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EXPLOITING CHEMOGENETIC AND GENETIC INTERACTIONS IN HUMAN CELLS 

AS AN AVENUE FOR NEW THERAPEUTIC OPPORTUNITIES 

 

Medina Colic, B.S. 

Advisory Professor: Traver Hart, Ph.D. 

 

The advent of CRISPR technology and its adaptation to the mammalian genome 

made whole-genome knockout screens possible directly in human cells. Gene knockout 

answers how essential that gene is for cell fitness and proliferation. Genes showing 

moderate to severe fitness defects are called essential genes and provide insights into 

disease-specific candidate therapeutic targets. Additionally, CRISPR offers other 

applications for genome editing. Two applications this dissertation is based on are 1) 

combination of gene knockout and drug treatment, which enables the identification of 

chemogenetic interactions, or gene mutations that enhance or suppress the activity of a 

drug, and 2) combinatorial editing, which facilitates the examination of possible genetic 

interaction between the two perturbed genes. Both chemogenetic and genetic 

interactions have the potential to decode the mechanisms of cancer diseases and 

provide an avenue for new therapeutic strategies.  

CRISPR-mediated chemogenetic screens have primarily been used in positive 

selections screens. Therefore, allowing only the identification of genetic modifications 

involved in resistance mechanisms. In the first part of this dissertation, I describe drugZ, 

an algorithm that addressed the need for identifying both, genetic modifications involved 

in synthetic lethality as well as in resistance mechanisms. In addition to identifying known 

and novel chemogenetic interactions, I show that drugZ also provides insights into the 

experimental design of pooled CRISPR screens. The second part of this dissertation is 

focused on predicting the synthetic lethal interactions, which are the most frequently 
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investigated genetic interactions. Very few of these interactions have been reproduced 

across multiple studies and many appear highly context-specific. Thus, the major 

drawback is the lack of gold standards synthetic lethal interactions and a baseline 

probability of being synthetic lethal for any given gene pair, independent of the molecular 

background. I address this drawback by predicting the context-independent synthetic 

lethal probability with Bayes’ theorem, through the integration of existing CRISPR-based 

genetic interaction screens and other functional genomics data types.  

 Collectively, this work provides analytical methods that advance the field of 

functional genomics, a significant understanding of chemogenetic and genetic 

interactions in human cancer cells, insights about optimized, less time and effort-

consuming experimental design, and an avenue for generating new therapeutic 

opportunities.  
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Chapter 1: Introduction 

1.1 Permission to use previously published works 

Some introduction content is based upon the review articles 1) Chemogenetic 

Interactions in Human Cancer Cells by Medina Colic and Traver Hart in the 

Computational and Structural Biotechnology Journal Science Direct on November 7, 

2019 (https://doi.org/10.1016/j.csbj.2019.09.006)(Colic & Hart, 2019). The following 

is from the publisher: “This is an open access article distributed under the terms of 

the Creative Commons CC-BY license, which permits unrestricted use, distribution, 

and reproduction in any medium, provided the original work is properly cited. Please 

note that, as one of the Authors of this article, you retain the right to reuse it in your 

thesis/dissertation.  You do not require formal permission to do so. You are permitted 

to post this Elsevier article online if it is embedded within your thesis. Suitable 

acknowledgement to the source must be made, either as a footnote or in a reference 

list at the end of your publication. You are also permitted to post your Author Accepted 

Manuscript online.” and 2) Common Computational Tools for Analyzing CRISPR 

Screens by Medina Colic and Traver Hart in the Emerging Topics in Life Sciences, 

Portland Press, on December 9, 2021, under CC BY license 

(https://doi.org/10.1042/ETLS20210222)(Colic & Hart, 2021). The following is from 

the publisher: “Permission to reuse content from an article published by Portland 

Press: 

• If the content that you are seeking to re-use is in a Portland Press article that is

published open access under a CC BY licence NO permissions are required,

although you must cite the published article and credit the authors when you re-

use it (or part of it).
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• If the article you are seeking to re-use is published open access under any other 

type of licence (e.g. CC BY NC-ND) or a Portland Press license to publish then 

please complete a re-use permission-request form via copyright.com. 

• To find out what licence the article is published under look for the copyright line 

on the published article, which can be found underneath the abstract or full text, 

depending on what view you are seeing for the article. 

• FOR AUTHORS: if you are a named author on the article you wish to re-use then 

you will not need to seek any permissions except for re-use of non-open access 

papers that involves commercial re-selling or bulk distribution. For the latter, 

please visit copyright.com.” 

  

“Every object that biology studies is a system of systems.” (Jacob, 1977). 

 

1.2 The emergence of functional genomics and systems biology 

Functional genomics is a field aiming to characterize gene (and protein) functions 

and interactions, and how they contribute to different biological processes. The key 

property of functional genomics is addressing and modeling genetic questions and 

concepts on a modular basis, i.e., groups of genes, protein complexes, or pathways, 

rather than a traditional single-gene approach. Therefore, the goal of functional 

genomics is to learn how the individual components of a biological system work 

together to produce a certain phenotype. Alongside functional genomics, systems 

biology is another field that studies complex interactions genome-wide or system-

wide. Systems biology uses quantitative analysis and computational modeling of 

molecular components on different levels of single and multiple biological units (e.g., 
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pathways, cell, tissue, and organ systems) to capture and explain the biological 

system as a whole.  

The availability of a complete genome sequence for an organism leads to 

improved annotations of genes and proteins, therefore facilitating the understanding 

of interactions and molecular processes in the cell through genome-wide studies. 

Saccharomyces cerevisiae or budding yeast is the first eukaryotic organism to have 

its complete genome sequenced in 1996 (Goffeau et al., 1996). A myriad of studies 

using yeast as a model system has established that disrupting a gene is a 

fundamental approach for determining the consequences of loss of gene function and 

is used to exploit the functional role of a gene (Botstein et al., 1997; Botstein & Fink, 

1988; Esser et al., 1999; Giaever et al., 2002a; Giaever & Nislow, 2014; Vandenbol 

& Fairhead, 2000; Winzeler et al., 1999). Yeast was and is a model of choice in many 

genetic investigations because it is one of the simplest eukaryotic organisms which 

shares many essential cellular processes with human cells. The human genome was 

completely sequenced in 2001 (Lander et al., 2001), not too long after the 

completeness of yeast genome sequencing, hence initiating the avalanche of 

functional genomics and systems biology studies using the human cell as a model 

organism.  

 

1.3 Functional profiling in yeast 

 
The main contribution yeast studies provided to the scientific community is the 

connections identified between genes and proteins with corresponding functions they 

perform within a cell. Two decades ago, Giaever et al. generated an almost complete 

(96% of annotated open reading frame, ORFS) collection of gene-deletion mutants 
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of the Saccharomyces cerevisiae yeast (Giaever et al., 2002a) and found that most 

yeast genes (~80%) have no obvious phenotypic effect in rich medium. To uncover 

phenotypes for these 80% genes, Hillenmeyer et al. performed 1144 chemical 

genomic assays on the yeast whole-genome heterozygous and homozygous deletion 

collections and quantified the growth fitness of each deletion strain in the presence 

of chemical or environmental stress conditions (Hillenmeyer et al., 2008). They found 

that 97% of gene deletions exhibited a measurable growth phenotype, suggesting 

that nearly all genes are essential for optimal growth in at least one condition. These 

and similar large-scale functional profiling studies (Baudin et al., 1993; Burns et al., 

1994; Hillenmeyer et al., 2010; Ooi et al., 2006; Pan et al., 2004; Ross-Macdonald et 

al., 1999, p.; Shoemaker et al., 1996) led to the systematic mapping of genetic 

interactions in yeast, resulting in an assembly of a hierarchical model of cell function. 

The systematic mapping of genetic interactions, described in great detail by Dixon et 

al. (Dixon et al., 2009), is done through several steps:  

- Generate double mutants, which in yeast are created by mating the query and

deletion strains.

- Score the double mutant phenotype, with respect to the corresponding single

mutant phenotypes.

- Construct and interpret the resulting genetic interaction matrix.

The most widely studied and characterized types of genetic interactions are negative 

(synthetic sickness or lethality, SL) and positive (buffering or suppression) genetic 

interactions. The comparisons and measurements within each type are based on the 

wild-type strain fitness. In negative genetic interactions, the observed double mutant 

fitness (DMF) is less than the expected DMF which is calculated as a product of two 

single mutant fitnesses (SMF). Whereas in positive interactions, the observed DMF 
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is greater than or has a positive deviation from the expected DMF, again calculated 

as a product of SMFs. The global network of genetic interactions in yeast has been 

constructed by Costanzo et al. using the functional data, which revealed that genes 

from a similar biological process cluster together in coherent modules, and correlated 

profiles outline specific pathways to elucidate gene function (Costanzo et al., 2010a, 

2016, 2019). Until recently, these large-scale functional studies were performed out 

only in simple model organisms, because there was no proper technology to facilitate 

similar studies directly in human cells. 

1.4 Functional profiling in human cells 

The three requirements for successful genome editing are: 

• Recognize a specific, RNA sequence of interest

• Be able to cut that DNA sequence

• Be easily reprogrammable to target and cut different DNA sequences

A crack in creation, Jennifer A. Doudna 

The first two requirements are necessary for generating a double-strand break 

(DSB) which would induce the changes in gene products, and the last one is essential 

for the tool to be broadly used and applicable. Previously proposed gene-editing 

techniques such as I-SceI, rare cutting endonuclease, Zinc finger nucleases (ZNF), 

and Transcription activator-like effector nucleases (TALENs) were successful at 

partially satisfying the first two criteria but failed greatly at the last requirement. 

Therefore, being bypassed by more precise, robust, and scalable technologies such 
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as RNA interference and possibly ultimate gene editing technology Clustered 

regularly interspaced short palindromic repeats (CRISPR).   

1.4.1 RNA interference (RNAi) 

Post-transcription gene silencing (PTGS), RNA silencing, or RNAi is a process 

with an essential role in immunity, the regulation of protein synthesis, and a genetic 

tool for manipulating gene expression. RNAi regulates gene expression through 

double-stranded RNAs (dsRNAs), introduced into a cell by a virus or are already 

produced in the cell, which give rise to small interfering RNAs (siRNAs) that guide 

mRNA degradation (Meister & Tuschl, 2004; Montgomery, 2004). The RNAi-like 

process was first reported in plants as a cosuppressing phenomenon (Napoli et al., 

1990) and as a preventative mechanism for transposable elements integration and 

RNA viruses (Waterhouse et al., 2001). After plants, similar events of unanticipated 

gene silencing have been observed in other organisms as well, quelling in fungi, and 

RNA silencing in animals, first in Caenorhabditis elegans nematodes (Fire et al., 

1998), and later in Drosophila melanogaster flies (Kennerdell & Carthew, 1998).  

Briefly, after the sequencing of the complete human genome, RNAi technology 

using siRNA and short hairpin RNA (shRNA) libraries has been widely utilized for 

both, small-scale gene characterization studies and large-scale genomic screening 

in human cells (Echeverri & Perrimon, 2006; Paddison & Hannon, 2002; J. Silva et 

al., 2004). shRNAs are vector-based and synthesized in the nucleus of a cell, 

opposite to siRNAs which restrict the RNAi in human cells to the cytoplasm (Rao et 

al., 2009). These efforts have led to the identification of new components of the p53 

pathway (Berns et al., 2004), genetic suppressor of RAS activity and tumorigenicity 

(Kolfschoten et al., 2005), candidate tumor suppressors (Westbrook et al., 2005), SL 
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relationships (Rottmann et al., 2005), the function of human kinases in endocytosis 

(Pelkmans et al., 2005), essential genes for mitotic progression and proliferation 

(Moffat et al., 2006), cell division (Kittler et al., 2004), and other core biological 

processes (Luo et al., 2008; Schlabach et al., 2008; J. M. Silva et al., 2008). These 

findings were a precursor for the identification of the initial set of core essential genes 

which are expected to be essential across all contexts (Hart et al., 2014), and context-

specific essential genes or cancer-specific genetic vulnerabilities (Cheung et al., 

2011; Cowley et al., 2014; Marcotte et al., 2012; McDonald et al., 2017; Tsherniak et 

al., 2017). Despite the promising results, RNAi technology has a few shortcomings: 

incomplete silencing or knockdown (Boettcher & McManus, 2015; Sigoillot & King, 

2011; Taxman et al., 2010), off-target effects (Birmingham et al., 2006; Horn et al., 

2010; Jackson et al., 2003; Qiu, 2005), signal noise and high false-negative rate (Hart 

et al., 2014; Hong et al., 2014; Hu, 2004), stimulated immune response (Kanasty et 

al., 2012; Meng & Lu, 2017), and laborious analysis and validation. These 

confounding effects limited the use of this technology and prompted caution when 

interpreting and relying on RNAi-produced results. 

 

1.4.2 CRISPR technology  

 

The advent of CRISPR technology and its adaptation to mammalian cells enabled 

whole-genome genetic perturbations directly in human cells.  CRISPR-associated 

(Cas) protein or a nuclease and a single guide RNA (sgRNA), which is designed to find 

and bind to a target of interest DNA sequence, are two main components of the 

CRISPR editing system. In CRISPR screening, cells of interest are treated with 

CRISPR libraries which are collections of lentiviral vectors that encode sgRNA and Cas 
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protein. The CRISPR–Cas system utilizes the Cas nuclease, which is guided to the 

target sequence by a gRNA, where it introduces a double-strand break at the desired 

locus (Figure 1.A). Activation of error-prone repair by nonhomologous end-joining 

pathways (NHEJ) results in a frameshift mutation creating a gene knockout (KO). When 

DNA damage is too great a burden on the model systems, alternative, engineered Cas 

approaches are available. Nuclease-inactivated ‘dead' Cas9 (dCas9) can be fused with 

transcriptional activation or repression domains and targeted to gene promoters to 

activate (CRISPRa) or repress/inhibit (CRISPRi) gene transcription (Figure 1.B,C). 

dCas9 systems have been reviewed in greater detail by Kazi and Biswas (Kazi & 

Biswas, 2021). 

Gene KO is the most widely used tool in the CRISPR toolkit. CRISPR KO screens 

answer how essential, or how necessary a gene is for a cellular fitness, with genes 

showing moderate to severe fitness defects often called ‘fitness genes' or ‘essential 

genes'. Exceptional examples of genome-wide CRISPR KO screens are two large pan-

cancer CRISPR–Cas9 studies performed by the Broad Institute and the Wellcome 

Sanger Institutes (Behan et al., 2019; Meyers et al., 2017), in which over a thousand 

cancer cell lines were screened with genome-scale KO screens. In addition to 

individual efforts, these two institutes work collaboratively (Boehm et al., 2021; 

Dempster et al., 2019; Pacini et al., 2021) with an aim of creating a comprehensive 

map of all the intracellular genetic dependencies and vulnerabilities of cancer, known 

as the Cancer Dependency Map (DepMap) project (Broad Institute, 2019; Sanger 

Institute, 2019). Such efforts hold a premise of providing a comprehensive 

representation of cancer heterogeneity and an avenue for developing new therapies. 
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The emergence of CRISPR-mediated genetic screens and continued improvement 

in CRISPR reagent design (Doench et al., 2016; Gonçalves et al., 2021; Hart et al., 

2017) has enable investigation of genome-wide and custom libraries gene-drug 

interaction in human cells (Deans et al., 2016; Estoppey, Hewett, et al., 2017; 

Estoppey, Lee, et al., 2017; Hustedt et al., n.d.; MacLeod et al., 2019; Noordermeer et 

al., 2018; Olivieri et al., 2020; Shalem et al., 2014; Su et al., 2020; C. Wang et al., 2018; 

T. Wang et al., 2014; Yoshimoto et al., 2012; Zimmermann et al., 2018). These studies

illustrated the power of chemogenetic screens (CRISPR + drug perturbation) (Figure 

1.D) in identifying new genetic vulnerabilities to PARP, ATR, BRAF, NAMPT inhibitors, 

and temozolomide, and shed a light on using such experimental set-ups for a discovery 

of novel therapeutic targets. I provide a comprehensive overview of chemogenetic 

screens in human cancer cell lines in our review (Colic & Hart, 2019) of this topic and 

later in this chapter. 

In comparison with cell culture, in vivo systems are preferred for translational 

cancer research (e.g., evaluating tumor progression and therapeutic response), as they 

provide a more clinically relevant environment for tumor modeling. CRISPR editing in 

in vivo model in conducted by creating the mutant cell population of interest in a dish 

and then implanting those into a mouse, often subcutaneously or intravenously (Figure 

1.D). In the last few years, CRISPR technology has been used in living model 

organisms for studying various cancers and cancer specific processes (Bajaj et al., 

2020; Dai et al., 2021; Dong et al., 2019; Gautron et al., 2021; Griffin et al., 2021; 

Manguso et al., 2017; van der Weyden et al., 2021), though the complexity of the 

approach limits these screens to targeted gene panels. 
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CRISPR screens are being used in immune-oncology studies as well, with the most 

common approach being to proliferate CRISPR-mutagenized cells in the presence or 

absence of T cells (or other immune system components) (Figure 1D). In the recent 

years, pooled CRISPR screens in tumor/immune co-culture systems have provided 

insights into tumor mechanisms that cause resistance to immunotherapies (Hou et al., 

2021; Lawson et al., 2020), genes involved in the immune synergistic interactions 

(Lawson et al., 2020), and identification of novel targets for immune-oncology (Mair, 

Aldridge, et al., 2019). The studies described in the review focusing on interrogating 

immune cells and cancer with CRISPR–Cas9 (Buquicchio & Satpathy, 2021) are the 

proof that the CRISPR screens are a powerful tool for investigating tumor–immune co-

culture systems. 

