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Advisory Professor: Paul Scheet, Ph.D. 

 

Abstract 

Comprehensive genomic and transcriptomic characterization of tumors has uncovered enrichment 

for distinct aneuploidy and expression patterns, demonstrating the utility of molecular based 

classification of cancers and their subtypes. Existing cohorts with transcriptomic profiling from 

next-generation sequencing contain an untapped potential to also relate genomics with rich 

clinical phenotypes. Yet, derivation of somatic copy number and expression profiles from 

analyses of RNA has remained elusive. Further, DNA analysis in these cohorts is not always 

feasible due to limited tissue availability or financial constraints. Here, we present a statistical 

approach that overcomes these challenges using haplotype information to aid detection of somatic 

chromosomal copy number alterations (SCNAs), which result in allelic imbalance, i.e., deviations 

from the expected 1-to-1 allelic ratios at heterozygous loci. We initially applied a native version 

of our method to 1,970 tumor samples from 7 sites in The Cancer Genome Atlas (TCGA), 

inferring genotypes directly from RNA-sequencing (RNA-seq). This resulted in an SCNA 

detection rate of 68%. Encouraged by this, we next leveraged large public genetic reference data 

and array derived germline genotypes, from matched blood samples, to impute millions of 

germline variants for 4,942 patients across 28 TCGA cancer sites, resulting in improved genotype 

calling and haplotype inference. This latter approach increased our power for tumor SCNA 
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detection from RNA-seq to 85%, while maintaining a false positive rate of ~5%. SCNA burden 

inferred from RNA-seq was highly correlated (R = 0.92) with “gold standard” DNA derived 

estimates. To demonstrate the approach’s potential clinical utility, we replicated SCNA features 

associated with clinical subtypes of breast cancer from RNA-seq successfully. Following this 

work, we investigated the role of the phenomenon of X-inactivation in female carcinogenesis 

through a comprehensive profiling of allelic imbalance observed in the X chromosome using 

tumor samples from the females in the TCGA breast cancer cohort. We observed higher rates of 

chromosome-level allelic imbalance for the X chromosome, both in comparison to the autosomes 

(derived from RNA) and the X chromosome derived from DNA, suggesting these are 

epigenetically driven by X-inactivation. Additionally, our results are in line with the findings from 

the literature that indicate loss of X chromosome inactivation’s role in female carcinogenesis 

through association with more aggressive and basal-like subtype of breast cancer. Taken together, 

our results suggest a substantial improvement over existing methods, allowing for comprehensive 

studies of SCNA from RNA-seq and opening avenues for cost effective large-scale studies of 

tumors, as well as elucidating epigenetically driven mechanisms’ contribution to carcinogenesis. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Background 

As the second leading cause of death in the U.S. after heart diseases, cancer constitutes a major 

public health issue. In 2022 alone, 1.9 million new cases of cancer are expected to be diagnosed 

and 609,360 people are expected to die of cancer [5]. Furthermore, it is anticipated that 1 in 3 

women and 1 in 2 men will develop the disease in their lifetime. The top 5 leading cancer types 

for women are lung and bronchus, breast, colon and rectum, pancreas, and ovary cancer, whereas 

for men, the order is lung and bronchus, prostate, colon and rectum, pancreas, and liver and 

intrahepatic bile duct cancers [5]. 

        Cancer is a genetic disease in which a group of cells, which originally derived from a single 

abnormal cell, gain a selective advantage, and grow and divide uncontrollably by disobeying the 

regular rules of cell division. Although DNA replication is strictly regulated to ensure the 

correctness of the process, mistakes happen at a rate of ~10-9 per base pair per cell division for 

humans [6]. These altered DNA sequences are called mutations. In addition to the mistakes during 

DNA replication, external factors in the environment, such as tobacco consumption and exposure 

to radiation and certain chemicals, may lead to mutations as well.  

        Even though not all mutations are harmful, certain mutations, such as mutations in proto-

oncogenes, which are the genes encoding proteins that function to stimulate cell cycle division, 

may cause overexpression and excessive cell proliferation. Similarly, mutations in tumor 

suppressor genes (TSG), which are the genes encoding proteins that regulate DNA repair, restrain 

proliferation, and induce apoptosis, may cause inactivation and lead cells to grow abnormally. 
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Usually, a series of mutations, involving the mutations in proto-oncogenes and tumor suppressor 

genes, are responsible from tumorigenesis [7]. Genomic instability, as one of the (evolving) 

hallmarks of cancer, may stem from the accumulation of such mutations which provide the genetic 

diversity essential for carcinogenesis. Gene mutations, chromosomal alterations, and genomic 

rearrangements are examples that occur in genomically unstable cells [8]. Characterizing these 

alterations may be helpful for shedding light on the molecular mechanisms of tumor initiation and 

progression. 

        Genomic instability most often results in allelic imbalance, which is defined as a deviation 

from the expected 1-to-1 ratio of inherited parental alleles, or haplotypes. Normally, a person 

inherits two alleles, one copy from each of their parents. Here, I will define an allele to be an 

allelic variant or dosage at a single base pair position in the consensus reference genome. At a 

germline heterozygous locus, these alleles can arbitrarily be labeled as allele ‘A’ and ‘B’. 

Duplication of one of these alleles (AAB or ABB), causes allelic imbalance as the inherited 

parental haplotypes ratio become 2-to-1 (AAB) or 1-to-2 (ABB) and deviates from the normal 1-

to-1 A:B ratio in at least some portion of the cells in a heterogeneous mixture. Similarly, deletion 

of one of the alleles (A leading to 1:0 or B leading to 0:1) causes a disturbance to the 1-to-1 A:B 

ratio and gives rise to loss of heterozygosity (LOH) and therefore allelic imbalance. A special 

type of LOH in which the normal copy number remains unchanged is copy neutral LOH (cn-

LOH). Loss of one parental copy and duplication of the other causes cn-LOH (AA leading to 2:0 

or BB leading to 0:2).  

        For individuals with hereditary cancer predisposition and who have a germline mutation in 

certain genes, e.g., TSGs RB1 and BRCA1, LOH is associated with loss of the wild type allele 

(functional copy) as it leaves no TSG for protection. cn-LOH is thought to serve as the ‘second 

hit’ in the Knudson hypothesis. According to the Knudson hypothesis, for the majority of the 
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TSGs, a phenotypic change requires both alleles to be inactivated or ‘hit’ through a genetic or 

epigenetic modification [9]. 

        Beyond the alterations in individual genes, aneuploidy, which results from loss or gain of 

chromosome arms and/ or whole chromosomes, may contribute to cancer initiation and 

progression as well. Studies have shown that nearly 90% of solid tumor exhibit aneuploidy, 

ranging between 26% and 99% depending on the tumor type [10]. For solid tumors, typically, 

25% of the genome is affected by copy number changes through chromosome arm (or whole 

chromosome) alterations with a median of 5 losses and 3 gains of chromosome arms [11,12]. 

Furthermore, site specific aneuploidy patterns for different cancers have been observed in a 

plethora of studies [10,12–15], suggesting that carcinogenesis is driven by specific aneuploidies; 

for instance, common occurrence of gain of chromosome arm 12p in testicular germ cell tumors 

[16] and gain of chromosome 7 and loss of chromosome 10 across glioblastomas that do not carry 

IDH mutations [17]. 

        Usually, to detect genomic regions that exhibit allelic imbalance, DNA-based methods, e.g., 

array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) 

array, are used. The strategy behind these traditional allelic imbalance detection methods is to 

identify deviations of (within sample) allele frequencies from 0.5. When considering the genome 

wide distribution of B allele frequencies (BAF; a measure of the signal from B allele over the sum 

of A and B alleles) at germline heterozygous loci, for genomic regions that do not harbor an allelic 

imbalance event, one would expect to observe BAF distributed around 0.5. In contrast, in the 

presence of allelic imbalance events, one would expect to observe a band of separation indicating 

a deviation of the BAFs from 0.5 as one band would result from the elevated frequencies of the 

alleles of one haplotype and another distinct band from the decreased allele frequencies (Fig. 1.1). 



 4 

 

Fig. 1.1. Allelic imbalance detection from B allele frequencies (BAF). Visualization of 
hapLOH [1]output for tumor sample TCGA-OR-A5J8-01A-11D-A29H-01. B allele frequencies 
at heterozygous sites ranging from 0 to 1 are shown with points throughout the genome. The 
orange and yellow lines overlaid with the BAFs represent the posterior probabilities of allelic 
imbalance (orange and yellow lines for different levels of allelic imbalance). The band separation 
in the BAFs are visible where allelic imbalance is detected, such as chromosomes 1-4 as opposed 
to chromosome 7, which does not exhibit allelic imbalance. 
        The magnitude of deviation from 0.5 depends on the event type, e.g., gain, loss, or cn-LOH, 

and mutant cell fraction (MCF), i.e., the fraction of cells harboring the chromosomal alteration. If 

the MCF is high enough, e.g., 100% tumor sample, the band separation will be visually 

identifiable and there is no need for a special algorithm to determine allelic imbalance events. 

However, as MCF decreases, e.g., 20% tumor sample, the ability to detect the events visually 

disappears. For that reason, detection of subtle allelic imbalances poses a challenge to the 

traditional allelic imbalance identification methods. Most methods [18–21] for detecting tumor 

associated allelic imbalances have low power at MCFs below 10%-15%. 

        To address the issues regarding identification of subtle allelic imbalance events from SNP 

array data, Vattathil et al. developed a method named hapLOH [1]. Using the same principles of 

detection of the shifts from 0.5 in the BAFs at heterozygous loci, hapLOH expands this by taking 

haplotype information into consideration and searches for deviations of haplotype allele 

frequencies from 0.5. Estimating germline haplotypes and then searching for allelic imbalance 
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among the haplotypes makes the subtle events more distinguishable. hapLOH effectively 

identifies higher level imbalance, i.e., the two bands of BAF sufficiently diverged, such as in cn-

LOH events, at MCFs as low as 4% and at MCFs 7% and higher, it successfully discerns the 

difference between genomic regions with lower, i.e., the two bands of BAF overlap, such as in 

such deletion events, and higher imbalances. 

        Following hapLOH, San Lucas et al. developed a method named hapLOHseq [22] for 

detection of genomic regions that exhibit subtle allelic imbalance from exome sequencing data 

utilizing the same principles underlying hapLOH. Exceeding the capabilities of the other methods, 

using data from 80x exome sequencing, hapLOHseq successfully identified allelic imbalance 

events as small as 10 megabases (Mb) at MCFs 16% and higher. Using 30x whole genome 

sequencing data, hapLOHseq effectively detected events at MCFs 4% and higher. 

        RNA-seq data from tumor samples, is often analyzed for quantifying expression analysis, 

detection of alternatively spliced genes, and identification of novel transcripts as a complementary 

approach to provide further information on the disease. Although joint analysis of RNA and DNA 

may often be ideal for copy number detection, it may not always be feasible in all settings. For 

example, in settings where the amount of tumor sample is limited or financial constraints do not 

permit additional analysis on a separate platform, the data from RNA may be the only data source 

available. Under such circumstances, the ability to infer allelic imbalance from RNA is invaluable. 

Despite the increasing efforts to extend RNA-seq analysis pipelines to provide copy number 

information, it still has not been fully established. This is mainly due to the challenges specific to 

analysis of RNA as factors beyond the underlying copy number alterations (CNAs) could affect 

mRNA quantities, such as the various epigenetic mechanisms that regulate gene expression and 

non-uniform coverage of the genome. 
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        To summarize, the utility of the data from bulk RNA-seq experiments can be greatly 

increased by extending the data analysis to include detection of somatic CNAs (SCNAs) and 

yielding to a more comprehensive tumor characterization in certain settings in which additional 

analysis on DNA is not feasible either due to the restricted availability of tumor sample and/ or 

funding related constraints. Furthermore, there is a large number of grossly underutilized data 

repositories, e.g., The National Cancer Institute (NCI) Genomic Data Commons (GDC) [23], with 

bulk RNA-seq data across different cancer research programs, including The Cancer Genome 

Atlas Project (TCGA) [24], Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) [25], and International Cancer Genome Consortium (ICGC) [26]. Data 

from the well phenotyped cohorts of these repositories could be reused for further analysis to 

increase the utility of these datasets and especially benefit rare cancers that suffer from scarcity 

of data. Lastly, the well characterized samples would also assist investigation of associations 

between SCNAs and clinical features. 

 

1.2 Dissertation outline 

This dissertation project focuses on the implementation, tuning, testing, and application of 

hapLOHseq to bulk RNA-seq data in cancer settings. hapLOHseq is the next generation 

sequencing (NGS) implementation of hapLOH, which is a sensitive statistical software developed 

by the Scheet lab that utilizes germline haplotypes to identify genomic regions that exhibit allelic 

imbalance from SNP array data. Throughout the dissertation, RNA based allelic imbalance calls 

detected with hapLOHseq are compared with DNA based calls identified with hapLOH, which 

serves as a gold standard. In the remainder of the dissertation, the following organization is going 

to be used: 
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        In chapter 2, I describe hapLOHseq’s application to nearly 5,000 tumor samples across 28 

tumor sites in the TCGA, beginning with a discussion on the importance of allelic imbalance as a 

signature of genomic instability, the motivation for implementing hapLOHseq to RNA-seq data, 

and the two possible options for obtaining the germline haplotypes from: (1) tumor RNA-seq and 

(2) imputed genotypes derived from DNA SNP array data from a matched-normal sample such 

as blood. The subsequent sections of the chapter demonstrate the results from benchmarking of 

the approach against two other methods available for allelic imbalance detection from bulk RNA-

seq, the performance of the approach at the gene, chromosome arm, and genome levels, and the 

method’s potential clinical use with several applications on the TCGA breast cancer cohort. 

        In chapter 3, I provide guidelines to ensure the user achieves the highest quality (best possible 

given the data) results and describe the reason for each. The chapter contains several quality 

control measures for both before and after applying hapLOHseq software to RNA-seq data, 

including pre-processing of the RNA-seq data to check whether the data meets certain 

requirements to make high quality allelic imbalance calls and post-processing of the calls to clean 

up and improve the precision. 

        In chapter 4, I provide the details of an analysis of hapLOHseq’s application to the X 

chromosome from 600 plus females across the TCGA breast cancer cohort. The chapter aims to 

characterize signatures of X-inactivation and to investigate the role of X-inactivation, or the lack 

thereof, in female carcinogenesis, and explores the relationship between several clinical features, 

such as overall survival, tumor subtype, and tumor biological age, and the status of having an X-

inactivation induced imbalance exclusive to RNA, i.e., while there is no allelic imbalance in DNA, 

epigenetic mechanisms utilized for X-inactivation induces allelic imbalance in RNA. 

