; R&D Systems, Minneapolis, MN, USA) were added to the 

growth medium as previously described(Pollack et al., 2014, Li et al., 2005). Controls included PBMC 

co-cultured with non-pulsed A3-K562 cells and A3-K562 pulsed with a pool of all 12 peptides.  

After three rounds of stimulation, an aliquot of 100,000 cells from each well was co-cultured overnight 

with peptide pulsed K562 cells at a ratio of 10:1 to assay for antigen specific T cells using flow 

cytometry-based intracellular IFN-γ production assay(Fan et al., 2018). The cells were cultured in the 

presence of the intracellular protein transport inhibitor Brefeldin A (Thermo Fisher, USA). After 

overnight culture, cells were washed and then stained with CD8-APC (Clone K1, BioLegend, San 

Diego, CA) for 20 min. Intracellular staining for IFN-γ-PE (Clone B27, BioLegend, San Diego, CA) 

was performed according to the manufacturer’s protocol. After staining, cells were resuspended in 

100μL of FACS buffer and data was acquired using a NovoCyte Flow Cytometer (ACEA Biosciences, 
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San Diego, CA). Data were analyzed using FlowJo™ software (Tree Star, Ashland, OR, USA). The 

percentage of background IFN-γ positive cells was determined by the response of PBMC co-cultured 

with non-pulsed K562 cells and peptide-specific responses were registered as positive if the proportion 

of T cells producing IFN-γ in response to stimulation with ZDNNC17 p.H507Y derived peptide was 

≥2-fold higher than the background proportion of IFN-γ+ CD8 T cells(Doubrovina et al., 2012). PMA 

+ ionomycin treatment of PBMC served as a positive control for the IFN- γ production assay. 

Single cell sequencing 

Three technical replicates of FACS-sorted T cells (CD45+CD3+) and one replicate of FACS-sorted 

tumor cells (MCSP+) were loaded to a targeted 10,000 cells per lane on the 10X Genomics Chromium 

Controler with the single cell 5’ Immune Repertoire and Gene Expression profiling kit. In total, we 

loaded ~30,000 individual tumor infiltrating lymphocytes (TILs) and ~10,000 melanoma cells on the 

10X platform (10X Genomics, CA, USA). Reverse transcription, TCR enrichment, and library 

preparations were performed according to the 10X Genomics 5’ V(D)J protocol revision C. 

Transcriptome libraries were pooled and sequenced on the Illumina NovaSeq 6000 S2 flow cell with 

26 R1, 8 i7, and 91 R2 cycles respectively. The TCR libraries were pooled and sequenced on the 

Illumina MiSeq V2 150 cycles paired-end. Single cell transcriptomic and TCR data was processed with 

the 10X Genomics Cell Ranger Pipeline version 2.2.0 with the software-provided GRCh38 reference 

transcriptomes(Zheng et al., 2017). After quality control, there was RNAseq profile data available from 

6267 immune and 4303 melanoma cells. Downstream processing and visualization was encompassed 

through Seurat and tSNE plots(Satija et al., 2015, Van Der Maaten and Hinton, 2008). 

Neoantigen prediction 

HLA Class I neoepitopes were predicted for each sample and affinity was predicted for the predicted 

peptides using NetMHCpan (v2.8)(Karosiene et al., 2013). Patient HLA-A, HLA-B and HLA-C 

variants were identified using ATHLATES (v2014_04_26)(Liu et al., 2013). All possible 9- to 11-mer 

peptides flanking a nonsynonymous exonic mutation were generated and binding affinity was predicted 
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based on patient HLA and compared to the wild-type normal peptide counterpart from 

NetMHCpan(Karosiene et al., 2013). MuTect calls were filtered using tumor count >30, normal count 

>10, tumor VAF >0.05, normal VAF <0.01 and tumor power >0.8(Cibulskis et al., 2013). Additionally, 

a FPKM count >1 and an alternate allele count >4 was leveraged from the RNA-seq data. Mutated 

peptides with predicted IC50 <500nM were considered to be predicted neoantigens. 

Copy number alteration (CNA) analysis 

Sequenza was used to obtain copy number segments of log2 copy ratios for tumor samples(Favero et 

al., 2015). CNTools (v1.24.0) was used to identify copy number gain/loss events at log2 thresholds of 

0.6(Jianhua, 2018). The burden of copy number gain or loss was extrapolated from the total number of 

genes with copy number events in each sample. ExomeCNV (v1.4) was used to calculate the log2 copy 

ratios(Sathirapongsasuti et al., 2011). For the TCGA dataset, processed segmented values were used. 

Whole chromosome 7 events were characterized as log segmented mean values greater 0.3 and covering 

greater than 70% of the length of the chromosome.  

Reverse-phase protein array 

Frozen tumor sub-region samples were processed for RPPA analysis in the UT MD Anderson Cancer 

Center RPPA Core Facility using previously described methods 

(https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-

core/rppa-process.html). Briefly, tumor lysates were prepared in RPPA lysis buffer, serially diluted and 

printed onto nitrocellulose-coated slides prior to being probed with ~300 validated primary antibodies 

and detection with biotinylated secondary antibodies specific for the primary antibody species. Signal 

amplification and visualization by a DAB colorimetric reaction was performed prior to slide scanning 

and quantification using the Array-Pro Analyzer software (MediaCybernetics), relative protein level 

estimation using SuperCurve GUI, correction for spatial bias and QC check of each slide. 

Ba/F3 transformation assay 
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Transforming potential of JAK1 wild-type (WT) and variants were assayed in IL-3-dependent Ba/F3 

cell model as described previously(Ng et al., 2018). Briefly, lentivirus vector of JAK1 WT and variants 

were generated with pHAGE-PURO backbone by High-Throughput Mutagenesis and Molecular 

Barcoding (HiTMMoB) technique as described previously(Tsang et al., 2016). All clones were full-

length validated by Sanger sequencing. Virus were produced by transfecting LentiX-293T cells 

(Clontech) with pHAGE-PURO backbone and two packaging plasmids (psPAX2 and pMD2.G) and 

were harvested by filtration through 0.45µm PVDF filter 3 days post-transfection. Six hundred 

thousand Ba/F3 cells were transduced by spinoculation at 1000g for 3 hours in the presence of 

polybrene (EMD Millipore; final concentration: 8 µg/ml), and then incubated in the assay medium 

without IL-3 (Advanced RPMI 1640 with 1x GlutaMAX and 5% FBS; Thermo Fisher Scientific) for 2 

weeks. Cell viability was measured by CellTiter-Glo luminescent cell viability assay (Promega). 

Immunohistochemistry 

Immunohistochemistry (IHC) was performed on each of the 4 FFPE sections using an automated stainer 

(Leica Bond Max, Leica Biosystems) using primary antibodies against SOX10 (polyclonal, 1:50, Cell 

Marque, Cat. No. 383A-7), CD45-LCA (clones 2B11 + PD7/26, 1:300, Dako, Cat. No. M0701), CD45-

RO (clone UCHL1, undiluted, Leica Biosystems, Cat. No. PA0146), CD4 (clone 4B12, 1:80, Leica 

Biosystems, Cat. No. NCL-L-CD4-368), CD8α (clone C8/144B, 1:25, ThermoScientific, Cat. No. 

MA5-13473), Granzyme B (clone GrB-7, 1:25, ThermoScientific, Cat. No. MA1-35461), FoxP3 (clone 

206D, 1:50, BioLegend, Cat. No. 320102), LAG-3 (clone D2G4O, 1:100, Cell Signaling Technology, 

Cat. No. 15372), PD-1 (clone EPR4877(2), 1:250, Abcam, Cat. No. ab137132), PD-L1 (clone E1L3N, 

1:100, Cell Signaling Technology, Cat. No. 13684), PAX5 (clone 1EW, undiluted, Leica Biosystems, 

Cat. No. PA0552), CD68 (clone PG-M1, 1:450, Dako, Cat. No. M0876), CD57 (clone HNK1/Leu-7, 

1:250, Abcam, Cat. No. ab187274), and phospho-p44/42(Erk1/2)(Thr202/Tyr204) (clone D13.14.4E, 

1:300, Cell Signaling Technology, Cat. No. 4370). Slides were counter-stained with hematoxylin, 

scanned using an Aperio slide scanner (Aperio AT Turbo, Leica Biosystems) and digitized images 
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analyzed using the Aperio ImageScope software (Aperio - Leica Biosystems). Three-dimensional 

reconstruction re-connecting the frozen and FFPE slices in a sequential order was performed based on 

the documented inter-slice relationships and histological findings. The IHC slices were gridded into 

smaller pieces in the ImageScope software to match the gridding of frozen sections, and the results 

were obtained for each sub-region. IHC-derived cell subset results were quantified as the number of 

positive-staining cells for each antibody per mm2, using custom-tuned algorithms based on nuclear v9, 

membrane v9, or cytoplasmic v1 algorithms as appropriate for the staining pattern of each antibody. 

Data analysis and statistical considerations 

Statistical analyses were performed using R v3.5.0(R Core Team, 2019). Analysis packages and tools 

used are described in the relevant methods sections. Statistical tests included Welch’s two sample t-test 

and Spearman’s rank correlation with the Benjamini-Hochberg correction for an adjusted p-value 

threshold of 0.05. The R package plot3D and Plotly were used to map sequencing-derived data to spatial 

locations(Soetart, 2013, Inc). Data were parsed and organized through R packages tidyr, reshape2 and 

dplyr(Wickham et al., 2017b, Wickham, 2017, Wickham et al., 2017a). Dendograms and tanglegrams 

were constructed using dendextend(Galili, 2015). Plotting was done through ggplot2 and 

ggrepel(Wickham, 2011a, Slowikowski et al., 2018). 

Aim 2: To delineate genetic and immunobiological biomarkers of response and resistance to 

ICB through longitudinal sampling in the context of metastatic sarcoma 

Biospecimen collection 

Patient data, tumor samples, and matched peripheral blood leukocyte samples were obtained 

and used in accordance with research protocols approved by the local Institutional Review 

Board of the University of Texas MD Anderson Cancer Center. Biospecimens were retrieved, 

collected, and analyzed under UT MD Anderson Cancer Center Institutional Review Board-

approved protocols in accordance with the Declaration of Helsinki.  
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Response Criteria 

Patient responses were coded using irRC and irRECIST with patients deriving clinical benefit 

based on a complete response of all lesions with no new lesions (CR), partial response as 

decrease in tumor burden > 50% from baseline (PR) or stable disease, with no progression 

beyond 25% relative to baseline (SD), and patients who did not receive clinical benefit with 

progressive disease > 25% relative to nadir (PD).  All molecular analysis was conducted based 

on best response criteria at the 12-week time point based on irRC criteria. 

Nucleic acid extraction 

DNA and RNA isolation were performed using the AllPrep DNA/RNA/miRNA Universal kit 

(catalog number 80224, Qiagen) for fresh-frozen samples according to the manufacturer’s 

instructions.  

Whole exome sequencing 

Exome sequencing data were generated using methods as previously described, including 

library preparation using the Agilent SureSelect XT Target Enrichment protocol (#5190-8646) 

prior to sequencing on an Illumina HiSeq 2000/2500 v3 system using 76 bp paired-end reads 

and the Illumina NovaSeq 6000(Mitra et al., 2020). Sequencing data was processed through 

the Saturn V pipeline maintained by the department of Genomic Medicine at the UT MD 

Anderson Cancer Center. Briefly, BCL files were processed through the implementation of 

CASAVA (Consensus Assessment of Sequence and Variation, v1.8.2) for demultiplexing and 

converting to FASTQ. This was followed by alignment using BWA (v0.75) with the hg19 

reference genome build(Li and Durbin, 2009). Duplicates were removed and BAM files were 

constructed from SAM files using Picard. BAM files were then realigned and calibrated 

through the implementation of GATK. Mean target coverage for tumor samples was at 200x 
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while target coverage for PBMC at 100x was achieved. MuTect and Pindel were used to 

identify somatic point mutations and small insertions and deletions, respectively(Cibulskis et 

al., 2013, Ye et al., 2009). Somatic mutations in HLA genes were called using POLYSOLVER 

(v1.0)(Shukla et al., 2015). Data were annotated by ANNOVAR (v20180118) using the NCBI 

Reference Sequence Database(Wang et al., 2010). Copy number events were called using 

Sequenza  and the cghMCR package implemented in R(Favero et al., 2015, Zhang and Feng). 

Tumor purities and ploidies were calculated from the genomic data using the default 

parameters from Sequenza(Favero et al., 2015). GISTIC was used to identify recurrent copy 

number events present in responders and non-responders to ICB at the pre-treatment timepoint. 

Arm level amplifications and deletions were computed using default parameters at an FDR 

threshold of 0.05.  

Mutational Signatures 

De novo mutational signature discovery resulted in an optimal solution of three signatures that 

most contributed towards the mutational processes in the cohort. We then attributed all the 

mutational processes based on established COSMIC signature profiles and found the highest 

contributions from SBS1 (26%), SBS5 (10.5%), SBS15 (7.7%) and SBS10b (5.3%). While 

SBS1 and SBS5 represent spontaneous deamination of 5-methylcytosine or a clock-like 

signature known to occur over time, SBS15 represents defective DNA mismatch repair and 

SBS10b occurs as a result of a POLE mutations and have not been characterized in sarcoma 

before. 

Copy Number Alterations 

Sequenza was used to obtain copy number segments of log2 copy ratios for tumor samples(Favero 

et al., 2015). CNTools (v1.24.0) was used to identify copy number gain/loss events at log2 
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thresholds of 0.6(Jianhua, 2018). The burden of copy number gain or loss was extrapolated from 

the total number of genes with copy number events in each sample. ExomeCNV (v1.4) was 

used to calculate the log2 copy ratios(Sathirapongsasuti et al., 2011). Recurrent copy number events were 

computed using two modalities: GISTIC and the cghMCR package implemented in R(Favero 

et al., 2015, Zhang and Feng, Mermel et al., 2011). Tumor purities and ploidies were calculated 

from the genomic data using the default parameters from Sequenza(Favero et al., 2015). 

GISTIC was used to identify recurrent copy number events present in responders and non-

responders to ICB at the pre-treatment timepoint. Arm level amplifications and deletions were 

computed using default parameters at an FDR threshold of 0.05. 

RNA sequencing 

Paired-end transcriptome reads were aligned using TopHat2, to the UCSC hg19 reference 

genome(Kim et al., 2013). Gene read counts were generated using Htseq-count(Anders et al., 

2015). Bioconductor R package DESeq2 (v1.24.0) was used to normalize the read counts and 

for downstream analysis, vsn (v3.52.0) was used for variance stabilization(Love et al., 2014, 

Lin et al., 2008). Differential gene expression analysis between responders and non-responders 

as defined as patients with partial responses and those with progressive disease was performed 

at the pre-treatment time point.  

Consensus clustering was performed on the pre-treatment samples. A max iteration of K was 

defined at 10, using a 1000 fold repetition with the Manhattan distance being utilized using the 

pam clustering algorithm(Wilkerson and Hayes, 2010). The delta area plot was used to 

determine a value of k (=3) beyond which no appreciable increase in heterogeneity was 

observed. All heatmaps were constructed using ComplexHeatmap (v2.0.0)(Gu et al., 2016). 

ESTIMATE (v1.0.13) was used to detect tumor purity and the presence of infiltrating 
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stromal/immune cells in tumor tissues using gene expression data(Yoshihara et al., 2013). 

Consensus clustering was performed using the Consensus Cluster Plus (v1.48.0)(Wilkerson 

and Hayes, 2010). Hierarchical clustering was used to group the pre and on-treatment samples 

with a maximum cluster count of 10. The delta area plot was used to determine the relative 

increase in consensus clustering of samples within a given cluster and to determine a value 

of k beyond which no appreciable increase was achieved. A suite of immune deconvolution 

tools were employed in the pre-treatment setting to call consensus based calls of immune 

infiltrate proportions including CIBERSORT, MCP-counter, EPIC, x-Cell, quantiSeq, TIMER 

and immundeconv(Newman et al., 2015, Becht et al., 2016, Aran et al., 2017, Li et al., 2016b, 

Racle et al., 2017, Finotello et al., 2019, Sturm et al., 2020). A consensus of these calls was 

then used to estimate proportions of monocytes, neutrophils, B-cells, T-cells, NK-cells, 

dendritic cells, endothelial cells and fibroblasts. The consensus of these immune-cell 

compositions was then consensus clustered based on the optimal k of the transcriptomic data 

to result in immune cold, immune intermediate and immune hot clusters. Similar analysis for 

immune deconvolution was performed at the on-treatment time point. Sankey plots were 

constructed to depict change in immune clusters between the pre-treatment and on-treatment 

time point for patients using ggalluvial(Brunson, 2020). 

LIONESS or  the linear interpolation to obtain network estimates for single samples was used 

to reconstruct single-sample networks(Kuijjer et al., 2019). Briefly the workflow included 

subsetting the top 1000 most variable genes present in the transcriptome at the pre-treatment 

time-point. Following which a design model matrix was built to model response in the cohort. 

We then calculated differences in the condition specific matrices between responders and non-

responders and converted these adjacency matrices to edge lists. The single sample networks 
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were then computed based on co-expression using LIONESS. Limma analysis was then used 

to select the top 100 most differentially expressed gene edges(Ritchie et al., 2015). Coefficient 

edges were then colored based on the weights of these edges between responders and non-

responders while nodes were colored using based on the t-statistic from differential expression 

analysis.  

For validation across melanoma public datasets, we used reads/fragments per kilobase of 

transcript per million mapped reads (FPKM) values to build linear models of expression, given 

the design matrix of binary responders and non-responders using response classifications based 

on RECIST v1.1 criteria provided with each paper. For each of the publicly available 

melanoma datasets, MCP-counter was used to ascertain immune cell proportions using default 

parameters(Becht et al., 2016). Paired histogram, density and scatter plots were constructed 

using GGally(Barret Schloerke, 2021). 

Nanostring Analysis 

RNA from the SARC028 cohort was analyzed using the nCounter Technology (Nanostring 

Technologies) as per the manufacturer’s protocol. Filtering was performed utilizing quality 

assurance checking, normalization and batch effects adjustments of Nanostring data using 

Nanostringr(Talhouk et al., 2016). NanostringNorm was used for data normalization and for 

filtering out samples with failed flagged values of quality check(Waggott et al., 2012). 

Downstream computation of immune cell infiltrate was performed using a modified version of 

MCP-counter(Becht et al., 2016). 

B-cell Receptor repertoire inference 

A modified version of the TRUST algorithm was executed to quantify the B-cell 

immunoglobulin hypervariable regions from the RNA-seq data(Hu et al., 2019). CDR3 
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sequences of the B-cell Immunoglobulin Heavy (IGH) chain and Immunoglobulin Light (IGL) 

chain were assessed to infer the BCR clonotypes. In order to use the most robust data, in frame 

productive sequences were used for downstream analysis along with filtering out samples with 

low template counts. Following filtering, the number of BCR clonotypes detected in each 

sample was normalized based on sequencing depth. The immunarch package was used to 

quantify Simpson clonality and Simpson diversity(Team, 2019). Largely dominant IGH and 

IGL BCR clonotypes were computed using templates that occupied greater than 1% of the 

entire repertoire for any given sample.  

Immunohistochemistry staining for CD20 and CD56 

We performed singlet chromogenic immunohistochemistry to detect CD20+ and CD56+ 

positive cells. We used Leica Bond Max (Leica Bio systems Nussloch GmbH) automated 

strainer, the protocol is briefly described:  four-μm formalin-fixed paraffin embedded tumor 

tissue sections were deparaffinized and rehydrated following the Leica Bond protocol. Antigen 

retrieval was performed with Bond ER Solution #2 ((Leica Bio systems, equivalent to EDTA 

based buffer, pH 9.0). The primary antibody  (CD20, clone L-26, Agilent Dako, Cat#M0755, 

dilution 1:1400; CD56, clone 123C3, DAKO, Cat#M7304 ) was incubated for 15 minutes at 

room temperature and detected using the Bond Polymer Refine Detection kit with DAB as 

chromogen. The slides were counterstained with hematoxylin, and then they were dehydrated 

and cover-slipped for image analysis. 

Immunohistochemistry stained slides were scanned using Aperio AT2 scanner (Leica 

Biosystem) at 20x, the images were visualized and evaluated using image analysis 

software  (Halo software, Indicia Labs). A pathologist trained in image analysis selected the 

viable tumor tissue area (areas of necrosis or artifacts were excluded for analysis), then the 
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cytonuclear algorithm v2.0.5 was used to identify CD20+ and CD56+ positive cells. We 

reported the results as cell densities (n/mm2) using the following formula: number of positive 

cells for each biomarker divided by the tissue area (mm2) analyzed. 

Multiplex immunofluorescence staining  

Multiplex immunofluorescence (mIF) was conducted on pre-treatment and on-treatment 

samples. Briefly, four micrometer-thick formalin fixed, paraffin embedded sections were 

stained using an automated staining system (BOND-RX; Leica Biosystems, Buffalo Grove, 

IL) on two panels containing the following markers: CD3, CD8, PD-1, PD-L1, CD68, 

Granzyme B, CD45 RO and FOXP3. Pre and on-treatment samples were then 

immunophenotyped based on the co-localization of these markers including: T lymphocytes 

[(CD3+CD8+)+(CD3+PD-1+)+(CD3+CD8+PD-1+)+(CD3+)], Cytotoxic T cells 

[(CD3+CD8+)+(CD3+CD8+PD-1+)], T cells antigen-experienced [(CD3+PD-

1+)+(CD3+CD8+PD-1+)], Cytotoxic T cells antigen-experienced (CD3+CD8+PD-1+), 

Macrophages [(CD68+PD-L1-)+(CD68+PD-L1+)] and Percentage of macrophages PD-L1+ 

(CD68+PD-L1+) for Panel 1. Panel 2 was characterized using: T 

lymphocytes[(CD3+CD8)+(CD3+CD8+G&B+)+(CD3+CD8+CD45RO+)+(CD3+FOXP3+)

+(CD3+CD8+FOXP3+)+(CD3+)], Cytotoxic T cells activated (CD3+CD8+G&B+), 

Effector/memory cytotoxic T cells (CD3+CD8+CD45RO+) and Regulatory T cells 

[(CD3+FOXP3+)-(CD3+CD8+FOXP3+)]. Immunofluorescence was performed 

simultaneously for each fluorochrome to make a spectral library and stained slides were 

scanned using the multispectral microscope, Vectra 3.0.3 imaging system (Akoya 

Biosciences/PerkinElmer PerkinElmer), under fluorescence conditions at 40x magnification . 

Analysis was performed based on regions of interest determined by the pathologist. Final 
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immune cell densities were reported as the average density of cells per mm2. Samples without 

tumor areas or severe necrosis accompanied by lack of viable tumor cells were excluded from 

analysis. 

TCR Sequencing 

DNA sequencing of the variable region of the Beta chain was performed by Immunoseq 

(Adaptive Biotechnologies, WA)(Robins et al., 2009a, Carlson et al., 2013). Immunarch was 

used to compute the clonality and diversity present within our cohort(Team, 2019). The top 

clonal proportions for each sample was calculated following the clonal proportions defined as 

a highly expanded clone (>0.1 of repertoire), largely expanded clones (0.001 < x < 0.1), 

medium (0.0001 < x  < 0.001) and rare (< 0.00001) clones. Using the ImmunoSeq analyzer, 

we estimated the levels of Simpson clonality, maximum productive frequency (frequency of 

the most productively forming clone), Simpson diversity, Simpson Evenness and Shannon 

diversity. Simpson diversity was defined as the complement of the Simpsons’ Dominance (1- 

Dominance). Simpsons’ Evenness is calculated from Simpson’s D by dividing by the richness 

of the repertoire ((1-Dominance/Richness). Maximum productive frequency is computed using 

the highest frequency of the most dominant clone in a sample accounting for only in frame 

sequences that would produce a functional template. 

Aim 3: To characterize the landscape of immune microenvironment of Barrett`s esophagus and 

high-grade dysplasia by multiplex immunofluorescence and TCR sequencing 

Cohort Selection 

We searched our institutional databases and identified 10 patients of EAC who underwent 

esophagogastrectomy or endoscopy-based resection without preoperative therapy. All patients 

had BE on esophagogastroduodenoscopy and on pathology examination.    
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Multiplex immunofluorescence (mIF) staining 

Multiplex immunofluorescence staining was performed using similar methods that have been 

previously described and validated(Parra et al., 2017). Briefly, four micrometer-thick formalin 

fixed, paraffin embedded sections were stained using an automated staining system (BOND-

RX; Leica Biosystems, Buffalo Grove, IL) and a panel of antibodies against: pan cytokeratin, 

CD3, CD8, CD45RO, Granzyme B, and FOXP3 (Supplemental table-1). All the markers were 

stained in sequence using their respective fluorophore in the Opal 7-color fIHC kit (catalogue 

#NEL797001KT; Akoya Biosciences/PerkinElmer, Waltham, MA) (Parra et al., 2019). 

Uniplex IF was performed simultaneously for each fluorochrome to make a spectral library in 

human tonsil FFPE tissues as control and was used in the multispectral analysis. The stained 

slides were scanned using the multispectral microscope, Vectra 3.0.3 imaging system (Akoya 

Biosciences/PerkinElmer PerkinElmer), under fluorescence conditions at 10x 

magnification(Parra et al., 2019). Entire EAC or BE region on a slide was selected as regions 

of interest (each ROI, 0.335 mm2) by a pathologist using the phenochart 1.0.9 viewer (Akoya 

Biosciences/PerkinElmer PerkinElmer).  Multispectral Analysis: InForm 2.4.0 Image Analysis 

software (Akoya Biosciences/PerkinElmer) was used to analyze the scanned images. Using the 

tissue segmentation tool, each ROI was divided into intraepithelial and stromal compartment. 

The phenotype was defined based on co-localization of antibodies and a training algorithm was 

created as described earlier (Parra et al., 2017, Parra et al., 2019). The algorithm identifies each 

cell separately for one of the phenotypes mentioned. The final report of the various cell 

phenotypes is created by the InForm software expressing the results as number of cells of each 

phenotype in the individual compartment per mm2. All the data was consolidated using the R 
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studio 3.5.3 (Phenopter 0.2.2 packet, Akoya Biosciences/PerkinElmer) and SAS 7.1 

Enterprise. 

TCR sequencing  

DNA sequencing of the variable region of the beta chain of the TCR (TCR-beta) was 

performed with immunoSEQ (Adaptive Biotechnologies, Seattle, WA) (Robins et al., 2009b). 

TCR clonality was computed using the Simpson Clonality Index (Simpson, 1949). The 

observed richness was computed as the number of unique nucleotide rearrangements per 

sample. The top 10 clones for each sample were calculated using the read proportions derived 

from the immunoSEQ analysis. We used the Shannon Equitability Index, computed as 

normalized Shannon entropy, to determine each repertoire’s degree of uniform distribution; 

values approaching 0 indicated a very skewed distribution of frequencies (i.e., more variation 

in abundance), whereas values approaching 1 indicated nearly identical frequencies of every 

rearrangement (i.e., less variation in abundance). The inverse Chao, Efron thisted and Daley 

Smith estimator metrics are non-parametric models of determining repertoire richness and 

abundance based that were computed based on sample richness, extrapolation of the rarefaction 

curve and accounting for sampling depth (Chiu et al., 2014, Efron and Thisted, 1976, Daley 

and Smith, 2013).  

Statistical Analysis 

Statistical analyses were performed using R v3.6.1 (R Core Team, 2019). Analysis packages 

and tools used are described in the relevant methods sections. Statistical tests included basing 

the distribution of the samples based on a Shapiro test for normality. Mean analysis for groups  

with normal distribution were carried out using a two-sample t-test (for two groups) or 

ANOVA (for multiple groups) while non-parametric tests were carried out using the Wilcoxon 
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Rank sum test (for two groups) and the Kruskal-Wallis test (for multiple groups). TCR 

statistics were computed using the R packages tcR (v2.2.4) and immunarch(Team, 2019). Data 

were parsed and organized through R packages tidyr, reshape2, and dplyr (Wickham et al., 

2017b, Wickham, 2007, Wickham et al., 2017a). All TCR-seq based Plotting was done through 

ggplot2 and ggrepel (Wickham, 2011b, Slowikowski et al., 2018).TCR statistics were 

computed using the R packages tcR (v2.2.4) and immunarch(Team, 2019). 
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Chapter Three: Spatial Intratumor Heterogeneity 
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3.1 Introduction 

Modern treatment paradigms increasingly expose patients with metastatic melanoma to multiple 

treatment modalities through the course of their disease(Coit et al., 2016). Immune checkpoint blockade 

in particular has revolutionized the therapeutic landscape, yet durable clinical benefit remains limited 

to a subset of patients(Chen et al., 2016a, Reuben et al., 2017, Roh et al., 2017). Numerous biomarker 
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studies aiming to elucidate why the majority of patients fail to respond have revealed both immune and 

genomic contributors to therapeutic activity but incorporation of such factors into clinical practice is 

not yet routine(Chen et al., 2016a, Roh et al., 2017, Snyder et al., 2014a, Van Allen et al., 2014, Van 

Allen et al., 2015a). 

Intra- and inter-tumoral heterogeneity can influence lesion-specific and overall patient response to 

therapy and may contribute significantly to tumor immune evasion(Reuben et al., 2017, Joyce and 

Pollard, 2009, Akbani et al., 2015). Studying the influence of intra-tumoral heterogeneity (ITH) using 

standard approaches such as bulk tumor sequencing or single cell sequencing generally loses spatial 

information. Thus, here we perform spatially detailed immune and genomic analysis of three metastatic 

lesions, including 67 sub-regions of one tumor sampled throughout its entire mass, from a heavily 

treated but long-term surviving melanoma patient. Through molecular analyses coupled with strict 

retention of spatial detail, we reconstruct the striking relationship between genomic and immune 

heterogeneity. We identify a remarkable link between copy number gain of chromosome 7 and an 

unfavorable immune composition driven by neutrophil activation recapitulated within TCGA 

melanoma samples and dominating non-responders to checkpoint blockade immunotherapy across 

multiple published cohorts. We also identify a long-term persistent T cell clonotype having potential 

relevance to vaccine and cellular immunotherapy. 

3.2 Results 

Longitudinal tumor sampling 

Tumor and blood biospecimens were obtained from a Caucasian female diagnosed with de novo stage 

IV M1b melanoma of unknown primary metastatic to the left lung at the age of 77. Following initial 

curative intent wedge resection of the solitary NRASQ61R mutated lung metastasis (Fig. 1A, lesion 1), 

her clinical course was remarkable for long-term survival despite multiple lines of therapy for widely 

distributed soft tissue metastases with limited to no objective response over the following 8 years (Fig. 

1A). To explore the relevance of intra-tumoral heterogeneity (ITH) to the setting of long-term survival 
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with metastatic disease, we studied a ventral abdominal wall metastasis resected due to isolated 

progression during therapy with the PD-1 inhibitor pembrolizumab. This mass (Fig. 1A, lesion 2) was 

subjected to extensive multi-dimensional spatial and immunogenomic profiling by serial sectioning and 

use of alternate tumor sections for region matched immunohistochemistry analyses (odd numbered 

slices) and genomic and proteomic analyses (even numbered slices; Fig. 1B). Individual sections were 

further sub-divided into up to 20 regions (Fig. 1B, Supplementary Fig. 1), producing a total of 67 

regions assessed by at least one analytical platform (Supplementary Data 1). 

Mutational ITH is highly prevalent and spatially restricted 

To characterize genomic ITH within the tumor specimen progressing during PD-1 inhibitor treatment 

(“on-PD-1 inhibitor” tumor), we performed deep targeted DNA sequencing for a panel of 265 cancer-

related genes (Supplementary Data 2) of DNA from 41 tumor sub-regions. Of 53 identified somatic 

mutations, 28% (15 of 53) were shared in all 41 regions whereas 30% (16 of 53) were restricted to a 

single region, consistent with a degree of mutational ITH not previously described at this resolution. 

Somatic mutations in putative melanoma driver genes including NRASQ61R, BRAFG421R and 

MAP2K1P124S, all key components of the MAPK pathway, were ubiquitously detected in all 41 regions, 

supporting the notion that somatic mutational heterogeneity is predominantly attributable to passenger 

mutations. A JAK1P1044S mutation affecting the activation loop of JAK1 detected in all 41 regions that 

conferred signaling hypomorphism by Ba/F3 mutant transformation assay (Fig. 1C), potentially 

contributed to the immunotherapy resistance displayed by this tumor clinically(Zaretsky et al., 2016). 

Genomic ITH is dominated by copy number alterations 

Analysis of copy number alterations (CNAs) detected across all 41 deeply sequenced samples identified 

gains of chromosome 6p and 20q, and losses of chromosome 6q and 9p, each of which has previously 

been identified in melanoma clinical samples (Fig. 1D)(Akbani et al., 2015). Subclonal alterations were 

also seen, including chromosome 7 gain in 4 samples, whole chromosome 10 loss in 5 samples, 10p 

loss in 1 sample, and chromosome 13 gain in 4 samples. Samples with subclonal loss of chromosome 
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10 were localized in adjacent tumor slices, but subclonal gains of chromosome 7 and 13 were found at 

non-contiguous sites (Fig. 1D). While previous studies have shown metastatic potential being 

associated with the loss of chromosome 10, we found evidence of regional losses of chromosome 10, 

most extensively along the tumor margin, suggesting this may be selected for in the context of stromal 

interactions at advancing tumor margins(Kabbarah et al., 2010). Nearly half (17/39, 44%) of the 

differentially expressed genes associated with chromosome 10 copy number losses were located on 

chromosome 10 itself, characterized by relatively high expression but low fold-change. Additional, 

more pronounced changes (at fold-change level) were observed in differentially expressed genes 

located on other chromosomes, such as MT1B (chr16), TNNT3 (chr11) and MUC12 (chr7) and 

RPS6KA6 (chrX) (Supplementary Data 3). Additionally, unique chromosomal CNAs were found in 

nearly all (12 of 14) regions, demonstrating that CNAs may develop along spatially distinct trajectories 

even within a single metastasis. Comparing CNAs across longitudinal metastases of this patient, we 

also identified progressive stepwise regional loss of chromosome 10 in relation to therapy (pre-, on-, 

and post-PD-1 inhibitor therapy), thus implicating this CNA in both tumor margin dynamics and overall 

disease progression (Supplementary Fig. 2). 

Immune cell content is highly and spatially diverse 

We next characterized the ITH of gene expression patterns in the tumor, to gain insight into the nature 

of local tumor-immune microenvironments. Unexpectedly, unsupervised hierarchical clustering based 

on transcriptomic profiling revealed limited association between regional gene expression and 

histologic features such as intra-tumoral site (e.g.: “core” surrounded only by tumor mass versus 

“margin” spanning the tumor edge and including surrounding tissue) (Fig. 2A, Supplementary Fig. 

3A). We then used several immune deconvolution tools to enumerate separate immune, stromal, and 

tumor cell populations as well as melanoma-, AXL- and MITF-related gene expression 

programs(Tirosh et al., 2016, Yoshihara et al., 2013, Rooney et al., 2015, Becht et al., 2016, Li et al., 

2016b, Newman et al., 2015). Sub-regions with high content of one immune cell subset generally 
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displayed an enrichment for multiple cell subsets, indicative of a broadly diverse infiltrating immune 

population, and consistent with the observed high correlations between immune cell marker stains by 

immunohistochemistry (Fig. 2B-C, Supplementary Fig. 3B-C). Samples with higher immune activity 

were over-represented at tumor margin sites (p<0.001, Fisher’s exact test), reflecting the spatially 

excluded (i.e.: peri-tumoral) leukocytic accumulation observed on IHC (Fig. 2A, Supplementary Fig. 