Though these approaches offer an enormous advantage over the prior state-of-the-

art, widespread genetic buffering imposes clear constraints on the ability of monogenic 

KO systems to provide saturating screens. These constraints have driven the 

development of multiplex targeting platforms via the delivery of multiple sgRNAs per 

cell. This can be facilitated by using two Cas9 nucleases derived from different bacterial 

species, e.g., S. pyogenes and S. aureus, with species-specific gRNA expressed from 

different promoters (e.g., hU6 and mU6) (Figure 1.E). Other systems use a single 

SpCas9 with two gRNA expressed from different promoters (Figure 1.E). Lastly, 

enhanced Cas12a (enCas12a) multiplex platform (Figure 1.F), is the current state of 

the art combinatorial editing system. The enCas12a nuclease can process multiple 

gRNA from a single polycistronic transcript and offers an attractive alternative to Cas9 

for multiplex screening, which facilitates the large-scale investigation of genetic 

interactions in mammalian cells. In the DeWeirdt et al. study, which optimized libraries 
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for the engineered enCas12a variant, the group also screened for synthetic lethality 

(SL) in two cancer cell lines (OVCAR8 and A375) and discovered previously 

unreported interaction between MARCH5 and WSB2 (DeWeirdt et al., 2021). Dede et 

al. has utilized the enCas12a platform to investigate the functional buffering among 

∼400 candidate paralog pairs in three cell lines (Dede et al., 2020). The authors

observed 24 SL paralog pairs that were previously undetected by monogenic KO 

screens. The Moffat group took advantage of the Cas12a system in a different fashion 

— combing Cas9 and Cas12a to create a hybrid Cas platform, CHyMErA, to evaluate 

a set of 672 human paralog pairs, and explore chemogenetic interactions in the mTOR 

pathway (Gonatopoulos-Pournatzis et al., 2020). The research produced by combined 

multiplex targeting systems has shown the potential to identify context-specific genetic 

interactions, candidate combinatorial drug treatments, and potential drug targets 

(Boettcher et al., 2018; DeWeirdt et al., 2020; Diehl et al., 2021; Ito et al., 2021, p. 4; 

Najm et al., 2018; Parrish et al., 2021; Shen et al., 2017; Thompson et al., 2021; Wong 

et al., 2016), but experimental design and analysis of these screens are highly complex. 

The rest of this chapter will focus on two of these applications, chemogenetic 

screens and combinatorial editing. The quantitative approaches for addressing the 

gaps in chemogenetic and genetic interactions in human cells are the central topic of 

this dissertation. 
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Figure 1. CRISPR Toolbox. A) CRISPR. B) CRISPR activation. C) CRISPR 

interference. D) Pooled screens: 1. In vivo, 2. Chemogenetic, 3. Immuno-oncology, 

and 4) Isogenic screens. E) Cas9 multiplex platforms: 1. Single Cas9 (e.g., S. 

pyogenes) system using two copies of the U6 promoter. 2. Single Cas9 system uses 

two different promoters. 3. A two Cas9, two different promoters’ system. F) EnCas12a 

multiplex platform. 
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1.5 Genetic interactions and their relevance in cancer 

To quantify genetic interaction between two genes, a simultaneous digenic 

perturbation would have to be performed. However, despite the great use of CRISPR 

technology, genome-wide digenic perturbations are still not feasible in human cells, 

because scalability is an issue. The human genome encompasses ~20,000 protein-

coding genes, and it would take ~400 million perturbations to screen all combinations 

of these protein-coding genes. Therefore, few groups including us in Hart lab have 

used indirect methods (Boyle et al., 2018; E. Kim et al., 2019a; T. Wang et al., 2017a) 

to derive functional interactions from  DepMap CRISPR KO screens performed in 

~1000 cancer cell lines. These indirect methods of deriving functional interactions are 

based on the observation that genes with correlated essentiality profiles in human cell 

lines are analogous to genes having correlated genetic interaction profiles in yeast cells, 

implying co-functionality and shared biological function. Genetic interactions are 

relevant in cancer because most biological and disease-related phenotypes are 

controlled by more than one gene. Cancer cells arose due to genetic changes, which 

can be the gain of function or loss of function events. Targeting cancers driven by the 

gain of function events is a strategy relying on pharmacological targeting of the 

oncogene. Inhibiting BCR-ABL fusion oncogene in Chronic Myelogenous Leukemia 

(CML) is one of the early examples of an oncogene-targeted therapy (Savage &

Antman, 2002). Whilst targeting cancers driven by the loss of function events, such 

as the loss or mutation of a tumor suppressor gene (TSG), is much more challenging. 

This challenge is due to the loss of a relevant gene from tumor cells, making it 

impossible for a relevant gene to be a direct pharmacological target. In those cases, 
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SL interactions can be used to tailor a therapeutic strategy. For example, 

BRCA1/BRCA2 (breast cancer-associated proteins)-deficient cells are 

hypersensitive to the inhibition of poly adenosine-diphosphate ribose polymerase 

(PARP), suggesting SL between TSGs BRCA1/BRCA2 and PARP (Ashworth, 

2008a). These findings led to successful use of PARP inhibitors in several BRCA-

deficient cancer types, establishing a promise for using SL towards strategizing 

cancer treatments. As such, SL interactions are the most frequently studies and 

widely characterized genetic interaction. However, through my analysis of existing 

CRISPR-mediated genetic interactions studies in human cells, we observed that very 

few of these SLIs are reproduced as significant across multiple studies, and many of 

them are context-specific. Therefore, indicating the need for some baseline 

probability of being a SL for any given gene pair. 

 

1.6 Chemogenetic interactions in human cancer cells 

 
In addition to its use for functional genomics, the rapid development of genome 

wide CRISPR KO screens in mammalian cells has also led to the emergence of 

chemogenetic screening in human cells. Genome-wide CRISPR KO screens can be 

divided into two types: positive screens and negative screens. CRISPR-mediated 

chemogenetic screens have been mainly used in positive selection screens, which 

provide insights into genetic mechanisms of drug resistance.  The signal for positive 

selection screens is generally strong, as only mutant cells with resistance genes 

survive. Such approach has been successfully used to identify genes driving 

resistance to target therapies, including BRAF and MEK inhibitors, and other drugs 

(Krall et al., 2017; Shalem et al., 2014; T. Wang et al., 2014). Contrarily, 
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chemogenetic screening in negative selection screens is more complex. Negative 

selection screens are often used to identify genes whose KO leads to moderate 

fitness defects. The studies in yeast genetics indicate that genes with moderate 

fitness defects have more synergistic genetic interactions than those genes without 

any fitness defect (Costanzo et al., 2010a). In CRISPR screens in mammalian cells, 

moderate fitness defects are reflected in lower gRNA read counts at later time points 

in an experiment. Therefore, adding the drug treatment, can decrease even further 

the experimental readout (i.e., gRNA read counts) which makes the identification of 

genes with moderate fitness defects under that treatment even more analytically 

challenging.  

 

1.7 Dissertation overview 

The efforts to decode complex diseases such as cancer and devise treatment 

strategies accordingly have gone long way. The advent of CRISPR technology has 

revolutionized cancer biology through the discovery of essential genes for drug 

targets, identification of metastatic regulators, drug resistance mechanisms, 

immunotherapy targets, and SL, all of which are fundamental for cancer treatment 

opportunities.  

 

The overall objective of this dissertation is to exploit and characterize 

chemogenetic and genetic interactions in human cells to advance our understanding 

of genetic modifiers of drug activity and provide a strategy for identifying candidate 

tumor-specific therapeutic targets. Chapter 2 describes the chemogenetic screens 

and features the implementation of the drugZ algorithm for identifying both synergistic 

and suppressor chemogenetic interactions from CRISPR screens. Additionally, in this 
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chapter, I provide recommendations for parameter choice and experimental design 

based on drugZ analyses, and I show that drugZ robustly identifies known and novel 

chemogenetic interactions. Lastly, this chapter highlights our observation that a small 

set of tumor suppressor genes are frequent drug suppressor hits across several 

screens using different drugs or small molecule perturbagens with distinct 

mechanisms of action, suggesting that these hits are drug-agnostic proliferation 

suppressor hits in chemogenetic screens.  Chapter 3 focuses on the challenge of 

predicting the context-independent SL and the approach I am proposing to address 

it. This 10-step approach predicts the probability of being a SL for any given gene 

pair and is based on integrating data from existing CRISPR-mediated genetic 

interaction screens and 30 features derived from essentiality, expression, 

protein/genomic neighborhood, and sequence-based data. Finally, this chapter 

demonstrates the number of features set | model performance comparisons aiming 

to identify the optimal set of features and evaluate the best model. Chapter 4 outlines 

several collaborative studies based on utilizing CRISPR technology towards 

identifying disease-specific candidate therapeutic targets, featuring my contributive 

work. At last, chapter 5 outlines the conclusions from previous chapters and final 

remarks and provides insights into a few directions I foresee this study evolving.  
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Chapter 2: Identifying chemogenetic interactions from CRISPR screens with 

drugZ 

 

 
This chapter is based on a published article: Identifying Chemogenetic 

Interactions from CRISPR Screens Using DrugZ published by Medina Colic, Gang 

Wang, Michal Zimmermann, Keith Mascall, Megan McLaughlin, Lori Bertolet, W. 

Frank Lenoir, Jason Moffat, Stephane Angers, Daniel Durocher and Traver Hart in 

the BCM Genome Medicine on August 22, 2019 (https://doi.org/10.1186/s13073-019-

0665-3) (Colic et al., 2019). The following is from the publisher: “This article is 

distributed under the terms of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 

use, distribution, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons 

license, and indicate if changes were made. The Creative Commons Public Domain 

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the 

data made available in this article, unless otherwise stated.” 

 

2.1 Abstract  

 

Background 

Chemogenetic profiling enables the identification of gene mutations that 

enhance or suppress the activity of chemical compounds. This knowledge provides 

insights into drug mechanism of action, genetic vulnerabilities, and resistance 

mechanisms, all of which may help stratify patient populations and improve drug 

https://doi.org/10.1186/s13073-019-0665-3
https://doi.org/10.1186/s13073-019-0665-3
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efficacy. CRISPR-based screening enables sensitive detection of drug-gene 

interactions directly in human cells, but until recently has primarily been used to 

screen only for resistance mechanisms. 

 

Results 

We present drugZ, an algorithm for identifying both synergistic and suppressor 

chemogenetic interactions from CRISPR screens. DrugZ identifies SL interactions 

between PARP inhibitors and both known and novel members of the DNA damage 

repair pathway, confirms KEAP1 loss as a resistance factor for ERK inhibitors in 

oncogenic KRAS backgrounds, and defines the genetic context for temozolomide 

activity. 

 

Conclusions 

DrugZ is an open-source Python software for the analysis of genome-scale 

drug modifier screens. The software accurately identifies genetic perturbations that 

enhance or suppress drug activity. Interestingly, analysis of new and previously 

published data reveals tumor suppressor genes are drug-agnostic resistance genes 

in drug modifier screens. The software is available at github.com/hart-lab/drugz.  

 

2.2 Background  

The ability to systematically interrogate multiple genetic backgrounds with 

chemical perturbagens is known as chemogenetic profiling. While this approach has 

many applications in chemical biology, it is particularly relevant to cancer therapy, 

where clinical compounds or chemical probes are profiled to identify mutations that 
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inform on genetic vulnerabilities, resistance mechanisms, or targets (Hartwell, 1997). 

Systematic surveys of the fitness effects of environmental perturbagens across the 

yeast deletion collection (Giaever et al., 2002b) offered insight into gene function at 

a large scale, while profiling of drug sensitivity in heterozygous deletion strains 

identified genetic backgrounds that give rise to increased drug sensitivity (Giaever et 

al., 1999). Now, with the advent of CRISPR technology and its adaptation to pooled 

library screens in mammalian cells, high-resolution chemogenetic screens can be 

carried out directly in human cells (Doench et al., 2016; Jinek et al., 2012; Shalem et 

al., 2014; T. Wang et al., 2014). Major advantages to this approach include the ability 

to probe all human genes, not just orthologs of model organisms; the analysis of how 

drug-gene interactions vary across different tissue types, genetic backgrounds, and 

epigenetic states; and the identification of suppressor as well as synergistic 

interactions, that may preemptively indicate mechanisms of acquired resistance or 

pre-existing sources of resistant cells in heterogeneous tumor populations. 

 

Design and analysis of CRISPR-mediated chemogenetic interaction screens 

in human cells can be problematic. Positive selection screens identifying genes 

conferring resistance to cellular perturbations typically have a high signal-to-noise 

ratio, as only mutants in resistance genes survive. This approach has been used to 

identify genes conferring resistance to targeted therapeutics, including BRAF and 

MEK inhibitors, as well as other drugs (Shalem et al., 2014)(Blondel et al., 2016; 

Doench et al., 2016; Konermann et al., 2015; Krall et al., 2017; le Sage et al., 2017; 

Liao et al., 2017; T. Wang et al., 2014; Zhang et al., 2016). Conversely, negative 

selection CRISPR screens require growing perturbed cells over 10 or more doublings 

to allow sensitive detection of genes whose KO leads to moderate fitness defects. 
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Adding the detection of drug interactions to these experiments necessitates dosing 

at sub-lethal levels to balance between maintaining cell viability over a long time 

course and inducing drug-gene interactions beyond native drug effects (Estoppey, 

Hewett, et al., 2017; Estoppey, Lee, et al., 2017; C. Wang et al., 2018; Zimmermann 

et al., 2018). 

 

In this study, we describe drugZ, an algorithm for the analysis of CRISPR-

mediated chemogenetic interaction screens. We apply the algorithm to identify genes 

that drive normal cellular resistance to the PARP inhibitor olaparib in three cell lines. 

We demonstrate the greatly enhanced sensitivity of drugZ over contemporary 

algorithms (Doench et al., 2016) (W. Li et al., 2014; Luo et al., 2008; Robinson et al., 

2010) by showing how it identifies more hits with higher enrichment for the expected 

DNA damage response pathway, and further how it identifies both synergistic and 

suppressor interactions. We further demonstrate the discovery of both synergistic and 

suppressor interactions in a single experiment with KRAS-mutant pancreatic cancer 

cell lines treated with an ERK inhibitor, and through reanalysis of published data. 

Interestingly, we observe a trend across several datasets where tumor suppressor 

genes score as drug suppressors, indicating a possible systematic source of false 

positives. We provide all software and data (Colic & Hart, Traver, n.d.) necessary to 

replicate the analyses presented here; see “Availability of data and materials” below 

for links. 
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2.3 Implementation 

2.3.1 DrugZ algorithm 

We calculate the log2 fold change of each gRNA in the pool by normalizing the 

total read count of each sample (to n = 10 million reads) at the same time point and 

taking the log ratio, for each replicate, of treated to control reads. 

𝑓𝑐𝑟 =  log2 [
𝑛𝑜𝑟𝑚(𝑇𝑡,𝑟) + 𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑢𝑛𝑡

𝑛𝑜𝑟𝑚(𝐶𝑡,𝑟) + 𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑢𝑛𝑡
] 

where: 

• fc = fold change 

• r = replicate indication 

• T = treated sample 

• C = control sample 

• t = time point 

• pseudocount = default value is 5 

We estimate the variance of each fold change by calculating the standard deviation 

of fold changes with similar abundance in the control sample: 

sort(fc𝑟) according 𝐶𝑟 (descending=True) 
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𝑒𝑏_𝑠𝑡𝑑𝑓𝑐𝑟
=  √

1

𝑁
∑(𝑓𝑐𝑟,𝑖 −  𝜇)2

𝑁

𝑖

 

where: 

• eb_stdfc𝑟 = estimated variance 

• N = number of fold changes with similar abundance (default = 1000) 

• i = guide 

• fcr, i = fold change for each guide in a replicate 

• μ = 0 

and then calculate a Z-score for each fold change using this estimate: 

𝑧𝑓𝑐𝑟,𝑖 
=  

𝑓𝑐𝑟,𝑖

𝑒𝑏_𝑠𝑡𝑑𝑓𝑐𝑟,𝑖

 

 

The guide Z-score of all gRNA across all replicates is summed to get a gene-level 

sumZ score, which is then normalized (by dividing by the square root of the number 

of summed terms) to the final normZ (Figure 2.B): 

 

𝑛𝑜𝑟𝑚𝑍𝑔𝑒𝑛𝑒𝐴 =  
∑ 𝑍𝑓𝑐𝑟,𝑖𝑔𝑒𝑛𝑒𝐴

√𝑛
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Figure 2. Workflow. A) Experimental design. In a drug-gene interaction screen, cells 

are transduced with a pooled CRISPR library. Cells are split into drug-treated and 

untreated control samples, grown for several doublings; genomic DNA is collected; 

and the relative abundance of CRISPR gRNA sequences in the treated and control 



 24 

population is compared. B) DrugZ processing steps include normalizing read counts, 

calculating fold change, estimating the standard deviation for each fold change, Z-

score transformation, and combining guide scores into a gene score. C-E) Comparing 

existing methods vs. drugZ for SUM149PT olaparib screen. DrugZ hits show 

strongest enrichments for DDR genes across a range of FDR thresholds. C) Number 

of raw hits. D) Number of annotated DNA damage response (DDR) genes in hits. E) 

−log P values for DDR gene enrichment by hypergeometric test. 

