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Figure 30. Deletion of VTC4 does not affect G4-induced recombination in Top1 mutant 

strains. A.-E. Recombination rates of Top1 mutant VTC4+ and vtc4∆ GTOP yeast strains. Rates 

are considered statistically significantly different if their 95% confidence intervals (shown as 

error bars) do not overlap (Spell & Jinks-Robertson, 2004).  
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Figure 31. Quantification of Top1 mutant interactions with Nsr1. A. Quantification (means 

and standard deviations of Nsr1-6XHA IP pixel intensities normalized to Top1-3XFLAG pixel 

intensities) of western blots from 3 co-immunoprecipitation (co-IP) experiments performed 

as in Figure 26E with yeast cells expressing FLAG-tagged Top1 proteins and HA-tagged full 

length Nsr1. B. Quantification (means and standard deviations of Nsr1ΔRGG-6XHA IP pixel 

intensities normalized to Top1-3XFLAG pixel intensities) of western blots from 3 co-IP 

experiments performed as in Figure 26F with yeast cells expressing FLAG-tagged Top1 

proteins and HA-tagged Nsr1ΔRGG.  
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4.3 Discussion 

 Co-transcriptional helical stress, promoting formation of DNA secondary structures 

including G4 DNA, is expected to accumulate when Top1’s normal function of relieving DNA 

supercoils by binding and cleaving DNA is completely disrupted (Redinbo et al., 1998). 

Multiple studies including our lab’s previous works support the notion that Top1 functions to 

prevent co-transcriptional G4-formation by removing negative helical stress (Yadav et al., 

2016; Husain et al., 2016). It remained to determine how the expression of catalytic or DNA 

binding Top1 mutants found in CPT-resistant cancer cells would affect DNA aberrations at 

G4s. The C-terminal domain of Top1 partly forms a tight loop around duplex DNA and contains 

catalytically important residues, including the phosphotyrosyl bond-forming tyrosine (Y727 

and Y723 in yeast and human, respectively) (Redinbo et al., 1998). The high conservation 

between yeast and human C-terminal domains of Top1 allowed us to measure the effect of 

C-terminal Top1 mutants found in CPT-resistant human cancer cells on G4-induced instability 

by expressing the analogous mutants in yeast. 

 In an earlier study, the Kim lab found that  expression of the catalytically null mutant 

Top1Y727F results in severely elevated genome instability at G4 DNA-forming recombination 

reporter in yeast cells. Unexpectedly, the rate of G4-associated recombination in Top1Y727F-

expressing cells was significantly higher than in top1∆ cells (Yadav et al., 2016). Here, I 

expressed another cleavage defective mutant, yTop1Y740Stop, and observed similarly acute 

elevation of G4-associated instability, whereas the DNA binding-defective mutant 

yTop1S733E had a more moderate effect on G4-induced instability (Figure 19D). Specifically, 

yTop1Y727F and yTop1Y740STOP expression resulted in pTET-lys2-GTOP recombination rates 
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that were around 5.9-fold and 7.8-fold higher than when was yTop1S733E expressed. For the 

pTET-lys2-GBTM reporter where G4 DNA formation was unfavorable, Top1 mutants did not 

impact the rate of recombination, irrespective of the specific mutation, suggesting that the 

effect of Top1 mutation on recombination is G4-specific. 

 Multiple studies have documented interactions of Top1 with G4s (Arimondo, 2000; 

Marchand et al., 2002; Lotito et al., 2008; Berroyer and Kim, 2020). Therefore, Nayun and I 

postulated that the severe elevation in recombination rates at the pTET-lys2-GTOP reporter 

observed upon expression of Top1 cleavage-defective mutants Top1Y727F and 

Top1Y740STOP was the result of the binding and stabilization of co-transcriptionally formed 

G4s. It is possible that, while WT Top1 undergoes transient interactions with G4s in vivo, the 

inability to cleave DNA subsequent to binding could leave Top1Y727F and Top1Y740STOP 

trapped on G4s that form during transcription, significantly disrupting replication. Cleavage-

defective mutants yTop1Y727F and yTop1Y740STOP, but not yTop1S733E, bind a G4-forming 

oligo but not the control M1 oligo in vitro (Figure 19A and 19B). This result is in an agreement 

with previously published data showing purified calf thymus Top1 has a specificity for G4-

capable oligos over non-G4 capable DNA substrates (Shuai et al., 2010). My in vitro binding 

datum is in line with the GTOP recombination datum, where Top1 catalytic mutants induce 

significantly greater recombination at SµG4 than the Top1 duplex DNA binding mutant (Figure 

19D). Furthermore, when combined with the low steady-state protein level of 

yTop1Y740Stop (Figure 16A-B), the high G4-induced recombination in yeast cells expressing 

this Top1 mutant (Figure 19D) levels supports a possible dominant negative phenotype of 

hTop1W736Stop.  
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on uncovering if replication through G4-motifs is disrupted in Top1 catalytic mutant cells 

expressing full-length Nsr1 to better elucidate this mutagenic mechanism.  
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Figure 32.  Model of co-transcriptional G4-formation and the effect of Top1 activity and 

mutation on G4-induced genomic instability. RNAP = RNA polymerase complex. Dotted line 

= the nascent transcript.  (-) = negative tension behind the transcription complex.  (+) = 

positive tension ahead of the transcription complex. Top1mt = Top1 mutant.  N = Nsr1 N-term. 

C = Nsr1 C-term. Top1mts capable of G4-binding (i.e. Top1Y727F orTop1Y740STOP) but not 

Top1mts incapable of G4-binding (i.e. Top1S733E) form Top1mt/Nsr1/G4 DNA complexes that 

block and cause genomic instability.   
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 Validating my findings regarding Top1 mutants and G4s in yeast, our collaborator, Dr. 

Albino Bacolla from the Tainer lab at the University of Texas MD Anderson Cancer Center, 

performed a computational analysis of the cancer genome sequencing data available in the 

Catalogue of Somatic Mutations in Cancer (COSMIC) database 

(https://cancer.sanger.ac.uk/cosmic) to show that Top1 catalytic mutants are linked with 

increased G4-instability in cancers (Figure 33). Specifically, the number of mutations (single 

nucleotide polymorphisms (SNPs), short insertions, and short deletions (indels)) in 35,887 

cancer genomes representing 37 different tissues (All_tumors-Figure 33A) were compared to 

the number of mutations present in a group of 239 cancer genomes all harboring mutations 

in human TOP1 (TOP1_mutants-Figure 33A). The TOP1_mutants group had a 12-fold higher 

median number of mutations per genome relative to the All_tumors group. The 

TOP1_mutants group also had a higher median number of mutations compared to the 

median numbers of mutations in 5 different tumor types displaying the greatest number of 

TOP1 mutants (large intestine carcinoma, skin malignant melanoma, lung carcinoma, 

endometrium carcinoma, and stomach carcinoma).  

