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Abstract. One in 8 women in the US will be diagnosed with breast cancer. Currently, doxorubicin 

is one of the most effective chemotherapies for breast cancer. Unfortunately, up to 60% of 

survivors report long-term chemotherapy-induced cognitive dysfunction (CICD) characterized by 

deficits in working memory, processing speed, and executive functioning. Currently, no 

interventions for CICD have been approved by the US Food and Drug Administration. I show 

here that a 14-day treatment with a blood-brain barrier permeable histone deacetylase 6 (HDAC6) 

inhibitor successfully reverses long-term CICD following a therapeutic doxorubicin dosing 

schedule in female mice, as assessed by the puzzle box test and novel object/place recognition 

test. Long-term CICD was associated with a decreased expression of the postsynaptic protein 

PSD95, but no decrease in the presynaptic protein synaptophysin, in the hippocampus. I did not 

detect a significant decrease in mitochondrial function or morphology in brain synaptosomes, 

myelination in the cingulate cortex using Black Gold II staining, or changes in astrocyte reactivity 

as assessed by anti-GFAP immunofluorescence staining. Using advanced imaging techniques and 

single-nucleus RNA sequencing, I demonstrate that doxorubicin-induced changes are associated 

with decreased microglial ramification and alterations in the microglia transcriptome that suggest 

a neurodegenerative microglia phenotype closely resembling stage 1 disease-associated microglia 
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(DAMs). HDAC6 inhibition completely reversed these doxorubicin-induced alterations, 

indicating a restoration of microglial homeostasis. These results suggest that a stage 1 DAM-like 

microglia phenotype and decreased postsynaptic integrity contribute to long-term CICD. 

Moreover, HDAC6 inhibition shows promise as an efficacious pharmaceutical intervention to 

alleviate CICD and improve quality of life of breast cancer survivors.  
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Chapter 1: Introduction  

Chemotherapy-induced cognitive dysfunction (CICD) is a debilitating impairment that 

severely effects the quality of life of up to 60% of breast cancer survivors [1]. Importantly, 

CICD has been shown to persist long after the cessation of chemotherapy. Studies on breast 

cancer survivors have identified deficits in learning and memory, attention, and processing 

speed 5 years after cancer treatment [2]. Currently, no therapeutic standard for treating CICD 

exists. While there is evidence that dysregulated neuroinflammation and oxidative stress in the 

brain as a result of microglia activity may contribute to CICD, the specific phenotype of 

microglia that sustain CICD long after the cessation of treatment is unknown. 

 I have developed a doxorubicin-induced model of CICD in female mice to identify 

mechanisms underlying long-term CICD and to evaluate a candidate pharmaceutical 

intervention, histone deacetylase 6 (HDAC6) inhibition, to reverse CICD after completion of 

chemotherapy treatment. In this introduction, I will first discuss breast cancer, chemotherapy 

treatment, and provide an overview of CICD. Secondly, I will provide an overview of 

doxorubicin including its mechanism of action, peripheral and central toxicities, and current 

literature regarding CICD as a result of doxorubicin treatment in animal models. Thirdly, I will 

discuss synaptic integrity including the functional synaptic unit, the two synaptic proteins 

evaluated in this dissertation (synaptophysin and postsynaptic density protein 95 (PSD95)), and 

synaptic alterations in neurodegenerative disorders. Fourthly, I will provide an overview of the 

microglia cell type including its physiological function, morphology, pathological phenotypes, 

and role in CICD. Lastly, I will discuss physiological roles of HDAC6, its relationship to 

neurodegeneration, and the effects of HDAC6 inhibition. 
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1.1 Breast Cancer and Chemotherapy 

In this section, I will provide a brief overview of breast cancer and general chemotherapy 

treatments including peripheral and central side effects. Then, I will describe CICD including 

associated structural and functional changes in patients, candidate mechanisms, and candidate 

interventions. 

1.1.1 Overview of breast cancer and chemotherapy 

Breast cancer is the most female common malignancy in both the developed and 

developing world. In 2020, it was estimated that 2.3 million women were newly diagnosed with 

breast cancer, and 685,000 women died with breast cancer listed as the cause of death [3]. 

Unfortunately, the global incidence of breast cancer is on the rise, with the annual incidence rate 

of breast cancer up 31% from 1980 to 2010 [4]. In the United States, 1 in 8 women will develop 

breast cancer in her life. Thankfully, the success of breast cancer treatments has increased the 

survival rate of breast cancer patients by 38% since 1989 [5]. Indeed, early-stage, non-metastatic 

breast cancer is curable in ~70-80% of patients. Breast cancer management may involve surgery, 

radiation therapy, and systemic therapies such as endocrine therapy, bone stabilizing agents, poly 

(ADP-ribose) polymerase inhibitors and chemotherapy. In 2015, 64.2% of women who were 

diagnosed with node positive breast cancer received multi-agent chemotherapy regimens 

including anthracyclines (doxorubicin), taxanes (paclitaxel), 5-fluorouracil, cyclophosphamide, 

and carboplatin [5]. Prior to 2005, anthracycline-based chemotherapy regimens were most 

common, with 70-80% of all breast cancer patients receiving anthracyclines, such as doxorubicin, 

during their treatment schedule [6]. After 2005, the use of taxane-based chemotherapy regimens 

sharply increased due to increasing concerns regarding anthracycline-induced toxicities including 

cardiotoxicity [6]. Nevertheless, anthracyclines still play an important role for patients with high-
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risk diseases such as triple-negative breast cancer, HER2-positive breast cancer, or breast cancer 

that involves multiple lymph nodes. In these high-risk patients, data suggests that adjuvant 

anthracycline- and taxane-based chemotherapy is the most effect treatment regimen [7].  

1.1.2 Side effects of chemotherapy 

In general, chemotherapy treatment is associated with side effects that affect the quality 

of life of cancer patients and survivors. While side effects from chemotherapy are treatment-

specific, a 2017 study that evaluated side effects from individuals with breast, colorectal, or lung 

cancer who are undergoing chemotherapy identified that 86% of participants reported at least one 

side effect throughout the period of study including pain, rash, and dyspnea [8]. While the study 

focused on physiological side effects, psychological symptoms are also very common in cancer 

patients and survivors. For example, up to 25% of cancer patients experience depression, while 

45% of cancer patients show anxiety during cancer treatment [9]. While the psychological 

response to a cancer diagnosis is a significant cause of distress, studies suggest that chemotherapy 

treatment itself may be associated with increased cancer patient anxiety [9]. In addition, 

chemotherapy-induced neurotoxicities such as neuropathy, fatigue, and cognitive dysfunction are 

common side effects that can persist for weeks, months and years even after patients have been 

declared cancer-free [10]. Importantly, severe symptom expression is associated with an increased 

risk of mortality [11]. While chemotherapy treatments each have unique mechanisms of action, 

common underlying mechanisms that may initiate and sustain chemotherapy-induced behavioral 

toxicities have been suggested [10]. For example, cancer-related fatigue has been associated with 

increased peripheral inflammation that may lead to neuroinflammation [12]. In addition, 

peripheral neuropathy, which is peripheral nerve damage that is characterized by numbness, 

tingling, temperature sensitivity, and pain, has been suggested to be partly mediated by 
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neuroinflammation. Pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), 

interleukin 1β (IL-1β), and IL-6 released by macrophages and Schwann cells at the dorsal root 

ganglia promote the development of peripheral neuropathy and induce neuroinflammation [13, 

14]. In addition to increased neuroinflammation, increased reactive oxygen species (ROS) and 

altered neuronal mitochondrial function have been suggested to underlie both peripheral 

neuropathy and fatigue following cancer treatment [15, 16]. Finally, increased 

neuroinflammation, increased ROS, and altered mitochondrial function have been recognized as 

being associated with cognitive dysfunction following cancer treatment [17]. Although fatigue, 

neuropathy, and cognitive dysfunction are all associated with chemotherapy treatment, only 

fatigue and neuropathy are recognized by the American Society of Clinical Oncology’s 

Survivorship Guidelines to assess and manage cancer treatment side effects [17]. Due to the 

increase in chemotherapy technologies, and subsequent increase in long-term cancer survivors, 

there is a great need to understand, manage, prevent, and reverse cognitive dysfunction that may 

occur following chemotherapy treatment.  

1.1.3 Chemotherapy-induced cognitive dysfunction 

Chemotherapy-induced cognitive dysfunction (CICD) is characterized by deficits in 

working memory, processing speed, executive functioning, attention, language, psychomotor 

function, verbal learning and ability, and visual-spatial skills [1, 17]. Longitudinal studies with 

neuropsychological evaluation of breast cancer survivors who received standard dose 

chemotherapy including doxorubicin, cyclophosphamide, and 5-fluorouracil, identified that 

cognitive dysfunction was associated with chemotherapy treatment [1, 2, 18, 19]. Cognitive 

dysfunction was evaluated within the domains of attention, processing speed, learning and 

memory, executive function, and quality of life. One study showed that 1.6 months after the 
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completion of chemotherapy, 65% of survivors presented with cognitive dysfunction [1]. Of 

these, 38% showed decline in only 1 cognitive domain, 58% showed decline in 2 cognitive 

domains, and 4% showed decline in 3 cognitive domains. Additionally, the same survivors 

completed a late post-treatment evaluation 7.7 months after the completion of chemotherapy. In 

the late evaluation, 61% of patients demonstrated cognitive decline relative to their performance 

1.6 months after the completion of chemotherapy. This suggests that CICD has the potential to be 

sustained, and even worsen, in the long-term. Indeed, research has found that CICD has been 

reported to persist up to 5 years after cessation of treatment in long-term breast cancer survivors 

[2]. As a result, CICD is a is a debilitating impairment that causes interpersonal, emotional, and 

financial burdens that significantly lower the quality of life of cancer survivors. Unfortunately, no 

intervention has been approved by the Food and Drug Administration to prevent or reverse CICD. 

Therefore, more research is required to evaluate the mechanisms that underlie CICD to allow for 

the development of interventions that target this debilitating side effect of chemotherapy. 

1.1.4 Structural and functional changes in CICD from patient studies 

Although the mechanisms underlying the initiation and sustaining of CICD are generally 

unknown, several structural and functional outcomes of systemic chemotherapy treatment that 

influence the central nervous system (CNS) have been identified. Using brain imaging techniques, 

structural and functional changes in the brain following chemotherapy include a reduction in the 

volume of specific brain structures that are required for cognitive functioning such as the 

prefrontal cortex and hippocampus [20]. In addition, changes in the integrity of white matter, 

which contains myelinated axons required for efficient transmission of information through the 

CNS, have also been observed after chemotherapy treatment [20]. Using functional magnetic 

resonance imaging (fMRI), reduced activation in the prefrontal cortex during a working memory-
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based task was observed in breast cancer survivors up to 12 months after treatment. Moreover, 

fMRI revealed that breast cancer survivors showed hypoactivation in the dorsolateral prefrontal 

cortex during an executive function task and in the parahippocampal gyrus in an episodic memory 

task 10 years after the completion of chemotherapy. The latter phenomenon was associated with 

decreased attentional processing and recognition memory compared to the control group [21]. 

This research suggests that chemotherapy treatment is associated with long-term cognitive 

dysfunction. Another neuroimaging study evaluating grey matter showed that breast cancer 

patients had broad grey matter volume reductions one month following chemotherapy, and one 

year following treatment alterations were still observed among the frontal and temporal regions. 

The reductions in grey matter were associated with decreased cognitive functioning and 

processing speed [22]. Other studies have suggested that alterations in cerebral blood flow are 

associated with cognitive function [23]. For instance, chemotherapy treatment in breast cancer 

patients was associated with increased cerebral perfusion and negatively correlated with cognitive 

performance [23]. Finally, fMRI research has uncovered the important role of the default mode 

network (DMN) in CICD [24]. The DMN is a neuroimaging biomarker of disease- and age-related 

cognitive decline. The DMN reflects the intrinsic “resting state” network that shows higher 

activity during rest and lower correlations with activity in task-dependent networks. Analysis of 

the DMN incorporates widespread brain function, reflecting the high connectivity and integrated 

functional activity that is required for cognitive output [24]. In breast cancer patients, reductions 

in the DMN functional connectivity was associated with cognitive dysfunction [25]. 

In addition to fMRI, Kesler et al., used diffusion tensor imaging (DTI) and graph theory 

to model neurodegeneration as a result of chemotherapy treatment [26]. First, the connectome of 

breast cancer survivors and controls were measured. Then, neurodegeneration was simulated 
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based on network attack analysis revealing that breast cancer survivors had a lower brain network 

tolerance to attacks on modeled brain regions and modeled brain connections. The lower brain 

network tolerance was associated with a lower fractional anisotropy, which suggests a loss of 

myelin integrity, and was associated with cognitive impairment [26]. This research suggests that 

chemotherapy treatment causes a decrease in network efficiency in response to simulated 

neurodegeneration as a result of decreased white matter organization and connectivity that may 

underlie cognitive dysfunction after breast cancer treatment.  

Collectively, these studies suggest that there are multiple mechanisms underlying 

chemotherapy-induced cognitive dysfunction. Although the structural and functional changes that 

underlie CICD have been suggested, the mechanisms that permit these changes are less known.  

1.1.5 Animal models of CICD 

Animal models are valuable tools that allow researchers to evaluate mechanisms 

underlying CICD. Benefitting from experimental control and study design, animal models allow 

for investigation into chemotherapy-specific mechanisms that are not possible in human 

imaging studies due to the commonality of combination chemotherapy regimens. Considering 

that the large number of chemotherapeutic agents used to treat cancer in humans each have 

unique mechanisms of action that induce apoptosis in cancer cells, a diverse body of literature 

regarding animal models of CICD exist. From this research, mechanisms underlying CICD have 

been identified including alteration of blood supply, cerebrospinal fluid composition, histone 

acetylation, myelination, cellular and dendritic morphology, neurogenesis and gliogenesis, 

glucose metabolism, neurotransmitter release, and the induction of neuroinflammation and 

oxidative stress [27]. For potential mechanisms underlying CICD in doxorubicin-treated animal 

models, see 1.2.6. 
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Researchers have designed behavioral tests to evaluate cognition in animal models 

including the novel object/place recognition test (NORPT), the Morris water maze, matching- 

and nonmatching-to-sample learning tasks, the Y-maze, and the T-maze which evaluate 

hippocampal-dependent cognitive functions including episodic, spatial, and temporal memory. 

In addition, the puzzle box test has been employed to evaluate CICD which evaluates 

hippocampal-dependent spatial and short-term memory, as well as prefrontal cortex-dependent 

executive function in the form of a problem solving task [28, 29]. These tests allow researchers 

to quantify the severity and type of cognitive deficits following chemotherapy that can later be 

correlated with biological alterations in tissues from the specimens.  

Downsides of animal models exist, the most significant of which is dosing. Considering 

that rodent metabolism is different from human metabolism, the difference in pharmacokinetics 

between rodents and humans means data from animal models do not translate to humans one-to-

one [30]. In addition, animal research often utilizes intraperitoneal (i.p.) injections while 

humans are treated intravenously. Regarding dosing, some studies utilize a large bolus dose of 

chemotherapy as opposed to a dosing regimen that is typical of human cancer treatment. In 

these studies, the data gathered may not accurately reflect the phenotype in humans that 

contributes to CICD. It is preferable to employ tumor models to define a therapeutic dosing 

schedule that reduces tumor growth in animal models. Researchers may also use behavioral tests 

to ensure the dose is not too large: The evaluation of locomotor activity, such as the open field 

test or total interaction time in NOPRT, ensures that behavioral deficits are not due to reduced 

exploratory behavior and/or fatigue. In addition, animal models are typically used to evaluate 

the induction of CICD and short-term CICD, while CICD in humans may last for years 

following completion of treatment. Therefore, mechanisms that permit sustained cognitive 
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dysfunction after chemotherapy are often neglected in animal research. Finally, comorbidities 

that may influence CICD in humans such as obesity, preexisting health conditions, preexisting 

cognitive dysfunction, and age are often omitted in animal research. Nevertheless, animal 

models are important tools to evaluate chemotherapy-specific mechanisms underlying CICD. 

1.1.6 Candidate mechanisms underlying CICD 

Cognitive dysfunction as a result of chemotherapy treatment is case- and 

chemotherapeutic-specific. Therefore, candidate mechanisms that may underlie CICD as a result 

of a variety of chemotherapy regimens will be discussed generally. Candidate mechanisms that 

trigger the initiation of CICD include a loss of blood-brain barrier (BBB) integrity, hormonal 

alterations, white matter damage, changes in neurogenesis, DNA damage, oxidative stress, genetic 

susceptibility, and cytokine dysregulation [20]. Firstly, chemotherapy and cancer itself can 

compromise the BBB by inducing endothelial cell dysfunction that results in increased BBB 

permeability [31]. As a result, increased levels of chemotherapeutic agents can enter the brain to 

cause neuronal cell death and decreased neurogenesis. Secondly, reductions in testosterone and 

estrogen as a result of chemotherapy treatment have been shown to influence cognitive 

functioning, particularly working memory [20]. Research has suggested that testosterone and 

estrogen can be neuroprotective and act as an antioxidant. Therefore, hormonal changes as a result 

of chemotherapy treatment may play a role in CICD. Thirdly, DNA damage and oxidative stress 

may lead to CICD. DNA damage and apoptosis caused by chemotherapy lead to oxidative stress, 

and oxidative stress is a common cause of DNA damage in neuronal cells [32]. It is important to 

note that the brain is particularly susceptible to oxidative stress considering its high energetic 

requirements and oxygen consumption by mitochondria – more than 20% of total oxygen 

metabolism in humans [33]. High oxidative stress in the CNS may lead to misfolded proteins, 
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mitochondrial dysfunction, lipid peroxidation, altered neuronal signaling, and neuronal apoptosis 

[34]. Considering the lipid-enriched milieu of myelinated fibers that facilitate signal transduction 

in the CNS, white matter is highly susceptible to damage from increased ROS as a result of 

chemotherapy treatment. Loss of white matter integrity is frequently observed in breast cancer 

survivors who received chemotherapy [35]. Taken together, dysregulation of the prooxidant-

antioxidant balance may contribute to CICD. Fourthly, variations in genetic susceptibility to 

CICD exist [20]. Research has elucidated a relationship between genetic variability and cognitive 

function with an emphasis on brain-derived neurotrophic factor (BDNF), catechol-O-

methyltransferase (COMT), and dopamine receptor genes [36]. Variations in dopamine 

metabolism and degradation can modify executive function and memory mediated by the 

prefrontal cortex, and BDNF is required for neuronal survival, repair, dendritic growth, and long-

term potentiation (LTP). A study also identified that breast cancer patients with the ɛ4 variant of 

the APOE gene had higher susceptibility to chemotherapy-related cognitive impairment and 

development of Alzheimer’s disease [37]. Lastly, cytokine dysregulation is strongly associated 

with neurotoxicity and cognitive dysfunction in a variety of neurodegenerative disorders 

including multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease [38]. Cytokines play 

an important role in physiological CNS function including neurotransmitter metabolism, glial cell 

and neuronal functioning, neuronal repair, and cell-to-cell signaling. Systemic chemotherapy 

treatment has the potential to influence cytokines in the CNS. This can occur by peripheral 

cytokines migrating across the BBB, by activation of endothelial and glial cells to stimulate 

cytokine production in the CNS, and by stimulation of the peripheral vagus nerve to release 

cytokines in the CNS [20, 39]. Increased cytokines in the CNS can cause DNA damage, oxidative 

stress, and maintain neuroinflammation in a feed-forward cycle. Since pro-inflammatory cytokine 
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release in the brain is mediated by the activation of glial cells, most notably astrocytes and 

microglia, it is highly likely that glial cell activity contributes to CICD. Taken together, a variety 

of chemotherapy treatment-induced mechanisms may play a role in the initiation and sustaining 

of CICD.  

1.1.7 Candidate interventions for CICD 

Although no FDA-approved therapies to alleviate CICD exist, a variety of interventions 

have been proposed. They range from behavioral interference, dietary treatments, stem cell 

therapy, and pharmacological interventions [40]. In terms of behavioral interference, physical 

activity has been shown to improve functioning in Alzheimer’s disease, depression, and aging 

[41]. Exercise has been shown to reduce oxidative stress, inflammation, and increase BDNF and 

hippocampal volume. Therefore, exercise has been proposed as an intervention to mitigate CICD 

[42]. Dietary treatments proposed to alleviate CICD include foods high in naturally occurring 

antioxidants, including rutin and curcumin. Antioxidants have been shown to reduce levels of pro-

inflammatory cytokines and may help to normalize the prooxidant-antioxidant balance that is 

disturbed by chemotherapy treatment [34]. However, considering that the mechanism underlying 

tumor control of some chemotherapies is the production of free radicals, antioxidant interventions 

are controversial. Stem cell therapy has recently been shown to be effective in reversing CICD in 

animal models. In a mouse model of cyclophosphamide-induced cognitive dysfunction, stem cell 

transplantation in the hippocampus lead to a reduction in microglia activation and 

neuroinflammation, and subsequently resolved cognitive impairments [43]. Moreover, the action 

of stem cell therapy has been suggested to be mediated by mitochondrial transfer. In a model of 

cisplatin-induced cognitive dysfunction, intranasal administration of mitochondrial isolated from 

mesenchymal stem cells transferred to endogenous neural stem cells, reducing the neurotoxic 



12 
 

effects of cisplatin [44]. The same group showed evidence that a similar intranasal administration 

of mitochondria successfully reversed CICD [45]. Taken together, stem cell therapies have the 

potential to improve CICD in cancer survivors. Finally, pharmacological interventions represent 

a much more conventional approach to alleviating sickness behavior, including CICD. A variety 

of pharmaceutical interventions have been evaluated to treat CICD including antidepressants, 

anti-inflammatory medication, stimulants, lithium, N-methyl-D-aspartate (NMDA) receptor 

antagonists, phosphodiesterase inhibitors, and novel pharmaceutical compounds including A3 

adenosine receptor agonists and HDAC6 inhibitors. Antidepressants have been shown to improve 

CICD by restoring cytokine balance via the p38/MAPK/JNK pathway, increasing BDNF 

expression in neurons, and protecting against mitochondrial membrane damage [46]. NMDA 

receptor antagonists act on excitatory neurotransmitter signaling pathways, such as dopaminergic 

and glutamatergic pathways, to improve learning and memory function in the hippocampus [47]. 