 

A P-value is calculated from the normZ, and corrected for multiple hypothesis testing 

using the method of Benjamini and Hochberg (Benjamini & Hochberg, 1995). The 

open-source Python software can be downloaded from github.com/hart-lab/drugz. 

 

2.3.2 DrugGS algorithm 

After empirical Bayes variance estimation approach is applied on normalized 

log-fold changes to calculate a Z-score for each guide, we applied Gibbs sampling to 

generate posterior distribution of fold changes for each gene. 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ~ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟 

𝑃(𝜇, 𝜏| 𝑑𝑎𝑡𝑎) =  
𝑃(𝑑𝑎𝑡𝑎|𝜇, 𝜏) ∗ 𝑃(𝜇, 𝜏)

𝑃(𝑑𝑎𝑡𝑎)
     𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 

𝑃(𝑑𝑎𝑡𝑎|𝜇, 𝜏)                                                      𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

𝑃(𝜇, 𝜏)                                                        𝑝𝑟𝑖𝑜𝑟 

Each gene has a distribution composed of Z-scores for guides targeting that specific 

gene across replicates. Distribution is characterized as ℕ(𝜇, 𝜏), 𝑤ℎ𝑒𝑟𝑒 𝜏 𝑖𝑠 
1

𝜎2 . 
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Both 𝜇 and 𝜏 have hyperparameters (𝜇: 𝜇, 𝜎2, 𝜏: 𝑎, 𝑏) that we initialize at the very start 

of sampling.  

𝑃(𝜏|𝑑𝑎𝑡𝑎)~ Γ(a, b) = 𝐺𝑎𝑚𝑚𝑎 𝑝𝑟𝑖𝑜𝑟 𝑤𝑖𝑡ℎ 𝑎 (𝑠ℎ𝑎𝑝) 𝑎𝑛𝑑 𝑏 (𝑟𝑎𝑡𝑒) ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.  

𝑃(𝜇|𝜏, 𝑑𝑎𝑡𝑎)~ℕ(𝜇, 𝜎2)

= 𝑁𝑜𝑟𝑚𝑎𝑙 𝑝𝑟𝑖𝑜𝑟 𝑤𝑖𝑡ℎ 𝜇 (𝑚𝑒𝑎𝑛) 𝑎𝑛𝑑 𝜎2 (𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.   

We then update 𝜇 and 𝜏 with respect to their priors in every 1000 samples that we 

generate for each gene. 

Equations to update 𝜇: 

𝜇𝑢𝑝𝑑𝑎𝑡𝑒 =  
(𝑛 ∗ �̅� ∗  𝜏) + (𝜇𝑝𝑟𝑖𝑜𝑟 ∗  𝜏𝑝𝑟𝑖𝑜𝑟)

𝑛 ∗  𝜏 + 𝜏𝑝𝑟𝑖𝑜𝑟
 

𝜎𝑢𝑝𝑑𝑎𝑡𝑒 =  
1

√𝑛 ∗  𝜏 + 𝜏𝑝𝑟𝑖𝑜𝑟

 

Equations to update 𝜏: 

𝑎𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑎𝑝𝑟𝑖𝑜𝑟 + 
𝑛

2
 

𝑏𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑏𝑝𝑟𝑖𝑜𝑟 + ∑(𝑍𝑓𝑐𝑟,𝑖
−  𝜇)2 

where:  

• n = number of data points (guide Z-scores) for each gene 

• �̅� = actual mean of data points 

 

From those 1000 newly sampled 𝜇 and 𝜏, we then calculate the mean and standard 

deviation. Each gene’s 𝜇 posterior distribution’s mean is what was converted into Z-

score and used to compare with the drugZ normZ values. 

 

𝑍𝑔𝑒𝑛𝑒𝐴 =  
∑ 𝜇𝑘

𝑆
𝑘=1

𝑆
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Where: 

• S = number of samples (in our case 1000) 

• k = sample 

2.3.3 CRISPR screening 

Drug-gene interaction screens 

Olaparib screens were described in (Zimmermann et al., 2018).  

Temozolomide screens were described in (MacLeod et al., 2019). 

 
Cell culture 

hTERT RPE-1 (CRL-4000) and 293T (CRL-3216) cells were purchased from 

the ATCC and grown in Dulbecco’s High Glucose Modified Eagle Medium (DMEM; 

HyClone) with 10% fetal bovine serum (FBS), 1 X GlutaMAX (Gibco), 100mM sodium 

pyruvate (Gibco), 1 X non-essential amino acids (NEAA), 1X penicillin-streptomycin 

(Pen/Strep), and 5ug ml-1 Plasmocure. Incubator conditions were kept at 37oC with 

5% CO2. 

 
Lentivirus production 

For production of the TKOV3 lentivirus, 9.0 X 106 293T cells were transfected 

with psPAX2 (lentiviral packaging; Addgene #12260), pMD2.G (VSV-G envelope; 

Addgene #12259), and TKOV3 (Toronto KnockOut CRISPR Library; Addgene 

#90294) using X-tremeGENE 9 DNA transfection reagent (Sigma-Aldrich) in medium 

with lowered antibiotic concentration (0.1X Pen/Strep). Medium was replaced with 

viral harvest medium (DMEM + 1.1% BSA + 1X Pen/Strep) 18 hours post-

transfection. Virus-containing supernatant was collected ~24-48 hours post-
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transfection, and fresh viral harvest medium was added to transfected plates. Virus-

containing supernatant was collected again ~24 later. The virus-containing 

supernatant was centrifuged to remove cell debris and stored at -80oC. 

 
CRISPR screening 

For transduction of the hTERT RPE-1 cells, the TKOv3 virus was added with 

8ug/ml Polybrene. For selection of the transduced cells, puromycin was introduced 

at a concentration of 20 ug/ml at 24 hours post-infection (the hTERT cassette used 

to immortalize RPE1 cells contains a puromycin resistance marker, necessitating 

extreme puromycin concentrations for selection). Puromycin selection continued for 

72 hours post-transduction and completed upon the selection against the hTERT 

RPE-1 parental line as a control. Completion of selection was considered the initial 

timepoint (T0). The TKOv3-transduced cells were split into technical replicates. To 

ensure proper coverage, 15 x 106 cells across 11 x 15 cm dishes were used for 

infection with the TKOv3 virus per replicate. The chemotherapeutic drugs 

Gemcitabine (2nM) and Vincristine (0.4nM) were added to separate replicates, with 

one set of replicates receiving no drug treatment. Both drug-treated and untreated 

replicates were not allowed to reach confluence in the 15cm dishes. Cells were lifted, 

counted, and re-plated at the coverage stated above, and the excess cell pellets were 

frozen at -20oC as a timepoint. Once 8 doublings were reached from T0, the screens 

were terminated and pellets frozen at -20oC. Coverage of screens was kept at 200 

cells per gRNA. 

 

The QIAamp Blood Maxi Kit (Qiagen) was used to isolate the genomic DNA 

(gDNA) from the frozen cell pellets. Guide sequences were enriched using PCR with 
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HiFi HotStart ReadyMix (Kapa Biosystems) and primers targeting the guide region in 

the genomic DNA. A second round of PCR was performed with i5 and i7 primers to 

give each condition and replicate a unique multiplexing barcode. The final PCR 

products were purified using the E-Gel System (Invitrogen), normalized, and 

sequenced on the NextSeq500 system to determine the representation of guides 

under each treated and non-treated condition. 

 

2.4 Results and Discussion 

We created the drugZ algorithm to fill a need for a method to identify 

chemogenetic interactions in CRISPR KO screens. In a pooled library CRISPR 

screen, the relative starting abundance of each gRNA in the pool is usually sampled 

immediately after infection and selection. To identify genes whose KO results in a 

fitness defect (“essential genes”), the cells are grown for several doublings and the 

relative abundance of gRNA is again sampled by deep sequencing of a PCR product 

amplified from genomic DNA template. The relative frequency of each gRNA is 

compared to starting gRNA abundance, and genes whose targeting gRNA show 

consistent dropout are considered essential genes. 

In a chemogenetic interaction screen, the readout is different: the relative 

abundance of gRNA in a treated population is compared to the relative abundance of 

an untreated population at a matched time point (Figure 2.A). In this context, an 

experimental design with paired samples should be particularly powerful, as it 

removes a major source of variability across replicates. 
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To benchmark the method, we evaluated screens to identify modifiers of the 

response to the PARP inhibitor olaparib in three cell lines, RPE1-hTERT, HeLa, and 

SUM149PT (Zimmermann et al., 2018). The screens were performed using the 

TKOv1 library of 90k gRNA targeting 17,000 genes and are described in detail in 

(Hart et al., 2015). After infection and selection, each cell line was split into 3 

replicates, passaged at least once, and each replicate was further split into control 

and olaparib-treated populations (Figure 2.A). 

The drugZ algorithm calculates a fold change for each gRNA in an 

experimental condition relative to an untreated control. A Z-score for each fold 

change is calculated using an empirical Bayes estimate of the standard deviation, by 

“borrowing” information from gRNA observed at a similar frequency (read count) in 

the control cells. Guide-level gene scores are combined into a normalized gene-

level Z-scores called normZ, from which P values are estimated from a normal 

distribution (Figure 2.B). We used drugZ to calculate normZ scores, P values, and 

false discovery rates in SUM149PT breast cancer cells, which 

carry BRCA1 and TP53 mutations, +/− olaparib treatment (Zimmermann et al., 

2018). We also analyzed the same data with four contemporary methods, STARS 

(Doench et al., 2016), MAGeCK (W. Li et al., 2014), edgeR (Robinson et al., 2010), 

and RIGER (Luo et al., 2008). We noted that drugZ produced a moderate number of 

overall hits, relative to other methods, as FDR thresholds were relaxed (Figure 2.C). 

We evaluated the quality of the hits by measuring their functional coherence. The 

PARP inhibitor olaparib was developed specifically to exploit the observed SL 

relationship between PARP1 and the BRCA1/BRCA2 genes (Bryant et al., 2005; 

Farmer et al., 2005). Subsequent studies have shown it to be effective against a 
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general deficiency in homologous recombination repair, known as HRD (Ashworth, 

2008b). We therefore calculated the enrichment of each hit set for genes in the DNA 

damage response (DDR) pathway as annotated in the Reactome database (Croft et 

al., 2011) and found that drugZ hits show strong enrichment for DDR genes across a 

range of FDR thresholds (Figure 2.D, E), while the other methods show consistently 

lower enrichment. We observed similar trends in an olaparib screen in HeLa cells 

(Figure 3.A) but less overall effect in hTERT-immortalized RPE1 wildtype epithelial 

cells (Figure 3.B). The combination of larger sets of hits and greater enrichment for 

expected results indicates that drugZ accurately and sensitively identifies 

chemogenetic interactions. 
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Figure 3. DrugZ vs. other methods with olaparib screens in HeLa (A) and RPE1 (B) 

cells. Methods are colored as in Figure 2.1.C. DrugZ hits show strongest enrichment 

for DDR genes across a range of FDR thresholds in these two screens as well but 

less overall effect in RPE1 cells. Data from (Zimmermann et al., 2018). A) Left, 

number of raw hits. Center, number of annotated DNA Damage Response (DDR) 

genes in hits. Right, log P-values for DDR gene enrichment. B) Same panels as in 

(A), for RPE1 screens. 

The drugZ algorithm can also be used to identify suppressor interactions, that 

is, genes whose perturbation reduces drug efficacy. While BRCA1 mutation is SL 

with PARP1, subsequent mutation of TP53BP1 is associated with acquired 

resistance to the PARP inhibitor (Jaspers et al., 2013). Drug-gene interactions 

resulting in positive Z-scores reflect such suppressor interactions. 

Indeed, TP53BP1 is the 8th-ranked suppressor interaction in BRCA1-deficient 

SUM149PT cells, with a normZ score of 3.05. Similarly, newly described resistance 

gene C20orf196, now called SHLD1 (Dev et al., 2018; Ghezraoui et al., 2018; Mirman 

et al., 2018; Noordermeer et al., 2018), is the top-ranked suppressor. 

2.4.1 Robustness to parameter choice and experimental design 

To evaluate the robustness of the drugZ approach, we conducted sensitivity 

analysis using data from the SUM149PT olaparib screen. The algorithm relies on two 

major tunable parameters, window size for empirical Bayes variance estimation and 

a monotone filter for the variance estimator (to ensure non-decreasing variance as 

read count decreases). The window size represents the number of neighboring 

gRNA, ranked by read count, to use to evaluate gRNA fold change variance. To 

evaluate the effect of varying window size, we ran the drugZ pipeline with window 
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sizes in five increments from 100 to 1000; neither the number of hits, number of DDR-

annotated hits, nor enrichment P value was affected by changing window size (Figure 

4.A-C). We performed a similar analysis with and without enforcing the monotone 

filter and discovered marginally improved performance in the SUM149PT olaparib 

screen without enforcing monotonicity (Figure 4.D-F), but no such effect in Hela (T15) 

olaparib screen (Figure 4.G-I). We therefore left the filter in place. 
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Figure 4. DrugZ tunable parameters. A) DrugZ performance across different window 

sizes for Empirical Bayes estimation of variance of guide-level fold changes. B) Left, 

number of raw hits. C) Center, number of annotated DNA Damage Response (DDR) 

genes in hits. Right, log P-values for DDR gene enrichment.  D-F) DrugZ performance 
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with correction that ensures monotonicity in the variance (M, red) vs. drugZ 

performance with no correction that ensures monotonicity in the variance (NM, blue) 

in SUM149PT olaparib screen (panels same as in first row). G-I) DrugZ performance 

with correction that ensures monotonicity in the variance (red) vs. drugZ performance 

with no correction that ensures monotonicity in the variance (blue) in HeLa olaparib 

screen (panels same as in first two rows).  

 

We also tested the drugZ pipeline against a more statistically thorough, but 

computationally demanding, approach. After using the same empirical Bayes 

approach to calculate a Z-score for each guide, we applied Gibbs sampling to 

estimate the posterior distribution of fold changes for each gene (Figure 5.A). This 

method, which we termed drugGS, yielded results that are virtually identical to drugZ 

(Pearson correlation coefficient = 0.99; Figure 5.B) at ~ 50× the computational cost 

(Figure 5.C). DrugGS is also available on github at https://github.com/hart-

lab/druggs. 

 
 

 

 

https://github.com/hart-lab/druggs
https://github.com/hart-lab/druggs
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Figure 5. DrugZ vs. DrugGs. A) DrugGS Computational Pipeline. DrugGS 

preprocessing steps are same as in the DrugZ for generating guide-level Z-scores. 

After guide level Z-scores are obtained, they are used as a prior distribution to 

generate gene-level scores using Gibbs sampling. The mean of generated sample of 
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means is considered as new gene score. B) Comparison between drugGS (x-axis) 

and drugZ (y-axis) gene scores shows high concordance between the two methods 

(Pearson correlation coefficient = 0.99). C) Comparison between drugGS (top) and 

drugZ (bottom) time and memory performance. DrugZ drastically outperforms 

drugGS in terms of time and memory used. 

 

2.4.2 Experimental design considerations 

Highly effective CRISPR KO screens are done with a variety of experimental 

designs, with varying numbers of replicates, degree of library coverage, 

determination of endpoint, and whether intermediate time points are included (Aguirre 

et al., 2016; Doench et al., 2016; Hart et al., 2015, 2017; Koike-Yusa et al., 2014; 

Meyers et al., 2017; Ong et al., 2017; Shalem et al., 2014; Tzelepis et al., 2016; T. 

Wang et al., 2014, 2017a). The olaparib drug-gene interaction screens described 

here were performed in triplicate in 15-cm plates and passaged every 3 days, with 

drug added at day 6 and samples collected for sequencing at each passage starting 

at day 12 (Zimmermann et al., 2018). Using the optimized drugZ pipeline, we 

evaluated each time point in the SUM149PT screens. The screen’s ability to resolve 

specific DNA damage response genes increased steadily from day 12 to day 18 

(Figure 6.A–C), highlighting the importance of low-dose drug treatment (e.g., LD20). 

The extended timeframe for the experiment allows greater resolution of negative 

selection hits as they disappear from the population over several doublings.  
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Figure 6. Experimental design effects. A-C) DrugZ performance across different time 

points for SUM149PT olaparib screen. A) Number of raw hits. B) Number of 

annotated DNA damage response (DDR) genes in hits. C −log P values for DDR 

gene enrichment. D-F) DrugZ performance based on varying number of 

replicates. D) Number of raw hits. E) Number of annotated DNA damage response 

(DDR) genes in hits. F) −log P values for DDR gene enrichment. Rep1, 2, 3: all 

combinations of one, two, or three replicates, ± s.d. Mean: comparing mean of drug-

treated samples to the mean of control samples (unpaired approach). 
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Nevertheless, the screens are still quite noisy, necessitating several replicates 

for accurate assessment of drug-gene interactions. The experimental design of these 

screens involved control and drug-treated samples for each replicate, facilitating a 

paired-sample analysis across the three replicates (Figure 7.A). In contrast, an 

unpaired design (Figure 7.A) requires comparing the means (or other aggregate 

metric) of the treated and untreated arms. In our experience, a paired-sample 

experimental design typically results in within-replicate samples clustering together 

(Figure 7.B), suggesting a paired-sample analysis would be more sensitive. Paired-

sample analysis of three replicates in the olaparib screen clearly outperforms one- or 

two-replicate designs (Figure 6.B). Surprisingly, however, the paired-sample 

approach does not appear to offer significant benefits over an unpaired approach: 

when taking the mean fold change across experimental samples and comparing it to 

the mean fold change across control samples (Figure 7.A), the results are nearly 

identical to analysis of three paired samples (Figure 6.D–F). Indeed, treating samples 

as paired or unpaired produced highly correlated results (rho> = 0.96) in all three 

olaparib screens (Figure 7.C-E), and the functional enrichment analysis in 

SUM149PT cells showed virtually no difference when performing paired-sample or 

unpaired-sample analysis (Figure 7.F-H). 
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Figure 7. Paired vs. non-paired approaches in three olaparib screens. A) 

Experimental designs describing paired (top) and unpaired (bottom) experimental 

design and analysis strategy for chemogenetic interaction screens.  B) Clustering of 
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gRNA-level fold changes across replicates shows that within-replicate samples 

correlate more closely than samples with similar treatment. C) Correlation between 

paired samples (control A – treated A, control B – treated B, etc.) vs. non-paired 

(mean (control A, B, C) – mean (drug A, B, C.)) for SUM149PT olaparib screen (rho 

= 0.98). D) Same as in (A) for HeLa olaparib screen (rho = 0.96). E) Same as in (A) 

for RPE1 olaparib screen (rho = 0.98). F-H) Comparison between paired and non-

paired approaches across number of significant genes, DDR genes and normalized 

p-values in SUM149PT olaparib screen.   