1). A notable exception was particularly high T and B cell signatures in multiple samples of section 8 

(8A6, 8A7, 8A8, and 8A13), which was highly necrotic and displayed heavy neutrophil infiltration on 

matched FFPE slices (CD15 stain; Supplementary Fig. 3D) although this could not be determined as 

the cause or consequence of necrosis. In many cases, high immune cell signatures were accompanied 

by high expression of interferon-stimulated genes. Relatively low levels of variability were observed 

in expression of genes linked to melanoma cell phenotype (i.e.: melanocytic, MITF-related and AXL-

related gene sets), however the same samples that displayed prominent and uniform immune signature 

upregulation also displayed a non-melanocytic phenotype that is known to be associated with 

mesenchymal-like and pro-invasive cellular behaviors, evidenced by high expression of the AXL-

related gene set, and correspondingly low expression of the melanocytic and MITF-related gene sets 

(Supplementary Fig. 3A)(Konieczkowski et al., 2014, Garraway et al., 2005). 

Mirroring transcriptional ITH, a high degree of ITH was observed between samples at the protein level, 

measured by a 296-target reverse-phase protein array (Supplementary Fig. 3E). Within the most 

spatially variable proteins, two notable modules of co-expressed proteins emerged; one including 

AIM1, ARID1A, MTOR, STAT5A, DUSP4 and SOX2, resembling a melanocytic cellular origin, and 

an anti-correlated set comprising AXL, PDGFR, JAK2, STAT, PDCD1 (PD-1) and PREX1, suggesting 

a mesenchymal-shifted and/or immune-infiltrated set (Fig. 2D). Several proteins were significantly 

associated with either locally low (VIM, SOX2) or high (MYH11, LCK, PTK2) immune infiltrate 

(FDR<0.10, Spearman’s rho rank correlation, Fig. 2D). 

Sites of similar immune composition may be spatially remote 
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Using sample-wide Euclidean distance metrics to connect samples with highly similar immune 

composition based on immune deconvolution rather than reductive immune scores or overall immune 

cell densities, we found that similar immunophenotypes were unrestricted by location at core or margin 

sites (e.g.: core 4A7 vs margin 6A3), or by spatial proximity (Fig. 2E). Three-dimensional mapping 

across all sampled regions of the tumor revealed clear but disconnected pockets of immune activation 

and suppression as typified by signatures derived for cytolytic activity, type I IFN activity and an anti-

inflammatory signature (Fig. 2F)(Rooney et al., 2015), indicative of a degree of immunophenotype 

convergence. To address the implications of regional immune phenotype variation for clinical 

biomarker assessment, we performed consensus clustering of samples based on gene expression data 

and identified an optimal four cluster solution, being the minimum number of distinct regional 

“phenotypes” that would need to be sampled in order to approximately represent the transcriptional 

heterogeneity present across the entire tumor mass (Supplementary Fig. 3F). Importantly, we found 

that each of these clusters contained non-contiguous samples, indicating a low chance of 

serendipitously sampling all microenvironmental types with any single biopsy of the lesion 

(Supplementary Fig. 3F). 

ITH implicates simultaneous methods of immune exclusion 

Given progression of this tumor through anti-PD-1 immunotherapy, and previous findings suggesting 

a predictive significance of the immune status at the invasive tumor margin, we next compared tumor 

regions having either a high or low immune cell content as measured by a pan-leukocyte stain 

(CD45LCA) on IHC (Supplementary Fig. 1)(Tumeh et al., 2014). The most differentially expressed 

genes enriched in heavily infiltrated sub-regions included FCRL1, CADM3, CR2 and PAX5 (Fig. 3A, 

Table 1, Supplementary Data 4 Top 100), as well as genes involved in T cell function including 

CD3D, CD28, ZAP70, and CD40LG, in agreement with extensive CD8 and CD4 staining of 

mononuclear cells within these highly immune infiltrated regions by IHC (Fig. 3B-D). At the gene 

ontology pathway level, these differentially expressed genes contributed to mixed T and B cell 
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enrichments and a substantial degree of functional gene connectivity (Fig. 3C-D), that was maintained 

even when specifically comparing samples located at the tumor margin (Supplementary Fig. 4A-B). 

We also identified a clear B cell gene enrichment in highly immune infiltrated samples, driven by PAX5, 

BLK, CD19, CLECL1, CD180, CD22, CD79A (Fig. 3C-D, Table 2). Parallel PAX5 immunostaining 

of tumor sections confirmed B cell lineage presence within these immune infiltrated samples localized 

to intra- and peri-tumoral leukocytic infiltrates, or within dense para-tumoral clusters associated with 

blood vessels and other immune cell types, suggestive of tertiary lymphoid structures (Fig. 3E). 

Additionally, a pro-tumorigenic M2 macrophage signature was evident throughout most regions of the 

tumor (Supplementary Data 5)(Newman et al., 2015, Coates et al., 2008). Tumor associated 

macrophages at the tumor periphery are known to be associated with tumor progression thus these data 

implicate active participation of immunosuppressive macrophages in the observed clinical progression 

of this tumor despite anti-PD-1 therapy(Qian and Pollard, 2010). 

Reasoning that grouped analyses may obscure the true extent of variability in gene expression between 

individual samples, we performed single sample GSEA (ssGSEA) to gain a finer resolution of the 

functional transcriptomic activity(Barbie et al., 2009). Strikingly, unsupervised hierarchical clustering 

of the samples based on ssGSEA of Hallmark gene sets again revealed little similarity in terms of 

physical location within the tumor or the extent of peri-/intra-tumoral immune infiltrate (Fig. 3F). 

Samples with prominent enrichment of WNT/β-catenin signaling (2A10, 2A13, 2A16, 4A11, 8A4), 

which is a known tumor cell-intrinsic mechanism of immune cell exclusion(Spranger et al., 2015), were 

typically located at the tumor margin but did not show consistent association with immune cell content, 

although when immune cells were present, they were largely peri- or extra-tumoral in distribution. 

These data suggest that WNT/β-catenin signaling may contribute to exclusion of an immune infiltrate 

when one is present, but additional factors are necessary to explain the complete absence of an immune 

infiltrate from some regions. Intriguingly, despite known presence of activating NRAS and MAP2K1 

mutations, phospho-ERK1/2 (pERK) expression (by IHC) was largely absent from tumor cells except 
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when located at or immediately beneath the tumor margin (Fig. 3G), suggesting MAPK activation in 

response to factors originating near the tumor surface. Areas of strong tumor cell pERK staining were 

frequently observed in association with overlaid peri-tumoral immune infiltrates, thus tumor cell ERK 

activation may be actively involved in the maintenance of immune cell exclusion, and at a scale that is 

significantly more spatially localized than previously thought based on pre-clinical models and broad 

assessments of patient samples(Khalili et al., 2012, Frederick et al., 2013). 

Integrative analyses of multimodal molecular phenotypic data 

Having identified clear links between immune and genomic heterogeneity throughout sub-regions of 

this tumor, we sought to identify genomic features underlying this through an integrative analysis of 

CNA and mRNA data, with the addition of methylation as a potential modulator of transcriptional 

activity. Examining the 560 most variably expressed genes for which all genomic data were available, 

unlike CNA, underlying methylation patterns appeared more variable between samples rather than 

between genes, implying that a genome-wide methylation state interacts with more localized genomic 

and post-transcriptional influences to affect gene expression in this context (Fig. 4A). From an immune 

standpoint, transcriptome-derived ESTIMATE immune scores trended lower in regions with 

chromosome 10 losses (p=0.088, two sided t-test), and were significantly lower in regions with sub-

clonal gain of chromosome 7 (p=0.018, two sided t-test)26. Similarly, differentially expressed genes 

were enriched within CNA-affected regions of chromosome 6 and 7 (p=3.53e-7 and 1.22e-5, 

respectively, Benjamini-Hochberg corrected p-value). As expected, the clear majority of genes on 

chromosome 7 showed positive correlations between copy number and transcript abundance, consistent 

with CNA representing a dominant method of regulation of these genes (Fig. 4B, upper panel). 

However, copy number versus transcript correlations were negligible for four genes (CALD1, CCT6A, 

CHCHD2, and ESYT2) and negative for six genes (ACTB, AEBP1, COL1A2, GIMAP4, GIMAP7, and 

SFRP4), suggesting that additional mechanisms regulate transcript abundance of these genes, such as 

methylation. Gene methylation was inversely correlated with transcript abundance and thus consistent 
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with negative regulation of transcription for most chromosome 7 genes (Fig. 4B, lower panel), 

including all but three of the copy number discordant genes (GIMAP4, GIMAP7 and SFRP4). Notably, 

SFRP4 is a soluble modulator of Wnt signaling that may antagonize Wnt-driven immune exclusion 

when highly expressed. GIMAP4 is known to be involved in the regulation of Th1 versus Th2 T cell 

phenotypes. Using the unique genome-phenotype associations of chromosome 7 to model overall 

regulatory complexity and ITH, we found strikingly little similarity in the unsupervised clustering 

patterns of sub-regions based on copy number, methylation or transcript abundances, evidenced by a 

high degree of cross-cluster entanglement indicating the action of additional (unmeasured) factors in 

regulation of these genes (Fig. 4C). Furthermore, sub-regions of similar immune cell content (measured 

by IHC) were generally dispersed throughout the clusters, thus demonstrating unequivocally the 

presence of profound ITH underlying broadly similar appearing immune microenvironments at the 

cellular level. 

Tumor-specific and agnostic T cell recruitment occurs on a regional basis 

T cell function is central to current immunotherapy efficacy, hence, we performed sequencing of the 

variable region of the T cell receptor beta chain using both DNA and RNA approaches to study T cell 

ITH. T cell repertoire clonality was substantially variable between samples (Fig. 4D), suggesting highly 

localized patterns of clonal expansion and contraction that result in variable repertoire composition 

throughout the volume of an individual tumor. Only 0.02% of all TCR rearrangements were detectable 

in all regions of the tumor and the vast majority (74.6%) were restricted to a single region. We identified 

the top five highly transcriptionally active T cell clones per sample by plotting complementary 

productive frequencies generated from DNA- and RNA-based approaches (Supplementary Fig. 5): 

Three dominant clonotypes were present at high abundances across multiple regions of the metastasis 

(Fig. 4E). One dominant clonotype, at the amino acid level, present as a top five clone in all samples 

(CSVPTSGSRDNEQFF), was most prevalent in the upper sections (2 and 4) and least prevalent in the 

lowest section 8, which also had the lowest proportion of viable tumor. The next two most prevalent 



 51 

clones present in 72% (CASSSLQGARREETQYF) and 69% (CASSLHGDQPQHF) of all samples 

were particularly enriched in sections 6 and 8. 

We examined repertoire overlap between samples to infer intra-tumor trajectories of T cell clones and 

found a high level of T cell clonal overlap between samples within section 8 (Fig. 4F). Conversely, 

there was greater sharing of clonotypes between sections 4 and 6, and more sparsely with section 2, 

paralleled by evidence of greater immune activation in key regions of these sections. The greater 

restriction of T cell clones within section 8 may reflect a functionally distinct T cell repertoire reacting 

to the prevailing necrotic conditions seen histologically throughout much of this section. Overall, this 

spatial variation suggests underlying differences in regional immunogenicity and antigenicity driving 

local accumulation of different T cell clones. 

The observation of marked T cell repertoire ITH (Fig. 4D) and apparently distinct T cell repertoires 

between distinct regions of the tumor was surprising given the comparatively similar mutational 

landscape between tumor sub-regions. To explore the relationship between T cell clonal composition 

and tumor mutations we compared the truncal set of 15 mutations found in every subsample of the 

metastasis with the most highly expanded TCR-Vβ sequences found simultaneously in high proportions 

across all regions. In general, the productive frequencies of these expanded T cell clones correlated 

positively with the mutation variant allele frequencies (VAF), suggesting a surrogate relationship 

between VAF, tumor content and T cell clones reactive to tumor (but not necessarily these exact 

mutations). However, some expanded T cell clones showed inverse or mixed patterns of correlation 

with this set of truncal mutations, (Supplementary Fig. 6), including several clones negatively 

correlated with all the shared mutations, such as one (CASSLHGDQPQHF) that was predominantly 

found expanded in the necrotic slices. Together, these data indicate that while certain expanded T cell 

clones correlate positively with a set of truncal tumor mutations and are likely tumor specific, a distinct 

population of expanded T cell clones generally anti-correlate with truncal tumor mutations and although 
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present within some regions of the tumor, are likely not specific for tumor antigens and may be non-

specifically recruited into regions of inflamed/necrotic TME. 

T cell clone persistence reveals recurrent priming and functional diversity 

Leveraging the availability of peripheral blood samples and tumor samples obtained from distinct 

metastatic deposits spanning treatment-naïve, progression on-PD-1 inhibitor and progression post-PD-

1 inhibitor time points (Fig. 1A), the temporal dynamics of the T cell repertoire were evaluated. 

Strikingly, the dominant clone present within the progressing abdominal wall tumor during PD-1 

inhibitor therapy was not only present over time but was the most hyperexpanded clone within the 

treatment naive lung tumor sampled 7 years earlier (Fig. 4E). Evaluation of predicted neoantigens 

revealed one (ZDHHC17 p.H507Y; IC50=77.17nM) that was shared amongst all tumor specimens. 

These data are at least consistent with a common neoepitope driving a persistent T cell response over 

time. In order to validate the potential in vitro immunogenicity of the ZDHHC17 p.H507Y neoantigen, 

we synthesized 12 overlapping candidate 9-mer peptides spanning the point mutation and used these 

peptides to elicit CD8 T cell responses from HLA-A*0301 donor peripheral blood mononuclear cells 

(PBMC) in peptide stimulation assays in vitro (see Methods). Compared with donor PBMC co-cultured 

with non-peptide pulsed A3-K562 cells, we observed elevated IFN-γ production by CD8 T cells of two 

HLA-A*0301 donors with several peptides (4, 6, 7, 9, 11 and 12) but most particularly from peptides 

4 and 12 which induced the most robust responses at an average of 3-5 fold greater than background 

levels (i.e.: unpulsed cells), thus representing immunogenic epitope candidates (Supplementary Fig. 

7A-B). 

To evaluate the functional characteristics of this remarkably persistent T cell clonotype, we harnessed 

matched single cell TCRα, TCRβ and transcriptome sequencing of sorted CD45+CD3+ T cells within 

the post-PD-1 inhibitor tumor. The T cells clustered broadly into a population of activated cytolytic T 

cells (49%, CTL) expressing CD8A, GZMA, and PRF1 and checkpoint-regulated T cells (20%) 

expressing multiple immune checkpoints including ICOS, CTLA-4 and TNFRSF18 but which were also 
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dominantly CD4-expressing (Fig. 4G-H, Supplementary Fig. 7C). We recovered 11 counts of the 

persistent TCR-Vβ rearrangement in a population of 6267 T-cells (0.17%), and identified multiple 

TCRα (TRAV35-TRAJ23 and TRAV2-TRAJ2) and TCRβ (TRBV29-TRBJ2, TRBV7-TRBJ2 and TRBV5-

TRBJ1) partners to the TCR-Vβ sequence of interest comprising this T cell population, including T 

cells with dual TCR-Vβ rearrangements. Based on VDJ combinatorics, a minimum of two distinct T 

cell clones contributed to this recurrent TCR rearrangement at the amino acid level. Interestingly, when 

immunoprofiling these cells using matched RNA-seq data, we found eight cells within the cluster 

expressing multiple immune checkpoint molecules, and five cells in the cluster resembling activated 

CTLs. The detection of multiple clones at nucleotide level expressing a synonymous CDR3 amino acid 

sequence, their persistence over nearly a decade, and simultaneous presence of both activated and 

exhausted phenotypes suggests that this T cell population arose from multiple independent T-cell 

priming events rather than functional divergence following a single more recent priming/activation 

event. 

Chromosome 7 gain is associated with an unfavorable immune outcome 

To further explore the link between genomic copy number alterations and immune ITH we focused on 

the observation of decreased ESTIMATE immune scores in regions with subclonal gain of chromosome 

7 (p=0.018, two-sided t-test). Immune deconvolution revealed low counts of multiple immune cell 

subsets including T cells (p=0.00096), CD8+ T cells (p=0.084), cytotoxic lymphocytes (p=0.036), NK 

cells (p=0.0013), B cells (p=0.015), monocytic lineage (p=7.6e-5), myeloid-derived dendritic cells 

(p=0.0039) and most significantly neutrophils (p=3.4e-5; all two-sided t-test comparison of means) in 

these sub-regions (Supplementary Fig. 8A; neutrophil signature genesets)(Becht et al., 2016). 

However, whilst overall neutrophil counts (derived from transcriptome data) were low and this was 

consistent with generally low neutrophil densities identified by CD15 immunostaining of 

corresponding FFPE sections, interrogation of neutrophil activation gene sets to assess putative 

neutrophil functional status revealed a net neutrophil activation (slightly higher levels of ‘positive 
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neutrophil activation’, p=0.51; significantly lower levels of ‘negative neutrophil activation’, 

p=0.00087, and ‘negative regulation of neutrophil degranulation’, p=0.0068; all Benjamini-Hochberg 

corrected p-values) in the sub-regions with gain of chromosome 7 compared with chromosome 7 stable 

regions (Fig. 5A-B). We sought to validate this relationship using TCGA SKCM samples and identified 

samples with both copy number and mRNA expression data (n=470), within which 50 samples 

harbored whole chromosome gains of chromosome 7. Differential expression analysis comparing 

samples with chromosome 7 gain versus non-gain revealed marked enrichment for neutrophil-related 

genes and associated pathway level enrichment (Fig. 5C-D) despite marginally lower neutrophil 

enumeration by CIBERSORT (Supplementary Fig. 8B): The top four enriched gene ontology (GO) 

terms were neutrophil degranulation, neutrophil involved in immune response, neutrophil activation 

and neutrophil mediated immunity (all p=1e-6, two-sided t-test comparison of means with Benjamini-

Hochberg correction). In parallel, KEGG pathways enriched in the chromosome 7 gain samples 

included response to bacterial infections, phagosome and lysosome formation, and antigen processing, 

consistent with the observed strength of gene enrichments in neutrophil-related GO terms 

(Supplementary Fig. 8C). 

As immune infiltrate correlates with OS and has been shown to correlate with responsiveness to anti-

PD-1 and anti-CTLA-4 immunotherapy, we then investigated the significance of such neutrophil 

signatures in three publicly available immunotherapy-treated melanoma cohorts (n=119)(Van Allen et 

al., 2015b, Tumeh et al., 2014, Hugo et al., 2016, Riaz et al., 2017b). Within the anti-CTLA-4 cohort 

(Van Allen, n=36) and two anti-PD-1 cohorts (Hugo, n=27; Riaz, n=56), overall neutrophil estimation 

was again largely similar (Supplementary Fig. 8D-F) however the genes significantly enriched in non-

responders compared with responders to therapy showed pathway level enrichments dominated by the 

same neutrophil signatures observed in chromosome 7 gain TCGA SKCM samples, namely neutrophil 

degranulation (p=6e-5, 3e-10, 5e-6, respectively), neutrophil involved in immune response (p=6e-5, 

3e-10, 5e-6, respectively), neutrophil activation (p=6e-5, 3e-10, 5e-6, respectively) and neutrophil 



 55 

mediated immunity (p=6e-5, 3e-10, 5e-6 respectively; all Benjamini-Hochberg corrected p-values) 

(Fig. 5E-G). A core group of differentially expressed genes (FTH1, FTL, HSPA8, HSP90AA1 and 

HSP90B1) was recurrently identified within significantly enriched pathways across TCGA SKCM 

samples and clinical cohorts (Fig. 5H). Together, these data suggest a recurrent immunosuppressive 

role of chromosome 7 gain, potentially mediated by neutrophil accumulation and/or activation, 

although it is unclear whether neutrophil density or activation status are acting as a surrogate for the 

typical co-localisation of tumor necrosis observed at such sites. However, these associations appear 

active both locally within tumors and at the bulk tumor level where it has clinical implications for 

immune checkpoint blockade. 

3.3 Discussion 

In this study, we performed matched genomic and immune analysis of 67 distinct regions of a 

melanoma metastasis coupled to longitudinal analyses in a patient treated with multiple therapies, 

including prolonged exposure to (and progression on) anti-PD-1 immunotherapy. Consistent with 

previous studies, we observed minimal ITH in oncogenic mutations in canonical melanoma driver 

genes, but reveal striking genomic ITH in CNAs, including distinct copy number loss in chromosome 

10, and gains of chromosomes 7 and 13, which may contribute to differences in the immune landscape. 

The loss of chromosome 10, and thus PTEN, has been implicated in resistance to PD-1 blockade 

previously, and in the context of this immunotherapy treated patient was observed to be lost in a 

stepwise fashion between tumors sampled prior to, during, and after anti-PD-1 therapy(Peng et al., 

2016, Roh et al., 2017). 

The most immediately apparent implication of the extent of heterogeneity observed, and its diverse 

representation across space even within a single metastatic deposit, is how inherently limited the 

prediction of clinical outcomes can be when based on limited physical sampling of tumor material, 

especially if only one metastatic deposit is sampled. Indeed, based on transcriptional heterogeneity 

alone, a complete understanding of the immunogenomic TME of the extensively profiled lesion in this 
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study would likely require a minimum of four separate passes if subjected to needle biopsy. Whilst the 

degree of immunogenomic spatial heterogeneity in any given tumor mass cannot yet be predicted non-

invasively, the spontaneous nature of immune-tumor interactions implies that relevant spatial 

heterogeneity will be found, irrespective of prior therapeutic exposures. To the extent that additional 

non-mutational features begin to emerge as clinically meaningful biomarkers for treatment 

response/resistance, these facets of multidimensional heterogeneity will need to be considered when 

planning biopsy-derived, biomarker driven trials. 

Tumor heterogeneity has been linked to the emergence of treatment-resistant tumor cell sub-

populations which expand under the selective pressure of therapy. Conceptually, heterogeneity 

encompasses multiple domains (e.g.: spatial, temporal, clonal) and can be applied to any measurable 

feature of a tumor, thus it remains unclear exactly which molecular constituents of heterogeneity are 

most consequential to clinical outcomes. Previous studies of heterogeneity in other tumor types (e.g.: 

renal, prostate, lung) have focused primarily or exclusively on phylogenetic mutational analyses to 

characterize clonal heterogeneity of tumor cell content(Linch et al., 2017, Morris et al., 2016, Jamal-

Hanjani et al., 2017a, Gerlinger et al., 2012b). When performed, multi-region sequencing either for 

tumor cell mutations or TCR profiling has surveyed minimal numbers of regions (e.g.: 3-5 per tumor), 

often in relatively small numbers of samples, whilst truly multi-platform analyses have effectively 

evaluated inter-tumoral rather than intra-tumoral heterogeneity(Jamal-Hanjani et al., 2017a, Zhang et 

al., 2013, Gerlinger et al., 2013, Roper et al., 2019, Gerlinger et al., 2014). At the extreme of cellular 

resolution, studies employing single cell techniques, whilst informative of the multi-dimensional 

cellular heterogeneity within bulk tumor cell populations, necessarily destroy spatial information 

during sample processing and arguably do not comprehensively survey the transcriptome within any 

individual cell(Tirosh et al., 2016). Thrane and colleagues performed a proof-of-principle high 

resolution spatial transcriptomics analysis of four lymph node metastases obtained from patients with 

stage III melanoma, finding evidence of variably distinct gene expression profiles between regions of 
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tumor, lymphoid tissue, and an apparent transition zone that may have represented functional 

interaction between tumor, stroma and lymphoid cells(Thrane et al., 2018). Relative intratumoral 

transcriptomic homogeneity in one sample was associated with long-term overall survival, however 

other domains of heterogeneity were not evaluable with this technique. 

We found chromosome 7 gain to be significantly associated with features of an unfavorable immune 

microenvironment, including a paucity of effector cell populations and signatures of neutrophil 

activation. This relationship was confirmed amongst melanoma samples of The Cancer Genome Atlas. 

Furthermore, a strikingly consistent set of neutrophil enrichments was observed in melanoma tumors 

failing to respond to either anti-CTLA-4 or anti-PD-1 therapy across three independent published 

cohorts. This reveals two key messages, with the important caveat that additional studies are required 

to clarify the nature of neutrophil recruitment and activation in anti-tumor immune responses and 

whether their presence is largely as a consequence of cellular destruction by other mechanisms. Firstly, 

the insights from regional immunogenomic differences within a single tumor metastasis can directly 

translate to the bulk tumor level, and secondly, chromosome 7 gain may drive an immunologically 

adverse phenotype associated directly or indirectly with neutrophil activation. Several prominent 

oncogenes (BRAF, EGFR, MET) are located on chromosome 7 and may thus be subject to amplification 

in the setting of copy number gains. In our patient’s spatially profiled tumor, BRAF amplification 

compounded by an activating BRAFG421R mutation may have contributed to immunosuppressive MAPK 

signaling, potentially in conjunction with other chromosome 7 oncogenes(Khalili et al., 2012, Boni et 

al., 2010). We also observed recurrent dysregulation of ferritin and HSP90-related genes, suggestive of 

an enhanced acute-phase protein reaction, iron loading and molecular stress in the context of 

chromosome 7 gain and immunotherapy failure. Iron availability is known to influence tumor cell 

survival and the function of numerous immune cell types including T cells, however these competing 

outcomes have been poorly studied in solid tumors such as melanoma(Pfeifhofer-Obermair et al., 2018, 
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Wang et al., 2019). Nevertheless, a potential role for immunosuppressive neutrophil phenotypes and 

iron trafficking within the TME warrants further evaluation. 

We identified a persistent, high frequency T cell clonotype prevalent in multiple tumor deposits over 

many years in this patient, with evidence of both activated and checkpoint molecule regulated (likely 

previously activated) cells present simultaneously. The time frame, and multiplicity of independent 

genomic rearrangements leading to this clonotype indicates repeated priming events, potentially in 

response to a highly persistent tumor antigen robust to multiple lines of treatment. Identification of such 

a persistent T cell population, or its persistent antigen, might be specifically useful for the development 

of defined antigen therapies such as vaccines (definitive or adjunctive therapy) or engineered T cell 

therapies based upon these targets, and warrants wider sampling of multiple tumors in patients – 

including use of archival tissues – in order to identify persistent tumor features that may be exploited 

for therapeutic advantage. Furthermore, our integrative immunogenomic analysis strongly suggests that 

high frequency T cell clonotypes may be recruited to the tumor microenvironment not only due to tumor 

cell reactivity, but as passengers in the inflammatory milieu. Further work will be required to determine 

to what extent such “passenger” T cell clonotypes contribute usefully to the anti-cancer immune 

response. 

Our findings of extensive immunogenomic heterogeneity at the intra-tumoral level are inherently 

limited by detailed multi-platform profiling of a single lesion, thus it is difficult to determine how 

typical the observed extent of heterogeneity is to broader patient populations, particularly those having 

differing clinical scenarios and treatment outcomes. Nonetheless, considering that sub-clonal variation 

has now been described in numerous tumor types, these findings serve to highlight the potential 

sensitivity of the immune microenvironment to local factors, including tumor genomic features that 

appear to have functional impact on local tumor immunity. Through analyses of several clinical datasets 

we found certain immunogenomic features from our deeply profiled tumor to have meaningful 

correlates in additional cohorts of patient samples, but additional studies are clearly required to refine 
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these inferences towards therapeutically manipulable strategies. Whilst overall objective clinical 

responses were not achieved in this patient over a period approaching 10 years and 7 lines of therapy, 

substantial clinical benefit was derived. Although this patient represents only a subset of long-term 

survivors with metastatic melanoma, considering the increasing availability of disease modifying 

therapies, it is likely that this group will become increasingly prevalent. Further molecular 

characterization will ultimately aid in understanding long term survivors of metastatic disease, 

providing therapeutic insights transferrable to the greater majority of patients. 
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Figure 1: Genomic inter- and intra-tumoral heterogeneity in a heavily treated melanoma patient 

are driven by copy number alterations. (A) Timeline of treatments and surgical sampling of three 

distinct melanoma tumors from a long-term surviving patient with largely treatment unresponsive 

metastatic melanoma. Treatment modality is indicated by color (red - chemotherapy, blue - targeted 

therapy, purple – immunotherapy). Molecularly profiled lesions are indicated: index left lower lobe 

(LLL) lung metastasis (lesion 1), progressing ventral abdominal wall mass (lesion 2) and slowly 

progressing right gluteal mass (lesion 3). (B) Sectioning and use of the on-PD-1 inhibitor abdominal 

wall lesion. The tumor was oriented by lateral inking (red – left, blue – right), sliced and laid on a grid. 

The odd numbered slices were processed for FFPE and used for immunohistochemistry whilst the even 

numbered slices were fresh-frozen and used for genomic and proteomic analyses (whole exome 

sequencing - WES, RNA sequencing, TCR sequencing, reverse-phase protein array - RPPA). (C) 

Functional hypomorphism of the identified JAK1 mutation (JAK1P1044S) was identified by Ba/F3 

transformation assay. Also shown are known oncogenic JAK1 variants (JAK1R879H, JAK1S1043I, 

JAK1A634D), wild-type JAK1, a truncating JAK1 hypomorph (JAK1W1047*), and oncogenic PIK3CA 

variants. (D) Copy number alterations in each region of the tumor are shown in the chromosome 

coordinate as log2-transformed copy number probe intensities R (observed intensity/reference 

intensity); copy number gains are shown as red and copy number losses as blue. 
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Figure 2: Immune-driven transcriptional heterogeneity implicates diverse immune cell 

populations and highly localized immune activation or suppression. (A) Unsupervised hierarchical 

clustering based on the top 1000 most variant (mean absolute deviation) genes across all samples of the 

on-PD-1 inhibitor tumor, demonstrating limited associations between clustering of samples and tumor 

location based on the general transcriptome, but apparent association between high immune infiltrate 

and location at the tumor margin. (B) Heatmap of immune signature gene sets (from Rooney, et al13) 

across tumor sub-regions demonstrate dispersed pockets of immune activation or suppression 

throughout the tumor, wherein immune-high samples (e.g.: 4A1/4A2, 6A5 and 8A6) are physically 

distant from each other within the tumor mass. IHC-based immune infiltrate and ESTIMATE immune 

scores (top) and IHC-based tumor sample location (bottom) are indicated. (C) Immunohistochemical 

marker inter-correlations demonstrating generally diverse representation of immune cell types when 

infiltrates are present. Data are Spearman correlation values (with Benjamini-Hochberg correction; only 

p<0.05 are shown) indicated according to the color scale shown. (D) Correlation of most variably 

abundant proteins measured by reverse-phase protein array, revealing two main modules of highly 

correlated molecules. Proteins displaying statistically significant (FDR p<0.10) correlation with 

immune infiltrate are indicated by * and color (blue = anti-correlated with immune infiltrate, red = 

directly correlated with immune infiltrate). Data are Spearman correlation values (with Benjamini-

Hochberg correction; only p<0.05 are shown) indicated according to the color scale shown. (E) Sample-

wide similarity of immune activity was estimated by calculation of the distance matrix between samples 

using the immune activation signature expression data; lines connect samples in the top quartile of 

similarity scores, demonstrating global immune signature similarities that are not restricted by intra-

tumoral location. (F) Three-dimensional spatial mapping of subregion Cytolytic activity signature, 

Type-I IFN response signature and Co-inhibition, T cell signature scores derived from transcriptomic 

data, in the manner of Rooney et al13. Data map the geometric mean of genes included in each gene set 

onto three-dimensional space representing the tumor slices, with color and height indicating expression 

value (higher expression = red peaks, lower expression = blue troughs). 
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Figure 3: Transcriptomic analysis demonstrates considerable ITH underlying convergent 

immune phenotypes. (A) Volcano plot of differentially expressed genes comparing high versus low 

immune infiltrate regions across the tumor core and margins. Vertical red lines indicate a minimum 2-

fold change in expression value; horizontal red lines indicate the adjusted p value threshold of <0.05. 

(B) Representative IHC sections demonstrating matched tumor content (SOX10 stain, above), and 

immune infiltration (CD8 stain, below) illustrating substantial variation of local CD8 T cell content 

ranging from low (arrows) to high (arrowheads). (C) Gene connection network of genes upregulated in 

immune-infiltrated samples that contribute to highly enriched GO terms/pathways, showing substantial 

connectivity. (D) Functional enrichment network showing diverse representation of immune cell 

pathways and functions in the immune infiltrate-derived differentially expressed genes, dominated by 

highly inter-connected T and B lymphocyte-related terms. (E) Representative IHC images of a para-

tumoral lymphoid structure present in section 1B, demonstrating absence of tumor cells (SOX10) but 

mixed populations of CD4+, CD8+ and PAX5+ lymphocytes. Magnification 10X. (F) Single-sample 

gene set enrichment analysis demonstrating spatially discontiguous enrichment of functionally relevant 

gene sets throughout the tumor. IHC-based estimate of immune infiltrate (top) and sample location 

(bottom) are indicated. (G) Immunostained tumor tissue revealing restriction of tumor cell phospho-

ERK1/2 expression (brown staining) to cells located at or immediately subjacent to the tumor cell 

surface. Arrowheads: tumor-surrounding tissue interface. Magnification: 10´. 
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Figure 4: T cell repertoire dynamics reveal high ITH, potential for long-term clonal persistence 

and irregular intra-tumoral movement. (A) Heatmaps of the 560 most variably expressed genes 

(based on median absolute deviation) across the transcriptome dataset for which matched methylation 

and copy number data were available indicating distinct sample-wise clustering patterns within each 

dataset and generally unidirectional methylation patterns within samples. Data are log2-transformed 

counts (gene expression), beta values (methylation) and log2(probe intensity=observed 

intensity/reference intensity) (copy number), z-scored within each data type. (B) Correlation of copy 

number (upper panel) and methylation (lower panel) with transcript expression for the most variable 

genes on chromosome 7 showing mostly positive correlations for CNA and mostly negative 

correlations for methylation as expected. Three genes (indicated in blue, lower panel) showed 

discordant correlations for both CNA and methylation. (C) Tanglegram showing relationships between 

the sample clustering obtained independently from each of the copy number, methylation and 

transcriptome datasets for samples represented in all datasets. Entaglement values (range 0-1) indicate 

moderate lack of cluster structure concordance, indicative in this context of significant additional 

(unmeasured) factors contributing to the regulation of mRNA expression. Immune status of each 

subregion sample is indicated in color. (D) T cell receptor-Vβ (TCR) clonality (range 0-1) varied 

considerably between clinically relevant time points, between tumors and the peripheral blood, and 

spatially within the on-PD-1 inhibitor tumor. Samples with clonality > 0.1 are highlighted in orange. 

(E) Top 10 most abundant TCR clonotype proportions (i.e.: fraction of total identified TCR clonotypes) 

in each sample are represented as stacked bar plots. The topmost abundant clone is colored at the top 

of the bar, with each color representing a unique clonotype that may be shared between samples. 

Clonotypes 2-5 and 6-10 are colored in light blue and deep blue, respectively. (F) Morisita overlap 

index (MOI, range 0-1) values of TCR repertoires comparing the pre-treatment sample, peripheral 

blood samples, on-PD-1 inhibitor sample (each sub-region) and a post-PD-1 inhibitor sample were used 

to compare the overlap in shared nucleotypes in the TCR repertoire identified in each sample. Higher 

MOI indicates a greater proportion of shared TCR sequences. Within the on-PD-1 inhibitor sample, 
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TCR clonotypes present in section 8 were largely restricted to this geographic location, which was 

notably highly necrotic. There was considerable sharing of clonotypes between sections 4 and 6, and 

to a lesser degree between 2, 4 and 6, suggesting a greater degree of physical movement of T cells 

between these sections. (G) tSNE plot of TIL populations. The majority of the cells fell into an activated 

cytotoxic T cell lymphocyte, CD4 T cell and checkpoint-inhibited T cell phenotype. (H) Marker gene 

expression levels across TIL clusters. Relative expression of key marker genes associated with a 

cytotoxic T-cell phenotype (CD8, GZMA and PRF1), CD4 phenotype (CD4 and IL7R) and a multiply 

checkpoint inhibited phenotype (FOXP3, CTLA4, GITR and ICOS) are overlaid on the tSNE clusters. 
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Figure 5: Chromosome 7 gain is associated with an unfavorable immune environment driven by 

neutrophil signatures that characterize non-responders to immune checkpoint blockade. (A-B) 

Chromosome 7 gain sub-regions of the melanoma mass progressing during anti-PD-1 therapy revealed 

lesser suppressive neutrophil signatures compared with sub-regions unaffected by chromosome 7 gains. 