Phosphodiesterase inhibitors are thought to act through cyclic adenosine monophosphate 

signaling to modulate downstream pathways such as glucose metabolism and microtubule 

dynamics [48]. Finally, novel pharmaceutical compounds are currently being evaluated for their 

effectiveness in alleviating CICD. One class of compounds are inhibitors of HDAC6 (see 1.5). 

1.2 Doxorubicin 

Doxorubicin is one of the most effective chemotherapy treatments for breast cancer 

patients[7]. In this section, I will discuss the history and mechanism of action of doxorubicin in 

cancer treatment. Then, I will provide an overview of side effects as a result of doxorubicin 

treatment including peripheral and central toxicities. Lastly, I will discuss cognitive dysfunction 

as a result of doxorubicin treatment including potential mechanisms and interventions identified 

in animal studies.  
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1.2.1 History 

Doxorubicin belongs to the anthracycline class of chemotherapeutic agents, a class of 

drugs that are extracted from Streptomyces peucetius bacteria. Indeed, the first anthracycline was 

called daunorubicin and was initially isolated from a strain of Streptomyces peucetius bacteria in 

Italy in the early 1960s [49]. The bacteria were isolated from a soil sample taken near a 13th-

century castle called Castel del Monte, which currently appears on the Italian version of the one 

cent Euro coin and is a World Heritage Site. Shortly after, a group of French researchers 

discovered the same compound and together with the Italians they named it Daunorubicin. This 

is a portmanteau of Dauni, a pre-Roman tribe that occupied the area of Italy where the compound 

was discovered, and rubis, the French word for ruby that describes the color. Daunorubicin was 

successful in clinical trials for acute leukemia and lymphoma, but by 1967 it was discovered that 

daunorubicin could cause severe cardiotoxicity [50]. Therefore, researchers mutated a strain of 

Streptomyces to alter the structure of the compound and therefore the biological activity. They 

were successful, and a new red-colored chemical was isolated. It was initially named Adriamycin, 

after the Adriatic Sea, but is currently referred to as doxorubicin [51]. Doxorubicin differs from 

daunorubicin only by the addition of a single hydroxyl group, yet its activity against solid tumors 

is greatly improved. Still, severe dose-limiting side effects including cardiotoxicity remain. 

Doxorubicin is used to treat solid tumors and hematological cancers including breast, prostate, 

uterus, ovary, stomach, liver, and esophagus tumors as well as leukemias [52]. Although they 

were discovered more than 50 years ago, anthracyclines are still used in 32% of breast cancer 

patients, 57 to 70% of elderly lymphoma patients, and 50 to 60% of childhood cancer patients [7]. 

Currently, doxorubicin is on the World Health Organization's List of Essential Medicines. 
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1.2.2 Structure and mechanism of action 

Doxorubicin treatment leads to apoptosis of cells by 3 main mechanisms: 1) DNA 

intercalation, 2) topoisomerase II inhibition, and 3) the production of reactive oxygen species 

[52]. Doxorubicin enters a cell by simple diffusion and is subsequently transported to the nucleus. 

Briefly, doxorubicin binds to the proteasome with high affinity, forming a doxorubicin-

proteasome complex that translocates to the nucleus via nuclear pores. Once in the nucleus, 

doxorubicin dissociates from the proteasome complex and binds to DNA due to a higher binding 

affinity for DNA than the proteasome. Doxorubicin intercalates between the adjacent base pairs 

of DNA, inhibiting RNA synthesis and subsequently blocking transcription, biosynthesis, and 

cellular replication [52]. In addition, doxorubicin inhibits the progression of topoisomerase II, 

which is responsible for relaxing supercoils in DNA transcription. After topoisomerase II has 

broken the DNA chain for replication, doxorubicin stabilizes the topoisomerase II-DNA complex. 

This prevents the DNA from being released and stops the process of replication [52]. 

Subsequently, the affected cell undergoes apoptosis. Finally, doxorubicin leads to the production 

of ROS that may contribute to cell death via two mechanisms. Firstly, the structure of doxorubicin 

itself is highly reactive and can produce free radicals via redox cycling of its quinone moiety 

(Figure 1.2). The quinone moiety is converted to a semiquinone moiety to produce free radicals 

that react with oxygen to create highly reactive superoxides, hydroxyl radicals, and peroxides 

[53]. Secondly, doxorubicin also has a high affinity for cardiolipin in the inner mitochondrial 

membrane, the binding of which leads to mitochondrial dysfunction and subsequent production 

of ROS that induce apoptosis [53]. 
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Figure 1.1. Chemical structure of doxorubicin and redox cycling mechanism.  

 

1.2.3 Doxorubicin-induced peripheral toxicity 

Although doxorubicin is an extremely effective chemotherapeutic, its use is associated 

with severe side effects including cumulative cardiotoxicity, gastrointestinal disturbances, bone 

marrow aplasia, and inflammation[52]. The most well-documented of these side effects is 

cardiotoxicity. Indeed, cardiotoxicity has proven to be the most significant side effect that limits 

the dose and clinical use of anthracyclines. Risk is dependent on patient age, prior heart disease, 

and other cardiovascular risk factors that may increase the risk of heart failure as high as 3-5% 

with 400 mg/mg2 of cumulative doxorubicin [54]. At the heart of the issue is the sensitivity of 

cardiomyocytes to ROS [55]. This is due in part to the high number of mitochondria per 

cardiomyocyte, occupying 50% of the cardiomyocyte mass due to the high energy requirements 

of the cell [53]. Heart tissue also has poor antioxidant activity because it lacks catalase [56]. In 
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order to reduce cardiac injury, liposomal formulations of doxorubicin (Doxil), which is 

doxorubicin encapsulated in phospholipid vesicles, have been developed as a drug delivery 

system. A side effect of these liposomal formulations is that they cross the BBB more easily via 

membrane fusion, causing behavioral side effects [57]. A second major side effect of doxorubicin 

treatment, which is common in most chemotherapeutic agents, is myelosuppression. 

Myelosuppression may increase the occurrence of infections, gingival bleeding, and delayed 

healing [52]. This is because chemotherapeutic agents target proliferative cells indiscriminately 

with the intention of causing apoptosis in cancer cells, but also affect normal adult stem cells in 

tissues such as bone marrow. 

1.2.4 Doxorubicin-induced neurotoxicity 

Another significant concern of doxorubicin treatment, and the subject of this thesis, is 

doxorubicin-induced toxicities in the brain. Doxorubicin hydrochloride, which is the formulation 

primarily used to treat breast cancer, is generally thought to be blood-brain barrier impermeable 

[58]. While this is true in physiological conditions, doxorubicin in the blood interacts directly 

with endothelial cells that compose the BBB by making intercellular tight junctions that limit the 

passive diffusion of large molecules into the brain [59]. In the periphery, doxorubicin treatment 

and inflammation have been shown to cause endothelial cell dysfunction [60, 61]. In addition, 

pathological inflammation in the CNS is associated with increased BBB permeability and 

breakdown [62]. Thus, it is possible that doxorubicin may act on endothelial cells at the BBB, 

causing breakdown of the BBB and increasing permeability which may allow low amounts of 

doxorubicin to pass. Researchers detected doxorubicin hydrochloride at a level of 5 ng/g of fresh 

brain tissue in the cerebral hemispheres, cerebellum, and brainstem 1 hour after a 12 mg/kg 

intraperitoneal (i.p.) injection in rats [63]. Whether or not this level of doxorubicin is high enough 
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to induce neuronal apoptosis directly is not well known [63]. Additional research has provided 

evidence that doxorubicin is readily taken up by neural stem cells in the dentate gyrus (DG), which 

themselves have cellular processes associated with blood vessels [64]. These cellular processes 

are >30 nm in diameter and establish direct contact with endothelial cells in specialized niches in 

the hippocampus [64]. This uptake caused reduced NSC proliferation, which may help to explain 

anti-neurogenic effects of doxorubicin. While this research suggests that a direct mechanism may 

underlie doxorubicin-induced neurotoxicities, more research into the severity of this mechanism 

is required. The most well-accepted mechanism underlying doxorubicin-induced neurotoxicities 

is an indirect one that initiates in the periphery. Systemic doxorubicin treatment results in severe 

peripheral ROS production and inflammation in the form of circulating cytokines such as TNF-α 

[65]. Proinflammatory cytokines and activated immune cells are able to cross the BBB to interact 

with resident CNS immune cells, including microglia and astrocytes, to influence their reactivity 

and stimulate the production of additional proinflammatory cytokines [61, 65]. In aged mouse 

models, activation of the peripheral immune system induced neuroinflammation and oxidative 

stress in the brain [66]. Thus, the initiation of a feed-forward inflammatory cycle may begin in 

which microglia respond to pro-inflammatory cytokines by themselves becoming activated and 

producing additional pro-inflammatory cytokines. Microglia and astrocyte activation increases 

cellular energy requirements and the production of adenosine triphosphate (ATP) by mitochondria 

[61, 67]. Increased ATP production may then increase the presence of pathological ROS which 

can have detrimental effects by causing the oxidation of lipids, DNA, and proteins to influence 

cellular functions, protein conformations, and mitochondrial membranes [64]. ROS can also cause 

synaptic plasticity deficits and damage nucleic acids that can ultimately lead to 



18 
 

neurodegeneration, cellular apoptosis, and cognitive dysfunction [68]. Today, there is a clear 

association between doxorubicin treatment and cognitive dysfunction [1, 69]. 

1.2.5 Patient studies on doxorubicin-induced cognitive dysfunction 

In patient studies, evidence suggests that chemotherapy regimens that contain 

anthracyclines, including doxorubicin, have greater negative effects than regimens that do not 

include anthracyclines in regard to cognition and brain network connections [70]. However, it is 

difficult to parse the specific effects of doxorubicin treatment from human studies considering 

that patient-specific chemotherapy regimens often contain two or more chemotherapeutic drugs 

including doxorubicin, cyclophosphamide, paclitaxel, and fluorouracil. Therefore, the most 

compelling evidence regarding doxorubicin-specific mechanisms of CICD are uncovered with 

CICD animal models. 

1.2.6 Pre-clinical models of doxorubicin-induced cognitive dysfunction  

Pre-clinical rodent models have been used to model doxorubicin-induced cognitive 

function (DICD). Through this research, a plethora of different mechanisms have been reported 

to initiate and sustain DICD. These mechanisms include neuroinflammation, oxidative stress 

and mitochondrial dysfunction, neurotransmitter alteration, glial cell dysfunction, DNA damage, 

and changes in apoptosis, autophagy, and neurogenesis [71]. Like many neurotoxic and 

neurodegenerative pathologies, the reality is that DICD is brain- and case-specific and likely the 

output of cognitive dysfunction is influenced by some or all of these mechanisms in an 

interrelated manner.  

Although very little doxorubicin is thought to cross the BBB, doxorubicin in the blood 

can interact directly with endothelial cells at the BBB which act as active immunoregulatory 

cells to induce neuroinflammation [72]. However, doxorubicin has been shown to cross the 
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BBB via blood vessel-associated apical projections of neural stem cells in the DG of the 

hippocampus (see 1.2.4) [64]. Therefore, direct mechanisms of neurotoxicity in DICD as 

assessed by in vitro experiments will briefly be discussed. 

In vitro models have shown that doxorubicin can accumulate in cortical rat neurons and 

cause DNA double-strand breaks and DNA cross-linking, which leads to a decrease in neuronal 

survival [73]. More subtly, doxorubicin treatment led to damaged synapses and a decrease in 

neurite count indicated by decreased Synapsin fluorescence intensity [73]. In human 

neuroblastoma cells (IMR32), doxorubicin treatment decreased neurite outgrowth and increased 

intracellular ROS generation and apoptosis [74]. Doxorubicin treatment in vitro has also been 

shown to affect autophagy-lysosome systems [75]. Finally, in neurons exposed to doxorubicin, 

electron microscopy identified the accumulation of autophagosomes, lipid droplets, and 

mitochondria [75]. It is important to note, however, that the aforementioned in vitro experiments 

use doxorubicin doses that range from 0.01 – 1 µM. Primary cortical neurons treated with even 

the lowest dose of doxorubicin in this range (0.01 µM) resulted in a 50% reduction in synaptic 

density 2 days after treatment and death of the entire neuronal culture 7 days after treatment [73]. 

Therefore, the dose of doxorubicin exposed to neurons in these studies may be higher than doses 

that reach neurons after systemic treatment in vivo. Taken together, it is possible that minute 

amounts of doxorubicin passing through the BBB may influence neuronal survival, synaptic 

integrity, and neurite outgrowth which may lead to cognitive dysfunction. While in vitro studies 

on doxorubicin provide valuable information on the direct effects of doxorubicin on CNS cells, 

in vivo studies in rodents more accurately reflect the dosing schedule, presence of a BBB, and 

behavioral outputs that are required to accurately model DICD.  
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In rodent models, the wide-ranging consensus is that systemic doxorubicin treatment 

induces CNS neurotoxicity through indirect mechanisms that involve neuroinflammation and 

oxidative stress [52, 76–80]. Both neuroinflammation and oxidative stress are considered to be 

key factors that influence neurodegeneration and cognitive impairment, and indeed the two 

processes are tightly intertwined [81, 82]. For instance, in vivo studies have found that doxorubicin 

administration leads to the increase of both the pro-inflammatory cytokine TNF-α and oxidative 

stress in the brain [65, 83–86]. Increased oxidative stress is associated with increased reactive 

species including oxygen and hydroxyl free radicals as a result of mitochondrial dysfunction. 

Exposure to ROS can cause damage to macromolecules including lipids, proteins, and DNA to 

induce apoptotic cell death [33]. The brain has especially high energetic requirements, consumes 

large amounts of oxygen, and is enriched with lipids making the CNS highly vulnerable to 

oxidation-reduction imbalance [33, 67]. Indeed, neurodegenerative disorders including 

Huntington’s disease, Parkinson’s disease, and Alzheimer’s disease are associated with oxidation-

reduction imbalances [33, 34, 87]. Finally, the presence of excessive ROS in pathological brains 

is associated with decreased cognitive function [34]. Studies have identified an increase in 

oxidative stress following doxorubicin treatment as assessed by quantifying protein carbonyl 

levels and protein bound 4-hydroxynonenal (HNE) levels in both the hippocampus and plasma. 

Protein carbonyl levels and protein bound HNE levels are measures of protein oxidation and lipid 

oxidation, respectively [88]. Here, the increase in markers of oxidative stress was associated with 

decreased cognitive function in mice as assessed by the NOPRT [88]. In brain mitochondria, 

doxorubicin treatment was shown to decrease Ca2+ retention capacity, and increase the 

permeability transition pore opening sensitivity and H2O2 emission in vivo [89]. A recent study 

highlighted that doxorubicin treatment induced altered mitochondrial dynamics as assessed by 
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membrane depolarization and mitochondrial swelling 5 days after the last dose of doxorubicin, 

and was associated with cognitive dysfunction [76]. This suggests that altered bioenergetics may 

be important for the initiation of CICD, but the role of mitochondrial dysfunction in sustaining 

long-term CICD is unknown [76]. In addition to direct analyses of mitochondrial function, 

doxorubicin treatment has been shown to decrease levels antioxidant enzymes glutathione and 

superoxide dismutase in the brain which suggests an increase in oxidative stress [77, 84]. This 

suggests a decreased capacity for the reduction of ROS in brains of doxorubicin-treated mice. The 

neurotoxic effects of oxidative stress following doxorubicin treatment have been further 

confirmed in studies that showed the concurrent application of molecules with antioxidant 

properties prevented protein oxidation, lipid peroxidation, and the loss cognitive function as a 

result of doxorubicin treatment [86, 88, 90, 91]. However, the clinical significance of antioxidant 

therapeutics in preventing CICD is controversial considering that one mechanism of action of 

doxorubicin treatment on cancer cells is DNA damage by free radical production. Therefore, 

concurrent application of an antioxidant therapeutic may interfere with the tumor control provided 

by doxorubicin treatment. Taken together, doxorubicin treatment has been shown to induce the 

generation of ROS by mitochondrial dysfunction and the loss of endogenous antioxidants that 

lead to subsequent protein, lipid, and DNA damage that contribute to doxorubicin-induced CNS 

damage and cognitive dysfunction.  

In regards to neuroinflammation, Tangpong et al., provided evidence that systemic bolus 

doxorubicin treatment induces TNF-α expression in the cortex and hippocampus that was 

associated with apoptosis in the brain as assessed by TUNEL+ staining [65, 92]. Later research, 

based on repeated dosing schedules to simulate to breast cancer treatment, confirmed that 

doxorubicin treatment was correlated with an increase in pro-inflammatory cytokines TNF-α, IL-



22 
 

1β, and IL-6 in the brain [76–80]. In many of these studies, doxorubicin treatment led to cognitive 

dysfunction in the domains of spatial, temporal, and episodic memory as assessed by various 

behavioral tests including the NORPT, Morris water maze, and passive avoidance tests [76, 80, 

90, 91]. Importantly, the release of pro-inflammatory cytokines in the hippocampus has been 

proposed to promote cognitive dysfunction [82]. The mechanisms underlying neuroinflammation 

and cognitive dysfunction are more easily understood when considering the cell types that mediate 

neuroinflammation. Pro-inflammatory cytokine release in the brain is mediated by the activation 

of glial cells, most notably astrocytes and microglia [93]. Briefly, astrocytes are important 

modulators of synaptic transmission and uptake neurotransmitters such as glutamate and gamma-

aminobutyric acid (GABA) at the synaptic cleft [94]. Astrocytes are also involved in energy 

homeostasis for neurons, storing glycogen that can be broken down to lactate and shuttled to 

neurons to facilitate neuronal oxidative phosphorylation [95]. Microglia are the primary immune 

cell in the brain, involved in brain maintenance in the form of phagocytosis of plaques or debris, 

synaptic maintenance, and responding to damage signals to facilitate repair (see 1.4) [96]. In 

situations of pathological neuroinflammation, the dysregulated activation of astrocytes and 

microglia prevents these cells from performing their physiological functions. Indeed, reactive 

astrocytes exhibit abnormal regulation of glutamate transport, energy metabolism, and Ca2+ 

responses leading to glutamate excitotoxicity, altered neuronal oxidative phosphorylation, and 

impaired synaptic plasticity [95, 97]. In addition, activated glial cells require higher energetic 

needs and further the oxidative stress on mitochondria, leading to additional ROS production and 

further CNS damage as discussed previously [67]. Finally, pathological activation of glial cells 

have been shown to induce enzymes that directly or indirectly phosphorylate tau in the brain, 

including NF-κβ and GSK-3β, leading to the development of, and association with, plaques, 
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clusters, and neurofibrillary tangles (NFTs) [98–100]. Indeed, a recent study showed that 

doxorubicin treatment increased astrocyte and microglia reactivity as assessed 5 days after the 

last dose of doxorubicin and was associated with cognitive dysfunction [76]. The cognitive 

deficits and glial cell reactivity were prevented by concurrent administration of donepezil, an 

Alzheimer’s drug that binds reversibly to acetylcholinesterase to increase the availability of 

acetylcholine at the synapse and subsequent cholinergic transmission. This suggests that 

neuroinflammation mediated by reactive astrocytes and microglia play a role in short-term CICD. 

Another study identified broadly activated microglia in a model of doxorubicin-associated CICD 

4 weeks after completion of treatment as assessed by CD68+ staining intensity and a NanoString 

mouse immunology panel [101]. Unfortunately, marker-based classifications may occlude the 

identification of more nuanced alternative microglia phenotypes that have recently been identified 

(see 1.4.6). Doxorubicin has also been shown to alter acetylcholinesterase (AChE) activity in the 

hippocampus of rats which was associated with increased pro-inflammatory mediators TNF-α, 

PGE-2, COX-2, and cognitive dysfunction [102]. Considering that cholinergic neurons are 

involved in hippocampal-dependent learning and memory, and that dysregulated acetylcholine in 

the brain is associated with neurodegeneration, dysregulated AChE activity as a result of 

neuroinflammation likely contributes to CICD [103]. Taken together, the majority of animal 

research regarding CICD as a result of doxorubicin treatment consistently associate CICD with 

dysregulated neuroinflammation.  