        Finally, in chapter 5, I discuss the limitations of the method in several scenarios and mention 

potential improvements and extensions as future directions. 
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CHAPTER 2 

CHROMOSOMAL IMBALANCES DETECTED VIA RNA-SEQUENCING 

IN 28 CANCERS 

 

 

The contents of this chapter are based on the following publication [27], reprinted with 

permission, from the journal Bioinformatics: 

 

 Z. Ozcan, F.A. San Lucas, J.W. Wong, K. Chang, K.H. Stopsack, J. Fowler, Y.A. 

Jakubek, P. Scheet, Chromosomal imbalances detected via RNA-sequencing in 28 cancers, 

Bioinformatics. (2022). https://doi.org/10.1093/bioinformatics/btab861. 

 

2.1 Introduction 

Cancer arises as a result of a gradual acquisition of molecular alterations [28]. Genomic 

instability, a hallmark of cancer [8], leads to DNA alterations, such as somatic copy number 

alterations (SCNAs), which may span large genomic regions or entire chromosome arms. They 

can play a key role in the path to tumorigenesis by leading to loss of tumor suppressor genes 

and/or generating additional copies of oncogenes [9]. SCNAs have been associated with clinical 

features or outcomes and serve as prognostic indicators [10,29–35]. Hence, detection and 

genome-wide characterization of SCNAs is a key component for genomic studies of tumor 

initiation and progression, and of SCNA-associated clinical features and outcomes. 
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        Typically, SCNAs are almost exclusively inferred directly from DNA, measured by 

technologies such as array comparative genomic hybridization, single nucleotide polymorphism 

(SNP) DNA microarray or NGS [36–40]. Investigations of RNA, either by microarray or NGS 

[RNA-sequencing (RNA-seq)], often complement DNA analyses through quantification of gene 

expression, and identification of novel transcripts and gene fusions [41,42] or point mutations 

[43–47] to further our understanding of disease. Yet, in many settings, particularly where tumor 

material or funding is limited, data exist from RNA-seq only. However, the extension of RNA-

seq data into SCNA calling has not been as well developed. Inferring SCNAs from RNA-seq data 

is inherently difficult, since both regulation of expression and underlying DNA copy number will 

alter the observable quantities of mRNA. In addition, due to the non-uniform coverage of the 

genome from RNA-seq, it is challenging to differentiate between dynamically varying gene 

expression and SCNAs. 

        Recently the relative void of methods to detect SCNAs from RNA has been partially 

addressed. Most of these methods are exclusively tailored to single cell RNA-seq (scRNA-seq), 

such as HoneyBADGER [48], CopyKAT [49] and inferCNV [50], while some can be applied to 

bulk RNA, such as CaSpER [4] and SuperFreq [51]. CaSpER integrates genome-wide total gene 

expression and allelic signals to detect and visualize SCNAs; SuperFreq also uses both read counts 

and BAF dispersions for SCNA inference, requiring referent samples to be available for 

normalization. Another approach for detection of SCNAs from bulk RNA profiling integrated 

coverage data and tumor-specific SCNA frequency patterns from public, external, data to identify 

chromosome-arm level aneuploidy, which was in turn assessed for association with prostate 

cancer outcomes [52]. Yet, these methods do not utilize haplotype information (the genetic 

makeup of a single chromosome that is passed on from a parent), which has been shown to 

increase power for SCNA detection in studies with SNP microarray data [1,3,53,54]. 
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        We sought to facilitate inference of SCNAs from RNA by applying an approach that utilizes 

haplotypes for SCNA detection from bulk RNA-seq, opening avenues for joint analysis of 

aneuploidy and expression from population-scale data. Consideration of haplotype structure 

implicitly models the signal at multiple genomic loci (or SNP markers) jointly, which not only 

offers an opportunity for increased power, but also requires the patterns to sustain beyond 

individual transcripts, which may be modulated by factors beyond SCNAs. Our approach enables 

robust detection of megabase-scale SCNAs that represent gain, loss or copy neutral loss of 

heterozygosity (cn-LOH) events. The strength of our approach derives from modeling the allelic 

imbalance at genomic regions affected by SCNAs. Allelic imbalance refers to a deviation from 

the expected 1:1 ratio of ‘A’ and ‘B’ alleles at germline heterozygous (genotype ‘AB’) loci. 

Alterations such as deletion (genotype: A- or B-, ratio: 1:0 or 0:1), duplication (genotype: AAB 

or ABB, ratio: 2:1 or 1:2) and cn-LOH (AA or BB, ratio: 2:0 or 0:2) are representative examples 

of AI. 

             In this chapter, I describe our method for detecting large scale SCNAs from tumors using 

bulk RNA-seq data. I start by explaining the details of the method, including the two possible 

approaches for obtaining germline genotype calls, which is an essential step for the method. I 

continue by explaining the possible underlying reasons of the performance improvement achieved 

with genotype imputation and follow by the performance assessment results evaluated at the gene, 

chromosome arm, and genome levels by comparing the RNA-seq derived SCNAs with SNP array 

derived gold standard call set. Furthermore, I also show the method’s potential clinical efficacy 

with examples from the TCGA BRCA cohort and report benchmarking results of the method 

against two other methods available for detecting SCNAs from bulk RNA-seq. 
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2.2 Study design 

In this study, we demonstrate effective somatic chromosomal copy number alteration 

identification from RNA-seq, comparing results to those derived from a high-density SNP DNA 

microarray as a benchmark and so-called ‘gold standard’ for SCNA detection. We consider 

scenarios where data are available from RNA-seq only, as well as a complementary scenario 

where germline DNA data is available from another source such as routinely collected blood. We 

apply several novel techniques including using RNA-seq for inference of acquired allelic 

imbalance and the incorporation of genotypes via an imputation step using publicly available 

large-scale genotype reference data, which improves our performance considerably by enhancing 

the quality of estimated genotypes and haplotypes. Our results demonstrate that comprehensive 

and robust inference of megabase-scale SCNAs is possible from bulk RNA-seq. 

 

2.3 Materials and methods 

2.3.1 Dataset 

RNA-seq BAM files aligned against the human genome build hg38 (GRCh38) and the level 1 raw 

CEL files from Affymetrix Genome-Wide Human SNP Array 6.0 profiling of 4942 (primary 

solid) tumor samples across 28 cancer sites in The Cancer Genome Atlas (TCGA) were obtained 

from the Genomic Data Commons data portal along with BRCA clinical information. The level 

1 raw CEL files of the matched-normal (blood) samples across these sites were also downloaded 

to perform genotype imputation. In addition, for a subset of 7 cancer sites (BRCA, COAD, GBM, 

LUAD, LUSC, PAAD and PRAD), WES BAM files of 888 (primary solid) tumor samples aligned 

against the GRCh38 were obtained for comparisons. 
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2.3.2 Processing of the tumor RNA-seq array data 

Our method for the detection of SCNAs relies on the allele-specific signals at germline 

heterozygous sites. For the purpose of deriving germline genotypes, the sample can come from 

the tumor itself or from a matched-normal. We explored the utility of using two different sources 

of data for obtaining germline genotype calls: (i) tumor RNA-seq and (ii) imputed genotypes 

derived from SNP array data from a matched-normal, specifically blood for the samples to which 

we had access. 

2.3.2.1 Genotyping and phasing 

2.3.2.1.1 Approach 1: Genotypes from tumor RNA-seq 

For this approach, using tumor RNA-seq, the genotypes were called at sites already known to be 

polymorphic from large-scale surveys of genetic variation. The Haplotype Reference Consortium 

(HRC; for individuals of European ancestry) was used as a reference and genotypes were called 

at these reference sites from the RNA data with the UnifiedGenotyper from Genome Analysis 

Toolkit [55] (GATK; version 3.6). Subsequently, the genotypes were phased using the MaCH 

software [56] to reconstruct haplotypes using the set of individual-level genotypes as an internal 

reference. Singleton SNPs — heterozygous markers that were observed only in one sample at a 

particular SNP locus within a cancer site — were removed. 

2.3.2.1.2 Approach 2: Genotypes imputed 

The accuracy of haplotype reconstruction increases with larger reference/internal sample size. 

Therefore, haplotype reconstruction accuracy is limited particularly for smaller cancer sites when 

using an internal reference as done in approach 1. For approach 2, we leveraged the available 

blood genotype data from SNP DNA microarrays, representing genotypes from the matched-

normal samples of the TCGA resource (blood). After calling genotypes using the SNP array data 

of the matched-normal samples with the Birdsuite software [57], the genotypes were prepared for 
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imputation. To assure the quality of the genotypes submitted for imputation, several quality 

control steps were performed. To filter out low-quality SNPs, we removed the SNPs that failed 

Hardy–Weinberg equilibrium test (p-value < 1×10−6), those with missing rate > 5% and excluded 

monomorphic sites. In addition, samples with greater than 5% missing genotype rate were 

removed from downstream analyses. Individuals of European ancestry were identified using 

principal component analysis [EIGENSTRAT [58]] using the genotyped SNPs at 1KG sites with. 

The cleaned, unphased genotypes from individuals of European ancestry were submitted to the 

Michigan Imputation Server [59] (MIS), using the hg19 (GRCh37) genome build, the HRC panel 

(Version r1.1 2016) as the reference, 0.1 R2 cutoff - which is a metric used to quantify imputation 

quality - and EUR for population. Consequently, the imputed genotypes and estimated haplotypes 

for 4942 TCGA samples of European ancestry from 28 cancer sites were downloaded from the 

MIS and markers with an R2 < 0.3 were removed to remove poorly imputed markers. 

        In both approaches, the centromeric, human leukocyte antigen (HLA), VDJ and Database of 

Genomic Variants (DGV) regions were masked for exclusion of putative germline copy number 

changes.  

2.3.2.2 Detection of SCNAs 

As noted earlier, we investigate two approaches that differ on how the germline haplotypes are 

obtained. While the first approach uses tumor RNA to statistically estimate haplotypes, in 

approach 2, the phased germline genotypes are obtained through genotype imputation performed 

on a matched-normal from SNP array. The hapLOHseq [22] software identifies the haplotype in 

excess and using the germline haplotypes, quantifies phase concordance via switch accuracy to 

determine genomic regions that harbor SCNAs. The hapLOHseq software (version 0.1.2) was 

applied using the default parameters in both approaches, except –end_param_event (=0.9) and –

event_prevalence (=0.05). SCNA calls with <10 markers or those smaller than 2 Mb were 
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excluded. Furthermore, SCNA calls that contain large (>10 Mb) genomic regions without any 

heterozygous sites were split up into multiple regions. 

2.3.3 Processing of the tumor DNA WES data 

To identify SCNAs from WES tumor data, first, the genotypes were called at the HRC sites with 

UnifiedGenotyper. Second, the genotypes were phased with MaCH software using the set of 

individual-level genotypes as an internal reference. Third, the hapLOHseq software was used with 

the default parameters to detect the SCNAs after masking the centromeric, HLA, VDJ and DGV 

regions and removing singleton SNPs. SCNAs with <10 markers or those smaller than 2 Mb were 

excluded and the calls that contain large (>10 Mb) regions without any heterozygous sites were 

split up into multiple regions. 

2.3.4 Processing of the tumor SNP array data 

To detect SCNAs from SNP array tumor data, first, the genotypes were called using the Birdsuite 

software, second, the genotypes were phased using MaCH software, and third, the hapLOH 

software was used with the default parameters to identify regions that harbor SCNAs. Prior to the 

third step, the markers were mapped from genome build hg19 to hg38 and the centromeric, HLA, 

VDJ and DGV regions were masked. The SCNA calls detected from the SNP array constitute a 

gold standard for assessing the performance. 

        To ensure the consistency in the way the samples were processed, SyQADA [60] was used 

to automate the pipelines across the three platforms. 

2.3.5 Performance assessment 

We sought to assess the performance of our method for detection of SCNAs in tumors. To do so, 

we compared our set of SCNA calls to a gold standard set of SCNA calls from matched-tumor 

DNA samples processed using arrays, a gold standard set of calls. We contrasted the SCNA call 

sets at gene-, chromosome arm- and genome levels. At the gene level, we report sensitivity and 
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specificity. Sensitivity represents the method’s power to detect true SCNAs that are identified by 

the gold standard, while specificity represents the method’s ability to correctly identify genes that 

do not fall within an SCNA region in the gold standard. Therefore, sensitivity (TPR) was 

calculated as TP / (TP + FN) and specificity (1 - FPR) was calculated as TN / (TN + FP) where 

TP is true positive, FN is false negative, TN is true negative, and FP is false positive (see Appendix 

Fig. A1 for details). For each sample, sensitivity and specificity were calculated individually, then 

median sensitivity and specificity for samples in each TCGA cohort were reported as cohort-level 

summary statistics. When assessing the method’s performance at the chromosome arm level, for 

each sample, we assessed presence or absence of a chromosome arm-level event, defining an arm-

level event as present when at least 50% of the chromosome arm is affected by SCNAs. At the 

genome level, we calculated genomic burden for each sample, which reflects the percentage of a 

sample’s genome that exhibits SCNAs. For each cancer site independently, we calculated each 

sample’s genomic burden based on RNA-seq-derived SCNA calls and compared with the gold 

standard derived genomic burden. 

2.3.6 Comparison to other methods 

We followed the recommended workflow for SuperFreq of first applying VarScan2 [61] for 

variant identification, followed by SuperFreq itself. RNA-seq from two adjacent-to-tumor breast 

samples in the BRCA resource were supplied to SuperFreq for normalization. Results from the 

TP53 analysis of COAD samples were taken directly from their curated data in their GitLab page. 

Results from CaSpER were obtained directly from what they had curated previously, using their 

stored and available R data frames. We then summarized results by gene through direct tabulation 

or applying BEDTools intersect. 
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2.4 Results 

To detect somatic (acquired) copy number alterations (SCNAs) using RNA, we applied a 

haplotype-based approach. In brief, hapLOHseq detects regions of the genome where the signal 

at heterozygous sites reflects one of the estimated haplotypes for that individual. A deviation from 

the expected 1:1 ratio of maternal to paternal DNA indicates a relative over-representation of one 

of the parental chromosomes, signaling the presence of an SCNA. This approach has been applied 

successfully to bulk DNA analyses of various tissues [54,62,63]. 

        Here, we explore the potential of this method for detection of large-scale SCNAs from NGS 

data of bulk RNA (RNA-seq). To do so, we obtained RNA-seq from seven large cancer sets in 

TCGA: Breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma 

multiforme (GBM), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), 

pancreatic adenocarcinoma (PAAD) and prostate adenocarcinoma (PRAD). To identify genomic 

regions that harbor SCNAs, we applied hapLOHseq. To assess the accuracy and potential of this 

approach, we compare SCNAs inferred from RNA-seq to high-confidence SCNA calls detected 

from DNA SNP microarray data, which have been documented previously [3] with an estimated 

false-positive rate < 3% [63]. For these purposes, since the RNA and DNA were derived from the 

same tissue (or tumor), we treat the SNP microarray results as a gold standard. For a subset of 

samples, we also applied hapLOHseq to whole exome sequencing of DNA (WES) to help interpret 

the results and assess where deficiencies may be attributed to technology, bioinformatic 

approaches or inherent limitations of inference from specific nucleic acids. 