Scores shown represent geometric mean log2-transformed counts of genes within the GO terms 

indicated (see also Supplementary Data 7). Plots include two-sample t test comparison with 

accompanying significance values. (C) Samples affected by whole-chromosome 7 gains within The 

Cancer Genome Atlas melanoma (SKCM) dataset revealed prominent differential upregulation of 

genes involved in neutrophil activation signatures revealed by gene ontology term enrichments. Gene 

ratios indicate the ratio of representation of input genes within the indicated GO term gene set relative 

to all queried GO term gene sets. Top enriched pathways are displayed after Benjamini-Hochberg 

correction for multiple testing. (D) Connected gene network of genes involved in major GO term 

enrichments within chromosome 7 gain TCGA SKCM samples. (E-G) Differentially expressed genes 

contrasting responders versus non-responders to immune checkpoint blockade agents in publicly 

available datasets revealed consistent GO term enrichments for neutrophil activation signatures; Top 

enriched pathways are displayed after Benjamini-Hochberg correction for multiple testing. (E) Van 

Allen, et al., anti-CTLA-4 dataset, (F) Hugo, et al., anti-PD-1 dataset, (G) Riaz, et al., anti-PD-1 

dataset. (H) Heatmap of genes found recurrently enriched across TCGA SKCM chromosome 7 gain 

and clinical non-responder samples showing relative enrichment of each gene across the datasets as a 

scaled value. 
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TABLES 
 

Table 1. Differentially expressed genes confirm the activity of multiple immune subsets in regions 

of heavy immune infiltration. Top 50 most differentially expressed genes (n=25) upregulated, n=25 

downregulated in heavy versus low immune infiltrate) between tumor sub-regions based on extent of 

immune infiltrate. 

Gene BaseMean log2FoldChange lfcSE stat pvalue padj 
RP11.280H21.1 2.22 -4.34 1.65 -2.63 8.54E-03 4.95E-02 
RP11.376M2.2 3.45 -3.93 1.12 -3.50 4.63E-04 5.46E-03 
AL109763.2 1.75 -3.61 1.13 -3.18 1.47E-03 1.36E-02 
AC093850.1 3.34 -3.51 1.18 -2.97 2.96E-03 2.29E-02 
RP11.114H23.3 2.91 -3.43 0.97 -3.52 4.34E-04 5.16E-03 
CTD.2651C21.3 1.51 -3.41 1.03 -3.31 9.34E-04 9.59E-03 
RP11.307L14.2 1.88 -3.34 1.08 -3.10 1.91E-03 1.65E-02 
ICAM5 1.66 -3.19 1.10 -2.89 3.86E-03 2.80E-02 
RP11.29P20.1 12.71 -3.06 0.68 -4.51 6.46E-06 1.58E-04 
RNF208 1.39 -2.89 1.07 -2.70 6.99E-03 4.30E-02 
IL1RAPL2 12.62 -2.80 0.65 -4.32 1.54E-05 3.28E-04 
EFNA3 1.98 -2.74 0.91 -3.00 2.71E-03 2.14E-02 
GPR115 6.36 -2.59 0.69 -3.76 1.67E-04 2.42E-03 
MAST1 9.13 -2.58 0.60 -4.33 1.50E-05 3.22E-04 
RNU6.850P 2.17 -2.57 0.91 -2.82 4.79E-03 3.27E-02 
RP11.191L17.1 5.79 -2.53 0.91 -2.79 5.31E-03 3.53E-02 
AC007091.1 3.29 -2.40 0.88 -2.71 6.68E-03 4.17E-02 
RP11.67M1.1 6.98 -2.39 0.58 -4.15 3.39E-05 6.41E-04 
LINC00919 3.72 -2.33 0.84 -2.77 5.60E-03 3.67E-02 
AC018742.1 16.53 -2.33 0.80 -2.91 3.59E-03 2.66E-02 
SMYD1 4.20 -2.29 0.68 -3.35 8.14E-04 8.65E-03 
RN7SL151P 4.88 -2.23 0.77 -2.88 3.99E-03 2.86E-02 
RLBP1 27.57 -2.09 0.43 -4.82 1.46E-06 4.65E-05 
CTD.3064H18.4 8.82 -2.01 0.70 -2.86 4.20E-03 2.97E-02 
NDUFAF4P3 9.37 -2.00 0.46 -4.40 1.11E-05 2.49E-04 
RP1.153P14.5 3.39 5.48 1.20 4.58 4.74E-06 1.22E-04 
LTF 351.40 5.52 0.73 7.60 2.89E-14 4.03E-11 
LINC00086 6.09 5.52 1.26 4.39 1.11E-05 2.50E-04 
IGLV3.21 18.88 5.62 0.91 6.20 5.73E-10 8.57E-08 
ADH1B 128.01 5.67 1.05 5.38 7.39E-08 4.12E-06 
EPPK1 9.80 5.68 0.89 6.40 1.55E-10 3.18E-08 
hsa.mir.5195 4.71 5.70 1.05 5.45 5.12E-08 3.03E-06 
SLC16A9 6.97 5.73 1.16 4.92 8.62E-07 3.03E-05 
ADIPOQ 300.86 5.73 0.73 7.86 3.72E-15 9.45E-12 
RP11.89M16.1 4.91 5.75 1.00 5.76 8.42E-09 6.92E-07 
KLHL14 19.27 5.83 0.82 7.10 1.23E-12 5.96E-10 
PGBD4P1 5.38 5.90 1.05 5.62 1.96E-08 1.37E-06 
MDS2 4.65 5.93 1.10 5.39 7.06E-08 3.99E-06 
SAA2 11.85 5.99 0.97 6.17 6.69E-10 9.56E-08 
DSC3 5.00 6.06 1.25 4.85 1.25E-06 4.11E-05 
PCK1 26.46 6.19 1.08 5.75 9.17E-09 7.40E-07 



 73 

RP11.693J15.5 42.65 6.21 0.76 8.16 3.42E-16 1.52E-12 
TNNT3 9.87 6.22 1.22 5.10 3.31E-07 1.40E-05 
FCRL1 50.74 6.33 0.55 11.53 9.37E-31 2.50E-26 
MAL2 7.46 6.64 1.05 6.30 2.91E-10 5.03E-08 
CAPN6 7.91 6.72 1.10 6.11 9.98E-10 1.33E-07 
RBP4 9.54 6.72 1.18 5.72 1.07E-08 8.49E-07 
CR2 574.56 7.01 0.97 7.23 4.99E-13 3.24E-10 
MFSD2A 17.06 7.02 1.10 6.38 1.82E-10 3.49E-08 
GABRA2 39.51 7.54 1.07 7.07 1.54E-12 6.71E-10 
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Table 2: GO term enrichment reveals prominent T and B lymphocyte activation in immune 

infiltrated tumor samples. Top 20 most-enriched GO-BP terms within differentially expressed genes 

between samples displaying high versus low levels of leukocytic infiltrate. 

GO Term Description 
Gene 
Ratio 

Background 
Ratio pvalue p.adjust qvalue 

GO:0030098 lymphocyte differentiation 36/376 344/18493 
7.01E-
16 

2.63E-
12 

2.13E-
12 

GO:0070661 leukocyte proliferation 31/376 283/18493 
2.26E-
14 

4.25E-
11 

3.44E-
11 

GO:0002429 

immune response-activating 
cell surface receptor 
signaling pathway 37/376 414/18493 

4.14E-
14 

5.18E-
11 

4.20E-
11 

GO:0002768 

immune response-regulating 
cell surface receptor 
signaling pathway 38/376 445/18493 

7.79E-
14 

6.85E-
11 

5.55E-
11 

GO:0050851 
antigen receptor-mediated 
signaling pathway 29/376 259/18493 

9.12E-
14 

6.85E-
11 

5.55E-
11 

GO:0042113 B cell activation 31/376 303/18493 
1.46E-
13 

9.14E-
11 

7.41E-
11 

GO:0050854 

regulation of antigen 
receptor-mediated signaling 
pathway 15/376 57/18493 

3.23E-
13 

1.73E-
10 

1.40E-
10 

GO:0046651 lymphocyte proliferation 28/376 264/18493 
9.51E-
13 

4.47E-
10 

3.62E-
10 

GO:0032943 
mononuclear cell 
proliferation 28/376 266/18493 

1.14E-
12 

4.78E-
10 

3.87E-
10 

GO:0042100 B cell proliferation 17/376 91/18493 
3.53E-
12 

1.33E-
09 

1.08E-
09 

GO:0042110 T cell activation 35/376 451/18493 
1.22E-
11 

4.16E-
09 

3.37E-
09 

GO:0045785 
positive regulation of cell 
adhesion 32/376 397/18493 

3.63E-
11 

1.14E-
08 

9.20E-
09 

GO:1903039 
positive regulation of 
leukocyte cell-cell adhesion 23/376 214/18493 

8.22E-
11 

2.38E-
08 

1.92E-
08 

GO:0007159 leukocyte cell-cell adhesion 28/376 327/18493 
1.59E-
10 

4.13E-
08 

3.35E-
08 

GO:0050870 
positive regulation of T cell 
activation 22/376 202/18493 

1.65E-
10 

4.13E-
08 

3.35E-
08 

GO:0050852 
T cell receptor signaling 
pathway 19/376 150/18493 

2.23E-
10 

5.24E-
08 

4.24E-
08 

GO:0050867 
positive regulation of cell 
activation 30/376 384/18493 

3.25E-
10 

7.18E-
08 

5.82E-
08 

GO:0022409 
positive regulation of cell-
cell adhesion 24/376 251/18493 

3.62E-
10 

7.57E-
08 

6.13E-
08 

GO:0050855 
regulation of B cell receptor 
signaling pathway 9/376 24/18493 

5.39E-
10 

1.07E-
07 

8.64E-
08 

GO:0030183 B cell differentiation 17/376 125/18493 
6.55E-
10 

1.22E-
07 

9.88E-
08 
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Supplemental Information 

 

Supplementary Figure 1.

Section 1B

Section 3A

Section 3B

Section 5A

Section 5B

Section 7A

Section 7B

Frozen Section 2A

Frozen Section 4A

Frozen Section 6A

Frozen Section 8A

CD45 LCASOX10
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Supplementary Figure 1: Matched immunohistochemistry sections were used to infer tumor 

and immune composition of genomic sections. Shown are IHC stains for tumor (SOX10) and 

leukocytes (CD45LCA) from FFPE (odd-numbered) tumor sections, providing information 

from above and below each intercalating frozen (even-numbered) tumor section in order to 

infer tumor microenvironment composition based on multiple IHC stains. Sub-division of 

sections into sub-regions in order to study intratumoral heterogeneity was performed on a 

section- by-section basis on frozen sections, and analogous boundaries applied to adjacent 

FFPE sections as indicated by blue lines on the SOX10-stained sections. 

  



 77 

 

Figure 2.

A

B

C

D

Type-1 IFN response

Neutrophils

Macrophages

Co-stimulation, APC

CD4+ Regulatory T cells

Co-stimulation, T cell

NK cells

CD8+ T cell

Type-2 IFN response

Cytolytic Activity

Co-inhibition, APC

MHC Class I

Co-inhibition, T cell

B cells

pDCs

2A
1

2A
2

2A
3

2A
4

2A
6

2A
7

2A
8

2A
9

2A
10

2A
12

2A
13

2A
14

2A
15

2A
16

4A
1

4A
2

4A
3

4A
4

4A
7

4A
8

4A
10

4A
11

4A
12

4A
13

4A
14

4A
16

4A
17

4A
18

4A
19

4A
20

6A
3

6A
5

6A
9

6A
10

6A
11

6A
15

6A
16

6A
17

8A
2

8A
3

8A
4

8A
6

8A
7

8A
8

8A
10

8A
11

8A
12

ESTIMATE score 
and Immune 
Signature
Row z-scores

4
2
0
-2
-4

Sample Location

Immune infiltrate

core
margin

focal/low
moderate/high

Immune score (ESTIMATE)
Immune infiltrate (IHC)

Sample
location

2A

4A

6A

8A

 16 15 14  13 12 10  9
   8

   
7 

  6
   

4 
  3

  
 2

  
1 

 1
2 

11
 1

0 
 8

   
7 

  6
   

4   3
   2

  17 16 15  11 10  9   5   3  20 19 18 17 16 14 13 12  11 10  8   7   4   3   2   1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

S
O

X
10

C
D

45
LC

A
C

D
45

R
O

C
D

8
C

D
4

G
R

A
N

ZY
M

E
B

FO
X

P
3

P
D

1
LA

G
3

PA
X

5
C

D
57

C
D

68
C

D
15

SOX10
CD45LCA
CD45RO

CD8
CD4

GRANZYMEB
FOXP3

PD1
LAG3
PAX5
CD57
CD68
CD15

Spearman correlation

E

F Cytolytic activity Type-1 IFN response Co-inhibition, T cell

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

V
IM

PA
R

M
Y

H
11

S
Y

K
S

O
D

2
ZA

P
70

LC
K

FN
1

R
O

C
K

1
A

X
L

H
IS

T3
H

3
P

D
G

FR
AC

TB
G

LS
D

U
S

P
4

C
AV

1
S

O
X

2
E

P
P

K
1

L1
C

A
M

S
TA

T5
A

LR
P

6
E

S
R

1
S

TA
T3

JA
K

2
P

R
E

X
1

M
TO

R
P

D
C

D
4

P
D

C
D

1
P

TK
2

C
A

S
P

7
A

R
ID

1A
A

IM
1

P
TG

S
3

TF
A

M
H

S
PA

1A

*VIM
PAR

*MYH11
SYK

SOD2
ZAP70

*LCK
FN1

ROCK1
AXL

HIST3H3
PDGFR

ACTB
GLS

DUSP4
CAV1

*SOX2
EPPK1
L1CAM
STAT5A

LRP6
ESR1
STAT3
JAK2

PREX1
MTOR

PDCD4
PDCD1
*PTK2

CASP7
ARID1A

AIM1
PTGS3

TFAM
HSPA1A

Spearman correlation

L   R

Top

Bottom

4A
13

4A
14

2A
10

2A
7

4A
4

2A
8

2A
9

2A
1

4A
3

6A
9

6A
10

2A
6

2A
13

4A
20

4A
8

4A
7

4A
12

4A
11

6A
3

6A
16

2A
14

2A
15

2A
16

2A
2

2A
3

8A
3

8A
4

6A
17

8A
2

8A
6

8A
8

8A
13

6A
15

8A
12

6A
11

8A
10

8A
11

8A
7

4A
18

2A
4

4A
19

4A
17

4A
10

4A
1

2A
12

4A
16

4A
2

6A
5

Location
core
margin
external

Infiltrate (IHC-assessed)
Not Highly Infiltrated
Highly Infiltrated



 78 

Supplementary Figure 2: Inter-tumoral analyses reveal longitudinal copy number evolution. 

(A) Copy number changes across the on-PD-1 inhibitor lesion demonstrate notable intra-tumor 

heterogeneity, and additional longitudinal/inter-tumoral heterogeneity in comparison to the 

treatment-naïve and post-PD-1 inhibitor lesions. (B) Chromosome 10 copy number alterations 

spanning metachronous tumors indicate step-wise losses (indicated by red bar, relative to a 

zero baseline) in tumors sampled at treatment-naïve, on-PD-1 inhibitor (regions 2A1, 2A16, 

4A12, demonstrating ITH) and post-PD-1 inhibitor time points. Data are log2(R) where R is 

the probe intensity expressed as (observed intensity/reference intensity). 
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Supplementary Figure 3: Deconvolution of melanoma and immune cell transcriptomic and 

proteomic signatures. (A) Example histologic appearances (SOX10 stain) of subregions 

designated as core, high-purity margin and medium-purity margin. (B) Supervised clustering 

(in spatial order) of the transcriptomic profile of samples derived from the on-PD-1 inhibitor 

tumor lesion, highlighting tumor-derived and immune cell subset-derived signatures. IHC-

based immune infiltrate and ESTIMATE immune scores (top) and IHC-based sample location 

(bottom) are indicated. (C) Heatmap of immune infiltrate composition deconvoluted from 

transcriptomic data using CIBERSORT. (D) Example of low-density (top) and high-density 

(bottom) CD15+ staining as a marker for the presence of neutrophils. The majority of CD15 

staining was observed within necrotic regions of FFPE slice 7. (E) Sample inter-correlation 

matrix based on reverse-phase protein array quantification of protein expression, illustrating 

dispersed protein expression patterns throughout sub-regions of the on-PD-1 inhibitor tumor. 

(F) Delta area (left) and tracking plot (right) of consensus clustering of samples using 

transcriptome data to identifying the optimal number of sample clusters that captures the 

majority of intra-tumoral heterogeneity signatures. A total of 4 clusters provided the greatest 

balance between information and similar cluster size, whilst >4 cluster-solutions contributed 

lower-yield clusters containing few samples each. 
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Supplementary Figure 4: Transcriptional heterogeneity at margin sites. (A) Gene connection 

network of differentially-expressed genes between samples located at the tumor margin 

comparing those with high versus low immune infiltrates. (B) Functional annotation network 

of differentially-expressed genes between high versus low immune infiltrate tumor margin 

samples, showing enrichment for T and B lymphocyte pathways and functions. 
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Supplementary Figure 5: Identification and distribution of dominant TCR clonotypes. TCR 

clonal activation inferred from matched TCR-Vβ DNA and RNA sequencing identifies 

dominant clonotypes and their spatial distribution. Data represent productive frequencies 

within the total TCR repertoire derived from either DNA-based or RNA-based sequencing, 

expressed as percentages. 

  

CASSLVREGEQYF
CASSNTGGSLDGYTF
CASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSLVREGEQYF
CASSLHGDQPQHF

CASSLQGARREETQYF

CSVPTSGSRDNEQFF

CASSSLSGAILNEQFF
CASSLGGQGGETQYFCSVQGQRGTEAFF
CSVPTSGSRDNEQFF

CASSLHGDQPQHFCASTPGGLVFNEQFF
CASSEDRSYNEQFF

CASSSLSGAILNEQFF

CSVPTSGSRDNEQFF
CASSLHGDQPQHF
CSVQGQRGTEAFF

CASSLGGQGGETQYF

CASSLHGDQPQHF

CASSLQGARREETQYF

CASSLVREGEQYF

CSVPTSGSRDNEQFF

CASSEDRSYNEQFF

CASSLHGDQPQHFCASSSLSGAILNEQFF

CSVPTSGSRDNEQFF

CASRPGFGNTEAFF
CASTPGGLVFNEQFFCASSEDRSYNEQFF
CASSSLSGAILNEQFF

CASSLVREGEQYFCASSEDRSYNEQFF

CSVPTSGSRDNEQFFCASSSLSGAILNEQFF

CASSEDRSYNEQFF
CASTPGGLVFNEQFF
CASSSLSGAILNEQFFCSVPTSGSRDNEQFF

CASSLVREGEQYF
CASSSLSGAILNEQFF
CASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSVGKGGQVDTEAFF
CASTPGGLVFNEQFFCASSEDRSYNEQFF
CASSSLSGAILNEQFF

CASSLQGARREETQYFCASSLHGDQPQHFCASSLVREGEQYF

CSVPTSGSRDNEQFF

CASSLVREGEQYF
CASSFGSRVGETQYF

CSVQGQRGTEAFF

CSVPTSGSRDNEQFF

CASSEDRSYNEQFF
CASSLHGDQPQHF
CASSSLSGAILNEQFF

CSVPTSGSRDNEQFF

CASSLVEGMEQYF
CASTPGGLVFNEQFF
CASSSLSGAILNEQFF
CASSEDRSYNEQFF

CASSLVREGEQYF

CASSLQGARREETQYF
CASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSLVREGEQYF

CASSLHGDQPQHF

CSVQGQRGTEAFF
CSVPTSGSRDNEQFF

CASTPGGLVFNEQFF
CASSLHGDQPQHFCASSEDRSYNEQFF

CASSSLSGAILNEQFF

CASSVGKGGQVDTEAFF
CSVPTSGSRDNEQFF
CASSEDRSYNEQFFCASSSLSGAILNEQFF

CASSLVREGEQYF
CASSLHGDQPQHF
CASSLQGARREETQYF

CSVPTSGSRDNEQFF

CASSNTGGSLDGYTFCASSSLSGAILNEQFFCASSLVREGEQYF

CSVPTSGSRDNEQFF

CASSLQGARREETQYFCASSLHGDQPQHFCASSEDRSYNEQFF
CSVPTSGSRDNEQFF

CASSSGTGGTEAFF
CSVPTSGSRDNEQFFCASSLASRPPYEQYFCASSEDRSYNEQFF

CASSSLSGAILNEQFF
CASSLVREGEQYF

CASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSLQGARREETQYFCASSNTGGSLDGYTFCASSLVREGEQYF

CSVPTSGSRDNEQFF

CASSLHGDQPQHF
CSVPTSGSRDNEQFF
CASSEDRSYNEQFF

CASSSLSGAILNEQFF

CASSLVEGMEQYFCASTPGGLVFNEQFFCASSSLSGAILNEQFFCASSEDRSYNEQFF

CASSSLSGAILNEQFFCASSLQGARREETQYF

CASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSSLSGAILNEQFFCASSLVREGEQYFCASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSLHGDQPQHFCASSEDRSYNEQFF
CASSSLSGAILNEQFF
CSVPTSGSRDNEQFF

CASSVGKGGQVDTEAFFCASTPGGLVFNEQFFCASSSLSGAILNEQFFCASSEDRSYNEQFF

CASSEDRSYNEQFFCASSLQGARREETQYFCASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSSLSGAILNEQFFCASSLVREGEQYFCASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSEDRSYNEQFF
CASSLHGDQPQHF
CSVPTSGSRDNEQFFCASSSLSGAILNEQFF

CASSLVEGMEQYFCASSSLSGAILNEQFFCASSVGKGGQVDTEAFFCASSEDRSYNEQFF

CASSLHGDQPQHF

CASSLGGQGGETQYF

CASSLSAPISGGATYEQYF

CSVPTSGSRDNEQFF

CASSLVREGEQYF

CASSLHGDQPQHF
CASSLQGARREETQYF

CSVPTSGSRDNEQFF

CASSLHGDQPQHF
CSVPTSGSRDNEQFF

CASSEDRSYNEQFF
CASSSLSGAILNEQFF

CSVQGQRGTEAFF
CASSLSAPISGGATYEQYF

CSVPTSGSRDNEQFFCASSLGGQGGETQYF

CASSNTGGSLDGYTF
CASSLHGDQPQHF

CASSSLSGAILNEQFF

CSVPTSGSRDNEQFF

CASSEDRSYNEQFF

CASSSLSGAILNEQFF
CASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSSLSGAILNEQFF
CASSLHGDQPQHF

CASSLGGQGGETQYF

CSVPTSGSRDNEQFF

CASSEDRSYNEQFF

CASSSLSGAILNEQFFCASSLHGDQPQHF

CSVPTSGSRDNEQFF

CASSEDRSYNEQFFCASSLHGDQPQHFCASSSLSGAILNEQFF

CSVPTSGSRDNEQFF

8A10 8A11 8A12 8A2 8A3 8A4 8A6 8A7 8A8

4A4 4A7 4A8 6A10 6A11 6A13 6A16 6A2 6A3 6A4 6A5 6A9

4A1 4A10 4A11 4A13 4A14 4A16 4A17 4A18 4A19 4A2 4A20 4A3

2A1 2A10 2A12 2A14 2A15 2A16 2A2 2A3 2A4 2A7 2A8 2A9

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6 0 2 4 6

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Productive frequency of DNA clones (%)

P
ro

du
ct

iv
e 

fre
qu

en
cy

 o
f R

N
A

 c
lo

ne
s 

(%
)

Supplementary Figure 5.



 83 

 

Supplementary Figure 6.
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Supplementary Figure 6: Associations between high-abundance TCR clonotypes and truncal 

tumor mutations reveal probable distinct tumor-specific and bystander populations. 

Correlations between abundance of high-frequency TCR clonotypes (defined at the amino acid 

level) and a core set of truncal mutations (variant allele frequency) identified throughout all 

sub-regions of the on-PD-1 inhibitor tumor. The strength and direction of correlation is 

indicated by color, whilst the size of each circle indicates the statistical significance (larger 

indicates more highly significant), with all values meeting the criterion of adjusted p-value < 

0.05 
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Supplementary Figure 7 
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Supplementary Figure 7: Single cell sequencing identifies distinct T cell phenotypes. (A- 

B) Detection of epitope specific CD8+ T cells in the PBMC of HLA-A*0301 healthy donors. 

Potential epitope specific CD8+ T cells in PBMC were stimulated three times at 7-day intervals 

by co-culturing with HLA-A*0301 expressing K562 (A3-K562) pulsed with overlapping 

peptides (peptides 1-12) in the presence of IL-21. Epitope specificity of sensitized CD8+ T 

cells was determined by co-culturing cells with peptide pulsed K562 overnight and performing 

a standard intracellular IFN-γ production assay. Cells co-cultured with non-pulsed K562 cells 

served as background (negative) controls. Treatment with PMA and ionomycin served as a 

positive control for the assay. The table (A) lists the highest responding peptide candidates as 

% IFN-γ+ CD8+ T cells among total CD8+ T cells (baseline of 0.39% and 0.24% from Donors 

1 and 2, respectively). Fold-increase in peptide reactivity above baseline (baseline = 1.0) is 

shown in the column chart (B) at right. (C) Heatmap of the most differentially-expressed genes 

between tumor infiltrating lymphocyte clusters defined by tSNE analysis. 
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Supplementary Figure 8: Neutrophil estimation and related Gene Ontology (GO)-term and 

KEGG pathway enrichments in clinical samples based on chromosome 7 gains. (A). 

Neutrophil quantification within the on-PD-1 inhibitor samples (lesion 2) comparing sites by 

chromosome 7 copy number status as determined from MCP counter (left) and CIBERSORT 

(right). (B) Neutrophil content derived from CIBERSORT within TCGA SKCM samples 

grouped by chromosome 7 copy number status. (C). KEGG pathways enriched in melanoma 

samples harboring chromosome 7 gains revealed numerous pathways involved in reaction to 

bacterial infections, phagosome and lysosome formation, and antigen processing, consistent 

with the highly neutrophil activation-dominant GO term enrichments observed. (D-F) 

Neutrophil content derived from CIBERSORT within clinical immune checkpoint blockade-

treated samples grouped by reported response status (NR=non-responder, R=responder) from 

the Van Allen anti-CTLA-4 cohort (D) and the Hugo (E) and Riaz (F) anti-PD-1 cohorts. 
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Supplemental Data 4 

Gene baseMean log2FoldChange lfcSE stat pvalue padj 
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DGKE 230.3780947 2.34026609 0.255627 9.1550036

6 

5.44E-20 7.24E-16 

GCNT4 72.35086778 3.041550888 0.3402806

7 

8.9383592

5 

3.95E-19 3.51E-15 

RP11.553K8.

5 

103.3282115 2.988765476 0.3640635

3 

8.2094612

5 

2.22E-16 1.46E-12 

RP11.347P5.

1 

202.3039542 2.425309003 0.2963487

4 

8.1839692

5 

2.75E-16 1.46E-12 

RP11.693J15

.5 

42.64742901 6.213668502 0.7617059

9 

8.1575681

2 

3.42E-16 1.52E-12 

PLCB4 110.1348642 3.276392776 0.4074282

5 

8.0416436

5 

8.86E-16 3.37E-12 

CADM3 149.2069446 5.174369166 0.6526601

7 

7.9281215

2 

2.22E-15 7.41E-12 

CLU 1280.537517 4.685860565 0.5939080

8 

7.8898750

5 

3.02E-15 8.95E-12 

MS4A1 398.7408259 4.50496317 0.5732950

4 

7.8580187

2 

3.90E-15 9.45E-12 

ADIPOQ 300.8602216 5.734927332 0.7292598

2 

7.8640385

2 

3.72E-15 9.45E-12 
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ICOS 238.4482965 2.325699191 0.2971029

9 

7.8279225

8 

4.96E-15 9.99E-12 

FAM129C 28.35170317 5.067201566 0.6471192

5 

7.8303984

3 

4.86E-15 9.99E-12 

S1PR1 1684.920618 2.409973953 0.3081518

3 

7.8207356

3 

5.25E-15 9.99E-12 

TNFRSF10A 141.0750804 2.465683708 0.3162140

1 

7.7975157

8 

6.31E-15 1.05E-11 

CNR1 47.24102267 4.289220422 0.5497376

8 

7.8023039 6.08E-15 1.05E-11 

SIDT1 161.2179634 2.360184583 0.3060229 7.7124444

1 

1.23E-14 1.93E-11 

CNR2 22.68480867 4.789065596 0.6243869

6 

7.6700281

8 

1.72E-14 2.55E-11 

LTF 351.397333 5.519492242 0.7259399

1 

7.6032357

2 

2.89E-14 4.03E-11 

PARP15 256.3799532 2.607730938 0.3432485

7 

7.5972085

4 

3.03E-14 4.03E-11 

RFTN1 566.5286103 1.427788836 0.1889858

7 

7.5550033

3 

4.19E-14 5.31E-11 

CD22 213.1755724 2.178713116 0.2936713

4 

7.4188824

2 

1.18E-13 1.37E-10 

SELL 890.6279646 2.532260226 0.3410743

6 

7.4243640

1 

1.13E-13 1.37E-10 

CD79A 20.13130195 4.932978895 0.6655536

7 

7.4118424

3 

1.25E-13 1.38E-10 
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STAP1 140.3040336 3.475002228 0.4708526 7.3802336

7 

1.58E-13 1.45E-10 

CYTIP 657.9512588 2.741192662 0.3704632

7 

7.3993642

3 

1.37E-13 1.45E-10 

ELMO1 647.2066776 1.914306698 0.2591916

3 

7.3856811

2 

1.52E-13 1.45E-10 

PAX5 94.25515507 5.171992882 0.6996783 7.3919584

3 

1.45E-13 1.45E-10 

FAM177B 62.65566997 2.533010392 0.3431277

2 

7.3821211

5 

1.56E-13 1.45E-10 

MPP7 97.33979575 3.215726769 0.4360634

1 

7.3744475

7 

1.65E-13 1.47E-10 

RP1.225E12.

2 

94.51533767 2.645008889 0.3593994

4 

7.3595241

7 

1.85E-13 1.59E-10 

RUNX1T1 410.2516983 1.00100036 0.1366624

9 

7.3246168

3 

2.40E-13 1.92E-10 

SLC38A1 2741.805105 2.86862742 0.3918046

3 

7.3215761

1 

2.45E-13 1.92E-10 

HOOK1 84.23349955 3.412609281 0.4656434

2 

7.3288038

7 

2.32E-13 1.92E-10 

CLEC2D 591.1158297 1.658893563 0.2269063

6 

7.3109170

3 

2.65E-13 2.02E-10 

PZP 136.0011632 2.896779643 0.3971938

7 

7.2931127

4 

3.03E-13 2.24E-10 

SNORA16.1 20.93666302 3.264808224 0.4483582

5 

7.2816954

7 

3.30E-13 2.37E-10 
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CD52 110.8822963 2.833434142 0.3896342

2 

7.2720362

6 

3.54E-13 2.44E-10 

SPIB 48.26475437 3.555411978 0.4889763

2 

7.2711332

9 

3.56E-13 2.44E-10 

KCND3 113.658807 3.169719761 0.4364506

9 

7.2624922

6 

3.80E-13 2.53E-10 

CR2 574.5642824 7.012442134 0.9704895

4 

7.2256751

1 

4.99E-13 3.24E-10 

ZNF483 92.75829031 2.520261019 0.3491393

3 

7.2184965

5 

5.26E-13 3.33E-10 

MMRN1 186.0122621 4.824234917 0.66871 7.2142407

6 

5.42E-13 3.36E-10 

GVINP1 1521.47005 2.624681239 0.3651225

3 

7.1884944 6.55E-13 3.97E-10 

ANK3 232.7765494 2.857011549 0.3979072

7 

7.1800938

3 

6.97E-13 4.12E-10 

RHOH 342.0863444 2.444313617 0.3410418

9 

7.1671946 7.66E-13 4.43E-10 

ABI3BP 2170.72449 2.62599135 0.3675991

9 

7.1436266

1 

9.09E-13 5.15E-10 

PLAC8 88.40519034 3.399873219 0.4764019

4 

7.1365646

4 

9.57E-13 5.20E-10 

TTC14 760.6838645 1.228459621 0.1720679

1 

7.1393884

5 

9.37E-13 5.20E-10 

TTN 3419.891732 2.670656684 0.3743963

8 

7.1332331

7 

9.80E-13 5.22E-10 
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TNFRSF13B 127.1373614 3.488220704 0.4892361

2 

7.1299328

8 

1.00E-12 5.25E-10 

FGR 32.71257859 2.803587637 0.3941732

7 

7.1125768 1.14E-12 5.80E-10 

ST18 21.88110126 4.032706441 0.5671308

5 

7.1107160

7 

1.15E-12 5.80E-10 

ATF7IP2 175.29353 2.489300785 0.3501966 7.1082951

1 

1.17E-12 5.80E-10 

KLHL14 19.2738004 5.829742339 0.8208778

5 

7.1018390

3 

1.23E-12 5.96E-10 

MCTP2 206.0448561 2.389619806 0.3367554

7 

7.0960088

7 

1.28E-12 6.00E-10 

RP11.73O6.3 9.716468342 4.877665351 0.6873372

6 

7.0964657

8 

1.28E-12 6.00E-10 

LINC00426 95.70967539 2.936893166 0.4142768

5 

7.0892041

9 

1.35E-12 6.20E-10 

MYH11 566.9184405 1.767478937 0.2497747

3 

7.0762920

2 

1.48E-12 6.69E-10 

INADL 298.2740165 2.85218986 0.4032341 7.0732853

1 

1.51E-12 6.71E-10 

GABRA2 39.50820215 7.542918448 1.0667209

8 

7.0711259

9 

1.54E-12 6.71E-10 

IL7R 3942.315487 2.27318749 0.3219308

9 

7.0611039

6 

1.65E-12 7.10E-10 

SOCS3 1664.839979 2.126691932 0.3022010

4 

7.0373416

4 

1.96E-12 8.29E-10 
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XIST 5676.406336 2.196880741 0.3131693

9 

7.0149918

5 

2.30E-12 9.57E-10 

MEOX2 480.4176607 2.547336915 0.3634350

2 

7.0090573

7 

2.40E-12 9.83E-10 

TMEM156 51.30874163 3.037131007 0.4340136

5 

6.9977775

8 

2.60E-12 1.02E-09 

ARHGAP30 2164.953163 2.148877084 0.3070486

3 

6.9984910

5 

2.59E-12 1.02E-09 

F5 197.4752133 2.013309795 0.2875153

2 

7.0024435

6 

2.52E-12 1.02E-09 

RP1.111C20.