Lastly, pathological situations of neuroinflammation and oxidative stress can induce 

apoptosis. Indeed, repeated systemic dosing of doxorubicin has been shown to induce apoptosis 

in the CNS that correlated with cognitive dysfunction [102]. This was observed in several studies 

that quantified an increase in apoptotic markers including TUNEL+ staining and caspase-3 and 
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cytochrome c expression in the hippocampus in vivo following doxorubicin treatment [89, 102, 

104]. These findings are substantial because neurons are post-mitotic cells, and the contribution 

of neurogenesis in reparative mechanisms in the adult CNS are not well understood. It is now 

known that neurogenesis occurs in the physiological brain throughout adulthood in specialized 

areas including the DG and subventricular zone [105]. Furthermore, evidence suggests that 

neurogenesis is altered following brain injury or neurodegeneration [106]. Still, more research is 

required to evaluate the extent to which neurogenesis contributes to CNS repair. In addition to 

inducing apoptosis, doxorubicin treatment was shown to decrease neurogenesis in the DG of the 

hippocampus as assessed by DCX+ and BrdU+ staining with concurrent impairments in short-

term and spatial memory in the Morris water maze task [89]. A decrease in DCX+ cells in the 

hippocampus was recently shown to be correlated with decreased cognitive scores and functional 

interaction of synaptic proteins in humans [107]. Following doxorubicin treatment in rats, a 

decrease in DCX+ cells was associated with the decreased expression of neurotrophic factors 

BDNF and TrkB in the hippocampus. BDNF is a key molecule for synaptogenesis and 

dendritogenesis [108]. Doxorubicin was shown to decrease dendritic spine density and synaptic 

integrity as assessed by Golgi staining and PSD95 and Synapsin-1 immunofluorescence in the 

hippocampus, which was associated with cognitive dysfunction [80]. Here, an antioxidative 

protein called C-phycocyanin prevented cognitive dysfunction and synaptic damage as a result of 

doxorubicin treatment. These findings suggest that the induction of apoptosis and decrease in 

neurogenesis and synaptogenesis as a result of doxorubicin treatment likely contribute to CICD.  

Taken together, increased neuroinflammation and oxidative stress are critical mechanisms 

underlying CICD in the brain of rodents treated with doxorubicin and may lead to synaptic 

damage and apoptosis. Neuroinflammation and oxidative stress are tightly interrelated 
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mechanistically and are primarily mediated by glial cells including astrocytes and microglia. 

Therefore, the identification of specific glial phenotypes that underlie CICD a result of 

doxorubicin treatment, as well as candidate pharmaceutical interventions that may attenuate 

neuroinflammation and oxidative stress, require further investigation. 

1.3 Synaptic Integrity 

Synaptic integrity is defined as a functional synaptic unit that facilitates unimpaired 

neuronal transmission [109]. In this section, I will provide an overview of the functional 

synaptic unit and the two synaptic proteins evaluated in this dissertation: synaptophysin and 

postsynaptic density protein 95 (PSD95). Then, I will discuss synaptic integrity in 

neurodegenerative disorders. 

1.3.1 The functional synapse 
 

Functional synapses rely on the structural and functional integrity of both the presynaptic 

and postsynaptic boutons [110]. Functional synapses form the basis of synaptic transmission, 

the process by which neurotransmitters released from a presynaptic axon terminal bind to, and 

induce a change in, the appropriate receptor of a postsynaptic neuron. Modulation of synaptic 

strength, including long-term potentiation (LTP) and long-term depression (LTD), is a 

fundamental process that facilitates learning and memory [110]. In neurodegeneration, a loss of 

functional synapses strongly correlates with cognitive dysfunction [111, 112].  

Briefly, presynaptic terminals contain clusters of synaptic vesicles packed with 

neurotransmitters. When an action potential occurs in the presynaptic neuron, voltage-gated 

calcium channels open to trigger Ca2+-dependent exocytosis of synaptic vesicles and release of 

neurotransmitters into the synaptic cleft [110]. The neurotransmitters bind to and activate 
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postsynaptic receptors to induce a change in membrane potential in the postsynaptic neuron. In 

excitatory neurons, the postsynaptic terminal contains an electron-dense structure termed the 

post-synaptic density (PSD) which is made up of thousands of proteins including 

neurotransmitter receptors, scaffold proteins, cytoskeletal proteins, cell adhesion molecules, and 

membrane trafficking proteins that facilitate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptor and NMDA receptor anchoring, trafficking, and insertion into synapses 

[113]. Dysregulated PSD proteins is associated with neurodevelopmental disorders, 

neurodegeneration, and cognitive dysfunction [114]. 

In the literature, an accepted method of identifying functional synapses is by 

colocalization of presynaptic and postsynaptic proteins [115]. A loss of colocalization indicates 

a loss of functional synapses. However, research suggests that decreased expression of 

presynaptic or postsynaptic proteins also translates to a loss of functional synapses [116–120]. 

In this dissertation, I evaluated the expression of the presynaptic protein synaptophysin and the 

postsynaptic protein PSD95 as markers of functional pre- and postsynaptic terminals, 

respectively. Therefore, I will briefly discuss the roles of synaptophysin and PSD95 in synaptic 

transmission and their relationship to neurodegeneration. 

1.3.2 Synaptophysin 

Synaptophysin is a synaptic vesicle glycoprotein that is localized to presynaptic vesicles 

[121]. It is one of the most well-characterized and specific markers for presynaptic terminals 

and is present in virtually all neurons in the brain that participate in synaptic transmission [122]. 

It participates in the docking and fusion of synaptic vesicles during exocytosis to facilitate the 

release of neurotransmitters into the synaptic cleft [123]. It is also required for endocytosis and 

synaptic vesicle recycling [120]. 



27 
 

Evidence suggests that synaptophysin plays an integral role in maintaining functional 

synapses and synaptogenesis. In cultured hippocampal neurons, synaptophysin has been shown 

to regulate activity-dependent synapse formation [119]. It is one of the earliest synaptic proteins 

to be expressed at developing synapses in vitro and is expressed at high levels during 

synaptogenesis [124]. In Rett syndrome and transmissible spongiform encephalopathy, 

decreased synaptophysin expression correlated with dendritic spine pathology [125]. In 

addition, synaptophysin expression is significantly decreased in the hippocampus and temporal 

lobe of dementia patients [126, 127]. In cisplatin-induced models of CICD, decreased 

synaptophysin expression was correlated with cognitive dysfunction [28, 45, 128]. 

Synaptophysin expression was also significantly decreased in the hippocampus of patients with 

schizophrenia [129].  

However, the research regarding synaptophysin expression and maintenance of a 

functional synapse is inconsistent. While there are clear associations with synaptophysin loss 

and neurodegeneration, studies have suggested that synaptophysin is not essential for 

neurotransmitter release [130]. One study identified impaired learning and memory in 

transgenic mice that lack synaptophysin, while another identified no phenotypic abnormalities 

[130, 131]. Research has suggested that redundancies between synaptic vesicle proteins may 

allow for functional synaptic transmission in transgenic mice that lack single synaptic vesicle 

proteins. One study identified redundancies between synaptophysin and synaptogyrin, another 

synaptic vesicle protein, that allow for unimpaired synaptic plasticity in synaptophysin or 

synaptogyrin knockout mice but not in synaptophysin and synaptogyrin double knockout mice 

[132]. Therefore, it is possible that studies identifying a loss of synaptophysin with a loss of 

synapse functionality failed to identify this redundant protein mechanism. Similarly, studies that 
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identified a loss of synaptophysin in neurodegenerative diseases may have failed to identify a 

concurrent loss of redundant proteins. However, a major study evaluating synapse loss in 

Alzheimer’s disease patients confirmed that out of 7 synaptic proteins, synaptophysin was 

second most downregulated presynaptic protein behind rab 3A [127].  

Taken together, synaptophysin is involved in functional synaptic transmission. Although 

redundancies exist that may compensate a loss of synaptic function as a result of decreased 

synaptophysin, synaptophysin loss still serves as a biomarker for neurodegeneration and is 

associated with cognitive decline.  

1.3.3 PSD95  

PSD95 is a scaffolding protein that is expressed on the postsynaptic density of excitatory 

neurons. PSD95 is integral for maintaining cytoskeletal scaffolding to facilitate the clustering of 

receptors, ion channels, and associated signaling proteins. It is involved in the direct and indirect 

binding with NMDA receptors, glutamate receptors, AMPA receptors, and potassium ion 

channels to facilitate synaptic plasticity and long-term potentiation. 

Evidence suggests that PSD95 is critical to maintain functional synapses. Through 

modulation of AMPA receptors at synapses, PSD95 alters neuronal excitability and synaptic 

strength to facilitate LTP and activity-dependent synaptic plasticity [133, 134]. Transgenic 

PSD95 knockout mice exhibit decreased AMPA-mediated excitatory postsynaptic currents 

(EPSCs) in the hippocampus [117, 135, 136]. Complementary to these findings, overexpression 

of PSD95 in the hippocampus increased AMPA-mediated EPSCs, occluded LTP, and enhanced 

LTD [137]. Interestingly, some studies have suggested that PSD95 is not required for the 

induction and early expression of LTP (35 minutes after pairing-induced LTP), but knockdown 

of PSD95 resulted in spines with a decreased density and altered morphology that were less 
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stable over longer time periods (3 days) [117]. Thus, it is possible that PSD95 may not be 

recruited during the induction of potentiation but is required for subsequent stabilization of 

synaptic changes and maintaining LTP. Nevertheless, synaptic plasticity is bidirectional and 

dependent on both LTP and LTD [138]. Considering that PSD95 knockout mice exhibit altered 

LTD, PSD95 expression is crucial for synaptic plasticity and therefore cognitive function [137]. 

This was validated in a PSD95 knockout mouse model which exhibited altered NMDA receptor 

and AMPA receptor expression in the prefrontal cortex which correlated with impaired 

performance in the NOPRT and T-maze task [116]. NMDA receptor-dependent LTD is a well-

characterized mechanism that facilitates LTD [139]. Another study found that NMDA receptor 

expression was unaffected in the hippocampus of PSD95 knockout mice, and yet LTP and LTD 

were altered which correlated with a decreased performance in the Morris water maze [140]. 

Here, Migaud et al., suggested that postsynaptic kinases and phosphatases downstream from 

NMDA receptors was modified in PSD95 mutants.  

Research has also identified that PSD95 is required for Arc (activity-regulated 

cytoskeleton-associated protein) assembly into postsynaptic complexes and activity-dependent 

recruitment to excitatory synapses [141]. PSD95 knockout mice exhibit reduced Arc expression 

in the hippocampus [141]. Arc activation is required for synaptic plasticity and Arc 

dysregulation is associated with cognitive dysfunction [142].  

Taken together, modulation of AMPA and NMDA receptors, alteration of kinases and 

phosphatases downstream of receptor activation, and loss of PSD95-Arc complexes may 

underlie cognitive dysfunction as a result of PSD95 loss. Regardless of the mechanism, research 

overwhelmingly suggests that a loss of PSD95 is associated with a loss of cognitive function 

[116, 118, 140, 143, 144]. 



30 
 

1.3.4 Synaptic integrity and neurodegeneration 

A loss of synaptic integrity is a well-defined characteristic underlying cognitive 

dysfunction in neuropsychiatric diseases, neurodegeneration, and animal models of 

neuroinflammation [145, 146]. In Alzheimer’s disease, synapse loss is a major correlate of 

cognitive dysfunction [147]. In Parkinson’s disease, evidence indicates that the initial damage to 

dopaminergic neurons occurs at the synapse and contributes to cognitive dysfunction [148]. 

Decreased synaptophysin expression was identified in patients with schizophrenia [149]. Lastly, 

chemotherapy treatment in mice led to the decreased expression of synaptophysin and PSD95 

that correlated with cognitive dysfunction [128]. 

Recently, the role of microglia in the loss of synaptic integrity during neurodegeneration 

has been explored. In aging and disease, evidence suggests the physiological role of microglia-

mediated synapse removal becomes dysregulated leading to aberrant synapse elimination (see 

1.4.2). Microglia may also regulate synapse function indirectly through the release of soluble 

factors including BDNF [150]. Microglia activation has also been shown to enhance NMDA 

receptor activity in neurons via IFNγ binding and downstream signaling molecules [151]. As a 

result of increased NMDA receptor activity, increased glutamatergic signaling and Ca2+ influx 

may stimulate the release of the chemokine CCL21 from neurons to further potentiate microglia 

activation [152]. One study showed that a NMDA receptor antagonist reduced 

lipopolysaccharide (LPS)-induced microglia activation and restored Arc expression in the cornu 

ammonis 3 (CA3) region of the hippocampus that correlated with restored performance in the 

Morris water maze [153]. Lastly, a loss of microglia homeostasis and perturbed neuro-glial 

support of synapses is associated with a synapse loss [154].  
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In view of the associations between the loss of synaptic integrity, neurodegeneration, and 

cognitive dysfunction, as well as the associations between microglia activity and synaptic 

integrity, this dissertation aims to elucidate potential neuro-glial mechanisms underlying 

cognitive function as a result of doxorubicin treatment.  

1.4 Microglia  

Microglia are the primary innate immune cells in the CNS and provide a variety of 

important functions related to overall brain maintenance. In this section, I will first describe the 

origin of microglia and the role of microglia in the physiological brain. Secondly, I will discuss 

the role of microglia in mediating neuroinflammation and brain repair. Thirdly, I will discuss 

the phenotype of activated microglia including its function, morphology, gene expression, and 

pathological consequences, as well as recently identified alternative microglia phenotypes. 

Finally, I will discuss the role of microglia in CICD. 

1.4.1 History of microglia research and developmental overview 

Microglia are the primary innate immune cells in the CNS and comprise 10-15% of all 

cells in the brain. Once thought to be strictly regulators of the immune response, microglia are 

now recognized as multifunctional cells that interact with many cell types in the brain including 

astrocytes, oligodendrocytes, and neurons. Glia cells were first characterized by German 

pathologist Rudolf Virchow in 1856 to describe non-neuronal cells in the CNS such as astrocytes, 

oligodendrocytes, microglia, and more. It wasn’t until 1919 that Pío del Río Hortega visually 

defined microglia as a distinct cell type. In the next 100 years and continuing today, the role of 

glial cells in development, immune surveillance, synaptic pruning, aging, and much more, was 

defined. 
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In rodent neonatal development, microglia originate from primitive macrophages, or 

erythromyeloid precursors, in the yolk sac and colonize the mesenchyme surrounding the neural 

tube using blood circulation around embryonic day 8 [155, 156]. At this stage, early microglia aid 

in axon guidance and phagocytize various products in the brain such as dying and dead cells, 

axons, and synaptic elements. Microglia rapidly proliferate in the CNS from embryonic day 8.5 

to postnatal day 14, during which microglia promote cell genesis, myelination, and synaptic 

patterning to establish the neuronal architecture of the CNS [156]. At postnatal day 14, microglia 

numbers peak while regulation of synaptic patterning and promotion of myelination continues 

[157]. From P14 to P28, microglia either die back or migrate until a stable population is reached. 

In healthy brains, this microglia population will remain stable in most brain regions into adulthood 

while continuing to regulate synaptic formations, mediating the immune response in the brain, 

and maintaining homeostasis [157, 158]. Contributing to microglia’s remarkable ability to surveil 

damage and respond to injury, microglia and newly-identified microglia subtypes adhere to strict 

spatial patterning and persist for long periods in the healthy adult brain: Studies reveal microglia 

have a proliferation rate of 1.3% in physiological conditions, have a median lifetime of well over 

15 months in mice, and can be more than 20 years old in the human brain [159–163]. This long 

lifespan suggests that microglia-mediated CNS pathologies, such as pathological microglia 

phenotypes that influence neuroinflammation and oxidative stress, can persist long-term. 

1.4.2 Microglia in the physiological brain 

Microglia have important functions in the CNS under physiological conditions. In healthy, 

intact brains, microglia play a role in the maintenance of synaptic structure via synaptic pruning 

wherein microglia engulf and remove superfluous synapses via phagocytosis [164]. Although 

synaptic pruning was once believed to be complete following sexual maturity, recent studies have 
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shown that synaptic pruning by microglia is necessary during synaptic plasticity to facilitate 

learning and memory in adults [164, 165]. In support of this, Appel et al. elegantly demonstrated 

that pathological phagocytosis of the postsynaptic protein PSD95 by microglia is associated with 

a decrease in dendritic spine density in the hippocampus of adult mice, and that this decrease was 

associated with impaired long-term memory [166]. As a result, dysregulated microglial 

homeostasis can have a negative impact on learning, memory, and general cognitive function. In 

addition to synaptic pruning, it has been suggested that microglia influence neuronal function and 

vice-versa: Microglia have been shown to respond to physiological neuronal activity to increase 

glutamate clearance in the synapse, suggesting a neuroprotective role against glutamate 

excitotoxicity [167]. Homeostatic microglia also participate in phagocytosis of cellular debris and 

apoptotic cells [168]. The non-inflammatory phagocytosis of apoptotic cells by microglia is called 

efferocytosis and is essential in maintaining CNS homeostasis [169]. Finally, microglia have been 

shown to promote neuronal survival and neurogenesis, and provide trophic support to neurons 

[164, 170]. The secretion of BDNF by microglia helps to facilitate learning-dependent synaptic 

plasticity [171]. In summary, microglia are necessary for maintaining neuronal function and CNS 

homeostasis under physiological conditions. 

1.4.3 Physiological microglia activation 

The most well-known function of microglia is their regulation of neuroinflammation and 

promotion of repair following a variety of CNS pathologies including infection, injury, and 

disease. In the healthy adult brain, homeostatic microglia exist in a seemingly quiescent state but 

are constantly surveilling their surroundings with the highly motile extension and retraction of 

processes [168, 172]. Microglia surveillance is achieved by direct interaction with astrocytes, 

oligodendrocytes, and neurons as well as indirect diffusible factors including cytokines, 
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lipopolysaccharides, glutamate, extracellular vesicles, and changes in extracellular potassium and 

calcium [172, 173]. In response to injury and immunological stimuli, these diffusible factors can 

also indirectly influence signaling pathways including the phosphatidylinositol 3-kinase 

(PI3K)/Akt/ nuclear factor-κB (NF-κB) pathway to alter cell surface receptor expression and 

induce microglia activation (see 1.4.8) [172, 174]. Microglia activation is also initiated directly 

through binding of pathogen-associated molecular patterns (PAMPs) and/or damage-associated 

molecular patterns (DAMPs), and TLR4, among others [175, 176]. 

At the initiation of microglia activation, microglia undergo a graded transformation 

involving changes in gene expression, morphology, motility and migration, metabolism, 

secretome, phagocytosis, and cytokine release [177]. Contrary to earlier research that stereotyped 

this transformation as binary, where M1 microglia were described as activated and mediating the 

pro-inflammatory response while M2 microglia were believed to be responsible for resolution and 

repair, it is now known that microglia activation occurs as a continuum and is not “all-or-nothing” 

[177]. Indeed, microglia activation is variable and highly dependent on the type and severity of 

CNS pathology presented. In response to tissue damage, for example, microglia converge toward 

the site of CNS damage within minutes and transform to a reactive, ameboid form to phagocytose 

apoptotic neuronal cell bodies and cellular debris in addition to secreting growth factors and 

cytokines to modulate the extracellular matrix and ultimately promote repair [157]. In a less 

extreme example, even environmental and social stress has the capacity to mediate microglia 

activation: Restraint-induced stress was shown to alter microglia morphology and increase 

expression of the microglia activation marker CD11b in the hippocampus of Wistar rats, while 

mice exposed to repeated social defeat during adolescence presented a decrease in the number of 

microglia and an increase in microglia reactivity into adulthood [178–180]. Following repair and 
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clearance of the microglia activation signal, anti-inflammatory cytokines such as IL-10 suppress 

pro-inflammatory receptor expression to facilitate the resolution of microglia activation [181]. 

1.4.4 Microglia activation, inflammation, and ROS 

Although microglia activation is highly variable and pathology-dependent, activated 

microglia are typically associated with the increased production and secretion of pro-

inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-18 [172]. Importantly, these 

diffusible factors have the potential to influence the activation state of neighboring microglia and 

astrocytes to produce a cascade of pro-inflammatory signaling that results in a pro-inflammatory 

microenvironment [182]. In addition to an increase in cytokine release, microglia activation is 

closely associated with an increase in ROS production due to increased energetic requirements 

during migration, proliferation, and phagocytosis [183]. High levels are ROS are detrimental and 

can damage proteins, cell membranes, and DNA of nearby neurons. Excessive ROS production 

can also stimulate the production of pro-inflammatory cytokines by neighboring astrocytes and 

microglia to create a positive feedback system that further influences microglia activation and 

neuronal health [183]. Finally, a pro-inflammatory microenvironment and excessive ROS 

production have been shown to damage BBB integrity, increase BBB permeability, and allow for 

the entry of larger molecules, soluble factors, and peripheral immune cells [184].  