 

 

 

 

 

 

 

https://cancer.sanger.ac.uk/cosmic
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Figure 33. Somatic mutations in the TOP1 gene are associated with high mutation rates in 

cancer. This bioinformatic analysis was conducted by Dr. Albino Bacolla of the Tainer lab at 

the University of Texas MD Anderson Cancer Center. (A) S-plots of number of mutations 

exome-wide. All_tumors, 35,887 samples from Cosmic v.94 comprising all exome-wide 

screens (i.e. field “Genome-wide screen” corresponding to “y”) and non-redundant sample 

codes; Large intestine carcinoma, 2,355 samples from All_tumors comprising carcinomas of 

the large intestine, 44 of which had mutations in TOP1; skin_malignant_melanoma, 1,372 

samples from All_tumors with malignant melanoma of the skin, 31 with mutations in TOP1; 

Lung_carcinoma, 2,512 lung carcinoma samples from All_tumors, 27 with TOP1 mutations; 

Endometrium_carcinoma, 606 samples from All_tumors with carcinoma in the lining of the 

womb, 23 with mutations in TOP1; Stomach_carcinoma, 1,349 samples from All_tumors with 

stomach carcinoma, 16 with TOP1 mutations; TOP1_mutants, all 239 samples from 

All_tumors with mutations in TOP1. Horizontal dash, median. (B) Box plot shows number of 

mutations in samples carrying mutations in different TOP1 domains. N-Ter, 61 samples with 

mutations in the amino terminus domain (median = 878); Linker, 26 samples with mutations 

in the Linker (median = 1321.5); Core, 102 samples with mutations in the Core domain 

(median = 1,149); Stop, 36 samples with nonsense mutations (median = 1,219); C-Ter, 14 

samples with mutations in the carboxyl terminus domain (median = 982.5); Ran, 300 samples 

chosen at random among All_tumors (median = 73.5); Ran_H, random_high: a pool of 1,500 

random samples with at least 400 mutations each were chosen from All_tumors and 300 

entries were then chosen from the pool, after removing samples with identical codes but 

assigned to different types of tumor in COSMIC (median = 1049). P-values were from 



 

134 

 

Wilcoxon tests. For the purpose of single Wilcoxon tests, we combined the numbers of 

mutations and numbers of samples when applicable. (C) Box plots of mutations at G4 tracts. 

For each sample the value refers to the percent mutations that overlapped with G4-forming 

repeats. Data sets are as in panel B. Stars, total number of mutations; median values are 

shown. P-values from Wilcoxon tests. For the purpose of single Wilcoxon tests, we combined 

the percent mutations at G4 and numbers of samples when applicable. Outliers were 

removed for clarity. 
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 Next, the TOP1_mutant tumors group was divided into 5 groups consisting of 

genomes with mutations in either TOP1’s amino-terminus (N-Ter), linker domain, core 

domain, carboxy-terminus (C-Ter) as well as TOP1 truncation mutations (Stop). Since the 

carboxy-terminus of TOP1 contains amino acid residues important for catalytic function, we 

reasoned that C-Ter and Stop mutations are most likely to affect TOP1’s ability to cleave DNA. 

The comparison between the N-Ter + Linker + Core group with the C-Ter + Stop group resulted 

in no significant difference in the median number of mutations (Figure 33B). The N-Ter + 

Linker + Core group as well as the C-Ter + Stop group exhibited significantly higher median 

numbers of mutations compared to a set of 300 cancer genomes selected randomly from 

All_tumors. However, both N-Ter + Linker + Core and C-Ter + Stop groups had median 

numbers of mutations similar to the group Ran_H, another set of genomes from All_tumors 

harboring a median number of mutations similar to that of TOP1_mutants.  

 While the data in Figures 33A and B show that TOP1 mutant genomes are 

hypermutated in general, we wanted to know how TOP1 mutants affect instability occurring 

at G4 potential non-B DNA-forming sequences (PONDS). Since replication stress through G4-

PONDS is expected to elevate SNPs and indels through mutagenic DNA break repair (Malkova 

and Ira, 2013; Scully et al., 2019; Eckelmann et al., 2020), the percent mutations at G4 PONDS 

was further examined. When all Top1 mutant cancer genomes were grouped together, the 

percentage of mutations occurring at G4 PONDS was higher than the G4 PONDS mutations 

percentage of the Ran group (medians 0.52 and 0.00, respectively) (Figure 33C). When the N-

Ter + Linker + Core Top1 mutant group was compared to Ran_H, a lower percentage of G4 

PONDS mutations was observed for N-Ter + Core + Linker. The combined C-Ter + Stop group 
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had a percentage of mutations at G4 PONDS similar to the Ran_H group, but significantly 

higher than the N-Ter + Core + Linker group (p-value = 0.0184). Therefore, we conclude that 

mutations that impact TOP1 catalytic function affect G4-instability in cancers more than 

mutations present in other TOP1 domains. This supports that expression of TOP1 cleavage-

defective mutants may worsen cancer patient prognosis as a result of G4-stabilization.   

 In summary, I have found that expression of Top1 mutants, some of which are found 

in CPT-resistant cancer cells, sharply increases the genomic instability associated with co-

transcriptionally-formed G4s in yeast. A model of genome instability at G4 DNA exacerbated 

by the cleavage-defective Top1 mutants is shown in Figure 32. While co-transcriptionally-

formed negative supercoils accumulate in the absence of functional Top1 due to either 

complete loss of the Top1-encoding gene or mutations leading to defects in DNA binding or 

DNA cleavage, the G4-binding and -stabilization by the cleave-defective Top1 mutants further 

enhances the instability and recombination occurring at G4-forming genomic sites. I also 

discovered a new role of Wss1 in suppressing G4-associated genomic instability in presence 

of Top1 cleavage-defective mutants, putatively by removing Top1 mutants trapped on co-

transcriptionally formed G4s. Another important finding is that the instability at G4 DNA is 

exacerbated by the interaction between yeast-nucleolin (Nsr1) and Top1 mutants. The 

findings reported here are clinically relevant since Top1 mutants arise in cancer cells in 

response to treatment with CPT or CPT-derivatives (Beretta et al., 2013) and human nucleolin 

are frequently overexpressed or mis-regulated in cancer cells (Berger et al., 2015; 