2.4.1 SCNA detection from RNA-seq 

We compared and contrasted the RNA-seq derived SCNAs with the gold standard SCNAs with 

units of analysis as gene, chromosome arm and entire genome (i.e., burden), focusing here on 
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gene-level summaries. Table 2.1 [first row: ‘hapLOHseq (RNA-seq)’] shows the sensitivity and 

specificity for SCNA detection solely using tumor RNA for seven cancer sites. Sensitivity 

measures the method’s power to detect true SCNAs (defined as those identified by the gold 

standard) and specificity measures the method’s ability to correctly identify genomic regions 

where there is no SCNA detected by the gold standard. We obtained a generally high concordance 

between the events called from RNA-seq with those called from SNP arrays at a gene level, and 

this held for the other units of analysis as well (Figs. 2.1 and 2.2). Our SCNA detection rate 

(sensitivity) from RNA-seq was highest for the GBM data at 79%, whereas the sensitivity for 

PRAD was markedly lower at 45%. We observed high specificities for all seven cancer sites, 

ranging between 89% and 99%. 

 

Fig. 2.1. Chromosome arm level concordance assessment summaries across 7 TCGA sites. 
We identified chromosome arms that were spanned at least 50% by SCNAs. The distribution of 
the non-acrocentric autosomal chromosome arms (n=39) across the cancer sites are shown. For 
each site, a stacked bar plot of the number of samples with concordance specific chromosome arm 
level SCNAs are shown for all 39 chromosome arms. 
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Table 2.1. Gene level performance assessment. We evaluated the method at the gene level by 
comparing SCNA status of genes between the RNA-seq-derived SCNAs and the gold standard 
(array-based analysis) for seven cohorts in the TCGA. Sens = Sensitivity; the proportion of genes 
covered by an SCNA in the gold standard that were also identified by the listed approach, Spec = 
Specificity; the proportion of genes that are not covered by an SCNA event in the gold standard 
that were also not inferred to be covered by an SCNA by the listed approach. 
 

 

 BRCA COAD GBM LUAD LUSC PAAD PRAD 

 Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec 

hapLOHseq (RNA-seq) 71% 94% 47% 99% 79% 93% 74% 91% 73% 89% 69% 97% 45% 97% 

hapLOHseq  
(RNA-seq + imputed genotypes) 

84% 92% 79% 97% 89% 92% 84% 90% 88% 88% 80% 95% 66% 94% 

hapLOHseq (WES) 93% 89% 94% 92% 94% 96% 89% 92% 91% 90% 94% 89% 76% 97% 

Fig. 2.2. Concordance between RNA-seq and SNP array (gold standard) derived genomic 
burden. We identified regions that exhibit SCNA for each sample. Scatterplots representing the 
concordance are shown for each site grouped by cancer site. 
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        To assess which factors drive the lower than average performance in the PRAD cohort, we 

further investigated the samples with the highest sensitivities. We observed that the samples with 

the highest quartile of sensitivity had the highest number of heterozygous sites and the highest 

haplotype accuracies (Fig. 2.3). After grouping the samples into quartiles based on their 

sensitivity, we statistically compared the groups with the Kruskal–Wallis test and noted that the 

groups were significantly different when compared both by the number of heterozygous sites (p-

value < 1e-8) and phase accuracy (p-value = 0.008). 

        To help understand potential limitations of our approach, we compared our results to those 

obtained from the application of hapLOHseq to TCGA DNA WES [Table 2.1; third row: 

‘hapLOHseq (WES)’]. Not surprisingly, since it assays the DNA directly, WES consistently 

achieved higher sensitivities at similar specificities across sites, including PRAD with 76% 

sensitivity in comparison to 45% from RNA-seq. Although we observed a lower performance for 

RNA-seq than for WES, our results demonstrate that there exists sufficient information in the 

RNA-seq for generally accurate inference of SCNAs. Encouraged by this, we explored further the 

power of RNA-derived SCNA profiling approaches. 
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Fig. 2.3. Factors driving low performance in the TCGA PRAD cohort. A scatterplot showing 
the distribution of sample sensitivities varying based on phase accuracy and number of 
heterozygous sites. Samples were grouped into quartiles according to their sensitivities. 
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2.4.2 SCNA detection from RNA-seq and imputation-based haplotype inference 

 

Fig. 2.4. Graphical illustration of the imputation approach in our pipeline. 

We hypothesized that the standard genotyping (variant calling) pipelines for NGS, along with 

modest reference sizes for haplotype phasing, were holding back the potential of our approach. 

To address this, we imputed germline genotypes and haplotypes from large-scale reference data 

using the optimized workflows in the Michigan Imputation Server (MIS). We leveraged the 

genotype data from a matched-blood sample, available for most participants in TCGA (Fig. 2.4). 

While this sample does not provide any direct information about SCNAs of the tumor, it does 

provide more accurate identification of heterozygous sites and estimated haplotypes, central to 

our approach, but without the need to extract DNA from the tumor.  
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        We applied hapLOHseq for detection of tumor SCNAs using RNA-seq signal combined with 

the more accurate haplotype information, as detailed in the methods. With genotype imputation, 

in addition to obtaining more accurate haplotype estimation, an increase in the number of 

heterozygous sites per sample was observed (Fig. 2.5). Furthermore, we also noticed that the new 

heterozygous sites filled in some segments of the genome that did not harbor any heterozygous 

sites before (Fig. 2.6). Excitingly for several samples, we even noted that the imputation approach 

enabled identification of whole chromosome arm level SCNA events that could not be detected 

before (Fig. 2.7). 

 

Fig. 2.5. Increase in the number of heterozygous sites. A boxplot representing the improvement 
of heterozygous sites per sample in the TCGA BRCA cohort with genotype imputation. 
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Fig. 2.6. Histogram of the number of heterozygous sites before and after genotype 
imputation. The distribution of the number of heterozygous sites for BRCA sample TCGA-D8-
A1JA focusing on chromosomes 4, 7, and 11, where the most significant improvement has been 
observed. 
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Fig. 2.7. Improvement in SCNA event calling achieved with genotype imputation. Genotype 
imputation enables detection of a previously missed chromosome arm level event. Distribution of 
the number of heterozygous sites (top panel) and B allele frequencies with bars underneath 
representing the SCNAs detected with and without genotype imputation along with the SNP array 
(gold standard) for chromosome 17 of sample TCGA-A6-6648 (bottom panel). 

        A systematic evaluation demonstrated that the inclusion of imputed genotype calls and high-

quality haplotypes provided a substantial improvement in overall SCNA detection [Table 2.1; 

second row: ‘hapLOHseq’ (RNA-seq + imputed genotypes)]. After the imputation approach, 

sensitivities improved across all cancer sites, ranging from 10% to 32% in absolute increase, i.e., 

BRCA (13%), COAD (32%), GBM (10%), LUAD (10%), LUSC (15%), PAAD (11%) and PRAD 

(21%), while high specificities remained similar.  

        In comparison to WES, the imputation approach has lower sensitivity with similar 

specificity. For instance, for the BRCA cohort, the imputation approach’s sensitivity is 9% lower 

while specificity is 3% higher. These results indicated the potential for inference of SCNAs purely 

from RNA-seq, so long as there exist sufficiently informative germline genotypes. To 
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comprehensively characterize the potential for SCNA inference from RNA-seq across a range of 

tissue types, we applied this approach to the remaining cancer sites from the TCGA for which 

data existed. Study abbreviations for all 28 TCGA cohorts investigated in this study are shown in 

Table 2.2. 
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Tumor site (abbreviation) (sample size) Sensitivity Specificity 

Adrenocortical carcinoma (ACC) (n=58) 89% 93% 

Bladder urothelial carcinoma (BLCA) (n=261) 83% 90% 

Breast invasive carcinoma (BRCA) (n=641) 84% 92% 

Cervical squamous cell carcinoma and endocervical adenocarcinoma 
(CESC) (n=150) 

88% 94% 

Cholangiocarcinoma (CHOL) (n=26) 85% 95% 
Colon adenocarcinoma (COAD) (n=256) 79% 97% 

Esophageal carcinoma (ESCA) (n=54) 91% 79% 
Glioblastoma multiforme (GBM) (n=99) 89% 92% 

Head and neck squamous cell carcinoma (HNSC) (n=346) 86% 94% 
Kidney chromophobe (KICH) (n=6) 94% 95% 

Kidney renal clear cell carcinoma (KIRC) (n=56) 90% 94% 
Kidney renal papillary cell carcinoma (KIRP) (n=143) 92% 95% 

Brain lower grade glioma (LGG) (n=388) 79% 96% 
Liver hepatocellular carcinoma (LIHC) (n=115) 82% 95% 

Lung adenocarcinoma (LUAD) (n=312) 84% 90% 
Lung squamous cell carcinoma (LUSC) (n=221) 88% 88% 

Mesothelioma (MESO) (n=76) 87% 95% 
Ovarian serous cystadenocarcinoma (OV) (n=249) 87% 87% 

Pancreatic adenocarcinoma (PAAD) (n=124) 80% 95% 
Pheochromocytoma and paraganglioma (PCPG) (n=133) 89% 96% 

Prostate adenocarcinoma (PRAD) (n=317) 66% 94% 
Rectum adenocarcinoma (READ) (n=133) 80% 96% 
Skin cutaneous melanoma (SKCM) (n=87) 86% 94% 
Stomach adenocarcinoma (STAD) (n=190) 86% 87% 

Testicular germ cell tumors (TGCT) (n=116) 88% 93% 
Thyroid carcinoma (THCA) (n=276) 85% 94% 

Uterine carcinosarcoma (UCS) (n=34) 85% 90% 
Uveal melanoma (UVM) (n=75) 87% 98% 

Table 2.2. Gene level performance summaries across 28 cancer sites. For each cancer site, the 
study abbreviation, number of samples analyzed in the cohort, and median gene level sensitivity and 
specificity are shown. 
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        Across all cancer sites, the median SCNA size was 31.28 Mb, approximately equal to the 

median SCNA size (31.31 Mb) detected by the gold standard. The median number of SCNA 

events detected per sample was 20 (gold standard: 19). The highest frequency of SCNA calls per 

sample were observed in esophageal carcinoma (ESCA), ovarian serous cystadenocarcinoma 

(OV), LUSC, uterine carcinosarcoma (UCS) and bladder urothelial carcinoma (BLCA) with each 

with a median of 30 SCNAs or more per sample, consistent with the gold standard (Table 2.3). In 

contrast, thyroid carcinoma (THCA) and uveal melanoma (UVM) had the fewest number of 

SCNAs per sample with each site having <10 SCNAs per sample. These two sites were also 

ranked as having the lowest median number of SCNAs by the gold standard. 
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Table 2.3. Number of SCNAs. Number of SCNAs per sample across 28 TCGA cohorts (median 
for each cohort). 

Tumor site RNA-seq Array 

ACC 26 20 

BLCA 30 30 

BRCA 25 23 

CESC 20 16 

CHOL 23 19 

COAD 18 19 

ESCA 38 32 

GBM 16 13 

HNSC 24 22 

KICH 17 6 

KIRC 11 6 

KIRP 12 6 

LGG 10 8 

LIHC 16 15 

LUAD 29 29 

LUSC 33 32 

MESO 19 15 

OV 36 41 

PAAD 16 15 

PRAD 10 11 

SKCM 20 16 

STAD 29 28 

THCA 6 0 

UCS 30 35 

PCPG 10 6 

READ 23 24 

TGCT 28 24 

UVM 9 5 
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        Table 2.2 contains per-cancer site gene-level summaries of sensitivity and specificity for 28 

cancer sites, comprising 4942 samples in the TCGA, after applying the imputation workflow. At 

the gene level, our imputation-based approach achieved an 85% median sensitivity and 94% 

median specificity (all genes, all samples). Across the sites, median sensitivities ranged from 66% 

to 94%, with median specificities between 79% and 98%. With the exception of ESCA, specificity 

was always greater than or equal to the sensitivity for a given site. At 79%, 79% and 66%, COAD, 

brain lower grade glioma (LGG) and PRAD (respectively) were the only cancer sites with 

sensitivity below 80%. Interestingly, kidney cancers (kidney chromophobe: KICH; kidney renal 

clear cell carcinoma: KIRC; and kidney renal papillary cell carcinoma: KIRP) were the three 

cohorts that we observed the best performances for with 94%, 90% and 92% sensitivity and 95%, 

94% and 95% specificity. 

        We evaluated the method at the chromosome arm level as well (Fig. 2.8). For each 

chromosome arm, we assessed the concordance with the gold standard calls and the results 

indicate that the majority of the true arm-level SCNAs were inferred correctly across all cancer 

sites. However, several, such as 5p, 9p, 13q and 21q were missed with RNA consistently across 

the cohorts. We also note that the majority of the chromosome arm-level SCNAs inferred from 

RNA-seq in the THCA cohort were not present in the gold standard set. 
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        To evaluate the SCNA patterns at a whole genome level, we calculated ‘genomic burden’ – 

the proportion of a sample’s genome exhibiting SCNAs. Marginally, we observed a median 0.28 

genomic burden among all samples across all cancer sites, compared with 0.31 from DNA 

microarrays. Further, we investigated the patterns of genomic burden per cancer site. The highest 

genomic burden was observed in ESCA (0.63), followed by OV (0.53) and TGCT (0.53). THCA 

was the lowest (0.05), followed by PRAD (0.09). Median genomic burden for all cancer sites 

along with the corresponding array-derived genomic burden are shown in Figure 2.9. Next, we 

assessed the correlation of the RNA-derived genomic burden with the gold standard-derived 

genomic burden at a sample level, resulting in a very strong positive correlation (R=0.92; Fig. 
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Fig. 2.9. Concordance assessment at genome level “genomic burden” across 28 cancer 
sites in the TCGA. Genomic burden is defined as the fraction of the genome that is affected 
by SCNAs. A scatter plot demonstrating the concordance between RNA-seq- and gold 
standard-derived genomic burden (median) for each cancer site is shown. 
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2.10). When grouped by cancer site, most of the sites exhibited correlations larger than 0.9 (Fig. 

2.11).  

      SCNA calls discovered by RNA-seq that were not detected in the DNA (gold standard) are 

putative false positives in our analysis. However, some appear to be false negatives in the gold 

standard set. To attempt to discriminate between these, we examined in more detail the COAD 

data, where these putative calls made up 6% of all SCNAs discovered in RNA-seq. We explicitly 

tested the genomic regions of the putative false positive SCNAs in the corresponding SNP array 

data with a specific binomial test leveraging phase concordance. Among the 6%, we found that 

approximately one-fourth (23%) of the calls were validated in the SNP array data (at a p-value < 

0.05), indicative that the reported false positive rates are modestly over-estimated. 