1.4.5 Pathological microglia activation 

The evolutionary purpose of microglia activation is response to injury and promotion of 

repair. Indeed, acute microglia activation facilitates the clearance of debris, modulation of the 

extracellular matrix, and secretion of growth factors and cytokines which can promote 

remyelination, neuronal regeneration, and functional recovery after CNS injury [157, 185]. For 

example, in a cuprizone model of demyelination, microglia are involved in the phagocytosis of 
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myelin debris and apoptotic cells. Following phagocytosis, microglia help to activate and recruit 

oligodendrocyte precursor cells (OPCs) to the site of demyelination and offer trophic support 

[186]. In models of traumatic brain injury, microglia rapidly migrate toward DAMPs at the site 

of injury and clear cellular debris [176]. Following functional recovery, though, activated 

microglia have been shown to have detrimental effects on the CNS. Persistent microglia activation 

causes chronic low-grade inflammation that is associated with glial scarring, dysregulation of 

synapse formation, increased ROS production, decreased immune surveillance, suppression of 

neurogenesis, and cognitive impairment [185, 187, 188]. Persistent microglia activation is 

common in neurodegeneration and is indicative of a loss of homeostatic microglia function. In a 

mouse model of Alzheimer’s disease, depletion of pathological microglia using CSF1R inhibition 

successfully reduced disease pathology and improved cognition[189]. In humans, persistent 

microglia activation was shown to predict the cognitive decline in the progression of Alzheimer’s 

disease [190]. In multiple sclerosis patients, destruction of myelin in the CNS and subsequent 

cognitive impairment is associated with activated microglia and is considered a primary cause of 

disease pathogenesis [191]. Recent evidence also suggests that a variant of TREM2 expressed by 

microglia is associated with the progression of Parkinson’s disease: Here, microglia activation 

correlates with Parkinson’s disease progression, inducing dopaminergic neuron toxicity and death 

[192]. In the aging brain, primed microglia exist in an elevated inflammatory profile, exhibit a 

decreased surveillance capacity, exaggerated immune response, and a loss of homeostatic 

functions [193]. Indeed, aged mice injected with LPS exhibited an exacerbated inflammatory 

response and increase in sickness behavior compared to young mice [188]. Taken together, 

persistent microglia activation and concurrent loss of homeostatic functions can lead to 

detrimental outcomes regarding CNS homeostasis and cognitive function.  
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1.4.6 Alternative microglia phenotypes 

In addition to microglia activation, alternative microglia phenotypes have recently been 

identified in aging and neurodegenerative disorders that are characterized by heightened immune 

reactivity, altered phagocytosis and persistent activation [194–197]. These microglia phenotypes 

have been called “primed”, “dystrophic” or “disease-associated microglia” (DAMs) depending 

on disease models [196, 198, 199]. In general, these alternative microglia phenotypes are 

associated with neuroinflammation and neurodegeneration and reflect a loss of neuroprotective 

and reparative functions. They are characterized by an increased release of inflammatory 

cytokines, production of ROS, as well as alterations in phagocytosis, processes motility, and 

migration [200]. The prevalence of these alternative microglia phenotypes in aging is closely 

associated with microglia’s long life-span in the brain [195]. A consequence of these alternative 

microglia phenotypes is behavioral pathologies including stress, depression, and cognitive deficits 

[193]. This is, in part, related to the negative effects that long-term neuroinflammation has on 

neurogenesis, neural plasticity, LTP, and dendritic restructuring. These processes are required for 

the formation of memories and, therefore, cognitive function. Indeed, increased pro-inflammatory 

cytokines are associated with decreased neurotrophins, including BDNF, which negatively affects 

LTP [193]. Studies have shown that decreases in BDNF expression were observed in the cornu 

ammonis 1 (CA1) and CA3 in the hippocampus of aged rats [201]. Therefore, these alternative 

microglia phenotypes that are common in aging and neurodegenerative disorders may play a role 

in the initiation and sustaining of an exaggerated inflammatory profile in the CNS that leads to 

cognitive dysfunction.  

The DAM phenotype was recently identified in a transgenic mouse model of Alzheimer’s 

disease aimed to evaluate microglia phenotype in the progression of the disease [199]. They 
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identified two stages of DAM activation that are characterized by distinct phenotypes. Stage 1 

DAMs occur early microglia phenotype in the progression of Alzheimer’s and are characterized 

by the TREM2-independent upregulation of Apoe expression without an increase in genes related 

to phagocytosis. The transition to stage 2 DAMs is TREM2-dependent and is characterized by an 

increase in phagocytosis genes thought to restrict the development of Alzheimer’s disease. 

1.4.7 Microglia morphology 

Microglia activation is closely associated with changes in microglia morphology. During 

normal physiological conditions, microglia display a hyper-ramified morphology with thin, 

highly branched processes that extend symmetrically from the cell soma [168]. In situations of 

CNS pathology, microglia become de-ramified in a stepwise manner toward an activated state 

characterized by shortened, bushy processes [202]. The result is a cellular morphology that exists 

on a continuum between a cell that can be described as less ramified with a swollen cell body and 

shorter, thick processes and a cell that can be described as rounded and ameboid with short or 

nonexistent processes [202]. In addition to canonical microglia activation, alternative microglia 

phenotypes observed in neurodegeneration and aging (primed microglia, senescent/dystrophic 

microglia and DAMs) are characterized by morphological features that overlap with those of 

canonical microglia activation [195]. Morphologically, these alternative microglia phenotypes are 

generally characterized by a deramified morphology with shorter projections and less branching, 

in addition to cellular hypertrophy, neuritic beading, and fragmented processes with a loss of fine 

branches [203]. Due to the morphological similarities between alternative microglia phenotypes 

and canonically activated microglia, distinguishing the two states based on morphology alone is 

difficult. Some researchers have even suggested that early studies on Alzheimer’s disease have 

misidentified dystrophic microglia as active microglia prior to the phenotype being recognized 
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[198]. Indeed, much early research on microglia phenotypes used cellular morphology exclusively 

to identify microglia activation state [204]. Since morphology-based classifications may occlude 

the identification of more nuanced alternative microglia phenotypes, additional genetic or 

molecular signatures are required to accurately characterize and define the microglia phenotype.  

1.4.8 Cell surface receptors in microglia activation  

In addition to morphological alterations, canonical microglia activation and alternative 

microglia phenotypes are characterized by changes in cell surface receptor expression. As a result, 

surface receptor expression is commonly used in conjunction with morphology to define 

microglia activation state [202]. Microglia homeostasis is sustained by the expression of 

inhibitory receptors such as C-X3-C motif chemokine receptor 1 (CX3CR1), cluster of 

differentiation 200 receptor (CD200R), and signal regulatory protein α (SIRPα), in addition to 

purinergic receptors like purinergic receptor P2Y12 (P2RY12) [205]. The removal of these 

immune-suppressive signals induces microglia activation a loss of microglia homeostasis. 

Concurrently, an upregulation of surface receptors associated with the innate immune response 

such as major histocompatibility complex (MHC) and costimulatory molecules such as the cluster 

of differentiation molecule 11b (CD11b) promote microglia activation [183, 187]. 

Microglia are the only cells in the intact brain that express CD11b, however; following 

injury neutrophils and monocytes that also express CD11b may infiltrate the brain [206]. In order 

to differentiate infiltrating monocytes and microglia in applications like flow cytometry, cells 

require at least dual-staining such as CD11b (CD11b+ indicates infiltrating neutrophils and 

monocytes and resident microglia) and the common leukocyte antigen CD45 (CD45low identifies 

microglia while CD45high identifies invading monocytes) [207]. In contrast to MHC class II and 

CD11b activation markers, whose expression are dynamically regulated by microglia activation 
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and not expressed by quiescent microglia, ionized calcium-binding adapter molecule 1 (Iba1) is a 

microglia marker constitutively expressed on both quiescent and activated microglia and is well-

suited for morphological characterization using immunohistochemical staining [202, 204]. 

Although it is not strictly an “activation marker”, Iba1 is involved in actin crosslinking which 

facilitates membrane ruffling in microglia. Since membrane ruffling is required for the 

morphological alterations following activation, alterations in Iba1 expression are associated with 

changes in microglia phenotype [208]. Although less described, senescent/dystrophic microglia 

also present a unique cell-surface expression profile characterized by changes in cell surface 

receptors, cell adhesions molecules, and genes involved in cytoskeletal dynamics [209]. In 

humans, aged microglia express decreased cell surface proteins including IL6R, IFNGR1, and 

TREML4 and increased CD163 and CXCR4 [209]. The most common method of identifying 

senescent microglia is an increase in p16INK4a, p53, and senescence-associated β-galactosidase 

(SA-β-gal) expression associated with the senescence-associated secretory (SASP) phenotype 

characterized by increased secretion of interleukins, extracellular matrix components, 

chemokines, and metalloproteinases [210]. Regarding DAMs, the expression of TREM2 

distinguishes the stage 1 and stage 2 phenotypes by absence and presence of TREM2, respectively 

[199]. Taken together, microglia cell surface markers help to identify the microglia phenotype in 

various CNS pathologies. However, the expression of cell surface markers may overlap between 

phenotypes and limit the characterization of nuanced alternative microglia phenotypes. The 

analysis of the microglia transcriptome, in addition to morphological and surface receptor 

expression, allows for accurate characterization of microglia phenotype.  
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1.4.9 Transcriptome of homeostatic and activated microglia 

RNA sequencing allows for analysis of disease-specific microglia gene expression. In tau 

transgenic mouse models of Alzheimer’s disease, for example, genes involving the innate 

inflammatory pathways including NF-κB signaling, lysosome, phagosome, oxidative 

phosphorylation, and cytokine-cytokine receptor interactions were among the earliest upregulated 

[211]. Canonically activated microglia are characterized by a loss of microglia homeostasis genes 

Tmem119, Mef2c, P2ry13, P2ry12, Siglech and increase in classical pro-inflammatory genes 

Ccl2, Tnf, Irf1, Gpr84, and Nfkbia [212]. Analysis of microglia gene expression from a mouse 

demyelination model using lysolecithin injection revealed injury-responsive microglia with broad 

downregulation of the homeostatic microglia markers P2ry12 and Cx3cr1. Importantly, 

variability in gene expression within these microglia indicated the presence of subpopulations 

defined by differential expression of proliferation markers, interferon response genes, and Ccl4. 

The significance of these findings is that microglia activation is a tailored, disease-specific 

response that is defined by both generalized and selective changes in gene expression [213]. 

Senescent/dystrophic microglia are characterized by increased expression of genes typically 

associated with senescence such as Cdkn2a (encodes p16INK4a) and genes related to NF-κB 

signaling [210]. DAMs are characterized by the loss of microglia homeostasis genes such as 

Cx3cr1, P2ry12, Tgfbr1, Slco2b1, and Tmem119 and the upregulation of neurodegeneration-

associated genes such as Apoe, Ttr, Ctsb, Cox6c, Clec7a, Itgax and Csf1 [199]. Stage 2 DAMs 

are distinguished from stage 1 DAMs by the upregulation of Trem2 and genes related to 

phagocytosis including Lpl and Cst7. The DAM transcriptome is distinct from the transcriptome 

of classically activated microglia: After LPS-induced activation, only 12.1% of upregulated genes 

and 21.2% of downregulated genes were shared between DAMs and the LPS-activated microglia 
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[212]. Finally, primed microglia are characterized by similar genetic alterations including a loss 

of microglia homeostasis genes like Slco2b1, Tgfbr1, P2ry12, Cx3cr1, Lrba, and Tmem119 and 

an upregulation of neurodegeneration-associated genes including Apoe, Axl, Clec7a, Itgax, 

Lgals3, Gas7, and Cox6c.  

Evaluation of the microglia transcriptome is possible by single-cell RNA sequencing 

(scRNA-seq) as well as single-nuclear RNA sequencing (snRNA seq). scRNA-seq requires living 

microglia to be isolated from brain tissue that can subsequently be sequenced. snRNA-seq 

requires brain tissue to be immediately snap frozen, nuclei to be isolated, and subsequently 

sequenced. Both methods have their benefits and drawbacks. With scRNA-seq, the benefit is 

measurement of both cytoplasmic and nuclear transcripts, whereas snRNA-seq measures mainly 

nuclear transcripts and possibly transcripts attached to the rough endoplasmic reticulum [214]. 

However, the isolation of microglia requires extended incubations and processing that may induce 

isolation-based transcriptional artifacts. Microglia isolation often utilizes CD11b fluorescent tags 

or microbeads which has previously been shown to induce transcriptional artifacts and induce bias 

[215]. Furthermore, research suggests that snRNA-seq is sufficient to discriminate closely-related 

cell types [214]. Therefore, snRNA sequencing may be employed to avoid isolation-based 

transcriptional artifacts and identify nuanced microglia phenotypes. 

Taken together, RNA sequencing of microglia allows for a deeper understanding of 

microglia phenotype in pathology compared to broad activation as defined by morphology and 

cell surface markers. To date, the changes in transcriptome that occur in microglia following 

chemotherapy treatment are not well known.  
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1.4.10 Microglia in chemotherapy-induced cognitive dysfunction 

The role that microglia play in the initiation and sustaining of chemotherapy-induced 

cognitive dysfunction (CICD) has been partly elucidated in recent years. Although the mechanism 

of action and resulting dysfunction is chemotherapy-specific, many chemotherapy treatments 

cause robust increases in both peripheral and central inflammation and production of ROS. These 

cytokines and ROS may compromise the integrity of the BBB, further increasing peripheral 

penetration of cytokines and chemotherapeutic drugs [216]. This, in turn, causes microglia 

activation which can then activate astrocytes, deplete OPCs, impair myelination, and lead to 

cognitive impairment. Indeed, in a methotrexate (MTX) model of CICD, a decrease in myelin 

sheath thickness and OPC proliferation was suggested to be mediated by microglia activation in 

the white matter of MTX-treated mice: Depletion of the activated microglia using the drug 

PLX5622 protected against MTX-induced demyelination and inhibition of OPC proliferation 

[217]. In rodents, doxorubicin treatment was shown to be correlated with an increase in pro-

inflammatory cytokines TNF-α, IL-1β and IL-6 in the hippocampus and prefrontal cortex 

immediately following treatment, suggesting microglia activation [78]. Importantly, the release 

of pro-inflammatory cytokines in the hippocampus has been proposed to mediate cognitive 

dysfunction [82, 218]. Indeed, repeated exposure to chemotherapeutic agents, which is standard 

in most cancer treatment schedules, can cause glial dysregulation and chronic neuroinflammation. 

As a consequence, altered synaptic pruning by dysregulated microglia can lead to disruptions in 

synaptic structure and function [219]. In support of this, previous research that found altered 

synaptic organization in the hippocampus of doxorubicin-treated mice [220]. Taken together, 

proposed microglia-mediated mechanisms underlying CICD are chemotherapy-specific but may 
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involve chronic neuroinflammation and production of ROS, impaired myelination, and synaptic 

dysregulation.  

The specific microglia phenotype that underlies CICD as a result of doxorubicin treatment 

is not well known. In particular, the microglia phenotype that permits sustained, long-term CICD 

remains to be defined. Previously, Allen et al. showed that doxorubicin treatment caused 

microglia activation in the hippocampus of male mice 4 weeks after the final dose using CD68+ 

staining and a NanoString mouse immunology panel [101]. Although this methodology identifies 

broadly activated microglia, research suggests that the expression of CD68 varies between 

different stages of microglia activation and, like Iba1, is also expressed by resting microglia [221]. 

With the recent discovery of alternative microglia phenotypes such as primed, dystrophic and 

DAMs, further analysis of microglia following chemotherapy treatment is required. Although 

these microglia phenotypes are typically associated with aging and neurodegeneration, the latest 

research regarding CICD frequently draws comparison between CICD and aging and 

neurodegenerative brains [216]. Convergent mechanisms between CICD and neurodegeneration 

include increased inflammation, blood-brain barrier breakdown, reduced spines and dendrites, 

reduced neurogenesis and gliogenesis, altered white matter, and altered neurotransmitter balance 

[216]. Therefore, is possible that commonalities in microglia phenotype between 

aging/neurodegeneration and CICD exist.  

1.5 HDAC6 

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family in that it is 

localized in the cytoplasm and does not interact with histones directly. Recently, its role in 

neurodegeneration has been explored. In this section, I provide an overview of physiological 

HDAC6 structure and function. Next, I discuss the role of HDAC6 in cancer and 
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neurodegeneration. Finally, I discuss current research investigating HDAC6 inhibition as a 

pharmaceutical intervention for enhanced tumor control and neurodegenerative disorders. 

1.5.1 Overview of HDAC6 

Classically, histone deacetylases (HDACs) are enzymes that remove the acetyl group from 

histone proteins on DNA, which in turn allows histones to wrap the DNA more tightly. As a 

consequence, transcription factors are less accessible and therefore transcription of tightly 

wrapped, condensed DNA segments is prevented [222]. This process is known as epigenetic 

modification and serves as a vital process that enables regulation of gene expression and 

phenotypic changes. Typically, levels of histone acetylation are regulated by histone acetyl 

transferases (HATs), which acetylate histone proteins, and HDACs. To date, 11 zinc-dependent 

HDAC isozymes have been identified and divided into four groups: class I, class IIa (nuclear), 

Class IIb (cytoplasmic) and Class IV. Class I contains HDACs 1-3 and 8; class IIa contains 

HDACs 4, 5, 7, and 9; class IIb contains HDACs 6 and 10; and class IV contains HDAC 11 [223]. 

Each HDAC varies in features ranging from subcellular localization to types of enzymatic 

activities. Of these, HDAC6 is a unique HDAC enzyme: HDAC6 is primarily localized in the 

cytoplasm of differentiated cells and does not interact directly with histones. 
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Figure 1.2. HDAC6 functional domains.  

 

In addition to being primarily localized in the cytoplasm, HDAC6 is unique in that it is 

the only isoenzyme within the HDAC family that contains two tandem catalytic domains (DD1 

and DD2, Figure 1.2) [224]. The deacetylase activity of HDAC6 is dependent on substrate 

interaction with both domains [225]. In addition, class II isoenzymes have both a nuclear 

localization signal (NLS, which is present on HDACs located primarily in the nucleus) and a 

nuclear export signal (NES, which is present on HDACs located primarily in the cytoplasm) [226]. 

The Ser-Glu-containing tetrapeptide (SE14) allows for anchorage in the cytoplasm in humans. 

Lastly, the ZnF-UBP domain facilitates high affinity ubiquitin binding.  

The activity of HDAC6 is regulated by many post-translational modifications including 

kinases such as glycogen synthase kinase 3β (GSK3β), protein kinase C (PKC), extracellular 

signal-regulated kinase (ERK), epidermal growth factor receptor (EGFR), and others that lead to 

increased deacetylase activity [227]. Additional post-translational modifications include 
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ubiquitination and sumoylation which do not lead to degradation of HDAC6 like a typical 

ubiquitinated protein, or by acetylation which increases its deacetylase activity [227]. Although 

HDAC6 resides primarily in the cytoplasm of differentiated cells, in undifferentiated cells such 

as embryonic stem cells, neural stem cells, and in some cancer cells, HDAC6 resides in the 

nucleus. During differentiation, HDAC6 relocalizes into the cytoplasm due to the NES sequence 

[228]. Once in the cytoplasm, the NLS site is acetylated which inhibits the interaction of HDAC6 

with a protein, importin-α, ensuring that HDAC6 remains in the cytoplasm. Within the HDAC6 

promotor are binding sites for NF-κB, and the methylation status of its promotor determines the 

expression of Hdac6. Hypomethylation of the HDAC6 promotor, which typically correlates with 

a relaxed chromatin state and more transcriptionally active genes, causes overexpression of 

Hdac6.  

1.5.2 Physiological roles of HDAC6 

HDAC6 plays important roles in regulating cellular polarity and shape, migration, cell 

division, directional movement of cells, protein degradation, aggresome formation, intracellular 

transport, and angiogenesis [224]. Due to its cytoplasmic localization, HDAC6 interacts with the 

cellular cytoskeleton to control cytoskeletal dynamics which consists mainly of microtubules 

(including α- and β-tubulin polymers), filamentous actins (F- and G-actin), and intermediate 

filaments (including fibrillar proteins). One of the most well-known substrates of HDAC6 is α-

tubulin. Deacetylation of α-tubulin causes depolymerized microtubules. This modifies 

microtubule stability, causing an increase in microtubule dynamics that allows for a more flexible 

cytoskeleton, more cellular motility, and cell division [229]. In addition to cell division, microtube 

stability is important for guiding misfolded proteins to the microtubule-organizing center 

(MTOC) for degradation that is proteasome-independent. HDAC6 interacts with 



48 
 

polyubiquitinated proteins to facilitate retrograde transport toward the MTOC independently of 

its deacetylase activity. Once at the MTOC, the deacetylation of cortactin by HDAC6 then 

facilitates the formation of aggresomes around the misfolded protein [227]. The aggresomes then 

fuse with lysosomes and autophagosomes to degrade the misfolded proteins. In addition to 

proteasome-independent degradation, HDAC6 regulates autophagic degradation: HDAC6 

deacetylates autophagy-related proteins and deacetylates LC3B-II, a key regulator of autophagy. 

HDAC6 is also involved in proteasome-dependent protein degradation [224]. Besides α-tubulin, 

another well-known substrate of HDAC6 is the chaperone heat shock protein 90α (HSP90). 

HSP90 and HDAC6 interact to allow proteins to fold properly and aid in the degradation of 

misfolded proteins in a proteasome-dependent manner [224]. Acetylation of HSP90 causes a loss 

of its chaperone activity and subsequent degradation of its client proteins. In addition to protein 

degradation, HSP90 is involved in the endocytosis and exocytosis of vesicles. This is 

accomplished through regulation of microtubule stability. One example is receptor 

internalization: When the EGFR receptor is bound to its ligand, it interacts with HDAC6 to 

inactive it by phosphorylation, leading to microtubule hyperacetylation and subsequent receptor 

internalization. HDAC6 is also involved in the remodeling of actin and formation of membrane 

ruffling to facilitate the formation and internalization of macropinosomes [227]. Macropinosomes 

are formed during micropinocytosis, a clathrin-independent endocytic mechanism, and eventually 

fuse with endosomes for degradation. Another biological process that HDAC6 is involved in is 

the regulation of apoptosis. The acetylation status of Ku70 is regulated by HDAC6 and controls 

its interaction with the proapoptotic protein BAX (Bcl-2-associated X protein) [227]. Acetylation 

of Ku70 causes decreased interaction with BAX, leading to apoptosis. Conversely, deacetylation 

of Ku70 by HDAC6 causes BAX to become sequestered and therefore inhibits apoptosis. 
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Importantly, HDAC6 is involved in the PI3K/AKT pathway, as well as the mitogen-activated 

protein kinase (MAPK)/ERK signaling pathway [227]. Inhibition of HDAC6 promotes AKT and 

ERK dephosphorylation which is associated with reduced cell proliferation and cancer cell death. 