Koutsioumpa and Papadimitriou, 2014; Huang et al., 2019). The clinical relevance is further 

underscored by Albino’s finding that mutations in Top1 correlate with high mutation 
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frequencies throughout the genome, and that mutations in the catalytic carboxy terminal 

domain of Top1 correlate with enrichment of mutations at G4 PONDS. Overall, our results 

suggest that the expression of Top1 mutants could induce additional genome 

rearrangements in cancer cells by supporting G4-formation and -stabilization. The resulting 

genomic rearrangements originating at G4-motifs may lead to secondary cancer 

development greatly complicating patient treatment. Other studies have documented 

secondary cancer development in patients following treatment with CPT-derivatives 

(Merrouche et al., 2006; Li et al., 2019). In the future, it will be valuable to explore how CPT-

treatment and subsequent emergence of Top1 mutants can lead to further genome instability 

and potential secondary cancers. 
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Chapter 5: Discussion and Future Directions 
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5.1 Summary 

 Many protein factors that regulate DNA topology, transcription, and chromosome 

packaging interact with G-quadruplexes and impact the genomic instability associated with 

them. The dissertation work described here set out to uncover how loss of Top1 activity, 

either through Top1-deletion or mutation, enhances the genomic instability associated with 

G-quadruplex non-B DNA structures in S. cerevisiae.  This work also explored if and how the 

activities of different yeast proteins (Wss1 and Nsr1) enhance or suppress G4-induced 

instability in the absence of functional Top1.  

 Chapter 3 describes my attempts at determining if a greater number of G4s form in 

the highly-transcribed regions of the yeast genome in the absence of Top1 than in Top1’s 

presence. While my approach of expressing the G4-specific antibody BG4 from a vector in 

yeast to perform ChIP-seq and immunofluorescence for G4 quantification was unsuccessful, 

I discuss ways to improve both ChIP-seq and immunofluorescence approaches. I also discuss 

alternative approaches to test our hypothesis that more G4s form in a TOP1-deletion strain 

than in a WT strain. In Chapter 4 of this dissertation, I explore expressing of “loss of function” 

mutants of Top1 impacts G4-induced genomic instability in yeast and find that Top1 cleavage-

defective mutants enhance G4-induced genomic instability significantly more than a Top1 

duplex DNA binding mutant. While the Wss1 protease of the DNA-protein crosslink repair 

pathway plays a role in preventing G4-induced recombination in yeast strains expressing 

Top1 cleavage-defective mutants, the G4-stabilizing protein Nsr1 works together with Top1 

cleavage-defective mutants to enhance G4-instability in a synergistic fashion. The results 

presented in Chapter 4 are clinically relevant as Top1 cleavage-defective mutants are found 
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in cancer cells resistant to the anticancer Top1-targeting drug CPT. Collectively, the work 

described in Chapter 4 indicates that Top1 mutants found in chemotherapy-resistant cancer 

cells could induce secondary genomic rearrangements involving G4-capable loci. In the next 

sections of this chapter, I discuss future directions of the work outlined in this dissertation.  

5.2 Enumeration of G4s in the complete absence of Top1 in Yeast 

 In light of multiple pieces of evidence showing human and yeast Top1 suppress co-

transcriptional G4-induced genomic instability (Kim and Jinks-Robertson, 2011; Yadav et al., 

2014; Yadav et al., 2016; Husain et al., 2016), we hypothesized that a greater number of G4 

DNA structures form during transcription in the absence of functional Top1. Understanding 

how Top1 depletion impacts G4-formation on a genome-wide scale is important since Top1 

is the target of widely-used anticancer drugs that can lead to loss of function Top1 mutants 

(Pommier et al., 2010) and G4s are associated with oncogenic translocations and contribute 

to the mutational burden of cancer cells (Bacolla et al., 2016; Bacolla et al., 2019). 

 Here, I attempted to express a FLAG-tagged version of the BG4 antibody to perform 

ChIP-seq and immunofluorescence experiments to compare the number of G4s that form in 

WT and top1∆ cells genome-wide. I expected to observe significantly more BG4 enrichment 

at highly transcribed regions of the yeast genome in TOP1-deletion cells relative to WT cells 

in ChIP-seq. I also expected to observe more BG4 puncta in the nuclei of TOP1-deletion cells 

than in the nuclei of WT cells (Figure 12). While BG4-FLAG was expressed in yeast (Figure 8) 

and was found to be functional in terms of G4-binding in vitro (Figure 10), ChIP experiments 

revealed that BG4-FLAG expressed from pGAL-BG4-FLAG was not enriched at our model 

SµG4-motif in yeast (Figure 11). The immunofluorescence experiments performed in cells 
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transformed with pGAL-BG4-FLAG were also unsuccessful (Figure 13). One reason the ChIP 

and immunofluorescence experiments failed could be that BG4-FLAG expressed from pGAL-

BG4-FLAG was not localized to the nucleus. Thus, a nuclear localization signal sequence 

should be added to the expressed BG4 construct in effort to increase the likelihood that BG4 

will contact G4s in the yeast genome. Additionally, purified BG4-FLAG could be used for ChIP-

seq and immunofluorescence experiments.  

 In addition to optimizing methods to quantify the number of G4s in yeast in the 

absence of Top1, the genome-wide formation of other non-B DNAs in Top1-deficient cells 

should be quantified in the future as well. Multiple lines of evidence indicate that Top1 

suppresses the genomic instability associated with other non-B DNA structures by removing 

co-transcriptional negative helical tension. For example, R-loops are formed during 

transcription when the nascent mRNA loops back to hybridize with the transcribed DNA 

strand and are a source of genomic instability (Hamperl and Cimprich, 2014). TopA in E. coli 

and Top1 in yeast are linked to the suppression of R-loop mediated cytotoxic effects. TopA is 

the enzyme responsible for removing DNA negative supercoils in E. coli (Drolet, 2006). In the 

absence of TopA function, the accumulation of negative supercoils can perturb E. coli growth 

and RNA production (Drolet et al., 1994; Baaklini et al., 2004; Baaklini et al., 2008). Because 