 

2.4.3 A general-use algorithm for drug-gene interactions 

To ensure that the drugZ algorithm is not overspecialized for the strong 

chemogenetic profile of PARP inhibitors, we applied it to a separate set of drug 

interaction screens in pancreatic cancer cell lines using the ERK1/2 inhibitor 

SCH772984. Oncogenic mutations in KRAS drive constitutive signaling in the MAP 

kinase pathway and are associated with proliferation and survival signals. Consistent 

with current models of RAS pathway activation, knockout of inhibitor 

target MAPK1 has strong synthetic sick/lethal or negative interactions with ERK 

inhibitor in two of the cell lines, MiaPaca and YAPC (FDR < 0.1; Figure 8.A–D). In the 

third cell line, HPAF-II, the top synthetic interactors were drug 

transporter ABCG2 and MAPK3. Activity of this drug resistance gene may account 

for this cell line’s resistance to ERK inhibition and the lack of other synthetic effectors 

in this screen. Drug transporter ABCC4 is SL in MiaPaca cells, indicating multiple 

routes of drug resistance for this molecule. Ubiquitin ligase adapter KEAP1 is among 

the top suppressors of ERK inhibitor activity in three cell lines (Figure 8.A–
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D). KEAP1 loss of function was identified as a modulator of MAP kinase pathway 

inhibitors in a panel of positive selection screens in multiple cell lines (Krall et al., 

2017), suggesting a context-dependent model for predicting ERK inhibitor activity 

(Figure 8.E). Notably, the ERK inhibitor screens yielded a small number of discrete 

synthetic and suppressor hits, in contrast with the PARP inhibitor screens, which 

showed broad interaction across the HR pathway, confirming the general applicability 

of drugZ in detecting drug-gene interactions. 
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Figure 8. DrugZ effectiveness across diverse screens. A-D) DrugZ-calculated normZ 

score is plotted vs. gene rank for SCH772984 screen in four KRAS pancreatic cancer 
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cells cell lines. Synergistic/SL (red) and suppressor/resistance (blue) interactions at 

FDR < 0.1. E) Network view of ERK inhibitor screens. Red, SL interactions. Blue, 

suppressor interactions. F-H) Glioblastoma cell lines screened for chemogenetic 

interactions with temozolomide (TMZ), as described in (MacLeod et al., 2019). I) 

Pathway-level summary of modifiers of TMZ activity in glioblastoma cells. J) hTERT-

RPE1 cells screened for modifiers of vincristine. K) Experimental design of 

CRISPRi/CRISPRa screens for modifiers of rigosertib, as described in (Jost et al., 

2017). L) DrugZ results of the combined rigosertib screens. Red/blue hits are 

characterized in (Jost et al., 2017). 

We additionally reanalyzed data from a set of temozolomide (TMZ) drug 

modifier screens in patient-derived glioblastoma cell lines (MacLeod et al., 2019). The 

screens clearly indicated SL with the Fanconi anemia complex (Figure 8.F) and 

suppressor activity from the mismatch repair pathway (Figure 8.G-H). Together, 

these results recapitulate the biological drivers of temozolomide: mismatch repair is 

required for temozolomide cytotoxicity (J. Y. J. Wang & Edelmann, 2006), while the 

Fanconi anemia pathway plays a major role in the repair of TMZ-induced damage 

(Chen et al., 2007; Kondo et al., 2011; Yoshimoto et al., 2012) (Figure 8.I). We further 

conducted an independent screen of hTERT immortalized RPE1 epithelial cells to 

determine genetic modifiers of the microtubule stabilizing agent vincristine. Drug 

transporter ABCC1 (encoding multidrug resistance protein-1, or MRP1), a known 

marker for clinical resistance to vincristine (Cole et al., 1992; Godinot et al., n.d.), is 

the top synthetic hit in our screen (Figure 8.J). 

Finally, we reprocessed data from complementary CRISPRi/CRISPRa 

screens for modifiers of rigosertib activity (Jost et al., 2017) (Figure 8.K). As 
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transcriptional activation and repression are expected to show opposite effects in a 

phenotypic screen, we plotted the drugZ results for the CRISPRi screen and the 

CRISPRa screen together (Figure 8.L). The microtubule stabilizing activity 

of TACC3 and destabilizing activity of KIF2C, characterized extensively in (Jost et al., 

2017), are both recovered by drugZ, along with 

tubulins TUBA1B and TUBB4 (Figure 8.L), consistent with rigosertib’s activity as a 

microtubule destabilizing agent. Importantly, these results confirm the applicability of 

drugZ beyond CRISPR KO screens. 

We noted that a small number of genes were unexpected repeat hits across 

several screens using a different drug or small molecule perturbagens with disparate 

mechanisms of action. We screened hTERT-RPE1 cells with gemcitabine, a 

pyrimidine nucleoside analog, and analysis with drugZ reveals a SL interaction with 

deoxythymidylate kinase DTYMK. DTYMK phosphorylates dTMP to dTDP, a key 

step in the synthesis-by-salvage pathway of dTTP (Arnér & Eriksson, 1995) 

(Figure 9.A). However, suppressors of gemcitabine activity 

included NF2, TP53, AXIN1, and other known tumor suppressor genes (Figure 9.A) 

with no known role in nucleotide metabolism. This immortalized epithelial cell line 

carries wildtype alleles of these tumor suppressors, and their KO in a CRISPR screen 

results in cell proliferation more rapid than wildtype cells. This is reflected in the 

essentiality profiles, as calculated by BAGEL (Hart & Moffat, 2016): essential genes 

have positive Bayes Factors, but tumor suppressors show extreme negative scores 

(Figure 9.B). 
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Figure 9. Tumor suppressor genes are frequent drug suppressor hits. A) normZ plot 

hTERT-RPE1 screen for modifiers of gemcitabine activity, colored as in 

Figure 8. B) Gene essentiality of untreated hTERT-RPE1 cells. Purple, essential 

genes. Green, genes whose KO imparts a fitness advantage. C) normZ plot of A375 

melanoma cell line screen for vemurafenib modifiers; data from (Shalem et al., 

2014). D) Gene essentiality scores for A375; data from (Behan et al., 2019). 

 

We hypothesized that such tumor suppressors might be systematic, 

nonspecific hits in drug-gene interaction screens. We re-analyzed other screens to 

understand this behavior across different cell backgrounds. The landmark CRISPR 

screen paper from Shalem et al. (Shalem et al., 2014) includes a screen in BRAF-
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mutated A375 melanoma cells for resistance to vemurafenib and describes the 

discovery of NF2 as a novel suppressor of vemurafenib activity. DrugZ analysis 

confirms NF2 as a strong hit in the screen, along with NF1 and several members of 

the mediator complex (Figure 9.C). Complementary analysis of the gene essentiality 

profile for A375 derived from Behan et al. (Behan et al., 2019)—the latest screens 

from the DepMap project are substantially superior to the first-generation screen 

performed in Shalem et al., as shown by precision-recall analysis (Figure 10.)—

shows that NF2 is the top ranked tumor suppressor in the screen, and furthermore, 

virtually every other vemurafenib suppressor hit shows enhanced cell fitness when 

knocked out (Figure 9.D). Interestingly, we detect MCL1 and EGFR, as well 

as EGFR signal transduction components SHC1 and GRB2, as SL with vemurafenib 

in this screen. Neither hit is reported in the original study, but both MCL1 (Fofaria et 

al., 2015) and EGFR (Prahallad et al., 2012; Sun et al., 2014) have been 

characterized as routes of adaptive resistance to BRAF inhibition in melanoma. 

These findings support the overall quality of the drug-gene interaction screen and our 

analysis of the data. We further note that TP53 and CDKN1A (p21) are the top 

suppressors in the RPE1 vincristine screen (Figure 8.J) and that TP53 is the top 

suppressor in the G472 temozolomide screen (Figure  8.G). G472 cells carry a 

wildtype p53 gene (MacLeod et al., 2019). Collectively these results indicate that 

genes whose KO imparts a growth advantage on cells are recurrent hits in drug-gene 

interaction screens, suggesting a drug-agnostic phenomenon rather than drug-

specific resistance mechanisms. 
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Figure 10. Recall-precision plot 

of gene essentiality screens in 

A375 cells. Raw data was 

processed by BAGEL and 

precision/recall curves were 

generated using gold standard 

essential and nonessential 

genes from (Hart et al., 2017). 

 

2.5 Conclusions 

 Identifying the genetic drivers of drug effectiveness and resistance is critical to 

realize the promise of personalized medicine. Chemogenetic interaction screens in 

mammalian cells using CRISPR KO libraries have so far been primarily used in a 

positive selection format to identify the genes, pathways, and mechanisms of 

acquired resistance to chemotherapeutic drugs. However, negative selection screens 

to identify the underlying architecture of drug-gene interactions have been difficult to 

carry out and to analyze in part due to the lack of robust analytical tools. 

We describe the drugZ algorithm, which calculates a gene-level Z-score for 

pooled library CRISPR drug-gene interaction screens. By taking into account the 

moderate SMF defects associated with many genes involved in drug-gene 

interactions, the drugZ algorithm offers significantly improved sensitivity over 

contemporary analysis platforms. The algorithm was developed to exploit the 

additional resolving power we expected to gain from a paired-sample experimental 

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

A375 Sanger 2019

A375 GeCKO 2014



 48 

design, but surprisingly this has virtually no effect on our results. We demonstrate the 

validity of our hits by showing the strong enrichment for genes involved in the DNA 

damage response in a screen for interactions with the PARP inhibitor olaparib and 

the precise detection of MAPK pathway effectors in an ERK inhibitor screen. We 

further show that both synergistic and suppressor interactions can be identified in the 

same screen, as the previously identified PARP resistance gene TP53BP1 and newly 

characterized SHLD1(formerly C20orf196) are top-ranked suppressors of olaparib 

activity in BRCA1-mutant SUM149PT screens. Moreover, both synthetic 

targets MAPK1/3 and suppressor gene KEAP1are identified in ERK inhibition 

screens. KEAP1 deletion or mutation is frequently found in KRAS-driven lung 

adenocarcinomas and may present an obstacle to ERK inhibitor therapy in these 

tumors. 

Experimental design plays a critical role in the ability to accurately identify 

drug-gene interactions. Negative selection screens for SL interactions require that 

cells be carried long enough for dropouts—typically growth defects rather than full 

synthetic lethals—to rise to statistical significance. Our results, concordant with 

known highly drug-specific differences in effect timing, suggest that there is value in 

collecting multiple time points to ensure that drug activity and genetic interaction are 

detectable and that traditional dose-response curves must be calculated over a time 

course relevant to the screen (e.g., at least two passages or several doublings). 

Copy number amplifications have been widely shown to cause locus-specific, 

but not gene-specific, toxicity in CRISPR KO experiments. This phenomenon can 

lead to false positives in screens for KO fitness defects. However, drug-gene 
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interaction screens measure whether, in the CRISPRko case, a double-strand break 

at a specific locus amplifies or suppresses the activity of a small molecule or other 

perturbagen. Amplification-specific artifacts should, in principle, show no difference 

between treated and control samples and should therefore not be a significant source 

of false positives. However, gRNA targeting amplified loci may rapidly drop out of a 

population of cells under library-induced selection; the absence of these loci at 

experimental end points (as measured by gRNA read counts) could feasibly mask 

the detection of drug-gene interactions, resulting in false negatives. 

Despite these technical idiosyncrasies, chemogenetic interaction screens 

extend the utility of CRISPR genome-scale perturbation screens by enabling the 

systematic survey of the landscape of drug-gene interactions across cancer-relevant 

genetic backgrounds. Understanding this variation may lead to more precise 

therapies for patients as well as the development of synergistic drug combinations for 

genotype-specific treatments. 

2.6 Availability of data and materials 

Project name: drugz 

Project home page: https://github.com/hart-lab/drugz 

Operating system: platform independent 

Programming language: Python 

Other requirements: Python v3.7 or higher; modules numpy, scipy, pandas. 

License: MIT 

https://github.com/hart-lab/drugz
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No restriction for non-academic use 

All software described in this manuscript, as well as all data files used for analysis, 

are available (under the MIT license) at the Hart Lab github site and figshare: 

https://github.com/hart-lab/drugz 

https://github.com/hart-lab/druggs 

https://figshare.com/projects/DrugZ_software_from_the_Hart_Lab/65582 

 

2.7 DrugZ web-based user interface 

In addition to the above-described software, I have created a complementing 

user-friendly interface. This application was inspired by a wide use of drugZ algorithm 

(>10000 article accesses and ~50 citations in the past two years). Even though the 

use of drugZ is simple (tutorial on how to use it provided in the github repository linked 

above), some of the users experienced difficulties such as setting up the virtual 

environment, modules/packages versions’ discrepancy, unfit input files, etc. 

Therefore, the goal of web-based drugZ application is alleviate some of these 

difficulties and make the use of drugZ even more accessible. The application is 

available on https://drugz.hart-lab.org. 

DrugZ application is based on the Dash Enterprise, which is an open-source 

python framework created by Plotly for creating interactive web applications 

(https://plotly.com/dash/). The application layout is composed of three divisions or 

https://github.com/hart-lab/drugz
https://github.com/hart-lab/druggs
https://figshare.com/projects/DrugZ_software_from_the_Hart_Lab/65582
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containers (Figure 11.): title and the purpose of software, user input and parameters, 

and analysis results. The first step for users is to upload their file, after which they will  

get a confirmation message for a successful upload if the file is satisfying the criteria 

that the rows are unique guides, columns are different samples, and values are the 

raw read counts of a guide construct. The next step is to select the comparison 

approach for comparing the guide abundance between the control and treatment 

samples. The two approach types, unpaired and paired, are characterized above 

(Figure 7.A). This is followed with selecting control and treatment samples. Lastly, 

users can specify the size of sliding window used to estimate the empirical Bayes 

variance. Once all parameters are specified, users can initiate the analysis with the 

‘Run’ button. After analysis is completed, users can download the results as a tab 

separated file by clicking on “Download results” button, and as scatter plot with the 

highlighted hits under FDR<0.1 threshold (Figure 12.). 
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Figure 11. DrugZ dash application with outlined divisions. 

 

 

Figure 12. Example of downloadable results of drugZ analysis. 
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Chapter 3: Predicting synthetic lethality 

 

3.1 Background 

3.1.1 First observations of genetic interaction phenomenon 

The term epistasis was defined by William Bateson over a hundred years ago, 

inspired by the observation that genes frequently interact with one another, distorting 

simple Mendelian ratios and sometimes leading to novel phenotypes. Even before 

the official term was coined, the phenomenon of gene interaction was observed in 

the chicken combs study conducted by Bateson and Punnet (Bateson & Punnett, 

1905). They noticed that the single comb type was produced less frequently than the 

other comb types in their cross experiments and was difficult to accommodate with 

the simple Mendelian genetic system, which is based on a belief that a trait or a gene 

acts independently in its actions in an individual's genome (Castle, 1903; Mendel, 

n.d.). Using Punnet square, which describes all possible combinations of gametes, 

they concluded that comb inheritance could be described by Mendelian law of 

segregation and that the single comb phenotype appears only in the rare double-

recessive homozygotes. Even though Bateson coined the term which describes this 

phenomenon, there has been very little use of the word epistasis in the first few 

decades of the 20th century, even by Punnet and others close to Bateson and 

Mendelian segregation (Phillips, 1998). However, in the second half of the century, 

the concept of epistasis and its analysis made a comeback not only as a description 

of segregation ratios but also as the analysis of gene function and means of decoding 

genetic systems (Phillips, 2008).  

Mendelian and Biometrical schools of genetics had different definitions of 

epistasis (Phillips, 1998) until R. A. Fisher showed analytically that the Mendelian 
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segregation was compatible with the Biometrician laws of heredity (Fisher, 1918), 

establishing the field of quantitative genetics. After noticing that the reason for a 

difference between Mendelian and statistical formulations of epistasis was the 

limitations in language for describing gene interactions, and that simply detecting 

interaction and giving it a general name is insufficient for it to be broadly used and 

applicable, the classification of genetic interactions and corresponding 

characterizations started appearing (Fenster et al., 1997; Whitlock et al., 1995).  