 

 

Fig. 2.10. Concordance assessment at genome level across the samples in 28 cancer sites in 
the TCGA. A scatter plot demonstrating the concordance between RNA-seq- and gold standard-
derived genomic burden (median) for each sample is shown. 
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Fig. 2.11. Concordance assessment at genome level for 28 cancer s   the TCGA. For each 
site, a scatterplot representing genome level concordance is shown. 
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2.4.3 Comparison to other methods for bulk RNA-seq 

While most methods for SCNA inference from RNA-seq have been designed for single cell data, 

we were able to conduct a detailed comparison with one state-of-the-art method for bulk RNA. 

Table 2.5 contains a summary of results from our method, hapLOHseq and CaSpER, for BRCA 

and GBM, sites analyzed in the original paper for CaSpER. We compared both methods to the 

gold standard. Compared with the gold standard calls at the gene level, for both cancers, 

hapLOHseq offered a superior performance, with a substantial increase in sensitivities with 

absolute gains of 30% and 42%. Against CaSpER’s own benchmark, the methods appeared more 

similar, with an edge to hapLOHseq in detection but at some cost in specificity (Table 2.6). Fig. 

2.12 demonstrates performance comparison between hapLOHseq and CaSpER at sample level. 

 

        We were also able to successfully run SuperFreq on a subset of the BRCA samples. From 

analysis of 12 samples where we had results from both SuperFreq and hapLOHseq, the sensitivity 

for hapLOHseq was 85% versus 77% for SuperFreq (specificities were 95% and 98%, 

respectively). Fig. 2.13 demonstrates performance comparison between hapLOHseq and 

SuperFreq at sample level. The authors of SuperFreq demonstrated high sensitivities analyzing 

TP53 alterations in high mutant cell fraction settings for COAD. We were able to detect SCNAs 

in TP53 in this set with hapLOHseq at an equivalent rate but without the need for additional RNA 

samples for normalization. 

 
 BRCA (n=77) GBM (n=98) 

Method Sens Spec Sens Spec 
hapLOHseq (RNA-seq) 74% 94% 81% 93% 

hapLOHseq 
(RNA-seq + imputed genotypes) 85% 91% 89% 92% 

CaSpER 43% 82% 59% 95% 
Table 2.4. hapLOHseq and CaSpER comparison. hapLOHseq and CaSpER performance 
evaluation. Rows 1-3 show performance results at the gene level obtained by comparing each 
method to the gold standard [3]. 
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Fig. 2.12. hapLOHseq and CaSpER performance comparison. (A) Sensitivity, (B) Specificity. 

Each sample is represented with a black dot. 

BRCA (n=77) GBM (n=98) 

Method Sensitivity Specificity Sensitivity Specificity 

hapLOHseq (RNA-seq) 67% 82% 78% 88% 

hapLOHseq (RNA-seq + imputed genotypes) 75% 77% 84% 86% 

                                   CaSpER 60% 85% 73% 95% 

Table 2.5. hapLOHseq and CaSpER performance evaluation against CaSpER’s gold standard. Rows 1-3 
show performance results at the gene level obtained by comparing each method to the gold standard used in 
Harmanci et al [4]. 
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Fig. 2.13. hapLOHseq and superFreq performance comparison. (A) Sensitivity, (B) 
Specificity. Each sample is represented with a black dot. 

2.4.4 Translational/ prognostic use 

Finally, to demonstrate a translational potential, we examined the portability of conclusions from 

others’ analyses of DNA to ours from RNA-seq. In an example in breast cancer, we recapitulated 

the distinct genomic burden distributions across different subtypes previously observed in TCGA 

BRCA data [2], demonstrating that those of a basal subtype are characterized by high genomic 

burden in comparison to the others (Fig. 2.14A). We observed that the samples in the basal 

subtype that have more than 40% of their genome altered comprise 84% of all basal samples, 

consistent with the previous report. Furthermore, analyzing the RNA-seq, we were also powered 

to observe that chromosome arm 5q is more frequently altered in the basal subtype, whereas 

chromosome arms 1q and 16q are more frequently altered in the luminal subtypes, consistent with 
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the previous findings from analyzing DNA directly [2] (Fig. 2.14B). Finally, we specifically 

investigated the concordance between hapLOHseq and gold standard results for five genes that 

are frequently affected by CNA events for the BRCA cohort, i.e., BRCA1/2, PTEN, RB1 and 

TP53. We showed that hapLOHseq obtained promising results that have a potential clinical use 

with 93% sensitivity and 85% specificity for BRCA1, 78% sensitivity and 95% specificity for 

BRCA2, 85% sensitivity and 88% specificity for PTEN, 87% sensitivity and 94% specificity for 

RB1 and 90% sensitivity and 86% specificity for TP53. Sample-level concordance assessment for 

each of the genes is shown in Fig. 2.14C. 
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2.5 Discussion 

In this study, we detect and characterize the genomic landscapes of SCNAs from tumor bulk 

RNA-seq using a haplotype-aware statistical method. We proposed two approaches that differ in 

the way germline genotypes are obtained for subsequent analysis of ‘B allele’ frequencies (BAFs). 

While the first approach solely uses RNA-seq from tumor to estimate the haplotypes, the second 

approach leverages available or potentially collectible SNP array (or equivalent) data from a 

matched-normal sample to achieve higher accuracies in genotyping and haplotype reconstruction 

through a popular imputation pipeline. 

        In an analysis of 28 cancer sites from TCGA, our method achieved high sensitivity for SCNA 

detection with the imputation approach (85% versus 68%), retaining high specificity as well 

(∼95%). Summaries of SCNA genomic burden were sufficiently high as to potentially obviate 

the need for analyzing DNA. In sites with lower sensitivities, such as PRAD, analyses of DNA 

exome sequencing reflected difficulties as well, indicating challenges for such sites more specific 

to targeted sequencing data. 

        Our imputation approach addresses difficulties associated with genotype calling from RNA-

seq, e.g., due to non-uniform coverage, which in turn provides highly accurate and phased 

genotypes. Indeed, we explored these factors as direct contributors to improved performance in 

PRAD. Our germline heterozygote identification could improve other methods for bulk RNA 

analysis, as well, such as CaSpER and SuperFreq. In different statistical implementations, each 

of these combine information from not only total read counts but also BAF dispersion at 

heterozygotes. Whereas SuperFreq relies on external data for normalization (e.g., paired normal 

RNA samples), CaSpER’s approach works on a sample-by-sample basis, as does hapLOHseq. 

We conducted a detailed comparison to CaSpER, observing higher sensitivities with our 
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haplotype-based approach. Ultimately, getting the absolute performance characteristics will 

depend on improved gold standard datasets. We note that these methods use information 

orthogonal to that leveraged by hapLOHseq and thus may offer improvements when applied in 

combination, or integrated for joint analyses -- an area of future study. 

        Blood, buccal or adjacent normal samples can serve as a surrogate of the germline. The first 

two are non-surgical and more easily collected, whereas the third may be available for some 

specimens. Array-based genotyping of these samples presents an economical approach for 

improved tumor SCNA characterization. This is feasible for existing clinical cohorts with banked 

patient blood samples or biobanks with existing genotype data. In our exhibition, we focused on 

individuals of European ancestry since the MIS had the specific reference panel. This results in a 

‘best case’ scenario given current resources. However, efforts such as TOPMed [64] will generate 

high-density genotype panels for individuals of non-European ancestry. Our approach further 

highlights the need for genetic panels of high diversity in biomedical research. 

        Our approach, as we have demonstrated here, does not attempt to detect balanced 

duplications, i.e., those where maternal and paternal chromosome segments are present in equal 

ratios. This may be overcome through integration of coverage data with our existing approach, 

which would be feasible for large balanced duplications as shown previously [4,52]. While any 

method for RNA-seq will have natural limitations in detecting alterations that do not span 

expressed genes, over larger regions limiting factors will be mitigated or averaged toward genome 

levels. Further, molecular alterations caused by focal SCNAs of key cancer drivers may be 

detectable through traditional RNA analyses of altered gene expression, including at the pathway 

level, and/ or identification of specific transcripts. 

        In summary, we show that the proposed haplotype-based approach for RNA-derived SCNA 

calls is robust for detection of megabase-scale somatic mutations. Overall, detection rates were 
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generally higher than 85% at specificities high enough for de novo discoveries and assessments 

of genomic associations with clinical phenotypes, across malignancies. Indeed, we successfully 

recapitulated SCNA features associated with clinical subtypes of breast cancer. Our findings show 

that our method can be used to increase the utility of bulk RNA-seq by allowing for a more 

comprehensive molecular profiling of tumors in settings where DNA analysis is impractical due 

to limited tissue sample availability or financial constraints and enables secondary analyses of 

existing data from high-value clinical cohorts. 
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CHAPTER 3 

QUALITY CONTROL AND BEST PRACTICES 

 

 

3.1. Introduction 

In this chapter, I discuss quality control measures that can be taken before running hapLOHseq 

and ‘best practices’ to follow while running hapLOHseq and after obtaining event calls to ensure 

obtaining optimal results, although each setting is unique and would require reconsideration of 

parameters. 

        First, I present two sample level metrics that can be used to identify samples with RNA-seq 

quality issues which can lead to spurious or missed allelic imbalance calls. Second, I evaluate the 

effect of different imputation quality (R2) cutoffs on the hapLOHseq results, and discuss the 

effects of several hapLOHseq parameters on performance. Additionally, as part of the best 

workflow, I discuss masking of certain genomic regions to exclude potential inherited 

duplications, and removal of singletons, which are heterozygous markers observed in only one 

sample at a particular locus in our analysis. Third, I discuss the use of a custom script instead of 

hapLOHseq’s default event caller to determine allelic imbalance event boundaries from posterior 

probabilities. Fourth, I describe two post-processing steps, i.e., after hapLOHseq detects events, 

for the removal of inherited duplications and putative false positive calls in genomic regions with 

a paucity of heterozygous sites. Lastly, I describe several characteristics of the allelic imbalance 

calls. The goal of presenting these best practices is to aid future studies tune hapLOHseq 

parameters and pre- and post-processing settings to help achieve study specific sensitivity and 

specificity goals. 
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3.2. Quality control 

3.2.1. Sample quality 

We investigated the relation between RNA integrity number (RIN) score, a sample level RNA 

quality metric, and hapLOHseq’s performance, particularly sensitivity and ability to pick up true 

allelic imbalance events from RNA. The RIN score ranges between 1 to 10 and quality of the 

sample increases as the number gets closer to 10. Generally, high-quality RNA samples have a 

score of 8 or greater, whereas partially fragmented RNA samples have a RIN score between 6 and 

8. We assessed the correlation between sensitivity and RIN score for a subset of RNA samples 

from the LUAD cohort, running hapLOHseq without the use of a paired normal for imputation. 

Overall, we did not detect low quality RNA samples, as all samples had a RIN score of 7 or 

greater, and did not observe a correlation between sensitivity and RIN score (Fig. 3.1). 

 

Fig. 3.1. RIN scores of the samples from the TCGA LUAD cohort. The scatterplot illustrates 
the TCGA LUAD samples’ RIN scores and sensitivity values. Each sample is represented with a 
dot. 



 44 

        Usually, tumor samples are contaminated with normal cells. In these settings, low tumor 

cellularity poses a challenge in the detection of allelic imbalance in tumor cells. We assessed the 

relation between sample cellularity and hapLOHseq’s performance using the samples in the 

TCGA PRAD cohort as prostate adenocarcinoma is one of the tumor sites that has low sensitivity 

when hapLOHseq was run with the use of a paired normal for imputation. Using the clinical data, 

we categorized 123 samples into 3 cellularity levels, i.e., low, medium, and high cellularity, and 

performed chromosome arm level concordance analysis for each group separately. The results did 

not indicate a clear distinction between medium and high cellularity categories and the low 

cellularity category did not have enough samples to draw a conclusion (Fig. 3.2.). 

 

Fig. 3.2. Cellularity of the samples in the TCGA PRAD cohort and concordance between 
hapLOHseq results and the gold standard. We evaluated cellularity’s effect on hapLOHseq’s 
concordance with the gold standard by categorizing the samples into low, medium, and high 
cellularity groups. 
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        Although the RIN score and sample cellularity did not have a noticeable impact on 

hapLOHseq performance for these TCGA datasets, their impact should be further assessed in 

additional datasets samples that have overall lower RIN score and tumor cellularity. 

3.3. Best practices 

3.3.1. Imputation quality 

To ensure genotype imputation quality, we utilized the R2 metric. R2 is a quality metric that 

quantifies quality of imputation for each marker by estimating the correlation between imputed 

and true genotypes. Throughout our studies, we preferred the commonly used R2 < 0.3 cutoff to 

remove poorly imputed markers. For a subset consisting of 20 samples from the TCGA LUAD 

cohort, we tested additional R2 cutoffs in {0.4, 0.5, 0.7}. Across the 20 samples, 111 allelic 

imbalance events were detected from the gold standard. We evaluated RNA based calls from 

hapLOHseq runs set up using different R2 cutoffs by comparing with the DNA based gold 

standard calls. The results suggest that increasing the cutoff does not generate more favorable 

results. Table 3.1. summarizes the results of performance evaluation obtained by intersecting 

RNA based allelic imbalance events with the gold standard. 

 Overlap 

R2 cutoff ≥25% reciprocal ≥50% reciprocal ≥70% reciprocal 

0.3 73% 56% 34% 

0.4 72% 55% 31% 

0.5 75% 57% 33% 

0.7 73% 58% 33% 

Table 3.1. The effect of R2 cutoff on performance. We intersected RNA based allelic imbalance 
calls obtained from hapLOHseq runs set up with different R2 cutoffs for genotype imputation 
quality with the gold standard calls. For each R2 cutoff, the fraction of RNA based events 
overlapping with the gold standard is shown for 25%, 50%, and 70% reciprocal overlap, i.e., the 
fraction of intersection is reciprocal for RNA and DNA. 
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3.3.2. hapLOHseq run setup 

3.3.2.1. hapLOHseq parameters 

3.3.2.1.1. Minimum depth 

In the studies discussed throughout this dissertation, a minimum depth limit, i.e., through 

hapLOHseq parameter --min_depth, defined as the minimum depth for markers to be included in 

HMM, of 10 was applied, which is the default parameter for hapLOHseq. It is possible that other 

depth limits will produce more favorable results. To assess this, we performed an investigation at 

other per-marker minimum depths {4,14} for the LUAD cohort. Table 3.2 below summarizes the 

results. Changing this parameter from 10 to 8 appears to result in similar performance for the 

hapLOHseq run that uses of a paired normal for imputation. Application to other datasets should 

be done with caution, as the average coverage may be higher or lower in other settings. For 

example, when more than 99% of sites have coverage greater than 10, then cut-offs of 4 to 10 

would show highly similar performance. 

min4 min6 min8 min10 min12 min14 

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec 

84% 85% 83% 88% 84% 90% 84% 90% 83% 90% 83% 90% 
Table 3.2. Assessment of the method using different minimum depth thresholds in the 
TCGA LUAD cohort. Results are shown for minimum depths 4, 6, 8, 10, 12, and 14. 