4 

60.81214619 2.612409571 0.3742935

3 

6.9795745

6 

2.96E-12 1.14E-09 

RP11.53B2.2 74.435796 2.631179847 0.3773612

7 

6.9725752

3 

3.11E-12 1.18E-09 

FAM169A 107.1422404 1.666912239 0.2391907

3 

6.9689667

3 

3.19E-12 1.20E-09 

LBH 60.33778957 2.410893233 0.3463640

4 

6.9605760

1 

3.39E-12 1.25E-09 

RASGRP2 83.19469228 3.489566626 0.5023982

2 

6.9458180

3 

3.76E-12 1.36E-09 

CD48 357.1688026 2.676074017 0.3853164

8 

6.9451325

8 

3.78E-12 1.36E-09 

CH25H 38.43907194 3.08651817 0.4450495

9 

6.935223 4.06E-12 1.44E-09 

TACR1 74.03975447 2.819917953 0.4104905 6.8696303

1 

6.44E-12 2.23E-09 
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RP11.570L1

5.1 

15.16813625 3.027611425 0.4407116

6 

6.8698237

2 

6.43E-12 2.23E-09 

COL19A1 40.13482469 4.75106041 0.6925387

6 

6.8603530

6 

6.87E-12 2.33E-09 

AFF3 135.2458246 2.749348862 0.4008089

2 

6.8595002

7 

6.91E-12 2.33E-09 

MST4 285.4442332 2.356706017 0.3447209

8 

6.8365611

1 

8.11E-12 2.70E-09 

KBTBD8 161.7661447 2.292637935 0.3366759

5 

6.8096278

7 

9.79E-12 3.22E-09 

TRABD2A 68.1864891 2.259888392 0.3323489

9 

6.7997451

1 

1.05E-11 3.41E-09 

NOVA2 35.37003833 3.086970492 0.4556357

5 

6.7750840

2 

1.24E-11 3.99E-09 

ANK1 24.56248667 3.156782296 0.4662065

7 

6.7712093

5 

1.28E-11 4.05E-09 

SPOCK2 1280.394485 2.326934351 0.3447502

2 

6.7496240

3 

1.48E-11 4.65E-09 

RP11.436I24

.1 

21.41330974 3.080692074 0.4568460

4 

6.7433923

6 

1.55E-11 4.79E-09 

TRAF3IP3 302.393281 1.920845002 0.2853289

6 

6.7320366

2 

1.67E-11 5.12E-09 

SCARA5 43.91479913 3.975186924 0.5917202

3 

6.7180175

8 

1.84E-11 5.52E-09 

NEURL1B 162.6996444 2.454707148 0.3653999

6 

6.7178637

8 

1.84E-11 5.52E-09 
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GPR183 738.2996802 1.875869214 0.2794330

8 

6.7131251

7 

1.90E-11 5.64E-09 

BIRC3 6105.467362 1.891433896 0.2823048

9 

6.6999685 2.08E-11 6.05E-09 

SYT15 194.5348939 2.789165782 0.4164142

1 

6.6980562

4 

2.11E-11 6.05E-09 

C14orf64 54.03787264 3.366448744 0.5024984

3 

6.6994214

8 

2.09E-11 6.05E-09 

IRF8 778.5105336 2.113708057 0.3160866

1 

6.6871168 2.28E-11 6.45E-09 

ENPP2 1875.877502 1.690646168 0.2530175

7 

6.6819319

6 

2.36E-11 6.61E-09 

EDN1 41.08132814 3.238727181 0.4852931

9 

6.6737536

7 

2.49E-11 6.92E-09 

PCSK5 271.6040531 2.168165528 0.3252458

3 

6.6662362

1 

2.62E-11 7.21E-09 

ARHGAP9 261.8492867 2.270009616 0.3410673

3 

6.6556055

1 

2.82E-11 7.67E-09 

PRG4 157.4224403 4.121402613 0.6196813

3 

6.6508420

4 

2.91E-11 7.84E-09 

TMC8 118.5583202 2.709245729 0.4075138

1 

6.6482305 2.97E-11 7.90E-09 
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4.1 Introduction 

An estimated 13,130 new cases of soft tissue sarcoma (STS) and 3,600 new cases of bone 

sarcomas were diagnosed in 2020 in the United States(Street, 2020). While chromosomal-

translocation driven tumors such as synovial sarcoma and alveolar soft part sarcoma have a 

limited number of mutations and therefore fewer potential neoantigens, genetically complex 

tumors such as undifferentiated pleomorphic sarcomas and leiomyosarcomas typically have 

multiple mutations, which may in turn generate significantly more neoantigens (Groisberg et 

al., 2020, Cancer Genome Atlas Research Network. Electronic address and Cancer Genome 

Atlas Research, 2017).  As a group, sarcomas are genomically heterogeneous with diverse 

phenotypes and tumor microenvironments influencing tumor growth and disease progression. 



 106 

Given that the overall five-year survival for patients diagnosed with metastatic sarcoma is only 

16%, there is a critical unmet need for more effective systemic therapy(2020). Immune 

checkpoint blockade (ICB) has led to promising results in patients with metastatic 

cancers(Hodi et al., 2010, Snyder et al., 2014b, Le et al., 2015, Hellmann et al., 2019, Motzer 

et al., 2018). However, compared to melanoma or non-small-cell lung cancer, sarcomas are 

characterized by less genomic instability with low tumor mutation burden (TMB) and a more 

immunosuppressive tumor microenvironment TME(Cancer Genome Atlas Research Network. 

Electronic address and Cancer Genome Atlas Research, 2017). One potential approach to 

overcoming these features that may limit ICB activity is combining ICB agents that target 

different aspects of the adaptive immune response. For instance, anti-CTLA-4 enhances T cell 

priming in secondary lymphoid organs while PD-1/PD-L1 blockade reverses inhibition of T 

cells within the tumor and improves antigen-specific responses; combination therapy results in 

the activation of previously phenotypically exhausted CD8 T-cells (Ribas, 2012, DR Leach, 

1996, Wei et al., 2019). However, responses and mechanisms of response and resistance to 

combination ICB (C-ICB) appear distinct from those seen with ICB monotherapies and have 

not been detailed in metastatic sarcoma(Wei et al., 2019). To this end, we extensively profiled 

pre- and on-treatment tumor biopsies acquired from 57 patients with metastatic sarcoma 

enrolled to a phase II clinical trial (NCT02815955) evaluating combined durvalumab (anti-PD-L1) 

and tremelimumab (anti-CTLA-4) (Somaiah, submitted). Genomic, transcriptomic and immune-based 

molecular correlates were analyzed alongside relevant clinical data. Here we report the evaluation 

of genomic and transcriptomic features underlying clinical benefit as well as in-depth 

characterization of the TME underlying the mechanisms of C-ICB response in multiple 

sarcoma histologies. 

4.2 Results 
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Patient Profile 

Fifty-seven adult patients with metastatic sarcoma were treated across eight study arms based 

on their histologic subtype. All patients received combination durvalumab 1500 mg and 

tremelimumab 75 mg every 4 weeks for 4 cycles followed by durvalumab 1500 mg every 4 

weeks for up to 8 additional cycles (Fig 1A and Supplemental Table 1). Patients underwent a 

pre-treatment biopsy and blood draw prior to initiation of combination therapy, followed by 

an on-treatment biopsy and blood draw at the 6-week timepoint. DNA and RNA were extracted 

from these longitudinal tumor biopsies, resulting in a total of 79 RNA samples which were 

analyzed by RNA-sequencing and 118 DNA samples which were analyzed by whole exome 

sequencing and T-cell receptor(TCR) sequencing. 

Response was assessed using the immune-related response criteria (irRC) comparing baseline 

staging (CT or MRI-based) scans with repeat imaging at the 12-week time point. In total, 26 

(46%) patients were classified as having received clinical benefit (18SD + 8 PR). One (2%) 

patient had no follow up scan on therapy, 7 (12%) patients had unconfirmed PD (i.e. did not 

have a sufficient period of follow-up at the time of analysis to confirm PD), and 23 (40%) 

patients had confirmed PD (Fig S1A, Supplemental Table 2). Patient responses in this analysis 

were coded based on best response criteria at the 12-week time point based on irRC criteria, 

with partial responders (PR) and patients with stable disease (SD) characterized as responders 

and patients with progressive disease (PD) as non-responders unless otherwise noted.  

Copy number alterations acquired during ICB exposure may lead to therapy resistance 

We detected a total of 9610 exonic mutations across our cohort after strict filtering criteria. 

The overall somatic TMB was low, with a median of 1.63 mutations per Mb (Fig 1B), similar 

to previous reports(Cancer Genome Atlas Research Network. Electronic address and Cancer 
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Genome Atlas Research, 2017). There was no significant correlation of TMB and response 

(Fig S1C). Non-synonymous mutations were compared against the COSMIC database and the 

most commonly mutated cancer gene was found to be KMT2C (21%) followed by EP400 

(19%), TP53 and POLE (11%) (Fig 1B). We observed an enrichment in recurrent mutations 

involved in chromatin remodeling and transcriptional coregulation (p = 4.06 e-12) including 

KMT2C, EP400, KMT2D and ARID1B, as well as genes involved in chromosome regulation 

(p=1.89 e-9) including POLE and POLD1. While samples with mutations in POLE/POLD1 

had a higher mutational burden than samples without POLE/POLD1 mutations, only 3 of 5 

patients with these mutations responded to C-ICB. Next, we analyzed copy number alterations 

(CNA) across the cohort (Fig S1C) and found frequent CNA of genes in the MDM2-p53, p16-

CDK4-RB1, PTPRB and CDKN2A pathways, as previously reported(Cancer Genome Atlas 

Research Network. Electronic address and Cancer Genome Atlas Research, 2017). MDM2 

amplifications were present in 85% of LPS cases, which were also predominantly non-

responders. Additionally, we detected CDK4 and PTPRB amplifications in all MDM2-

amplified samples, suggesting a role for recurrent focal amplifications at 12q14-15 in these 

cases. Deep deletions in TP53 were observed in four samples, mutually exclusive of any 

significant amplifications in other genes. 

Globally across the exome, we found higher levels of copy number gain events in non-

responders at both the on-treatment and inclusion of pre and on-treatment time points, 

compared to responders (p = 0.0093 and p = 0.013, respectively) (Fig S1E Fig 1C). 

Additionally, we noted acquired copy number losses in on-treatment samples of two patients 

affecting genes involved in antigen presentation machinery including B2M and JAK2/JAK3. 

Losses were also observed for other key immune genes including; CD209, required for antigen 
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presentation on immature dendritic cells; CD79A, involved in the B lymphocyte antigen 

receptor complex(Gordon et al., 2003, Engering et al., 2002); PDCD1, encoding the PD-1 

protein and CD274 , encoding the PD-L1 protein. All of the patients with these treatment-

emergent immune gene CNAs were non-responders, thus these CNA events may be means of 

acquired resistance to C-ICB(Zaretsky et al., 2016, Sharma et al., 2017).  Additionally, non-

responders frequently displayed shallow deletions of RB1, or gains of TERT, S100A7 and 

SDHA compared with responders. 

We then integrated focal CNAs into chromosomal segments in order to determine if response 

status was associated with specific segmental amplifications or deletions through the use of 

GISTIC(Mermel et al., 2011). Responders were characterized by a pre-treatment amplification 

of 14q11.2 (Fig S1D). Further examination revealed an amplification event spanning DAD1, a 

negative regulator of programmed cell death, previously associated with enhanced T-cell 

proliferation(N. A. Hong, 1999). Interestingly, the most significantly amplified peak found in 

non-responders at the pre-treatment time-point involved the 6p21.32 locus which contains 

several HLA and TAP genes essential for Major Histocompatibility Complex Class II (MHC-

II) antigen presentation machinery (q = 0.0025)(Fig 1D). Additionally, 75% (9/12) of non-

responders also contained amplifications spanning PDGFA on chromosome 7p22.3 which may 

activate MAPK signaling pathways. 

Co-expression networks modulating response to C-ICB in sarcoma 

To delineate the strongest underlying predictors of response to C-ICB, we compared the pre-

treatment gene expression profiles of patients that went on to respond (partial response, n=3 

and stable disease n = 13) against those with objective tumor growth (progressive disease, 

n=22). After accounting for confounding factors such as batch effects and gender in our 



 110 

differential expression model, we found response-associated upregulation of several genes 

modulating the immune response, including CD22, FCRL1, FCRL2, MS4A1, HLA-V and HLA-

G (Fig 2A). Interestingly, these genes all play roles in the regulation of B lymphocyte immune 

responses. Non responders displayed significant upregulation of both CXCL10 and CXCL11, 

chemokines involved in an activated T-cell response along with MAGEC2, a cancer testis 

antigen. 

An active immune response involves complex interactions between the many cell types present 

within tumors, including contributions of many genes simultaneously. In order to estimate the 

network of interactions in pre-treatment samples and relate these to ICB response, we 

performed single sample network reconstruction implemented in LIONESS(Kuijjer et al., 2019). 

Through our interaction network-based analysis, we found nodes enriched in responders 

including genes involved with antigen presentation machinery (B2M), the innate immune 

system (CD59 and CD63), genes involved in Th1 differentiation (IL6ST) as well as the pre-B 

cell growth stimulating factor CXCL12 (Fig 2B). EIF4G2, which has been shown to be 

involved in interferon gamma signaling, was determined to be a hub node in 

responders(NAOMI LEVY-STRUMPF, 1997). EIF4G2 was found to be connected to MXRA8, 

previously shown to be positively correlated with viral infectivity, with links to CD59 and 

CD63 involved in immune activation(Zhang et al., 2018). Non-responding patient samples had co-

expression for multiple collagen family genes which may contribute towards an epithelial to 

mesenchymal transition-like phenotype(Shintani et al., 2008). Non-responders were also 

characterized by an upregulation of MKI67 and MAP4K4 which contribute towards elevated 

network activity in cellular proliferation and MAPK signaling. Through our co-expression-
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based analysis, we detected elevated network activity in innate immune activity in responders 

and MAPK signaling non-responders. 

Distinct immune microenvironments present in sarcomas  

To better characterize the features of the TME at the pre-treatment time point, we utilized a 

suite of immune deconvolution tools to quantify the immune and stromal features present in 

the TME, based on mRNA expression in each sample(Newman et al., 2015, Aran et al., 2017, 

Li et al., 2016b, Becht et al., 2016). We then applied consensus clustering methods and found 

three distinct clusters of pre-treatment samples  based on the similarity of cell types present 

within the TME (Fig S4A, Fig 2C). An immune “hot” cluster was uniformly enriched for pan-

immune features, an immune “intermediate” cluster was enriched for multiple immune cell 

sub-types but not CTLs and B cells, while an immune “cold” cluster lacked any particular 

immune enrichment. Interestingly, fibroblasts were the only cell type found at consistent levels 

across all pre-treatment samples (Fig S2).  

Tumors classified as immune hot or intermediate prior to treatment almost exclusively (11/13 

patients) remained hot or intermediate at the on-treatment timepoint (Fig 2D). Interestingly the 

proportion of responders was similar within all three immune phenotype clusters at both time-

points, suggesting the existence of other factors that influence response to C-ICB. 

To characterize the interactions present within the TME, we evaluated pairwise relationships 

in of multiple TME components evaluated from the transcriptome (Fig 3A). We examined 

absolute fractions of multiple immune compartments and subset these groups against major 

immune cell types. Macrophages and regulatory T-cells were correlated in non-responders. B-

cells however, were positively correlated with multiple effector-immune phenotypes, 

including CD8 T-cells and eosinophils.  
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B-cells predict response to C-ICB 

While the majority of immune cell sub-types were not found to be significantly associated with 

response, B-cells were significantly increased in responders to C-ICB at the pre-treatment time 

point (p = 0.05).To further stratify which immune cell sub-types may be underlying objective 

response to C-ICB, we compared patients with partial response (PR) and progressive disease 

(PD) (Fig S3). While CD8 T, CTLs and NK-cells were not significantly associated with irRC 

based response metrics, B-cells were the only immune subpopulation found to be significantly 

enriched in pre-treatment samples of patients who achieved a PR as compared to with PD (p = 

0.005). 

In order to validate our expression-based findings at the protein level, we performed IHC 

staining of CD20 and found elevated levels of CD20+ B cells in responders compared with 

non-responders to ICB (p = 0.02) (Fig 3C and Fig 3D). Specifically surveying the pre-treatment 

time point we found higher levels of B cells in responders (p=0.07), however response was not 

particularly correlated with the presence of identifiable tertiary lymphoid structures (Fig 3C 

Fig S4B Fig S4C). In order to gain more insight into the repertoire of B-cells that contribute to 

ICB response, we employed the TRUST algorithm to probe the RNA-seq data for BCR 

templates(Li et al., 2017). We found higher levels of Immunoglobulin Heavy (IGH) diversity 

(p = 0.03) and lower levels of IGL diversity (p = 0.053) in responders to ICB at the on-treatment 

time-point (Fig 3E). Additionally, we also found elevated levels of dominant IGL clones 

(clonotype contribution > 1% of repertoire) at the on-treatment time point in patients that 

responded to therapy (p = 0.02) (Fig 3F). Additionally, CD56+ NK cells were more abundant 

at the on-treatment time point in patients that responded to ICB (p = 0.037) (Fig S4D, Fig S4E 
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and Fig S4F). Overall, these findings imply that C-ICB may specifically expand sub-

populations of immune cell-types and antigen reactivities that assist in tumor reduction. 

B cell enrichment significantly associated with response across multiple cohorts 

As overall immune infiltrate has been shown to correlate with survival and response to anti-

PD-1 and anti-CTLA-4 immunotherapy, we next investigated the reproducibility of our B-cell 

driven findings in three publicly available immunotherapy-treated melanoma cohorts 

(n = 168)(Van Allen et al., 2015a, Hugo et al., 2016, Riaz et al., 2017a). While transcriptomic 

deconvolution revealed elevated levels of multiple immune cell sub-types in responders, the 

most significantly associated cell type associated with response were driven through a clear B-

cell signature (p = 0.0058) (Fig 4A and Fig 4B). Increased levels of B-cells were correlated 

with an infiltrate comprising of other immune cell subtypes however cytotoxic lymphocytes 

and CD8+ T-cells were not as tightly correlated with response across these cohorts (Fig 4B). 

Given that the Riaz anti-PD-1 dataset represents the largest cohort of pre and on-treated 

samples, we explored this dataset further and found a significantly higher immune rich 

infiltrate detected in the responders, compared to non-responders to anti-PD-1 therapy (Fig 

S5A). Deconvoluting the multiple subtypes present in the immune compartment confirmed 

that while several immune cell subtypes were enriched in responders, the most significant 

immune cell type were B cells (p = 0.003) (Fig S5B). 

To validate our findings, we obtained gene expression data from 79 samples collected through 

a similar pre- and on-treatment biopsy sampling strategy from patients enrolled in SARC028 

(NCT-2301039) and the expansion cohorts, evaluating the efficacy of single agent anti-PD-1, 

pembrolizumab, in patients with metastatic sarcoma(Tawbi et al., 2017, Keung et al., 2020). 

Longitudinal tumors biopsies were available from 79 patients, of whom 1 patient achieved a 
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complete response, 12 PR, 30 SD and 36 PD; patients with tumor response by RECIST 

primarily had UPS or LPS histology. We performed similar immune deconvolution on samples 

passing our QC metrics and found that B-cells were the most significant immune cell subset 

amongst responders as compared to non-responders (p = 0. 043) (Fig 4C). An overlap of the 

gene sets between the original SARC028 and expansion cohorts revealed elevated levels of a 

gene essential for B-cell activation, BANK1, in responders to ICB (p = 0.032 Fig S5C)  

Baseline and on-treatment TCR diversity correlates with response to C-ICB 

In order to characterize T-cell contributions in this cohort interactions, we conducted 

multiplexed immunofluorescence( mIF) profiling and TCR sequencing of the pre-treatment 

and on-treatment samples under study . Pre-treatment biopsy slides were stained using a panel 

of lymphocytic effector and regulatory markers (see Methods). While CTL levels (CD3+ 

CD8+) strongly correlated with levels of PD-L1 expressing tumor cells, antigen experienced T 

cells (CD3+ PD1+) and antigen experienced CTLs (CD3+ CD8+ PD1+) none of these 

populations correlated with response, at the pre-treatment time point (Fig 5A and Fig S6A). A 

second panel of markers including activated CTLs (CD3+ CD8+ GZMB+), Effector/Memory 

CTLs (CD3+ CD8+ CD45RO+) and regulatory T-cells (CD3+FOXP3+CD8-) were strongly 

correlated with one another however they were not significantly positively correlated with 

response (Fig 5B and Fig S6B). While levels of CTLs and regulatory T-cells were relatively 

equal between responders and non-responders at both time points, we found a significantly 

stronger positive correlation in lymphocytic infiltrate with a regulatory T-cell phenotype in 

non-responders at the pre-treatment time point (rho = 0.83, p < 0.0001). This implies that while 

certain sarcomas may be infiltrated with effector or activated CTLs that are necessary for tumor 

recognition, these tumors are also heavily infiltrated with regulatory T-cells that likely 
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contributing to an immunosuppressive microenvironment. Effector immune cell infiltrates 

were similar between responders and non-responders at the on-treatment time-point. 

Using genomic DNA isolated from pre- and on-treatment samples, we explored the 

relationship of the TCR repertoire and response to C-ICB. We compared the maximum 

productive frequency to quantify the clones that were most highly prevalent across both time-

points and found that the frequency of the top productive TCR rearrangements to be higher in 

non-responders, compared to responders (Fig 5C, p = 0.04). We also examined dominant 

clones (clonotype contribution > 1% of repertoire) and found no significantly elevated levels 

of large clonotypes present at baseline in responders compared to non-responders (Fig S6C, p 

= 0.22). Interestingly, when comparing the TCR repertoire over time, we observed a higher 

proportion of dominant clonotypes (p = 0.059) prior to therapy, while on-treatment samples 

were dominated by rare clonotypes potentially suggesting diversification of the TCR repertoire 

over the course of C-ICB (Fig S6D and Fig S6E, p = 0.083).  

Given that the highest frequency TCR clonotype was not positively correlated with response, 

we then characterized the diversity and richness of the entire repertoire present across our 

cohort. Evaluation of Simpson Diversity revealed a more diverse TCR repertoire in responders 

as compared to non-responders, across both baseline and on-treatment timepoints (p = 0.047) 

(Fig 5D). Additionally, levels of Simpson Evenness, depicting the richness of the repertoire, 

revealed a more evenly distributed repertoire in responders compared to non-responders (p = 

0.042) (Fig S5F). Finally, we sought to compare TCR-sequencing metrics along with multiple 

immune cell phenotypes derived from mIF of effector and regulatory T cells. Using our 

consolidated analysis, we correlated the effect of multiple immune cell types on tumor 

shrinkage/growth as a continuous variable measured at the 12-week time point from baseline. 
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Tumor shrinkage was found to be significantly inversely correlated with both maximum 

productive frequency and Simpsons clonality (p = 0.029 and p = 0.049) (Fig 5E). Thus, a less 

clonal TCR repertoire at baseline correlated with tumor shrinkage within our cohort. Overall, 

these findings imply that a diverse TCR repertoire, may be beneficial for creating a favorable 

immunogenic response to C-ICB. 

4.3 Discussion 

The delineation of molecular and phenotypic correlates of response and resistance to immune 

checkpoint blockade can be used to stratify patients for therapy as well as provide insights into 

new therapeutic approaches. The work focused on sarcoma subtypes presented here reveals  a 

picture of substantial heterogeneity at the level of the tumors themselves and the attendant 

microenvironment constituents.  The histologies enrolled on trial ranged mutationally, from 

those with quiet genomes largely comprised of translocation driven cancers (ASPS, synovial 

sarcoma) to those with heavily rearranged and mutated genomes, exemplified by 

osteosarcoma. No significant correlation was seen from tumor genomic features, including 

tumor mutation burden on response to therapy. Indeed, the best responses noted were in ASPS, 

a canonical translocation-driven tumor.  Additionally, PD-L1 staining at baseline proved to be 

uninformative as a predictor of response.  The context of uniform treatment couple with a 

mixed response not obviously driven by tumor genome features per se, framed a deeper 

interrogation of the tumor microenvironmental impact on response. Total immune infiltrate as 

delineated by RNAseq deconvolution and tissue staining was not found to correlate with 

response. Whilst overall levels of immune infiltrate proved inadequate in providing robust 

response correlates, further investigation of the immunocyte populations revealed B-cell 

infiltrates as the most significant predictor of response in the cohort.  These increased levels of 
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B-cell infiltrates and IGH diversity was established at the expression level and further validated 

through immunohistochemical staining. The involvement of B-cells in immune checkpoint 

response has been recently highlighted, including in a sarcoma trial, in the single agent anti-

PD1/PD-L1 context(Petitprez et al., 2020). This work extends the association to additional 

sarcoma types as well as into the combined checkpoint inhibitor realm.   Alongside this, whilst 

quantitative T-cell infiltrates were not predictive of response, a more diverse TCR repertoire 

was found to correlate with response.  The role of B-cells and, importantly, B-cell/T-cell 

crosstalk in checkpoint blockade is not yet well understood.  The detailed molecular and 

cellular cross-talk of these populations of immune cells prior to and upon exposure to therapy 

in the context of relatively somatic mutationally bland genomes provides a rich opportunity to 

further explore the activity of these powerful therapies in the highly varied sarcoma landscape, 

with a goal of further understanding critical immune biology and improving therapeutic 

responses in this area of largely unmet clinical need.  
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4.4 Figures 
 

 

Fig1 A: 57 patients were enrolled across eight arms of a clinical trial encompassing multiple 

sarcoma histologies. Sample collection is indicated along the treatment timeline. B: Clinical 

and genetic profile of the cohort with TMB indicated at top bar plot. Co-mutation plot below 

indicates the most recurrently mutated genes with response and histology annotated in 

annotation tracks below. C: Density plot of copy number gain level events detected between 

responders and non-responders at the on-treatment time point (two-sided T-test) D: GISTIC 

arm level amplifications recurrently detected in non-responders to ICB. Genes annotated in 

orange represent genes amplified in non-responders along with significant pathways level 

enrichments (if any). Green vertical line indicates FDR corrected p-values of most significantly 

amplified regions in the genome in non-responders. 
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Fig2 A: Volcano plot of most differentially expressed genes at the pre-treatment time-point 

between patients with PR and PD. X-axis represents Log2 fold change indicated from 

differential expression analysis while Y-axis represents FDR adjusted p-value. Vertical red 

lines indicate absolute log fold change of 4 while horizontal red line indicates p-values less 

than 0.005 B: Single sample network-based correlation maps of significantly differentially 

expressed genes upregulated in responders as compared to non-responders at both time-points. 

Edges are colored based on whether they have higher weights in responding patients (purple) 

or non-responding patients (orange). Thicker edges represent higher log fold changes. Nodes 

(genes) are colored based on the t-statistic from the differential expression analysis. Nodes 

with absolute t-statistic < 1.5 are shown in white, nodes in red/blue have higher expression in 

patients with response/non-response, respectively C: Heatmap of consensus calls from immune 

deconvolution tools used to infer the varying TMEs present in the cohort. Top annotation track 

indicates histology followed by response. Heatmaps below show consensus clustering based 
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on an optimal cluster count of k=3 of varying immune/stromal sub-populations as well as gene-

expression of various immuno-modulatory genes. Group 1 (left to right) indicates an immune 

cold, group 2 indicates an immune intermediate and group 3 indicates an immune hot 

phenotype D: Sankey plot depicting changes in immune phenotypes of patients with paired 

biopsies. Patient ID recorded in first axis, followed by pre and on-treatment immune status 

based on immune activity. Responders and non-responders annotated in purple and orange, 

respectively.  
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Fig3 A: Correlation density and scatter plots of various TME features ascertained from the 

absolute computation of CIBERSORT to ascertain which features associate with response. 

Values in boxes indicate correlation between responders (in purple) and non-responders (in 

orange) along with absolute frequencies of each group in the last column. Significance 

indicated with ” *** "if the p-value is < 0.001, ” ** "if the p-value is < 0.01, ” * ” if the p-

value is < 0.05, else “ “. B: MCP-counter enrichment of various TME elements at the pre-

treatment time-point. Each TME feature is represented in box plots with p-values (t-test) 

indicated between groups. C: CD20+ staining was used to stain B-lymphocyte enrichments. 

Bottom panel shows CD20+ staining of a patient that responded to therapy. D: CD20+ staining 

was higher in responders as compared to non-responders. E: IGH diversity was inferred using 

TRUST and found to be higher in responders as compared to responders to ICB at the on-

treatment time-point. Similar IGL based inference indicated higher levels of IGL diversity non-

responders compared to responders at the on-treatment time-point. F: Increased levels of 
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dominant IGL clones were detected in responders as compared to non-responders. (Two-sided 

T-test for all)  
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Fig4 A: Paired density and correlation plots of multiple TME features deconvoluted across the 

Riaz, Van-Allen and Hugo datasets using MCP counter. Value in each box depicts correlation 

value along with ” *** "if the p-value is < 0.001, ” ** "if the p-value is < 0.01, ” * ” if the p-

value is < 0.05, else “ “. B: NK-cell, CD8 T-cell and B-cell proportions respectively, 

represented in responders vs non-responders using the combined cohorts (Multiple 

comparisons tested using Mann Whitney U test) C: NK-cell, CD8 –cell, Dendritic and B-cell 

proportions respectively, inferred using the SARC028 cohort of metastatic sarcoma patients 

receiving anti-PD-1 therapy. (two-sided T-test)  
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Fig5 A: Multiplexed IF displayed no significant enrichment of multiple effector immune 

subtypes in responders vs non-responders to ICB. B: Inclusion of regulatory markers as well 

as activated cytotoxic T-lymphocytes marked no significant enrichment in responders. Both 

panels A and B include paired density and scatter plots of the immune phenotypes of each 

marker. Values in boxes indicate correlation between responders (in purple) and non-

responders (in orange) along with absolute frequencies of each group in the last column. 

Significance indicated with ” *** "if the p-value is < 0.001, ” ** "if the p-value is < 0.01, ” * 

” if the p-value is < 0.05, else “ “.  C: TCR dynamics of the maximum productive frequency, 

a surrogate for TCR clonality in responders as compared to non-responders. D: TCR level 

metrics of the diversity present in the repertoires of responding vs non-responding patients. E: 

Correlation plot of multiple TCR metrics along with multiplex immunofluorescence data 

containing various lymphoid markers. Tumor shrinkage was found to be most significantly 

inversely correlated with the maximum productive frequency of the repertoire along with TCR 
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clonality. Red indicates stronger positive correlation while blue indicates negative correlation. 

Correlation values are indicated within the box with “X” marking off correlations that were 

not found to be significantly associated with one-another. 
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Supplemental Table 1: Patient characteristics across cohorts 

  

No. of patients 57 (100%)
Median age (range) 48 (22 -77)

Sex
Male 31 (54%)

Female 26  (46%)
Performance status

1 35 (61%)
2 21 (37%)
3 1 (2%)

Prior lines of therapy
Median (range) 2 (0 -6)

None 5 (9)
1 -2 24 (42)
≥3 28 (49)

Cohorts
Adipocytic tumors 6 (10)

Alveolar soft part sarcoma 10 (17)
Chordoma 5 (8)

Osteosarcoma 5 (8)

Undifferentiated pleomorphic sarcoma 5 (8)

Synovial sarcoma 5 (8)

Vascular tumors 10 (17)

Other tumors 11 (19)
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Supplemental Table 2: Response metrics across cohorts 

  

Cohort N PR (irRC) (%)
PR (irRecist) 

(%)
SD (irRC) (%)

SD (irRecist) 
(%)

PD (irRC) (%)
PD (irRecist) 

(%)
uPD (irRC) (%)

uPD (irRecist) 
(%)

All Cohorts 57 8(14) 7(12) 18(32) 20(35) 23(40) 22(39) 7(12) 7(12)

Adipocytic 
Tumors 6 0(0) 0(0) 3(50) 3(50) 3(50) 3(50) 0(0) 0(0)

ASPS 10 5(50) 4(40) 4(40) 5(50) 1(10) 1(10) 0(0) 0(0)

Chordoma 5 1(20) 1(20) 3(60) 3(60) 1(20) 1(20) 0(0) 0(0)

Osteosarco
ma

5 0(0) 0(0) 1(20) 1(20) 3(60) 3(60) * *

Other 11 0(0) 0(0) 3(27) 3(27) 5(45) 5(45) 3(27) 3(27)

Synovial 
Sarcoma

5 0(0) 0(0) 2(40) 3(60) 1(20) 0(0) 2(40) 2(40)

UPS 5 1(20) 1(20) 1(20) 1(20) 2(40) 2(40) 1(20) 1(20)

Vascular 
Tumors

10 1(10) 1(10) 1(10) 1(10) 7(70) 7(70) 1(10) 1(10)

* Patient developed clinical progression and came off study before imaging was performed to confirm radiographic progression
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FigS1 A: Patient responses across all samples with a pre-treatment biopsy lesion present, 

spread across each histology. B: Copy number alteration plot depicts copy number gains and 

losses across the cohort. X-axis represents chromosomal locations; Y-axis indicates samples 

and copy number intensity of gains to losses depicted in red to blue scale respectively. C: Non-

synonymous single nucleotide variant/TMB burden at the pre-treatment time-point was not 

found to be significantly different between responders and non-responders to ICB. D: GISTIC 

arm level amplifications recurrently detected in responders to ICB. Genes annotated in purple 

represent genes amplified in responders. Green vertical line indicates FDR corrected p-values 

of most significantly amplified regions in the genome in responders. E: Copy number gain 

events at the pre-treatment time point was slightly elevated in non-responders, however this 

did not reach significance thresholds (Two-sided T-test for all)  
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Fig S2: Enrichment of various elements present in the TME at the pre-treatment time-point. 

Each feature is indicated using density plots with ANOVA p-values indicated between the 

immune hot, immune altered and immune cold subgroups. 
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Fig S3: MCP-counter enrichment of various TME elements at the pre-treatment time-point. 

Each TME feature is represented in box plots with p-values (t-test) indicated between groups 

after stratifying only patients with tumor reduction (PR) and tumor growth (PD) within the 

cohort. 
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FigS4 A: Consensus clustering of the most variable genes in the transcriptome revealed an 

optimal cluster solution of 3 as depicted by the relative change in area under the cumulative 

distribution function (CDF) curve which explains the maximum concentration of the consensus 

distribution. The largest K (optimal number of clusters) was determined at the level that selects 

the largest K to induce a large enough increase in area under the corresponding CDF. B: CD20 

density levels were slightly elevated in responders compared to non-responders at the pre-

treatment time-point, however this did not reach statistical significance. C: CD20+ staining for 

a patient deriving clinical benefit indicates peritumoral staining of B-cells at the tumor 

periphery D: CD56+ staining for a patient deriving clinical benefit indicates significant 

infiltration of NK-cells with low staining on malignant cells. E: CD56+ staining for a patient 

with progressive disease depicts lack of NK-cells within the tumor. F: CD56 density levels 

were significantly elevated at the on-treatment time point in responders compared to non-

responders to ICB. (T-test and Wilcoxon rank-sum test for significance)  
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FigS5 A: Paired density and correlation plots of multiple TME features deconvoluted across 

the Riaz dataset with matched pre and on-treatment samples using MCP counter. Value in each 

box depicts correlation value along with ” *** "if the p-value is < 0.001, ” ** "if the p-value 

is < 0.01, ” * ” if the p-value is < 0.05, else “ “. B: B-cell, NK-cell and CD8 T-cell proportions 

respectively, represented in responders vs non-responders using the Riaz cohort. C: : Using 

consensus gene panels across both the original SARC028 and expansion cohorts, single gene 

expression of BANK1 delineated response in the cohort.  

