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The Functional Analysis of a Major Tyrosine Phosphorylation Site on Actin 

Amelie Simone Cordelia Albrecht, B. Sc. 

 

Advisory Professor: Xuetong Shen, Ph.D.  

 

Actin is an abundant and evolutionarily conserved protein and a key component of the 

cytoskeleton. Post-translational modifications of actin are emerging as an important 

mechanism for regulating actin functions, and may form an ‘Actin Code’. In this work, I 

investigate the role of actin phosphorylation at tyrosine 53 (pY53), one of the most 

frequently detected actin PTMs, through identifying interaction partners, or ‘readers’, for this 

modification. Using an SH2 (Src Homology 2) protein domain array, we identify N-terminal 

SH2 domains of p85, regulatory subunits of Phosphatidylinositol 3-kinase (PI3K), and VAV2, 

a Rho GTPase guanine nucleotide exchange factor, as phosphorylation-dependent binding 

partners of an actin pY53 peptide. Through biochemical and structural biology approaches, I 

define the interaction mechanism of the actin pY53 peptide with p85α, p85β and VAV2. My 

work provides evidence for an interaction mechanism of the actin pY53 peptide to the p85 

N-terminal SH2 domains that is partially distinct from the canonical mechanism as it lacks 

the common binding motif for this domain. Moreover, I present the first high-resolution 

crystal structure of the p85β N-terminal SH2 domain bound to a peptide ligand. 

I also performed functional analysis of the possible roles of the actin pY53 modification. 

To do so, I generated a human cell line with β-actin Y53F mutation to abolish 

phosphorylation of this residue, using CRISPR/Cas9-based gene editing. I find that this cell 

line exhibits slightly higher levels of AKT phosphorylation, as well as an altered gene and 

protein expression profile that includes components of the PI3K pathway.  
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Taken together, my findings suggest that actin tyrosine 53 phosphorylation may play a 

role in cell signaling, possibly through the phosphorylation-dependent interactions with SH2 

domains of p85 and/or VAV2 proteins, and highlight a largely unexplored, and potentially 

highly important area of actin biology through its post-translational modifications and their 

‘reader’ proteins. 
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Part One: Actin is a versatile protein involved in multiple cellular processes 

  

Cellular roles of actin 

Actin is one of the most abundant and evolutionarily conserved proteins and is present in 

virtually all eukaryotes (Pollard and Cooper 2009). Its ability to polymerize and form dynamic 

filaments makes actin a key element of the cytoskeleton that enables cell movement, 

division and intracellular vesicle transport (Pollard and Cooper 2009). Together with myosin, 

actin generates the mechanical forces necessary for movement and muscle contraction; this 

principle was first established by Szent-Györgyi and Straub in the 1940s, who purified 

‘actomyosin’ from muscle and discovered its ATP-dependent contractility (Bugyi and 

Kellermayer 2020). Since then, a large body of research has focused on determining actin 

functions in a large number of cellular processes (Pollard 2016; Pollard and Cooper 2009). 

In the cell, actin exists in the form of monomeric G-actin and filamentous F-actin and 

actin filaments are dynamically assembled and disassembled with the help of actin-binding 

proteins (ABPs) as well as actin ATP hydrolysis, in a process known as ‘treadmilling’ 

(Figure 1) (Artman et al. 2014). 

 

Figure 1. Actin can polymerize from monomeric G-actin to filamentous F-actin. Actin 

monomers bound to ATP are preferentially added to the barbed (+) end. ATP hydrolysis 

occurs and ADP-bound monomers depolymerize at the pointed (-) end of the actin filament. 
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Filament growth can push the cell membrane forward and is the driving force behind cell 

motility (Pollard and Borisy 2003). Moreover, during cell division, actin is part of the 

contractile ring, that, in concerted action with myosin and other proteins, helps to separate 

the two emerging daughter cells (Heng and Koh 2010). In a similar way, actin is involved in 

endocytosis and forms a dense network at the plasma membrane that aids in membrane 

deformation, vesicle maturation as well as vesicle transport (Schuh 2011; Mooren, Galletta, 

and Cooper 2012). 

 

While the cytoplasmic functions of actin are well-established, the existence of nuclear 

actin had long been questioned due to the difficulty of detecting actin filaments with 

conventional methods. However, it is now established that actin is present in the nucleus 

and important for many nuclear processes (Serebryannyy and de Lanerolle 2020). 