3.3.2.1.2. Other parameters 

In addition to exploring the effects of using non-default values for minimum depth, we also 

evaluated the consequences of altering several other hapLOHseq parameters, such as --

marker_density, --event_prevalence, and --event_mb (see Table 3.3). We tested these parameters 

on a subset of samples by only altering the parameter and keeping everything else constant. 
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hapLOHseq parameter Default Used 

--marker_density uniform genomic_pos 

--event_prevalence 0.1 0.05 

--event_mb 20Mb 10Mb, 30Mb 

Table 3.3. hapLOHseq parameters. Values of the non-default parameters used in our 
hapLOHseq setups. 

        First, we investigated --marker_density parameter, which defines the strategy for modeling 

distances between markers. For this parameter, the options are uniform (by default) and genomic 

position (genomic_pos). These two options did not make any difference and yielded to identical 

results. Second, we examined the --event_prevalence parameter, which is an estimate of the 

proportion of the genome that is expected to be aberrant. For our studies, we used 0.05, instead of 

the default 0.1. Third, we assessed the impacts of using 10 Mb and 30 Mb, which are non-default 

values for the --event_mb parameter, a parameter used to provide hapLOHseq the expected allelic 

imbalance event size (default is 20 Mb). hapLOHseq is typically robust to incorrect specifications 

of the --event_prevalence and –event_mb parameters, which are the two user specified parameters 

that are used to set the transition probabilities in the HMM. The results indicated that the 

differences between the allelic imbalance calls using different --event_mb and --event_prevalence 

were nearly non-existent. 

3.3.2.2. Masking of the HLA, VDJ, and DGV regions 

We masked the genomic regions corresponding to the centromere, human leukocyte antigen 

(HLA), VDJ, and Database of Genomic Variants (DGV) in order to exclude genomic regions with 

putative germline copy number changes.  

        The events called by our approach are at megabase scale, while the masked genomic regions 

are small (DGV region median size was 46Kb, and Table 3.4 below summarizes the sizes of HLA/ 
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VDJ regions). Given that the average SCNA burden is 808 Mb in tumors, masking these regions 

has negligible impact on the call set. Similarly, when using the hapLOH generated gold standard 

for comparison to other tools, there would be a negligible impact on specificity and sensitivity 

estimates. As allelic imbalance signals at these regions could come from naturally occurring DNA 

rearrangements in immune cells, we feel it is best practice to mask these regions for our haplotype 

based approach. Here we give a summary of the size of masked regions. 

Region Size (Mb) 

IGK 1.4  

HLA/MHC 4.9  

TRG 0.1 

TRB 0.5 

TRA & TRD 0.9 

IGH 1.3 

IGL 0.9 
Table 3.4. Sizes of the HLA and VDJ regions. The sizes of the HLA and VDJ regions that were 
masked in our approach. 

        To mask these genomic regions, we removed the markers that fall in these regions prior to 

making allelic imbalance calls, instead of post-processing the allelic imbalance call set to remove 

the events in these regions. Thus, it is still possible for allelic imbalance calls to span these regions. 

As part of our standard QC pipeline, we mask centromeres. However, for both SNP arrays and 

RNA-seq, there are no markers present in the centromeres. 

        To examine the performance when these variable regions are included, we assessed the 

impacts of not performing (any) masking in RNA and in the gold standard data. As a result, we 

obtained marginally higher sensitivities and marginally lower specificities (Table 3.5). For 

instance, in lung adenocarcinoma, sensitivity was 86% (vs. 84% masked), specificity was 87% 

(vs. 90% masked), in lung squamous cell carcinoma, sensitivity was 90% (vs. 88% masked), 

specificity was 85% (vs. 88% masked), and in colon adenocarcinoma, sensitivity was 85% (vs. 
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79% masked), specificity was 96% (vs. 97% unmasked). However, qualitative interpretation is 

essentially the same. Since we do not explicitly model the repeat rich nature of these genomic 

regions, we decided to exclude them in advance as a better practice. 

 COAD LUAD LUSC 

 Sens Spec Sens Spec Sens Spec 

Masked 79% 97% 84% 90% 88% 88% 

Unmasked 85% 96% 86% 87% 90% 85% 

Table 3.5. Comparison of the masked and unmasked runs. The effects of masking the HLA/ 
VDJ, and DGV regions in sensitivity and specificity for the TCGA COAD, LUAD, and LUSC 
cohorts. 

3.3.2.3. Removal of singletons 

Heterozygous markers that are observed in only one sample at a particular locus are defined as 

singletons. Since they are observed only once, phasing singletons is not possible unless a large 

reference panel is used. In addition to the challenges in haplotype estimation, another issue with 

singletons is that they might have been called heterozygous by mistake. Both the mistakes in 

phasing and making false heterozygous calls may interfere and be weakening for hapLOHseq as 

it relies on heterozygous sites and haplotype inference. Therefore, we recommend removal of 

singletons as part of the best practices workflow. 

3.3.3. Using a custom event caller 

Instead of using hapLOHseq’s default event caller, one can also use their own script (see 

Appendix B for an example script) to tailor event calling parameters and determine allelic 

imbalance event boundaries using posterior probabilities from hidden Markov model (HMM). For 

calling an event, hapLOHseq by default requires posterior probabilities to reach a peak ≥ 0.9 and 

not drop below 0.5 within the boundaries of an event. Fig. 3.3 below shows the distribution of 

posterior probabilities of markers for LUAD sample TCGA-05-4244-01A-01R-1107-07, which 
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is representative of what we observe across TCGA samples. It is not possible to render a smooth 

ROC from the probabilities to quantify the method’s performance through AUROC, as the values 

cluster at 0 or 1 when using dense, informative genotype data (Fig. 3.4). For illustration, we 

provide the ROC curve for the LUAD cohort, which shows that tweaking the classifier for our 

approach does not greatly alter performance (Fig. 3.4). Table 3.6 summarizes the performance 

results for the LUAD cohort for varying event peak probability cutoffs. According to these results, 

there is not a significant difference in the performance between using hapLOHseq’s default event 

caller and custom event calling. 

 
Fig. 3.3. Histogram of posterior probabilities for LUAD sample TCGA-05-4244-01A-01R-
1107-07. The red dashed line indicates the 0.005 threshold. 
 

 
Fig. 3.4. ROC curve for AI classifier. The ROC curve for the TCGA LUAD cohort is shown. 
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event_boundary event_peak Sensitivity Specificity 

0.50 0.50 0.84 0.86 

0.50 0.60 0.84 0.86 

0.50 0.70 0.84 0.87 

0.50 0.80 0.84 0.88 

0.50 0.85 0.84 0.89 

0.50 0.90 0.84 0.90 

0.50 0.95 0.83 0.91 

0.50 0.97 0.83 0.92 

0.50 0.98 0.83 0.93 

Table 3.6. The impact of using a custom event caller to use varying event peak probability 
cutoffs.  The results are shown for the TCGA LUAD cohort. 

3.3.4. Post-processing of allelic imbalance events 

Post-processing of allelic imbalance calls generated by hapLOHseq is an important step to further 

improve the precision of events. As part of our standard post-processing pipeline, we removed 

allelic imbalance events smaller than 2 Mb to exclude potential germline gains and events 

containing less than 10 heterozygous markers. In addition, we split up events that contain large, 

i.e., greater than 10 Mb, genomic regions without heterozygous markers into multiple regions. 

Fig. 3.5 demonstrates an example (TCGA-05-4244-01) from the TCGA LUAD cohort where an 

allelic imbalance event on chromosome 1 was split up into two regions to omit a large genomic 

region that does not harbor any heterozygous markers. 
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Fig. 3.5. Splitting allelic imbalance events into multiple events to prevent spanning large 
genomic regions without any heterozygous markers. An allelic imbalance event identified 
from TCGA LUAD sample TCGA-05-4244-01 on chromosome 1 (A) was split up into two events 
(B). 

3.4. Allelic imbalance events characteristics 

3.4.1. Characterization of RNA-exclusive events 

We sought to examine the RNA-exclusive events, i.e., the allelic imbalance events that were 

detected only from RNA and not from the gold standard (DNA), obtained from samples in the 

TCGA LUAD cohort in order to comprehensively characterize them. Across all the samples in 

the cohort, we detected 977 RNA-exclusive events in total with a median of 3 events per sample 

and median size of the RNA-exclusive events was 17.3 Mb. Fig. 3.6 shows the distribution of the 

RNA-exclusive event sizes. This figure suggests that a large proportion of the RNA-exclusive 
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calls can be avoided by applying a larger threshold, e.g., in cases where the user is interested in 

very large - chromosome arm level - events. 

 
Fig. 3.6. Histogram of the size of the RNA-exclusive allelic imbalance events. Vertical red 
lines correspond to varying size thresholds. 

        Although RNA-exclusive calls are considered putative FPs throughout our analyses, some 

of the calls seemed to be FNs in the gold standard set. Hence, to distinguish between them, we 

further investigated the RNA-exclusive allelic imbalance events in the TCGA LUAD cohort. We 

comprehensively tested the genomic regions that harbor the RNA-exclusive events in the 

matching DNA (gold standard and WES) with a binomial test that leverages switch accuracy to 

determine whether the genomic region with allelic imbalance detected from RNA has high phase 

concordance in the corresponding region from DNA, which indicates allelic imbalance (which 

would confirm the event observed in RNA). The binomial test suggested out of 977 RNA-

exclusive events, 294 events were validated in both SNP array and WES, 135 events were 

validated only in SNP array, and 154 events were validated only in WES. The remaining 394 calls 

were confirmed as RNA-exclusive as we detected no allelic imbalance signal from either SNP 
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array or WES in the matching sample. Hence, we conclude that the false positive rate for the 

LUAD cohort is over-estimated. Fig. 3.7 illustrates the size distribution of the confirmed RNA-

exclusive events. Overall, the confirmed RNA-exclusive events appear to be smaller in 

comparison to all RNA-exclusive events. Finally, we calculated sensitivity and specificity for the 

LUAD cohort after excluding the confirmed RNA-exclusive events. While sensitivity stayed the 

same (84%), specificity increased by 2% and reached 92%. 

 

Fig. 3.7. Histogram of the size of the confirmed RNA-exclusive allelic imbalance events. 
Vertical red lines correspond to varying size thresholds. 

3.4.2. Allelic imbalance event types and performance 

We assessed our approach’s performance for different categories of allelic imbalance (see Table 

3.7). We noticed that ‘undetermined’ events category, i.e., subtle events detected from bulk 

samples with low MCF that could not be categorized as gain, loss, or cn-LOH, in the gold standard 

call set was the category of events that was most often failed to be inferred by RNA-based 

identification, which was most strikingly observed in the pancreatic and prostate 

adenocarcinomas. Excluding these undetermined (low MCF) events naturally led to higher 
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sensitivity rates. On the other hand, the best performance was consistently achieved by the cn-

LOH event category, likely due to greater BAF perturbations observed from the cn-LOH events. 

 COAD LUAD LUSC PAAD PRAD 
 R R+I R R+I R R+I R R+I R R+I 

cn-LOH 51% 85% 79% 90% 79% 91% 81% 89% 61% 81% 

Gain 61% 80% 72% 81% 73% 83% 67% 74% 62% 71% 

Loss 37% 80% 71% 86% 70% 89% 70% 85% 40% 69% 

Undetermined 30% 32% 63% 73% 68% 78% 46% 61% 0% 22% 

Overall 49% 79% 72% 84% 71% 88% 67% 80% 45% 66% 

Excluding 
undetermined 49% 82% 74% 85% 71% 88% 71% 81% 48% 69% 

Table 3.7. Summary of sensitivity results grouped by allelic imbalance event category. 
R: RNA-seq, R+I: RNA-seq +  imputed genotypes. 
 

3.5. Discussion 

In this chapter, I discussed several quality control steps and best practices for the most favorable 

allelic imbalance detection results using hapLOHseq. I mentioned two sample quality metrics, 

e.g., RIN score and sample cellularity, and their minor effects on our results. This was most likely 

because we utilized a high quality repository (TCGA) to obtain our bulk RNA-seq samples, 

however, I should note that these two metrics should be assessed for other cohorts. Furthermore, 

I discussed the impact of using high imputation quality (R2) cutoffs, in addition to the traditional 

0.3 cutoff, which did not lead to more favorable results for our data. Next, I discussed several 

hapLOHseq parameters, including minimum depth parameter. The results of our investigation at 

other per-marker minimum depths in {4,14} for the TCGA LUAD cohort indicated that changing 

minimum depth parameter from 10 to 8 resulted in similar performance. However, we advise 

caution when applying to other datasets, since coverage might differ. Next, we discussed the 

effects of masking HLA, VDJ, and DGV regions. We found that the qualitative interpretation of 
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the results remained essentially the same when comparing masked and unmasked hapLOHseq 

call sets. Then, we showed that removal of singletons leads to performance improvement and 

provides efficiency in terms of the time it takes to run hapLOHseq. Moreover, we evaluated using 

a custom event caller to identify allelic imbalance events from posterior probabilities, instead of 

using hapLOHseq’s default event caller and discussed our post processing steps to improve the 

default allelic imbalance call set. Finally, we discussed the characteristics of RNA-exclusive calls 

and event categories. These characteristics might be helpful to users to decide when they have 

certain biological scenarios that they are interested in, e.g., chromosome arm level gain events. 
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CHAPTER 4 

INVESTIGATION OF X-INACTIVATION DRIVEN ALLELIC 

IMBALANCE PATTERNS IN THE X CHROMOSOME ACROSS THE 

CANCER GENOME ATLAS BREAST INVASIVE CARCINOMA 

COHORT 

 

 

4.1 Introduction 

Along with 22 autosomal pairs of chromosomes, human cells almost always contain an additional 

pair of sex chromosomes. These two sex chromosomes are the X and Y chromosomes. While 

females typically have two X chromosomes, males typically have one of each sex chromosomes. 

The X chromosome consists of approximately 155 million base pairs, which corresponds to nearly 

5% of the whole human genome and contains 841 protein coding genes [65] out of over 20,000 

genes in the genome. The Y chromosome is much smaller, spanning nearly 55 million base pairs 

and containing 63 genes [66]. 