For example, SL interactions, despite the thought that they could be too rare 

to be significant (Temin et al., 1968), nowadays are widely studied and of great 

interest for therapeutical purposes in oncology. Synthetic lethality is a phenotype first 

observed in Drosophila when two (or more) genes taken separately are not lethal to 

homozygotes but become lethal when combined by crossing over (Bridges, 1944; 

Dobzhansky, 1946). In a cellular context, SL interactions are genetic events in which 

the deletion/change of both genes leads to a cell lethality, whereas deletion of one of 

these genes results in cell viability. The rest of this chapter will focus on SL 

interactions in cultured human cells. 

 

3.1.2. Genetic interactions networks 

Genetic interactions refer to the unexpected phenotype or a phenotype 

deviated from the expected phenotype defined as a combination of individual 

mutations. In addition to providing insights about gene functions, genetic interactions 

are thought to underlie diverse aspects of biology, including the evolution of sex, 

speciation, complex diseases (Altshuler et al., 2008; Phillips et al., 2000) and were 

shown to play an important role in understanding the hereditability (Phillips, 2008). 
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The advent of high-throughput genetic screening and the systems biology 

approaches reinvigorated genetic interactions in a more quantitative manner, leading 

to the mapping of genetic interaction networks, which were/are instrumental for 

explaining and understanding the modularity of a cell (Baryshnikova et al., 2013; 

Beltrao et al., 2010; Boucher & Jenna, 2013; Costanzo et al., 2019; Domingo et al., 

2019; Mair, Moffat, et al., 2019). The biggest limitation for a systematic studying of 

genetic interactions is the scale. Given an n number of genes in a genome, to 

examine all possible genetic interactions between every gene pair, means the total 

number of genetic interactions is n * (n-1). If the reciprocal pairs are omitted, then the 

total number of interactions is (n * (n-1))/2. Therefore, it becomes an extreme task to 

test all interactions when we are looking at a genome with thousands of genes. For 

example, a yeast genome with ~6000 genes equates to ~18 million genetic 

interactions and a human genome with ~18000 genes means ~180 million 

interactions (ignoring the reciprocal pairs). The most comprehensive studies of 

mapping genetic interactions network were first done in the Saccharomyces 

cerevisiae yeast model system (Costanzo et al., 2010a, 2016, 2019) using either 

genome-wide collections of defined mutants of gene perturbation systems (e.g. 

synthetic genetic arrays). This work revealed functional map of the cell in which genes 

with similar genetic interaction profiles cluster together, and was seminal for 

understanding genetic interactions, and functional modules. Similar efforts were 

applied to Drosophila cells (Fischer et al., 2015) and Schizosaccharomyces pombe 

yeast (Roguev et al., 2007). However, translating these undertakings into human cells 

is not a direct approach. When assembling the functional map of a yeast cell genetic 

interaction profiles were used to infer functional interactions, whereas in such studies 

in human cells these networks are built from gene fitness profiles. Assaying digenic 
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perturbations in human cells is not scalable on a genome-wide level even with the 

CRISPR technology, which offers the most robust and scalable method for gene 

editing in human cells. Therefore, few groups including us in Hart lab have used 

indirect methods (Boyle et al., 2018; E. Kim et al., 2019a; Rauscher et al., 2018; 

Wainberg et al., 2021; T. Wang et al., 2017b) to derive functional interactions from 

publicly available CRISPR KO screens data from nearly ~1000 cancer cell lines 

(Broad Institute, 2019; Sanger Institute, 2019). These methods have been 

instrumental in expanding our knowledge about biological processes, pathways and 

functional modules making the hierarchical assembly of a cell. But these approaches 

do not provide direct information about genetic interactions in human cells.  

 
 

3.1.3 Combinatorial CRISPR screens 

 Genetic interactions in human cells were exploited with CRISPR combinatorial 

screens in the last decade as well. This was facilitated using CRISPR systems with 

two Cas9 nucleases and two promoters (e.g., hU6 and mU6), in which case each 

guide has an independent association, therefore avoiding unequal targeting. 

Additionally, there are other systems such as single Cas9 with two copies of same 

promoter, or a single Cas9 with two different promoters (competitive association). The 

most current multiplex screening is based on enCas12a platform, whose major 

advantage over Cas9-based multiplex systems is that a guide pair can be synthesized 

in a single construct, allowing one-step library design. The research produced by 

these multiplex targeting systems has shown potential to identify context-specific 

genetic interactions, candidate combinatorial drug treatments and potential drug 

targets (Boettcher et al., 2018; Dede et al., 2020; DeWeirdt et al., 2019, 2020; Diehl 
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et al., 2021; Han et al., 2017; Horlbeck et al., 2018; Ito et al., 2021; Lenoir et al., 2021; 

Najm et al., 2018; Parrish et al., 2020; Shen et al., 2017, 2017; Thompson et al., 

2021; Wong et al., 2016). However, the gold standard rules around scoring and 

characterizing genetic interactions are still lacking. The most interesting and widely 

studied genetic interactions are SL interactions. These are interactions in which the 

deletion/change of both genes leads to cellular or organismal death, whereas a 

deletion of one of these genes does not. However, when we looked at few of these 

CRISPR-mediated genetic interactions studies (Table 3.1), we noticed that very few 

SL interactions have been reproduced across multiple studies and many appear 

highly context specific. Moreover, even when it comes to the intersection of tested 

pairs across these different studies, there are not many gene pairs that have been 

tested in more than two studies (Figure 3.1). Hence, the major drawback is the lack 

of gold standards SLIs, and a baseline probability of being a GI for every gene pair.  

Study Background Target Screening platform 

Han et al. 2017 K562 
207 genes 

drug targets 

Combinatorial Cas9 KO 

(mU6 + hU6) 

Najm et al. 2018 
A549, A375, Meljuso, 

 7860, OVCAR8 

158 genes 

apoptosis and DDR 

Orthogonal Cas9 KO 

(S. aureus + S. pyogenes) 

Horlbeck et al. 2018 K562, Jurkat 
472 genes  

moderate fitness defect 
Cas9 KO + CRISPRi 

Aregger et al. 2020 HAP1 
6 query genes (lipid 

metabolism) vs. all  
Cas9 KO isogenic screens 

Pournatzis et al. 2020 HAP1, RPE1 672 paralogue pairs Cas9 + Cas12a KO 

Dede et al. 2020 A549, HT29, OVCAR8 403 paralogue pairs enCas12a multiplexing 

Lenoir et al. 2021 MOLM13, NOMO1 
8 query (lipid metabolism)  

vs. 100 array genes  
enCas12a multiplexing 

Doench lab unpublished A375, OVCAR8 
20 apoptotic genes 

50 DDR genes 
enCas12a multiplexing 
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Table 1. Selected existing studies of CRISPR-based genetic interactions in human 

cells used in the training process. 

Figure 13. Intersection of tested pairs across selected existing CRISPR-based  

genetic interactions studies. Horizontal bars on the left indicate the size of a set, while 

the vertical bars on top represent the intersection size. For most intersections the 

number of overlapping tested pairs is below 10, whereas intersections between 

Horlbeck et al. and Han et al., Njam et al. and Han et al., Dede et al. and Pournatzis 

et al. have 35, 41, and 61 overlapping pairs, respectively. 

 

 The rest of this chapter will focus on describing the computational approach I 

am proposing to address the mentioned drawback. Probabilistic prediction of 

synthetic lethality uses Bayes theorem to make predictions and is trained on data 

from existing CRISPR-based genetic interaction screens (prior information) and other 

functional genomics data derived from essentiality, expression, protein, and genomic 

neighborhood concepts (conditional information).  
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3.2 Methods  
 

3.2.1 Collecting and combing data from existing CRISPR-mediated genetic 

interactions screens 

 The first step was to collect the data from CRISPR-mediated genetic 

interaction screens (Table 1.). The thing that made this difficult was the fact that 

almost every study had a different method for scoring genetic interactions making it 

more challenging for unanimous hit calling (Table 2., Figure 15.A). 

Study Scoring method 

Han et al. 2017 
Normalizing residual effects to control guide phenotypes, as well as 

to the phenotypes of similar guides using a moving average across bins 

Najm et al. 2018 dLFC = observed - expected 

Horlbeck et al. 2018 Quadratic fit between single and double KO phenotypes 

Aregger et al. 2020 LOESS regression between WT and KO screen pairs 

Pournatzis et al. 2020 
Guide orientation-based scoring between observed  

and expected KO phenotypes 

Dede et al. 2020 dLFC = observed - expected 

Lenoir et al. 2021 
Linear regression fit between the single  

and double KO phenotypes 

Doench lab unpublished dLFC = observed - expected 

 

Table 2. Scoring methods for genetic interactions used in the studies in Table 1.  

 
In yeast genetic interactions studies, genetic interactions are quantified as a 

difference between observed and expected DMF, where expected DMF is product of 

SMFs. Applying this this scoring approach to genetic interactions generated through 

CRISPR screens means operating in log2 fold change (LFC) space, which is the 

fitness quantification from CRISPR screens (Figure 14.). Therefore, SMF is the mean 

LFC of control guides targeting a single gene, expected DMF is the sum of two SMFs, 

and observed DMF is the mean log fold change of dual-targeting constructs. Delta 

log fold change (dLFC) is the difference between observed and expected LFC and is 
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used as a final genetic interaction score. To combine the data from previously 

mentioned studies (Table 3.1), We collected their raw data from original publications 

(Aregger et al., 2020; Dede et al., 2020; Gonatopoulos-Pournatzis et al., 2020; Han 

et al., 2017; Horlbeck et al., 2018; Lenoir et al., 2021; Najm et al., 2018) and applied 

dLFC as a genetic interaction scoring method for unanimous hit definition (Figure 

15.B). To normalize these scores even further and place them onto same scale, dLFC 

scores were converted to Z score (Figure 15.C), by truncating the top and bottom 

2.5% of dLFC scores. After normalization and transformation, we ended up with 

~200000 gene pairs, which then were grouped based on the empirical rule of two 

standard deviations (std), where 95% of data falls within two std from the mean z 

score dLFC, and 5% outside of it, 2.5% in both positive and negative directions 

(Figure 16.). As mentioned earlier, the interactions of interests in this project are 

negative or SL interactions, so the following steps and predictions are based only on 

these two groups: the negative and no interaction groups. 

  

Figure 14. Scoring genetic interactions as a 

difference (dLFC) between observed and 

expected DMFs. SMF is the mean log fold 

change of control guides targeting a single 

gene. Expected DMF is the sum of SMFs. 

Observed DMF is the mean log fold change of 

guide pairs targeting gene pair of interest. 

Depicted above is an example of SL 

interaction scored with the dLFC method. 
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Figure 15. Genetic interactions Scores. A) Scores calculated using the methods 

presented in the original studies (Aregger et al., 2020; Han et al., 2017; Horlbeck et 

al., 2018; Lenoir et al., 2021). B) Genetic interaction scores produced with the dLFC 

method. C) Z-score transformation of dLFC scores. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 16. Grouping of genetic interactions in the training set. After aggregating 

interactions from the different studies there were grouped into three groups based on 

the z-score’s distribution layout: 1) negative or SL interactions group (blue), to the left 

of mean – (2 * standard deviation), 2) no interaction group (grey), within the 2 

standard deviations from the mean on both side, and 3) positive interactions group 

(orange), to the right of mean + (2 * standard deviation). The bars and points in 
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boxplot are colored based on these three groups. The positive interactions group is 

not used in the further analysis.  

 

3.2.2 Other functional data types 

 Conditional information which is integrated with the processed and normalized 

genetic interactions scores comes from four categories, or genetic concepts, 

essentiality, expression, protein or genomic location neighborhood and sequence 

dependent features. In total, thirty features are collected from publicly available 

databases and studies, and some are calculated from existing feature or combination 

of features (Table 3.). 

Category Features (n = 30) Source 

Essentiality 

Coessentiality DepMap 

Number of total coessentiality interactors Coessentiality 

Number of shared coessentiality interactors Coessentiality 

Mean essentiality of shared coessentiality interactors 
Coessentiality and 

DepMap 

Percent of shared coessentiality interactors essential in 90% 
cell lines (DepMap) 

Coessentiality and 
DepMap 

Mean BF score for shared coessentiality interactors 
Coessentiality and 

DepMap 
 

  

Expression 

Coexpression CCLE database 

Number of total coexpression interactors Coexpression 

Number of shared coexpression interactors Coexpression 

Mean essentiality of shared coexpression interactors 
Coexpression and 

DepMap 

Percent of shared coexpression interactors essential in 90% 
cell lines (DepMap) 

Coexpression and 
DepMap 

Mean BF score for shared coexpression interactors 
Coexpression and 

DepMap 
 

  

Protein and 
genomics  

neighborhood 

STRING; protein-protein interactions STRING database 

Number of total protein-protein interactors PPIs 

Number of shared protein-protein interactors PPIs 

Mean essentiality of shared protein-protein interactors PPIs and DepMap 

Percent of shared protein-protein interactors essential in 
90% cell lines (DepMap) PPIs and DepMap 

Mean BF score for shared protein-protein interactors PPIs and DepMap 
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huMap - protein complexes Drew et al. 2021 

HuRI - binary interactome Luck et al. 2020 

HumanNet - functional gene network 
C. Y. Kim et al. 

2021 

Colocalization Thul et al. 2017 

Shared GO terms GO database 

Shared chromosome Ensembl 

Shared strand Ensembl 
 

  

DNA 
sequence 

Shared family Ensembl 

Shared domains Ensembl 

Percent sequence identity Ensembl 

Mean GC content Ensembl 

Mean age Ensembl 

 

Table 3. Features acquired from four genetic concepts. Features’ categories, 

descriptions, and sources from which they were obtained are provided in the 

corresponding columns.  

 

Essentiality concept 

 Essentiality is a fundamental genetic concept, aiming to identify and 

characterize genes that are necessary for the survival of an organism. In this study 

our focus is on human cells as a model system, therefore essentiality concept in this 

instance aims to characterize genes indispensable for cellular viability and 

proliferation. Similarly, coessentiality, which is one of the features used, is defined as 

similarity, quantified by Pearson correlation coefficient (PCC), between the fitness or 

essentiality profiles of two genes across a multitude of molecular contexts. The same 

approach as described in the previous study from our lab defining the coessentiality 

concept by Kim et al. (E. Kim et al., 2019b) was used to acquire the coessentiality for 

all gene pairs across ~800 CRISPR-Cas9 KO screens carried in human cancer cell 
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lines. Raw read counts data and relevant mapping files such as cross reference of 

guides to genes, replicates to cell lines, and cell line information were obtained from 

the DepMap database (https://depmap.org/portal/, AVANA 2020Q2) (Broad Institute, 

2019; Sanger Institute, 2019). Next, we filtered out the data and kept only the protein-

coding genes, annotated using HUGO Gene Nomenclature Committee (HGNC) 

(Tweedie et al., 2021) and Consensus coding sequence database (CCDS) (Pujar et 

al., 2018). sgRNAs targeting multiple genes were discarded as well to avoid the 

correlated variation between fitness profiles driven by the depletion of the same 

sgRNA. Filtered read counts were then subjected to unsupervised copy number 

correction of gene-independent responses via CRISPRcleanR (Iorio et al., 2018) 

algorithm, which also calculates sgRNAs log2 fold change. The resulting log2 fold 

changes are processed with our BAGELv2 (E. Kim & Hart, 2021) algorithm to 

calculate an essentiality score for each genes. After essentiality classification, we end 

up with a matrix where columns are cell lines, rows are genes, and values are Bayes 

factors (BFs) of essentiality scores, where negative BF demonstrates non-essential 

genes and positive BF indicates essential genes. Ultimately, we calculate the 

pairwise Pearson correlation of KO fitness profiles resulting in a list of gene pairs and 

corresponding PCCs or coessentiality scores. Additionally, few other features were 

derived from coessentiality and AVANA dataset (Table 3. Category: Essentiality). 

Number of total interactors is the union of all gene1 and gene2 coessentiality 

interactors, where a coessentiality interaction is instance where gene pair has a 

coessentiality PCC > 0.3. Similarly, the number of shared interactors is the number 

of genes that have a coessentiality interaction (PCC > 0.3) with both gene1 and 

gene2, or an intersection of gene1 and gene2 interactors. Mean essentiality of shared 

coessentiality interactors, where essentiality for each interactor is calculated as the 

https://depmap.org/portal/


 66 

percentage of cell lines (in AVANA dataset from DepMap, in which it is essential (BF 

> 10). Percent of shared coessentiality interactors essential in 90% cell lines 

(DepMap) and mean BF score for shared coessentiality interactors were also used 

as functional similarity features. The features calculated from coessentiality and 

DepMap data were inspired by the Kegel et al. work (De Kegel et al., 2021), in which 

they exploit a set of similar features to predict synthetic lethality between paralog 

pairs in cancer cell lines.  

 

Expression concept 

 Gene expression is a regulated process by which the gene information is 

converted into a functional product, or a protein. The TPM RNAseq expression data 

for the same set of cell lines as in DepMap AVANA dataset was obtained from Cancer 

cell line encyclopedia (CCLE) database (https://sites.broadinstitute.org/ccle/). 

Expression based features; coexpression, number of total and shared coexpression 

interactors, mean essentiality of shared coexpression interactors, percent of shared 

coexpression interactors, percent of shared coexpression interactors in 90% cell 

lines, and mean BF score for shared coexpression interactors were calculated using 

the same processes and thresholds as in the above-described essentiality-based 

features.  