Monomeric actin and actin-related proteins are conserved subunits of ATP-dependent 

chromatin modifying complexes such as INO80, SWR1/SRCAP, BAF and TIP60 and in 

these complexes, actin is required for their functions in chromatin organization, recruitment 

to nucleosomes, overall complex stability, and DNA damage repair (Kapoor et al. 2013; 

Kapoor and Shen 2014). In addition to chromatin modifying complexes, actin is also 

associated with basal transcription machinery and involved in transcription regulation: it 

interacts with all three RNA polymerase complexes and several transcription factors, as well 

as nascent transcripts through heterogenous nuclear ribonucleoproteins (hnRNPs) (Miralles 

and Visa 2006). More recently, actin filaments and actin-binding proteins have been shown 

to play a role in DNA damage repair; together with other proteins, they help to move 

damaged loci to the nuclear periphery to promote repair (Caridi et al. 2018; Schrank et al. 

2018). 
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Mechanisms of actin regulation 

Precise spatio-temporal regulation of the diverse range of actin functions is highly 

important for the cell and is tightly regulated by several mechanisms: these include 

controlling the overall amount and localization of actin through transcriptional and 

translational regulation, the direct regulation by actin-binding proteins (ABPs) as well as 

post-translational modifications (Kashina 2020). 

Actins are a family of proteins encoded by six genes in humans that are expressed in a 

spatially and temporally controlled manner: Actin isoform expression is partially tissue-

specific, with some isoforms being more abundant in smooth or skeletal muscle tissue (α-

skeletal, α-smooth muscle, γ-smooth muscle as well as cardiac muscle actin), and others 

being more prevalent in non-muscle tissues (β-cytoplasmic, γ-cytoplasmic actin) (Kashina 

2020; Tondeleir et al. 2009). However, it is becoming more apparent that most cell types 

contain more than one actin isoform, albeit in different relative amounts (Kashina 2020). 

Interestingly, differences in protein levels appear to not be primarily due to differential 

expression of transcripts, but rather appear to be mediated by post-transcriptional 

mechanisms (Kashina 2020). While all actin isoforms are highly conserved and differ only in 

a few amino acids, mostly at the N-terminus of the protein, they do fulfill specialized 

functions and cannot completely compensate for each other’s absence (Cheever and 

Ervasti 2013; Cheever, Li, and Ervasti 2012; Kashina 2020). Notably, only knockout of β-

actin is early embryonically lethal; it has been proposed that one of the reasons other actin 

isoforms cannot compensate for the absence of β-actin is due to differences nucleic acid 

level, possibly because of different mRNA translation rates (Vedula et al. 2017; Patrinostro 

et al. 2017; Patrinostro et al. 2018). Despite a high degree of similarity between the actin 

isoforms, their existence, evolutionary conservation and differential transcriptional and 

translational regulation strongly indicate a need for tight control of actin localization and 

abundance (Kashina 2020). 
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Actin functions are also controlled by interactions with numerous actin-binding proteins 

(ABPs) (Pollard 2016), which is considered to be one of the main paradigms of actin 

regulation. ABPs have diverse roles, such as to promote nucleation to form new filaments 

(for example formins, WASP and the ARP2/3 complex), regulate polymerization (for 

example profilin), depolymerization (for example cofilin and gelsolin) and bundling of actin 

filaments (for example α-actinin, fascin and fimbrin) (Pollard 2016; dos Remedios et al. 

2003). Other ABPs use their actin-binding capability to regulate endocytosis, plasma 

membrane association as well as cell-cell and extracellular matrix junctions, and, in addition, 

proteins such as myosins, calponin and tropomyosin work together with actin to generate 

force and regulate motor functions that are essential for muscle contraction and cell motility 

(dos Remedios et al. 2003). 

 

Actin post-translational modifications 

Post-translational modifications (PTMs) are events that occur after protein translation 

and encompass a very diverse spectrum of modifications, including covalent attachment of 

functional groups, such as methylation, or even small proteins like ubiquitin, but can also 

refer to targeted proteolytic processing of proteins (Wang, Peterson, and Loring 2014). 

These mechanisms can significantly diversify the proteome as they generate proteoforms 

with distinct functions or activation states, compared to the unmodified proteins, and can 

also occur in tandem (Aebersold and Mann 2016; Lothrop, Torres, and Fuchs 2013). More 

recently, advances in mass spectrometry have shown that PTMs, and especially 

phosphorylation events, are surprisingly ubiquitous and occur on three quarters of all 

proteins, and on over 50,000 unique sites in some cell types (Aebersold and Mann 2016). 

Yet, for the majority of these phosphorylation sites, as well as other types of PTMs, their 

function and mechanisms of regulation are unknown (Aebersold and Mann 2016); this 

makes PTM studies a large and very important area of future investigation in biology. 
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The functions of actin have been studied for a long time and many of the proteins 

involved in actin regulation are well-known (Pollard 2016). Actin post-translational 

modifications have been occasionally identified and studied since the 1970s, however, only 

more recent advances in mass spectrometry have enabled more comprehensive analyses 

of the extent and diverse composition of actin PTMs (Terman and Kashina 2013). Functional 

analysis of actin PTMs is still a small, yet rapidly expanding field (Kashina 2020; Terman 

and Kashina 2013; Varland, Vandekerckhove, and Drazic 2019).  