        X-inactivation or lyonization is a phenomenon that describes inactivation of one of the two 

X chromosomes in female mammals early in embryonic stem cell differentiation. The selection 

of which of the two X chromosomes will be permanently inactivated is random in placental 

mammals and takes place in all cells in the body besides the reproductive cells. Due to the 

randomness of the pattern in this process, some cells have the maternal X chromosome 

inactivated, whereas others have the paternal X chromosome inactivated. X-inactivation ensures 

females have one functional copy of the chromosome, as do males [67]. 
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        The X chromosome is silenced through a series of epigenetic modifications involving histone 

modifications and promoter methylation that result in a tightly packed and transcriptionally 

inactive structure called heterochromatin. The process is controlled by the X chromosome 

inactivation center (XIC). Transcription of the X-inactive specific transcript (XIST) on the X 

chromosome that will be inactivated initiates the process. XIST is a 17 kilobase, noncoding RNA 

molecule. While staying in the nucleus exclusively, XIST RNA coats the chromosome it was 

transcribed from and provides a template for epigenetic alterations that consist of sequential 

histone modifications [67]. Although, in the end, most of the X chromosome obtains the features 

of heterochromatin, some genes (~15%), mostly located on the p arm, escape X-inactivation. The 

majority of the genes that escape X-inactivation are also located on the Y chromosome in regions 

known as ‘pseudo autosomal’ regions. For the genes in the pseudo autosomal regions, both alleles 

are expressed and both men and women receive two copies of these genes [68]. 

        Loss of X chromosome inactivation appears to play an important role in female 

carcinogenesis as shown in ovarian and breast cancers [69–71]. With the loss of X chromosome 

inactivation, the cancer cells acquire an extra active copy, which is thought to increase the 

expression of the oncogenes and TSGs on the chromosome [72]. Moreover, there is a debated 

interplay between BRCA1 and the inactive X chromosome [73]. The loss of X chromosome 

inactivation is observed more commonly in basal like subtype and breast cancers with mutations 

in BRCA1, which have aggressive behavior [74–76].  

     In this chapter, I discuss the details of my examination of a potential link between X-

inactivation driven imbalances observed in the X chromosome and several clinical outcomes by 

using RNA-seq data from tumor samples of females in the TCGA BRCA cohort. I start by briefly 

explaining the differences in the methods regarding the imputation and phasing of the genotypes 

on the X chromosome in comparison to the processing of autosomal chromosomes as described 
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in chapter 2, followed by identification of the X-inactivation driven imbalances through 

hapLOHseq. I conclude by comparing and contrasting the imbalance events on the X chromosome 

with that of DNA-based results to explore possible associations between these X-inactivation 

driven imbalances observed exclusively from RNA and various clinical features. 

 

4.2 Study design 

With this study, we present an extensive characterization of X-inactivation induced imbalances 

in the X chromosome using tumor samples from females. We use hapLOHseq, a sensitive, 

haplotype-based statistical approach to detect regions exhibiting allelic imbalance, which is 

defined as a deviation from the expected 1-to-1 ratio at germline heterozygous loci [1]. As our 

dataset, we utilize tumor bulk RNA-seq data from females in the TCGA’s breast cancer cohort. 

We assess the chromosome level imbalances to identify X-inactivation induced imbalance 

patterns by comparing against a DNA - SNP array - based imbalance call set. Finally, we assess 

these patterns of chromosomal imbalance events that are exclusive to RNA and investigate 

whether an association between these chromosome level imbalances in the X chromosome and 

clinical features exist. 

 

4.3 Materials and methods 

4.3.1 Dataset 

In the same manner described in chapter 2, bulk RNA-seq BAM files (hg38 genome build) and 

level 1 raw CEL files from the Affymetrix Genome-Wide Human SNP Array 6.0 (hg38 genome 

build) of 616 tumor samples from females in the TCGA breast cancer cohort were obtained along 

with the clinical information.  
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        The level 1 raw CEL files of the matched-blood (hg19 genome build) samples were 

downloaded for the purpose of genotype imputation. As hg38 genome build was not an option for 

performing genotype imputation of the X chromosome by the Michigan Imputation Server, the 

hg19 genome build was chosen instead to impute the genotypes. 

4.3.2 Processing of the tumor RNA-seq data 

4.3.2.1 Genotyping and phasing 

Our approach for SCNA detection depends on the allele specific signals at germline heterozygous 

sites and the germline genotypes can be obtained from (i) the tumor sample directly or from (ii) a 

matched-normal sample. In the study explained in chapter 2, we investigated the utility of using 

these two different sources for obtaining germline genotypes and demonstrated that the latter 

approach yields to an improved performance. Therefore, given the availability of the SNP DNA 

microarray data from matched-normal samples, the latter approach was preferred for investigating 

the detectible X inactivation patterns in the BRCA cohort. 

        We followed the same steps as for the autosomes (see chapter 2 for details) regarding 

genotype imputation and additionally, specifically for this study, included only the females, 

mapping the imputed genotypes from genome build hg19 to hg38, and phased the genotypes 

ourselves. 

4.3.2.2 Detection of allelic imbalance from tumor samples 

We used the same protocols described in chapter 2 for detecting allelic imbalance from tumor 

samples and postprocessing the event calls. 

 

4.4 Results 

Using 616 bulk RNA-seq tumor samples from the females in the TCGA BRCA cohort, we 

identified 629 regions that exhibit allelic imbalance. The smallest, median and largest event sizes 
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were 303.7 Kb, 143.7 Mb and 152.2 Mb, respectively. As summarized in Fig. 4.1, a large majority 

of the samples harbored at least one event, whereas only 25 of the samples had no region that 

exhibited allelic imbalance. Next, we assessed allelic imbalance at the chromosome level; Fig. 

4.2 demonstrates the distribution of allelic imbalance burden per sample – defined as the fraction 

of the X chromosome that harbor allelic imbalance events – for all samples. Out of the 616 

samples, burden was 50% or above for 567 and 75% and above for 495 with a median of 93%. 

 

Fig. 4.1. Distribution of number of allelic imbalance events per sample. A barplot with number 
of allelic imbalance events on the X chromosome per sample across tumor samples from females 
in the TCGA BRCA cohort is shown. 
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Fig. 4.2. Distribution of allelic imbalance burden per sample. A histogram with allelic 
imbalance burden per sample - defined as the fraction of the X chromosome spanned by allelic 
imbalance events - across females in the TCGA BRCA cohort is shown. 

4.4.1 Comparison with an autosome for rates of detected imbalance 

Following that, as a sanity check, we wanted to have a general conception of the profile of allelic 

imbalances observed in an autosome. In order to compare the X chromosome with an autosome, 

we selected chromosome 7, since, among the autosomes, it is the most similar in term of size 

(159.3 Mb) and the number of protein coding genes (984 genes) [77]. This within platform 

comparison aimed to eliminate possible technology/ RNA-seq related artifacts when making 

conclusions specific to the X chromosome. 

        Using the same set of samples utilized for evaluating the X chromosome (n = 616), we 

identified 627 allelic imbalance events on chromosome 7 with the median size of 22.8 Mb and 

the smallest and largest sizes of 10.1 Kb and 157.9 Mb, respectively. In comparison to the X 

chromosome, the size of the events on chromosome 7 differed noticeably. Despite the similarities 

between the chromosomes, the events on chromosome 7 tended to be smaller with only 267 out 

of 627 events larger than 50 Mb, while the events observed on the X chromosome were larger and 

mostly over 50 Mb (578 out of 629 events) (Fig. 4.3). 
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        Additionally, the number of samples that do not exhibit allelic imbalance on chromosome 7 

was noticeably higher with 203 samples (vs. 25 samples for the X chromosome) and a larger 

portion of the cohort with 158 samples harbored multiple events (Fig. 4.4) (vs. 38 samples for the 

X chromosome). At the chromosome level, allelic imbalance burden was significantly lower with 

a median of 26%. Out of 616 samples, 214 had at least 50% burden and 124 of these had at least 

75% burden. Fig. 4.5 demonstrates allelic imbalance burden per sample distribution for 

chromosome 7. In conclusion, the comparative analysis between the X chromosome and 

chromosome 7 suggests that the allelic imbalance events exhibited by the X chromosome are 

largely driven by X-inactivation.  

 

Fig. 4.3. Distribution of allelic imbalance event size. A histogram comparing the sizes of the 
allelic imbalance events detected on the X chromosome and chromosome 7 across females in the 
TCGA BRCA cohort is shown. 

0

100

200

300

0 50 100 150
Allelic imbalance event size (Mb)

Fr
eq

ue
nc

y

chr7
chrX



 64 

 
 
Fig. 4.4. Distribution of number of allelic imbalance events on chromosome 7 per sample. A 
barplot of the number of allelic imbalance events on chromosome 7 per sample across females in 
the TCGA BRCA cohort is shown. 

 
 

Fig. 4.5. Distribution of allelic imbalance burden per sample for chromosome 7. A histogram 
with allelic imbalance burden for chromosome 7 per sample - defined as the fraction of 
chromosome 7 spanned by allelic imbalance events - across females in the TCGA BRCA cohort 
is shown.  
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4.4.2 Comparison with SNP array allelic imbalance calls 

As discussed more in depth in chapter 2, allelic imbalance events derived from a high density 

SNP microarray from matched-tumor DNA samples constituted our gold standard set when 

benchmarking the RNA-seq based allelic imbalance set of calls on the autosomes. Likewise, in 

this chapter, we used the SNP array based gold standard calls located on the X chromosome for 

the assessment of the RNA-seq derived calls. 

        Using SNP array data from the same set of tumor samples (n=616), we identified 682 allelic 

imbalance events. While 267 samples did not have an allelic imbalance event on the X 

chromosome, we detected 193 samples that exhibit a single allelic imbalance event and 156 

samples with at least two events (per sample). The number of events per sample is demonstrated 

in Fig. 4.6. 

        The smallest, median, and largest events were 147.3 Kb, 8.3 Mb, and 155.7 Mb, respectively. 

By comparing the size of the events on the X chromosome among the SNP array and RNA-seq 

derived set of calls, we observed that, in general, the gold standard calls were smaller (Fig. 4.7), 

with 272 out of 682 events larger than 50 Mb (vs. 578 out of 629 events from RNA-seq call set) 

and 213 events above 75 Mb (vs. 558 events from RNA-seq call set). In terms of the distribution 

of the size of the calls, the calls on the X chromosome derived from SNP array appeared to be 

similar to the RNA-seq derived calls on chromosome 7, in contrast to the size of the RNA-seq 

derived calls on the X chromosome. 
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Fig. 4.6. Distribution of number of allelic imbalance events on the X chromosome per 
sample. A barplot of the number of allelic imbalance events on the X chromosome per sample 
from SNP array - DNA -  derived gold standard call set across females in the TCGA BRCA cohort 
is shown. 

 
 

Fig. 4.7. Distribution of allelic imbalance event size. A histogram of the sizes of the allelic 
imbalance events detected on the X chromosome across females in the TCGA BRCA cohort 
contrasting RNA-seq and SNP array (gold standard) - DNA - derived call sets is shown. 
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        At the chromosome level, SNP array derived burden exhibited a sharply bimodal 

distribution, with a peak centered around 5% and a second peak centered around 95% (Fig. 4.8). 

In comparison to RNA-seq, which had only few samples around 5% and most of the samples 

above 50% burden level, this distribution is distinct and drastically different. In fact, the 

distribution showed a higher similarity to that of RNA-seq derived burden of chromosome 7, with 

the exception of having a much higher peak at 95%. 

 
Fig. 4.8. Distribution of allelic imbalance burden per sample for the X chromosome. A 
histogram with allelic imbalance burden for the X chromosome per sample – defined as the 
fraction of the X chromosome spanned by allelic imbalance events – from SNP array (DNA)  
derived gold standard call set across females in the TCGA BRCA cohort is shown. 
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and not from DNA (SNP array), probably due to the X-inactivation and epigenetic regulations. 

To define an X chromosome as RNA-exclusive, we used a cutoff to determine if majority of it 

had been spanned by allelic imbalance calls exclusive to the RNA and not by the DNA-based gold 
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seq that were not detected in the gold standard were treated as putative FPs in our analyses (see 

chapter 2 for details). However, in theory, these calls might be true RNA-exclusive calls produced 

by mechanisms that can only be detected from RNA. After exploring different cutoffs, we decided 

to consider an X chromosome as RNA-exclusive if at least 80% of the chromosome had been 

spanned by RNA-seq derived allelic imbalance events and, at the same time, less than 20% of the 

chromosome had been spanned by the gold standard events. According to this definition, we 

classified 245 samples (out of 616) as having RNA-exclusive X chromosome driven by X-

inactivation. 

4.4.3.1 Association between the RNA-exclusive allelic imbalance and clinical features 

There have been studies suggesting that loss of X chromosome inactivation plays a key role in 

carcinogenesis in females through increasing the expression of oncogenes - enabled via the extra 

active X chromosome copy, as well as through mechanisms that impact the course of the disease 

and become a factor in treatment options and outcome.  

        In order to probe the existence of possible clinical outcomes resulting from the varying 

degree of X-inactivation and expression of the genes that escaped X-inactivation, we assessed the 

association between having an RNA-exclusive X chromosome and several clinical features.  

4.4.3.1.1 RNA-exclusive X chromosome and age 

First, we investigated the link between age and the RNA-exclusive X chromosome. Taking the 

percent of new cases by age group in female breast cancer [78] into account, we categorized the 

samples into 3 groups. The number of samples with and without an RNA-exclusive X 

chromosome in each age category is summarized in Table 4.1. Although the proportion of samples 

with RNA-exclusive X chromosomes increased with age, when a Kruskal-Wallis rank sum test 

was performed to examine the differences between age groups based on the RNA-exclusive X 
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chromosome status, no statistically significant differences were found (chi-squared=3.47, p-

value=0.18) among the 3 age categories (age < 45, 45 ≤ age < 75, and age ≥ 75). 

RNA-exclusive chrX Age < 45 45 ≤ Age < 75 Age ≥ 75 

No 46 (68) 245 (60) 32 (52) 

Yes 22 (32) 162 (40) 30 (48) 

Total n 68 (100) 407 (100) 62 (100) 

Table 4.1. RNA-exclusive chromosome X status and age. The number and percentage (in 
parenthesis) of samples that do and do not have an RNA-exclusive X chromosome distributed by 
age category is shown. 

4.4.3.1.2 RNA-exclusive X chromosome and tumor stage 

Second, we examined the differences between breast cancer stages in regard to the status of having 

an RNA-exclusive X chromosome. We placed the patients in the TCGA BRCA cohort in one of 

the 4 groups: stage I (stages I, IA, and IB), stage II (stages II, IIA, and IIB), stage III (stages III, 

IIIA, IIIB, and IIIC), and stage IV. The number of samples with and without an RNA-exclusive 

X chromosome for each cancer stage category is shown in Table 4.2. It appeared that as the cancer 

progresses, the samples with an RNA-exclusive X chromosome became less common. Indeed, a 

Kruskal-Wallis rank sum test showed that, the differences among the tumor stage categories 

(stages I, II, III, and IV) were statistically significant (chi-squared = 7.55, df = 3, p-value = 0.05). 