 

Protein and genomic neighborhood 

 Protein-protein interactions (PPIs) capture physical connections between gene 

products, and as such are relevant for mapping the network of cellular functions 

(VanderSluis et al., 2018), have been shown as successful predictors of both yeast 

and human genetic interactions (De Kegel et al., 2021; Lord et al., 2020; Madhukar 

https://sites.broadinstitute.org/ccle/
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et al., 2015). PPIs and corresponding confidence scores were obtained from the 

STRING database (Szklarczyk et al., 2021). These confidence scores are not the 

quantification of the strength or the specific of an interaction, rather they are 

measurement of how likely the STRING interprets an interaction as a true PPI given 

the evidence. The confidence scores range from 0 to 1, where 1 is the highest 

confidence. The score of 0.4, which is defined as medium confidence score by the 

STRING, was used to binarize the PPIs data and generate other features as in 

essentiality and expression concepts (number of total and shared protein-protein 

interactors, mean essentiality of shared protein-protein interactors, percent of shared 

protein-protein interactors, percent of shared protein-protein interactors in 90% cell 

lines, and mean BF score for shared protein-protein interactors). Additionally, the 

reference map of the human binary protein interactome (HuRI) (Luck et al., 2020), 

and the map of human protein complexes (huMap) (Drew et al., 2021) were used as 

features characterizing PPIs and protein complexes. Given the fact that genetic 

interactions were used to infer functional interactions in yeast (Costanzo et al., 2010a, 

2016, 2019), probabilistic network of functional interactions in human (C. Y. Kim et 

al., 2022, p. 3) was used as another feature that could be a predictor of genetic 

interactions in human.  

 In addition to protein neighborhood-based features, we have utilized few 

features stemming from genomic neighborhood or location: colocalization (Thul et al., 

2017), shared chromosome, shared strand, and shared gene ontology (GO) terms – 

indicating whether both genes in a gene pair share subcellular locations, 

chromosome, strand, and GO terms. Chromosome and strain features were obtained 

from Ensembl database (https://useast.ensembl.org/index.html). GO terms for each 

gene were collected from GO database (http://geneontology.org), and to determine 

https://useast.ensembl.org/index.html
http://geneontology.org/
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whether the genes in a pair have any terms in common we looked at the intersection 

of two genes’ terms. 

 

Sequence concept 

 Features in sequence category were obtained from Ensembl database. Mean 

age was calculated as a mean of gene1 and gene2, two genes forming a gene pair. 

Similarly, mean genomics GC content was calculated as a mean of GC contents from 

gene1 and gene2. Percent sequence identity refers to a quantitative measurement of 

the similarity between the DNA sequences of two genes. Two other features that 

measure sequence-based similarities are shared gene family and shared domains, 

that is whether genes in a gene pair belong to the same gene family and if they have 

a shared domain(s).  
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Figure 17. Distributions of continuous features. Shown are distributions for 24 

continuous features, where color coding is based on feature’s category, and hatching 

is indicative of genetic interaction groups.  
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3.2.3 Encoding the features 

 The set of acquired features consists of 6 binary and 24 continuous features 

(Figure 17.). The expectation was to see the difference in distribution between the 

two genetic interaction groups, no interactions and negative or SL interactions 

groups. However, for most features there is no significant difference or trend between 

the two genetic interaction groups. To make these continuous features simpler and 

model friendly we have utilized four encoding approaches to either binarize the 

features or bin their values (Figure 18.). Mean GC content, number of total, and 

number of shared coessentiality, coexpression, and protein-protein interactions, were 

encoded using the intersection of two distributions defined by genetic interaction 

groups as a threshold for binarizing the values. For features which had bimodal or 

multimodal distributions (percent of shared coessentiality, coexpression, and protein-

protein interactors essential in 90% of AVANA cell lines, mean essentiality of shared 

coessentiality, coexpression, and protein-protein interactors, mean age, and 

sequence identity), the minima of those distributions were used as a threshold for 

binarizing the values of those features. For coessentiality and coexpression features, 

we sorted the values in a descending order, and organized the values into equal-

sized bins. The mean of values in each bin was used as a final quantification of that 

bin. Therefore, coessentiality and coexpression features are transformed into 20 bins, 

where each bin had a unique value.  Finally, the fourth encoding approach is based 

on literature-defined thresholds, for example BF = 10 was used to defined 

essentiality, a threshold defined by our lab and widely used by other groups in the 

fields, and confidence score = 0.4 for PPIs, defined by STRING databased as a 

medium confidence level, meaning that pairs with confidence scores => 0.4 were 

considered a true PPI.  
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Figure 18. Encoding approaches. The four approaches used to encode the features 

are 1) intersection of two distributions (genetic interactions groups), 2) minima of 

bi/multimodal distributions, and 3) literature-based threshold are used as thresholds 

for binarizing  features’ values, lastly 4) sorting the values in descending order, 

organizing them in equal-sized bins and assign the mean of the values in a bin as a 

representative value of that bin, meaning that each bin would in the end have one 

value. Under each approach, features which were subjected to it are indicated.  
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3.2.4 Odds ratios (ORs) and likelihood 

 After feature processing and transforming, the next step was to quantify the 

predictive power of each feature using the odds ratio. For every feature we create 

equivalent to confusion matrix (Table 4.) from which we calculate the log2 of odds 

ratio (LOR) (Equation 1.), which is the log2 ratio of feature’s probabilities given the 

group of genetic interaction: no interaction or negative interaction / synthetic lethal. 

For a feature whose values were organized into bins, LOR score is calculated for 

each bin, whereas binary features have only one LOR score. The LORs for all 

features are aggregated to quantify the overall likelihood (Equation 2.) for a gene pair 

belonging to one of the genetic interaction groups. 

 Feature yes Feature no 

Negative of SL interaction (GI yes) a b 

No interaction (GI no) c d 

 

Table 4. Matrix for calculating feature's LOR. Feature yes is the number of 

instances/pairs for which there is a value of that features characterizing that pair. 

Feature no, is difference between the number of all observations/pairs and feature 

yes numbers. A is the number of pairs that are negative interaction and for which we 

have additional support from the feature, B is the number of negative interaction pairs 

for which there is no additional support from the feature, C is the number of pairs with 

no interaction for which there is additional knowledge from the feature, and lastly, D 

is the number of no interaction pairs with no knowledge from the feature. 

 

Equation 1.  𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐿𝑂𝑅 =  log2 (
𝑃(𝐹|𝐺𝐼𝑦𝑒𝑠)

𝑃(𝐹|𝐺𝐼𝑛𝑜)
) =  log2(

𝑎

𝑎+𝑏
𝑐

𝑐+𝑑

) 

Equation 2.  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  ∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐿𝑂𝑅𝑖
30
𝑖=1  



 73 

Equation 3.  𝑃𝑟𝑖𝑜𝑟 𝐿𝑂𝑅 =  log2(
𝐺𝐼𝑦𝑒𝑠

𝐺𝐼𝑦𝑒𝑠+𝐺𝐼𝑛𝑜
) 

Equation 4.  𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐿𝑂𝑅 = 𝑃𝑟𝑖𝑜𝑟 𝐿𝑂𝑅 + 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  

                           𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
2𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐿𝑂𝑅

(1 + 2𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐿𝑂𝑅)
 

 
 

 3.2.5 Bayes theorem-based prediction of synthetic lethality 

 The synthetic lethality predictions are based on the Bayes theorem which 

states that the posterior probability of a random event or an uncertain proposition is 

the conditional probability given the relevant evidence or background. Similarly, in 

the logarithmic space, posterior odds ratio is the sum of likelihood and prior odds 

ratio. Prior odds ratio or prior probability represents quantification of knowledge about 

a data object or an observation before some further evidence is considered. Prior 

odds ratio of a gene pair having a SL interaction is calculated as log2 of the ratio of 

two between negative or SL interactions (defined by a z-score threshold) and all 

interactions used in the model training (interactions in both groups, SL and no 

interaction groups) (Equation 3.). Given the likelihood (Equation 2.) and prior odds 

ratio we calculated the posterior odds ratio and posterior probability (Equation 4.) on 

a gene pair level. The magnitude of difference between posterior odds ratio and 

probability distributions of two genetic interaction groups was quantified with t-test p-

value and Cohen-d statistics (Figure 19.) (used function: sklearn.stats.ttest_indv, 

Scipy Python library). The smaller the p-value and the greater the Cohen-d the 

greater the magnitude of difference between two groups. 
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Figure 19. Distributions of posterior odds ratios and probability. Box plots are color 

coded based on genetic interactions groups, no interactions and SL(SL) interactions. 

The statistics (p-values and cohen-d values) is based on the independent samples. 

 

3.2.6 Cross-validation  

 To avoid overfitting, we utilized the k-folds cross-validation method to partition 

the available data into train and test sets. Function 

sklearn.model_selection.cross_val_score(cv=5) was used. The ‘cv’ parameter 

determines the cross-validation splitting strategy, meaning it split the dataset into k 

(5 in our case) consecutive folds (without shuffling by default). Each fold is then used 

once as a test set while the k - 1 remaining folds are used as the training set. 

 

3.2.7 Feature importance and selection methods 

Quasi-constant features  

 Quasi-constant features are the features that are almost constant. These fe

atures have the same values for a very large subset of the outputs, therefore wouldn

’t be very useful for making predictions, because they don’t offer sufficient variance. 
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When it comes the variance of quasi-constant features, the rule of thumb is to remov

e features that have more than 99% similar values for the output observations. The r

emoval of quasi-constant features was done using sklearn.feature_selection.Varianc

eTreshold(threshold=0.01) function. The ‘threshold’ parameter of 0.01 means that if t

he variance of the values in a column is less than 0.01, remove that column. The fea

tures which had a variance greater than 0.01, and therefore were removed from the 

Naïve Bayes model are HuRI - binary interactome, Colocalization, Percent sequenc

e identity, HumanNet - functional gene network, Shared family, Shared domains, Me

an age, Shared chromosome, Shared strand, Number of shared_coexpresion intera

ctors, Percent of shared protein-protein interactors essential in 90% cell lines (AVAN

A), Mean BF score for shared protein-protein interactors, and Mean BF score for sh

ared coessentiality interactors.  

 

Shapley additive explanations (SHAP) method 

 Shapley value is a concept stemming from the game theory (S. Lundberg & 

Lee, 2017; S. M. Lundberg et al., 2020). In a game, two or more players work togeth

er to achieve a goal. They each do their part, like a team. The Shapley value is the a

verage expected contribution of a player after all possible combinations have been c

onsidered. Say there are two players in the game. They each have a role to play, an

d they each can contribute to the outcome. The Shapley value helps to determine ho

w much each player gets paid for contributing to the outcome, or what the outcome i

s. Therefore, applying Shapley values towards interpreting the machine learning mo

dels provides an explanation for how much each feature contributes to the model’s p

redictions. We used the shap.KernelExplainer() function, from SHAP Python packag

e (https://shap.readthedocs.io/en/latest/index.html), with our Naïve Bayes to explain 

https://shap.readthedocs.io/en/latest/index.html
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features’ contributions. The features are ranked in descending order based on the c

omposition ratio or individual feature’s contribution to the model’s explainability. The 

first 15 features cumulatively explain 85% of the model’s predictions.  

 

Removing highly correlated features 

 Highly correlated features are features with high correlation and have almos

t the same effect on the dependent variable. So, by dropping the features with high c

orrelation, we can import storage and computational speed performance. To achieve 

this we used pandas.DataFrame.corr(method=’pearson’) function to calculate the pa

irwise Pearson correlation between columns (i.e. features), and lastly we removed th

e features that the PCC > 0.5. This threshold was defined based on the distribution o

f all PCCs (the start of right tail). Features removed using this method are Percent s

equence identity, Shared domains, Mean essentiality of protein-protein interactors, P

ercent of shared protein-protein interactors essential in 90% cell lines (AVANA), Me

an BF score for shared protein-protein interactors, Mean essentiality of coessentialit

y interactors, Percent of shared coessentiality interactors essential in 90% cell lines (

AVANA), Mean BF score for shared coessentiality interactors, Mean essentiality of c

oexpression interactors, Percent of shared coexpression interactors essential in 90% 

cell lines (AVANA), Mean BF score for shared coexpression interactors, Total numb

er of coexpression interactors, and Number of shared coexpression interactors.  

 

3.2.8 Models and corresponding parameters 

For every model briefly explained below, 30 curated features were used as 

input or predictor features, and binarized z-score (based on the empirical rule of 2 

standard deviations) as a target variable (1 = SL interaction, and 0 = no interaction). 
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Naïve Bayes (NB) 

 The NB classifier is based on Bayes' theorem and the premise of predictor 

independence. The NB model is simple to construct and does not require iterative 

parameter estimates, making it ideal for large datasets. The NB is commonly used 

because it outperforms more complex classification algorithms while being very 

simple and easier to interpret than many other algorithms. In our case, the prior 

probability was calculated as a ratio of 1) SL interaction group and 2) a sum of SL 

and no interaction groups. The likelihood was an aggregation of all 30 features’ 

log2odds ratios. The posterior probability, the combination of the prior probability and 

the likelihood, with different thresholds was used to evaluate the predictions against 

the ‘ground truth’ which was the binarized z-score.  

 
 
Logistic regression (LR) 

 LR classifier was run using the sklearn.linear_model.LogisticRegression() 

function with the default parameters. 

 
 
Random Forest (RF) 

 RF classification was performed using 

sklearn.ensemble.RandomForestClassifier(n_estimators = 600, random_state = 8, 

max_features = 0.5, max_depth = 3, min_samples_leaf = 10) function, where 

n_estimators is a number of tress in the forest, random_state controls the 

randomization of an algorithm, max_features is the quantification of features to 

consider when looking for the best split (float value represents the fraction of 

features), max_depth is the maximum depth of the tree or a measure of how many 
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splits a tree can make before coming to a prediction, and min_samples_leaf is the 

minimum number of samples required to be at a leaf node.  

 
 
Decision tree classifier (DTC) 

 DTC was done using sklearn.tree.DecisionTreeClassifier(), using the default 

samples.  

 

Multilayer perceptron classifier (MLPC) 

 MLPC was performed using 

sklearn.neural_network.MLPClassifier(hidden_layer_sizes=100, activation='identity', 

solver='lbfgs', learning_rate='adaptive'), where hidden_layer_sizes parameter 

represents the number of neurons in the hidden layer, activation identifies which 

activation function is used for the hidden layer, solver is the solver function for weight 

optimization, and lastly learning_rate is the rate for updating weights.  

 

3.2.9. OPTICS (Ordering points to identify the clustering structure) clustering  

 The list-like matrix of gene pairs and corresponding predicted SL probabilities 

was transformed into an all-by-all matrix using the pandas’ df.pivot() function. 

OPTICS clustering was applied on the all-by-all matrix using the 

sklearn.cluster.OPTICS(max_eps = 0.01, min_samples=100) function, where 

max_eps is the maximum distance between two samples for one to be considered as 

in the neighborhood of the other, min_samples parameter is the number of samples 

in a neighborhood for a point to be considered as a core point. OPTICS does not 



 79 

assign cluster memberships to data points, but it rather stores the order in which the 

points are processed.  

 

3.2.10. Computational resources 

 Calculations and modeling were performed using Python 3.8.10, and 

complementing libraries, for data manipulation and statistical functions: pandas 1.2.1, 

numpy 1.20.1, sklearn 0.24.1, figure generation: seaborn 0.11.1, matplotlib 3.3.4, and 

web app development: dash 2.0.0, and plotly 5.2.1. The properties for the used 

computational server are:  

Architecture:                 x86_64 

CPU op-mode(s):                32-bit, 64-bit 

Byte Order:                  Little Endian 

Address sizes:                 48 bits physical, 48 bits virtual 

CPU(s):                     32 

On-line CPU(s) list:      0-31 

Thread(s) per core:         2 

Core(s) per socket:       16 

Socket(s):                        1 

NUMA node(s):                     1 

Vendor ID:                        AuthenticAMD 

CPU family:                       25 

Model:                            33 

Model name:                       AMD Ryzen 9 5950X 16-Core Processor 

Stepping:                       0 

Frequency boost:                enabled 

CPU MHz:                         2200 

CPU max MHz:                   5083.3979 

CPU min MHz:                 2200 

BogoMIPS:                     6800.3 

Virtualization:         AMD-V 

L1d cache:                      512 KiB 

L1i cache:                     513 KiB 

L2 cache:                      8 MiB 

L3 cache:                     64 MiB 

NUMA node0 CPU(s):             0 - 31 
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3.2.11 Dash-based web interface for probabilistic predictions of synthetic lethality 

(POPSICLE) 

 
POPSICLE is built using Dash Enterprise, a python-based framework for creating 

interactive web applications. It is composed of four containers: 1) title bar, 2) sidebar where 

users can select the gene pair of interest, and a confirmation message which prints the 

predicted synthetic lethal probability for a selected gene pair, 3) tab bar and 4) display area. 

The five enlisted tabs are genetic interactions (in the display area the distribution of predicted 

synthetic lethal probabilities for experimentally tested and all other gene pairs is shown, 

Figure 25.), gene 1 interactors (scatter plot showing the ranked other genes interacting with 

gene 1, above 0.25 predicted probability), gene 2 interactors, features (shows the table of 

features used in the model, with their corresponding categories and sources), and lastly the 

about tab.  

 

3.3 Results 
 

3.3.1 Individual features are not predictive of synthetic lethality 

 Model performance was evaluated considering each feature individually and 

combined (all 30 features and sets of selected features) to understand how much 

each feature is predictive of synthetic lethality. Cross-validation (see Methods for 

details) was used to estimate how accurately the predictive model was performing. 