 

Actin phosphorylation 

Actin phosphorylation was one of the earliest actin PTMs to be identified, and while early 

studies often did not pinpoint the phosphorylated residue or even the type of modified amino 

acid, they demonstrated an impact of phosphorylation on actin dynamics. For example, actin 

from skeletal and smooth muscle can be phosphorylated by a cAMP-dependent kinase in 

vitro, which reduces polymerization and mostly occurs on G-actin (Pratje and Heilmeyer 

1972; Walsh, Hinkins, and Hartshorne 1981). This phosphorylation occurs on serine 

residues and the authors suggest that S199 or S338 may be good substrates based on their 

surrounding sequence (Walsh, Hinkins, and Hartshorne 1981). Interestingly, 

phosphorylation of S199 of actin was later identified by large-scale phospho-proteomic 

studies (Mertins et al. 2016; Sharma et al. 2014) and in kidney cells (Akimoto et al. 2019). 

cAMP-dependent serine phosphorylation of actin also occurs in rat lungs and increases 

dramatically in post-natal and adult lungs compared to fetal tissue, suggesting that it may be 

developmentally regulated (Whitsett et al. 1985). Interestingly, actin is also phosphorylated 

on both serine and threonine residues by PKC, but on different residues than by a cAMP-

dependent kinase (Ohta et al. 1987). PKC-catalyzed phosphorylation increases actin 

polymerization while phosphorylation by a cAMP-dependent kinase does not show the same 



 7 

effect (Ohta et al. 1987). Moreover, actin may be a target of EGF-dependent 

serine/threonine kinases as it has been shown to coprecipitate with EGFR, but not be 

phosphorylated by it directly (on tyrosine residues) (van Delft et al. 1995; Ohta et al. 1987), 

suggesting that actin may be a substrate for kinases downstream of EGFR. In line with this, 

the serine/threonine kinase PAK1 phosphorylates actin on serine residues and interacts with 

it in a signaling pathway activation-dependent manner (Papakonstanti and Stournaras 

2002). As phosphorylation can affect cytoskeletal dynamics, inhibition of serine/threonine 

phosphatases, for example by Calyculin A, disrupts actin cytoskeletal structure (Gu et al. 

2003). Lastly, actin has also been shown to be a direct substrate of the serine/threonine 

kinase AKT and interacts with it directly in MCF-7 cells upon stimulation with FGF-2 

(Vandermoere et al. 2007). Taken together, these studies indicate distinct roles for serine 

and threonine phosphorylation of actin in different tissue types and by different kinases, 

potentially functioning to finetune actin polymerization dynamics in a context-dependent 

manner. 

 

The first direct evidence for tyrosine phosphorylation of actin was found in the 1980s, 

when it was demonstrated that actin is phosphorylated in vitro by purified plasma 

membranes and is stimulated by both insulin and vanadate (a tyrosine phosphatase 

inhibitor) (Machicao, Urumow, and Wieland 1983), indicating that it may be dependent on an 

insulin-dependent tyrosine kinase. Previously, actin phosphorylation by purified plasma 

membranes from rat livers had been shown to prevent the inactivation of DNase I by actin 

and reduce polymerization (Grazi et al. 1980; Grazi and Magri 1979). However, it remained 

unclear whether this effect is caused by serine/threonine or tyrosine phosphorylation. 

The organism in which actin tyrosine phosphorylation has been studied in most detail is 

the amoeba Dictyostelium discoideum. This organism has a particular life cycle that exhibits 

both unicellular and multicellular features: while unicellular in nutrient-rich conditions, the 
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cells migrate when starved of nutrients and go from vegetative growth into aggregation with 

other cells to ultimately form a so-called fruiting body that contains spores that can be 

released and restart the developmental cycle as soon as environmental conditions improve 

(Annesley and Fisher 2009). 

Actin tyrosine phosphorylation in D. discoideum is highly abundant and increased upon 

treatment with the phosphatase inhibitor phenylarsine oxide (PAO) or when starved 

amoebae are reintroduced to nutrient-containing medium (Schweiger et al. 1992; Howard, 

Sefton, and Firtel 1993). Moreover, actin tyrosine phosphorylation correlates temporally with 

changes in cell shape, is increased upon depletion of PTP1 phosphatase, and reduced upon 

PTP1 overexpression (Howard, Sefton, and Firtel 1993), indicating that it is actively 

regulated in response to environmental stimuli. Furthermore, actin phosphorylation in this 

organism increases when the cells are exposed to stress, such as heat shock and cadmium 

chloride (Liu et al. 2006; Jungbluth et al. 1995). Interestingly, actin tyrosine phosphorylation 

also becomes more abundant during spore maturation and correlates with spore survival 

(Kishi et al. 1998; Gauthier et al. 1997), suggesting that at least in D. discoideum, actin 

tyrosine phosphorylation may be an important mechanism involved in development and 

survival. 