Moreover, stronger evidence suggesting a link between advancing tumor stage and negative 

RNA-exclusive chromosome X status was found when patients were grouped into early (stages I 

& II) and late (stages III & IV) stages with a p-value of 0.007 (chi-squared = 7.18, df = 1). 
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RNA-exclusive chrX Stage I Stage II Stage III Stage IV 

No 52 (54) 170 (58) 90 (70) 5 (71) 

Yes 44 (46) 125 (42) 39 (30) 2 (29) 

Total n 96 (100) 295 (100) 129 (100) 7 (100) 

Table 4.2. RNA-exclusive chromosome X status and tumor stage. The number and percentage 
(in parenthesis) of samples that do and do not have an RNA-exclusive X chromosome distributed 
by cancer stage category is shown. 

        Furthermore, we fit a logistic regression model including age (discrete variable: age < 45 as 

“1”, 45 ≤ age < 75 as “2”, and age ≥ 75 as “3”) and tumor stage (stages I, II, III, and IV grouped 

numerically as discrete variables) as covariates. The results showed that, accounting for tumor 

stage, the odds of having an RNA-exclusive X chromosome increased by 43% (95% CI [0.95, 

2.16]) for patients in older age categories (p-value = 0.08). Accounting for age, the odds of having 

an RNA-exclusive X chromosome decreased by 50% (95% CI [1.12, 2.01]) for patients with later 

tumor stages (p-value = 0.007). 

4.4.3.1.3 RNA-exclusive X chromosome and overall survival 

Third, we evaluated the impact of having an RNA-exclusive X chromosome on overall survival. 

We estimated the overall survival using the Kaplan Meier method and assessed the differences 

between curves with the log rank test. As the list of samples only included European females in 

the TCGA BRCA cohort already, there was no need to perform additional adjustment for the 

effects of possible confounding factors for race and gender. We did not observe a statistically 

significant difference between the groups that do and do not exhibit an RNA-exclusive X 

chromosome in terms of survival (Fig. 4.9; p-value=0.23). 

        Next, we used a multivariate Cox proportional hazards model for comparative survival 

analysis including RNA-exclusive chromosome X status as categorical and tumor stage and age 

as quantitative predictor variables (Fig. 4.10). The results indicated that tumor stage and age were 
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associated with an effect on prognosis with a significantly worse overall survival prognosis, 

whereas RNA-exclusive chromosome X status did not have a significant effect on prognosis. The 

p-value for RNA-exclusive chromosome X status was 0.49, with a hazard ratio (HR) of 0.78, 

indicating an insignificant relationship between the RNA-exclusive chromosome X status and 

decreased risk of death and association with a better survival. The p-value for tumor stage was < 

0.001, with a HR = 2.74, which implies a significant association between tumor stage and 

increased risk of death and a poor survival. The p-value for age was 0.011, with a HR = 2.43, 

which suggests a significant link between age and increased risk of death and a poor survival. 

 
Fig. 4.9. The effect of RNA-exclusive chromosome X status on overall survival. Kaplan-Meier 
curve stratified according to RNA-exclusive chromosome X status is shown. RNA-exclusive = 1 
indicates the status of having and RNA-exclusive = 0 indicates the status of not having an RNA-
exclusive chromosome X. 
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Fig. 4.10. Cox proportional hazards model. A forest plot of risk of death and respective hazard 
ratios derived from the Cox proportional hazards model for covariates RNA-exclusive 
chromosome status, tumor stage, and age category is shown. 
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4.4.3.1.4 RNA-exclusive X chromosome and BRCA molecular subtypes 

Studies have suggested that the loss of X chromosome inactivation is more commonly observed 

in basal-like subtype of breast cancer [74–76]. We studied whether there is an association between 

the status of having an RNA-exclusive X chromosome and molecular subtypes. In regions where 

the loss of X chromosome inactivation is observed, two active copies of the X chromosome yield 

to a balanced expression of the parental alleles, leading to not having an RNA-exclusive X 

chromosome status. Therefore, we expected to observe RNA-exclusive X chromosome status to 

be less common among the samples coming from patients in the basal-like subtype category. To 

test this, we performed a chi-square test on the 251 samples for which we could obtain the 

molecular subtype information. After placing the samples in either basal-like or non-basal-like 

subtype categories, we observed that the samples that belong to the patients in the basal-like 

subtype category had the RNA-exclusive X chromosome status less frequently than the patients 

in the non-basal-like subtype category and the difference among the two groups is significant in 

the fraction of RNA-exclusive X chromosome status (chi-squared = 12.34, df = 1, p-value = 

0.0004). 

4.4.3.1.5 RNA-exclusive X chromosome and BRCA1 carrier status  

Studies propose that BRCA1 plays an important role in X-inactivation through its influence on the 

concentration of XIST RNA [79,80] and its dysfunction may result in failure of the maintenance 

of X-inactivation by causing a disruption in the inactive X chromosome’s association with partner 

proteins [81]. However, it remains unclear whether the impact of BRCA1 loss on the inactivation 

would cause reactivation of the entire X chromosome or specific genes on the chromosome. We 

evaluated the existence of a link between the status of having an RNA-exclusive X chromosome 

and being a BRCA1 carrier. Normally, in females, the epigenetic silencing of one of the X 

chromosomes through X-inactivation leads to an imbalance that is detectable through RNA 
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analysis and not DNA. Although X-inactivation causes an imbalance, the loss of it would lead to 

two active copies, which results in a balanced expression of the parental alleles, and thus, not 

having an RNA-exclusive X chromosome. As a consequence, we anticipated detecting fewer 

RNA-exclusive X chromosomes among the BRCA1 carriers. In order to test this hypothesis, we 

dichotomized the samples into BRCA1 carrier and non-carrier categories and placed only the 

samples carrying pathogenic variants into the carrier category. We performed Fisher’s exact test 

on the 592 samples that the carrier status information was available on ClinVar [82] and found 

that BRCA1 carriers tended to not have an RNA-exclusive X chromosome (9 out of 10 carriers), 

although it was not statistically significant (p-value of 0.09). 

 

4.5 Discussion 

The X chromosome inactivation in female mammals is an important epigenetic phenomenon that 

ensures dosage compensation between males and females. During the early development, one of 

the two X chromosomes is transcriptionally silenced arbitrarily, which results in the formation of 

the heterochromatin Barr body. Escapees, which make up 15% of the X-linked genes, are the 

genes that escape the transcriptional silencing and are expressed biallelically, thus have higher 

expression levels in females. In addition, another 10% of the X-lined genes escape X-inactivation 

at varying levels [83,84]. Although the importance of dosage compensation has been suggested, 

the effects the loss of X chromosome inactivation would have on human health have not been 

investigated sufficiently. In the literature, breast cancer cells, especially the aggressive forms, 

have been noted to miss the Barr body because of the loss of X chromosome inactivation leading 

to double the expected dose of genes on the X chromosome. Decompression of the Barr body’s 

heterochromatin structure, succeeded by reactivation of the X-linked genes has been also 

proposed to explain the Barr body loss in cancer [85–88]. In addition, it has been suggested that 
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BRCA1 has a direct role in the loss of X chromosome inactivation through regulation of XIST 

expression and epigenetic relaxation of the inactive X chromosome [79]. The fact that defects in 

either genetic or epigenetic mechanisms may impact X chromosome inactivation necessitates 

conducting additional research on the topic to further understand the effect of loss of X 

chromosome inactivation in carcinogenesis. 

        In this study, we investigated the X chromosome inactivation’s role in female cancers by 

utilizing the TCGA breast cancer data. Using 616 bulk RNA-seq tumor samples from females, 

we first identified allelic imbalance events on the X chromosome and then by contrasting these 

RNA-seq derived calls with the SNP array - DNA - derived allelic imbalance calls, we determined 

the X inactivation driven allelic imbalance events that are observed exclusively in RNA. In order 

to elaborate the effects of the loss of X inactivation in female tumorigenesis, we examined the 

association between certain clinical features and the binary status of having an RNA-exclusive X 

chromosome. For each sample, after calculating the fraction of the X chromosome affected by 

allelic imbalance events, we considered a sample as having an RNA-exclusive X chromosome if 

no more than the sample’s X chromosome had been spanned by DNA derived calls and at least 

80% of it exhibited allelic imbalance events, based on RNA. 

        We found that, out of 616 samples, only 25 samples had no allelic imbalance events detected 

from RNA. 567 samples had 50% and above and 495 samples had 75% and above allelic 

imbalance burden (considering only the X chromosome) with 93% median allelic imbalance 

burden. Next, we compared the findings to that of RNA derived chromosome 7, the autosome that 

is the most similar to the X chromosome in terms of size and number of genes it contains. The 

purpose of this within platform comparison was to identify the technology/ RNA-seq related 

artifacts, e.g., lack of coverage, if there are any when making conclusions specific to the X 

chromosome. We found that a much higher fraction of the samples (203 out of 616) did not have 
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any allelic imbalance events on chromosome 7 and the burden was noticeably lower with a median 

of 26%. While 214 samples had 50% or more burden, 124 samples had more than 75%. This 

comparison suggests that the rates of allelic imbalance burden are elevated in the X chromosome 

compared to the autosomes. We also evaluated the allelic imbalance profiles of the X chromosome 

detected via SNP array from matching tumor DNA. The findings were similar to that of 

chromosome 7 with 267 of the samples not exhibiting any allelic imbalance events and overall 

events were smaller in comparison to RNA. Comparisons at the chromosome level (allelic 

imbalance burden) showed that the SNP array derived burden had a bimodal distribution with a 

peak centered at 5% and a second peak centered at 95%, which is drastically different from the 

RNA-seq derived burden distribution with only few samples at 5% burden and most samples over 

50%. 

        Subsequently, we probed the association between RNA-exclusive X chromosome status and 

physiological age to test if observations from peripheral blood studies that suggest age related 

increase in the levels of X chromosome inactivation skewing [89,90] holds in tissues besides 

blood. A Kruskal-Wallis rank sum test indicated no statistically significant difference among the 

age categories based on the RNA-exclusive X chromosome status. Next, we investigated the 

relationship between breast cancer stages in regard to the status of having an RNA-exclusive X 

chromosome. A Kruskal-Wallis rank sum test indicated a link between advancing tumor stage 

and negative RNA-exclusive chromosome X status when patients were placed in early (stages I 

& II) and late (stages III & IV) stages with a p-value of 0.007. These results agree with the findings 

in the literature and validate an association between the loss of X chromosome inactivation and 

more aggressive behavior in breast cancer. To examine this further, we also assessed the link 

between overall survival and the status of RNA-exclusive chromosome X. However, our results 

did not indicate a statistically significant association, although the patients in the negative RNA-



 77 

exclusive chromosome X status category were associated with worse overall survival. 

Additionally, we assessed the validity of the hypotheses that suggest the loss of X chromosome 

inactivation is more frequently observed in basal-like subtype and among BRCA1 carriers. We 

recapitulated the former (chi-square test p-value = 0.0004), although we did not observe a 

statistically significant difference in the results regarding the latter (Fisher’s exact test p-value = 

0.09). In comparison to the anticipated rate of 3-5% for breast cancers associated with BRCA1 

germline pathogenic variant [91], the low rate of pathogenic BRCA1 variants observed in the 

TCGA BRCA cohort was a limiting factor. Instead of using only ClinVar for annotation, other 

sources, such as the ARUP database [92] and the BRCA Exchange site [93], could be taken into 

consideration. 

        We note that, in this study, we were restricted to the samples from patients with European 

ancestry in order to use the HRC reference panel for genotype imputation, thus our results are not 

inclusive of all races. Another limitation of the study is, using the current cutoffs for defining 

RNA-exclusivity status, we cannot identify RNA-exclusive X chromosome status of a sample if 

greater than 20% of its X chromosome is spanned by allelic imbalance events detected through 

DNA. In order to enable flexible cutoffs when determining whether an X chromosome is RNA-

exclusive or not, we used subtraction of DNA-derived chromosome X burden from that of RNA-

derived and required it to be greater than 50%. This did not alter the results and conclusions drawn. 

We also assessed the clinical relationships after excluding those with high DNA burden where we 

could not assess whether RNA-exclusive changes occurred. After excluding the 292 high DNA 

burden samples, 245 sample did and 79 samples did not have an RNA-exclusive X chromosome. 

We still did not detect a statistically significant correlation between age and RNA-exclusive X 

chromosome status. After the exclusion, a Kruskal-Wallis rank sum test showed that the 

differences among the tumor stage categories were not statistically significant (p-val = 0.13) 
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although after accounting for age, the odds of having an RNA-exclusive X chromosome decreased 

by 9% (95% CI [0.69, 1.73]) for patients with later tumor stages with a marginally significant p-

value of 0.07. We did not observe a statistically significant difference between the groups that do 

and do not exhibit an RNA-exclusive X chromosome in terms of survival (p-value=0.26). Lastly, 

the set was not amenable to molecular subtype and BRCA1 carrier status association analyses 

because exclusion of the samples resulted in a small dataset which was not suitable, e.g., there 

were only 2 BRCA1 carriers. Hence, when performing RNA-exclusive X chromosome association 

analysis on cohorts with high allelic imbalance levels from DNA, one needs to be aware of such 

limitations. Additionally, several studies reported the gain of an extra active X chromosome along 

with the lack of the inactive X chromosome in some breast cancers [94–96]. These findings 

suggest that although loss of X chromosome inactivation might have taken place, with the gain of 

an extra active X chromosome, allelic imbalance may still be observed. Therefore, using lack of 

imbalance might not always be enough and additional analysis, such as integration of phase 

concordance information, i.e., to estimate haplotype similarity, might be necessary to confirm loss 

of X chromosome inactivation. If it has taken place, the frequency based - excess - haplotype 

should bear resemblance to the germline haplotypes and not just reflect stochastic deviations. 

        As future directions, a natural extension of this study is to analyze the TCGA OV cohort to 

compare and contrast with the findings from the TCGA BRCA cohort. In addition, the association 

analysis performed for the BRCA1 carriers could be repeated on the BRCA2 carriers to test if 

RNA-exclusive X chromosome status is observed less frequently among the BRCA2 carriers as 

well. Another natural extension to this work is performing scRNA-seq and epigenetics analyses 

from matched samples to validate and better contextualize the results. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

As one of the hallmarks of cancer, genomic instability leads to alterations in DNA, including 

CNAs, which often affect extensive portions of the genome and span large numbers of genes. 

Allelic imbalance is a signature of genomic instability since most SCNAs cause a deviation from 

the expected 1:1 paternal-to-maternal allelic ratio. In addition to having an important role in 

carcinogenesis, allelic imbalance has also been linked to clinical features and outcomes. Thus, 

identification and comprehensive characterization of allelic imbalance may serve as a key step in 

shedding light on initiation and progression of cancer and may be used as a prognostic indicator. 

Despite the fact that RNA-seq may be the only available platform in certain settings, i.e., where 

tumor material or funding is limited, allelic imbalance detection from bulk RNA-seq data has not 

been well developed, perhaps due to the challenges caused by properties innate to RNA, such as 

non-uniform coverage of the genome which complicates distinguishing between allelic imbalance 

and dynamically varying gene expression. 