The set of ~217000 gene pairs (Figure 16.), accumulated from the existing CRISPR-

mediated genetic interaction screens (Table 1.), was subjected to 5-fold resampling, 

to define train and test sets. The receiver operating characteristic (ROC) curve, 

created by plotting the true positive rate (TPR) against the false positive rate (FPR) 

at various threshold settings, was used as a measurement of the model’s 

performance. The individual features are just slightly better predictors of synthetic 
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lethality than a random prediction (AUC = 0.5) (Figure 20.A).  Coessentiality, 

coexpression, and the percent of shared coessentiality interactors essential in 90% 

of AVANA cell lines are the three features with the highest AUC values (Figure 20.A). 

Functional information and expression data were previously characterized as 

potential predictors of the genetic interactions (Madhukar et al., 2015; Pandey et al., 

2010), but it is evident that they alone are not strong enough predictors. In fact, we 

observe that increasing the number of features greatly increases the model 

performance, especially the first 15 features (Figure 20.B). Afterward, the model 

performance increases at a smaller rate. The percent sequence similarity (AUC = 0.5) 

was not a great predictor of synthetic lethality, which is opposite to what Kegel et al. 

(De Kegel et al., 2021) show in their study. However, Kegel et al. predictions are 

based on paralog gene pairs, whereas our dataset consists of both paralog (~1% of 

data) and non-paralog pairs (~99% of data), therefore the power of the percent 

sequence similarity to predict synthetic lethality between paralog pairs might be 

hindered by non-paralog pairs. Furthermore, we split our dataset into paralog and 

non-paralog pairs and evaluated the model’s performance (using all 30 features) on 

each set individually. We observe a better performance with paralog pairs, meaning 

that the predictions of synthetic lethality are more accurate among paralog pairs 

(Figure 20.C).  
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Figure 20. Combination of features is more predictive of synthetic lethality than 
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individual features.  A) ROC curves for individual features from the Naïve Bayes 

model. The bar plot shows the AUC values for each feature. Most features have AUC 

values of 0.5, which is equivalent to a random classifier. B) As the number of features 

used in the model increases the model performance increases as well. Shown are 

numbers of features on x-axis and corresponding AUC clues for each set of features, 

on y-axis. C) ROC curves from a model that uses all 30 features applied separately 

on paralog and non-paralog pairs (cross-validation defined test sets). The model 

preforms better on a dataset composed only from paralog pairs.  

 

3.3.2 Combination of 15 features provides most of the model’s interpretability    

In addition to the AUC-based, two other feature importance and selection 

methods were utilized to exploit which features are better at predicting synthetic 

lethality, Shapley additive explanation (SHAP) method (S. Lundberg & Lee, 2017), 

removing highly similar/correlated and quasi-constant features. SHAP values are 

based on Shapley values, a concept coming from game theory, and they quantify the 

contribution that each feature brings to the prediction made by the model. Therefore, 

SHAP values measured how much of the model’s explainability each feature has as 

well as a cumulative interpretation of a model. This approach showed that the 

combination of 15 features (Figure 21.A) provides 85% of the model’s interpretation. 

The top two features with the largest composition rations are coessentiality and 

percent of shared coessentiality interactors that are essential in 90% of AVANA cell 

lines, which is consistent with the AUC-values for individual features. Similarly, the 

other two feature selection methods, removing highly correlated (Figure 21.B) and 

quasi-constant features (see Methods for details), result in subsets of 17 and 16 

features (respectively) with greater importance. This confirms that 15 features are 
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enough to achieve similar performance to the one the model that uses all 30 features 

has (Figure 21.B). 

 

Figure 21. Feature importance and selection methods. A) Features selection based 

on Shapley values (SHAP method). Shown are composition (on top x-axis), and 

cumulative (on bottom x-axis) ratios. First 15 features are sufficient to explain 85% of 

the model. B) Shown are Pearson correlation matrix of all 30 features, and the 
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distribution of person correlation coefficients. The red line indicates the cutoff for the 

features that are highly similar or correlated. 

 

3.3.3 Comparable model performances on different test sets 

In addition to the cross-validation defined test set, the model performances 

were evaluated against two additional test sets, previously unseen by the model, from 

Parrish et al. study (Parrish et al., 2021). These test sets are composed of 1030 

human paralog gene pairs tested with a double-KO approach in PC9 and HeLa cell 

lines. Both ROC curves (Figure 22.A) and precision-recall (PR) curves (Figure 22.B) 

provide similar measures of model performance for three test sets (cross-validation 

AUC = 0.66, Parrish et al. PC9 AUC = 0.68, and Parrish et al. Hela AUC = 0.71).  
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Figure 22. Consistent model performances across different test sets. A) ROC curves 

from the model with all 30 features for cross-validation defined test set (black), 

datasets from Parrish et al. study, screened in PC9 cell line (blue), and HeLa cell line 

(red). The AUC values for all three sets are similar ( 0.05 std). B) Color coding same 

as in (A). Shown are precision-recall curves. C) Bar plot shows the similar AUC 

values for three test sets from a model with 30 features, without quasi-constant 

features, without highly correlated features, and with 15 features selected with SHAP 

method. Color coding as in (A) and (B).  

 

3.3.4 Different models perform similarly on the three test sets 

 To ensure that our results weren’t the outcome of overfitting the original, Naïve 

Bayes model, we have employed several other models (Random Forest (RF), Logistic 

regression (LR), Decision tree classifier (DTC), and Multilayer perceptron classifier 

(MLPC), see Methods for details) to predict synthetic lethality. All models but DTC 

exhibit the same performance (AUC = 0.66) when both paralog and non-paralog pairs 

are included in the train and test sets (5-fold cross-validation) (Figure 23.A), while RF 

model overperforms other models when paralog pairs and non-paralog pairs are used 

separately (Figure 23.B-C).  
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Figure 23. ROC curves for different models. The ROC curves for five models (naïve 

bayes NB - black, random forest FR – red, logistic regression LF – blue, decision tree 

classifier DTC – orange, and multilayer perceptron classifier MLPC – purple), for 

cross-validation test sets including both paralog and non-paralog pairs (A), and 

paralog (B) and non-paralogs pairs (C) individually.  

 

3.3.5 Scaling the predictions genome-wide 

 After assessing all variables (feature importance and selection, computing 

resources, etc.) we selected the Naïve Bayes model with 15 features that explain 

85% of the model to scale the predictions to all possible gene pairs in the human 

genome (~182 million pairs) (Figure 24.).  The ~220000 gene pairs acquired from the 

existing studies are only 0.12% of all possible gene pairs in the human genome. This 

minute percent of the experimentally tested gene pairs shows the large gap of 

untested gene pairs and equally large search space for investing genetic interactions. 

Predictions made in this study provide an initial filter for selecting the pairs that exhibit 

some potential for being SL interaction, particularly pairs with probability values 

above 0.25. To aid with further exploration of these predictions, we created the user-

friendly interface, POPSICLE (see methods for details) where users can select a gene 

pair of their interest and obtain its probability for being a synthetic lethal pair, as well 



 88 

as browse through the other interactors with the two genes from a user-defined pair 

(Figure 25.). 

Figure 24. Predicted probabilities for all possible gene pairs in the human genome. 

Two violin plots are representative of pairs that were included in the training set (no 

interactions and negative interactions groups (Figure 16.) (red), and all other possible 

pairs (blue). The number on the right indicates number of pairs for each bracket, 

defined by two dashed lines. 
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Figure 25. POPSICLE overview – the display is showing the distribution of predicted 

synthetic lethal probabilities (>0.25). The dashed line marks the position of user-queried gene 

pair.  

 

3.3.6 Conserved SL interactions  

 We compared the set of conserved SL interactions, defined by Srivas et al. 

(Srivas et al., 2016), and negative genetic interactions from the global map of genetic 

interactions in yeast, constructed by Costanzo et al (Costanzo et al., 2010b, 2019). 

Srivas et al. defined two conserved cancer networks (CoCaNets) of SL interactions 

at two cutoffs 10% (172 interactions) and 2% (36 interactions) which are likely to be 
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observed in both human and yeast models. We overlapped the 172 interactions with 

our predictions and observed that 44 (25%) of those interactions have predicted 

probabilities higher than 0.2 of being SL interactions (Figure 25.A-B). The probability 

= 0.2 was used as a threshold because that is where the long tail of the distribution 

starts, indicating the occurrences that are far from the central part of the distribution 

and characterizing more likely SL candidates. The set of negative genetic interactions 

was filtered from the yeast global map of genetic interactions (https://thecellmap.org) 

was using the genetic interaction score < 0.12 as a cutoff defined by Costanzo et al. 

(Costanzo et al., 2016). Next, from this set which consisted of ~40000 negative 

interactions, we kept only those pairs that have human orthologs. The final set 

resulted in ~14000 interactions, and for 759 of those interactions, our probability 

predictions are above 0.2 (Figure 25.A-B). 

 

Figure 26. Conserved interactions. A) Distributions of predicted probabilities for a set 

of conserved SL interactions (in yeast and human) from Srivas et al. and set of 

negative interactions from the global map of genetic interactions in yeast from 

Costanzo et al. Violin plots are color coded as in Figure 24. Dashed line indicates the 

https://thecellmap.org/
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threshold that used to find the interception of these two sets and our predictions made 

in this work. B) Intersection plot for the two sets and our predictions. 

3.4. Discussions  

Synthetic lethality provides a treatment approach for cancers driven by the loss 

of function of tumor suppressor genes, and amplification and/or overexpression of 

genes that cannot be targeted directly. However, despite this great premise, very few 

SL interactions have been translated into clinical uses. The most well-known example 

is the synthetic lethality between BRCA1/2 and PARP genes, targeted with PARP 

inhibitor olaparib in cancers with BRCA1/2 loss of function (Lord & Ashworth, 2008, 

2017). Few other examples from pre-clinical and clinical studies are mentioned in the 

review by Li et al. (S. Li et al., 2020). Some of the mechanisms and cellular processes 

these interactions are aimed to address the regulation of cell proliferation, 

differentiation, senescence, and apoptosis, the repair of DNA single- and double-

strand breaks, or complexes involved in these processes, such as targeting of 

SWI/SNF complex, which is involved in controlling the cell cycle, DNA replication, and 

repairing DNA damage. Most of the SL interactions discovered thus far are context-

specific, making it very challenging to devise a generic and context-independent 

approach for identifying SL interactions. The work described in this chapter is aimed 

to address this challenge by predicting the probability of being SL for any given pair, 

therefore proving a baseline SL probability for all possible gene pairs in the human 

genome, independent of the molecular or cancer context.  
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3.4.1. Narrowing the search space for investigating SL interactions in human 

cells 

The performance of our model, therefore the accuracy of our predictions, when 

tested with multiple datasets was acceptable (AUC = 0.68  0.05) but not excellent. 

However, it is still very relevant as it allows us to predict the SL probability for all 

possible pairs, which is the first genome-wide view of potential SL interaction. 

Additionally, these predictions exude the potential for optimizing the search space for 

investigating the genetic interactions, therefore reducing the efforts and time to 

perform these experiments.  The clusters enriched for potential SL interactions can 

be investigated by applying clustering algorithms on an all-by-all matrix (size = 

~18000 x 18000), where rows and columns are genes, and values are predicted 

probability obtained by transforming the current list-like matrix (size = ~182x106, rows 

=gene pairs, column = predicted probability) of our predictions. However, it must be 

noted that the clustering, as well as the other steps in this approach such as 

generating and calculating features, and model training are computationally 

expensive. For example, the OPTICS (see Methods for details) clustering algorithm 

takes ~12h to compute core distance and reachability distance for every data point 

subjected to clustering which are parameters necessary to assign cluster 

memberships.  

 

3.4.2. Towards validating the predictions 

Scalability is the main issue when it comes to exploiting and testing genetic 

interactions in human cells. However, the genome-wide predictions from this work 

and advancements in CRISPR multiplex technology make this issue addressable to 
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some level. The future directions of this study are geared towards experimental 

validation of these in silico predictions. The enCas12 multiplex platform is currently 

the ultimate approach for combinatorial editing. The Cas12a endonucleases are a 

promising tool for multiplexed genetic perturbations because they can process 

multiple gRNAs expressed as single transcripts and cleave target DNA (McCarty et 

al., 2020), while subsequently decreasing the library size and reducing the time and 

cost of experiments. For a wider adoption of Cas12a in screening systems, DeWeirdt 

et al. optimized enAsCas12a for pooled, combinatorial screens in the human cells 

(DeWeirdt et al., 2021).  

In the enCas12a multiplex screening, the cells of interest are first transduced 

with the expression vector encoding the EF1a promoter, which drives the enCas12a 

enzyme expression (Addgene: #136476). Afterward, transduced cells are subjected 

to antibiotic selection to eliminate the non-transduced cells. In this instance, it is 

blasticidin selection because the selectable marker encoded on this expression 

vector is blasticidin. Next, the cells expressing the enCas12a enzyme are transduced 

with the lentiviral dual-guide expression vector (Addgene: # 136474). The selectable 

marker in this vector is puromycin, therefore non-transduced cells are eliminated by 

puromycin treatment. Lastly, the replicates are seeded, and cells are passaged for a 

certain number of doublings before the screen termination. This approach has 

already been tested by our lab (Dede et al., 2020; Lenoir et al., 2021) and externally 

(DeWeirdt et al., 2021) showing promising results.  Moreover, there are ongoing efforts 

within our lab and others in the field for engineering 4 and higher-order lentiviral expression 

constructs, which would allow simultaneous perturbation of 4 or more genes, massively 

reducing the size of such experiments. 
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3.4.3. Which gene pairs to validate?  

The number of “more likely” candidate SL interactions (probability > 0.2, n = 

~1200000) is a small subset (0.66 %) of all possible pairs. However, an even smaller set 

would be more favored for the first pass of experimental validation. When it comes to 

selecting such a set of predicted interactions for the experimental validation, there are a few 

approaches we can take. We could either focus only on interactions within 1) a defined class 

of genes, e.g., all kinases, all regulatory genes/transcription factors (TFs), all transporters, 

etc., 2) a specific pathway e.g., DNA repair, metabolism, etc., or 3) a set composed of a 

number of interactions derived from each probability bracket (Figure 24.). Each of these 

choices has its benefits and constraints, for example, the benefit of focusing on interactions 

between kinases is the vast amount of knowledge about the druggable kinome (Cichońska 

et al., 2021; Paul et al., 2020; Ravikumar et al., 2019) (https://kinase-atlas.bu.edu/index), 

meaning that translating a kinases’ fostered SL interactions to clinical studies and uses would 

be faster as there already exists a significant number of kinase drugs. On the other hand, the 

constraint of targeting kinases in cancer backgrounds is triggering of cells to acquire 

resistance to chemotherapy (Bhullar et al., 2018), essentiality neutralizing the kinase-based 

treatment. Additionally, a good filter for selecting which gene family to target is looking at the 

essentiality and expression of genes in that family across the array of cell lines (Depmap and 

CCLE collection of cell lines). Ideally, a good gene family to investigate would be the one in 

which most genes exhibit moderate or modest phenotypic effects and are expressed. The 

advantage of experimentally validating the set composed of a number of interactions picked 

from each probability bracket (Figure 24.) is that it would directly assess the precision of 

predictions and accuracy of our computational modeling. Additionally, it holds a promise of 

allowing the identification of gold standard SL interactions. The last two brackets of SL 

probability distribution are enriched for pairs (n = 2385) that have already been experimentally 

tested in human cells. However, only ~28% (n = 684) of these tested and predicted as SL 

interactions are scored as SL interactions in the original CRISPR-based genetic interaction 
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studies. Therefore, if this secondary experimental validation confirms these 684 interactions 

as SL interactions, then this set can serve as a potential pool of gold standard SL interactions.  

 

 

Hypothetical enCas12a library for experimental validation 

Say a set of ~3500 (2385 from the top two probability brackets, 900 from the other 

three brackets, 300 from each, and the rest ~215 are control pairs) gene pairs is selected for 

the experimental validation. To describe the scenario that would require the most liberal 

library design, all genes in the pairs are unique, so there are ~7000 unique genes. Each of 

these genes is targeted with four enCas12a gRNAs acquired from DeWeirdt et al. library 

(DeWeirdt et al., 2021), and every pair is targeted with all 16 combinations of guides (a 

previous study by Dede et al., showed that there is no position effect, therefore only single 

A-B orientation is teste). This gives us a library with ~85000 contracts, comparable to the 

single KO genome-wide library (e.g., TKOv3). 

 

Another concept that has an important role in this discussion is the molecular context 

or a cell line in which this experimental validation should be performed. As there does not 

exist a thing such as ‘reference’ human cell line this poses a big challenge when it comes to 

establishing a consensus about genetic interactions, in particular SL interactions in human 

cells. This is another reason why creating and mapping a global map of genetic interactions 

in the human cells is still way far behind the yeast’s global map of genetic interactions which 

was mapped out a decade ago. Two options that one can proceed with here are to select 1) 

a (CRISPR friendly) cell line with a simple and normal karyotype (e.g., RPE1 cell line) and 

large-scale exploit genetic interactions in fine resolution, or 2) a panel of cell lines with 

different molecular built-ups to exploit smaller-scale (interactions within a certain pathway, or 

a gene group). These approaches would reveal different information, the first one provides 

‘deep’ knowledge with the ability to reveal the genetic interaction hubs in a particular 
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background, whereas the second one supplies ‘wide’ understanding and characterization of 

a small set of genetic interactions. However, both routes are necessary to unify our 

understanding of human functional genomics, therefore allowing us to leverage that 

knowledge for devising treatment strategies and improving clinical outcomes. 
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Chapter 4: Contributions to collaborative studies 

 

Earlier in this dissertation, I have mentioned that the drugZ (Colic et al., 2019) 

is a multifaceted method. In this chapter, I will highlight some of the collaborative 

studies in which the drugZ was instrumental for analyzing and identifying hits and 

candidate therapeutic targets, and my contributions to these studies. 