TopA null E. coli RNA synthesis and growth defects are rescued in part by overexpression of 

the R-loop resolving enzyme RNase H, it was concluded that excessive DNA negative 

supercoils promote R-loop formation in E. coli (Drolet et al., 1995; Baaklini et al., 2004). In 

yeast, ChIP experiments from El Hage et al., 2010 showed that R-loop formation at ribosomal 

DNA in cells conditionally depleted of Top1 is increased in the absence of R-loop processing 
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enzymes RNase H1 and RNase H2. Electron microscopy experiments from this same work 

revealed that pile ups of RNA polymerase I on ribosomal DNA occur more frequently in cells 

lacking Top1 than in WT cells, suggesting that increased R-loop formation in the absence of 

Top1 blocks RNA polymerase I progression. It has also been shown that Top1 suppresses 

genomic instability associated with repetitive DNA loci capable of forming DNA hairpin 

structures. DNA sequences containing multiple CAG/CTG repeats can form stable DNA 

hairpins composed of intra-strand base pairs (Petruska et al., 1996). In human cells, knock 

down of TOP1 with siRNAs resulted in significantly increased contraction of a trinucleotide 

repeat track containing 95 CAG repeats (Hubert et al., 2011). Of note, the instability of the 

CAG repeat track in TOP1 knock down cells was dependent on transcription. Since Top1 

suppresses genomic instability associated with CAG repeats, it is possible that a greater 

amount of hairpin structures form at inverted repeats on a genome-wide scale in the absence 

of Top1. Cruciforms (two DNA hairpins located opposite to one another in dsDNA), triplexes 

(three-stranded DNA), and Z-DNA (left-handed DNA helix) are other non-B DNA structures 

that form in negatively supercoiled DNA (Zhao et al., 2010); therefore, TOP1-depletion is 

expected to increase their formation as well.  

 Further, the impact of other Topoisomerases, such as Topoisomerase 2 and 

Topoisomerase 3, on the prevention of formation of G4s and other non-B DNAs should be 

examined. Yeast topoisomerase 2 (Top2) is a type 2A topoisomerase that cleaves both strands 

of duplex DNA and relieves helical torsion via the passage of an intact DNA duplex through 

the cut DNA duplex (Pommier et al., 2016). In addition to relieving both positive and negative 

DNA supercoils, yeast Top2 is essential due to its ability to decatenate sister chromatids that 
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become interlocked during replication. A temperature sensitive Top2 mutant (top2-ts) that 

exhibits no Top2 activity at 35 °C and very weak Top2 activity at 26 °C has allowed for 

researchers to investigate how Top2-depletion affects helical stress (Goto and Wang, 1985; 

Christman et al., 1988; Trigueros and Roca, 2001). In yeast strains either lacking Top1 or 

expressing top2-ts, transcription-induced DNA supercoiling of the rDNA repeats was 

visualized using high-resolution microscopy and showed that Top1 primarily relieves DNA 

negative supercoils accumulating behind RNA polymerase I while Top2 primarily relieves DNA 

positive supercoils that accumulating in front of RNA polymerase I (French et al., 2011). 

Although the study mentioned above indicates distinct roles of Top1 and Top2 in resolving 

negative and positive supercoils, respectively, Top2 does have the ability to relieve DNA 

negative supercoils and is thought to play redundant roles in cells as Top1 when Top1 is 

absent (Trigueros and Roca, 2002; Pommier et al., 2016). The redundant role of Top2 in the 

relief of transcription-associated negative supercoils is underscored by results showing that 

the slow growth phenotype of yeast cells depleted of both Top1 and Top2 function at the 

same time is rescued by the controlled ectopic expression of either Top1 or Top2 alone 

(Trigueros and Roca, 2002). Interestingly, overexpression of E. coli TopA, an enzyme that 

exclusively removes negative supercoils from DNA, also rescues the slow growth phenotype 

of the top1∆ top2-ts yeast cells at 26 °C, tying this observed growth defect to negative helical 

torsion (Trigueros and Roca, 2002). This piece of data taken together with the observation 

that TOP1-deletion yeast cells do not display a slow growth phenotype suggest that Top2 

does act to relieve negative helical tension, at least partially, in the absence of Top1. 

Therefore, the potential extra negative supercoil accumulation occurring during Top2 
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depletion in the absence of Top1 may increase R-loop and/or G4-formation in yeast and 

should be explored in the future.  

 Yeast Top3 is a type 1A topoisomerase that uses Mg2+ as a metal cofactor to perform 

its catalytic cycle (Pommier et al., 2016). Top3 can resolve DNA negative supercoils, 

hemicatenanes, double Holliday junctions, and displacement (D-loops). Vegetatively growing 

yeast cells can tolerate TOP3-deletion, while cells reproducing sexually cannot complete 

meiosis in the absence of Top3 (Wallis et al., 1989; Gangloff et al., 1999). Loss of Top3β in 

human cells led to an increase in R-loops, indicating that human Top3 plays a role in 

suppressing R-loop formation and/or stability (Zhang et al., 2019). Interestingly, yeast Top3 

was shown to have a strong binding preference for single-stranded DNA in an experiment 

utilizing purified protein and a negatively supercoiled heteroduplex DNA molecule containing 

a 29 base pair melted region (Kim and Wang, 1992). Further supporting yeast Top3 as a single-

stranded DNA specific topoisomerase, yeast Top3 was shown to dissolve D-loops that were 

formed by Rad51 and Rad54 activities (Fasching et al., 2015). D-loops, while made of only 

DNA, are similar to R-loops in that they comprise a displaced single DNA strand (Kasamatsu 

et al., 1971). Since human Top3β can resolve R-loops and yeast Top3 can resolve D-loops and 

has reported specificity for single-stranded DNA substrates, it is possible that deletion of 

yeast TOP3 will result in increased formation of R-loops. Although elevated recombination at 

G4 in the absence of Top1 is not dependent on R-loop-stability as overexpression of RNase 

H1 does not reduce G4-recombination at the SµG4-GTOP reporter in yeast (Yadav et al., 

2014), increased R-loop-formation due to Top3 absence could still increase the chances of 
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G4-formation. Therefore, it will be interesting to uncover if Top3 plays a role in suppressing 

G4-formation/instability.  