 

5.1. Overall significance 

In this dissertation, I discuss adaptation and application of hapLOHseq, a software originally 

developed by San Lucas et al. for detection of allelic imbalance events from exome sequencing, 

to bulk RNA-seq and also incorporation of genotypes imputed from a matched normal sample, 

into the hapLOHseq pipeline in order to increase the quality of estimated genotypes and 

haplotypes. 
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        Adaptation of hapLOHseq to RNA-seq data makes the approach the first to leverage 

haplotypes estimates to infer large scale allelic imbalances from bulk RNA-seq data. Previous 

studies with SNP array data have demonstrated that utilizing haplotype information improves 

power for detection of allelic imbalance [1,3,53,54]. By utilizing haplotypes, hapLOHseq models 

signals at multiple markers jointly, thus requiring signals to be sustained beyond several mRNA 

transcripts, which may be regulated by factors innate to RNA and not caused by SCNAs. 

        Germline genotypes for input into hapLOHseq can be derived from: (i) tumor RNA-seq 

directly or (ii) SNP array or an alternative DNA sequencing platform with genome wide coverage 

ran on a matched normal sample. For the latter, easily collectible blood or buccal samples may be 

used to derive germline genotypes. SNP array data from these matching normals provides an 

economical approach to boost allelic imbalance detection from tumor samples. This option is 

especially feasible for existing large data repositories with well phenotyped cohorts, such as 

TCGA, TARGET, and ICGC. Subsequent to obtaining germline haplotypes, hapLOHseq 

quantifies evidence for allelic imbalance in a way that is robust to errors in phasing by exploiting 

switch consistency metric, i.e., switch consistencies are averaged to calculate phase concordance 

for a region. In addition to utilizing haplotype estimates for allelic imbalance inference and 

providing avenues for joint analysis of expression and CNAs, the approach is also novel in the 

sense that it uses imputed genotypes derived from SNP array data from a matched normal for 

obtaining highly accurate and phased genotypes, which hapLOHseq relies on. 

        In chapter 2, through application to 4,942 tumor samples across 28 cancer sites in the TCGA, 

I demonstrate that hapLOHseq is a highly effective method for detecting somatic megabase level 

copy number alterations from RNA in scenarios where data from germline DNA is available. To 

benchmark the method, we compared RNA derived events against those derived from SNP array 

(DNA), which were treated as a gold standard. In this study, the method achieved 85% median 
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sensitivity and 95% median specificity at the gene level. Evaluations at the chromosome arm and 

genome levels indicated performances similar to that of gene level. Furthermore, to show the 

method’s utility in clinical settings, we successfully replicated subtype specific copy number 

alteration features associated with breast cancer. Comprehensive comparisons with other methods 

for detection of copy number alteration from bulk RNA-seq data, such as CaSPeR and SuperFreq, 

showed that hapLOHseq achieves significantly higher sensitivities and specificities at the gene 

level for the samples in the BRCA and GBM cohorts in comparison to CaSPeR. At the gene level, 

hapLOHseq performs similarly in comparison to SuperFreq for a subset of samples in the BRCA 

cohort that the sample sets overlap. As of note, performance characteristics heavily depend on the 

gold standard used, hence an absolute performance comparison entails improvements in the gold 

standard datasets. Overall, hapLOHseq enables robust identification of large allelic imbalances 

that represent gain, loss, or cn-LOH events, and a more in-depth tumor profiling when additional 

DNA analysis of the tumor sample is not feasible. 

        In chapter 4, I provide characterization of allelic imbalances harbored by the X chromosome 

specifically and investigate the role of X chromosome inactivation in female cancers through 

utilizing tumor samples from females in the BRCA cohort. A contrast of the X chromosome allelic 

imbalance profiles between RNA and DNA indicated that the rates of allelic imbalance burden 

are elevated for RNA when compared to the gold standard, presumably due to the epigenetic 

mechanisms underlying X-inactivation. To prevent artifacts that might have been inherent to 

RNA-seq from interfering with the results, we performed a within platform comparison by 

contrasting RNA derived calls exhibited by the X chromosome to that of an autosome 

(chromosome 7), which was chosen because of its similarity to the X chromosome in terms of 

size and the number of genes. Detection of high rates of allelic imbalance burden from the X 

chromosome (vs. chromosome 7) confirmed that the observations were not caused by the 
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sequencing technology or reasons inherent to RNA. Next, we investigated the link between 

varying degrees of X-inactivation, including loss of it, and clinical features. Fitting a logistic 

regression model to the data showed that after accounting for age, the odds of having an RNA-

exclusive X chromosome (induced by X-inactivation) decreased by 50% (95% CI [1.12, 2.01]) 

for patients with later tumor stages (p-value = 0.007). In addition, compared to the samples from 

patients in non-basal-like subtype category, fewer RNA-exclusive X chromosomes have been 

observed from the samples in the basal-like subtype category (chi-squared = 12.34, df = 1, p-value 

= 0.0004). These findings are in line with studies that suggest more frequent observations of loss 

of X chromosome inactivation among basal-like subtype and more aggressive behavior in breast 

cancer. On the other hand, we did not observe a significant association between age, overall 

survival, and BRCA1 carrier status and RNA-exclusive chromosome X status, although a 

marginally significant association (p-value=0.09) was detected for BRCA1 carrier status. 

Investigations discussed in this chapter are an example of additional utilities that come naturally 

with RNA, e.g., to assess the role of epigenetically regulated mechanisms affecting large 

genomics regions in carcinogenesis, besides enabling a more comprehensive characterization of 

tumor samples through copy number inference when RNA is the only nucleic acid source for a 

tumor sample. Our future plans include analyzing samples in the TCGA ovarian cohort, repeating 

the association analysis performed for the BRCA1 carriers on the BRCA2 carriers, and utilizing 

scRNA-seq and epigenetics analyses from matched samples to validate some of our results and 

further explore the role of X-inactivation in female carcinogenesis. 
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5.2. Future directions 

5.2.1. Combine hapLOHseq with other SCNA detection softwares 

With the integration of imputation into the hapLOHseq pipeline to obtain germline genotypes, the 

approach provides high accuracy, phased germline genotypes and addresses several issues related 

to genotype calling from RNA. Other methods developed for detecting SCNAs from bulk RNA-

seq, such as SuperFreq and CaSpER, could benefit from our germline heterozygote identification 

as the information utilized by these methods, i.e., read counts and BAF dispersions, is orthogonal 

to what hapLOHseq leverages. Therefore, applying hapLOHseq in combination with alternative 

SCNA detection methods or integrating them for joint analyses is an area of future study. 

5.2.2. Determine copy number status of allelic imbalance segments 

As of now, our approach outputs genomic locations of allelic imbalance events but does not 

inform about their copy number status, e.g., gain, loss, or cn-LOH. Determining copy number 

status of allelic imbalance segments is among future research directions. For this purpose, changes 

in read coverage observed in a region of allelic imbalance can be utilized to inform about the copy 

number status of that allelic imbalance event. Briefly, the underlying idea is that copy number 

gains result in increased read coverage, whereas copy number losses lead to decreased read 

coverage in comparison to baseline. To create a baseline, one may take advantage of normal 

samples, such as normal adjacent to tumor samples for the same tissue in the TCGA, and calculate 

the read depth of the regions corresponding to allelic imbalance segments from the tumor 

(subsetting heterozygous markers only). After comparing the read depths between tumor and 

normal, lower read depths (from tumor) would be categorized as loss and higher read depths 

would be categorized as gain. If the read depth is not deviated from the baseline but the region 

has a prominent BAF deviation, it would be categorized as cn-LOH.  
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        Currently, our approach cannot identify balanced duplications, e.g., AABB, when there is no 

deviation from the expected 1-to-1 ratio. In addition to using coverage data to determine the copy 

number status of allelic imbalance segments, it may also be integrated into to the approach to 

handle this issue. 

        As of note, although all RNA-seq based approaches will be limited in regard to identifying 

alterations that do not span expressed genes, the limitations are mitigated over large genomic 

regions. 

5.2.3. WES and RNA-seq joint analysis 

Although not typically, both RNA-seq and WES data from the same tumor sample may 

occasionally be available. Under these circumstances, an integrative strategy may be employed to 

improve allelic imbalance calling performance, especially for genomic regions where 

heterozygous markers are sparsely distributed. Our analysis drew attention to certain scenarios 

where true allelic imbalance events were picked up by RNA or WES (mutually exclusive) and 

other scenarios where true events were subtly implied by both platforms but were not called by 

either because posterior probabilities did not reach the cutoff. In these settings, an alternative 

could simply be to combine allelic depths for reference and alternate alleles obtained from RNA-

seq and exome sequencing at the marker level and to resume the regular hapLOHseq workflow 

thereafter. 

5.2.4. Adaptation to single cell RNA-seq data 

Single cell RNA-seq (scRNA-seq) technology has become increasingly popular and aims to 

quantify tumor heterogeneity and evolution while enabling detection of rare cell subpopulations 

with distinct mutations and informing about the evolutionary dynamics of cancer. There already 

is a bioinformatics tool named CHISEL [97] that utilizes haplotype information in single-cell 

DNA analysis and their approach shows that haplotype information can improve inference of 
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SCNAs at single cell level. Motivated by this and lack of methods for allelic imbalance detecting 

from scRNA-seq data, adapting our approach to scRNA-seq data is a natural area for further 

development. 

5.2.5. Using more inclusive reference panels for increased diversity 

In our studies, we restricted ourselves to samples from individuals of European ancestry to 

evaluate the approach’s performance in a best case scenario with the resources at hand. However, 

recent efforts, i.e., construction of the TOPMed reference panel, enabled generation of genotype 

panels for individuals with more diverse genetic backgrounds. As part of our future research 

directions, we plan on conducting the same analysis on a subset of TCGA cohorts, this time not 

excluding individuals of non-European ancestry. More studies exploiting genotype panels with 

greater representation of those individuals with diverse genetic backgrounds will lead to more 

novel insights into tumor initiation and progression and result in improvements in clinical care 

and understanding of disparities in cancer. 
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APPENDIX A 
 

 

Appendix Fig. A1 Sensitivity and specificity calculation for the gene level assessment. 

 

 

Appendix Fig. A2 RNA only chromosome X. 
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APPENDIX B 
 

################# 
# Event caller 
################# 
# min_boundary_prob: min post prob for event boundaries  
# min_event_prob: min post prob that markers should reach in order to 
call an AI event 
# when classifying marker postprob: 
# 0 if S1 < min_boundary_prob 
# 1 if min_boundary_prob <= S1 < min_event_prob 
# 2 if min_event_prob <= S1 
# Run by: Rscript event_caller.R dir file_prefix min_boundary_prob 
min_event_prob 
 
suppressMessages(library(tidyverse)) 
 
ARGV <- commandArgs(trailingOnly=TRUE) 
 
dir = ARGV[1] 
file_prefix = ARGV[2] # e.g. 'TCGA-V5-A7RE-11A-11R-A354-31' 
min_boundary_prob = as.numeric(ARGV[3]) 
min_event_prob = as.numeric(ARGV[4]) 
 
# read posterior.dat 
sample_df = read_tsv(file.path(paste0(dir, '/posterior'), 
paste0(file_prefix, '.posterior.dat')), 
                     col_names = TRUE,  
                     skip=0, 
                     progress = FALSE, 
                     show_col_types = FALSE) 
 
# subset hets 
# levels(factor(sample_df$GT)) 
sample_df_hets = sample_df %>% 
  filter(GT == '0/1' | GT == '1/0' | GT == '0/0' | GT == '1/1') 
#  filter(GT == '0/1' | GT == '1/0') 
 
# filter post prob = NA 
sample_df_hets = sample_df_hets %>% 
  filter(!is.na(S1)) 
 
# classify markers 
sample_df_hets = sample_df_hets %>%  
  mutate(postprob.status = ifelse(S1 >= min_boundary_prob & S1 < 
min_event_prob, 1, 
                                                ifelse(S1 >= 
min_event_prob, 2, 0))) 
 
call_events <- function(chromnum) { 
   
  # subset chromosome and identify events 
  sample_df_hets_chr = sample_df_hets %>% 
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    filter(CHR == paste0('chr', chromnum)) 
   
  first_het_on_chr = sample_df_hets_chr$POS[1] 
   
  # index vectors for 0,1,2 
  zero_ind = which(!is.na(match(sample_df_hets_chr$postprob.status, 0))) 
  one_ind = which(!is.na(match(sample_df_hets_chr$postprob.status, 1))) 
  two_ind = which(!is.na(match(sample_df_hets_chr$postprob.status, 2))) 
   
  if(length(two_ind) != 0) { # if there's an event (2's) in the chr 
     
    # call events 
    i=1 
    first_two_ind = two_ind[1] 
     
    while (i <= nrow(sample_df_hets_chr)) { 
       
      # first 0 to the left is event start 
      max.less = max(zero_ind[zero_ind < first_two_ind]) 
       
      if(is.infinite(max.less)) { # if there is no 0 before 2 
         
        event_start = first_het_on_chr # pos of the first het on chr 
         
      } else { 
         
        event_start = sample_df_hets_chr$POS[max.less + 1] 
      } 
       
      # first 0 to the right is event stop 
      min.greater = min(zero_ind[first_two_ind < zero_ind]) # source of 
warnings 
      event_end = sample_df_hets_chr$POS[min.greater - 1] 
       
      # if chr doesn't end w/ a 0, then use the last het marker's 
position as event end pos 
      if (is.na(event_end)) { 
         
        event_end = 
sample_df_hets_chr$POS[max(one_ind[length(one_ind)],two_ind[length(two_in
d)])] 
 
        num_markers = which(sample_df_hets_chr$POS == event_end) - 
which(sample_df_hets_chr$POS == event_start) + 1 
        cat(paste(paste0('chr', chromnum), event_start, event_end, 
num_markers, sep = '\t'), '\n') 
         
        break 
         
      } else { 
         
        num_markers = which(sample_df_hets_chr$POS == event_end) - 
which(sample_df_hets_chr$POS == event_start) + 1 
        cat(paste(paste0('chr', chromnum), event_start, event_end, 
num_markers, sep = '\t'), '\n') 
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      } 
       
      # update i 
      first_two_ind = min(two_ind[min.greater < two_ind]) 
      i = first_two_ind 
       
    } 
   
  } 
 
} 
 
# main 
dir.create(file.path(dir, paste0('/events_boundary', min_boundary_prob, 
'_peak', min_event_prob)), showWarnings = FALSE) 
sink(paste0(dir, '/events_boundary', min_boundary_prob, '_peak', 
min_event_prob, '/', file_prefix, '.bed'), append = TRUE) 
cat(paste('#CHR', 'START', 'STOP', 'NUM_MARKERS', sep = '\t'), '\n') 
 
for (j in 1:22) { 
  call_events(j) 
} 
 
closeAllConnections() 
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