One mechanism this is accomplished through is via HSP90 hyperacetylation, which leads to 

decreased phosphorylation of AKT and ERK levels. HDAC6 is also involved in antioxidant 

activity. Peroxiredoxin 1 and 2, antioxidant reducing enzymes, are substrates of HDAC6. HDAC6 

inhibition increases the acetylation of peroxiredoxin, causing enhanced activity and subsequent 

decrease in oxidative stress. Although this may be beneficial in certain circumstances, 

peroxiredoxin 1 and 2 were found to be increased in many cancers and various neurodegenerative 

disorders and may confer resistance to chemotherapy [230]. In conclusion, HDAC6 is important 

for cell division, migration and angiogenesis, autophagic degradation, proteasome-dependent 

degradation, anti-apoptotic activity, PI3K/AKT – MAPK/ERK signaling pathways, and 

transcriptional repression in undifferentiated cells.  

1.5.3 HDAC6 in cancer 

Dysregulated DNA methylation and histone modifications are common in cancer. As a 

result, HDAC inhibitors are currently being evaluated for enhanced tumor control in combination 

with chemotherapy. However, the role of HDAC6 in cancer is still being defined. For example, 

overexpression of HDAC6 has been associated with increased mobility, invasiveness of tumor 

cells, and increased tumorigenesis [224]. This is due to the role that HDAC6 plays in regulating 

microtubule stability via regulation of α-tubulin acetylation. Microtubules are also required for 

cell cycle division and therefore tumorigenesis. Indeed, increased HDAC6 expression has been 

correlated with increased tumor aggressiveness and advanced tumor stage in ovarian cancer, oral 

squamous cell carcinoma, and acute myeloid leukemia, among others [224]. At the same time, 



50 
 

higher expression levels of HDAC6 have been correlated with better survival prognosis in chronic 

lymphocytic leukemia, cutaneous T-cell lymphomas, and non-small-cell lung cancer. In this case, 

it has been hypothesized that loss of HDAC6 activity leads to decreased autophagy and decreased 

cell death [231]. Importantly, the expression of HDAC6 has been shown to be regulated by 

estrogen receptor α in breast cancer. In one study, overexpression of HDAC6 was correlated with 

small tumor size (less than 2 cm), better prognosis, and increased survival [224]. Conversely, 

HDAC6 overexpression was correlated with increased tumor invasion in MDA-MB-231 breast 

cancer cells. Therefore, more research into the role of HDAC6 expression in specific types and 

sub-types of cancer is required. Nevertheless, HDAC6 inhibitors in combination with 

chemotherapy are currently being evaluated in clinical trials NCT01997840, NCT02787369, and 

NCT01583283 for enhanced tumor control.  

1.5.4 HDAC6 in neurodegenerative diseases 

Protein aggregates, dysregulated autophagy, neuroimmune dysfunction, dysregulated 

protein and mitochondrial transport, and neuronal oxidative stress are common underlying 

features in many neurodegenerative diseases. In healthy neurons, HDAC6 is involved in 

regulating the acetylation state of non-histone proteins that are linked to these features. In 

pathological conditions, dysregulated acetylation of non-histone proteins downstream of HDAC6 

activity can lead to altered autophagy, protein transport and degradation, and synaptic function to 

cause neurodegeneration and cognitive dysfunction [232].  

For example, HDAC6’s ubiquitin binding domain facilitates misfolded protein binding, 

the formation of aggresomes, autophagy, and induction of heat shock proteins. In 

neurodegenerative disorders like Alzheimer’s disease and Parkinson’s disease, an accumulation 

of protein aggregates inhibits the ubiquitin-proteasome system and further protein degradation. 
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As a result, there is an increase in highly ubiquitinated misfolded proteins. In these 

neurodegenerative disorders, HDAC6 expression may worsen disease pathology. 

Mechanistically, this occurs because HDAC6 deacetylates HSP90, and deacetylated HSP90 

increases its chaperone activity and the formation of additional proteins [233]. When HDAC6 is 

inhibited, HSP90 is hyperacetylated which inhibits its chaperone activity and leads to protein 

degradation.  

In addition, increased oxidative stress causes damages to lipids, proteins, and DNA that 

can lead to mitochondrial dysfunction, excitotoxicity, and cell death. In neurons, HDAC6 is 

involved in deacetylating peroxiredoxin 1 and 2 enzymes that reduce peroxides. Increased 

acetylation of peroxiredoxin is associated with an increase in its activity, leading to a decrease in 

oxidative stress. Therefore, HDAC6 inhibition was shown to decrease oxidative stress in neurons 

[234]. 

Dysfunctional protein and mitochondrial transport are also common motifs in 

neurodegenerative diseases. HDAC6 has been shown to play a role in this mitochondrial transport: 

Miro1 is an HDAC6 substrate that links mitochondria with motor proteins to facilitate axon 

transport. Acetylation of its lysine 105 residue increases mitochondrial axonal transport. It was 

found that HDAC6 inhibition with Tubastatin A increased acetylation of lysine 105 and 

subsequently increased mitochondrial transport in hippocampal neurons [235]. In a model of 

cisplatin-induced cognitive dysfunction, HDAC6 inhibition was found to increase mitochondrial 

transport and subsequently restore cognitive function and reverse mechanical allodynia [28, 236]. 

In addition, HDAC6 interacts with the microtubule protein α-tubulin to regulates its acetylation, 

and the microtubule-associated protein tau to regulate its phosphorylation [28]. In Alzheimer’s 

disease, hyperphosphorylated tau reduces its binding to microtubules, which causes disrupted 
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microtubule assembly and decreased axonal transport. Inhibition of HDAC6 increases α-tubulin 

acetylation, allowing for stabilization of microtubules and increased axonal transport [28]. In 

addition, tau hyperphosphorylation leads to β-amyloid (Aβ) and neurofibrillary tangles. In fact, 

one study found that the expression of HDAC6 protein in the hippocampus of Alzheimer’s 

patients was increased by 91% [234]. Finally, HDAC6 inhibition improved learning, memory, 

and proper acetylation of α-tubulin in a mouse model of Alzheimer’s disease [237]. 

HDAC6 has also been suggested to impact neurotransmission, memory regulation, and 

cognition at the level of synapses. In fruit flies, HDAC6 deacetylates Bruchpilot which enhances 

release of neurotransmitters. Mammalian equivalents of Bruchpilot, including CAST (cytomatrix 

at the active zone-associated structural protein)/ELK proteins, regulate short-term plasticity in the 

hippocampus. It is possible that altered acetylation levels of these synaptic proteins would 

similarly alter synaptic transmission in mammals, as was observed in flies [232]. In addition to 

neurotransmitter release, HDAC6 likely influences cognition/memory formation through 

regulation of cytoskeletal proteins and inflammatory microenvironments. For example, HDAC6 

interacts with β-catenin, and β-catenin binds to PDZ (PSD-95/Discs Large/ZO-1) domains largely 

known for their scaffolding functions. Inhibition of HDAC6 has been shown to increase 

acetylation of β-catenin and its subsequent association with the PDZ domain to facilitate 

signaling, scaffolding functions, and synaptogenesis [238]. In addition, acetylation homeostasis 

is thought to be an important regulator of immune cell activation, including microglia. Indeed, 

HDAC6 inhibition was proven to be effective in decreasing innate and adaptive immune 

responses in a model of systemic lupus erythematosus, and neuroprotective in experimental 

models of multiple sclerosis [239, 240]. Also, studies have noted that HDAC6 activity is required 

for LPS-induced macrophage activation, and that HDAC6 inhibition prevented microglia 
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activation and dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease [241, 

242]. Taken together, the role HDAC6 plays in neurotransmitter release, protein and 

mitochondrial transport, protein degradation, the modification of synaptic cytoskeletal elements, 

and immune cell activation help to explain the role HDAC6 plays in neurotransmission and 

cognition.  

1.5.5 HDAC6 inhibition 

HDAC6 inhibitors have been shown to be beneficial in animal models of cancer and 

neurodegenerative disorders. HDAC6 inhibitors are largely within the chemical class of 

hydroxymates, although benzamides and other compounds have been shown to inhibit HDAC6 

[227]. Well-known HDAC6 inhibitors include tubastatin A, tubacin, and ricolinostat. Initially, 

HDAC6 inhibitors were solely tested on cancer cell lines where they induced α-tubulin 

acetylation, antiproliferative activity, and promoted the death of cancer cells. In vivo, HDAC6 

inhibitions shows anti-tumor activity in various cancer models including breast cancer [224]. 

Ricolinostat (ACY-1215), an HDAC6 inhibitor, is currently being tested in multiple clinical trials 

to evaluate its enhanced tumor control in combination with chemotherapy (NCT01997840, 

NCT02787369, and NCT01583283). In addition to cancer, HDAC6 inhibitors have shown 

promise in pre-clinical models of Alzheimer’s, multiple sclerosis, and rheumatoid arthritis [237, 

239, 243]. In Alzheimer’s models, HDAC6 inhibition decreased tau phosphorylation and 

improved cognition [237, 244]. In vitro, HDAC6 inhibition blocked the centrosomal recruitment 

of parkin, as well as the formation of aggresomes-like bodies that interfere with autophagy [245, 

246]. In addition, HDAC6 inhibition compensated for a transport deficit by mediating α-tubulin 

acetylation and offering neuroprotection in primary cortical neurons from a Huntington’s disease 

mouse model [247]. HDAC6 inhibition has also offered improvements in mitochondrial 
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movement and neuroprotection from oxidative stress in neurons [230, 235]. In a model of multiple 

sclerosis, HDAC6 inhibition improved cognitive function [239]. In mouse models of Parkinson’s, 

HDAC6 inhibition attenuated microglia activation and protected dopaminergic neurons [241]. In 

addition to neurodegenerative disorders, HDAC6 inhibition was shown to improve cognitive 

function in an anesthetic-induced model of cognitive dysfunction. Here, tubastatin A reversed 

decreases in synaptophysin and PSD95 expression [248]. Finally, it was recently demonstrated 

that ACY-1083, a brain-barrier permeable HDAC6 inhibitor, successfully reversed cognitive 

dysfunction in a cisplatin-induced model of CICD by reversing deficits in synaptosomal 

mitochondrial bioenergetics [28]. Considering the varying mechanisms of specific 

chemotherapeutic agents, and therefore the varying mechanisms underlying chemotherapy-

induced side effects such as cognitive dysfunction, the possibility of HDAC6 inhibition to 

alleviate side effects of chemotherapy-specific models should be evaluated. One such group of 

chemotherapeutic agents are anthracyclines, including doxorubicin.  
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Chapter 2: Materials and Methods 

Reproduced with permission from McAlpin, B., Mahalingam, R., Sing, A.K., Dharmaraj, S., 

Chrisikos, T.T., Boukelmoune, N., Kavelaars, A., and Heijnen, C.J. (2021) HDAC6 inhibition 

reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia 

homeostasis and synaptic integrity. Theranostics 2022; 12(2):603-619. doi:10.7150/thno.67410. 

2.1 Mice 

Female C57BL/6 J mice (aged 12 weeks at the start of the experiment) were used 

exclusively due to the low occurrence of breast cancer in males (less than 1%) [5]. Mice were 

obtained from Jackson Laboratories (Bar Harbor, ME) and housed in The University of Texas 

MD Anderson Cancer Center animal facility on a reversed 12 h light/dark cycle, with free access 

to food and water. Animals were randomly assigned to treatment groups. All procedures were 

consistent with the National Institute of Health Guidelines for the Care and Use of Laboratory 

Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) of 

M.D. Anderson Cancer Center. Analyses were performed by investigators blinded to treatment. 

2.2 Orthotopic Mammary Tumor Model 

MMTV-PyMT breast cancer cells were generously provided by Dr. Stephanie Watowich. 

MMTV-PyMT cells are a murine breast cancer cell line derived from the genetic MMTV-

Polyoma Middle T (PyMT) mammary tumor mouse model on the C57BL/6 background, as 

previously described [249]. Briefly, MMTV-PyMT cells were cultured in Dulbecco’s modified 

eagle medium (DMEM) (Thermo Fisher Scientific) containing 10% fetal bovine serum and 1% 

penicillin-streptomycin. Cells were washed three times with PBS and resuspended in endotoxin-

free PBS prior to injection into mice. Ten to twelve-week old female C57BL/6 mice received a 

unilateral injection of 2.5 × 105 MMTV-PyMT cells in the 4th mammary fat pad. Doxorubicin 
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hydrochloride (5 mg/kg/week, Pfizer, New York, NY) or PBS was administered intraperitoneally 

beginning 4 weeks after injection with MMTV-PyMT cells. Doxorubicin treatment occurred 

weekly for 4 weeks, for a total of 20 mg/kg. Tumor length and width were measured biweekly 

with electronic calipers. Mice were euthanized when tumors reached 15 mm in any direction or 

when ulceration >2 mm occurred. 

2.3 Drug Administration 

Mice were treated with doxorubicin hydrochloride (5 mg/kg/week, Pfizer, New York, NY) 

or PBS intraperitoneally for 4 weeks, followed by 1 week of rest. Mice were then treated with the 

blood-brain barrier permeable HDAC6 inhibitor ACY-1083 (10 mg/kg/day, Regenacy 

Pharmaceuticals, Waltham, MA) or vehicle intraperitoneally daily for 2 weeks. ACY-1083 was 

dissolved in 20% 2-hydroxypropyl-B-cyclodextrin (Sigma-Aldrich, St. Louis, MO) + 0.5% 

hydroxypropyl methylcellulose (Spectrum Chemical, Gardena, CA) in milliQ water.  

2.4 Behavioral Testing 

Cognitive function in female mice (n = 8-16 mice/group) was evaluated using the puzzle 

box test (PBT) and novel object/place recognition tests (NOPRT) [29, 250]. The tests were 

performed starting 4 weeks after the final dose of ACY-1083 in order to allow for rest, habituation 

and to evaluate long-term cognitive function. Behavioral data obtained is used with permission 

from Dr. Anand K Singh, Ph.D. who performed the behavioral experiments.  

The PBT was performed as previously described with slight modifications [29]. The testing 

area consisted of a white box divided into two compartments by a black barrier: a brightly lit start 

zone (58 cm × 28 cm) and a smaller, dark goal box (15 cm × 28 cm) was connected by a 4 cm-

wide tunnel. The test consisted of 11 trials at 3 levels of difficulty over the course of 4 consecutive 

days. In the first easy level of difficulty (training, days 1-2 and trials 1-4) mice were introduced 
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to the brightly lit start box with a connecting tunnel to the dark goal box. In the intermediate level 

of difficulty (training, days 2-3 and trials 5-7), the tunnel was obstructed with bedding that the 

mice must burrow through to reach the goal box. In the difficult trials (testing, days 3-4 and trials 

8-11), the tunnel was blocked by a cardboard plug that the mice must manipulate to complete the 

task. Each trial began when the mouse was placed in the start box, and the duration of time it took 

for the mouse to reach the goal box was recorded with a maximum of 4 minutes during the testing 

phase. This task utilizes both spatial and short-term working memory regarding the position of 

the tunnel and recognition of the plug, as well as complex problem-solving in order to remove the 

plug using their teeth and front paws. 

The NOPRT evaluates spatial working memory and was performed as previously described 

[250]. A testing arena (46.99 cm × 25.4 cm) was set up with two identical objects placed on the 

same side of the arena. In the training phase, mice were placed in the testing arena for 5 minutes 

and then returned to their home cage. Thirty minutes later, mice were transferred back to the arena 

that now contains one familiar object in the same location, and one novel object placed on the 

opposite end of the arena for the testing phase. Investigative behavior was defined as nose point 

within 1 cm of the object. The time (T) of investigative behavior toward either object during the 

5 min testing phase was evaluated using EthoVision XT 10.1 video tracking software (Noldus 

Information Technology Inc., Leesburg, VA). Discrimination index was determined as 

(TNovel − TFamiliar)/(TNovel + TFamiliar). 

2.5 Immunofluorescence 

Mice were euthanized 6 weeks after the last dose of ACY-1083 by CO2 euthanasia and 

perfused intracardially with ice-cold PBS. The skull was removed to allow access to the brain. 

Brains were removed and transferred to 4% paraformaldehyde. Brains were post-fixed in 4% 
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paraformaldehyde for 24 h, cryoprotected in sucrose, and frozen in optimal cutting temperature 

compound (Sakura Finetek, Torrance, CA). Coronal brain sections (8 or 20 μm) were blocked 

with blocking buffer (10% normal goat serum, 2% bovine serum albumin and 0.1% saponin in 

PBS), followed by incubation with rabbit anti-synaptophysin (1:1000, MilliporeSigma (AB9272), 

Burlington, MA, n = 7-9 mice/group), rabbit anti-PSD95 (1:1000; Abcam (ab18258) Cambridge, 

UK, n = 9-14 mice/group), rabbit anti-GFAP (K39) (1:1000; OriGene (AP32987SU-N), 

Rockville, MD, n = 4 mice/group) or rabbit anti-Iba1 (1:1000; Wako (019-19741), Richmond, 

VA, n = 5-10 mice/group for 20 μm sections and n = 4 mice/group for 8 μm sections) diluted in 

antibody buffer (2% normal goat serum, 2% bovine serum albumin and 0.1% saponin in PBS) at 

4 °C overnight. Slides were then washed three times with PBS, followed by incubation with 

Alexa-488 goat anti-rabbit (1:500; Invitrogen (A-21206), Carlsbad, CA) or Alexa-647 goat anti-

rabbit (1:500; Invitrogen (A-21245)) at room temperature for 2 h. For negative control sections, 

primary antibody was omitted. After antibody staining, slides were washed three times with PBS, 

followed by incubation with DAPI (1:5000; Sigma-Aldrich) for 5 min. Slides were then washed 

three times with PBS, and sealed with FluorSave Reagent (MilliporeSigma). Regions of interest 

(ROIs) in the hippocampal CA1 and CA3 regions were imaged using a 40x objective with Nikon 

A1R Confocal Microscope (Nikon Instruments Inc., Melville, NY, USA). The mean fluorescence 

intensity in each ROI was quantified using Nikon NIS-Elements Advanced Research (Nikon 

Instruments Inc.).  

2.6 Synaptosome Isolation and Mitochondrial Bioenergetics Analysis 

Synaptosomes were isolated as previously described [28]. Briefly, one hemisphere of the 

brain (n = 9 mice/group) was homogenized (10% w/v) into 0.32 M sucrose solution in HEPES 

buffer using a glass Dounce homogenizer. The lysate was centrifuged at 1000 ×g for 10 min at 4 
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°C. The supernatant was mixed with equal volume of 1.3 M sucrose in HEPES buffer and 

centrifuged at 20,000 ×g for 30 min at 4°C. The synaptosomal pellet was then resuspended in XF 

media (Agilent Technologies, Santa Clara, CA) supplemented with 5.5 mM glucose, 0.5 mM 

sodium pyruvate, and 1 mM glutamine. Oxygen consumption rate (OCR) was measured with an 

XF24 Flux Analyzer (Agilent Technologies). Oligomycin (6 μM), carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP, 6 μM), and rotenone/antimycin A (2 μM each) 

(Sigma-Aldrich) were injected sequentially during the assay. An assay cycle of 2 min mix, 2 min 

wait, and 2 min measure was repeated three times for baseline rates and after each port injection. 

Basal respiration, ATP-linked respiration, maximal and spare respiratory capacity were 

determined as previously described [28]. 

2.7 Electron Microscopy 

For transmission electron microscopy, synaptosomes were fixed in 2% glutaraldehyde + 2% 

paraformaldehyde in PBS for over 24 h. Samples were then processed as previously described 

[18]. The samples were polymerized in a 60 °C oven for approximately 3 days. Ultrathin sections 

were cut in a Leica Ultracut microtome (Leica Microsystems, Wetzlar, Germany), stained with 

uranyl acetate and lead citrate in a Leica EM Stainer (Leica Microsystems), and examined in a 

JEM 1010 transmission electron microscope (JEOL USA, Inc., Peabody, MA) at an accelerating 

voltage of 80 kV. Digital images were obtained using AMT Imaging System (Advanced 

Microscopy Techniques Corp, Danvers, MA). In total, 26–34 mitochondria were quantified from 

each group (4 mice/group, with 5 images/mouse). Atypical mitochondria were identified by 2-

fold increases in diameter and/or excessive vacuolization (more than 50% translucent). The 

percentage of atypical mitochondria was calculated for each group.  
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2.8  Black Gold II Staining 

Black gold staining was performed as previous described with slight modifications [251]. 

Mice were euthanized 6 weeks after the last dose of ACY-1083 by CO2 euthanasia and perfused 

intracardially with ice-cold PBS. The skull was removed to allow access to the brain. Brains were 

removed and transferred to 4% paraformaldehyde. Brains were post-fixed in 4% 

paraformaldehyde for 24 h, cryoprotected in sucrose, and cut at 25 μm in the coronal plane on a 

sliding microtome. For each animal, 4 sections were used for Black Gold II (Millipore, #AG105) 

staining according to manufacturer’s instructions. Briefly, 25 μm sections were mounted onto 

glass slides and dried at room temperature overnight. The following day, the slides were 

rehydrated in ddH2O before immersion in Black Gold II solution at 60 °C for 15 min. After 

washing in ddH2O, slides were incubated in pre-warmed 1% sodium thiosulfate solution at 60 °C 

for 3 min. Slides were then rinsed with ddH2O and dehydrated through a series of ethanol and 

xylene and sealed with Permount (Thermo Fisher Scientific). Bright field images were taken using 

the EVOS® FL Auto microscope and percent area was quantified using ImageJ. 