  

Corr:
0.938***

Corr:
0.851***

Corr:
0.849***

Corr:
0.819***

Corr:
0.822***

Corr:
0.845***

Corr:
0.755***

Corr:
0.663***

Corr:
0.606***

Corr:
0.671***

Corr:
0.757***

Corr:
0.769***

Corr:
0.711***

Corr:
0.785***

Corr:
0.527***

Corr:
0.754***

Corr:
0.671***

Corr:
0.596***

Corr:
0.684***

Corr:
0.667***

Corr:
0.661***

Corr:
0.214*

Corr:
0.153

Corr:
0.211*

Corr:
0.336***

Corr:
0.249*

Corr:
0.278**

Corr:
0.256**

Corr:
0.402***

Corr:
0.424***

Corr:
0.328***

Corr:
0.442***

Corr:
0.332***

Corr:
0.438***

Corr:
0.571***

Corr:
0.147

Corr:
0.376***

Corr:
0.395***

Corr:
0.285**

Corr:
0.454***

Corr:
0.238*

Corr:
0.520***

Corr:
0.591***

Corr:
0.071

Corr:
0.824***

T.cells CD8.T.cells Cytotoxic.lymphocytes NK.cells B.lineage Monocytic.lineageMyeloid.dendritic.cells Neutrophils Endothelial.cells Fibroblasts response

T.cells
C
D
8.T.cells

C
ytotoxic.lym

phocytes
N
K.cells

B.lineage
M
onocytic.lineageM

yeloid.dendritic.cells
N
eutrophils

Endothelial.cells
Fibroblasts

response

NR R

0.0

0.1

0.2

−6

−3

0

3

6

−2

0

2

−6

−5

−4

−3

−2

−5.0
−2.5
0.0
2.5
5.0
7.5

0

2

4

6

−4

−2

0

2

−2.5

0.0

2.5

5.0

−2

0

2

0
2
4
6
8

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T−test, p = 0.0034

−5.0

−2.5

0.0

2.5

5.0

7.5

NR R
Response

B−
ce

ll P
ro

po
rti

on
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T−test, p = 0.021

−6

−3

0

3

6

NR R
Response

CD
8 

T−
ce

ll P
ro

po
rti

on
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T−test, p = 0.0058

−6

−5

−4

−3

−2

NR R
Response

NK
−c

ell
 P

ro
po

rti
on

s

S5 A

B

C
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

p = 0.032

0.0

2.5

5.0

7.5

10.0

NonResponder Responder
Response

BA
N

K1
 E

xp
re

ss
io

n



 133 

 

FigS6 A: mIF density staining of effector immune-markers for antigen experienced T-cells, 

Cytotoxic T-Lymphocytes (CTL), Antigen-experienced CTLs and T-Lymphocyte levels were 

not significantly different between responders and non-responders in the cohort. B: mIF 

density staining of effector and regulatory immune-markers for effector/memory CTLs, 

activated cytotoxic CD8 T-cells, regulatory T-cells and T-Lymphocyte levels were not 

significantly different between responders and non-responders in the cohort. (T-test and 

Wilcoxon rank-sum test for significance). C: Dominant TCRs were not found to be predictive 

of response at the pre-treatment time-point. D: A trend of a higher proportion of dominant 

TCRs were observed at the pre-treatment time-point as compared to the on-treatment samples 

E: Rare TCRs were found to be non-significantly elevated at the on-treatment time point as 

compared to the pre-treatment samples. F: Simpsons evenness, a TCR-metric of diversity was 

found to be elevated in responders as compared to non-responders to ICB. (Two-sided T-test 

for all)   
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Contents of this chapter is based on: 
 

Akash Mitra*, Anuj Verma *, Edwin Parra Cuentas, Alicia Mejia, Zhimin Tong, Omkara 

Veeranki, Ana Garcia, Riham Katkhuda, Latasha Little, Curtis Gumbs, Wayne Hofstetter, Cara 

Haymaker, Ignacio Wistuba, Andrew Futreal, and Dipen Maru. “Deciphering the Immune 

Microenvironment of Barrett’s Esophagus and Esophageal Adenocarcinoma.” In Review 

5.1 Introduction 
The incidence of esophageal adenocarcinoma (EAC) in the United States increased 57-

fold between 1973 and 2010 (Rosemurgy et al., 2019). Most EAC patients present with 

advanced disease and have very poor survival outcomes; patients with locoregional disease 

have a 5-year survival rate of 22%, and those with distant metastasis have a median survival 

duration of less than 20 months. Decreasing the incidence of EAC and improving EAC 

patients’ survival outcomes are hindered primarily by a lack of validated biomarkers for 

predicting either the progression of Barrett esophagus (BE) to EAC or the response of 

locoregional EAC to adjuvant or neoadjuvant chemotherapy or chemoradiotherapy.  

BE, defined as columnar mucosa with intestinal metaplasia of the tubular esophagus, 

is present in up to 15% of individuals with frequent symptoms of gastroesophageal reflux 

disease, and about 2% of the general adult population with the risk of BE progressing to high-

grade dysplasia and/or EAC being low (absolute risk, 24 cases per 10,000 person-years) (Cook 

et al., 2018). The BE epithelium is genetically heterogeneous and clonally diverse (Li et al., 

2014, Lai et al., 2007). The low risk of progression and high genetic diversity of BE pose 

significant challenges in identifying targetable mutations and in focusing preventive resources 

on patients with a high risk of progression to EAC. Prior studies have demonstrated differences 

in T-helper cell subtypes between BE and EAC and have analyzed the roles of critical immune 
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mediators (e.g., IL-2, IL-4, IL-6, IL-8, TNF-alpha, and interferon-gamma) in the development 

of BE (Smith et al., 2009, Kavanagh et al., 2014, Kavanagh et al., 2016, Quante et al., 2012, 

Buas et al., 2017, Souza et al., 2009). However, achieving success with immune checkpoint 

inhibitors in the treatment and prevention of EAC requires an improved understanding of the 

characteristics of the T-cell repertoire in the microenvironments of BE and EAC. Identifying 

the immune microenvironment attributes that signal a need to induce stronger anti-tumor 

immune response by immune checkpoint inhibitors or other agents will help determine the risk 

of BE progressing to EAC and help in designing a biomarker strategy for immunomodulation 

in BE and EAC.   

In this study, we characterized the immune microenvironment of BE and EAC using 

multiplex immunophenotyping and T-cell receptor (TCR) sequencing. We found that EAC has 

an immunosuppressive T-cell repertoire and shares TCR clones and V-gene usage with BE; 

however, EAC lacks an expansion of TCR clones, which would be expected in a tumor whose  

neoantigen burden is higher than that of a precancerous lesion like BE.  

5.2 Results 

Patient characteristics  

The study population included 10 patients (8 men and 2 women) with median age of 

65 years (range, 50 -75 years). Seven patients had a history of gastroesophageal reflux disease 

and received proton pump inhibitor therapy. Six patients were either current or past tobacco 

users. Three patients had a normal body mass index, 3 patients were overweight, and 4 patients 

were obese. BE samples tested for mIF and TCR were procured adjacent to EAC in 7 patients 

and away from EAC in 3 patients. Six patients had poorly differentiated adenocarcinoma, and 

4 patients had moderately differentiated adenocarcinoma. Tumor was confined to the 
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submucosa (T1b) in 5 patients, invaded up to the muscularis propria (T2) in 3 patients, and 

invaded the adventitia (T3) in 2 patients. Four patients had stage I disease, 3 had stage II 

disease, and 3 had stage III disease.  

Multiplex immunofluorescence 

Comparing quantitative changes in population of total T-cells and of T-cell subtypes in 

different histologic regions revealed significant, immunologically relevant differences in the 

distributions of T-cells subtypes between EAC and BE.  

Intraepithelial compartment: Compared with BE, EAC had significantly more median 

total CD3+ T-cells (EAC= 353/mm2, BE= 127/mm2, P= 0.004), cytotoxic T-cells 

(CD3+CD8+) (EAC= 44/mm2, BE= 17/mm2, P= 0.011) (Fig. 1A), activated cytotoxic T-cells 

(CD3+CD8+granzyme B+) (EAC=6.3/mm2, BE= 1.1/mm2, P= 0.023) (Fig. 1B), and T 

regulatory cells (Tregs; CD3+FOXP3+CD8-) (EAC= 72.8/mm2, BE= 9.2/mm2, P= <0.001) 

(Fig. 1C), but no significantly different numbers of memory T-cells (CD3+CD45RO+) 

(EAC=43.7/mm2, BE=14.6/mm2, P=0.24) or effector/memory T-cells 

(CD3+CD8+CD45RO+) (EAC=1.7/mm2, BE=1.7/mm2, P=0.79).  EAC had a significantly 

higher median Treg/total T-cell ratio than BE (EAC= 0.25, BE= 0.07, P= 0.035), whereas ratios 

of activated cytotoxic T-cells/total T-cells, memory T-cells/total T-cells, and memory-effector 

T-cells/total T-cells did not differ significantly between the two lesions, which suggests that 

the epithelial compartment of EAC has immunosuppressive  T-cell infiltrate. 

Stromal compartment: Similar to the epithelial compartment, higher median number of 

cytotoxic T cells (EAC= 210/mm2, BE= 56/mm2, P= 0.023) (Fig. 1D), activated cytotoxic T 

cells (EAC= 24.9/mm2, BE= 2.5/mm2, P= 0.007) (Fig. 1E), and T regulatory cells (EAC= 

184/mm2, BE= 79.9/mm2, P= 0.015) (Fig. 1F) in the stromal compartment of EAC were 
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observed as compared to matched BE. However, there was no significant difference in total T 

cells in the stromal compartments between BE and EAC (EAC= 1041/mm2, BE= 528/mm2, 

P= 0.063). Moreover, in contrast to the epithelial compartment, the ratio of activated T cells 

/total T cells in the stromal compartment was higher in EAC as compared to BE (EAC= 0.02, 

BE= <0.01, P= 0.04), while  ratio of Tregs/total T cells (EAC= 0.21, BE= 0.15, P= 0.28) was 

not significantly different in the stromal compartments of these lesions. Few rare phenotypes 

were noted in the stroma of BE and EAC. CD3+ CD8+ FOXP3+ cells were significantly seen 

more in the EAC than in BE (EAC= 7.3/mm2, BE= 0.7/mm, P= 0.042). Phenotype CD3+ 

CD45RO+ Granzyme B+ was uniquely seen only in the stroma of BE in 8 cases and not in any 

EAC sample.  

Total (intraepithelial and stromal compartment): Comparing T-cell subtypes in the 

intraepithelial and stromal compartments in conjunction, we observed more median cytotoxic 

T-cells (EAC=125/mm2, BE=41/mm2, P=0.035) (Fig. 1G), activated cytotoxic T-cells 

(EAC=17.8/mm2, BE=1.8/mm2, P=0.009) (Fig. 1H), and Tregs (EAC=121.4/mm2, 

BE=43.7/mm2, P=0.015) (Fig. 1I-K) in EAC than those in BE. The ratio of activated cytotoxic 

T-cells/ total T-cells (EAC=.02, BE=.01, P=0.05) in the entire region of analysis was higher in 

EAC than in BE, while ratio of Tregs/total T-cells (EAC=0.19, BE=0.15, P=0.165) was not 

significantly different in the entire region of these lesions. Multiplex immunofluorescent 

images in show higher T-cells, cytotoxic T-cells, memory T-cells and T regulatory cells in 

EAC than in BE (Fig. S1,S2).  Overall, the differences in the quantity and distribution of the 

T-cell subtypes in BE and EAC indicate T-cell response with higher Tregs in the intraepithelial 

compartment and higher activated cytotoxic T-cells in stroma suggesting a more suppressive 

microenvironment at play in EAC. Comparison of clinicopathologic features with distribution 
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of T- cell subtypes did not show any significant correlation in EAC samples, while median 

number of activated cytotoxic T-cells (intraepithelial: tobacco users= 4.08/mm2, non-users= 

0.32/mm2, P=0.02), ratio of activated cytotoxic T-cells/T-cells(intraepithelial: tobacco users= 

0.028, non-users= 0.001, P=0.01; stroma: tobacco users= 0.011, non-users= 0.002, P=0.02) 

and ratio of activated cytotoxic T-cells/cytotoxic  T-cells(intraepithelial: tobacco users= 0.26, 

non-users= 0.01, P=0.05; stroma: tobacco users= 0.09, non-users= 0.02, P=0.02) were higher 

in stromal and intraepithelial compartments of BE in tobacco users as compared to those in 

tobacco non-users.  

TCR sequencing analysis  

Given the differences in T cell subtypes’ infiltration observed between BE and EAC, 

we went on to study the attributes of the TCR repertoire between BE and EAC.  To this end, 

we sequenced the CDR3 region of the variable chain of the T-cell Receptor (TCR) beta-chain 

essential in antigen binding in a paired manner across our cohort. EAC had significantly higher 

mean numbers of TCR-beta productive templates (11,089 [range, 1,727-27,425]) and 

productive rearrangements (6,094 [range, 1,359-16,352]) than normal esophagus (2,497 

[1,285-6,464] templates; 1,677 [926-4,252] rearrangements) or BE (8,396 [1035-41,480] 

templates; 4,024 [901-17,923] rearrangements) (p = 0.03 and 0.012 for templates and 

rearrangements respectively). Unlike normal esophagus or BE, EAC had uniformly distributed 

productive templates and rearrangements across our cohort, indicating a higher quantitative T-

cell response in EAC as compared to BE and normal esophagus (Fig. 2A, B). Using Simpson 

clonality as a measure of the focus of the TCR repertoire, we found no significant differences 

between the clonality of the various sites surveyed (Fig. 2C). However, multiple measures of 

sample richness and abundance revealed d higher TCR-beta diversity in EAC as compared to 
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normal esophagus and BE (p = 0.023, Daley Smith; p = 0.022, Inverse Chao; p = 0.0096, Efron 

Thisted). The higher levels of diversity in EAC were inversely correlated with an expanded 

repertoire (Fig. 2D-F).  

Using the clonal space occupied by a rearrangement, we computed the representation 

of various clonotypes within specific proportions. Compared with normal esophagus and BE, 

EAC had lower levels of expanded clones (p = 0.067) (Fig. 3A, B).  For each patient, we found 

lower levels of largely expanded clones in EAC than in BE or normal esophagus. Top 

clonotypes had a varied range of clonality, with clonotypes from normal esophagus having 

greater clonal proportions than BE and EAC. However, the top 10 clonotypes extracted from 

EAC or BE overlapped remarkably, implying potential shared antigenicity (p = 0.0273) (Fig. 

3C). These expanded clonotypes were shared in a public manner among BE, EAC, and normal 

esophagus samples derived from each patient, but not among samples derived from different 

patients. These results may also indicate a lack of tumor-driven clonal expansion.  

Assessing the overlap in the T-cell repertoire revealed significant sharing of TCR-beta 

clones among patients (Morisita Overlap Index ≥0.5). A higher degree of sharing was observed 

between normal esophagus and BE, with fewer samples sharing BE and EAC, and the lowest 

sharing observed between EAC and normal esophagus (Fig. 3D). An analysis of matched 

samples revealed remarkably similar V-gene usage among normal esophagus, BE, and EAC. 

V-gene usage did not differ significantly between any of the samples, with BE and EAC 

samples demonstrating V-gene usage for an allele that was absent in matched normal 

esophagus samples in only 2 patients (Pat 5 and 6). Moreover, except for those from patient 6, 

EAC and BE samples had no quantitative differences in V-gene usage for any alleles (Figure. 

4A, B). Shannon-Johnson entropy analysis for V-gene usage also demonstrated no significant 
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difference in entropy between BE and EAC (Figure. 4C). Similarly, mapping recurrent amino 

acid motifs to build k-mers using the TCR rearrangements revealed that normal esophagus, 

BE, and EAC had broadly similar amino acid motifs in the CDR3 sequence (Figure. 4D-F). In 

summary, our findings show that EAC has a more diverse TCR-beta repertoire than BE but 

shares clones and V-gene usage with BE. However, EAC lacks the clonal expansion and hyper-

expanded clones that have been observed in other solid malignancies with high neoantigen 

burden.  

Through a composite analysis of the TCR-sequencing and mIF data, we found diversity 

of the TCR repertoire correlated with infiltrating T-lymphocytes (r = 0.68 and p = 0.002 for 

Daley Smith Estimator and r = 0.63 and p = 0.0007 for inverse Chao) (Figure 4G). 

Additionally, all the metrics for repertoire richness indicated the highest level of correlation 

with a regulatory T-cell phenotype (r = 0.71 and p = 0.0004 for Daley Smith Estimator, r = 

0.63 and p = 0.002 for inverseChao and r = 0.57 and p = 0.009 for Efron thisted estimator). 

While the clonality of the repertoire indicated a complementary enrichment for an activated 

immune phenotype (r = 0.32 and p = 0.16) as compared to a regulatory phenotype (r = -0.39 

and p = 0.08). When analyzing the BE and EAC cohorts separately, we see the clonality of the 

repertoire being linked to an activated immune phenotype and the diversity of the TCR 

repertoire being correlated with a regulatory immune phenotype in both groups, however these 

did not hold to our significance testing thresholds (supplementary figure 3). These findings 

may indicate that while both BE and EAC lesions are infiltrated with T- lymphocytes, the 

majority of the infiltrate may be acting in an inhibitory role by regulating the immune system 

with a lack of T-cell expansion correlating with low levels of cytotoxic T-cell killing. 

5.3 Discussion 
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In the present study, mIF and image analysis based immunophenotyping revealed a 

greater T-cell response in EAC than in BE. However, BE and EAC had significantly different 

distributions of T-cell sub-populations. EAC had higher ratios of cytotoxic T-cells/total cells 

and activated cytotoxic T-cells/cytotoxic T-cells in the stromal compartment than in the 

intraepithelial compartment, indicating a cytotoxic T-cell immune response that is less targeted 

towards the tumor cells. The presence of more Tregs in EAC as compared to BE, especially in 

the epithelial component, suggest that the higher quantitative T-cell response in EAC is 

immunosuppressive and elicits limited tumor cell cytotoxicity.  

Previous studies in other solid tumors and preneoplastic lesions have demonstrated that 

FOXP3+ Tregs have a role in determining clinicopathologic features and/or patient outcomes 

(Ishibashi et al., 2006, Vacchelli et al., 2015, van der Linden et al., 2018). Kahraman et al. 

demonstrated that malignant ovarian tumors have higher Treg infiltration than benign lesions 

and borderline tumors (Kahraman et al., 2018). In estrogen receptor-negative breast cancer, 

an increased abundance of Tregs is associated with a higher histologic grade (Mahmoud et al., 

2011) while in patients with metastatic colorectal cancer, high numbers of Tregs and CD8+ T-

cells expressing chemokine receptor 7 are associated with better survival outcomes (Correale 

et al., 2012). High FOXP3+ Treg infiltration is associated with high T stage and poor survival 

outcomes in gastric cancer patients and with a higher recurrence rate in hepatocellular 

carcinoma patients (Li et al., 2019, Sasaki et al., 2008). Noble et al., in a study of EAC patients 

treated with neoadjuvant therapy and surgery, demonstrated that patients who had a high 

proportion of FOXP3+ Tregs had better survival; however, having more FOXP3+ Tregs was 

not associated with improved pathologic response to neoadjuvant therapy (Noble et al., 2016).  
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Our study was the first to assess the T-cell repertoires of matched BE and EAC samples. 

We found that EAC had more diverse, TCR-beta productive templates and rearrangements 

than BE, indicating that the TCR-beta repertoire in EAC has the potential to respond to a 

significantly larger variety of antigens. However, the TCR-beta clonal compositions of normal 

esophagus, BE, and EAC not only shared passenger TCR-beta clones but also shared the most 

expanded clones across each lesion. Limited diversity in the V-gene usage and tumor-specific 

clonal expansion, including a lack of expansion in hyperexpanded clones in EAC, further 

support limited T-cell response that targets antigens specific to EAC. Chen et al. demonstrated 

that the TCR-beta repertoire in squamous carcinoma differed significantly from those in 

normal tissue and peripheral blood, whereas the repertoires in different regions of the same 

tumor were similar (Chen et al., 2016b). Other groups reported similar findings; in particular, 

ovarian cancer had a distinct but homogenous repertoire compared with normal tissue, 

indicating a T-cell response more specific to the tumor antigens (Emerson et al., 2013, 

Sherwood et al., 2013).  

Given our study’s small sample size and limited evidence of the impact of 

heterogeneity on the immune microenvironment of BE and EAC, we consider our findings to 

be preliminary. Futures studies should investigate whether field effects arising from the 

procurement of some BE samples adjacent to EAC result in the higher degree of TCR sharing 

between BE and EAC. Although, immunophenotyping data showing significant differences 

between the immune subtypes in adjacent BE and EAC samples potentially argues against field 

effects having a significant impact in this respect.  

In summary, our findings indicate that compared with BE, EAC has a more infiltrated 

and diverse but immunosuppressive T-cell infiltrate, the clonal expansion of which is limited 
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and non-targeted. Thus, in EAC, the quantitative increase in immune infiltrate is not associated 

with a qualitative antitumor immune response against tumor cell antigens, supporting a need 

to modulate the immune microenvironment to induce tumor cell directed T-cell response. 
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5.4 Figures and Tables 

 

Figure-1: Box plot showing significantly higher median values of CD3+CD8+, 

CD3+CD8+Granzyme B+, and CD3+FOXP3+CD8- cells in EAC when compared with BE in 

the epithelial compartment (A to C), in the stromal compartment (D to F) and the entire BE 

and EAC (G-I). Multiplex immunofluorescence images (x200) showing a lower density of T 

regulatory cells (CD3+ FOXP3+) seen as yellow nuclear staining in the stroma and epithelial 

component of BE (J) compared to EAC (K) EAC- Esophageal Adenocarcinoma BE-Barrett’s 

Esophagus 
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Figure-2: The CDR3 sequence of the TCR-beta chain was subject to high throughput 

sequencing of paired normal esophagus (N), Barrett’s esophagus (B) and esophageal 

adenocarcinoma (T) across our cohort. A and B) Higher levels of productive templates as well 

as productive rearrangements were detected in T as compared to B and N. C) Simpsons 

clonality indicated non-significant enrichment of a clonal TCR repertoire present in N as 

compared to B and T. D-F) TCR-beta diversity (as a measure of richness and abundance) was 

computed and significantly higher levels of diversity were found in T as compared to B and N 

(D: Daley Smith, E: inverse Chao and F: Efron Thisted estimator). 
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Figure-3: Sample IDs include patient indicators, following by site of sample. A) Examining 

the TCR repertoire, we characterized individual clonotypes based on their contributions 

towards the clonal space (indicated in figure) occupied by a given sample.  B) Samples derived 

from N displayed higher levels of largely expanded clones as compared to B and T proportions. 

C) The top 10 clonotypes from each sample were computed  with the clonality of the top clone, 
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clones 2-5 and clones 6-10 from each sample showcasing a higher level of clonality present in 

N as compared to matched B and T. D) The  Morisita Overlap index is a population overlap 

metric relating the dispersion of clones in our sample pairings. Clear levels of intra-patient 

sharing are depicted along the diagonal, however the patterns of within patient site-based 

sharing varied between each patient case. 
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Figure-4: Variable (V), Diversity (D) and Joining (J) gene alleles were computed using high 

throughput sequencing. A) Bar graphs depict V gene usage in an allele specific manner with 

V-gene alleles plotted on the x-axis and frequency of each allele on the y-axis. Most paired N, 

B and T samples depict similar V-gene usage apart from Pat5T and Pat5B compared to Pat5N, 
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and Pat6B and Pat6T. B) PCA-plot with PC1 on x-axis and PC-2 on y-axis depict primarily 

clustering of all samples based on V-gene usage, apart from samples previously identified. C) 

Shannon Johnson entropy analysis for V-gene indicates minor differences between B and T, 

however differences between them and the paired N. D-E) Consensus 12-mers were generated 

along each site displaying similar amino acid motifs in the CDR3 sequence of D) Normal 

esophagus, E) Barrett’s Esophagus and F) Esophageal adenocarcinoma G) Correlation matrix 

showing the correlation values between TCR diversity/clonality metrics and immune infiltrate 

(color scale red to blue implying higher positive to negative correlation respectively; boxes 

with “x” did not hold to significance testing thresholds of p < 0.05. 
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Supplemental Information 

 

Antibodies 

Target 

antigen Clone Dilution Company (location) 

AE1/AE3  1:300 Dako (Carpentaria, CA) 

CD3  1:100 Dako 

CD8 C8/144B 1:20 Thermo Fisher Scientific (Waltham, MA) 

CD45RO UCHL Ready to use Leica Biosystems (Wetzlar, Germany) 

Granzyme B F1 Ready to use Leica Biosystems 

FOXP3 206D 1:50 BioLegend (San Diego, CA) 

  

Cells 

Cell type Phenotype 

EAC or BE epithelial cells AE1/AE3+ 

T lymphocytes CD3+ 

Cytotoxic T lymphocytes CD3+ CD8+ 

Activated cytotoxic T lymphocytes CD3+ CD8+ Granzyme B+ 
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Memory T lymphocytes CD3+ CD45RO+ 

Effector/memory cytotoxic T lymphocytes CD3+ CD8+ CD45RO+ 

Regulatory T lymphocytes CD3+ FOXP3+ CD8- 

Memory/regulatory T lymphocytes CD3+ FOXP3+ CD45RO+ CD8- 

Supplemental Table 1: Details of the antibodies used for cell staining and the phenotypes 

identified using the antibodies 
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Supplemental Figure 1: Multiplex immunofluorescence (x200) images showing lower density 

of immune cells infiltrating in Barrett’s Esophagus (A) than in Esophageal Adenocarcinoma 

(B). 
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Supplemental Figure 2: Composite mIF low power(x200) images showing lower density of 
immune cells infiltrating the BE than in EAC (A and B). EAC shows a higher infiltrate of 
CD3+ T-cells and CD3+CD8+ Cytotoxic T-cells than BE (C-F). Lower CD45RO+ Memory 
T-cells in BE (G) than in EAC (H). Higher density of CD3+ FOXP3+ CD8- T regulatory cells 
in EAC (J) than in BE (I). mIF- Multiplex Immunofluorescence, BE- Barrett’s Esophagus, 
EAC- Esophageal Adenocarcinoma 
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Supplemental Figure 3: Correlation matrix between TCR repertoire characteristics and 
immune infiltrate in Barrett’s esophagus(A) and Esophageal Adenocarcinoma(B) 
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Chapter Six: Discussion, Conclusions and Future 

Directions 
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6.1 Discussion and Conclusions: 

With recent advances in genomic and spatial molecular profiling, we have an unprecedented 

lens through which we can characterize tumors and their surrounding neighborhoods. Our 

understanding of tumor heterogeneity from the times of Nowell have made significant 

advances however, certain central questions remain. Tumors evolve through space and time, 

in combination with positive and negative signals from the surrounding microenvironmental 

niche. While several studies have highlighted heterogeneity in the context of time and through 

therapeutic intervention, only a subset of studies have attempted to uncover the three-

dimensional nature of tumors and their microenvironment(Snyder et al., 2014a, McGranahan 

et al., 2016, Rizvi et al., 2016, Jiménez-Sánchez et al., 2017, Hellmann et al., 2018, Chen et 

al., 2016a, Roh et al., 2017, Gerlinger et al., 2012a, Gerlinger et al., 2014, Jamal-Hanjani et 

al., 2017b, Joshi et al., 2019, Thrane et al., 2018, Tirosh et al., 2016). Given that tumor 

heterogeneity does not occur in silos, there is a growing demand to characterize tumor 

heterogeneity as it interplays with the immune (and stromal) microenvironment in the context 

of therapeutic response. ICB has demonstrated prolonged survival and durable responses in a 

subset of patients. However, given the variable response rates and occurrence of immune-

related toxicity/adverse events, we require better molecular predictors for efficient patient 

stratification. In addition to biomarker discovery, characterization of the underlying 

mechanisms of resistance to ICB may help us in furthering the development of 

immunotherapies and the rationale for other combinatory agents. Through my work, I 

attempted to characterize a spatially aware understanding of the tumor microenvironment 

while retaining three-dimensional information, to elucidate genomic and non-genomic features 

and how their relationships may govern response and resistance to ICB. Further, through a 
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longitudinal biopsy collection strategy I uncovered novel pre-treatment biomarkers and 

resistance mechanisms to combination ICB (CTLA-4 and PD-L1 blockade) through 

multidimensional profiling of tumor biopsies of patients with advanced sarcoma. Finally, to 

better understand disease progression and the interplay with the immune system, I 

characterized the immune contexture surrounding Barrett’s Esophagus and high-grade 

dysplasia or esophageal adenocarcinoma. 

In chapter 3, I used multiplatform profiling of genetic, epigenetic, transcriptomic and 

immune features to characterize the tumor and its surrounding microenvironment. As expected 

in the case of metastatic melanoma, we found sparse mutational intratumor heterogeneity. 

However, through the copy number profiling, we found distinct gains of chromosome 7 and 

chromosome 13 and loss of chromosome 10 in a spatially non-contiguous format. This finding 

of non-adjacent tumor regions showcasing similar genomic features is consistent with other 

studies showcasing evidence of parallel evolution within a tumor mass(Birkeland et al., 2018). 

Through transcriptomic profiling, we uncovered the upregulation of several key immune 

modulators including an effector T-cell response and B-cell activation however, this effector 

immune population was primarily located at the tumor margins and not within the core of the 

tumor. This is consistent with previous studies highlighting non-responding patients to have 

evidence immune exclusion at the periphery of the tumor bed(Tumeh et al., 2014). Sequencing 

of the beta region of the T-cell receptor revealed a dominant TCR clonotype that was found to 

be expanded at high frequencies within distinct regions of the tumor as well as other tumor 

lesions across a time span of eight years  having received multiple targeted and 

immunotherapeutic regimens. This expanded clonotype was immunophenotyped using paired 

single cell RNA and TCRΑ/TCRΒ sequencing to  reveal both activated and exhausted 
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phenotypes suggesting a potential rise from multiple independent T-cell priming events. 

Moreover, we integrated our genetic and immune related findings to find distinct regions with 

low immune infiltrate (not affected through tumor core versus margin analysis) accompanied 

by gains in chromosome 7. While we validated this finding across multiple cohorts, other 

studies have recently shown a lower copy number burden being correlated with better overall 

survival across other tumor types(Lu et al., 2020). These studies have also shown that this copy 

number loss is associated with activated immune engagement, in particular lymphocyte 

activation and interferon signaling(Chen et al., 2016a, Roh et al., 2017, Lu et al., 2020).  

However, there are caveats in interpreting the immunogenomic relationships in this 

study. Given that we primarily studied one given time-point, we were unable to ascertain 

whether the neutrophil activation/recruitment was due to anti-tumor-immune responses or 

whether their presence was a result of cellular destruction and necrosis through other means. 

The extensive immunogenomic heterogeneity is inherently limited through the 

multidimensional profiling of one tumor lesion. Thus, it is difficult to ascertain how typical 

this heterogeneity would be reflected in a broader population setting, particularly those with 

differing clinical regimens. Additionally, with the advent of spatial single-cell sequencing, 

studies have demonstrated a higher resolution view of the tumor-immune cross talk while 

retaining 2-dimensional information in several tumor types(Moncada et al., 2020, Berglund et 

al., 2018, Casasent et al., 2018). 

In chapter four, we utilized a longitudinal biopsy sampling strategy to profile the 

dynamic changes tumors undergo through combination ICB and to delineate predictors of 

response to ICB at the pre-treatment setting in sarcoma. This study demonstrated adaptive 

mechanisms of resistance to ICB that have been shown in other tumor types but not within the 
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context of sarcoma. Interestingly, the primary immune cell subset that was enriched in 

responders compared to non-responders at the pre-treatment setting were B-cells. While 

Fridman and colleagues demonstrated robust profiling of the tumor microenvironment and 

multiple immune cells that were found to be enriched within certain sarcomas, our work went 

on to show a sole B-cell infiltrate that correlated with response(Petitprez et al., 2020). 

Additionally, we did not observe instances of tertiary lymphoid structures or T-cell derived 

immune engagement within responders. The presence of B-cells at the pre-treatment setting 

may assist in the activation or recruitment of other immune effector cells. Through the 

secretion of cytokines including TNF, IL-2 and IFNG, B-cells can alter immune constituents 

and result in active immune engagement. In parallel to these findings, we also observed an 

increase in the TCR repertoire diversity at the pre-treatment setting in responders. The 

increased levels of diversity may provide an advantage to combination ICB through the 

availability of multiple TCR clonotypes, having a higher probability of a particular clonotype 

being tumor-directed. The combination of higher B-cell proliferation and T-cell diversity may 

work in conjunction to create a more robust effector immune response, however further studies 

would be required in characterizing their interplay in the setting of combination ICB. 

However, this study provided significant challenges in interpretation, in particular 

dealing with multiple histologies of sarcoma subtypes that were enrolled on trial. While 

genomic and transcriptional analysis included the confounders of batch effects and the 

histological subtypes, some of these findings may still be driven through factors aside from 

response. Additionally, given that sarcomas represent rare tumors, the power for predicting 

response in any one particular subtype was low. In order to curb the low sample size, we 

included the only other sarcoma ICB trial to date with matched molecular data(Tawbi et al., 
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2017). While we sequenced the TCR repertoire, our findings on the BCR repertoire included 

an inference of the BCR from the transcriptomic data. While several algorithms attempt to 

infer the BCR from RNA-seq data, biological challenges in terms of immune rearrangements 

as well as technical challenges as a result of read depth may influence these results. 

Chapter five highlighted the relationship of multiple immune cell subsets in the context 

of Barrett’s esophagus (BE) and high-grade dysplasia. While studies have highlighted the role 

of the inflammatory microenvironment on T-cell phenotypes, which may lead to the 

development of various tumors, we still lack a complete understanding of the 

microenvironmental niche and the role of the immune repertoire present in patients with BE 

and EAC(Quante et al., 2012, Kavanagh et al., 2014, Kavanagh et al., 2016, Noble et al., 2016, 

Buas et al., 2017).  Through our findings, we characterized an increase in effector and 

regulatory immune populations in the context of esophageal adenocarcinoma (EAC). While 

we did detect elevated levels of cytotoxic T-lymphocyte in EAC, these were mostly restricted 

to the stroma. Parallel identification of an increase in regulatory T-cells may suggest an 

inflamed yet immunosuppressed tumor microenvironment. Previous studies have reported an 

increase in macrophage and regulatory T-cell components as well as an increased levels of 

exhausted T-cells in the progression of EAC(Zheng et al., 2020). Additionally, we found 

significantly higher measures of TCR diversity present in the EAC of these patients, potentially 

due to a larger proportion of mutations and neoantigens through disease progression. 

Surprisingly, we observed high levels of overlap in the expanded clonotypes at both disease 

sites. Through a composite analysis, we found that an increase in the TCR repertoire richness 

was most highly correlated with an immunosuppressive phenotype which may indicate that 

while both BE and EAC lesions are infiltrated with T-lymphocytes, the majority of the infiltrate 
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may be acting in a suppressive role by regulating the immune system with a lack of T-cell 

expansion correlating with low levels of cytotoxic T-cell killing.  

However, the majority of these findings are limited to analysis that are solely focused 

on the immune repertoire and the varying tumor microenvironments between BE and EAC. 

While we were able to phenotype the immune populations within these two distinct regions, 

the use of transcriptomic modalities such as bulk or RNA-sequencing would provide us a 

global picture of the various immune and stromal cell types that characterize the different 

microenvironmental niches in Barrett’s and esophageal cancer. While inflammation has been 

shown to be a significant predictive factor in the development of EAC, a more robust 

characterization of effector, exhausted and regulatory immune cells is needed. Additionally, a 

high degree of TCR overlap between the distinct regions may suggest similar immunogenic 

peptides being secreted at both sites. This may be due to mutations that are clonal and found 

in early stages of BE and remain present through the development of EAC. Genomic 

characterization of these regions may help us better understand the clonal nature of mutations 

and more importantly neoantigens in the context of tumor development in EAC. 

6.2 Future Directions 

 Through Chapter 3, I attempted to characterize the varying levels of spatial ITH that 

we observe in the context of metastatic melanoma along with the interplay of the TME. 

Significant work has gone into furthering our understanding of spatial ITH, both at the bulk 

tumor level through umbrella studies such as TRACERx as well as through advances in single 

cell spatial sequencing(Satija et al., 2015, Casasent et al., 2018, Moncada et al., 2020, Jamal-

Hanjani et al., 2017b, Biswas et al., 2019, Joshi et al., 2019).  
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Firstly, this study profiled one patient (with three biopsies) at unprecedented resolution. 

While our integrative analysis was validated across public cohorts (at the bulk level), we would 

obtain a finer understanding through prospective collection and the establishment of a larger 

cohort with similar clinical and pathological features. Through the collection of these large 

multi-region sequencing datasets, we can gain an understanding of the molecular 

underpinnings of the disease at play. Seminal work by Swanton and colleagues, has established 

the role of clonal neoantigens in the development and targeting of therapeutics towards lung 

cancer(McGranahan et al., 2016). A similar approach in the context of melanoma, a tumor type 

in which neoantigen derived long peptide vaccines play a significant role, would be 

worthwhile(Hu et al., 2021).  

Given the advances in spatial transcriptomic single cell sequencing, we could better 

deconvolute the immune architecture and the various components of the TME at play while 

retaining spatial information. Through paired transcriptomic and locational information, we 

could then construct clusters of cells to most accurately phenotype multiple cell subtypes and 

use this information downstream to construct cellular neighborhoods by characterizing the 

neighbors of any given cell. Through combined cell type and cellular neighborhood 

reconstruction, we could then observe how these cellular clusters function within each 

particular neighborhood and how neighborhood compositions can in turn affect cellular 

functions. Additionally, with advances in single cell DNA sequencing, the inference of 

mutations and copy number profiles would allow us to better integrate the genomic and 

transcriptomic data(Wang et al., 2014, Minussi et al., 2021). While our work primarily 

showcased integration of multi-region sequencing, the single cell resolution of genomic 
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features, in particular the amplification of chromosome 7 and how it affects local immune 

contextures could be further interrogated. 