Work from the Korn group further established that phosphorylation of the Y53 residue in 

D. discoideum is functionally relevant: by purifying phosphorylated actin, which can 

constitute up to 50 % of total actin in this organism, and comparing it to unphosphorylated 

actin, they demonstrated that pure Y53 phosphorylated actin does not inactivate DNase I 

efficiently and reduces polymerization (Liu et al. 2006). The effect on polymerization is 

caused by inhibiting nucleation and elongation from the pointed end of filaments, reducing 

elongation from the barbed end as well as slower ATP hydrolysis (Liu et al. 2006). However, 

pY53 and unphosphorylated actin co-polymerize in vitro and colocalize in cells (Liu et al. 

2006). This suggests that when only a smaller fraction of actin is phosphorylated, which is 
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likely the case under normal growth conditions, actin phosphorylation would not entirely 

disrupt the cytoskeleton, but rather may serve as a mechanism to finetune its dynamics, as 

was suggested in later work as well (Bertling et al. 2016; Bertling and Hotulainen 2017). The 

effect on actin polymerization may be caused by stabilizing the structure of the D-loop of 

actin: these residues (amino acids 39 - 51) of actin are normally a very flexible part of the 

actin molecule and are often disordered in crystal structures (Dominguez and Holmes 2011). 

However, when actin is phosphorylated on pY53 (in a structure bound to the actin-binding 

protein gelsolin), the D-loop is stabilized by hydrogen bonds to the phosphorylated tyrosine 

(Baek et al. 2008). Given that the D-loop is important for actin polymerization, its 

stabilization by pY53 may explain the lower polymerization rates (Baek et al. 2008). 

 

Actin tyrosine phosphorylation has also been studied in other organisms. For example, 

in the contact-sensitive plant Mimosa pudica L., actin phosphorylation levels are high and 

rapidly decrease when the plant is touched, indicating that actin phosphorylation could be a 

mechanism to help plants react to environmental stimuli and rapidly reorganize their 

cytoskeleton (Kameyama et al. 2000; Kanzawa et al. 2006). 

Actin phosphorylation is also involved in host-pathogen interactions: in ticks infected with 

Anaplasma phagocytophilum, altering host cell physiology, such as tyrosine phosphorylation 

and the actin cytoskeleton, helps the bacteria to survive inside the host cells (Sultana et al. 

2010). Interestingly, actin becomes phosphorylated in infected tick cells in a PI3K- and 

PAK1-dependent manner, which results in a higher G- to F-actin ratio; however, the 

identified phosphorylation site in tick actin (Sultana et al. 2010) corresponds to Y218 in 

human β-actin. Of note, actin Y218 phosphorylation occurs in human B cells and is 

regulated by SHP-1 phosphatase to modulate actin depolymerization after BCR stimulation 

(Baba et al. 2003).  
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So far, phosphorylation of actin on Y53 is known to exist in mouse neurons and is 

particularly enriched at dendritic spines (Bertling et al. 2016; Bertling and Hotulainen 2017). 

Dendritic spines are neuronal protrusions that can reorganize rapidly upon induction of a 

process called long-term potentiation (LTP), which is important for learning and memory 

formation (Bertling et al. 2016). In line with the fact that dendritic spines are characterized by 

particularly short and dynamic actin filaments, actin pY53 increases filament turnover rate 

and contributes to dynamic remodeling of the spines (Bertling et al. 2016). Moreover, 

exogenous expression of a phospho-mimetic mutant actin (Y53E) prevented formation of 

stable filaments and spine maturation, suggesting that dephosphorylation of actin may be 

necessary in neurons to maintain stable actin structures (Bertling et al. 2016; Bertling and 

Hotulainen 2017). 

While systematic investigation of actin phosphorylation by mass spectrometry is so far 

largely lacking, large-scale phospho-proteomic studies have provided ample evidence for 

the existence a number of actin phosphorylation sites, and tyrosine phosphorylation in 

particular, in a variety of different cell and tissue types: according to www.phosphosite.org, a 

repository of high and low throughput studies that identify protein modifications (Hornbeck et 

al. 2015), actin phosphorylation is most frequently identified on four sites: Y53 has over a 

1000 references, and Y91, Y198 and Y294 have over 500 references each. Less frequently, 

phosphorylation is also found on Y166, Y169, Y188 and Y218, while the only major serine 

phosphorylation site is S52 (Hornbeck et al. 2015). 

Actin pY53 is present in several non-small cell lung cancer (NSCLC) cell lines, together 

with pY91, pY198 and pY294 (Rikova et al. 2007). Interestingly, actin was among the 50 

most abundantly phosphorylated proteins in this study (Rikova et al. 2007) and 

phosphorylation of actin at Y53 was reduced after treatment with gefitinib, an EGFR inhibitor 

(Guo et al. 2008). However, given that previous studies had shown that actin is not directly 

phosphorylated by EGFR (van Delft et al. 1995; Ohta et al. 1987), this may be due to an 
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indirect effect, such as a kinase downstream of or dependent on EGFR, or off-target effects 

from the inhibitor. 