 Lastly, in addition to preventing the formation of G4s and other non-B DNAs, Top1 

may play an important role in the resolution of formed G4s. Human Top1 interacts with the 

SV40 T antigen, which unwinds duplex DNA as well as G-quadruplex DNA (Stahl et al., 1986; 

Baran et al., 1997; Haluska and Rubin, 1998; Tuesuwan et al., 2008). Interactions between 

human Top1 and the Werner G4-helicase have also been documented (Lebel et al., 1999; 

Mendoza et al., 2016). Thus, it is possible that human Top1 recruits Werner and/or SV40 T 

antigen helicases to G4s through its capability to bind G4s (Arimondo, 2000; Marchand et al., 

2002). The yeast homolog of the Werner helicase is Sgs1, which also interacts with Top1 (Watt 

et al., 1996; Mankouri and Morgan, 2001). Therefore, the relevance of the Top1/Sgs1 

interaction in suppressing G4-induced genomic instability should be further explored as well 

as other potential Top1/G4-resolvase interactions.  

5.3 Role of Cleavage-Defective Top1 Mutants in G4-Induced Genomic Instability 

 As described above, TOP1-deletion significantly enhances recombination at the 

highly-transcribed SµG4-GTOP locus (Kim and Jinks-Robertson, 2011; Yadav et al., 2016). This 

increase in G4-instabilty is hypothesized to be the result of increased G4-formation due to 

rises in co-transcriptionally-derived DNA negative supercoils caused from lack of Top1 

function. In past work, our group uncovered that expression of the cleavage-defective yeast 

Top1 mutant, yTop1Y727F, increases co-transcriptional G4-recombination even more than 

TOP1-deletion (Yadav et al., 2016). Since the same levels of DNA negative supercoils are 

expected to form in top1∆ and yTOP1Y727F cells, the finding that expression of a Top1 
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catalytic mutant induces greater levels of G4-instabity in yeast was surprising. Further 

investigation revealed that yTop1Y727F binds G4s in vitro (Berroyer and Kim, 2020) (Figure 

3). Thus, I hypothesized that G4-binding of yTop1Y727F stabilizes G4s and leads to the 

observed hyper-recombination at the SµG4-GTOP construct. Instability and recombination at 

G4 is acutely elevated by the expression of a cancer-associated catalytically inactive Top1 

mutant (yTop1Y740Stop) capable of binding both duplex DNA (Figure 18) and G4 DNA (Figure 

19A-B). This suggests that cleavage-defective Top1 mutants induce genomic instability at G4s 

by a shared mechanism.  

 Since the tight-binding of proteins to DNA can block DNA replication and cause DNA 

breaks (Gadaleta et al., 2017), I further hypothesize that the exacerbated G4-associated 

recombination observed in cleavage-defective Top1 mutant yeast cells is caused from 

replication stress induced from Top1 mutants binding at G4s. This hypothesis should be 

tested in the future via a technique developed in the Kim lab to assess kinetics of DNA copy 

number change during S-phase. This new method was used to show expression of full-length 

Nsr1, but not Nsr1ΔRGG, results in a significant delay in replication timing through a G4-motif 

(SµG4-GTOP) relative to a non-G4-motif (SµG4-GBTM) in the absence of Top1 (Singh et al., 

2020). This indicates Nsr1-G4 binding induces replication stress through the SµG4-GTOP 

locus. In this experiment, yeast cells were first arrested at G1 with α-factor followed by 

release into S-phase. Genomic DNA was isolated from the cells at 10-minute intervals from 1 

to 120 minutes following release from G1 arrest. Isolated DNA from every time point was 

then subjected to droplet digital PCR (ddPCR), a technique used to quantify the absolute 

number of nucleic acid molecules present in a sample (Batrakou et al., 2018), and assessment 



 

147 

 

of DNA copy number throughout S-phase was used to determine replication kinetics (i.e. time 

it takes cells to duplicate DNA at a targeted genomic locus). To measure the absolute copy 

number of genomic loci surrounding SµG4 throughout S-phase in cleavage-defective Top1 

mutant backgrounds, primers targeting multiple loci located at and downstream of ARS306 

on yeast chromosome III can be used in ddPCR experiments. Locations primers can target 

upstream of SµG4 (ARS306 and kanMX4) or downstream of SµG4 (3’ lys2 and STE50) on 

chromosome III are shown in Figure 34A. If binding of cleavage-defective Top1 mutants to 

G4s induces replication stress, I expect a significant lag in replication will be observed in GTOP 

cells relative to GBTM cells at loci downstream of SµG4 (3’ lys2 and STE50) (Figure 34B). 

Conversely, no differences in replication kinetics are expected between GTOP and GBTM in 

Top1 mutant strains at loci upstream of SµG4 (ARS306 and kanMX4) (Figure 34B).  
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Figure 34. Expected results of proposed ddPCR replication kinetics experiment. A. Schematic 

of chromosome III showing locations of ARS306 and loci upstream and downstream of SµG4 

to be targeted in ddPCR. B. Expected outcome of ddPCR experiment of 2 loci presented as 

DNA copy number of cell populations throughout S-phase in Top1 cleavage-defective mutant 

GTOP and GBTM strains.  
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 As described in Chapter 4, I also found that Wss1 of the DNA protein crosslink removal 

pathway plays a role in suppressing G4-induced genomic instability in yeast strains expressing 

cleavage-defective Top1 mutants. Yeast Wss1 and its human homolog SPTRN are proteases 

that degrade replication blocking protein DNA complexes (Stingele et al., 2014; Stingele et 

al., 2016). Wss1 harbors a SUMO-interacting motif and degrades SUMOylated proteins 

(Mullen et al., 2010). Since I found that Wss1 partly suppresses recombination at SµG4-GTOP 

in Top1 catalytic mutant backgrounds (Figure 23B) and that Top1 catalytic mutants are 

SUMOylated (Figure 23C), Wss1 likely targets the SUMOylated form of cleavage-defective 

Top1 mutants. Therefore, future experiments should be conducted with lysates from WSS1+ 

and WSS1- yeast cells to determine if the presence of Wss1 reduces the cellular levels of 

SUMOylated Top1 catalytic mutants (yTop1Y727F and yTop1Y740Stop). Further, Top1 has 

been shown to be SUMOylated at three specific amino acid residues located in the N-

terminus of the enzyme: Lys65, Lys91, and Lys92 (Chen et al., 2007). Mutation of all three 

lysines to arginines results in a ~95% reduction in Top1 SUMOylation. In order to probe the 

relevance of Top1 mutant SUMOylation in the suppression of G4-induced genomic instability, 

all three Top1 SUMOylation sites should be mutated to arginines and its effect on 

recombination at SµG4-GTOP and SµG4-GBTM should be determined. Yeast SUMO ligases 

Siz1 and Siz2 (Jalal et al., 2017) should also be deleted in Top1 mutant yeast strains to uncover 

if their ability to SUMOylate Top1 is relevant in the suppression of G4-induced genomic 

instability. 