2.9 Microglia Modeling 

Hippocampal microglia were visualized by means of immunohistochemical staining of 20 

μm-thick coronal brain sections with rabbit anti-Iba1 (1:1000; Wako (019-19741)) as described 

above. Z-stack images of the hippocampus were acquired with the Nikon A1R Confocal 

Microscope (Nikon Instruments Inc.) at 1 μm slice intervals at 40x objective. Images were 

transformed into 3D models using the image analysis software Imaris 9.0 using the filament tracer 

function (Bitplane, Concord, MA). Briefly, filament starting points and seed point thresholds were 

defined by soma diameter size and distal filament diameter, respectively. Only microglia whose 

entire soma and projections were within the field of view were selected. Microglia associated with 
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the granular layer of the hippocampus were omitted. After selecting somas, the signal threshold 

for the detection of filaments was adjusted based on filament diameter size and the 3D rendering 

was performed. Thresholds for starting points, seed points and signal were not altered between 

images once defined. After 3D modeling, various parameters were measured: total microglia 

projection length, full branch level, and Sholl analysis. Total microglia projection length is 

defined as the sum of the length of each projection from the soma of a microglia. The full branch 

level is a numerical value that begins at the beginning of a projection at the soma with a value of 

1. At each branching point, the dendrite segment with the smaller diameter sequentially increases 

branch level while the dendrite with a larger diameter maintains the same branch level. Finally, 

Sholl analysis is a valuable tool to visualize and quantify cellular morphology in a 3D realm. In 

Sholl analysis, the number of filament intersections per concentric spherical shells are quantified 

beginning at the soma and distanced at a radius of 1 μm apart. The area under the curve was 

computed with GraphPad Prism 8 (GraphPad, San Diego, CA). 

2.10 Single-Nucleus RNA-seq Analysis 

Nuclei isolation and single-nucleus RNA sequencing were performed by Singulomics 

Corporation (Singulomics.com). In summary, bilateral hippocampi from 4 mice/group was flash-

frozen and combined. Tissue was then homogenized and lysed with Triton X-100 in RNase-free 

water for nuclei isolation. The isolated nuclei were purified, centrifuged, resuspended in PBS with 

RNase Inhibitor, and diluted to 700 nuclei/µl for standardized 10x capture and library preparation 

protocol using 10x Genomics Chromium Next GEM 3’ Single Cell Reagent kits v3.1 (10x 

Genomics, Pleasanton, CA). The libraries were sequenced with Illumina NovaSeq 6000 (Illumina, 

San Diego, CA). 
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Preprocessing and quality control: The raw sequencing files were processed with 

CellRanger 6.0 (10x Genomics). The sequencing was mapped to the mouse genome (mm10) with 

the option include-introns and generated gene count matrices. The downstream analysis was 

performed with the R package Seurat 4.0 [252]. For all the samples, we filtered out the nuclei 

with <200 genes and >5% mitochondrial genes. The final filtered matrix for 3 samples contained 

26823 nuclei and 18961 genes. 

Cell type clustering and dimensionality reduction: Each sample was processed separately 

and then integrated to identify the cell types. The filtered matrix was log-normalized and identified 

the top 2000 variable genes for each sample using the FindVariableFeatures function. The 

integration anchors were identified through FindIntegrationAnchors function with the parameter 

dims = 1:20. To integrate all the samples, the IntegrateData function was applied with parameter 

dims = 1:20. The integrated data was scaled, and clusters were identified with a resolution of 0.4. 

The differential expression genes for each cluster were identified using the Wilcoxon rank-sum 

test which is available in the FindAllMarkers function. We assigned the cell type based on the 

expression of the known markers which yielded 11 clusters. Microglia cell type was extracted 

using the Subset function and analyzed for differential gene expression of PBS vs. doxorubicin 

and doxorubicin vs. doxorubicin + ACY-1083 comparisons. The pathway enrichment analysis 

was performed using the Ingenuity Pathway Analysis tool (IPA; Qiagen Inc.). Data is used with 

permission from Dr. Rajasekaran Mahalingam, Ph.D. who performed the preprocessing, quality 

control, cell type clustering, pathway enrichment analysis, and dimensionality reduction. 
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2.11 Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 8 (GraphPad). Error bars indicate 

SEM and statistical significance was assessed by either unpaired t-test or two-way ANOVA with 

Tukey’s post-hoc analysis. 
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Chapter 3: Results  

Reproduced with permission from McAlpin, B., Mahalingam, R., Sing, A.K., Dharmaraj, S., 

Chrisikos, T.T., Boukelmoune, N., Kavelaars, A., and Heijnen, C.J. (2021) HDAC6 inhibition 

reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia 

homeostasis and synaptic integrity. Theranostics 2022; 12(2):603-619. doi:10.7150/thno.67410. 

3.1 Doxorubicin induces cognitive dysfunction in a therapeutic dosing model that is 

reversed by HDAC6 inhibition  

To assess the effects of doxorubicin on cognitive function, doxorubicin hydrochloride (5 

mg/kg) was administered intraperitoneally weekly for 4 weeks to female mice (cumulative dose 

20 mg/kg). This cumulative dose was shown to effectively reduce tumor growth in a MMTV-

PyMT breast cancer mouse model (Figure 3.1F). Following the final dose of doxorubicin, mice 

were given 1 week of rest. Then, to test the reversal potential of HDAC6 inhibition on cognitive 

dysfunction, the HDAC6 inhibitor ACY-1083 (10mg/kg) was administered intraperitoneally daily 

for a total of 14 days (cumulative dose 140 mg/kg; Figure 3.1A). This dose was shown to be 

effective in reversing cognitive dysfunction in a cisplatin-associated model of CICD and did not 

affect the body weight of mice (Figure 3.1G) [28]. 

Behavioral testing to evaluate cognitive function began 4 weeks after the last dose of 

ACY-1083 to allow for rest, habituation and to evaluate the long-term effects of doxorubicin 

treatment. Mice were first tested using the puzzle box test, a problem-solving task designed to 

evaluate executive function and spatial memory [29]. In brief, mice were introduced to a brightly 

lit start box with a connecting tunnel to a dark goal box. Based on light/dark motivation, the time 

taken to enter the dark goal box was recorded. After 3 days of training with both an unobstructed 

tunnel (days 1-2, trials 1-4) and a tunnel obstructed with bedding (days 2-3, trials 5-7), mice were 
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tested during the difficult trials (day 3-4, trials 8-11) in which the tunnel was blocked with a 

cardboard plug that the mice must manipulate to complete the task. Detailed information can be 

found in the materials and methods section.  

During all 4 testing trials (trials 8-11), doxorubicin-treated mice required significantly 

more time to escape compared to control mice (Figure 3.1B). Treatment with ACY-1083 

completely restored the deficits in spatial memory and executive function observed in 

doxorubicin-treated mice (Figure 3.1B). Summation of hard trial averages allows for a clearer 

representation of doxorubicin-induced deficits in spatial memory and executive function, as well 

as reversal by treatment with ACY-1083 (Figure 3.1C). 

Next, mice were tested using the novel object/place recognition test which assesses spatial 

working memory in mice based on their innate preference for novelty [250]. Control mice showed 

a clear preference for the novel object in a novel location, whereas doxorubicin-treated mice did 

not show a preference for novelty. (Figure 3.1D). ACY-1083 treatment restored the preference 

for novelty in doxorubicin-treated mice, indicating a restoration of spatial and working memory 

(Figure 3.1D). Total interaction time spent with the both novel and familiar objects was 

unchanged between groups (Figure 3.1E). These behavioral results indicate that doxorubicin 

treatment impaired executive function, spatial memory and working memory in mice long-term. 

These impairments were completely reversed by the HDAC6 inhibitor ACY-1083.  
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Figure 3.1. HDAC6 inhibition with ACY-1083 reverses doxorubicin-induced deficits in 

executive functioning, working and spatial memory. (A) Female mice were intraperitoneally 

treated with doxorubicin (5mg/kg) or PBS, followed by 14 daily administrations of ACY-1083 

(10mg/kg) or vehicle. Cognitive function was tested 4 weeks after the final dose of ACY-1083. 

(B) Performance in the puzzle box test with 3 levels of complexity: An open tunnel (easy trials 1–

4), a bedding-covered tunnel (intermediate trials 5–7), and a cardboard-plugged tunnel (difficult 

trials 8–11). Time taken to enter the goal box is recorded. (C) The average time taken to enter the 

goal box during the cardboard-plugged trials (difficult trials 8-11). (D) Performance in the 

NOPRT. The time mice spent interacting with each object was tracked. The discrimination index 

was calculated as (TNovel – TFamiliar) / (TNovel + TFamiliar). (E) Total interaction time with both novel 

and familiar objects in the novel object place recognition test. (F) Doxorubicin inhibition of tumor 

growth in vivo in a PyMT breast cancer model. On day 0, 2.5 x 105 PyMTcells were injected in 

the 4th mammary fat pad. Doxorubicin treatment began at day 28. (G) Percentage of baseline body 

weight was recorded. Behavioral results are expressed as mean ± SEM; n = 8-16 mice/group; 

Two-way ANOVA with Tukey’s post hoc analysis *p ≤ 0.05; **p ≤ 0.01; **** p ≤ 0.0001; 

Behavioral data obtained is used with permission from Dr. Anand K Singh, Ph.D. who performed 

the behavioral experiments. Tumor size results are expressed as mean ±SEM; n = 4 mice/group; 

Unpaired t test **p ≤ 0.01; **** p ≤ 0.0001. Body weight results are expressed as means ±SEM; 

n = 5-11 mice/group; Two-way ANOVA with Tukey’s post hoc analysis; ***p ≤ 0.001; **** p ≤ 

0.0001 PBS/VEH vs. DOX/VEH and PBS/VEH vs DOX/ACY-1083; $$p ≤ 0.01; $$$$p ≤ 0.0001 

PBS/ACY-1083 vs. DOX/VEH and PBS/ACY-1083 vs. DOX/ACY-1083.   
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3.2 Doxorubicin treatment does not alter mitochondrial function or morphology in 

synaptosomes in a long-term CICD model  

It has previously been shown that mitochondrial dysfunction in neuronal synaptosomes is 

an underlying mechanism in a cisplatin-induced model of cognitive impairment [253]. In addition, 

doxorubicin treatment has previously been shown to alter mitochondrial dynamics 5 days after 

treatment in rats [76]. Therefore, I evaluated CNS mitochondrial function and morphology in 

neuronal synaptosomes isolated from doxorubicin-treated mice. Using the Seahorse XF24 

extracellular flux analyzer, I measured the oxygen consumption rate (OCR) to calculate basal, 

spare and maximum respiratory capacity of mitochondria. Surprisingly, basal, spare and 

maximum OCR was unaffected by doxorubicin treatment, indicating that long-term doxorubicin-

associated CICD is not sustained by impaired mitochondrial function in neuronal synaptosomes 

(Figure 3.2A-C). Furthermore, the percentage of atypical mitochondrial morphology, 

characterized by swollen and/or abnormal cristae structure, was not significantly affected by 

doxorubicin treatment (Figure 3.2D-E). 
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Figure 3.2. Doxorubicin treatment does not significantly alter mitochondrial function or 

morphology in neuronal synaptosomes. After completion of cognitive tests, synaptosomes 

were isolated from the brains of mice treated with doxorubicin or PBS. Oxygen consumption 

rates (OCR) were analyzed in isolated synaptosomes using the Seahorse XFe24 Flux Analyzer. 

(A) Basal respiration, (B) spare respiratory capacity, and (C) maximum respiratory capacity 

results are shown. (D) Mitochondrial morphology in synaptosomes was assessed using 

transmission electron microscopy. Arrows indicate mitochondria. (E) Percentage of atypical 
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mitochondria was quantified. OCR results are expressed as mean ± SEM; n = 9 mice/group; 

Unpaired t test. Mitochondrial morphology results are expressed as mean ± SEM; n = 4 mice 

(26-34 mitochondria)/group; Unpaired t test. 
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3.3 Doxorubicin treatment does not alter GFAP+ expression in a long-term CICD model 

A proposed mechanism underlying short-term CICD as a result of doxorubicin treatment 

is an increase in astrocyte reactivity. Recent research identified reactive astrocytes in the 

hippocampus as assessed 5 days after the last dose of doxorubicin [76]. To evaluate whether 

astrocyte reactivity is involved in sustaining long-term CICD, I stained hippocampal sections 

with the astrocyte marker GFAP to quantify changes in GFAP expression and astrocyte 

reactivity. The results indicated no alteration in GFAP expression or astrocyte morphology 

following doxorubicin treatment, suggesting that astrocyte reactivity is not involved in 

sustaining long-term CICD (Figure 3.3). 

 

 

 

 

 

 

 

Figure 3.3. Doxorubicin treatment does not alter GFAP+ expression in a long-term CICD 

model. (A) 8 µm-thick mouse hippocampal sections stained with GFAP to visualize astrocyte 

morphology; scale bars 50 µm. (B) Percentage of GFAP+ staining area was unchanged 

following doxorubicin treatment. Results are expressed as mean ± SEM; n = 4 mice/group; 

Unpaired t test *p ≤ 0.05. 
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3.4 Doxorubicin treatment does not alter myelin coherency in the cingulate cortex in a 

long-term CICD model 

Previous studies have identified the alteration of choline-containing compounds following 

bolus doxorubicin treatment that may suggest decreased membrane synthesis and demyelination 

[88]. The cingulate cortex is a key node in the default mode network and has been implicated in 

cognitive processes, notably executive function [254]. To evaluate whether alterations in 

myelination play a role in long-term CICD, I stained coronal mouse sections of the cingulate 

cortex with Black Gold II, a lipophilic dye with a high affinity for myelin. The results indicated 

that doxorubicin treatment did not alter the intensity of Black Gold II staining in the cingulate 

cortex, suggesting that myelination was unaffected in the long-term CICD model (Figure 3.4). 
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Figure 3.4. Doxorubicin does not significantly affect myelin staining in the cingulate cortex 

of mice. (A) Representative images of Black Gold II staining for myelin in the sensorimotor 

cortex of mice; scale bars = 1 mm; 4x magnification. (B) Mean intensity of Black Gold II 

staining was measured in the sensorimotor cortex. Intensity is expressed as a pixel value from 0-

255 where 0 represents white and 255 represents black. Results are expressed as mean ± SEM; n 

= 4 mice/group; Unpaired t test. 
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3.5 HDAC6 inhibition restores expression of postsynaptic marker PSD95 in 

doxorubicin-treated mice 

Synaptic protein expression is necessary for proper synaptic transmission, synaptic 

plasticity, and learning and memory formation [255]. To evaluate the effects of doxorubicin and 

ACY-1083 on the expression of synaptic proteins, hippocampal sections were stained with the 

presynaptic marker synaptophysin and the postsynaptic marker PSD95. The expression level of 

each marker was quantified in the CA1 and CA3 of the hippocampus.  

In mice treated with doxorubicin, PSD95 expression was significantly decreased in the 

CA3 (Figure 3.5A-C) but not the CA1 (Figure 3.6A-C) of doxorubicin-treated mice compared to 

the control. This suggests that a decrease in postsynaptic integrity may play a role in sustaining 

CICD. Treatment with ACY-1083 restored PSD95 expression in the CA3 region of doxorubicin-

treated mice, indicating the reversal of postsynaptic density loss (Figure 3.5A-C). In contrast, 

there was no significant change in the expression of the presynaptic marker synaptophysin in 

either the CA3 or CA1 (Figure 3.7A-D) of the hippocampus following doxorubicin treatment.  
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Figure 3.5. HDAC6 inhibition with ACY-1083 restores expression of postsynaptic marker 

PSD95 in the CA3 region of the hippocampus in doxorubicin-treated mice. (A) Mouse CA3 

hippocampal region stained with PSD95 for different treatment groups; scale bars 50 µm; 

magnification 40x. (B) Higher magnification ROI reveals PSD95+ synaptic puncta; scale bars 

10 µm. (C) Quantification of the mean fluorescence intensity of PSD95+ puncta. Results are 

expressed as mean ± SEM; n = 9-14 mice/group; Two-way ANOVA with Tukey’s post hoc 

analysis **p ≤ 0.01; *** p ≤ 0.001. 
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Figure 3.6. Doxorubicin treatment did not significantly reduce the postsynaptic marker 

PSD95 in CA1 region of the hippocampus. (A) Mouse CA1 hippocampal region stained with 

PSD95 for different treatment groups; scale bars 50 µm; magnification 40x. (B) Higher 

magnification ROI reveals PSD95+ synaptic puncta; scale bars 10 µm. (C) Quantification of the 

mean fluorescence intensity of PSD95+ puncta. Results are expressed as mean ± SEM; n = 9-14 

mice/group; Two-way ANOVA with Tukey’s post hoc analysis. 
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Figure 3.7. Doxorubicin does not significantly affect the expression of presynaptic marker 

synaptophysin. (A) Mouse CA3 hippocampal region stained with synaptophysin for different 

treatment groups; scale bars 50 µm; magnification 40x. (B) Quantification of the mean 

fluorescence intensity of CA3 synaptophysin staining. (C) Mouse CA1 hippocampal region 

stained with synaptophysin for different treatment groups; scale bars 50 µm; magnification 40x. 

(D) Quantification of the mean fluorescence intensity of CA1 synaptophysin staining. Results 

are expressed as mean ± SEM; n = 7-9 mice/group; Two-way ANOVA with Tukey’s post hoc 

analysis. 
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3.6 HDAC6 inhibition reverses doxorubicin-induced reductions in microglial 

ramification in the hippocampus 

In mouse models, large systemic bolus doses of doxorubicin have been shown to induce 

pro-inflammatory cytokine expression in the CNS, but no study has evaluated therapeutic dosing 

of doxorubicin, neuroinflammation and its association with long-term CICD [65]. Considering 

the important role microglia play in mediating neuroinflammation and synaptic pruning, I 

subsequently stained 8 μm-thick hippocampal sections with Iba1 to quantify Iba1 expression and 

visualize alterations in microglia [93]. Iba1 expression and the length of microglia projections 

was significantly decreased in the CA1 of the hippocampus following doxorubicin treatment 

(Figure 3.8A-D). In order to more accurately define the microglia phenotype in our long-term 

CICD model, I quantified microglia morphology using 3D cellular modelling and tested whether 

HDAC6 inhibition with ACY-1083 had the potential to reverse these alterations in conjunction 

with cognitive dysfunction. Using 20 μm-thick coronal sections, hippocampal microglia were 

visualized by immunohistochemical staining with an antibody to Iba1. Then, sections were then 

imaged at 1 μm slice intervals and combined to form a focused, Z-stack image. These images 

were transformed into 3D models using the image analysis software Imaris (Figure 3.9), and 

various parameters were measured: total microglia projection length, full branch level, and Sholl 

analysis as described in the methods. 

In the CA3 of the hippocampus, the total microglial projection length and the full branch 

level were significantly decreased in doxorubicin-treated mice indicating a change in morphology 

that may be indicative of microglia activation. Treatment with ACY-1083 significantly reversed 

the shortened projection length and decrease in full branch level (Figure 3.10A-B). Sholl analysis 

revealed a robust decrease in the number of intersections in doxorubicin-treated mice compared 
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to controls, indicating reduced microglia ramification (Figure 3.10D). Overall differences 

between groups were determined using the area under the Sholl curve for each animal, as 

previously described [188]. In the CA3 of doxorubicin-treated animals, the area under the Sholl 

curve was significantly smaller compared to controls (Figure 3.10E). Treatment with ACY-1083 

significantly increased the area under the Sholl curve, indicating a reversal of altered microglia 

morphology (Figure 3.10E). Although reduced microglial ramification was more severe in the 

CA3 of the hippocampus, similar alterations in microglia morphology were observed in the CA1 

region following doxorubicin treatment and reversed with ACY-1083 (Figure 3.11).  
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Figure 3.8. Doxorubicin treatment reduces Iba1 expression and alters microglia 

morphology in the hippocampus. (A) 8 µm-thick mouse hippocampal sections stained with 

Iba1 to visualize microglia morphology; scale bars 50 µm; magnification 40x. (B) Percentage of 

Iba1+ staining area was decreased following doxorubicin treatment. (C) Higher magnification 

ROI reveals an altered microglia morphology and (D) significant decrease in microglia 

projection length; scale bars 10 µm. Results are expressed as mean ± SEM; n = 4 mice/group; 

Unpaired t test *p ≤ 0.05. 
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Figure 3.9. Microglia modeling workflow using Imaris. (A) 20 µm-thick mouse hippocampal 

sections stained with Iba1 were imaged at 1 μm slice intervals at 40x magnification and 

combined to form a focused, Z-stack image. The isolated Iba1+ GFP channel was 3D modeled 

using Imaris’ filament tracer function. (B) Briefly, filament starting points and seed point 

thresholds were defined by soma diameter size and distal filament diameter, respectively. (C) 

The signal threshold for the detection of filaments was adjusted based on filament diameter size. 

(D) Iba1+ GFP channel overlaid with threshold detection and seed point representations as seen 

in B and C. (E) Iba1+ GFP channel overlaid with 3D filament render. (F) Final 3D rendering of 

Iba1+ microglia, allowing for automated quantification of filament length, branching level and 

Sholl analysis. Scale bars = 10 µm. 

 



83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. HDAC6 inhibition with ACY-1083 reverses doxorubicin-induced reductions in 

microglial ramification in the CA3 region hippocampus. (A) Filament length is defined as 

the sum of the length of each projection from the soma of a microglia. (B) Full branch level is 

the sum of the average branch level of each projection from the soma of a microglia. Branch 

level is a numerical value that begins at the beginning of a projection at the soma with a value of 

1. At each branching point, the filament segment with the smaller diameter sequentially 

increases branch level while the dendrite with a larger diameter maintains the same branch level. 