In breast epithelial cells, actin phosphorylation sites including pY53, pY91, pY169 and 

pY198 were identified with and without EGF treatment (Heibeck et al. 2009). However, the 

number of identified phosphorylated actin peptides was unchanged in treated and untreated 

conditions, suggesting that, at least in this cell type, actin tyrosine phosphorylation levels are 

not dependent on EGF treatment (Heibeck et al. 2009). Actin Y53 phosphorylation has also 

been found in human B cells, leukemia, lymphoma, colorectal carcinoma and glioblastoma 

cells as well as breast and ovarian cancer cells (Bennetzen et al. 2010; Lind, Artemenko, 

and Pettersson 2012; Pighi et al. 2011; Chumbalkar et al. 2011; McKinley et al. 2013; 

Mertins et al. 2014). Notably, in Jurkat T cells treated with ERK inhibitor U0126, many 

phosphorylation sites were significantly decreased, including actin phosphorylation at Y53, 

Y91, Y294 and Y362; however, only pY53 was decreased significantly at all timepoints 

(Helou et al. 2013). Remarkably, in a deep phospho-proteomic study in HeLa cells, actin 

phosphorylation at Y53 was found among the most abundant tyrosine phosphorylation sites 

and showed an increase upon EGF stimulation, but not upon treatment with pervanadate, a 

tyrosine phosphatase inhibitor (Sharma et al. 2014). Taken together, evidence from high-

throughput mass spectrometry-based studies indicates that actin Y53 phosphorylation, 

together with other actin tyrosine phosphorylation sites, is present in a variety of cell types 

and tissues, including many cancer cells, and that its levels can vary depending on inhibitor 

or growth factor treatment. 

In summary, actin phosphorylation, in particular on tyrosine residues, has been identified 

and studied for decades. Actin Y53 phosphorylation is best understood in D. discoideum, 

where it is one of the most abundant tyrosine-phosphorylated proteins, affects actin 

cytoskeletal structure and response of the amoeba to extracellular signals and nutrient 

availability. Changes in actin tyrosine phosphorylation levels in mammalian cells in response 
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to growth factors such as insulin (Machicao, Urumow, and Wieland 1983), EGF (Sharma et 

al. 2014), as well as signaling-dependent processes like induction of long-term potentiation 

(Bertling et al. 2016) and ERK inhibition (Helou et al. 2013) suggest that its levels may be 

tightly controlled by kinase(s) and phosphatase(s) to finetune cellular signaling processes 

and/or actin cytoskeletal structure, and more work is needed to determine the functions and 

molecular mechanisms of actin tyrosine phosphorylation. 

 

Other post-translational modifications of actin 

Actin has also been found to harbor a diverse array of other post-translational 

modifications including methylation of lysine, arginine and histidine residues, lysine 

acetylation, ubiquitination, sumoylation, arginylation and redox-related modifications like 

oxidation (Varland, Vandekerckhove, and Drazic 2019; Terman and Kashina 2013).  

For example, actin methylation occurs on K84, is removed by the demethylase 

ALKHBH4 and regulates actin-myosin interactions during cytokinesis (Li et al. 2013). Actin 

histidine methylation on H73 regulates filament stability and ATP hydrolysis, is catalyzed by 

the SETD3 methyltransferase and important for regulating uterine smooth muscle 

contraction (Yao et al. 1999; Kwiatkowski et al. 2018; Wilkinson et al. 2019). Recently, we 

showed that actin arginine mono-methylation at residue R256 is a conserved nucleus-

specific actin PTM and exists in yeast, mouse and human cells as part of ATP-dependent 

chromatin modifying complexes like INO80, and this modification is involved in active 

transcription (Kumar et al. 2020). In another interesting recent study, actin was found to be 

trimethylated on K68 by SETD2 methyltransferase in mammalian cells, and this methylation 

appears to be important for regulation of actin polymerization and cell migration (Seervai et 

al. 2020). 

Acetylation of actin in Drosophila influences protein stability and polymerization (Berger 

et al. 1981). In mammals, comprehensive studies of the acetylome have led to the discovery 
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of new acetylation sites on actin, such as K61 (Choudhary et al. 2009; Kim et al. 2006; Zhao 

et al. 2010). Interestingly, actin acetylation of K326 and K328 affects functional interactions 

between F-actin, tropomyosin and myosin and may therefore play a role in muscle 

contraction (Schmidt et al. 2020). Moreover, in another recent study, acetylated actin was 

shown to play a role in inhibiting formin INF2 (A et al. 2019). This suggests that acetylation 

of actin may be an important PTM with potential implications for filament dynamics. 