 The Kim lab has previously shown that Nsr1 binds G4s and instigates G4-induced 

genomic instability in the absence of yeast Top1 (Singh et al., 2020). I found that Nsr1 also 
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contributes to G4-recombination in the presence of Top1 mutants (Figure 24C-D). Since 

deletion of the C-terminal RGG domain of Nsr1, which is responsible for Nsr1-G4 binding, 

significantly reduces G4-recombination in Top1 mutant expressing strains (Figure 24C-D), I 

conclude that G4-binding is the mechanism of Nsr1-induced G4-instability in Top1 mutant 

cells. While NSR1-deletion or truncation of Nsr1 reduces GTOP recombination to WT levels in 

top1∆ and yTOP1S733E strains, deletion or truncation of Nsr1 only reduces yTOP1Y727F and 

yTOP1Y740Stop GTOP recombination to TOP1-deletion levels (Figure 24B-D). This indicates 

that while Top1 cleavage-defective mutants and Nsr1 are a highly mutagenic combination in 

terms of the instigation of G4-induced genomic instability, expression of Top1 cleavage-

defective mutants alone can cause G4-associated recombination. I also found that the N-

terminus of Nsr1 is required for induction of Nsr1-mediated G4-induced genomic instability 

in the yTOP1Y727F and yTOP1Y740Stop cleavage-defective mutant strains (Figure 26C-D). 

This suggests that the physical interaction of Nsr1 and Top1 mutants as well as binding of G4 

DNA by both proteins is necessary to exert a synergistic effect on elevating G4-associated 

recombination (Figure 32). To further elucidate the mechanism of G4-induced genomic 

instability in cells expressing both Top1 cleavage-defective mutants and Nsr1, future 

experiments should be conducted to determine if Top1 mutants and Nsr1 bind the same G4-

molecule at the same time. Such future experiments could include a sequential pull down 

where photocleavable biotinylated G4-oligos conjugated to streptavidin magnetic beads are 

first mixed with yeast cell lysates containing FLAG-tagged Top1 mutants to separate G4-

binding proteins from non-G4 binding proteins. Following photocleavage to separate G4-

oligos from the streptavidin magnetic beads, a second pull down can be done with α-FLAG 
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coated agarose beads to pull down G4 oligos bound by FLAG-tagged Top1 mutants. After 

proteins are eluted from oligos and α-FLAG beads, western blotting utilizing α-FLAG and α-

Nsr1 antibodies can be performed to determine if Top1 mutants and Nsr1 bind G4 oligos 

simultaneously. Additionally, Nsr1-ChIP should be conducted to determine whether 

enrichment of Nsr1 at G4 loci is enhanced by its interaction with Top1 catalytic mutants.  

 One of the ways cells combat G4-induced genomic instability is through the resolution 

of G4s by a subset of helicases. ChIP-seq experiments performed in S. cerevisiae revealed that 

the G4-unwinder Pif1 is enriched at G4-motifs and that deletion of Pif1 results in replication 

stress and increased DNA breaks at G4-motifs (Paeschke et al., 2011). Additionally, while it is 

hard to imagine G4 helicases are able to unwind G4s in the presence of cleavage-defective 

Top1 mutants, past work from our group suggests Pif1 may resolve a portion of G4s in Top1 

catalytic mutant cells. Lopez et al., 2017 demonstrated that the yeast transcription factor 

Sub1, homolog to human PC4, binds G4s and prevents G4-induced recombination in TOP1-

deletion cells. Genetic experiments further showed that Sub1 likely suppresses G4-instability 

by recruiting G4-helicase Pif1 to co-transcriptionally formed G4s so they can be unwound. 

Interestingly, deletion of SUB1 significantly increases G4-induced recombination in yeast in 

the yTOP1Y727F background (Lopez et al., 2017). This means it is possible that Sub1 recruits 

Pif1 to G4s in the presence of Top1 cleavage-defective mutants. While it remains to be tested 

if Pif1 can metabolize G4s that are bound by Top1 catalytic mutants, Pif1 may be able to 

access G4s after Wss1 has proteolytically removed Top1 cleavage-defective mutants from the 

structure. Further work needs to be done to elucidate how Sub1 reduces G4-instability in the 

yTOP1Y727F background and if Pif1 is involved. To start, PIF1 can be deleted in yTOP1Y727F 
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and yTOP1Y727F sub1∆ backgrounds to uncover if Sub1 and Pif1 work together to suppress 

G4-induced recombination. Future work should also determine if Sub1 impacts G4-associated 

recombination in the cancer mutant homolog yTOP1Y740Stop background. 

5.4 Yeast Chromatin Remodelers and G4-Induced Genomic Instability 

 In addition to being tied to transcriptional regulation, G4s are also linked to 

epigenetics and chromatin structure. First off, G4-formation can impact the epigenetic 

modification of DNA bases. Cytosine residues can be methylated by DNA methyltransferase 

enzymes (Li et al., 1992; Okano et al., 1999; Liao et al., 2015). One DNA methyltransferase, 

DNMT1, binds G4s both in vitro and in vivo, and DNMT1 G4-binding inhibits DNTM1’s catalytic 

activity (Mao et al., 2018). Interestingly, G4s were found to form near sparsely methylated 

CpG islands in the human genome, therefore, it was concluded that G4-formation can prevent 

CpG island methylation by preventing DNTM1 activity. Since cytosine methylation can impact 

transcription by affecting DNA structure and ability of transcription factors to bind to their 

target sites (Yin et al., 2017), any change in cytosine methylation resulting from G4-formation 

could impact transcription. Therefore, loss of Top1 function could impact transcription by 

promoting G4-formation and consequently decreasing cytosine methylation. G4-formation 

and -stability can also impact the presence of modified histone proteins in the genome. 