 

4.1. Neuronal and mouse HD essential gene  

 
The analysis described in this section is adapted from the published study: 

Wertz, M. H., Mitchem, M. R., Pineda, S. S., Hachigian, L. J., Lee, H., Lau, V., 

Powers, A., Kulicke, R., Madan, G. K., Colic, M., Therrien, M., Vernon, A., Beja-

Glasser, V. F., Hegde, M., Gao, F., Kellis, M., Hart, T., Doench, J. G., & Heiman, M. 

(2020). Genome-wide In Vivo CNS Screening Identifies Genes that Modify CNS 

Neuronal Survival and mHTT Toxicity. Neuron, 106(1), 76-89.e8. 

https://doi.org/10.1016/j.neuron.2020.01.004. The article is published under the 

Elsevier license which states: 

“Please note that, as the author of this Elsevier article, you retain the right to 

include it in a thesis or dissertation, provided it is not published commercially. 

Permission is not required, but please ensure that you reference the journal as the 

original source. For more information on this and on your other retained rights, please 

visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights”. 

 

 This study by Wertz et al. reports the results of the first genome-wide genetic 

screens in the central nervous system (CNS) using both shRNA and CRISPR 

https://doi.org/10.1016/j.neuron.2020.01.004
https://www.elsevier.com/about/our-business/policies/copyright#Author-rights


 98 

libraries. Analysis of these screens led to the identification of several gene classes 

essential for CNS neurons and showed that CNS neurons in addition to being 

sensitive to perturbations to synaptic processes are also sensitive to autophagy, 

proteostasis, mRNA processing, and mitochondrial function. As these processes and 

pathways are known to be implicated in multiple neurodegenerative diseases, the 

same screening approaches were applied to two mouse models of Huntington’s 

disease (HD) to identify disease-specific genetic vulnerabilities.  

 

Screen Analysis 

As the genome-wide library contains on average 4-6 shRNAs targeting each 

gene, and the Asiago library contains 4 sgRNAs per gene, examining the combined 

effect of more than one genetic perturbation per gene assists in assessing the 

possibility off-target or seed-based effects. Relative library representation was 

determined as described in the manuscript, and the drugZ algorithm was used to rank 

each gene’s relative depletion in the screen based upon the relative recovery of the 

shRNAs or sgRNAs. Briefly, DrugZ determines the fold change of each shRNA or 

sgRNA reagent relative to a user-specified control sample, in this case the initial 

plasmid pool. The variance for each fold change is estimated based on the distribution 

of fold changes for the 1,000 reagents with most similar abundance in the control 

sample. Using this variance estimate, a Z-score is calculated for each reagent, and a 

gene-level Z-score is determined by summing the reagent-level Z-scores and 

normalizing by the square root of the number of reagents, yielding the final normZ 

score. P values are calculated based on the standard normal distribution and false 

discovery rates are estimated using the method of Benjamini & Hochberg. We used 

a log2 gene expression > −1 in WT striatum cutoff to identify genes expressed in the 
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striatum. In the WT shRNA screen, sum normZ scores showed a bimodal distribution 

(Figure 26.A-C). We fit the data with a two-component Gaussian mixture model (using 

the mixtools package in R) approximating hits (essential genes) and non-hits (genes 

with no knockdown phenotype) (Figure 26.D). False discovery rate at a given normZ 

score was calculated as the ratio of the areas under the Gaussian models for all 

values less than normZ. At the intersection of the Gaussian models at normZ score 

0.005, FDR was estimated as 0.038; this cutoff was used as the empirical threshold 

to determine neuronal essential candidate genes (Figure 26.E). In all other screens 

a threshold of normZ p value < 0.05 was used to determine candidate ‘hits’. Data 

analysis revealed a number of targets that replicated between screen modalities 

(shRNA and sgRNA) and mutant models (R6/2 and zQ175). 

Figure 27. Identification of Neuronal Essential Genes by Pooled Genome-wide In 

Vivo Screening. A) and B) Contour plots of normZ scores versus log2 WT striatal 

gene expression for the 7-month (A) and 4-week (B) shRNA screens. C) Scatterplot 

of the log2-normalized fold change in WT compared to input library at 4 weeks versus 
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7 months after in vivo incubation with the genome-wide shRNA library. Green points 

represent individual shRNA hairpins with an average of >1 log2 fold depletion in 

shRNA representation at 4 weeks and 7 months. Pearson correlation r = 0.78. D) 

Density plot of the sum normZ scores for the WT shRNA screens shows a bimodal 

distribution overlaid with two Gaussians to highlight the depleted essential genes 

(green) as compared to the non-essential genes (black). Genes were identified as 

candidate neuronal essential genes below the threshold of the intersection of the two 

Gaussians (red dotted line). E) Plot of normZ values versus rank of candidate 

neuronal essential genes. Top candidate essential genes in relevant biological 

pathways are highlighted in color as marked. The figure is used with permission from 

Mary Wertz, Ph.D. (panels A, B, and D created by me, and panels D, and E by Dr. 

Wertz). Copyright permission granted by Elsevier license.   

 

4.2. CRISPR-Cas9 DNA damage response (DDR) screens 

 
 The work described in this section comes from a study published by Su, D., 

Feng, X., Colic, M., Wang, Y., Zhang, C., Wang, C., Tang, M., Hart, T., & Chen, J. 

(2020). CRISPR/CAS9-based DNA damage response screens reveal gene-drug 

interactions. DNA Repair, 87, 102803. https://doi.org/10.1016/j.dnarep.2020.102803. 

The article is published under the Elsevier license as well, and copyright permission 

is granted. 

 

 DNA damage response (DDR) is a process that is crucial for cell survival, 

genome maintenance, and whose deficiencies have been exploited therapeutically in 

cancer treatment. This study provides a comprehensive map of DDR chemogenetic 

https://doi.org/10.1016/j.dnarep.2020.102803
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interactions. The map is a result of screens performed using a custom CRISPR library 

targeting 365 DDR genes (derived from TKOv3 whole-genome library) and several 

DDR inhibitors and DNA-damaging agents in 293A cells. This map revealed known 

genetic modifies of these agents, and novel synergistic interactions between 

POLE3/4 and an ATR inhibitor, a PARP inhibitor, and camptothecin, a topoisomerase 

inhibitor. Lastly, this study also demonstrates that the TP53 status does not affect the 

outcome of the screens. 

 

Data analysis for this study is portioned in three steps: 1) processing, and 

aligning raw data followed by extracting read count for each construct or sgRNA, 2) 

comparing treated and untreated samples to evaluate the potential chemogenetic 

interactions, and 3) additional comparisons - CRISPR DDR screen and whole-

genome screen in the same cell line, and comparison of CRISPR DDR screens 

according to TP53 status. I have performed the initial analysis using our (Hart lab) in-

house pipeline for processing and extracting read counts from CRISPR screens 

outlined as following: 1) unzip all fastq.qz (file format for the raw data), 2) merge all 

lanes into one sample, 3) check the quality of reads in fastq files, 4) if necessary, trim, 

clip and reverse the reads, 5) map the reads using Bowtie aligner, and finally 6) collect 

and count reads. After obtaining the read counts in a matrix format, where rows are 

sgRNAs used in the library, and columns are samples (treated and untreated in 

replicates), I used drugZ to compare the sgRNA abundances between treated and 

untreated samples and identify genetic modifier of used agents’ activity. DrugZ is 

primarily developed for the analysis of whole-genome screens, therefore tunning of 

half_window_size parameter was necessary when it was run on data from these 

screens done with DDR library, which is a smaller custom library. The untreated or 
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control samples from these screens, and whole-genome TKOv3 library-based screen 

in the same cell line 293T, were also subjected to BAGEL analysis to calculate 

essentiality scores. The BF or essentiality scores of DDR genes from the two 

separate screens were compared, and this analysis showed the consistency of the 

whole-genome and sub-library screens for assessing gene functions. Lastly, to 

evaluate the CRISPR screens according to TP53 status, we investigated the data 

from DepMap (AVANA 2018Q4), composed of >500 CRISPR KO screens. We used 

the F-measure, which is the harmonic mean of the precision-recall calculated for each 

screen at BF = 5, to evaluate the performance of these CRISPR screens. From this 

comparison, we observed a similar screen performance in TP53 wild-type (WT) and 

TP53-mutated cancer cell lines. This computational observation was solidified with 

experimental validation, which also showed that the status of TP53 does not influence 

the screen performance.  

 

4.3. The use of drugZ to compare isogenic CRISPR screens 

Isogenic pairs of cell lines, which differ by a single genetic modification, are 

powerful tools for understanding gene function. Performing isogenic knockouts, or 

performing CRISPR screens in such isogenic cell lines, can be used for identifying 

genetic interactions between the gene used to generate the isogenic status and other 

genes targeted with the CRISPR library used in a screen. If both original and derived 

isogenic lines are targeted with the same CRISPR library, then drugZ can be used to 

compare these backgrounds and identify potential genetic interactions between the 

gene used to create the isogenic line and all other genes targeted by a library. This 

approach for identifying and quantifying genetic interactions from isogenic CRISPR 
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screens with drugZ is established internally through the collaboration with a few labs 

within the institution (MDA – Gan lab, DePinho lab, and Chen lab) who are conducting 

isogenic screens in different molecular and cancer backgrounds. 
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Chapter 5: Discussion and final remarks 

 

The first traces of systems-oriented studies in specific subfields of biology were 

observed in the middle of the 20th century. However, it was not until the mid-1990s 

and completion of the first whole-genome sequencing (Fleischmann et al., 1995) that 

systems biology had gained traction. Systems biology is commonly defined as the 

efforts to investigate the behavior and interactions of all of the components in a certain 

biological system while it is functioning (Ideker et al., 2001). Its fraternal twin, 

functional genomics focuses on understanding the functional role of these 

components (e.g., genes, proteins) and explaining how they contribute to different 

processes happening in the system.  

The arrival of CRISPR technology and its ability to facilitate large-scale 

functional studies in human cells shed light on deciphering the hierarchical assembly 

of human cells. In this dissertation, I have described my computational efforts to 

analyze and model CRISPR-generated functional data, in the forms of chemogenetic 

and genetic interactions, both of which have the potential to decode the disease-

specific molecular underpinnings and lead to the novel treatment strategies. This 

work has addressed some of the unmet needs but had also generated new questions 

relevant to the field. 

Before the CRISPR technology, yeast was the model of choice for genetic 

studies, because it is a simple single-celled organism, and it shares many basic 

properties with human cells. However, CRISPR technology and its multifaceted 

editing nature have put the spotlight on human cells. The most used CRISPR 

applications are briefly discussed in Chapter 1, and two of them, chemogenetic and 
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combinatorial genetic editing, instrumental for the work presented in this dissertation, 

are discussed in detail.   

To address the gap in identifying and quantifying chemogenetic interactions in 

CRISPR screens we developed the drugZ algorithm. CRISPR-mediated drug 

screens, which facilitate the simultaneous chemical and genetic editing, were 

performed mostly in positive selection screens because performing them in negative 

selection screens, often used to identify the depleted genes, was more challenging 

and there was no adequate analytical method to evaluate and robustly score 

chemogenetic interactions in such screens. The implementation, benchmarking of the 

algorithm, its variant drugGS, statistically more rigorous and computationally more 

demanding approach, and the evaluation of experimental parameters is covered in 

chapter 2.  

Comprehensive analysis of new CRISPR-based drug screens and reanalysis 

of existing screens with drugZ revealed a set of tumor suppressor genes as frequent 

drug suppressor hits. We hypothesized that these hits are drug-independent 

proliferation suppressors. A study by Lenoir et al. (Lenoir et al., 2021) from our lab-

tested this hypothesis and provided a model-based approach for systemic 

identification of these proliferation suppressors.  

Despite the successful finding from these screens, there are some limitations 

to chemogenetic screens. One such limitation is screening cell lines in which certain 

genes are inactivated, therefore limiting the identification of potential interactions 

between the inactivated gene and a drug or chemical agent used in the screen.  

Another limitation of these screens is the lack of confidence in the interactions 

between essential genes and chemical agents because guides targeting the essential 

genes are depleted rapidly for cell populations and weaken the statistical power for 
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these interactions. Lastly, in the past two years, drugZ has proven to be robust and a 

method of choice when it comes to the analysis of chemogenetic screens and 

identification of genetic modifiers of drug activity. 

 

PARP1 inhibitors and deficiency of BRCA1/2 genes is the most eminent proof 

that synthetic lethality has the potential to outmaneuver a cancer genome. However, 

obstacles such as tumor heterogeneity and complexity, the lack of understanding of 

synthetic lethal interactions, drug resistance, and screening challenges are masking 

this potential and limiting the clinical translation. Chapter 3 summarizes the history of 

genetic interactions, specifically synthetic lethal interactions. Next, it identified the gap 

in the field based on observation from existing CRISPR-mediated genetic interaction 

screens, and that is very few synthetic lethal interactions are reproduced as 

significant in multiple studies, and most of these interactions are highly context-

specific.   To address this gap, we proposed a Bayes theorem-driven approach to 

predict context-independent synthetic lethality from existing CRISPR genetic screens 

combined with essentiality, expression, protein / genomic neighborhood, and DNA 

sequence – relevant data encoded as 30 different features.   

Examining the features’ importance and relevance for the model’s 

performance through three different methods revealed that a combination of ~15 

features has nearly the same predictive power as all 30 features. In terms of which 

features predict better than the others, essentiality and protein neighborhood-related 

features outperform the others. The models’ (with all 30 and reduced sets of features) 

performances were tested against three different test sets and similar results across 

all combinations are observed (AUC = 0.68  0.05). We have also examined the 
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model’s performance on paralog and non-paralog pairs separately, in addition to the 

dataset containing both paralog and non-paralog pairs. The model performs better 

when applied only on paralog pairs (AUC = 0.69), confirming that paralogs indeed 

are a rich source for identifying synthetic lethal interactions (Dede et al., 2020). For 

additional computational validation of the model, two recent studies (Ito et al., 2021; 

Thompson et al., 2021) exploiting synthetic lethality in human cells with CRISPR dual 

editing, can be utilized as validation sets as well.  There were not included in the 

training/testing of our model because they haven’t been publicly available at that time. 

It is worth mentioning, that both studies target and exploit paralog gene pairs. And 

we already know that our model performs better on paralog pairs than non-paralog 

or a combination of both paralog and non-paralog gene pairs. 

Additionally, to ensure that these conclusions are model agnostic, we 

examined four other supervised learning models (RF, LR, DTC, and MLPC), and 

observed that our original NB model and RF model are highly similar and outperform 

the other models. After all comparisons, the model selected for scaling up and 

predicting the synthetic lethal probability for all other gene pairs was the NB model 

with 15 features (based on SHAP method scoring). This is the first genome-wide 

assessment and molecular context-independent synthetic lethality quantification 

attempt. The predictions made by our model are not the optimal ones, however, they 

can be used to optimize the search space for investigating synthetic lethality. 

 Moving towards the experimental validations of these predictions depends on 

a set of questions, each equally important and challenging to address. Which subset 

of pairs to validate do we focus on certain gene family, or a pathway, or select the 

pairs based on where on the distribution of predicted probabilities do they lie at? What 

cell line do we test them in? – or do we test an even smaller set in a panel of different 
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cell lines? Which screening platform to use, how to design the targeting CRISPR 

library? However, addressing these questions calls for another PhD marathon outside 

of this dissertation. Nevertheless, in chapter 3 I do offer some insights about how 

these questions can be addressed in the future directions. 

 Another limitation of our efforts here is that we are only exploiting the 

digenic genetic interactions, therefore omitting the whole well of higher-order genetic 

interactions. If we set our expectations based on the knowledge from yeast studies 

about complex genetic interactions, which estimate that just the next order 

complexity, the trigenic interactions network is ~100-fold larger than the global digenic 

network (Kuzmin et al., 2018), we can understand the magnitude of information that 

we are missing out. The beam of light that can enlighten this entanglement of complex 

genetic interaction I see in the ongoing efforts towards engineering and designing the 

greater than dual multiplex CRISPR libraries. Noteworthy is also the fact that all these 

advancements in technology immediately call for complementing computational 

methods to analyze and quantify the generated data. And not to mention the fact that 

even when it comes to analyzing and scoring digenic genetic interaction in human 

cells there is still no consensus for an ultimate scoring method. However, none of 

these limitations, neither experimental nor analytical, will prevent CRISPR editing 

from continuing to be a fast-moving field revolutionizing cancer research.  

 

Finally, the work presented in this dissertation can be continued in any of the 

following three directions, 1) basic biology – to continue expanding our knowledge 

about both chemogenetic and genetic interactions in human cells for the purpose of 

understanding the extraordinary assembly of human cells and all their processes, 2) 

technology advancements based on optimized, less time and efforts consuming 
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experimental designs, and lastly, 3) translational research, as these efforts 

collectively create an avenue for devising novel treatment strategies, and improving 

patient stratification and drug efficacy.  
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