(C) Schematic illustration visualizing increasing branch levels. The green dot represents the 

soma. (D) Sholl analysis quantifies the number of projection intersections per concentric 
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spherical shell beginning at the soma and distanced at a radius of 1 μm apart. (E) Quantification 

of the area under the Sholl curve from D. Results are expressed as mean ± SEM; n = 5-10 

mice/group; Two-way ANOVA with Tukey’s post hoc analysis *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 

0.001. 
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Figure 3.11. HDAC6 inhibition with ACY-1083 reverses doxorubicin-induced reductions in 

microglial ramification in the CA1 region of hippocampus. (A) Filament length is defined as 

the sum of the length of each projection from the soma of a microglia. (B) Full branch level is the 

sum of the average branch level of each projection from the soma of a microglia. (C) Sholl 

analysis quantifies the number of projection intersections per concentric spherical shell beginning 

at the soma and distanced at a radius of 1 μm apart. (D) Quantification of the area under the Sholl 

curve from D. Results are expressed as mean ± SEM; n = 5-10 mice/group; Two-way ANOVA 

with Tukey’s post hoc analysis *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001. 
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3.7 HDAC6 inhibition reverses doxorubicin-induced transcriptomic alterations in the 

nucleus of hippocampal microglia 

While microglia modeling provides evidence of a robust decrease in microglia ramification, 

it lacks the potential to distinguish between canonical microglia activation and alternative 

microglia activation phenotypes (primed, dystrophic, DAMs) due to the morphological 

similarities between the phenotypes. RNA sequencing allows for an unbiased and in-depth 

analysis of gene expression that helps to identify cellular phenotypes while avoiding marker-based 

classifications that limit the identification of nuanced phenotypes. Therefore, I employed single-

nucleus RNA sequencing of hippocampal tissue 6 weeks after the final dose of ACY-1083 to 

evaluate the transcriptome and clearly define microglia phenotype. After identifying 11 cell 

populations (Figure 3.12A), the microglia population was extracted from the integrated data and 

the differential gene expression of control, doxorubicin-treated and doxorubicin/ACY-1083-

treated mice was calculated. Then, genes that were differentially expressed between doxorubicin-

treated and control mice, named DOX Gene Set (362 genes) were identified. Genes that were 

differentially expressed between doxorubicin-treated and doxorubicin/ACY-1083-treated mice 

were named ACY-1083 Gene Set (3327 genes). After quality control, data from a total of 436 

microglia nuclei was analyzed using Seurat 4.0, resulting in the quantification of 3689 expressed 

genes. Finally, in order to identify genes that may contribute to the altered microglia phenotype 

caused by doxorubicin treatment and subsequent reversal by HDAC6 inhibition, I compared both 

gene sets to identify common genes that were differentially expressed in both the DOX Gene Set 

and ACY-1083 Gene Set. I identified the differential regulation of 135 common genes expressed 

by microglia in both gene sets. Of the 135 common genes, 113 genes altered by doxorubicin 

treatment were reversed following treatment with ACY-1083. Genes upregulated following 
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doxorubicin treatment were associated with neurodegeneration and cellular stress including Apoe, 

Ttr, Cox6c, Col6a1, Crym, and Ntng1, all of which were downregulated following treatment with 

ACY-1083. Conversely, doxorubicin treatment led to the downregulation of genes related to 

microglia homeostasis and synaptic organization including Slco2b1, Tgfbr1, Fermt3, Prickle2, 

Dock3, Msn, Scamp5, Lrp1b, Rhoa, Fut8, Cadm2, and Pdlim5, all of which were upregulated 

following treatment with ACY-1083. Interestingly, canonical microglia homeostasis genes that 

were not affected by doxorubicin treatment but were upregulated by ACY-1083 included Cx3cr1, 

Tmem119, Fcrls, Hexb, Tgfbr2, P2ry12, Foxo3, Sall1 and Gpr34. A subset of these genes is 

visualized in Figure 3.12B. These results indicate that HDAC6 inhibition reverses the altered 

genetic signature in microglia, while also enhancing homeostatic microglia gene expression, in 

the hippocampus of doxorubicin-treated mice in our long-term CICD model. 

In order to define the microglia phenotype in our long-term CICD model, I compared the 

DOX Gene Set and ACY-1083 Gene Set to published microglia transcripts from healthy mice and 

disease models. I found strong similarities between microglia from our long-term CICD model 

and a unique microglia phenotype recently discovered in Alzheimer’s disease transgenic mouse 

brains, termed disease-associated microglia (DAMs) [199]. I compared the DOX Gene Set and 

ACY-1083 Gene Set with genes that were differentially expressed between homeostatic microglia 

and DAMs (Keren-Shaul, et al., 2017, Table S3; 1661 genes with p<0.05) [199]. An overlap of 

59 common genes was identified between DAMs and the DOX Gene Set, of which 38 correlated 

with the expression I observed following doxorubicin treatment (Figure 3.12C-D). This indicates 

that microglia-expressed genes that were upregulated after doxorubicin treatment were also 

upregulated in DAM microglia, and vice versa. Notably, I observed a downregulation of 

microglial homeostasis genes Tgfbr1, Rhob, Slco2b1 and Fermt3. I saw an increase in DAM genes 
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associated with oxidative stress and neurodegeneration including Apoe, Cd63, Cd84, Cd34, 

Cox6c, Ttr, and Ifnar1 but not phagocytic pathway genes. Following HDAC6 inhibition with 

ACY-1083, I identified an overlap of 459 genes common to DAMs and the ACY-1083 Gene Set 

(Figure 3.12E-F). Of these, 337 genes inversely correlated with the expression I observed in our 

long-term CICD model, indicating a reversal of gene expression and restoration of homeostatic 

microglia. Notably, I saw an upregulation of the microglial homeostasis genes that were 

downregulated after doxorubicin treatment: Tgfbr1, Slco2b1 and Fermt3. I also observed an 

increase in microglia homeostasis genes that had not been affected by doxorubicin including 

Cx3cr1, Tmem119, Csf1r, Fcrls, Mef2a, Sall1, Maf, Gpr34, Lrba, Med12l, as well as genes that 

are typically associated with resolution of inflammation, microglia migration or purinergic 

signaling including Ifngr1, Il10ra, Tnfaip8, Il6ra, Pde3b, Mef2c, Ifngr1, Plxna4, Selplg, Filip1l, 

Pdlim5, P2ry12 and Entpd1. I saw robust increases in 8 genes from the PI3K pathway whose 

activation was shown to promote recovery after injury [175]. Interestingly, after HDAC6 

inhibition, I saw a large increase in phagocytic pathway genes including Qk, Siglech, Elmo1, 

Cd33, Itgam, Inpp4b, Abi3, and Nckap1l which may indicate promotion of repair by active 

clearance of debris. In addition, I saw an increase in Mertk, an engulfment receptor required for 

the unique non-inflammatory clearance of apoptotic cells called efferocytosis [169]. Finally, I saw 

an upregulation of 22 ubiquitin system genes that play a role in autophagy and phagosome 

maturation [256]. After ACY-1083 treatment, I observed the downregulation of genes that were 

upregulated following doxorubicin treatment and in DAMs, including neurodegeneration and 

inflammation-associated genes such as Apoe, Csf2ra, Jun, Cox6c, Tlr7, and Ttr. These results 

suggest that doxorubicin treatment induces a DAM-like microglia phenotype in our long-term 
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CICD model, which is restored to a homeostatic microglia phenotype following HDAC6 

inhibition as illustrated in Figure 3.13.  

Importantly, Keren-Shaul, et al. showed that DAM activation follows a two-step process: 

a TREM2-independent state, stage 1 DAMs, that are characterized by a loss of microglia 

homeostasis genes and increase in Apoe expression but no increase in phagocytic pathway genes, 

and a TREM2-dependent transition to stage 2 DAMs in which phagocytic pathway genes are 

upregulated [199]. The lack of Trem2 expression in our model indicate that Apoe upregulation 

occurred independently of TREM2 signaling which, in addition to the lack of phagocytic pathway 

gene expression, suggests our microglial phenotype after doxorubicin treatment strongly overlaps 

with the stage 1 DAM phenotype. 

 The entire gene dataset from this dissertation, including the DOX Gene Set, the ACY-

1083 Gene Set, and the list of genes common between both these gene sets and stage 1 DAMs, 

can be found in the open-source supplementary files from McAlpin et al., 2021 (Theranostics. 

doi:10.7150/thno.67410). 
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Figure 3.12. HDAC6 inhibition with ACY-1083 reverses doxorubicin-induced 

transcriptomic alterations in the nucleus of hippocampal microglia. (A) Uniform Manifold 

Approximation and Projection (UMAP) plot showing 11 cell populations identified from single-

nuclear transcriptomes isolated from the hippocampus. (B) Dot plot depicting selected 

microglia-expressed genes associated with neurodegeneration and microglia homeostasis. Dot 

size encodes percentage of nuclei expressing the gene, while color encodes the average gene 

expression level per nuclei. (C) Venn diagram of genes that were differentially expressed 

between the DOX Gene Set and DAMs. (D) Scatterplot matrix depicting differential expression 

of microglia-expressed genes in the DOX Gene Set and DAMs. Blue dots indicate selected 

downregulated genes while red dots indicate selected upregulated genes. (E) Venn diagram of 

genes that were differentially expressed between the ACY-1083 Gene Set and DAMs. (F) 

Scatterplot matrix depicting differential expression of microglia-expressed genes in the ACY-

1083 Gene Set and DAMs. Blue dots indicate selected downregulated genes while red dots 

indicate selected upregulated genes. Data is used with permission from Dr. Rajasekaran 

Mahalingam, Ph.D. who performed the preprocessing, quality control, cell type clustering, and 

dimensionality reduction. 
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Figure 3.13. Schematic illustrating the loss of microglia homeostasis that underlies long-

term CICD and reversal by HDAC6 inhibition. Doxorubicin treatment induces a 

neurodegenerative microglia phenotype closely resembling stage 1 DAM microglia. This 

microglia phenotype is characterized by decreased microglia ramification, a decrease in 

homeostasis genes, and an increase in neurodegeneration genes that are associated with long-term 

CICD and loss of postsynaptic integrity. Following HDAC6 inhibition, the restored microglia 

ramification, increased homeostasis genes, and decreased neurodegeneration genes were 

associated with restored cognitive function and postsynaptic integrity. Illustration created with 

BioRender.com. 
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Chapter 4: Discussion and Conclusion 

In this dissertation I have provided evidence that a therapeutic dosing schedule of 

doxorubicin induces long-term cognitive dysfunction in female mice. Additionally, I showed 

that long-term CICD is associated with a neurodegenerative microglia phenotype similar to 

stage 1 DAMs in the hippocampus as defined by cellular morphology and nuclear genome. I 

have also provided evidence that long-term CICD and a neurodegenerative microglia phenotype 

are associated with postsynaptic degeneration in the hippocampus as evidenced by a loss in 

PSD95 expression. Finally, I showed that pharmacological inhibition of HDAC6 using the 

blood-brain barrier permeable HDAC6 inhibitor, ACY-1083, successfully reverses long-term 

CICD, restores microglia homeostasis, and restores PSD95 expression. My present findings 

highlight persistent mechanisms that sustain CICD long-term, as well as a candidate 

pharmaceutical intervention that restores cognitive functioning following the cessation of 

chemotherapy treatment.  

4.1 Relationship between microglia phenotype and cognitive function 

The current dissertation adds to the vast amount of literature that draws a close association 

between pathological microglia phenotypes and cognitive dysfunction. Indeed, dysregulated 

microglia phenotypes have been correlated with cognitive dysfunction in a variety of disease 

models including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, traumatic 

brain injury, and stroke [190, 217, 257–260]. While the consequences of dysregulated microglia 

are disease-specific, a loss of microglia homeostasis can cause persistent neuroinflammation, 

increased oxidative stress, dysregulated synapse maintenance, apoptosis, decreased immune 

surveillance, and suppression of neurogenesis, all of which may influence the cognitive state of 

an individual [261]. The results presented in this dissertation support the idea that restoring 
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microglia homeostasis in a disease state likely restores proper functioning of microglia 

including phagocytosis of cellular debris, efferocytosis, synaptic maintenance, and regulation of 

repair. I provide evidence that a restoration of microglia homeostasis was associated with a 

restoration of PSD95 expression in the hippocampus that coincided with restored cognitive 

function long after the cessation of doxorubicin treatment.  

The microglia phenotype identified in this dissertation overlaps with that of stage 1 

DAMs, a microglia phenotype recently identified in a mouse model of Alzheimer’s disease 

[199]. The stage 1 DAM phenotype is defined by a loss of microglia homeostasis genes and 

increase in neurodegeneration-associated genes without alteration of phagocytosis genes. 

Similarly, in the long-term CICD model I identified a loss of homeostasis genes following 

doxorubicin treatment including Slco2b1 and Tgfbr1 which are involved in microglia 

surveillance and the resolution of inflammation, respectively [262, 263]. Slco2b1 expression is 

implicated in the microglial “sensome” that facilitates endogenous ligand recognition and its 

expression is decreased during aging [263]. TGF-β1 has been implicated in maintaining 

neuronal integrity in part by regulation of microglia activation [264]. In addition, altered TGF-β 

signaling has been implicated in the pathogenesis of cognitive disorders [265].  

I also identified an increase in neurodegeneration-associated genes including Apoe and 

Ttr whose upregulation are biomarkers for glial cell dysfunction and oxidative stress, 

respectively [266, 267]. Apoe overexpression is a genetic risk factor for Alzheimer’s disease and 

was shown to mediate microglia activation and neurodegeneration in a tauopathy mouse model 

[268]. Ttr encodes transthyretin, a transport protein whose expression correlates well with ROS 

and is upregulated in microglia from aged mice [266, 269]. Following HDAC6 inhibition, I 

identified the robust restoration of these microglia homeostasis genes and decrease in 
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neurodegeneration genes that suggest a restoration of microglia homeostasis that coincided with 

restored cognitive function.  

Interestingly, canonical microglia homeostasis genes that were not significantly 

downregulated after doxorubicin treatment were upregulated by HDAC6 inhibition including 

Cx3cr1 and P2ry12. CX3CR1 is expressed by microglia and interacts with a ligand expressed 

by neurons, CX3CL1, to inhibit microglia activation [270]. P2RY12 is a purinergic receptor that 

mediates ATP-evoked membrane ruffling to facilitate microglia activation. It is stably expressed 

in resting microglia and decreased upon microglia activation [271]. The fact that some microglia 

homeostasis genes that were not significantly downregulated by doxorubicin treatment were 

also upregulated by HDAC6 inhibition suggests that the induction of the stage 1 DAM 

phenotype by doxorubicin and subsequent restoration of microglia homeostasis by HDAC6 

inhibition may be mechanistically distinct. That is, the beneficial effects of HDAC6 inhibition 

on microglia phenotype may not be dependent on previous doxorubicin treatment and may also 

be beneficial in other models.  

After HDAC6 inhibition, I also observed a robust increase in genes related to 

phagocytosis including Qk and Elmo1, 8 genes from the PI3K pathway whose activation was 

shown to promote recovery after injury, and 22 ubiquitin system genes that play a role in in 

autophagy and phagosome maturation [175, 256]. Importantly, HDAC6 inhibition also 

upregulated Mertk, a receptor critical for the unique non-inflammatory clearance of apoptotic 

cells called efferocytosis [169]. Therefore, the robust increase in phagocytosis genes may 

indicate a promotion of repair by active debris or apoptotic cell clearance that was restricted in 

microglia as a result of doxorubicin treatment. It is important to note that the stage 2 DAM 

phenotype, highly enriched in genes regulated related to phagocytosis, was shown to restrict 
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neurodegeneration in Alzheimer’s disease transgenic mice [199]. In the Alzheimer’s disease 

transgenic mice, transition to stage 2 DAMs was TREM2-dependent. The lack of Trem2 

expression after HDAC6 inhibition in the long-term CICD model indicate that HDAC6 

inhibition did not induce a true stage 2 DAM phenotype. Nevertheless, the upregulation of 

phagocytosis genes after HDAC6 inhibition likely indicates similar neuroprotective functions of 

microglia in the long-term CICD model. 

I also identified the upregulation of Sirpa, a gene recently identified to be a negative 

regulator of synaptic pruning (see 4.4). It is possible that increased Sirpa expression following 

HDAC6 inhibition indicates a restoration of functional synaptic maintenance by microglia 

which would be permissive to the restoration of cognitive function. Distinct mechanisms that 

underlie the phagocytosis of synaptic elements, phagocytosis of debris, and efferocytosis may 

explain how an increase in genes related to phagocytosis correlated with an increase in PSD95 

expression in the hippocampus and the restoration of cognitive function. 

 Taken together, it is likely that decreased microglia homeostasis genes and increased 

neurodegeneration-associated genes reflect a neurodegenerative microglia phenotype whose 

immune surveillance, phagocytic capacity, and synaptic maintenance functions are 

compromised as a result of doxorubicin treatment and contribute to cognitive dysfunction. 

Following HDAC6 inhibition, the robust decrease in neurodegeneration-associated genes and 

increase in genes related to microglia homeostasis and phagocytosis likely reflect the restoration 

of a homeostatic microglia phenotype and function that contribute to the reversal of cognitive 

dysfunction long after the cessation of doxorubicin treatment.  
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4.2 Relationship between PSD95 expression and cognitive function 

PSD95 expression is integral for maintaining cytoskeletal scaffolding at the postsynaptic 

density of excitatory neurons to facilitate the clustering of receptors, ion channels, and 

associated signaling proteins. It is involved in the direct and indirect binding with NMDA 

receptors, glutamate receptors, AMPA receptors, and potassium ion channels to facilitate 

synaptic plasticity and long-term potentiation. The loss of PSD95 was shown to alter NMDA- 

and AMPA-receptor function and impair learning and memory [272]. In addition, altered 

PSD95 expression is common in aging and neurodegenerative diseases [273–276]. The 

importance of PSD95 in learning and memory was validated in a PSD95 knockout mouse model 

which exhibited altered NMDAR and AMPAR expression which correlated with impaired 

performance in the NOPRT and T-maze task [116]. Consistent with prior research, I provide 

evidence here that decreased PSD95 expression is correlated with impaired performance in the 

NOPRT in the long-term CICD model. Therefore, it is possible that decreased hippocampal 

PSD95 expression in the long-term CICD model impairs NMDA- and AMPA-mediated LTP to 

impair synaptic plasticity and induce cognitive dysfunction.  

Considering the close association between the hippocampus and learning and memory, 

postsynaptic integrity in the hippocampus is integral for proper cognitive functioning. The 

current dissertation confirms this by demonstrating that a loss of PSD95 expression is associated 

with decreased performance in hippocampal-dependent behavioral tasks including the PBT and 

NOPRT. In addition, the restoration of PSD95 expression in the hippocampus correlated with 

restored performance in these tasks. These results are in agreement with previous research that 

identified behavioral deficits in the PBT in mice with dysregulated AMPA receptor function and 

hippocampal lesions [29]. The alterations in microglia phenotype and PSD95 expression were 
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consistently more robust in the CA3 region of the hippocampus, whereas PSD95 loss in the 

CA1 region was not statistically significant. The discrepancy between the CA3 and CA1 regions 

is consistent with the functional differences between the two regions. Functionally, research has 

suggested that the CA1 mediates temporal associations while the CA3 is fundamental in the 

consolidation of spatial memory [277, 278]. In support of this, previous research found that loss 

of NMDA receptors in the CA3 region caused decreased performance in the Morris water maze 

task, while the basic cellular properties of CA1 pyramidal cells including firing rate, spike 

width, and place field size were unchanged [279]. In addition, optogenetic inhibition of the CA3 

region, but not the CA1, led to deficits in the NOPRT [280]. The current dissertation supports 

these findings with results that indicate a significant decrease of PSD95 expression in the CA3, 

but not the CA1, was associated with impaired NOPRT performance. Therefore, a loss of 

PSD95 expression in the CA3 region may reflect dysregulated AMPA- and NMDA-receptor 

function that may lead to the learning and memory deficits observed in our long-term CICD 

model.  

4.3 Potential mechanisms underlying the loss of microglia homeostasis by doxorubicin 

treatment and restoration by HDAC6 inhibition  

This dissertation adds to previous research that has identified broadly activated microglia 

4 weeks after completion of doxorubicin treatment as assessed by CD68+ staining intensity and 

a NanoString mouse immunology panel [101]. Unfortunately, marker-based classifications limit 

the identification of nuanced microglia phenotypes. Using advanced imaging techniques and 

unbiased single-nucleus RNA sequencing, I have provided more depth to the understanding of 

the nuanced microglia phenotype that occurs in long-term CICD as a result of doxorubicin 

treatment. This dissertation provides valuable evidence that microglia activation is not a simple 
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phenotypic “switch” that is all-or-nothing, and in fact alternative microglia phenotypes that are 

not suggestive of canonical activation may underlie cognitive dysfunction in other models of 

neurodegeneration. 