In Chapter 4 we performed longitudinal collection of biopsies of patients with advanced 

sarcoma on exposure to CICB. While our cohort represents the largest collection of sarcoma 

patients treated with CICB, our cohort was restricted to 57 patients with varying histologies. 

While a subset of patients did show response, this was most significantly noted in the group 

with alveolar soft part sarcoma (ASPS). Other unpublished studies have highlighted the high 

objective response rate within this histology but further interrogation of the pathognomonic 

ASPSCR1-TFE3 fusion is required. This unbalanced recurrent translocation can lead to the 

generation of neoantigens and through the induction of CICB, may result in tumor shrinkage. 

Additional means to expand analysis could include the incorporation of liquid biopsy to survey 

adaptive immune signatures that may be present in the blood. Through transcriptomic analysis, 

we may be able to identify peripheral immune subsets associated with favorable response.  

Moreover, we uncovered a sole B-cell infiltrate to be strongly predictive of response in 

our cohort. However, further studies would be needed to better understand the interplay of T- 

and B-cells in response to CICB in sarcoma. These immune cell-types, especially in 

conjunction with tertiary lymphoid structures, may create sites for the generation of an active 

anti-tumor immune response. We also observed increased levels of TCR and IGH diversity 

present at the pre-treatment time point in responders. Validation of IGH diversity and a deeper 

characterization of the BCR repertoire through BCR-sequencing would provide us with a more 

robust understanding of the immune repertoire on exposure to CICB. 

In Chapter 5, we attempted to uncover the differing immune microenvironments 

between BE and EAC. While the majority of this analysis was focused on the immune 
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contexture, our findings were restricted to regulatory and immune cell phenotypes. Through 

the incorporation of multiple marker panels, we could extend our findings to include other 

immune subpopulations including the dendritic cells, NK-cells, macrophages as well as 

exhausted immune cell-types. A deeper understanding of the spatial neighborhoods within 

these multiple marker panels may assist in better understanding the crosstalk between multiple 

cell sub-types. Additionally, comparing transcriptional states between the immune cell located 

at the periphery versus infiltrated cells may also further our understanding of the immune 

microenvironment within BE and EAC. 

Finally, the addition of genomic data would greatly increase our understanding of the 

shared overlap in the TCR repertoire. Through the use of whole genome sequencing and 

neoantigen prediction algorithms, we could uncover potential neoantigens that are conserved 

and shared between the BE and EAC. Given that neoantigen intratumor heterogeneity may 

have a significant impact on anti-tumor immunity, a thorough integrated analysis of ITH, along 

with neoantigen burden and how this pertains to the immune repertoire may improve 

therapeutic opportunities for individuals with esophageal adenocarcinoma. 

Through my work, I’ve established the multiple layers of intratumor heterogeneity and 

how the tumor-immune crosstalk in the tumor microenvironment can shape disease 

progression and response to therapy. While these studies were undertaken across multiple 

tumor types, it’s clear that studying the tumor or immune heterogeneity in silos do not paint a 

complete picture of the molecular changes that cells undergo within the tumor and its 

surrounding microenvironment. Through the spatial incorporation of the tumor along with its 

neighboring cells, we can understand how different cell-types and cellular-neighborhoods 

influence tumor progression and response to therapy. Through in-depth longitudinal collection, 
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we can better understand temporal changes in tumor, in particular the dynamic changes tumors 

undergo in response to a therapeutic agent. While the pre-existing genetic heterogeneity has 

been shown to be important through multiple studies in the context of ICB, recent work has 

shown the importance of immune and other host-immune factors that are essential in response. 

Surveying the immune compartment, studies have shown TCR clonality to be predictive of 

response in melanoma, however the same findings did not extend to the cohort of sarcomas 

that we studied(Tumeh et al., 2014, Roh et al., 2017). The immune heterogeneity that can be 

sampled through repertoire analysis highlights the diversity that we observe in immune 

repertoires and a better understanding of tumor-type specific immune heterogeneity is 

essential. A deeper understanding of the mechanistic links between biomarkers may provide 

new insights into cancer immunology and ultimately therapeutic intervention. Immune 

microenvironments and their relationship in space and time are critical to further our 

understanding of disease progression. While we observed significantly higher levels of 

lymphocytic infiltrate in matched cases with EAC and BE, this infiltrate was primarily 

composed of regulatory T-cells, with a sparse effector immune infiltrate.  Understanding how 

tumors employ immune exclusion is essential for multiple tumor types. Through molecular 

characterization of immune cell sub-types paired with spatial information pertaining to cellular 

neighborhoods, we may better understand the cross talk of cancer and immune cells in the 

tumor microenvironment and ultimately leverage this for therapeutic benefit. 

   

  



 168 

References 
 

2020. SOFT TISSUE AND BONE TUMOURS, GENEVA, WORLD HEALTH ORGANIZATION. 
AKBANI, R., AKDEMIR, K. C., AKSOY, B. A., ALBERT, M., ALLY, A., AMIN, S. B., ARACHCHI, H., 

ARORA, A., AUMAN, J. T., AYALA, B., BABOUD, J., BALASUNDARAM, M., BALU, S., 
BARNABAS, N., BARTLETT, J., BARTLETT, P., BASTIAN, B. C., BAYLIN, S. B., BEHERA, M., 
BELYAEV, D., BENZ, C., BERNARD, B., BEROUKHIM, R., BIR, N., BLACK, A. D., 
BODENHEIMER, T., BOICE, L., BOLAND, G. M., BONO, R., BOOTWALLA, M. S., 
BOSENBERG, M., BOWEN, J., BOWLBY, R., BRISTOW, C. A., BROCKWAY-LUNARDI, L., 
BROOKS, D., BRZEZINSKI, J., BSHARA, W., BUDA, E., BURNS, W. R., BUTTERFIELD, Y. S. 
N., BUTTON, M., CALDERONE, T., CAPPELLINI, G. A., CARTER, C., CARTER, S. L., 
CHERNEY, L., CHERNIACK, A. D., CHEVALIER, A., CHIN, L., CHO, J., CHO, R. J., CHOI, Y. 
L., CHU, A., CHUDAMANI, S., CIBULSKIS, K., CIRIELLO, G., CLARKE, A., COONS, S., COPE, 
L., CRAIN, D., CURLEY, E., DANILOVA, L., D'ATRI, S., DAVIDSEN, T., DAVIES, M. A., 
DELMAN, K. A., DEMCHOK, J. A., DENG, Q. A., DERIBE, Y. L., DHALLA, N., DHIR, R., 
DICARA, D., DINIKIN, M., DUBINA, M., EBROM, J. S., EGEA, S., ELEY, G., ENGEL, J., 
ESCHBACHER, J. M., FEDOSENKO, K. V., FELAU, I., FENNELL, T., FERGUSON, M. L., 
FISHER, S., FLAHERTY, K. T., FRAZER, S., FRICK, J., FULIDOU, V., GABRIEL, S. B., GAO, J., 
GARDNER, J., GARRAWAY, L. A., GASTIER-FOSTER, J. M., GAUDIOSO, C., GEHLENBORG, 
N., GENOVESE, G., GERKEN, M., GERSHENWALD, J. E., GETZ, G., et al. 2015. Genomic 
Classification of Cutaneous Melanoma. Cell. 

ALMAND, B., CLARK, J. I., NIKITINA, E., VAN BEYNEN, J., ENGLISH, N. R., KNIGHT, S. C., 
CARBONE, D. P. & GABRILOVICH, D. I. 2001. Increased production of immature 
myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J 
Immunol, 166, 678-89. 

ANDERS, S., PYL, P. T. & HUBER, W. 2015. HTSeq-A Python framework to work with high-
throughput sequencing data. Bioinformatics. 

ARAN, D., HU, Z. & BUTTE, A. J. 2017. xCell: Digitally portraying the tissue cellular 
heterogeneity landscape. Genome Biology. 

AXELSON, H., FREDLUND, E., OVENBERGER, M., LANDBERG, G. & PAHLMAN, S. 2005. Hypoxia-
induced dedifferentiation of tumor cells--a mechanism behind heterogeneity and 
aggressiveness of solid tumors. Semin Cell Dev Biol, 16, 554-63. 

BALKWILL, F., ALBERTO MANTOVANI 2001. "Inflammation and cancer: back to Virchow?." 
Lancet, 357, 539-545. 

BARBIE, D. A., TAMAYO, P., BOEHM, J. S., KIM, S. Y., MOODY, S. E., DUNN, I. F., SCHINZEL, A. 
C., SANDY, P., MEYLAN, E., SCHOLL, C., FRÖHLING, S., CHAN, E. M., SOS, M. L., MICHEL, 
K., MERMEL, C., SILVER, S. J., WEIR, B. A., REILING, J. H., SHENG, Q., GUPTA, P. B., 
WADLOW, R. C., LE, H., HOERSCH, S., WITTNER, B. S., RAMASWAMY, S., LIVINGSTON, 
D. M., SABATINI, D. M., MEYERSON, M., THOMAS, R. K., LANDER, E. S., MESIROV, J. P., 
ROOT, D. E., GILLILAND, D. G., JACKS, T. & HAHN, W. C. 2009. Systematic RNA 
interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 



 169 

BARRET SCHLOERKE, D. C., JOSEPH LARMARANGE, FRANCOIS BRIATTE, MORITZ MARBACH, 
EDWIN THOEN, AMOS ELBERG AND JASON CROWLEY 2021. GGally: Extension to 
'ggplot2'. R package version 2.1.1. 

BAYSAL, B. E., SHARMA, S., HASHEMIKHABIR, S. & JANGA, S. C. 2017. RNA Editing in 
Pathogenesis of Cancer. Cancer Res, 77, 3733-3739. 

BEAUGERIE, L., SVRCEK, M., SEKSIK, P., BOUVIER, A. M., SIMON, T., ALLEZ, M., BRIXI, H., 
GORNET, J. M., ALTWEGG, R., BEAU, P., DUCLOS, B., BOURREILLE, A., FAIVRE, J., 
PEYRIN-BIROULET, L., FLEJOU, J. F., CARRAT, F. & GROUP, C. S. 2013. Risk of colorectal 
high-grade dysplasia and cancer in a prospective observational cohort of patients with 
inflammatory bowel disease. Gastroenterology, 145, 166-175 e8. 

BECHT, E., GIRALDO, N. A., LACROIX, L., BUTTARD, B. N. D., ELAROUCI, N., PETITPREZ, F., 
SELVES, J., LAURENT-PUIG, P., SAUTÏ¿½S-FRIDMAN, C., FRIDMAN, W. H. & DE 
REYNIÏ¿½S, A. L. 2016. Estimating the population abundance of tissue-infiltrating 
immune and stromal cell populations using gene expression. Genome Biology. 

BERGLUND, E., MAASKOLA, J., SCHULTZ, N., FRIEDRICH, S., MARKLUND, M., BERGENSTRAHLE, 
J., TARISH, F., TANOGLIDI, A., VICKOVIC, S., LARSSON, L., SALMEN, F., OGRIS, C., 
WALLENBORG, K., LAGERGREN, J., STAHL, P., SONNHAMMER, E., HELLEDAY, T. & 
LUNDEBERG, J. 2018. Spatial maps of prostate cancer transcriptomes reveal an 
unexplored landscape of heterogeneity. Nat Commun, 9, 2419. 

BIRKELAND, E., ZHANG, S., PODUVAL, D., GEISLER, J., NAKKEN, S., VODAK, D., MEZA-ZEPEDA, 
L. A., HOVIG, E., MYKLEBOST, O., KNAPPSKOG, S. & LONNING, P. E. 2018. Patterns of 
genomic evolution in advanced melanoma. Nat Commun, 9, 2665. 

BISWAS, D., BIRKBAK, N. J., ROSENTHAL, R., HILEY, C. T., LIM, E. L., PAPP, K., BOEING, S., 
KRZYSTANEK, M., DJUREINOVIC, D., LA FLEUR, L., GRECO, M., DOME, B., FILLINGER, J., 
BRUNNSTROM, H., WU, Y., MOORE, D. A., SKRZYPSKI, M., ABBOSH, C., LITCHFIELD, K., 
AL BAKIR, M., WATKINS, T. B. K., VEERIAH, S., WILSON, G. A., JAMAL-HANJANI, M., 
MOLDVAY, J., BOTLING, J., CHINNAIYAN, A. M., MICKE, P., HACKSHAW, A., BARTEK, J., 
CSABAI, I., SZALLASI, Z., HERRERO, J., MCGRANAHAN, N., SWANTON, C. & 
CONSORTIUM, T. R. 2019. A clonal expression biomarker associates with lung cancer 
mortality. Nat Med, 25, 1540-1548. 

BOLOTIN, D. A., POSLAVSKY, S., MITROPHANOV, I., SHUGAY, M., MAMEDOV, I. Z., 
PUTINTSEVA, E. V. & CHUDAKOV, D. M. 2015. MiXCR: software for comprehensive 
adaptive immunity profiling. Nat Methods, 12, 380-1. 

BONI, A., COGDILL, A. P., DANG, P., UDAYAKUMAR, D., NJAUW, C.-N. J., SLOSS, C. M., 
FERRONE, C. R., FLAHERTY, K. T., LAWRENCE, D. P., FISHER, D. E., TSAO, H. & WARGO, 
J. A. 2010. Selective BRAF <sup>V600E</sup> Inhibition Enhances T-Cell Recognition 
of Melanoma without Affecting Lymphocyte Function. Cancer Research, 70, 5213-
5219. 

BROWN, S. D., WARREN, R. L., GIBB, E. A., MARTIN, S. D., SPINELLI, J. J., NELSON, B. H. & HOLT, 
R. A. 2014. Neo-antigens predicted by tumor genome meta-analysis correlate with 
increased patient survival. Genome Research. 

BRUNSON, J. 2020. ggalluvial: Layered Grammar for Alluvial Plots. Journal of Open Source 
Software, 5. 



 170 

BUAS, M. F., HE, Q., JOHNSON, L. G., ONSTAD, L., LEVINE, D. M., THRIFT, A. P., GHARAHKHANI, 
P., PALLES, C., LAGERGREN, J., FITZGERALD, R. C., YE, W., CALDAS, C., BIRD, N. C., 
SHAHEEN, N. J., BERNSTEIN, L., GAMMON, M. D., WU, A. H., HARDIE, L. J., PHAROAH, 
P. D., LIU, G., IYER, P., CORLEY, D. A., RISCH, H. A., CHOW, W. H., PRENEN, H., 
CHEGWIDDEN, L., LOVE, S., ATTWOOD, S., MOAYYEDI, P., MACDONALD, D., 
HARRISON, R., WATSON, P., BARR, H., DECAESTECKER, J., TOMLINSON, I., JANKOWSKI, 
J., WHITEMAN, D. C., MACGREGOR, S., VAUGHAN, T. L. & MADELEINE, M. M. 2017. 
Germline variation in inflammation-related pathways and risk of Barrett's oesophagus 
and oesophageal adenocarcinoma. Gut, 66, 1739-1747. 

CAMPOLI, M. R., CHANG, C.-C., KAGESHITA, T., WANG, X., MCCARTHY, J. B. & FERRONE, S. 
2004. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a 
melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and 
clinical significance. Crit Rev Immunol. 

CANCER GENOME ATLAS RESEARCH NETWORK. ELECTRONIC ADDRESS, E. D. S. C. & CANCER 
GENOME ATLAS RESEARCH, N. 2017. Comprehensive and Integrated Genomic 
Characterization of Adult Soft Tissue Sarcomas. Cell, 171, 950-965 e28. 

CARLSON, C. S., EMERSON, R. O., SHERWOOD, A. M., DESMARAIS, C., CHUNG, M. W., 
PARSONS, J. M., STEEN, M. S., LAMADRID-HERRMANNSFELDT, M. A., WILLIAMSON, D. 
W., LIVINGSTON, R. J., WU, D., WOOD, B. L., RIEDER, M. J. & ROBINS, H. 2013. Using 
synthetic templates to design an unbiased multiplex PCR assay. Nature 
Communications. 

CARTER, S. L., EKLUND, A. C., KOHANE, I. S., HARRIS, L. N. & SZALLASI, Z. 2006. A signature of 
chromosomal instability inferred from gene expression profiles predicts clinical 
outcome in multiple human cancers. Nat Genet, 38, 1043-8. 

CASASENT, A. K., SCHALCK, A., GAO, R., SEI, E., LONG, A., PANGBURN, W., CASASENT, T., 
MERIC-BERNSTAM, F., EDGERTON, M. E. & NAVIN, N. E. 2018. Multiclonal Invasion in 
Breast Tumors Identified by Topographic Single Cell Sequencing. Cell, 172, 205-217 
e12. 

CE, S. 1963. The mathematical theory of communication. MD Comput., 1997, 306-317. 
CHASSERIAU, J., RIVET, J., BILAN, F., CHOMEL, J. C., GUILHOT, F., BOURMEYSTER, N. & KITZIS, 

A. 2004. Characterization of the different BCR-ABL transcripts with a single multiplex 
RT-PCR. Journal of Molecular Diagnostics. 

CHEN, B., KHODADOUST, M. S., LIU, C. L., NEWMAN, A. M. & ALIZADEH, A. A. 2018a. Profiling 
Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol, 1711, 243-259. 

CHEN, D. S., IRVING, B. A. & HODI, F. S. 2012. Molecular pathways: next-generation 
immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. 
Clin Cancer Res, 18, 6580-7. 

CHEN, D. S. & MELLMAN, I. 2013. Oncology meets immunology: The cancer-immunity cycle. 
CHEN, H., LI, C., PENG, X., ZHOU, Z., WEINSTEIN, J. N., CANCER GENOME ATLAS RESEARCH, N. 

& LIANG, H. 2018b. A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 
Patient Samples. Cell, 173, 386-399 e12. 

CHEN, L., LI, Y., LIN, C. H., CHAN, T. H., CHOW, R. K., SONG, Y., LIU, M., YUAN, Y. F., FU, L., 
KONG, K. L., QI, L., LI, Y., ZHANG, N., TONG, A. H., KWONG, D. L., MAN, K., LO, C. M., 



 171 

LOK, S., TENEN, D. G. & GUAN, X. Y. 2013. Recoding RNA editing of AZIN1 predisposes 
to hepatocellular carcinoma. Nat Med, 19, 209-16. 

CHEN, P. L., ROH, W., REUBEN, A., COOPER, Z. A., SPENCER, C. N., PRIETO, P. A., MILLER, J. P., 
BASSETT, R. L., GOPALAKRISHNAN, V., WANI, K., DE MACEDO, M. P., AUSTIN-
BRENEMAN, J. L., JIANG, H., CHANG, Q., REDDY, S. M., CHEN, W. S., TETZLAFF, M. T., 
BROADDUS, R. J., DAVIES, M. A., GERSHENWALD, J. E., HAYDU, L., LAZAR, A. J., PATEL, 
S. P., HWU, P., HWU, W. J., DIAB, A., GLITZA, I. C., WOODMAN, S. E., VENCE, L. M., 
WISTUBA, I. I., AMARIA, R. N., KWONG, L. N., PRIETO, V., ERIC DAVIS, R., MA, W., 
OVERWIJK, W. W., SHARPE, A. H., HU, J., ANDREW FUTREAL, P., BLANDO, J., SHARMA, 
P., ALLISON, J. P., CHIN, L. & WARGO, J. A. 2016a. Analysis of immune signatures in 
longitudinal tumor samples yields insight into biomarkers of response and 
mechanisms of resistance to immune checkpoint blockade. Cancer Discovery, 6, 827-
837. 

CHEN, Z., ZHANG, C., PAN, Y., XU, R., XU, C., CHEN, Z., LU, Z. & KE, Y. 2016b. T cell receptor 
beta-chain repertoire analysis reveals intratumour heterogeneity of tumour-
infiltrating lymphocytes in oesophageal squamous cell carcinoma. J Pathol, 239, 450-
8. 

CHIU, C. H., WANG, Y. T., WALTHER, B. A. & CHAO, A. 2014. An improved nonparametric lower 
bound of species richness via a modified good-turing frequency formula. Biometrics, 
70, 671-82. 

CIBULSKIS, K., LAWRENCE, M. S., CARTER, S. L., SIVACHENKO, A., JAFFE, D., SOUGNEZ, C., 
GABRIEL, S., MEYERSON, M., LANDER, E. S. & GETZ, G. 2013. Sensitive detection of 
somatic point mutations in impure and heterogeneous cancer samples. Nature 
Biotechnology, 31, 213-219. 

CLOUGHESY, T. F., MOCHIZUKI, A. Y., ORPILLA, J. R., HUGO, W., LEE, A. H., DAVIDSON, T. B., 
WANG, A. C., ELLINGSON, B. M., RYTLEWSKI, J. A., SANDERS, C. M., KAWAGUCHI, E. S., 
DU, L., LI, G., YONG, W. H., GAFFEY, S. C., COHEN, A. L., MELLINGHOFF, I. K., LEE, E. Q., 
REARDON, D. A., O’BRIEN, B. J., BUTOWSKI, N. A., NGHIEMPHU, P. L., CLARKE, J. L., 
ARRILLAGA-ROMANY, I. C., COLMAN, H., KALEY, T. J., DE GROOT, J. F., LIAU, L. M., 
WEN, P. Y. & PRINS, R. M. 2019. Neoadjuvant anti-PD-1 immunotherapy promotes a 
survival benefit with intratumoral and systemic immune responses in recurrent 
glioblastoma. Nature Medicine. 

COATES, P. J., RUNDLE, J. K., LORIMORE, S. A. & WRIGHT, E. G. 2008. Indirect macrophage 
responses to ionizing radiation: Implications for genotype-dependent bystander 
signaling. Cancer Research. 

COIT, D. G., THOMPSON, J. A., ALGAZI, A., ANDTBACKA, R., BICHAKJIAN, C. K., CARSON, W. E., 
DANIELS, G. A., DIMAIO, D., ERNSTOFF, M., FIELDS, R. C., FLEMING, M. D., GONZALEZ, 
R., GUILD, V., HALPERN, A. C., HODI, F. S., JOSEPH, R. W., LANGE, J. R., MARTINI, M. C., 
MATERIN, M. A., OLSZANSKI, A. J., ROSS, M. I., SALAMA, A. K., SKITZKI, J., SOSMAN, J., 
SWETTER, S. M., TANABE, K. K., TORRES-ROCA, J. F., TRISAL, V., URIST, M. M., 
MCMILLIAN, N. & ENGH, A. 2016. Melanoma, version 2.2016 clinical practice 
guidelines in oncology. JNCCN Journal of the National Comprehensive Cancer Network. 



 172 

COOK, M. B., COBURN, S. B., LAM, J. R., TAYLOR, P. R., SCHNEIDER, J. L. & CORLEY, D. A. 2018. 
Cancer incidence and mortality risks in a large US Barrett's oesophagus cohort. Gut, 
67, 418-529. 

CORREALE, P., ROTUNDO, M. S., BOTTA, C., DEL VECCHIO, M. T., GINANNESCHI, C., 
LICCHETTA, A., CONCA, R., APOLLINARI, S., DE LUCA, F., TASSONE, P. & TAGLIAFERRI, 
P. 2012. Tumor infiltration by T lymphocytes expressing chemokine receptor 7 (CCR7) 
is predictive of favorable outcome in patients with advanced colorectal carcinoma. 
Clin Cancer Res, 18, 850-7. 

DALEY, T. & SMITH, A. D. 2013. Predicting the molecular complexity of sequencing libraries. 
Nature Methods, 10, 325-327. 

DANG, H. X., WHITE, B. S., FOLTZ, S. M., MILLER, C. A., LUO, J., FIELDS, R. C. & MAHER, C. A. 
2017. ClonEvol: Clonal ordering and visualization in cancer sequencing. Annals of 
Oncology. 

DEMIRCIOGLU, D., CUKUROGLU, E., KINDERMANS, M., NANDI, T., CALABRESE, C., FONSECA, 
N. A., KAHLES, A., LEHMANN, K. V., STEGLE, O., BRAZMA, A., BROOKS, A. N., RATSCH, 
G., TAN, P. & GOKE, J. 2019. A Pan-cancer Transcriptome Analysis Reveals Pervasive 
Regulation through Alternative Promoters. Cell, 178, 1465-1477 e17. 

DOUBROVINA, E., CARPENTER, T., PANKOV, D., SELVAKUMAR, A., HASAN, A. & O'REILLY, R. J. 
2012. Mapping of novel peptides of WT-1 and presenting HLA alleles that induce 
epitope-specific HLA-restricted T cells with cytotoxic activity against WT-1+ leukemias. 
Blood, 120, 1633-1646. 

DOUGLAS HANAHAN, R. A. W. 2000. The Hallmarks of Cancer. Cell, 100, 57-70. 
DR LEACH, M. K., JP ALLISON 1996. Enhancement of antitumor immunity by CTLA-4 blockade. 

Science, 271 1734-1736. 
EFRON, B. & THISTED, R. 1976. Estimating the number of unseen species: How many words 

did Shakespeare know? Biometrika, 63, 435-447. 
EMERSON, R. O., SHERWOOD, A. M., RIEDER, M. J., GUENTHOER, J., WILLIAMSON, D. W., 

CARLSON, C. S., DRESCHER, C. W., TEWARI, M., BIELAS, J. H. & ROBINS, H. S. 2013. 
High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of 
tumour-infiltrating lymphocytes in ovarian cancer. J Pathol, 231, 433-440. 

ENGERING, A., GEIJTENBEEK, T. B., VAN VLIET, S. J., WIJERS, M., VAN LIEMPT, E., DEMAUREX, 
N., LANZAVECCHIA, A., FRANSEN, J., FIGDOR, C. G., PIGUET, V. & VAN KOOYK, Y. 2002. 
The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for 
presentation to T cells. J Immunol, 168, 2118-26. 

FAN, J., LIANG, H., SHEN, T., WANG, S., JI, X., YEE, C., LU, F. & SHAO, Y. 2018. Early Env-specific 
CTLs effectively suppress viral replication in SHIV controller macaques. Cellular 
Immunology, 331, 30-37. 

FAVERO, F., JOSHI, T., MARQUARD, A. M., BIRKBAK, N. J., KRZYSTANEK, M., LI, Q., SZALLASI, 
Z. & EKLUND, A. C. 2015. Sequenza: Allele-specific copy number and mutation profiles 
from tumor sequencing data. Annals of Oncology. 

FIDLER, I. J. 1978. Tumor Heterogeneity and the Biology of Cancer Invasion and Metastasis. 
Cancer Research. 

FINOTELLO, F., MAYER, C., PLATTNER, C., LASCHOBER, G., RIEDER, D., HACKL, H., KROGSDAM, 
A., LONCOVA, Z., POSCH, W., WILFLINGSEDER, D., SOPPER, S., IJSSELSTEIJN, M., 



 173 

BROUWER, T. P., JOHNSON, D., XU, Y., WANG, Y., SANDERS, M. E., ESTRADA, M. V., 
ERICSSON-GONZALEZ, P., CHAROENTONG, P., BALKO, J., DE MIRANDA, N. & 
TRAJANOSKI, Z. 2019. Molecular and pharmacological modulators of the tumor 
immune contexture revealed by deconvolution of RNA-seq data. Genome Med, 11, 
34. 

FLAVAHAN, W. A., GASKELL, E. & BERNSTEIN, B. E. 2017. Epigenetic plasticity and the 
hallmarks of cancer. Science, 357. 

FRANCISZKIEWICZ, K., BOISSONNAS, A., BOUTET, M., COMBADIERE, C. & MAMI-CHOUAIB, F. 
2012. Role of chemokines and chemokine receptors in shaping the effector phase of 
the antitumor immune response. Cancer Res, 72, 6325-32. 

FREDERICK, D. T., PIRIS, A., COGDILL, A. P., COOPER, Z. A., LEZCANO, C., FERRONE, C. R., 
MITRA, D., BONI, A., NEWTON, L. P., LIU, C., PENG, W., SULLIVAN, R. J., LAWRENCE, D. 
P., HODI, F. S., OVERWIJK, W. W., LIZEE, G., MURPHY, G. F., HWU, P., FLAHERTY, K. T., 
FISHER, D. E. & WARGO, J. A. 2013. BRAF Inhibition Is Associated with Enhanced 
Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in 
Patients with Metastatic Melanoma. Clinical Cancer Research, 19, 1225-1231. 

GABRILOVICH, D. I., OSTRAND-ROSENBERG, S. & BRONTE, V. 2012. Coordinated regulation of 
myeloid cells by tumours. 

GABRILOVICH, D. I., VELDERS, M. P., SOTOMAYOR, E. M. & KAST, W. M. 2001. Mechanism of 
immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol, 
166, 5398-406. 

GALILI, T. 2015. dendextend: an R package for visualizing, adjusting and comparing trees of 
hierarchical clustering. Bioinformatics, 31, 3718-3720. 

GARRAWAY, L. A., WIDLUND, H. R., RUBIN, M. A., GETZ, G., BERGER, A. J., RAMASWAMY, S., 
BEROUKHIM, R., MILNER, D. A., GRANTER, S. R., DU, J., LEE, C., WAGNER, S. N., LI, C., 
GOLUB, T. R., RIMM, D. L., MEYERSON, M. L., FISHER, D. E. & SELLERS, W. R. 2005. 
Integrative genomic analyses identify MITF as a lineage survival oncogene amplified 
in malignant melanoma. Nature, 436, 117-122. 

GERLINGER, M., HORSWELL, S., LARKIN, J., ROWAN, A. J., SALM, M. P., VARELA, I., FISHER, R., 
MCGRANAHAN, N., MATTHEWS, N., SANTOS, C. R., MARTINEZ, P., PHILLIMORE, B., 
BEGUM, S., RABINOWITZ, A., SPENCER-DENE, B., GULATI, S., BATES, P. A., STAMP, G., 
PICKERING, L., GORE, M., NICOL, D. L., HAZELL, S., FUTREAL, P. A., STEWART, A. & 
SWANTON, C. 2014. Genomic architecture and evolution of clear cell renal cell 
carcinomas defined by multiregion sequencing. Nature Genetics, 46, 225-233. 

GERLINGER, M., QUEZADA, S. A., PEGGS, K. S., FURNESS, A. J. S., FISHER, R., MARAFIOTI, T., 
SHENDE, V. H., MCGRANAHAN, N., ROWAN, A. J., HAZELL, S., HAMM, D., ROBINS, H. 
S., PICKERING, L., GORE, M., NICOL, D. L., LARKIN, J. & SWANTON, C. 2013. Ultra-deep 
T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T 
cell clones in renal cell carcinomas: Ultra-deep sequencing of T cell repertoires in renal 
cancer. The Journal of Pathology, 231, 424-432. 

GERLINGER, M., ROWAN, A. J., HORSWELL, S., LARKIN, J., ENDESFELDER, D., GRONROOS, E., 
MARTINEZ, P., MATTHEWS, N., STEWART, A., TARPEY, P., VARELA, I., PHILLIMORE, B., 
BEGUM, S., MCDONALD, N. Q., BUTLER, A., JONES, D., RAINE, K., LATIMER, C., SANTOS, 
C. R., NOHADANI, M., EKLUND, A. C., SPENCER-DENE, B., CLARK, G., PICKERING, L., 



 174 

STAMP, G., GORE, M., SZALLASI, Z., DOWNWARD, J., FUTREAL, P. A. & SWANTON, C. 
2012a. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion 
Sequencing. New England Journal of Medicine, 366, 883-892. 

GERLINGER, M., ROWAN, A. J., HORSWELL, S., LARKIN, J., ENDESFELDER, D., GRONROOS, E., 
MARTINEZ, P., MATTHEWS, N., STEWART, A., TARPEY, P., VARELA, I., PHILLIMORE, B., 
BEGUM, S., MCDONALD, N. Q., BUTLER, A., JONES, D., RAINE, K., LATIMER, C., SANTOS, 
C. R., NOHADANI, M., EKLUND, A. C., SPENCER-DENE, B., CLARK, G., PICKERING, L., 
STAMP, G., GORE, M., SZALLASI, Z., DOWNWARD, J., FUTREAL, P. A. & SWANTON, C. 
2012b. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion 
Sequencing. New England Journal of Medicine. 

GORDON, M. S., KANEGAI, C. M., DOERR, J. R. & WALL, R. 2003. Somatic hypermutation of 
the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl 
Acad Sci U S A, 100, 4126-31. 

GREAVES, M. & MALEY, C. C. 2012. Clonal evolution in cancer. Nature, 481, 306-13. 
GREAVES, P. & GRIBBEN, J. G. 2013. The role of B7 family molecules in hematologic 

malignancy. Blood, 121, 734-44. 
GROISBERG, R., ROSZIK, J., CONLEY, A. P., LAZAR, A. J., PORTAL, D. E., HONG, D. S., NAING, A., 

HERZOG, C. E., SOMAIAH, N., ZARZOUR, M. A., PATEL, S., BROWN, R. E. & SUBBIAH, V. 
2020. Genomics, Morphoproteomics, and Treatment Patterns of Patients with 
Alveolar Soft Part Sarcoma and Response to Multiple Experimental Therapies. Mol 
Cancer Ther, 19, 1165-1172. 

GROUP, P. T. C., CALABRESE, C., DAVIDSON, N. R., DEMIRCIOGLU, D., FONSECA, N. A., HE, Y., 
KAHLES, A., LEHMANN, K. V., LIU, F., SHIRAISHI, Y., SOULETTE, C. M., URBAN, L., 
GREGER, L., LI, S., LIU, D., PERRY, M. D., XIANG, Q., ZHANG, F., ZHANG, J., BAILEY, P., 
ERKEK, S., HOADLEY, K. A., HOU, Y., HUSKA, M. R., KILPINEN, H., KORBEL, J. O., MARIN, 
M. G., MARKOWSKI, J., NANDI, T., PAN-HAMMARSTROM, Q., PEDAMALLU, C. S., 
SIEBERT, R., STARK, S. G., SU, H., TAN, P., WASZAK, S. M., YUNG, C., ZHU, S., 
AWADALLA, P., CREIGHTON, C. J., MEYERSON, M., OUELLETTE, B. F. F., WU, K., YANG, 
H., GROUP, P. T. W., BRAZMA, A., BROOKS, A. N., GOKE, J., RATSCH, G., SCHWARZ, R. 
F., STEGLE, O., ZHANG, Z. & CONSORTIUM, P. 2020. Genomic basis for RNA alterations 
in cancer. Nature, 578, 129-136. 

GU, Z., EILS, R. & SCHLESNER, M. 2016. Complex heatmaps reveal patterns and correlations 
in multidimensional genomic data. Bioinformatics. 

GU, Z., GU, L., EILS, R., SCHLESNER, M. & BRORS, B. 2014. Circlize implements and enhances 
circular visualization in R. Bioinformatics. 

HÄNZELMANN, S., CASTELO, R. & GUINNEY, J. 2013. GSVA: Gene set variation analysis for 
microarray and RNA-Seq data. BMC Bioinformatics. 

HELLMANN, M. D., NATHANSON, T., RIZVI, H., CREELAN, B. C., SANCHEZ-VEGA, F., AHUJA, A., 
NI, A., NOVIK, J. B., MANGARIN, L. M. B., ABU-AKEEL, M., LIU, C., SAUTER, J. L., 
REKHTMAN, N., CHANG, E., CALLAHAN, M. K., CHAFT, J. E., VOSS, M. H., TENET, M., LI, 
X. M., COVELLO, K., RENNINGER, A., VITAZKA, P., GEESE, W. J., BORGHAEI, H., RUDIN, 
C. M., ANTONIA, S. J., SWANTON, C., HAMMERBACHER, J., MERGHOUB, T., 
MCGRANAHAN, N., SNYDER, A. & WOLCHOK, J. D. 2018. Genomic Features of 



 175 

Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell 
Lung Cancer. Cancer Cell. 