During DNA replication, histone marks of parental nucleosomes are maintained by chaperone 

proteins that insert the modified parental nucleosomes into the newly synthesized DNA 

(Alabert et al., 2017; Hammond et al., 2017). Stabilized G4s can block the progression of DNA 

polymerases, leading to post-replicative gaps where the replication of problematic G4-

capable motifs becomes uncoupled from bulk DNA replication when replication restarts 
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downstream of the G4-block (Sarkies et al., 2010; Sarkies et al., 2012). Such uncoupling of 

replication is accompanied by the deposition of new nucleosomes lacking parental histone 

modifications into G4-capable genomic regions, resulting in a loss of epigenetic information 

that impacts transcription. Depletion of Rev1, a translesion polymerase associated with the 

destabilization of G4s (Eddy et al., 2014), and of FANCJ, a helicase that is capable of unwinding 

G4s (Wu et al., 2008), leads to loss of parental epigenetic marks at G4-motifs in cells; thus, 

loss of Top1 may impact the recycling of modified parental histones in G4-motifs during 

replication as well since TOP1-deletion increases G4-instability. Other data showing that 98% 

of G4s in human keratinocytes are located in nucleosome free genomic regions (Hänsel-

Hertsch et al., 2016) suggest that G4s may prevent nucleosome deposition. The suppression 

of nucleosome assembly on DNA by G4s located near TSSs could explain the observed 

association of genes harboring G4s with increased transcriptional output (Du et al., 2008). 

Additionally, since G4s can exclude nucleosomes, increased formation and stabilization of 

G4s in the absence of functional Top1 could greatly impact the chromatin landscape of cells. 

 While G4s may serve to exclude nucleosomes from DNA and affect epigenetic 

modification of DNA bases and histones, thus potentially impacting the overall architecture 

of chromatin, multiple studies have documented connections of chromatin remodeling 

proteins with G4s and other non-B DNAs. For example, ATRX was shown to suppress the 

formation of R-loops at telomeric DNA sequences and bind to G-quadruplex (G4) DNA 

structures in vitro and in vivo (Law et al., 2010; Nguyen et al., 2017). ATRX is a chromatin 

remodeler that belongs to the SWI/SNF family that functions in complex with the histone 

chaperone DAXX to suppress transcription by insertion of the H3.3 histone variant into DNA 
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(Argentaro et al., 2007; Wong et al., 2010; Lewis et al., 2010). Interestingly, ATRX’s genomic 

localization is enriched at centromeric, pericentromeric, ribosomal, and telomeric DNA 

sequences which all contain tandem repeats and have the ability to adopt non-B DNA 

structures (McDowell et al., 1999; Gibbons et al., 2000; Law et al., 2010; De La Fuente et al., 

2011; Elsasser et al., 2015). In addition to being enriched at telomeres, ATRX has also been 

shown to suppress the alternative lengthening of telomeres (ALT) pathway (Heaphy et al., 

2011), a mutagenic mechanism involving the homology directed repair of broken DNA that 

cancer cells use to preserve the length of their telomeres (Cesare and Reddel, 2010). Further, 

since telomeres contain G4-capable DNA sequences, it is reasonable to postulate that ATRX 

may have some connection to G4-mediated genomic instability. Nguyen et al., 2017 

investigated the recruitment of ATRX to G4-capable telomeric DNA repeats that were 

inserted into an intron of a genomic GFP gene controlled by a doxycycline-inducible promoter 

in mouse cells. Usage of this reporter system containing G4-capable telomeric repeats lead 

to the discovery that ATRX only bound co-transcriptionally-formed G4s when guanine-rich 

DNA is present on the non-transcribed strand (NTS), which is consistent with other studies 

that showed the interaction of bona-fide G4-binding proteins with G4-capable DNA is 

dependent on transcriptional orientation (Lopez et al., 2017; Singh et al., 2020). Additionally, 

Nguyen et al., 2017 observed that the levels of ATRX in vivo G4-binding were dependent on 

the number of telomeric repeats present in the GFP gene, where longer tracts of telomeric 

repeats with a high propensity to form G4s resulted in greater ATRX enrichment than shorter 

telomeric repeat tracts. Based on this finding, Nguyen et al., 2017 proposed that ATRX is 

recruited to telomeres by G4s, and this recruitment may play a role in suppressing ALT. A 
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separate study by Teng et al., 2021 revealed that ATRX and DAXX insert H3.3 into DNA 

harboring G4-motifs to promote the formation heterochromatin which ultimately suppresses 

the genomic instability associated with G4s by hindering G4-formation (Teng et al., 2021b). 

The two aforementioned studies taken together with results demonstrating that ATRX 

exogenous expression decreases the number of G4s in cells (Wang et al., 2019) supports a 

model where ATRX may have a role in G4-resolution and in the suppression of G4-formation 

to protect the genome from replication stress.  

 Another study implemented the chromatin remodeler SMARCA4 in suppressing G4-

induced genomic instability. SMARCA4 is an ATP-dependent chromatin remodeler that plays 

roles in the regulation of transcription and DNA repair (Chetty and Serra, 2020). Interestingly, 

SMARCA4 has been documented to play both tumor suppressive and tumor supportive roles 

in cancers (Ramos et al., 2014; Kim et al., 2021). Interestingly, a study showed that SMARCA4 

siRNA knock down results in increased Igh/c-Myc translocations in mouse B-cell lymphoma 

cells (Husain et al., 2016). Because the Igh/c-Myc translocation is a G4-associated 

translocation where G4s form at the Igh and c-Myc break sites (Duquette et al., 2004; Sun 

and Hurley, 2009), SMARCA4 is linked to G4 DNA. Experiments assessing the in vivo 

enrichment of Top1 at the Igh locus showed that Top1 recruitment to Igh was significantly 

reduced when SMARCA4 is depleted (Husain et al., 2016). It was also shown that knock down 

of either SMARCA4 or Top1 increased negative supercoil levels of the highly transcribed Igh 

locus in mouse B-cells. Therefore, it was concluded that SMARCA4 recruits Top1 to G4-

capable loci so that Top1’s activity of resolving DNA negative supercoils suppresses G4-

formation and associated DNA breaks.  
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 It remains unknown if yeast chromatin remodelers are involved in protecting the 

genome from G4-mediated DNA damage. Thus, I set out to determine if deletion of yeast 

chromatin remodelers influences recombination at the GTOP and GBTM reporters. Since 

yeast chromatin remodeler Fun30 was identified as a G4-interacting protein in whole cell 

extracts in an in vitro G4-oligo pull down assay followed by mass spectroscopy (Kim lab 

unpublished datum, not shown), I started by exploring if FUN30-deletion affects G4-induced 

genomic instability. Fun30 is a SWI/SNF (SWitch/ Sucrose Non-Fermentable), ATP-dependent 

chromatin remodeler with roles in histone-dimer exchange, gene silencing, and end resection 

of double-strand DNA breaks (Flaus et al., 2006; Neves-Costa et al., 2009; Awad et al., 2010; 