Actin is also one of the major targets of the ATE1 enzyme that arginylates the actin N-

terminus, which affects intracellular distribution of actin and polymerization and has been 

implicated in heart development and neural crest cell migration in mice (Karakozova et al. 

2006; Kashina 2014; Kurosaka et al. 2010; Pavlyk et al. 2018; Rai et al. 2008). 

Ubiquitination is a post-translational modification characterized by the addition of the 

small protein ubiquitin to lysine (or, less commonly, serine, threonine or cysteine) residues of 

proteins and plays a role for signaling, protein localization and degradation (Kwon and 

Ciechanover 2017). Actin ubiquitination was found in human skeletal muscle tissue and 

several cell lines: Here, the E3 ligases MuRF1 and Trim32 ubiquitinate actin which leads to 

proteasomal degradation and can decrease the number of contractile myofibrils and 

promote their turnover (Polge et al. 2011; Kudryashova et al. 2005). 

Sumoylation is the covalent attachment of SUMO (small ubiquitin-like modifier) to lysine 

residues of target proteins (Yang et al. 2017). Actin sumoylation at K284 is present in vivo 

and, together with sumoylation on K68, controls nuclear localization of actin by retaining the 

sumoylated form in the nucleus (Hofmann et al. 2009). This is particularly interesting as the 

mechanism of how actin stays in the nucleus had long been unknown. 

 

In summary, actin is subject to a large number of different types of post-translational 

modifications. While the roles of a few modifications have been explored, particularly with 

regard to their effect on actin polymerization, systematic studies determining how actin 
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PTMs are regulated by particular physiological states, whether they occur in a tissue-specific 

manner and how they affect actin filament dynamics and other cellular processes, are still 

lacking for most actin PTMs (Terman and Kashina 2013; Varland, Vandekerckhove, and 

Drazic 2019). One particularly interesting question that is beginning to emerge is which actin 

PTMs are localized to specific subcellular compartments, such as the cell nucleus; this is the 

case for at least one arginine methylation site on actin (Kumar et al. 2020). 

Another important concept, analogous to roles of PTMs in epigenetics (Musselman et al. 

2012; Allis and Jenuwein 2016), is studying the ‘writers’, ‘erasers’ and ‘readers’ of actin 

PTMs. While a few enzymes depositing (Wilkinson et al. 2019; Seervai et al. 2020; Kashina 

2014) and removing (Li et al. 2013) actin PTMs have been identified, little is known about 

actin PTM ‘reader’ proteins, and how they might serve as context-dependent actin-binding 

proteins or connect actin PTMs to certain signaling pathways. 

 

Roles of actin in human disease 

Due to the ubiquitous expression and high importance of actin for a large number of 

cellular and organismal functions, disruption of normal actin biology, either through defects 

in actin regulation mechanisms or mutations of actin itself, can cause diseases: Mutations 

are found in all six isoforms and have varying effects, depending on whether they are 

somatic or germline mutations, and what residue(s) of the protein or region(s) of the gene 

are affected (Parker, Baboolal, and Peckham 2020). For example, ACTA1 missense 

mutations can cause Nemaline Myopathy, a skeletal muscle disease (Wallgren-Pettersson 

et al. 2011), while ACTA2 (α-smooth muscle actin) missense mutations are linked to 

hereditary thoracic aortic aneurysms as well as cerebral vascular disease (Guo et al. 2007; 

Liu et al. 2017; Munot et al. 2012). ACTB (β-actin) and ACTG1 (γ-cytoplasmic actin) 

mutations can cause a developmental disorder termed Baraitser-Winter syndrome 

characterized by pleiotropic effects including intellectual disability and multiple organ defects 
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(Parker, Baboolal, and Peckham 2020; Riviere et al. 2012). Notably, actin mutations are 

enriched at particular features of the protein structure, such as the flexible D-loop in 

subdomain 2 that is important for actin polymerization and interactions with ABPs (Parker, 

Baboolal, and Peckham 2020). Additionally, several mutations are found at sites that have 

been shown to be post-translationally modified: For example, M47 mutations, a residue 

oxidized by MICAL, occur in several actin isoforms (Grintsevich et al. 2016; Parker, 

Baboolal, and Peckham 2020). Mutations of the R256 residue that can be methylated are 

associated with vascular diseases (Kumar et al. 2020; Liu et al. 2017). 

In cancer, alterations of the actin cytoskeleton are critically important as they go along 

with differences in cell migration, invasion and metastasis, and emerging evidence suggests 

that altered actin expression levels are linked to tumorigenesis: For example, upregulation of 

ACTB, ACTA2, ACTG1 and ACTC1 expression is found in various tumor types and often 

associated with shorter survival, more aggressive tumors with higher metastatic capacity, 

and chemoresistance, although decreased expression of some actin isoforms is also found 

in certain cancer types (Suresh and Diaz 2021; Guo et al. 2013). It is important to note that 

up- or downregulation of one or more actin isoforms can change the ratio of different actins 

in the cell, which in turn can affect cell shape and migration due to their distinct 

polymerization dynamics; in addition, changes in actin isoform expression can alter 

interactions with ABPs and cause various downstream effects (Suresh and Diaz 2021). 