HELLMANN, M. D., PAZ-ARES, L., BERNABE CARO, R., ZURAWSKI, B., KIM, S. W., CARCERENY 
COSTA, E., PARK, K., ALEXANDRU, A., LUPINACCI, L., DE LA MORA JIMENEZ, E., SAKAI, 
H., ALBERT, I., VERGNENEGRE, A., PETERS, S., SYRIGOS, K., BARLESI, F., RECK, M., 
BORGHAEI, H., BRAHMER, J. R., O'BYRNE, K. J., GEESE, W. J., BHAGAVATHEESWARAN, 
P., RABINDRAN, S. K., KASINATHAN, R. S., NATHAN, F. E. & RAMALINGAM, S. S. 2019. 
Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N Engl J Med, 
381, 2020-2031. 

HEPPNER, G. H. 1984. Tumor Heterogeneity. Perspectives in Cancer Research. 
HODI, F. S., O'DAY, S. J., MCDERMOTT, D. F., WEBER, R. W., SOSMAN, J. A., HAANEN, J. B., 

GONZALEZ, R., ROBERT, C., SCHADENDORF, D., HASSEL, J. C., AKERLEY, W., VAN DEN 
EERTWEGH, A. J. M., LUTZKY, J., LORIGAN, P., VAUBEL, J. M., LINETTE, G. P., HOGG, D., 
OTTENSMEIER, C. H., LEBBÉ, C., PESCHEL, C., QUIRT, I., CLARK, J. I., WOLCHOK, J. D., 
WEBER, J. S., TIAN, J., YELLIN, M. J., NICHOL, G. M., HOOS, A. & URBA, W. J. 2010. 
Improved survival with ipilimumab in patients with metastatic melanoma. The New 
England journal of medicine. 

HU, X., ZHANG, J., WANG, J., FU, J., LI, T., ZHENG, X., WANG, B., GU, S., JIANG, P., FAN, J., YING, 
X., ZHANG, J., CARROLL, M. C., WUCHERPFENNIG, K. W., HACOHEN, N., ZHANG, F., 
ZHANG, P., LIU, J. S., LI, B. & LIU, X. S. 2019. Landscape of B cell immunity and related 
immune evasion in human cancers. Nat Genet, 51, 560-567. 

HU, Z., LEET, D. E., ALLESOE, R. L., OLIVEIRA, G., LI, S., LUOMA, A. M., LIU, J., FORMAN, J., 
HUANG, T., IORGULESCU, J. B., HOLDEN, R., SARKIZOVA, S., GOHIL, S. H., REDD, R. A., 
SUN, J., ELAGINA, L., GIOBBIE-HURDER, A., ZHANG, W., PETER, L., CIANTRA, Z., RODIG, 
S., OLIVE, O., SHETTY, K., PYRDOL, J., UDUMAN, M., LEE, P. C., BACHIREDDY, P., 
BUCHBINDER, E. I., YOON, C. H., NEUBERG, D., PENTELUTE, B. L., HACOHEN, N., LIVAK, 
K. J., SHUKLA, S. A., OLSEN, L. R., BAROUCH, D. H., WUCHERPFENNIG, K. W., FRITSCH, 
E. F., KESKIN, D. B., WU, C. J. & OTT, P. A. 2021. Personal neoantigen vaccines induce 
persistent memory T cell responses and epitope spreading in patients with melanoma. 
Nat Med, 27, 515-525. 

HUANG, D., SHERMAN, B. T., TAN, Q., COLLINS, J. R., ALVORD, W. G., ROAYAEI, J., STEPHENS, 
R., BASELER, M. W., LANE, H. C. & LEMPICKI, R. A. 2007. The DAVID Gene Functional 
Classification Tool: a novel biological module-centric algorithm to functionally analyze 
large gene lists. Genome Biology, 8, R183. 

HUGO, W., ZARETSKY, J. M., SUN, L., SONG, C., MORENO, B. H., HU-LIESKOVAN, S., BERENT-
MAOZ, B., PANG, J., CHMIELOWSKI, B., CHERRY, G., SEJA, E., LOMELI, S., KONG, X., 
KELLEY, M. C., SOSMAN, J. A., JOHNSON, D. B., RIBAS, A. & LO, R. S. 2016. Genomic 
and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic 
Melanoma. Cell, 165, 35-44. 

INC, P. T. Collaborative data science, Montréal, QC, Plotly Technologies Inc. 
ISHIBASHI, Y., TANAKA, S., TAJIMA, K., YOSHIDA, T. & KUWANO, H. 2006. Expression of Foxp3 

in non-small cell lung cancer patients is significantly higher in tumor tissues than in 
normal tissues, especially in tumors smaller than 30 mm. Oncol Rep, 15, 1315-9. 



 176 

JAFFE, A. E., MURAKAMI, P., LEE, H., LEEK, J. T., FALLIN, M. D., FEINBERG, A. P. & IRIZARRY, R. 
A. 2012. Bump hunting to identify differentially methylated regions in epigenetic 
epidemiology studies. International Journal of Epidemiology, 41, 200-209. 

JAMAL-HANJANI, M., WILSON, G. A., MCGRANAHAN, N., BIRKBAK, N. J., WATKINS, T. B. K., 
VEERIAH, S., SHAFI, S., JOHNSON, D. H., MITTER, R., ROSENTHAL, R., SALM, M., 
HORSWELL, S., ESCUDERO, M., MATTHEWS, N., ROWAN, A., CHAMBERS, T., MOORE, 
D. A., TURAJLIC, S., XU, H., LEE, S.-M., FORSTER, M. D., AHMAD, T., HILEY, C. T., 
ABBOSH, C. & FALZON, M. 2017a. Tracking the Evolution of Non–Small-Cell Lung 
Cancer. New England Journal of Medicine. 

JAMAL-HANJANI, M., WILSON, G. A., MCGRANAHAN, N., BIRKBAK, N. J., WATKINS, T. B. K., 
VEERIAH, S., SHAFI, S., JOHNSON, D. H., MITTER, R., ROSENTHAL, R., SALM, M., 
HORSWELL, S., ESCUDERO, M., MATTHEWS, N., ROWAN, A., CHAMBERS, T., MOORE, 
D. A., TURAJLIC, S., XU, H., LEE, S.-M., FORSTER, M. D., AHMAD, T., HILEY, C. T., 
ABBOSH, C., FALZON, M., BORG, E., MARAFIOTI, T., LAWRENCE, D., HAYWARD, M., 
KOLVEKAR, S., PANAGIOTOPOULOS, N., JANES, S. M., THAKRAR, R., AHMED, A., 
BLACKHALL, F., SUMMERS, Y., SHAH, R., JOSEPH, L., QUINN, A. M., CROSBIE, P. A., 
NAIDU, B., MIDDLETON, G., LANGMAN, G., TROTTER, S., NICOLSON, M., REMMEN, H., 
KERR, K., CHETTY, M., GOMERSALL, L., FENNELL, D. A., NAKAS, A., RATHINAM, S., 
ANAND, G., KHAN, S., RUSSELL, P., EZHIL, V., ISMAIL, B., IRVIN-SELLERS, M., PRAKASH, 
V., LESTER, J. F., KORNASZEWSKA, M., ATTANOOS, R., ADAMS, H., DAVIES, H., 
DENTRO, S., TANIERE, P., O’SULLIVAN, B., LOWE, H. L., HARTLEY, J. A., ILES, N., BELL, 
H., NGAI, Y., SHAW, J. A., HERRERO, J., SZALLASI, Z., SCHWARZ, R. F., STEWART, A., 
QUEZADA, S. A., LE QUESNE, J., VAN LOO, P., DIVE, C., HACKSHAW, A. & SWANTON, C. 
2017b. Tracking the Evolution of Non–Small-Cell Lung Cancer. New England Journal of 
Medicine, 376, 2109-2121. 

JANEWAY CA JR, T. P., WALPORT M, ET AL 2001. Immunobiology: The Immune System in 
Health and Disease. New York: Garland Science, 5. 

JIANHUA, Z. 2018. CNTools: Convert segment data into a region by sample matrix to allow for 
other high level computational analyses. 

JIMÉNEZ-SÁNCHEZ, A., MEMON, D., POURPE, S., VEERARAGHAVAN, H., LI, Y., VARGAS, H. A., 
GILL, M. B., PARK, K. J., ZIVANOVIC, O., KONNER, J., RICCA, J., ZAMARIN, D., WALTHER, 
T., AGHAJANIAN, C., WOLCHOK, J. D., SALA, E., MERGHOUB, T., SNYDER, A. & MILLER, 
M. L. 2017. Heterogeneous Tumor-Immune Microenvironments among Differentially 
Growing Metastases in an Ovarian Cancer Patient. Cell, 170, 927-938.e20. 

JOHNSON, W. E., LI, C. & RABINOVIC, A. 2007. Adjusting batch effects in microarray 
expression data using empirical Bayes methods. Biostatistics, 8, 118-127. 

JOSHI, K., DE MASSY, M. R., ISMAIL, M., READING, J. L., UDDIN, I., WOOLSTON, A., HATIPOGLU, 
E., OAKES, T., ROSENTHAL, R., PEACOCK, T., RONEL, T., NOURSADEGHI, M., TURATI, 
V., FURNESS, A. J. S., GEORGIOU, A., WONG, Y. N. S., BEN AISSA, A., SUNDERLAND, M. 
W., JAMAL-HANJANI, M., VEERIAH, S., BIRKBAK, N. J., WILSON, G. A., HILEY, C. T., 
GHORANI, E., GUERRA-ASSUNCAO, J. A., HERRERO, J., ENVER, T., HADRUP, S. R., 
HACKSHAW, A., PEGGS, K. S., MCGRANAHAN, N., SWANTON, C., CONSORTIUM, T. R., 
QUEZADA, S. A. & CHAIN, B. 2019. Spatial heterogeneity of the T cell receptor 
repertoire reflects the mutational landscape in lung cancer. Nat Med, 25, 1549-1559. 



 177 

JOYCE, J. A. & POLLARD, J. W. 2009. Microenvironmental regulation of metastasis. 
KABBARAH, O., NOGUEIRA, C., FENG, B., NAZARIAN, R. M., BOSENBERG, M., WU, M., SCOTT, 

K. L., KWONG, L. N., XIAO, Y., CORDON-CARDO, C., GRANTER, S. R., RAMASWAMY, S., 
GOLUB, T., DUNCAN, L. M., WAGNER, S. N., BRENNAN, C. & CHIN, L. 2010. Integrative 
genome comparison of primary and metastatic melanomas. PLoS ONE. 

KAHLES, A., LEHMANN, K. V., TOUSSAINT, N. C., HUSER, M., STARK, S. G., SACHSENBERG, T., 
STEGLE, O., KOHLBACHER, O., SANDER, C., CANCER GENOME ATLAS RESEARCH, N. & 
RATSCH, G. 2018. Comprehensive Analysis of Alternative Splicing Across Tumors from 
8,705 Patients. Cancer Cell, 34, 211-224 e6. 

KAHRAMAN, D. S., DINIZ, G., SAYHAN, S., SAYAR, C., AYAZ, D., GOKCU, M. & KARADENIZ, T. 
2018. The prognostic significance of pdl1 and foxp3 expressions in tumor cells and the 
tumor microenvironment of ovarian epithelial tumors. Int J Clin Exp Pathol, 11, 3884-
3890. 

KALLURI, R. & ZEISBERG, M. 2006. Fibroblasts in cancer. Nat Rev Cancer, 6, 392-401. 
KANDOTH, C., MCLELLAN, M. D., VANDIN, F., YE, K., NIU, B., LU, C., XIE, M., ZHANG, Q., 

MCMICHAEL, J. F., WYCZALKOWSKI, M. A., LEISERSON, M. D. M., MILLER, C. A., 
WELCH, J. S., WALTER, M. J., WENDL, M. C., LEY, T. J., WILSON, R. K., RAPHAEL, B. J. & 
DING, L. 2013. Mutational landscape and significance across 12 major cancer types. 
Nature, 502, 333-339. 

KAROSIENE, E., RASMUSSEN, M., BLICHER, T., LUND, O., BUUS, S. & NIELSEN, M. 2013. 
NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including 
all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics, 
65, 711-724. 

KAVANAGH, M. E., CONROY, M. J., CLARKE, N. E., GILMARTIN, N. T., O'SULLIVAN, K. E., 
FEIGHERY, R., MACCARTHY, F., O'TOOLE, D., RAVI, N., REYNOLDS, J. V., O'SULLIVAN, J. 
& LYSAGHT, J. 2016. Impact of the inflammatory microenvironment on T-cell 
phenotype in the progression from reflux oesophagitis to Barrett oesophagus and 
oesophageal adenocarcinoma. Cancer Lett, 370, 117-24. 

KAVANAGH, M. E., O'SULLIVAN, K. E., O'HANLON, C., O'SULLIVAN, J. N., LYSAGHT, J. & 
REYNOLDS, J. V. 2014. The esophagitis to adenocarcinoma sequence; the role of 
inflammation. Cancer Lett, 345, 182-9. 

KEUNG, E. Z., BURGESS, M., SALAZAR, R., PARRA, E. R., RODRIGUES-CANALES, J., BOLEJACK, 
V., VAN TINE, B. A., SCHUETZE, S. M., ATTIA, S., RIEDEL, R. F., HU, J., OKUNO, S. H., 
PRIEBAT, D. A., MOVVA, S., DAVIS, L. E., REED, D. R., REUBEN, A., ROLAND, C. L., 
REINKE, D., LAZAR, A. J., WANG, W. L., WARGO, J. A. & TAWBI, H. A. 2020. Correlative 
Analyses of the SARC028 Trial Reveal an Association Between Sarcoma-Associated 
Immune Infiltrate and Response to Pembrolizumab. Clin Cancer Res, 26, 1258-1266. 

KHALILI, J. S., LIU, S., RODRIGUEZ-CRUZ, T. G., WHITTINGTON, M., WARDELL, S., LIU, C., 
ZHANG, M., COOPER, Z. A., FREDERICK, D. T., LI, Y., ZHANG, M., JOSEPH, R. W., 
BERNATCHEZ, C., EKMEKCIOGLU, S., GRIMM, E., RADVANYI, L. G., DAVIS, R. E., DAVIES, 
M. A., WARGO, J. A., HWU, P. & LIZEE, G. 2012. Oncogenic BRAF(V600E) Promotes 
Stromal Cell-Mediated Immunosuppression Via Induction of Interleukin-1 in 
Melanoma. Clinical Cancer Research, 18, 5329-5340. 



 178 

KIM, D., PERTEA, G., TRAPNELL, C., PIMENTEL, H., KELLEY, R. & SALZBERG, S. L. 2013. TopHat2: 
accurate alignment of transcriptomes in the presence of insertions, deletions and 
gene fusions. Genome biology, 14, R36. 

KONIECZKOWSKI, D. J., JOHANNESSEN, C. M., ABUDAYYEH, O., KIM, J. W., COOPER, Z. A., 
PIRIS, A., FREDERICK, D. T., BARZILY-ROKNI, M., STRAUSSMAN, R., HAQ, R., FISHER, D. 
E., MESIROV, J. P., HAHN, W. C., FLAHERTY, K. T., WARGO, J. A., TAMAYO, P. & 
GARRAWAY, L. A. 2014. A Melanoma Cell State Distinction Influences Sensitivity to 
MAPK Pathway Inhibitors. Cancer Discovery, 4, 816-827. 

KUIJJER, M. L., HSIEH, P. H., QUACKENBUSH, J. & GLASS, K. 2019. lionessR: single sample 
network inference in R. BMC Cancer, 19, 1003. 

LAFAVE, L. M., KARTHA, V. K., MA, S., MELI, K., DEL PRIORE, I., LAREAU, C., NARANJO, S., 
WESTCOTT, P. M. K., DUARTE, F. M., SANKAR, V., CHIANG, Z., BRACK, A., LAW, T., 
HAUCK, H., OKIMOTO, A., REGEV, A., BUENROSTRO, J. D. & JACKS, T. 2020. Epigenomic 
State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma. 
Cancer Cell, 38, 212-228 e13. 

LAI, L. A., PAULSON, T. G., LI, X., SANCHEZ, C. A., MALEY, C., ODZE, R. D., REID, B. J. & 
RABINOVITCH, P. S. 2007. Increasing genomic instability during premalignant 
neoplastic progression revealed through high resolution array-CGH. Genes 
Chromosomes Cancer, 46, 532-42. 

LARKIN, J., CHIARION-SILENI, V., GONZALEZ, R., GROB, J. J., RUTKOWSKI, P., LAO, C. D., 
COWEY, C. L., SCHADENDORF, D., WAGSTAFF, J., DUMMER, R., FERRUCCI, P. F., 
SMYLIE, M., HOGG, D., HILL, A., MARQUEZ-RODAS, I., HAANEN, J., GUIDOBONI, M., 
MAIO, M., SCHOFFSKI, P., CARLINO, M. S., LEBBE, C., MCARTHUR, G., ASCIERTO, P. A., 
DANIELS, G. A., LONG, G. V., BASTHOLT, L., RIZZO, J. I., BALOGH, A., MOSHYK, A., HODI, 
F. S. & WOLCHOK, J. D. 2019. Five-Year Survival with Combined Nivolumab and 
Ipilimumab in Advanced Melanoma. N Engl J Med, 381, 1535-1546. 

LAWRENCE, M. S., STOJANOV, P., MERMEL, C. H., ROBINSON, J. T., GARRAWAY, L. A., GOLUB, 
T. R., MEYERSON, M., GABRIEL, S. B., LANDER, E. S. & GETZ, G. 2014. Discovery and 
saturation analysis of cancer genes across 21 tumour types. Nature, 505, 495-501. 

LE, D. T., URAM, J. N., WANG, H., BARTLETT, B. R., KEMBERLING, H., EYRING, A. D., SKORA, A. 
D., LUBER, B. S., AZAD, N. S., LAHERU, D., BIEDRZYCKI, B., DONEHOWER, R. C., ZAHEER, 
A., FISHER, G. A., CROCENZI, T. S., LEE, J. J., DUFFY, S. M., GOLDBERG, R. M., DE LA 
CHAPELLE, A., KOSHIJI, M., BHAIJEE, F., HUEBNER, T., HRUBAN, R. H., WOOD, L. D., 
CUKA, N., PARDOLL, D. M., PAPADOPOULOS, N., KINZLER, K. W., ZHOU, S., CORNISH, 
T. C., TAUBE, J. M., ANDERS, R. A., ESHLEMAN, J. R., VOGELSTEIN, B. & DIAZ, L. A. 2015. 
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New England Journal of 
Medicine. 

LI, B., LI, T., PIGNON, J. C., WANG, B., WANG, J., SHUKLA, S. A., DOU, R., CHEN, Q., HODI, F. S., 
CHOUEIRI, T. K., WU, C., HACOHEN, N., SIGNORETTI, S., LIU, J. S. & LIU, X. S. 2016a. 
Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat Genet, 48, 
725-32. 

LI, B., LI, T., WANG, B., DOU, R., ZHANG, J., LIU, J. S. & LIU, X. S. 2017. Ultrasensitive detection 
of TCR hypervariable-region sequences in solid-tissue RNA-seq data. Nat Genet, 49, 
482-483. 



 179 

LI, B., SEVERSON, E., PIGNON, J.-C., ZHAO, H., LI, T., NOVAK, J., PENG, J., SHEN, H., ASTER JON, 
C., RODIG, S., SIGNORETTI, S., LIU JUN, S. & LIU, X. S. 2016b. Comprehensive analyses 
of tumor immunity: implications for cancer immunotherapy. Genome Biology, 1-16. 

LI, F., SUN, Y., HUANG, J., XU, W., LIU, J. & YUAN, Z. 2019. CD4/CD8 + T cells, DC subsets, 
Foxp3, and IDO expression are predictive indictors of gastric cancer prognosis. Cancer 
Med, 8, 7330-7344. 

LI, H. & DURBIN, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics. 

LI, X., GALIPEAU, P. C., PAULSON, T. G., SANCHEZ, C. A., ARNAUDO, J., LIU, K., SATHER, C. L., 
KOSTADINOV, R. L., ODZE, R. D., KUHNER, M. K., MALEY, C. C., SELF, S. G., VAUGHAN, 
T. L., BLOUNT, P. L. & REID, B. J. 2014. Temporal and spatial evolution of somatic 
chromosomal alterations: a case-cohort study of Barrett's esophagus. Cancer Prev Res 
(Phila), 7, 114-27. 

LI, Y., BLEAKLEY, M. & YEE, C. 2005. IL-21 Influences the Frequency, Phenotype, and Affinity 
of the Antigen-Specific CD8 T Cell Response. The Journal of Immunology, 175, 2261-
2269. 

LIN, S. M., DU, P., HUBER, W. & KIBBE, W. A. 2008. Model-based variance-stabilizing 
transformation for Illumina microarray data. Nucleic Acids Research. 

LINCH, M., GOH, G., HILEY, C., SHANMUGABAVAN, Y., MCGRANAHAN, N., ROWAN, A., WONG, 
Y. N. S., KING, H., FURNESS, A., FREEMAN, A., LINARES, J., AKARCA, A., HERRERO, J., 
ROSENTHAL, R., HARDER, N., SCHMIDT, G., WILSON, G. A., BIRKBAK, N. J., MITTER, R., 
DENTRO, S., CATHCART, P., ARYA, M., JOHNSTON, E., SCOTT, R., HUNG, M., 
EMBERTON, M., ATTARD, G., SZALLASI, Z., PUNWANI, S., QUEZADA, S. A., MARAFIOTI, 
T., GERLINGER, M., AHMED, H. U. & SWANTON, C. 2017. Intratumoural evolutionary 
landscape of high-risk prostate cancer: the PROGENY study of genomic and immune 
parameters. Annals of Oncology, 28, 2472-2480. 

LIPPITZ, B. E. 2013. Cytokine patterns in patients with cancer: a systematic review. The Lancet 
Oncology, 14, e218-e228. 

LIU, C., YANG, X., DUFFY, B., MOHANAKUMAR, T., MITRA, R. D., ZODY, M. C. & PFEIFER, J. D. 
2013. ATHLATES: Accurate typing of human leukocyte antigen through exome 
sequencing. Nucleic Acids Research. 

LIU, C., YU, S., KAPPES, J., WANG, J., GRIZZLE, W. E., ZINN, K. R. & ZHANG, H. G. 2007. 
Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-
bearing host. Blood, 109, 4336-42. 

LOVE, M. I., HUBER, W. & ANDERS, S. 2014. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biology. 

LU, Z., CHEN, H., LI, S., GONG, J., LI, J., ZOU, J., WU, L., YU, J., HAN, W., SUN, H., JIAO, X., 
ZHANG, X., PENG, Z., LU, M., WANG, Z., ZHANG, H. & SHEN, L. 2020. Tumor copy-
number alterations predict response to immune-checkpoint-blockade in 
gastrointestinal cancer. J Immunother Cancer, 8. 

LUNDEGAARD, C., LAMBERTH, K., HARNDAHL, M., BUUS, S., LUND, O. & NIELSEN, M. 2008. 
NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC 
class I affinities for peptides of length 8-11. Nucleic acids research, 36. 



 180 

MAHMOUD, S. M., PAISH, E. C., POWE, D. G., MACMILLAN, R. D., LEE, A. H., ELLIS, I. O. & 
GREEN, A. R. 2011. An evaluation of the clinical significance of FOXP3+ infiltrating cells 
in human breast cancer. Breast Cancer Res Treat, 127, 99-108. 

MANDAL, R., SAMSTEIN, R. M., LEE, K.-W., HAVEL, J. J., WANG, H., KRISHNA, C., SABIO, E. Y., 
MAKAROV, V., KUO, F., BLECUA, P., RAMASWAMY, A. T., DURHAM, J. N., BARTLETT, 
B., MA, X., SRIVASTAVA, R., MIDDHA, S., ZEHIR, A., HECHTMAN, J. F., MORRIS, L. G. T., 
WEINHOLD, N., RIAZ, N., LE, D. T., DIAZ, L. A. & CHAN, T. A. 2019. Genetic diversity of 
tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy 
response. Science, 364, 485-491. 

MARKET, E. & PAPAVASILIOU, F. N. 2003. V(D)J recombination and the evolution of the 
adaptive immune system. PLoS Biol, 1, E16. 

MCGRANAHAN, N., FURNESS, A. J. S., ROSENTHAL, R., RAMSKOV, S., LYNGAA, R., SAINI, S. K., 
JAMAL-HANJANI, M., WILSON, G. A., BIRKBAK, N. J., HILEY, C. T., WATKINS, T. B. K., 
SHAFI, S., MURUGAESU, N., MITTER, R., AKARCA, A. U., LINARES, J., MARAFIOTI, T., 
HENRY, J. Y., VAN ALLEN, E. M., MIAO, D., SCHILLING, B., SCHADENDORF, D., 
GARRAWAY, L. A., MAKAROV, V., RIZVI, N. A., SNYDER, A., HELLMANN, M. D., 
MERGHOUB, T., WOLCHOK, J. D., SHUKLA, S. A., WU, C. J., PEGGS, K. S., CHAN, T. A., 
HADRUP, S. R., QUEZADA, S. A. & SWANTON, C. 2016. Clonal neoantigens elicit T cell 
immunoreactivity and sensitivity to immune checkpoint blockade. Science. 

MCGRANAHAN, N., ROSENTHAL, R., HILEY, C. T., ROWAN, A. J., WATKINS, T. B. K., WILSON, G. 
A., BIRKBAK, N. J., VEERIAH, S., VAN LOO, P., HERRERO, J., SWANTON, C. & 
CONSORTIUM, T. R. 2017. Allele-Specific HLA Loss and Immune Escape in Lung Cancer 
Evolution. Cell, 171, 1259-1271 e11. 

MELLMAN, I., COUKOS, G. & DRANOFF, G. 2011. Cancer immunotherapy comes of age. 
Nature, 480, 480-9. 

MERMEL, C. H., SCHUMACHER, S. E., HILL, B., MEYERSON, M. L., BEROUKHIM, R. & GETZ, G. 
2011. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal 
somatic copy-number alteration in human cancers. Genome Biology, 12, R41. 

MINUSSI, D. C., NICHOLSON, M. D., YE, H., DAVIS, A., WANG, K., BAKER, T., TARABICHI, M., 
SEI, E., DU, H., RABBANI, M., PENG, C., HU, M., BAI, S., LIN, Y. W., SCHALCK, A., 
MULTANI, A., MA, J., MCDONALD, T. O., CASASENT, A., BARRERA, A., CHEN, H., LIM, 
B., ARUN, B., MERIC-BERNSTAM, F., VAN LOO, P., MICHOR, F. & NAVIN, N. E. 2021. 
Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature, 
592, 302-308. 

MITRA, A., ANDREWS, M. C., ROH, W., DE MACEDO, M. P., HUDGENS, C. W., CARAPETO, F., 
SINGH, S., REUBEN, A., WANG, F., MAO, X., SONG, X., WANI, K., TIPPEN, S., NG, K. S., 
SCHALCK, A., SAKELLARIOU-THOMPSON, D. A., CHEN, E., REDDY, S. M., SPENCER, C. 
N., WIESNOSKI, D., LITTLE, L. D., GUMBS, C., COOPER, Z. A., BURTON, E. M., HWU, P., 
DAVIES, M. A., ZHANG, J., BERNATCHEZ, C., NAVIN, N., SHARMA, P., ALLISON, J. P., 
WARGO, J. A., YEE, C., TETZLAFF, M. T., HWU, W. J., LAZAR, A. J. & FUTREAL, P. A. 2020. 
Spatially resolved analyses link genomic and immune diversity and reveal unfavorable 
neutrophil activation in melanoma. Nat Commun, 11, 1839. 

MONCADA, R., BARKLEY, D., WAGNER, F., CHIODIN, M., DEVLIN, J. C., BARON, M., HAJDU, C. 
H., SIMEONE, D. M. & YANAI, I. 2020. Integrating microarray-based spatial 



 181 

transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic 
ductal adenocarcinomas. Nat Biotechnol, 38, 333-342. 

MORRIS, L. G. T., RIAZ, N., DESRICHARD, A., ŞENBABAOĞLU, Y., HAKIMI, A. A., MAKAROV, V., 
REIS-FILHO, J. S. & CHAN, T. A. 2016. Pan-cancer analysis of intratumor heterogeneity 
as a prognostic determinant of survival. Oncotarget, 7. 

MORRIS, T. J., BUTCHER, L. M., FEBER, A., TESCHENDORFF, A. E., CHAKRAVARTHY, A. R., 
WOJDACZ, T. K. & BECK, S. 2014. ChAMP: 450k Chip Analysis Methylation Pipeline. 
Bioinformatics, 30, 428-430. 

MOTZER, R. J., TANNIR, N. M., MCDERMOTT, D. F., ARÉN FRONTERA, O., MELICHAR, B., 
CHOUEIRI, T. K., PLIMACK, E. R., BARTHÉLÉMY, P., PORTA, C., GEORGE, S., POWLES, T., 
DONSKOV, F., NEIMAN, V., KOLLMANNSBERGER, C. K., SALMAN, P., GURNEY, H., 
HAWKINS, R., RAVAUD, A., GRIMM, M.-O., BRACARDA, S., BARRIOS, C. H., TOMITA, Y., 
CASTELLANO, D., RINI, B. I., CHEN, A. C., MEKAN, S., MCHENRY, M. B., WIND-ROTOLO, 
M., DOAN, J., SHARMA, P., HAMMERS, H. J. & ESCUDIER, B. 2018. Nivolumab plus 
Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. New England Journal 
of Medicine, 378, 1277-1290. 

N. A. HONG, N. H. K., S. N. HSIEH, D. CADO AND A. WINOTO 1999. In Vivo Overexpression of 
Dad1, the Defender Against Apoptotic Death-1, Enhances T Cell Proliferation But Does 
Not Protect Against Apoptosis. J Immunol 163. 

NAOMI LEVY-STRUMPF, L. P. D., HANNA BERISSI, ADI KIMCHI 1997. DAP-5, a Novel Homolog 
of Eukaryotic Translation Initiation 

Factor 4G Isolated as a Putative Modulator of Gamma 
Interferon-Induced Programmed Cell Death. MOLECULAR AND CELLULAR BIOLOGY, p 1615-

1625. 
NAZAROV, V. I., POGORELYY, M. V., KOMECH, E. A., ZVYAGIN, I. V., BOLOTIN, D. A., SHUGAY, 

M., CHUDAKOV, D. M., LEBEDEV, Y. B. & MAMEDOV, I. Z. 2015. tcR: An R package for 
T cell receptor repertoire advanced data analysis. BMC Bioinformatics. 

NEWMAN, A. M., LIU, C. L., GREEN, M. R., GENTLES, A. J., FENG, W., XU, Y., HOANG, C. D., 
DIEHN, M. & ALIZADEH, A. A. 2015. Robust enumeration of cell subsets from tissue 
expression profiles. Nature Methods. 

NEWMAN, A. M., STEEN, C. B., LIU, C. L., GENTLES, A. J., CHAUDHURI, A. A., SCHERER, F., 
KHODADOUST, M. S., ESFAHANI, M. S., LUCA, B. A., STEINER, D., DIEHN, M. & 
ALIZADEH, A. A. 2019. Determining cell type abundance and expression from bulk 
tissues with digital cytometry. Nat Biotechnol, 37, 773-782. 

NG, P. K. S., LI, J., JEONG, K. J., SHAO, S., CHEN, H., TSANG, Y. H., SENGUPTA, S., WANG, Z., 
BHAVANA, V. H., TRAN, R., SOEWITO, S., MINUSSI, D. C., MORENO, D., KONG, K., 
DOGRULUK, T., LU, H., GAO, J., TOKHEIM, C., ZHOU, D. C., JOHNSON, A. M., ZENG, J., 
IP, C. K. M., JU, Z., WESTER, M., YU, S., LI, Y., VELLANO, C. P., SCHULTZ, N., KARCHIN, 
R., DING, L., LU, Y., CHEUNG, L. W. T., CHEN, K., SHAW, K. R., MERIC-BERNSTAM, F., 
SCOTT, K. L., YI, S., SAHNI, N., LIANG, H. & MILLS, G. B. 2018. Systematic Functional 
Annotation of Somatic Mutations in Cancer. Cancer Cell. 

NOBLE, F., MELLOWS, T., MCCORMICK MATTHEWS, L. H., BATEMAN, A. C., HARRIS, S., 
UNDERWOOD, T. J., BYRNE, J. P., BAILEY, I. S., SHARLAND, D. M., KELLY, J. J., 
PRIMROSE, J. N., SAHOTA, S. S., BATEMAN, A. R., THOMAS, G. J. & OTTENSMEIER, C. 



 182 

H. 2016. Tumour infiltrating lymphocytes correlate with improved survival in patients 
with oesophageal adenocarcinoma. Cancer Immunol Immunother, 65, 651-62. 

NOWELL, P. C. 1976. The clonal evolution of tumor cell populations. Science, 23-28. 
OCK, C. Y., HWANG, J. E., KEAM, B., KIM, S. B., SHIM, J. J., JANG, H. J., PARK, S., SOHN, B. H., 

CHA, M., AJANI, J. A., KOPETZ, S., LEE, K. W., KIM, T. M., HEO, D. S. & LEE, J. S. 2017. 
Genomic landscape associated with potential response to anti-CTLA-4 treatment in 
cancers. Nature Communications. 

PARRA, E. R., FRANCISCO-CRUZ, A. & WISTUBA, II 2019. State-of-the-Art of Profiling Immune 
Contexture in the Era of Multiplexed Staining and Digital Analysis to Study Paraffin 
Tumor Tissues. Cancers (Basel), 11. 

PARRA, E. R., URAOKA, N., JIANG, M., COOK, P., GIBBONS, D., FORGET, M. A., BERNATCHEZ, 
C., HAYMAKER, C., WISTUBA, II & RODRIGUEZ-CANALES, J. 2017. Validation of 
multiplex immunofluorescence panels using multispectral microscopy for immune-
profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep, 7, 
13380. 

PENG, W., CHEN, J. Q., LIU, C., MALU, S., CREASY, C., TETZLAFF, M. T., XU, C., MCKENZIE, J. A., 
ZHANG, C., LIANG, X., WILLIAMS, L. J., DENG, W., CHEN, G., MBOFUNG, R., LAZAR, A. 
J., TORRES-CABALA, C. A., COOPER, Z. A., CHEN, P. L., TIEU, T. N., SPRANGER, S., YU, 
X., BERNATCHEZ, C., FORGET, M. A., HAYMAKER, C., AMARIA, R., MCQUADE, J. L., 
GLITZA, I. C., CASCONE, T., LI, H. S., KWONG, L. N., HEFFERNAN, T. P., HU, J., BASSETT, 
R. L., BOSENBERG, M. W., WOODMAN, S. E., OVERWIJK, W. W., LIZEE, G., ROSZIK, J., 
GAJEWSKI, T. F., WARGO, J. A., GERSHENWALD, J. E., RADVANYI, L., DAVIES, M. A. & 
HWU, P. 2016. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. 
Cancer Discovery, 6, 202-216. 

PETITPREZ, F., DE REYNIES, A., KEUNG, E. Z., CHEN, T. W., SUN, C. M., CALDERARO, J., JENG, 
Y. M., HSIAO, L. P., LACROIX, L., BOUGOUIN, A., MOREIRA, M., LACROIX, G., NATARIO, 
I., ADAM, J., LUCCHESI, C., LAIZET, Y. H., TOULMONDE, M., BURGESS, M. A., BOLEJACK, 
V., REINKE, D., WANI, K. M., WANG, W. L., LAZAR, A. J., ROLAND, C. L., WARGO, J. A., 
ITALIANO, A., SAUTES-FRIDMAN, C., TAWBI, H. A. & FRIDMAN, W. H. 2020. B cells are 
associated with survival and immunotherapy response in sarcoma. Nature, 577, 556-
560. 

PFEIFHOFER-OBERMAIR, C., TYMOSZUK, P., PETZER, V., WEISS, G. & NAIRZ, M. 2018. Iron in 
the Tumor Microenvironment—Connecting the Dots. Frontiers in Oncology, 8, 549. 

POLLACK, S. M., JONES, R. L., FARRAR, E. A., LAI, I. P., LEE, S. M., CAO, J., PILLARISETTY, V. G., 
HOCH, B. L., GULLETT, A., BLEAKLEY, M., CONRAD, E. U., EARY, J. F., SHIBUYA, K. C., 
WARREN, E. H., CARSTENS, J. N., HEIMFELD, S., RIDDELL, S. R. & YEE, C. 2014. Tetramer 
guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific 
CD8+ T cells. Journal for ImmunoTherapy of Cancer, 2, 36. 