Generally, systemic doxorubicin treatment has been associated with neuroinflammation 

and oxidative stress that are indicative of canonical microglia activation (see 1.2.6). This is 

likely due to a variety of mechanisms including endothelial cell dysfunction at the BBB and 

activation of the peripheral immune system which can induce microglia activation in the brain 

[39]. Much of the prior research on CICD, however, evaluates the microglia phenotype shortly 

after the cessation of doxorubicin treatment. While it is likely that canonical microglia 

activation did occur early in the doxorubicin dosing schedule, which was previously shown as 

assessed 5 days after cessation of doxorubicin treatment, the time point selected for evaluation 

of long-term CICD occludes these results [76]. Research has suggested that repeated 

inflammatory insults can induce long-term alterations in microglia phenotype that are common 

in neurodegeneration and aging and are associated with cognitive dysfunction [196]. Repeated 

exposure to systemic inflammatory insults induces a “primed” microglia phenotype that is 

distinct from canonical activation and characterized by a higher baseline of inflammatory 

markers, lower threshold for activation, altered protein synthesis, an exaggerated inflammatory 

response following immune activation, and increased phagocytosis that persist long-term [196, 

281, 282]. In this dissertation, the therapeutic doxorubicin dosing scheduled used to induce 

long-term CICD is 4 doses over the course of 4 weeks, which likely represents 4 distinct 

systemic inflammatory insults in treated mice. Thus, the microglia phenotype identified here 

likely indicates a sustained shift in microglia homeostasis, as a result of repeated doxorubicin 

treatment, that reflects the loss of homeostasis similarly observed in neurodegeneration and 
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aging. However, unlike the primed microglia phenotype, microglia both in the long-term CICD 

model and stage 1 DAMs are not characterized by an increase in genes related to phagocytosis. 

In addition, the overlap between genetic transcripts was higher in DAMs than primed microglia 

(see 4.5). Therefore, the neurodegenerative microglia phenotype identified in long-term CICD is 

phenotypically more similar to stage 1 DAMs than the primed phenotype. 

The exact mechanism underlying the restoration of a homeostatic microglia phenotype 

after treatment with ACY-1083 in mice previously treated with doxorubicin remains to be 

determined. HDAC6 mainly deacetylates cytosolic proteins such as HSP90, peroxiredoxins that 

regulate the response to oxidative stress, and α-tubulin [229, 230, 283]. Changes in α-tubulin 

acetylation can affect multiple cellular processes including phagocytosis, cell morphology and 

migration, and intracellular transport of organelles that could all contribute to the restoration of 

brain function and microglia homeostasis as a result of HDAC6 inhibition [227]. In addition, the 

beneficial effects of HDAC6 inhibition on reversing cisplatin-induced peripheral neuropathy are 

IL-10-dependent (Zhang et al., submitted). IL-10 expression is involved in the resolution of 

inflammation and has been shown to prevent pathological microglia phenotypes [181].  

Although the molecular mechanism underlying HDAC6 inhibition and the restoration of 

microglia homeostasis following doxorubicin treatment is unknown, the nuclear genetic 

transcript of microglia gives us insight into possible signaling pathways that may be involved in 

the process. Previous research showed that HDAC6 inhibition with Tubastatin A significantly 

increased LPS-induced IL-10 production in vivo that was associated with decreased 

inflammation and was dependent on α-tubulin acetylation [284]. HDAC6 inhibition with ACY-

1083 was previously shown to increase α-tubulin acetylation in the brain [28]. Furthermore, α-

tubulin acetylation was shown to be increased by GSK3β inhibition via the Akt-GSK3β 
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signaling pathway [235]. Moreover, GSK3β has been shown to negatively regulate IL-10 

expression by microglia [285]. Finally, IL-10 production is positively regulated by the 

PTEN/PI3K/Akt signaling pathway and several transcription factors including NF-κB [285, 

286]. Thus, HDAC6 inhibition and subsequent α-tubulin acetylation may modulate GSK3β 

signaling and IL-10 production to attenuate pathological microglia phenotypes and restore 

cognitive function. 

In support of this potential pathway, following treatment with ACY-1083 I observed an 

upregulation of Gsk3b, Pten, Akt3 and Il10ra that coincided with a restoration of microglia 

homeostasis. In addition, I observed an upregulation of Nfkb1 and downregulation of Nfkb2 

following HDAC6 inhibition. I also observed the upregulation of 8 genes from the PI3K 

pathway after HDAC6 inhibition. The activity of the GSK3β, PTEN/PI3K/Akt and NF-κB 

pathways are, however, dependent on post-translational modifications such as phosphorylation 

and are therefore not quantifiable with RNA sequencing. As such, additional research at a 

molecular level is required to define the exact mechanism underlying the restoration of 

microglia homeostasis by HDAC6 inhibition. Nevertheless, this dissertation provides evidence 

that HDAC6 inhibition has the potential to attenuate pathological microglia phenotypes and 

restore microglia homeostasis. 

4.4 Potential mechanisms underlying the loss of PSD95 expression by doxorubicin 

treatment and restoration by HDAC6 inhibition 

In this dissertation I provided evidence that a restoration of microglia homeostasis was 

associated with a restoration of PSD95 expression in the hippocampus that coincided with 

restored cognitive function long after the cessation of doxorubicin treatment. It is likely that the 

neurodegenerative microglia phenotype identified following doxorubicin treatment is associated 
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with the loss of PSD95 in the hippocampus. Conversely, it is likely that the restoration of 

microglia homeostasis is integral to the restoration of PSD95 expression, potentially as a result 

of the restoration of proper synaptic maintenance by microglia. This potential mechanism is 

supported by previous research showing that synaptic pruning by microglia is necessary for 

postnatal development and synaptic maturation in mice [287]. Indeed, microglia have been 

shown to directly colocalize with, and engulf, postsynaptic PSD95 in the hippocampus [287]. In 

addition, associations have been made between altered microglial phagocytosis and PSD95 loss 

in the hippocampus [166]. This microglia-mediated mechanism is supported by the snRNA 

sequencing results which showed an upregulation of Sirpa expression following HDAC6 

inhibition that correlated with the restoration of PSD95. Sirpa encodes SIRPα, a transmembrane 

protein that was recently shown to be a negative regulator of synaptic pruning in microglia 

[288]. One study showed that a loss of Sirpa expression in microglia increased synaptic 

elimination via phagocytosis and was associated with decreased PSD95 expression in the 

hippocampus and cognitive impairment. Therefore, it is likely that HDAC6 inhibition restored 

microglia homeostasis and proper synaptic maintenance which contributed to the restoration of 

cognitive function.  

However, other studies have suggested that PSD95 and microglia colocalization does not 

prove the phagocytosis of postsynaptic material by microglia, but is actually representative of 

non-phagocytic membrane exchange from microglia-derived PSD95[289]. Indeed, microglia 

have been shown to synthesize PSD95 during development, and this synthesis was shown to be 

modulated by inflammation [290]. In fact, gene network analysis has identified DLG4, the 

human protein equivalent of PSD95, as a hub protein in the microglial inflammatory response 

[290]. Hub proteins are defined as critical proteins with high connectivity in protein-protein 
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interaction networks [291]. Thus, it is possible that microglia in the adult CNS similarly 

synthesize PSD95 with modulation by inflammation. Therefore, the loss of PSD95 expression in 

the long-term CICD model may reflect a loss of PSD95 synthesis by microglia that was restored 

following HDAC6 inhibition.  

Lastly, it is possible that the neurodegenerative microglia phenotype identified may 

promote neuroinflammation and oxidative stress. Oxidative stress has previously been shown to 

impair PSD95 expression in the hippocampus of mice [292]. In addition, oxidative stress was 

reported to alter PSD95 function by modifying a voltage-gated potassium channel at the 

postsynaptic density [293]. In support of this, I showed that a gene that encodes a marker of 

oxidative stress, Ttr, was upregulated in microglia after doxorubicin treatment [266]. Taken 

together, it is possible that the neurodegenerative microglia phenotype identified in long-term 

CICD reduces PSD95 expression as a result of increased oxidative stress in the hippocampus. 

In addition to the microglia-mediated mechanism, doxorubicin treatment has been 

reported to impair glutamate receptors and cause neuronal toxicity [294, 295]. Considering that 

PSD95 is highly enriched at glutamatergic synapses, it is possible that early glutamatergic 

insults as a result of doxorubicin treatment were sustained long-term due to impaired repair 

mechanisms in the neurodegenerative microglia phenotype. Recent research showed that 

PSD95-associated complexes in the CA1 and CA3 regions represent two distinct neuronal 

populations [296]. The study showed that glutamatergic receptor pathways are over-represented 

in PSD95-associated complexes in the CA3 region. Therefore, the CA3 region of the 

hippocampus may be more vulnerable to doxorubicin-induced damage than the CA1 as was 

observed in our long-term CICD model. Lastly, researchers have suggested that the CA3 region 

is also more susceptible to neurodegeneration than the CA1, but other studies have presented 
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contradictory results [297–299]. Therefore, alterations in glutamatergic signaling and 

excitotoxicity as a result of doxorubicin treatment might explain the preferential decrease of 

PSD95 in the CA3 region of the hippocampus.  

HDAC6 inhibition may also rescue PSD95 expression independently of microglia 

function. Previous studies have found associations between HDAC6 and neurotransmission, 

memory regulation, and cognition at the level of synapses. Indeed, HDAC6 inhibition has been 

shown to increase acetylation of β-catenin and its subsequent association with the PDZ (PSD-

95/Discs Large/ZO-1) domain to facilitate signaling, scaffolding functions, and synaptogenesis 

[238]. Therefore, HDAC6 inhibition may influence the acetylation state of proteins related to 

synaptic function to restore PSD95 expression and cognitive function. 

Taken together, it is likely that the neurodegenerative microglia phenotype identified in 

the long-term CICD model contributed to the loss of PSD95 expression due to dysregulated 

synaptic maintenance, altered PSD95 synthesis, and the promotion of neuroinflammation and 

oxidative stress. It is likely that HDAC6 inhibition contributed to the restoration of PSD95 by 

restoring microglia homeostasis and functions and also by modifying protein acetylation which 

promoted restored postsynaptic function.  

4.5 Genetic overlap with primed microglia phenotype 

In addition to DAMs, the DOX Gene Set and ACY-1083 Gene Set also overlap with the 

genetic signature of a recent meta-analysis that combined the expression profile of 5 

neurodegenerative and aging mouse models to define an important consensus “primed” 

microglia phenotype (Holtman, et al., 2015, Table S5; 295 upregulated genes and 205 

downregulated genes) [197]. This primed phenotype is associated with long-term heightened 

reactivity and morphological alterations, particularly in aging and neurodegenerative brains 
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[196]. Indeed, after doxorubicin treatment 5 upregulated genes that are common to consensus 

primed microglia were identified: Apoe, Cox6c, Cd63, Cd84 and Gas7. In addition, 6 

downregulated genes that are common to doxorubicin-treated and consensus primed microglia 

were identified: Tgfbr1, Rhob, Trim26, Tppp, Scamp5 and Slco2b1. Then, I identified 9 genes 

that were downregulated following ACY-1083 and upregulated in the consensus primed 

microglia genetic signature including Apoe, Cox6c, Gnptg, Galc and Nfkb2. I also identified 93 

genes that were downregulated in the consensus primed microglia genetic signature and 

upregulated following ACY-1083, including genes related to microglia homeostasis and 

efferocytosis such as Slco2b1, Tgfbr1, P2ry12, Cx3cr1, Lrba, Tmem119, Csf1r, Ifngr1, Maf, and 

Mertk. Although the consensus primed microglia and doxorubicin-treated microglia overlap in 

genes related to neurodegeneration and microglia homeostasis, a clear distinction exists: 

Consensus primed microglia, like stage 2 DAMs, are characterized by a robust increase in 

pathways related to phagocytosis, while doxorubicin-treated microglia, like stage 1 DAMs, are 

not [197, 199]. Therefore, the current study provides evidence that doxorubicin-treatment 

induces a stage 1 DAM-like microglia phenotype, and that the restoration of a homeostatic 

microglia phenotype has the potential to reverse cognitive decline following cancer therapy. 

4.6 Dentate gyrus neuron nuclear transcriptome 

The current dissertation utilized single-nuclear RNA sequencing as an unbiased approach 

to evaluate the microglia transcriptome without the presence of cell isolation-based 

transcriptional artifacts. As a result, I obtained transcriptomic data in 11 cell populations that is 

the subject of further study at the time of writing and will not be discussed in its entirety in this 

dissertation. In order to further support my findings that HDAC6 inhibition after doxorubicin 
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treatment promotes a reversal of disease state, I will briefly discuss the nuclear transcriptome of 

neurons isolated from the DG.  

A total of 7,195 nuclei from DG neurons were sequenced. Compared to microglia (436 

microglia nuclei), the large number of nuclei from DG neurons allowed for identification of 6 

distinct subclusters (Figure 3.14A). After doxorubicin treatment, a robust enrichment in 

subcluster 5 neurons correlated with cognitive dysfunction. Subcluster 5 neurons are 

characterized by genes related to neurodegeneration and oxidative stress including Ttr, Apoe, 

Cst3, Cox6c, Ndufa4, and Ubb. Pathway analysis identified pathways related to Alzheimer’s 

disease, Parkinson’s disease, and oxidative phosphorylation which indicate an increase in 

neurodegeneration and oxidative stress (Figure 3.14B). This data supports the loss of 

postsynaptic integrity and the presence of a neurodegenerative microglia phenotype that I 

identified in the hippocampus as a result of doxorubicin treatment. Research suggests the DG 

acts as the input region of the hippocampus and is a “preprocessor” of incoming information 

that sends excitatory output to the CA3 region [300]. In addition, researchers have hypothesized 

that glutamatergic signaling in the DG can influence synaptic strength and neuronal activity in 

the CA3 [301]. Although I did not evaluate microglia morphology and PSD95 expression in the 

DG in this dissertation, it is possible that the DG neuron nuclear genotype that occurs as a result 

of doxorubicin treatment may influence the CA3. 

 After restoration of cognitive function with HDAC6 inhibition, subcluster 5 was 

drastically depopulated and subcluster 3 became enriched with neurons that were virtually 

absent in mice treated with doxorubicin only. Subcluster 3 neurons are characterized by genes 

related to axonogenesis, synaptogenesis, and voltage-gated ion channels including Cadm2, 

Kcnip41, Lrrtm4, Rbfox1, Lsamp, and Fgfr2. Pathway analysis identified pathways related to 
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chemical synapse transmission, axon guidance, and LTP which may indicate increased synaptic 

plasticity that promoted the restoration of cognitive function (Figure 3.14C). This data supports 

the restoration of postsynaptic integrity and microglia homeostasis that occurred as a result of 

HDAC6 inhibition after previous treatment with doxorubicin.  

In addition, subclusters 3 and 5 are largely absent in control mice. Similarly to microglia, 

this suggests that the induction of a pathological phenotype by doxorubicin and induction of a 

regenerative phenotype by ACY-1083 are mechanistically distinct. Therefore, the beneficial 

effects of HDAC6 inhibition on DG neurons may not be dependent on previous treatment with 

doxorubicin and may extend to other disease models. 

Taken together, the snRNA-seq data from DG neurons further supports the reversal of 

disease state that occurs after HDAC6 inhibition in mice previously treated with doxorubicin. 

The enrichment of pathways related to LTP and synaptogenesis likely reflect an increase in 

synaptic plasticity that facilitates the restoration of cognitive function.  
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Figure 3.14. Subpopulations of DG neurons are differentially enriched after doxorubicin 

treatment and HDAC6 inhibition with ACY-1083. (A) Uniform Manifold Approximation and 

Projection (UMAP) showing 6 subclusters identified from single-nuclear transcriptomes of DG 

neurons in the hippocampus of control, doxorubicin-treated and doxorubicin/ACY-1083-treated 

mice. (B) Ingenuity pathway analysis of DG neurons in subcluster 5 that is enriched as a result 

of doxorubicin treatment. (C) Ingenuity pathway analysis of DG neurons in subcluster that is 

enriched as a result of HDAC6 inhibition.  
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4.7 Implications of mitochondrial function, astrocytes, synaptophysin, and myelin data 

Interestingly, doxorubicin treatment was not associated with a significant reduction in 

synaptophysin expression 9 weeks after the final dose which may be related to altered 

glutamatergic signaling as a result of doxorubicin (see 4.4). Additionally, a mouse model of 

Alzheimer’s disease showed that synapse loss early in the progression of the disease was 

specific to PSD95+ puncta, but not synaptophysin+ puncta, in the hippocampus and mediated 

by excessive synaptic pruning by microglia [273]. Stage 1 DAMs were identified early in the 

course of Alzheimer’s disease progression and are more similar to homeostatic microglia than 

stage 2 DAMs [199]. Therefore, it is possible that the preferential loss of PSD95 in the long-

term CICD model is a result of a microglia phenotype that is consistent with the two previously 

mentioned studies.  

Contrary to research that showed altered mitochondrial dynamics and astrocyte reactivity 

as assessed 5 days after the cessation of doxorubicin treatment, I did not identify altered 

mitochondrial function or morphology in synaptosomes or altered GFAP+ expression as 

assessed 9 weeks after the final dose of doxorubicin [76]. In this dissertation I evaluated 

mitochondrial function in synaptosomes, whereas Ongnok et al., quantified mitochondrial 

dynamics in whole brain tissue. It is possible that regional differences between mitochondrial 

function exist in long-term CICD, and that mitochondrial dysfunction is present in specific cell 

types in long-term CICD. It is also likely that mitochondrial dysfunction is involved in the 

initiation of CICD but may not be required for sustaining long-term CICD. Similarly, 

considering the important role that astrocytes play in the regulation of neuroinflammation it is 

likely that astrocytes are involved in the initiation of CICD. However, the results of this 
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dissertation suggest that astrocyte reactivity may not be not integral in sustaining long-term 

CICD.  

Lastly, white matter damage has been implicated in promoting CICD in humans. In this 

dissertation, white matter staining as assessed by Black Gold II staining was not significantly 

altered by doxorubicin treatment. Black Gold II is a lipophilic dye with a high affinity for 

myelin and can be used to visualize myelin loss. However, it is possible that a loss of myelin 

integrity in the form of myelin decompaction may have occurred without drastic demyelination. 

In cases of acute myelin decompaction, electron microscopy levels of resolution may be used to 

quantify the extent of damage [251]. Therefore, it is possible that myelin decompaction occurred 

in the long-term CICD model that was not quantifiable at the resolution of Black Gold II 

staining.  

4.8 Future directions 

While this dissertation provides evidence that doxorubicin treatment induces a 

neurodegenerative microglia phenotype that persists long-term as assessed by microglia 

morphology and nuclear genome, it lacks functional assays that could further define the 

microglia activity in long-term CICD. Future studies could utilize primary microglia cultures 

isolated from the hippocampus of treated mice to quantify microglia metabolism (Seahorse 

XFe96 Extracellular Flux Analyzer), phagocytic activity (FluoSpheres or fluorescently labeled 

myelin), migratory capacity (time-lapse migration), and activation in response to 

proinflammatory activators (LPS). Microglia engulfment of synaptic elements could be 

quantified in vitro by primary co-cultures of neurons and microglia isolated from treated mice to 

identify whether aberrant synaptic pruning underlies PSD95 loss. The risks associated with 

these experiments is that manipulation of CNS tissue and microglia isolation, which often 
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requires CD11b fluorescent tags or microbeads, may lead to tissue injury and microglia 

activation. In vivo synaptic pruning could also be evaluated by quantifying the engulfment of 

synaptic elements with immunofluorescence staining and advanced imaging techniques. In 

addition, synapse density could be quantified by colocalization of presynaptic and postsynaptic 

markers as opposed to individual markers of presynaptic and postsynaptic integrity. 

Future studies could also evaluate changes in active synaptic transmission such as 

NMDA- and AMPA-mediated LTP and LTD by evaluating AMPA and NMDA receptor 

expression. Whole-cell patch clamp recordings of ex vivo brain slices to measure miniature and 

evoked EPSCs would give insight into synaptic transmission. 

Importantly, the role of IL-10 in the restoration of microglia homeostasis could be 

evaluated by testing whether IL-10 knockout mice who are treated with doxorubicin and ACY-

1083 also exhibit restoration of microglia homeostasis.  

Finally, it is important to note that HDAC6 inhibition induced the expression of microglia 

homeostasis genes that were not significantly affected by doxorubicin treatment. This suggests 

that the beneficial effects of HDAC6 inhibition on microglia gene expression identified in this 

dissertation may not be dependent on previous treatment with doxorubicin, and the regenerative 

actions of HDAC6 inhibition independent of doxorubicin treatment should be investigated in 

more detail. Therefore, HDAC6 inhibition may have the potential to restore microglia 

homeostasis in other CNS disorders that are characterized by microglia dysfunction. Future 

directions should focus on the beneficial effects of HDAC6 inhibition in broader 

neurodegenerative disease.  
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4.9 Concluding remarks 

In conclusion, the results of this dissertation provide evidence that pharmacological 

inhibition of HDAC6 using the blood-brain barrier permeable drug ACY-1083 successfully 

reverses long-term CICD as a result of doxorubicin treatment. I provide evidence that a 

therapeutic doxorubicin dosing schedule leads to CICD that is associated with alterations in 

microglial transcriptome and morphology that suggests a neurodegenerative microglia 

phenotype closely resembling the stage 1 DAM phenotype, as well as decreased postsynaptic 

integrity. Inhibition of HDAC6 reversed CICD and restored microglial homeostasis, which 

likely contributes to the restoration of postsynaptic integrity. Taken together, the novel findings 

in this dissertation indicate that treatment with a blood-brain barrier permeable HDAC6 

inhibitor shows promise as an efficacious pharmaceutical intervention to reverse the microglia-

mediated neurotoxic effects of doxorubicin treatment in association with a reversal of CICD. 

This study has implications in reversing cognitive dysfunction, and therefore improving the 

quality of life, of breast cancer survivors globally.  
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