 

While the diverse roles of actin isoforms in cancer and other diseases are not yet fully 

understood, it is becoming more evident that actin is more than a ‘housekeeping’ protein 

with structural roles and may play important roles in the pathogenesis of various diseases 

through differential expression patterns (Guo et al. 2013), mutations affecting 

polymerization, protein interactions, as well as through a diverse array of post-translational 

modifications with distinct biological functions that have yet to be explored. 
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Part Two: Phosphatidylinositol-3-kinase is an important transducer of growth signals 

 

Classification of PI3K enzymes 

Phosphatidylinositol-3-kinases (PI3Ks) are a family of intracellular lipid kinases that 

phosphorylate phosphatidylinositol at the 3’ hydroxyl group to regulate cellular signaling 

pathways (Bilanges, Posor, and Vanhaesebroeck 2019). PI3K enzymes have different 

substrate specificities and, in mammals, are grouped into three classes based on their 

domain structure and which substrates they prefer (Engelman, Luo, and Cantley 2006). 

Class I PI3Ks are primarily involved in signal transduction, whereas Class II and III PI3Ks 

are important for membrane trafficking and vesicle transport (Bilanges, Posor, and 

Vanhaesebroeck 2019). In addition to their kinase activity, there is also evidence for PI3Ks 

functioning as a protein-protein interaction scaffold that can help to stabilize proteins and 

protein complexes (Costa and Hirsch 2010). 

Class I PI3Ks are heterodimeric protein complexes that consist of a catalytic subunit and 

a regulatory subunit. Unlike other PI3Ks, they are they only producers of PI(3,4,5)P3 

phospholipids (Engelman, Luo, and Cantley 2006). Class IA encompasses the ‘classical’ 

PI3K enzymes (p110α, p110β and p110δ with their p85/p55 regulatory subunits) that 

function downstream of receptor tyrosine kinases, G protein-coupled receptors (GPCRs) 

and small GTPases (Figure 2), while Class IB consists of the p110γ catalytic subunit and 

associates with p101 and p84 regulatory subunits (Fruman et al. 2017). Consistent with their 

roles as signal transducers, they primarily act at the plasma membrane and early 

endosomes, where their substrates (such as PI(4,5)P2) are found (Bilanges, Posor, and 

Vanhaesebroeck 2019). 

Class I PI3Ks are important regulators and their loss, either through knockouts or 

specific inhibitors, has varied effects in different tissues. Both p110α and p110β are widely 

expressed and knockout of either gene is early embryonic lethal (Taniguchi, Emanuelli, and 
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Kahn 2006; Liu et al. 2009). Mice with a knockout of p110γ or p110δ survive longer, but 

since the genes are mainly expressed in immune cells, their loss goes along with defects in 

immune functions (Liu et al. 2009). 

 

 

 

 

Figure 2. Class IA PI3K proteins and their domain structures. The regulatory subunits of 

PI3K, p85α, p85β, and p55γ, as well as the p55α and p50α isoforms each contain two SH2 

domains as well as an inter-SH2 region (iSH2) that interacts with the ABD domain of the 

catalytic subunit. p85α and p85β also contain an SH3 and a BH (Rho GAP) domain. The 

catalytic subunits p110α, p110β and p110δ contain an ABD (adaptor-binding domain), RBD 

(Ras-binding domain) and C2 domain as well as a helical domain as well as the catalytic 

domain of the enzyme. Protein domains were compiled with the help of the UniProt 

database (UniProt 2021). 
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The regulatory subunit p85 

The regulatory subunits of Class IA PI3Ks are a family of multidomain proteins that, 

together with the catalytic subunit, form the heterodimeric PI3K complex. The paralogs are 

encoded by three genes: PIK3R1 for p85α, p55α, p50α, PIK3R2 for p85β, and PIK3R3 for 

p55γ (Fruman et al. 2017). All Class IA regulatory subunits contain two Src Homology 2 

(SH2) domains to bind to phosphorylated tyrosine residues, as well as a coiled-coil inter-

SH2 (iSH2) region that is required for the interaction with the catalytic subunit (Fruman et al. 

2017). Only p85α and p85β contain an SH3 domain and a BH domain in addition to the two 

SH2 domains and the iSH2 domain (Fruman et al. 2017). All paralogs and their respective 

domain architectures are depicted in Figure 2. 