PYONTECK, S. M., AKKARI, L., SCHUHMACHER, A. J., BOWMAN, R. L., SEVENICH, L., QUAIL, D. 
F., OLSON, O. C., QUICK, M. L., HUSE, J. T., TEIJEIRO, V., SETTY, M., LESLIE, C. S., OEI, 
Y., PEDRAZA, A., ZHANG, J., BRENNAN, C. W., SUTTON, J. C., HOLLAND, E. C., DANIEL, 
D. & JOYCE, J. A. 2013. CSF-1R inhibition alters macrophage polarization and blocks 
glioma progression. Nature Medicine. 



 183 

QIAN, B. Z. & POLLARD, J. W. 2010. Macrophage Diversity Enhances Tumor Progression and 
Metastasis. Cell. 

QUANTE, M., BHAGAT, G., ABRAMS, J. A., MARACHE, F., GOOD, P., LEE, M. D., LEE, Y., 
FRIEDMAN, R., ASFAHA, S., DUBEYKOVSKAYA, Z., MAHMOOD, U., FIGUEIREDO, J. L., 
KITAJEWSKI, J., SHAWBER, C., LIGHTDALE, C. J., RUSTGI, A. K. & WANG, T. C. 2012. Bile 
acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-
like metaplasia. Cancer Cell, 21, 36-51. 

R CORE TEAM. 2019. R: A language and environment for statistical computing. R Foundation 
for Statistical Computing [Online]. Vienna, Austria. Available: https://www.R-
project.org/ [Accessed]. 

RACLE, J., DE JONGE, K., BAUMGAERTNER, P., SPEISER, D. E. & GFELLER, D. 2017. 
Simultaneous enumeration of cancer and immune cell types from bulk tumor gene 
expression data. Elife, 6. 

REUBEN, A., SPENCER, C. N., PRIETO, P. A., GOPALAKRISHNAN, V., REDDY, S. M., MILLER, J. P., 
MAO, X., DE MACEDO, M. P., CHEN, J., SONG, X., JIANG, H., CHEN, P. L., BEIRD, H. C., 
GARBER, H. R., ROH, W., WANI, K., CHEN, E., HAYMAKER, C., FORGET, M. A., LITTLE, L. 
D., GUMBS, C., THORNTON, R. L., HUDGENS, C. W., CHEN, W. S., AUSTIN-BRENEMAN, 
J., SLOANE, R. S., NEZI, L., COGDILL, A. P., BERNATCHEZ, C., ROSZIK, J., HWU, P., 
WOODMAN, S. E., CHIN, L., TAWBI, H., DAVIES, M. A., GERSHENWALD, J. E., AMARIA, 
R. N., GLITZA, I. C., DIAB, A., PATEL, S. P., HU, J., LEE, J. E., GRIMM, E. A., TETZLAFF, M. 
T., LAZAR, A. J., WISTUBA, I. I., CLISE-DWYER, K., CARTER, B. W., ZHANG, J., FUTREAL, 
P. A., SHARMA, P., ALLISON, J. P., COOPER, Z. A. & WARGO, J. A. 2017. Genomic and 
immune heterogeneity are associated with differential responses to therapy in 
melanoma. npj Genomic Medicine. 

RIAZ, N., HAVEL, J. J., MAKAROV, V., DESRICHARD, A., URBA, W. J., SIMS, J. S., HODI, F. S., 
MARTÍN-ALGARRA, S., MANDAL, R., SHARFMAN, W. H., BHATIA, S., HWU, W.-J., 
GAJEWSKI, T. F., SLINGLUFF, C. L., CHOWELL, D., KENDALL, S. M., CHANG, H., SHAH, 
R., KUO, F., MORRIS, L. G. T., SIDHOM, J.-W., SCHNECK, J. P., HORAK, C. E., WEINHOLD, 
N. & CHAN, T. A. 2017a. Tumor and Microenvironment Evolution during 
Immunotherapy with Nivolumab. Cell, 0, 1-16. 

RIAZ, N., HAVEL, J. J., MAKAROV, V., DESRICHARD, A., URBA, W. J., SIMS, J. S., HODI, F. S., 
MARTÍN-ALGARRA, S., MANDAL, R., SHARFMAN, W. H., BHATIA, S., HWU, W. J., 
GAJEWSKI, T. F., SLINGLUFF, C. L., CHOWELL, D., KENDALL, S. M., CHANG, H., SHAH, 
R., KUO, F., MORRIS, L. G. T., SIDHOM, J. W., SCHNECK, J. P., HORAK, C. E., WEINHOLD, 
N. & CHAN, T. A. 2017b. Tumor and Microenvironment Evolution during 
Immunotherapy with Nivolumab. Cell, 171, 934-949.e15. 

RIBAS, A. 2012. Tumor Immunotherapy Directed at PD-1. New England Journal of Medicine, 
366, 2517-2519. 

RIELLA, L. V., PATERSON, A. M., SHARPE, A. H. & CHANDRAKER, A. 2012. Role of the PD-1 
pathway in the immune response. Am J Transplant, 12, 2575-87. 

RITCHIE, M. E., PHIPSON, B., WU, D., HU, Y., LAW, C. W., SHI, W. & SMYTH, G. K. 2015. limma 
powers differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Research, 43, e47-e47. 



 184 

RIZVI, N. A., HELLMANN, M. D., SNYDER, A., KVISTBORG, P., MAKAROV, V., HAVEL, J. J., LEE, 
W., YUAN, J., WONG, P., HO, T. S., MILLER, M. L., REKHTMAN, N., MOREIRA, A. L., 
IBRAHIM, F., BRUGGEMAN, C., GASMI, B., ZAPPASODI, R., MAEDA, Y., SANDER, C., 
GARON, E. B. & MERGHOUB, T. 2016. Mutational landscape determines sensitivity to 
PD-1 blockade in non – small cell lung cancer. Science, 348, 124. 

ROBINS, H. S., CAMPREGHER, P. V., SRIVASTAVA, S. K., WACHER, A., TURTLE, C. J., KAHSAI, O., 
RIDDELL, S. R., WARREN, E. H. & CARLSON, C. S. 2009a. Comprehensive assessment of 
T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 

ROBINS, H. S., CAMPREGHER, P. V., SRIVASTAVA, S. K., WACHER, A., TURTLE, C. J., KAHSAI, O., 
RIDDELL, S. R., WARREN, E. H. & CARLSON, C. S. 2009b. Comprehensive assessment of 
T-cell receptor beta-chain diversity in alphabeta T cells. Blood, 114, 4099-107. 

ROH, W., CHEN, P.-L., REUBEN, A., SPENCER, C. N., PRIETO, P. A., MILLER, J. P., 
GOPALAKRISHNAN, V., WANG, F., COOPER, Z. A., REDDY, S. M., GUMBS, C., LITTLE, L., 
CHANG, Q., CHEN, W.-S., WANI, K., DE MACEDO, M. P., CHEN, E., AUSTIN-BRENEMAN, 
J. L., JIANG, H., ROSZIK, J., TETZLAFF, M. T., DAVIES, M. A., GERSHENWALD, J. E., 
TAWBI, H., LAZAR, A. J., HWU, P., HWU, W.-J., DIAB, A., GLITZA, I. C., PATEL, S. P., 
WOODMAN, S. E., AMARIA, R. N., PRIETO, V. G., HU, J., SHARMA, P., ALLISON, J. P., 
CHIN, L., ZHANG, J., WARGO, J. A. & FUTREAL, P. A. 2017. Integrated molecular 
analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers 
of response and resistance. Science translational medicine, 9, 239-42. 

ROONEY, M. S., SHUKLA, S. A., WU, C. J., GETZ, G. & HACOHEN, N. 2015. Molecular and genetic 
properties of tumors associated with local immune cytolytic activity. Cell, 160, 48-61. 

ROPER, N., GAO, S., MAITY, T. K., BANDAY, A. R., ZHANG, X., VENUGOPALAN, A., CULTRARO, 
C. M., PATIDAR, R., SINDIRI, S., BROWN, A.-L., GONCEARENCO, A., PANCHENKO, A. R., 
BISWAS, R., THOMAS, A., RAJAN, A., CARTER, C. A., KLEINER, D. E., HEWITT, S. M., 
KHAN, J., PROKUNINA-OLSSON, L. & GUHA, U. 2019. APOBEC Mutagenesis and Copy-
Number Alterations Are Drivers of Proteogenomic Tumor Evolution and 
Heterogeneity in Metastatic Thoracic Tumors. Cell Reports, 26, 2651-2666.e6. 

ROSEMURGY, A., WILFONG, C., CRAIGG, D., CO, F., SUCANDY, I. & ROSS, S. 2019. The Evolving 
Landscape of Esophageal Cancer: A Four-Decade Analysis. Am Surg, 85, 944-948. 

ROSENTHAL, R., CADIEUX, E. L., SALGADO, R., BAKIR, M. A., MOORE, D. A., HILEY, C. T., LUND, 
T., TANIC, M., READING, J. L., JOSHI, K., HENRY, J. Y., GHORANI, E., WILSON, G. A., 
BIRKBAK, N. J., JAMAL-HANJANI, M., VEERIAH, S., SZALLASI, Z., LOI, S., HELLMANN, M. 
D., FEBER, A., CHAIN, B., HERRERO, J., QUEZADA, S. A., DEMEULEMEESTER, J., VAN 
LOO, P., BECK, S., MCGRANAHAN, N., SWANTON, C. & CONSORTIUM, T. R. 2019. 
Neoantigen-directed immune escape in lung cancer evolution. Nature, 567, 479-485. 

ROTH, A., KHATTRA, J., YAP, D., WAN, A., LAKS, E., BIELE, J., HA, G., APARICIO, S., BOUCHARD-
CÔTÉ, A. & SHAH, S. P. 2014. PyClone: Statistical inference of clonal population 
structure in cancer. Nature Methods. 

SAMSTEIN, R. M., LEE, C.-H., SHOUSHTARI, A. N., HELLMANN, M. D., SHEN, R., JANJIGIAN, Y. 
Y., BARRON, D. A., ZEHIR, A., JORDAN, E. J., OMURO, A., KALEY, T. J., KENDALL, S. M., 
MOTZER, R. J., HAKIMI, A. A., VOSS, M. H., RUSSO, P., ROSENBERG, J., IYER, G., 
BOCHNER, B. H., BAJORIN, D. F., AL-AHMADIE, H. A., CHAFT, J. E., RUDIN, C. M., RIELY, 
G. J., BAXI, S., HO, A. L., WONG, R. J., PFISTER, D. G., WOLCHOK, J. D., BARKER, C. A., 



 185 

GUTIN, P. H., BRENNAN, C. W., TABAR, V., MELLINGHOFF, I. K., DEANGELIS, L. M., 
ARIYAN, C. E., LEE, N., TAP, W. D., GOUNDER, M. M., D’ANGELO, S. P., SALTZ, L., 
STADLER, Z. K., SCHER, H. I., BASELGA, J., RAZAVI, P., KLEBANOFF, C. A., YAEGER, R., 
SEGAL, N. H., KU, G. Y., DEMATTEO, R. P., LADANYI, M., RIZVI, N. A., BERGER, M. F., 
RIAZ, N., SOLIT, D. B., CHAN, T. A. & MORRIS, L. G. T. 2019. Tumor mutational load 
predicts survival after immunotherapy across multiple cancer types. Nature Genetics, 
51, 202-206. 

SANGIOVANNI, A., DEL NINNO, E., FASANI, P., DE FAZIO, C., RONCHI, G., ROMEO, R., 
MORABITO, A., DE FRANCHIS, R. & COLOMBO, M. 2004. Increased survival of cirrhotic 
patients with a hepatocellular carcinoma detected during surveillance. 
Gastroenterology, 126, 1005-14. 

SASAKI, A., TANAKA, F., MIMORI, K., INOUE, H., KAI, S., SHIBATA, K., OHTA, M., KITANO, S. & 
MORI, M. 2008. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in 
patients with hepatocellular carcinoma. Eur J Surg Oncol, 34, 173-9. 

SATHIRAPONGSASUTI, J. F., LEE, H., HORST, B. A. J., BRUNNER, G., COCHRAN, A. J., BINDER, 
S., QUACKENBUSH, J. & NELSON, S. F. 2011. Exome sequencing-based copy-number 
variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics (Oxford, 
England). 

SATIJA, R., FARRELL, J. A., GENNERT, D., SCHIER, A. F. & REGEV, A. 2015. Spatial reconstruction 
of single-cell gene expression data. Nature Biotechnology. 

SCHATZ, D. G., MARJORIE A. OETTINGER, AND MARK S. SCHLISSEL 1992. V (D) J 
recombination: molecular biology and regulation. Annual review of immunology 10, 
359-383. 

SCHLIEP, K. P. 2011. phangorn: Phylogenetic analysis in R. Bioinformatics. 
SCHNEIDER-HOHENDORF, T., MOHAN, H., BIEN, C. G., BREUER, J., BECKER, A., GORLICH, D., 

KUHLMANN, T., WIDMAN, G., HERICH, S., ELPERS, C., MELZER, N., DORNMAIR, K., 
KURLEMANN, G., WIENDL, H. & SCHWAB, N. 2016. CD8(+) T-cell pathogenicity in 
Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat 
Commun, 7, 11153. 

SCHUMACHER, T. N. & SCHREIBER, R. D. 2015. Neoantigens in cancer immunotherapy. 
Science, 348, 69-74. 

SHARMA, P., HU-LIESKOVAN, S., WARGO, J. A. & RIBAS, A. 2017. Primary, Adaptive, and 
Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723. 

SHERWOOD, A. M., EMERSON, R. O., SCHERER, D., HABERMANN, N., BUCK, K., STAFFA, J., 
DESMARAIS, C., HALAMA, N., JAEGER, D., SCHIRMACHER, P., HERPEL, E., KLOOR, M., 
ULRICH, A., SCHNEIDER, M., ULRICH, C. M. & ROBINS, H. 2013. Tumor-infiltrating 
lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that 
differ from the T cells in adjacent mucosal tissue. Cancer Immunol Immunother, 62, 
1453-61. 

SHINTANI, Y., MAEDA, M., CHAIKA, N., JOHNSON, K. R. & WHEELOCK, M. J. 2008. Collagen I 
promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming 
growth factor-beta signaling. Am J Respir Cell Mol Biol, 38, 95-104. 



 186 

SHIRAISHI, Y., KATAOKA, K., CHIBA, K., OKADA, A., KOGURE, Y., TANAKA, H., OGAWA, S. & 
MIYANO, S. 2018. A comprehensive characterization of cis-acting splicing-associated 
variants in human cancer. Genome Res, 28, 1111-1125. 

SHUKLA, S. A., ROONEY, M. S., RAJASAGI, M., TIAO, G., DIXON, P. M., LAWRENCE, M. S., 
STEVENS, J., LANE, W. J., DELLAGATTA, J. L., STEELMAN, S., SOUGNEZ, C., CIBULSKIS, 
K., KIEZUN, A., HACOHEN, N., BRUSIC, V., WU, C. J. & GETZ, G. 2015. Comprehensive 
analysis of cancer-associated somatic mutations in class i HLA genes. Nature 
Biotechnology. 

SIMPSON, E. H. 1949. Measurement of Diversity. Nature, 163, 688-688. 
SINHA, P., CLEMENTS, V. K. & OSTRAND-ROSENBERG, S. 2005. Reduction of myeloid-derived 

suppressor cells and induction of M1 macrophages facilitate the rejection of 
established metastatic disease. J Immunol, 174, 636-45. 

SLOWIKOWSKI, K., SCHEP, A., HUGHES, S., LUKAUSKAS, S., IRISSON, J., KAMVAR, Z. N., RYAN, 
T., CHRISTOPHE, D., HIROAKI, Y. & GRAMME, P. 2018. Automatically Position Non-
Overlapping Text Labels with 'ggplot2' [Online]. Available: https://cran.r-
project.org/package=ggrepel [Accessed]. 

SMITH, K. J., O'BRIEN, S. M., GREEN, A. C., WEBB, P. M., WHITEMAN, D. C. & STUDY OF 
DIGESTIVE, H. 2009. Current and past smoking significantly increase risk for Barrett's 
esophagus. Clin Gastroenterol Hepatol, 7, 840-8. 

SMYTH, G. K. 2004. Linear Models and Empirical Bayes Methods for Assessing Differential 
Expression in Microarray Experiments. Statistical Applications in Genetics and 
Molecular Biology, 3, 1-25. 

SNYDER, A., MAKAROV, V., MERGHOUB, T., YUAN, J., ZARETSKY, J. M., DESRICHARD, A., 
WALSH, L. A., POSTOW, M. A., WONG, P., HO, T. S., HOLLMANN, T. J., BRUGGEMAN, 
C., KANNAN, K., LI, Y., ELIPENAHLI, C., LIU, C., HARBISON, C. T., WANG, L., RIBAS, A., 
WOLCHOK, J. D. & CHAN, T. A. 2014a. Genetic Basis for Clinical Response to CTLA-4 
Blockade in Melanoma. The New England journal of medicine, 2189-2199. 

SNYDER, A., MAKAROV, V., MERGHOUB, T., YUAN, J., ZARETSKY, J. M., DESRICHARD, A., 
WALSH, L. A., POSTOW, M. A., WONG, P., HO, T. S., HOLLMANN, T. J., BRUGGEMAN, 
C., KANNAN, K., LI, Y., ELIPENAHLI, C., LIU, C., HARBISON, C. T., WANG, L., RIBAS, A., 
WOLCHOK, J. D. & CHAN, T. A. 2014b. Genetic Basis for Clinical Response to CTLA-4 
Blockade in Melanoma. New England Journal of Medicine, 371, 2189-2199. 

SOETART, K. 2013. plot3D: Plotting multi-dimensional data. 
SOUZA, R. F., HUO, X., MITTAL, V., SCHULER, C. M., CARMACK, S. W., ZHANG, H. Y., ZHANG, 

X., YU, C., HORMI-CARVER, K., GENTA, R. M. & SPECHLER, S. J. 2009. Gastroesophageal 
reflux might cause esophagitis through a cytokine-mediated mechanism rather than 
caustic acid injury. Gastroenterology, 137, 1776-84. 

SPRANGER, S., BAO, R. & GAJEWSKI, T. F. 2015. Melanoma-intrinsic β-catenin signalling 
prevents anti-tumour immunity. Nature. 

STEWART, T., TSAI, S.C., GRAYSON, H., HENDERSON, R. & OPELZ, G. 1995. Incidence of de-
novo breast cancer in women chronically immunosuppressed after organ 
transplantation. Lancet, 346, 796–798. 

STREET, W. 2020. Cancer Facts & Figures 2020. 



 187 

STURM, G., FINOTELLO, F. & LIST, M. 2020. Immunedeconv: An R Package for Unified Access 
to Computational Methods for Estimating Immune Cell Fractions from Bulk RNA-
Sequencing Data. Methods Mol Biol, 2120, 223-232. 

TALHOUK, A., KOMMOSS, S., MACKENZIE, R., CHEUNG, M., LEUNG, S., CHIU, D. S., KALLOGER, 
S. E., HUNTSMAN, D. G., CHEN, S., INTERMAGGIO, M., GRONWALD, J., CHAN, F. C., 
RAMUS, S. J., STEIDL, C., SCOTT, D. W. & ANGLESIO, M. S. 2016. Single-Patient 
Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy 
for Batch Effect Correction. PLoS One, 11, e0153844. 

TAWBI, H. A., BURGESS, M., BOLEJACK, V., VAN TINE, B. A., SCHUETZE, S. M., HU, J., 
D'ANGELO, S., ATTIA, S., RIEDEL, R. F., PRIEBAT, D. A., MOVVA, S., DAVIS, L. E., OKUNO, 
S. H., REED, D. R., CROWLEY, J., BUTTERFIELD, L. H., SALAZAR, R., RODRIGUEZ-
CANALES, J., LAZAR, A. J., WISTUBA, I. I., BAKER, L. H., MAKI, R. G., REINKE, D. & PATEL, 
S. 2017. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma 
(SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. The 
Lancet Oncology, 18, 1493-1501. 

TEAM, I. 2019. immunarch: An R Package for Painless Bioinformatics Analysis of T-Cell and B-
Cell Immune Repertoires. . Zenodo. 

TESCHENDORFF, A. E., MARABITA, F., LECHNER, M., BARTLETT, T., TEGNER, J., GOMEZ-
CABRERO, D. & BECK, S. 2013. A beta-mixture quantile normalization method for 
correcting probe design bias in Illumina Infinium 450 k DNA methylation data. 
Bioinformatics, 29, 189-196. 

THRANE, K., ERIKSSON, H., MAASKOLA, J., HANSSON, J. & LUNDEBERG, J. 2018. Spatially 
resolved transcriptomics enables dissection of genetic heterogeneity in stage III 
cutaneous malignant melanoma. 

TIROSH, I., IZAR, B., PRAKADAN, S. M., II, M. H. W., TREACY, D., TROMBETTA, J. J., ROTEM, A., 
RODMAN, C., LIAN, C., MURPHY, G., FALLAHI-SICHANI, M., DUTTON-REGESTER, K., 
LIN, J.-R., KAZER, S. W., GAILLARD, A. & KOLB, K. E. 2016. Dissecting the multicellular 
exosystem of metastatic melanoma by single-cell RNA-seq. Science, 352, 189-196. 

TOPALIAN, S. L., DRAKE, C. G. & PARDOLL, D. M. 2015. Immune checkpoint blockade: a 
common denominator approach to cancer therapy. Cancer Cell, 27, 450-61. 

TSANG, Y. H., DOGRULUK, T., TEDESCHI, P. M., WARDWELL-OZGO, J., LU, H., ESPITIA, M., 
NAIR, N., MINELLI, R., CHONG, Z., CHEN, F., CHANG, Q. E., DENNISON, J. B., 
DOGRULUK, A., LI, M., YING, H., BERTINO, J. R., GINGRAS, M. C., ITTMANN, M., 
KERRIGAN, J., CHEN, K., CREIGHTON, C. J., ETEROVIC, K., MILLS, G. B. & SCOTT, K. L. 
2016. Functional annotation of rare gene aberration drivers of pancreatic cancer. 
Nature Communications. 

TUMEH, P. C., HARVIEW, C. L., YEARLEY, J. H., SHINTAKU, I. P., TAYLOR, E. J. M., ROBERT, L., 
CHMIELOWSKI, B., SPASIC, M., HENRY, G., CIOBANU, V., WEST, A. N., CARMONA, M., 
KIVORK, C., SEJA, E., CHERRY, G., GUTIERREZ, A. J., GROGAN, T. R., MATEUS, C., 
TOMASIC, G., GLASPY, J. A., EMERSON, R. O., ROBINS, H., PIERCE, R. H., ELASHOFF, D. 
A., ROBERT, C. & RIBAS, A. 2014. PD-1 blockade induces responses by inhibiting 
adaptive immune resistance. Nature. 

VACCHELLI, E., SEMERARO, M., ENOT, D. P., CHABA, K., POIRIER COLAME, V., DARTIGUES, P., 
PERIER, A., VILLA, I., RUSAKIEWICZ, S., GRONNIER, C., GOERE, D., MARIETTE, C., 



 188 

ZITVOGEL, L. & KROEMER, G. 2015. Negative prognostic impact of regulatory T cell 
infiltration in surgically resected esophageal cancer post-radiochemotherapy. 
Oncotarget, 6, 20840-50. 

VAN ALLEN, E. M., MIAO, D., SCHILLING, B., SHUKLA, S. A., BLANK, C., ZIMMER, L., SUCKER, 
A., HILLEN, U., FOPPEN, M. H., GOLDINGER, S. M., UTIKAL, J., HASSEL, J. C., WEIDE, B., 
KAEHLER, K. C., LOQUAI, C., MOHR, P., GUTZMER, R., DUMMER, R., GABRIEL, S., WU, 
C. J., SCHADENDORF, D. & GARRAWAY, L. A. 2015a. Genomic correlates of response 
to CTLA-4 blockade in metastatic melanoma.[Erratum appears in Science. 2015 Nov 
13;350(6262):aad8366; PMID: 26564858]. Science, 350, 207-211. 

VAN ALLEN, E. M., MIAO, D., SCHILLING, B., SHUKLA, S. A., BLANK, C., ZIMMER, L., SUCKER, 
A., HILLEN, U., FOPPEN, M. H. G., GOLDINGER, S. M., UTIKAL, J., HASSEL, J. C., WEIDE, 
B., KAEHLER, K. C., LOQUAI, C., MOHR, P., GUTZMER, R., DUMMER, R., GABRIEL, S., 
WU, C. J., SCHADENDORF, D. & GARRAWAY, L. A. 2015b. Genomic correlates of 
response to CTLA-4 blockade in metastatic melanoma. Science. 

VAN ALLEN, E. M., WAGLE, N., STOJANOV, P., PERRIN, D. L., CIBULSKIS, K., MARLOW, S., JANE-
VALBUENA, J., FRIEDRICH, D. C., KRYUKOV, G., CARTER, S. L., MCKENNA, A., 
SIVACHENKO, A., ROSENBERG, M., KIEZUN, A., VOET, D., LAWRENCE, M., 
LICHTENSTEIN, L. T., GENTRY, J. G., HUANG, F. W., FOSTEL, J., FARLOW, D., BARBIE, D., 
GANDHI, L., LANDER, E. S., GRAY, S. W., JOFFE, S., JANNE, P., GARBER, J., MACCONAILL, 
L., LINDEMAN, N., ROLLINS, B., KANTOFF, P., FISHER, S. A., GABRIEL, S., GETZ, G. & 
GARRAWAY, L. A. 2014. Whole-exome sequencing and clinical interpretation of 
formalin-fixed, paraffin-embedded tumor samples to guide precision cancer 
medicine. Nature Medicine, 20, 682-688. 

VAN DER AUWERA, G. A., CARNEIRO, M. O., HARTL, C., POPLIN, R., DEL ANGEL, G., LEVY-
MOONSHINE, A., JORDAN, T., SHAKIR, K., ROAZEN, D., THIBAULT, J., BANKS, E., 
GARIMELLA, K. V., ALTSHULER, D., GABRIEL, S. & DEPRISTO, M. A. 2013. From FastQ 
Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices 
Pipeline: The Genome Analysis Toolkit Best Practices Pipeline. In: BATEMAN, A., 
PEARSON, W. R., STEIN, L. D., STORMO, G. D. & YATES, J. R. (eds.) Current Protocols in 
Bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc. 

VAN DER LINDEN, M., VAN ESCH, E., BULTEN, J., DREEF, E., MASSUGER, L., VAN DER STEEN, 
S., BOSSE, T., DE HULLU, J. & VAN POELGEEST, M. 2018. The immune cell infiltrate in 
the microenvironment of vulvar Paget disease. Gynecol Oncol, 151, 453-459. 

VAN DER MAATEN, L. & HINTON, G. 2008. Visualizing Data using t-SNE. Journal of Machine 
Learning Research. 

WAGGOTT, D., CHU, K., YIN, S., WOUTERS, B. G., LIU, F. F. & BOUTROS, P. C. 2012. 
NanoStringNorm: An extensible R package for the pre-processing of nanostring mRNA 
and miRNA data. Bioinformatics, 28, 1546-1548. 

WANG, K., LI, M. & HAKONARSON, H. 2010. ANNOVAR: Functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Research. 

WANG, W., GREEN, M., CHOI, J. E., GIJÓN, M., KENNEDY, P. D., JOHNSON, J. K., LIAO, P., LANG, 
X., KRYCZEK, I., SELL, A., XIA, H., ZHOU, J., LI, G., LI, J., LI, W., WEI, S., VATAN, L., ZHANG, 
H., SZELIGA, W., GU, W., LIU, R., LAWRENCE, T. S., LAMB, C., TANNO, Y., CIESLIK, M., 



 189 

STONE, E., GEORGIOU, G., CHAN, T. A., CHINNAIYAN, A. & ZOU, W. 2019. CD8+ T cells 
regulate tumour ferroptosis during cancer immunotherapy. Nature. 

WANG, Y., WATERS, J., LEUNG, M. L., UNRUH, A., ROH, W., SHI, X., CHEN, K., SCHEET, P., 
VATTATHIL, S., LIANG, H., MULTANI, A., ZHANG, H., ZHAO, R., MICHOR, F., MERIC-
BERNSTAM, F. & NAVIN, N. E. 2014. Clonal evolution in breast cancer revealed by 
single nucleus genome sequencing. Nature, 512, 155-160. 

WEI, S. C., ANANG, N. A. S., SHARMA, R., ANDREWS, M. C., REUBEN, A., LEVINE, J. H., COGDILL, 
A. P., MANCUSO, J. J., WARGO, J. A., PE'ER, D. & ALLISON, J. P. 2019. Combination anti-
CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially 
distinct from monotherapies. Proc Natl Acad Sci U S A, 116, 22699-22709. 

WICKHAM, H. 2007. Reshaping Data with the reshape Package. Journal of Statistical Software, 
21, 20. 

WICKHAM, H. 2011a. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics. 
WICKHAM, H. 2011b. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 

180-185. 
WICKHAM, H. 2017. R: Package ‘reshape2'. 
WICKHAM, H., FRANCOIS, R., HENRY, L., MÜLLER, K. & RSTUDIO. 2017a. dplyr: A Grammar of 

Data Manipulation. [Online]. Available: https://cran.r-project.org/package=dplyr 
[Accessed]. 

WICKHAM, H., HENRY, L. & RSTUDIO. 2017b. tidyr: Easily Tidy Data with spread() and gather() 
Functions. [Online]. Available: https://CRAN.R-project.org/package=tidyr [Accessed]. 

WILKERSON, M. D. & HAYES, D. N. 2010. ConsensusClusterPlus: A class discovery tool with 
confidence assessments and item tracking. Bioinformatics. 

WOLF, Y., BARTOK, O., PATKAR, S., ELI, G. B., COHEN, S., LITCHFIELD, K., LEVY, R., JIMENEZ-
SANCHEZ, A., TRABISH, S., LEE, J. S., KARATHIA, H., BARNEA, E., DAY, C. P., CINNAMON, 
E., STEIN, I., SOLOMON, A., BITTON, L., PEREZ-GUIJARRO, E., DUBOVIK, T., SHEN-ORR, 
S. S., MILLER, M. L., MERLINO, G., LEVIN, Y., PIKARSKY, E., EISENBACH, L., ADMON, A., 
SWANTON, C., RUPPIN, E. & SAMUELS, Y. 2019. UVB-Induced Tumor Heterogeneity 
Diminishes Immune Response in Melanoma. Cell, 179, 219-235 e21. 

YARCHOAN, M., JOHNSON, B. A., 3RD, LUTZ, E. R., LAHERU, D. A. & JAFFEE, E. M. 2017. 
Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer, 17, 209-
222. 

YE, K., SCHULZ, M. H., LONG, Q., APWEILER, R. & NING, Z. 2009. Pindel: A pattern growth 
approach to detect break points of large deletions and medium sized insertions from 
paired-end short reads. Bioinformatics. 

YOSHIHARA, K., SHAHMORADGOLI, M., MARTÍNEZ, E., VEGESNA, R., KIM, H., TORRES-GARCIA, 
W., TREVIÑO, V., SHEN, H., LAIRD, P. W., LEVINE, D. A., CARTER, S. L., GETZ, G., 
STEMKE-HALE, K., MILLS, G. B. & VERHAAK, R. G. W. 2013. Inferring tumour purity and 
stromal and immune cell admixture from expression data. Nature Communications, 
4. 

YU, G. 2018. enrichplot: Visualization of Functional Enrichment Result. 
YU, G., WANG, L.-G., HAN, Y. & HE, Q.-Y. 2012. clusterProfiler: an R Package for Comparing 

Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology. 



 190 

YU, G., WANG, L. G., YAN, G. R. & HE, Q. Y. 2015. DOSE: An R/Bioconductor package for disease 
ontology semantic and enrichment analysis. Bioinformatics. 

ZARETSKY, J. M., GARCIA-DIAZ, A., SHIN, D. S., ESCUIN-ORDINAS, H., HUGO, W., HU-
LIESKOVAN, S., TORREJON, D. Y., ABRIL-RODRIGUEZ, G., SANDOVAL, S., BARTHLY, L., 
SACO, J., HOMET MORENO, B., MEZZADRA, R., CHMIELOWSKI, B., RUCHALSKI, K., 
SHINTAKU, I. P., SANCHEZ, P. J., PUIG-SAUS, C., CHERRY, G., SEJA, E., KONG, X., PANG, 
J., BERENT-MAOZ, B., COMIN-ANDUIX, B., GRAEBER, T. G., TUMEH, P. C., 
SCHUMACHER, T. N. M., LO, R. S. & RIBAS, A. 2016. Mutations Associated with 
Acquired Resistance to PD-1 Blockade in Melanoma. New England Journal of 
Medicine, 375, 819-829. 

ZHANG, J. & FENG, B. “biocViews microarray. Package ‘cghMCR'” (2013); www.bioconductor. 
org/packages/release/bioc/html/cghMCR.html. 

ZHANG, R., KIM, A. S., FOX, J. M., NAIR, S., BASORE, K., KLIMSTRA, W. B., RIMKUNAS, R., FONG, 
R. H., LIN, H., PODDAR, S., CROWE, J. E., JR., DORANZ, B. J., FREMONT, D. H. & 
DIAMOND, M. S. 2018. Mxra8 is a receptor for multiple arthritogenic alphaviruses. 
Nature, 557, 570-574. 

ZHANG, X. C., XU, C., MITCHELL, R. M., ZHANG, B., ZHAO, D., LI, Y., HUANG, X., FAN, W., 
WANG, H., LERMA, L. A., UPTON, M. P., HAY, A., MÉNDEZ, E. & ZHAO, L. P. 2013. Tumor 
Evolution and Intratumor Heterogeneity of an Oropharyngeal Squamous Cell 
Carcinoma Revealed by Whole-Genome Sequencing. Neoplasia, 15, 1371-IN7. 

ZHENG, G. X. Y., TERRY, J. M., BELGRADER, P., RYVKIN, P., BENT, Z. W., WILSON, R., ZIRALDO, 
S. B., WHEELER, T. D., MCDERMOTT, G. P., ZHU, J., GREGORY, M. T., SHUGA, J., 
MONTESCLAROS, L., UNDERWOOD, J. G., MASQUELIER, D. A., NISHIMURA, S. Y., 
SCHNALL-LEVIN, M., WYATT, P. W., HINDSON, C. M., BHARADWAJ, R., WONG, A., 
NESS, K. D., BEPPU, L. W., DEEG, H. J., MCFARLAND, C., LOEB, K. R., VALENTE, W. J., 
ERICSON, N. G., STEVENS, E. A., RADICH, J. P., MIKKELSEN, T. S., HINDSON, B. J. & 
BIELAS, J. H. 2017. Massively parallel digital transcriptional profiling of single cells. 
Nature Communications. 

ZHENG, Y., CHEN, Z., HAN, Y., HAN, L., ZOU, X., ZHOU, B., HU, R., HAO, J., BAI, S., XIAO, H., LI, 
W. V., BUEKER, A., MA, Y., XIE, G., YANG, J., CHEN, S., LI, H., CAO, J. & SHEN, L. 2020. 
Immune suppressive landscape in the human esophageal squamous cell carcinoma 
microenvironment. Nat Commun, 11, 6268. 

 

  



 191 

Vita 

Akash Mitra was born on November 10, 1992. After completing high school, he entered 

Rutgers University in New Brunswick, New Jersey. He received his Bachelor of Science 

degree with a major in biotechnology and bioinformatics from Rutgers in May 2016. In August 

of 2016 he entered The University of Texas MD Anderson Cancer Center UTHealth Graduate 

School of Biomedical Sciences.  

Permanent address: 

1885 El Paseo St, Apt 35410 Houston, TX, 77054  

 


	Impact Of Intratumor Heterogeneity And The Tumor Microenvironment In Shaping Tumor Evolution And Response To Therapy
	Recommended Citation

	Microsoft Word - Mitra,Akash-Thesis.docx