Chen et al., 2012). I found that, in the WT yeast background, deletion of FUN30 did not affect 

GTOP or GBTM recombination (Figure 35A). However, when I deleted FUN30 in the TOP1-

deletion background, I observed a significant ~2-fold increase in recombination at SµG4-GTOP 

(Figure 35B). Since GBTM recombination was not affected by FUN30-deletion in the absence 

of Top1, Fun30 plays a role in suppressing recombination that is G4-specific. To verify that 

the absence of Fun30 increases G4-induced recombination in the absence of Top1, I next 

deleted TOP1 in the fun30∆ background (Figure 35B, fun30∆* strain). Again, I saw that the 

absence of both Top1 and Fun30 significantly increases recombination at the SµG4-GTOP 

reporter only. Therefore, I conclude that Fun30 has an unknown role in suppressing G4-

induced genomic instability in the absence of Top1 when G4-formation is favored due to 

increased accumulation of co-transcriptionally formed negative DNA supercoils. In the future, 

experiments should be conducted to uncover exactly how Fun30 suppresses G4-induced 

genomic instability. For example, ChIP could be performed to uncover if Fun30 interacts with 
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G4-capable loci in vivo. And in vitro experiments could be completed to decipher if Fun30 

binds G4-oligos directly. Other areas of future exploration include assessing if Fun30’s ATPase 

and/or helicase activities are required for suppression of G4-induced recombination.  
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Figure 35. Deletion of FUN30 increases G4-induced recombination in TOP1-deletion strains. 

A-B. Recombination rates of fun30∆ GTOP and GBTM strains in WT (A) and top1∆ (B) 

backgrounds. Rates for each strain are listed above their respective bars in graph. 

Recombination rates are considered statistically significantly different if their 95% confidence 

intervals (shown as error bars) do not overlap (Spell and Jinks-Robertson, 2004). In B,  

fun30∆* denotes strains where TOP1 was deleted in a FUN30-deletion background.  
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 Since Fun30 deletion alone does not affect G4-induced recombination and only 

impacts instability when Top1 is also deleted (Figure 35), it is not likely that Fun30 has a role 

in recruiting Top1 to G4-capable loci undergoing transcription as has been documented with 

the SMARCA4 chromatin remodeler (Husain et al., 2016). Instead, Fun30 may have another 

role in suppressing G4-induced recombination related to its documented role in promoting 

silencing of reporter genes inserted into ribosomal DNA repeats and telomeres in yeast 

(Neves-Costa et al., 2009). Of note, both ribosomal DNA and telomeres are G4-capable (Capra 

et al., 2010), indicating it is possible that Fun30’s role in gene silencing could involve G4-

recognition and/or binding. In support of Fun30 having a possible role in suppressing 

transcription of G4-capable loci or loci proximal to G4s, mammalian ATRX has been shown to 

promote the formation of heterochromatin as a mechanism to block transcription and 

prevent genomic instability at G4-capable genomic loci in murine embryonic stem cells (Teng 

et al., 2021b). While the exact mechanism of Fun30 gene silencing at the ribosomal DNA loci 

remains to be elucidated, it is possible that Fun30 functions to repress G4-induced genomic 

instability in a similar fashion to ATRX by inserting histone proteins into DNA to promote 

chromatin condensation and repress transcription. In addition, whether SMARCAD1,  a 

human homolog of Fun30 (Awad et al., 2010), represses G4-instability in mammalian cells 

remains unknown and should be tested in the future.  

 In addition to Fun30, the role of other yeast chromatin remodelers (i.e. the Ino80 

complex that plays a role in repair of DNA double-strand breaks (Morrison et al., 2004; van 

Attikum et al., 2007), in genome instability at G4s should be investigated. And as mentioned 

above, murine SMARCA4 was shown to recruit Top1 to G4s and suppress G4-induced 



 

160 

 

instability (Husain et al., 2016). Therefore, it is possible a yeast chromatin remodeler also 

recruits Top1 to highly-transcribed G4-capable genomic loci as well. Studying whether the 

recruitment of Top1 cleavage-defective mutants by SMARCA4 or other chromatin remodelers 

could contribute to oncogenic translocations at highly-transcribed G4-capable loci is another 

attractive area of exploration in the future. 

5.5 Overall Conclusions 

 The work attempted in chapter 3 is important because uncovering if a higher number 

of G4s form in the highly-transcribed regions of TOP1-deletion yeast cells relative to WT yeast 

cells will contribute to a better understanding of Top1’s role in suppressing G4-induced 

genomic instability. Investigating the genome-wide formation of G4s in the absence of Top1 

is also medically relevant since Top1 is a major target of highly used anti-cancer drugs, such 

as CPT-derivatives (Pommier et al., 2010).  

 Top1 mutants arise in cancer cells in response to chemotherapeutic treatment 

(Beretta et al., 2013). Since these mutants are catalytically faulty, their expression is coupled 

with an increase of DNA negative supercoils levels which impacts non-B DNA-formation and 

associated genomic instability. I found that Top1 mutants, including some found in cancers, 

increased G4-induced genomic instability in yeast.  

 The scientific findings uncovered in Chapter 4 of this dissertation are important since 

nucleolin is commonly overexpressed in cancers (Carvalho et al., 2021), G4-DNA contributes 

the mutational burden of cancer cells (Bacolla et al., 2019), and Top1 is a target of widely 

used chemotherapeutics that cancer cells can acquire resistance to through alterations of 

Top1 functioning (Pommier et al., 2010; Beretta et al., 2013). A protein complex involving 
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Top1 mutants and nucleolin bound to G4s could cause increased G4-mutagenesis in cancer 

cells as a result of DNA replication blockage and potentially lead to the formation of 

secondary cancers in patients treated with Top1-targeting anticancer drugs. In support of 

this, while Top1 mutants are correlated with an overall increase in mutations throughout 

cancer genomes, Top1 catalytic mutants are associated with increased levels of genomic 

aberrations occurring at G4-capable loci in cancers (Figure 33). This indicates that Top1 

mutants that are catalytically defective may negatively impact cancer patient prognosis due 

to increased G4 DNA stabilization. Moving forward, experiments should be conducted to 

investigate if cancer cells treated with CPT have increased levels of G4-induced genomic 

instability relative to untreated cells.  
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