The p85 regulatory subunit has several important roles in PI3K regulation: First, p85 

proteins associate with the catalytic subunits through their N-SH2 and iSH2 domains and 

inhibit enzyme activity allosterically, until the inhibition is relieved when the N-SH2 domain 

binds to phosphorylated tyrosine residues, for example on receptor tyrosine kinases like 

EGFR or adapter proteins like IRS1; this binding event allows for a conformational shift that 

dissociates binding between the N-SH2 domain and the catalytic subunit (Liu, Knapp, and 

Ahmed 2014; Yu et al. 1998). The interaction with receptors or adaptor proteins also helps 

to recruit PI3K from the cytosol to the cell membrane, in close proximity with its phospholipid 

substrates (Bilanges, Posor, and Vanhaesebroeck 2019). Second, free catalytic p110 

subunits are unstable and degraded when they are not bound to the regulatory subunit; for 

this reason, most p110 exists bound to p85 proteins (Taniguchi, Emanuelli, and Kahn 2006). 

Not all p85 isoforms and paralogs are expressed at equal levels: In mice, while p85α and 

p85β are found in almost all tissues, p85β is usually less abundant than p85α; the Pik3r1 

isoforms p55α and p50α are mostly found in the liver and skeletal muscle, and less 

abundant than p85α (Taniguchi, Emanuelli, and Kahn 2006). p55γ, encoded by Pik3r3, is 

expressed in lower levels than the other paralogs (Taniguchi, Emanuelli, and Kahn 2006).  
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Interestingly, the regulatory subunit is often more abundant than the catalytic subunit, 

which implies the existence of free p85 that is not bound to p110; this fact has been 

investigated as a regulatory mechanism for PI3K activity, as free p85 can compete with the 

PI3K heterodimer for phosphorylated tyrosine residues (Ueki et al. 2000; Cheung et al. 2015). 

In addition, monomeric p85 has been shown to sequester phosphorylated IRS1 away from 

the plasma membrane into cytoplasmic foci and thereby downregulate signaling (Luo et al. 

2005). Lastly, free p85β can be ubiquitinated and degraded to increase PI3K signaling 

(Kuchay et al. 2013). p85α and p85β also interact with other proteins through their N-terminal 

SH3 and BH domains, for example c-Cbl, Rac1 and Cdc42 (Fang et al. 2001), suggesting that 

p85 proteins may be a part of additional protein complexes and may have roles in signaling 

pathways aside from their canonical function as a regulator of PI3K activity. 

Unlike the genes for the catalytic subunits Pik3ca (p110α) and Pik3cb (p110β), whose 

knockout is early embryonic lethal in mice, knockouts of the regulatory subunits Pik3r1 

(p85α, p55α, p50α) and Pik3r2 (p85β) are viable but show phenotypes like insulin sensitivity, 

muscle defects, hypoglycemia and liver necrosis (Fruman et al. 2000; Ueki et al. 2002; Liu 

et al. 2009). Mice with knockouts of both Pik3r1 and Pik3r2 genes survive until E12.5, and in 

MEFs from these organisms, p110α protein levels and PI3K activity are decreased, as p110 

proteins are unstable when they are not bound to the regulatory subunit (Brachmann et al. 

2005). However, in these MEFs, expression of Pik3r3 is upregulated, which is likely 

sufficient to enable longer survival of double knockout embryos compared to knockouts of 

the catalytic subunits (Brachmann et al. 2005). 

In cancer, mutations of p85 have been described, but their effects differ depending on 

which paralog is affected and the type of mutation (Rathinaswamy and Burke 2020). For 

example, overexpression of PIK3R2 induces oncogenic transformation in fibroblasts 

(Cariaga-Martinez et al. 2014), whereas loss of PIK3R1 is associated with tumor 

progression (Thorpe et al. 2017), suggesting it acts in a tumor suppressor function. Point 
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Figure 28. Distribution of differentially expressed genes in Y53F mutant versus 

parental cells. (A) Differentially expressed genes in Y53F mutant vs. parental after 6 hours 

of insulin treatment. Upregulated genes (red) and downregulated genes (blue) in the Y53F 

vs. parental with a Log2 fold change cut-off of ± 1.0. (B) Differentially expressed genes in 

Y53F mutant vs. parental after 2 hours of insulin treatment. Upregulated genes (red) and 

downregulated genes (blue) in the Y53F vs. parental with a Log2 fold change cut-off of ± 1.0. 

(C) Differentially expressed genes in parental cells at 6 hours of insulin treatment vs. 

untreated. Upregulated genes (red) and downregulated genes (blue) with a Log2 fold change 

cut-off of ± 1.0. (D) Differentially expressed genes in Y53F mutant cells at 6 hours of insulin 

treatment vs. untreated. Upregulated genes (red) and downregulated genes (blue) with a 

Log2 fold change cut-off of ± 1.0. Diagrams in this figure were generated by Dr. Bin Liu (MD 

Anderson Cancer Center). 
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