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This work utilizes single cell RNA sequencing to identify transcriptional populations 

and gene changes for the purpose of immune-related cancer therapies. First we have 

characterized the T cell populations of the normal and malignant human pancreas. 

Furthermore, we utilized single cell TCR sequencing to track transcriptional states of 

T cell clones from human PDACs into a T cell culture product for adoptive cell therapy. 

Second, we examined the potential role of radiotherapy in inducing an immune response 

in hormone receptor positive breast tumors. 
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Background 

 

Therapies directing a patient’s immune system to produce and sustain an anti- 

tumor response have revolutionized the cancer therapy landscape of the past decade. 

Though it has long been known that the immune system plays a critical role in anti- 

tumor response1, the relatively recent successes of immune-related therapies in many 

cancers has increasingly created a demand for understanding and utilizing the tumor 

microenvironment states involved in response and resistance to both immune-based 

and other therapies. 

To this end, biomolecules in immune checkpoint blockade (ICB) are used 

clinically to assist prevention of the immune system shutting off before complete 

tumor eradication.2,3,4,5 Furthermore, adoptive and chimeric antigen receptor (CAR) T 

cell therapies are used to increase T cell killing of the tumor by exogenous means. 

Despite the enormous successes of these therapies, responses are heterogenous 

with success disproportional among cancer patients and between cancer types. This 

efficacy discrepancy stresses the need for identifying tumor characteristics indicative of 

a patient’s response. To this end, T cell infiltration, tumor antigen load, and respective 

checkpoint expression are helpful, but far from perfect predictive biomarkers for immune- 

based therapy efficacy. 6,7,8
 

To this end, immunohistochemistry, flow cytometry, and bulk RNA-sequencing 

have long been used to further identify microenvironment cell populations. However, 

these technologies are not without limitations. Immunohistochemistry and flow cytometry 

are limited to profiling only a handful of proteins on the same cell. Though modern time- 

of-flight cytometry techniques can increase the simultaneous profitable panel size to 

hundreds of markers, a priori marker panel creation is still required.9 To remedy this bias, 

the global gene profiling ability of bulk RNA sequencing is appealing. However, bulk 

sequencing techniques are unable to examine markers at a cellular level, and are thus 

unable to deconvolute the considerable heterogeneity of transcriptomic states within 
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immune cell types.10
 

Recently, the introduction of single cell RNA sequencing (scRNAseq) has 

transformed the field of tumor microenvironment profiling.11 Though not without its own 

challenges (such as gene drop out, high batch effects and high, but improving, cost 

per cell), scRNAseq addresses many of the limitations of previous cell state profiling 

techniques by profiling total gene expression at a cellular resolution.12-16 With the advent 

and commercialization of micro droplet-based scRNAseq, and the establishment of 

single cell atlas initiatives seeking to profile many tissues in large numbers of patients, 

there has been an explosion of scRNAseq cell type and cell state identifying studies.17-27 

These studies have not only aided in the discovery of new immune cell populations, 

but also expanded and clarified transcriptional markers and relationships for known 

immune cell states.18, 19, 28-30 Furthermore, longitudinal single cell studies have identified 

specific immune populations and their predictive relationships to therapy response.31-33 

Due to a lack of universal markers, studying tumor cell expression with bulk 

RNAseq data has long been a challenge due to the presence of transcripts from stromal 

and immune cells in the tumor microenvironment (TME).34, 35 Though computational 

deconvolution methods have assisted with this issue, scRNAseq has proven an 

unparalleled tool in identifying the diverse expression states of tumor cells seen within 

and between patients. Additionally, scRNAseq has contributed to the ability to trace 

how tumor cells respond and adapt to therapy providing data suggesting mechanisms 

of therapy resistance.36-40
 

Here we utilize single cell genomics to untangle the tumor ecosystem in the 

context of two tumor types and immune-related therapies in human patients. First, we 

examine the transcriptional landscape of T cells in Pancreatic Ductal Adenocarcinoma 

(PDAC) and determine which populations are favorable for an adoptive cell therapy 

(ACT) product. Second, we investigate the potential role of radiotherapy to induce an 

immune response in hormone receptor positive breast cancer. 
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Chapter 1: T cell populations in PDACs and their 

culture for adoptive cell therapy 

 
Introduction 

 

Pancreatic ductal adenocarcinoma (PDAC) is a nearly universally fatal tumor type 

and is the fourth-highest cause of cancer-related death in the United States.41 Treatment 

options for this cancer are severely limited and primarily consist of surgery and intense 

chemotherapy. However, most patients are not eligible for surgery and those that are 

often experience relapse.42,43 The unmet clinical need of this patient population has 

spurred efforts to expand therapeutic options. 

Immunotherapy represents an exciting new therapeutic strategy, in part due to 

the success of immune checkpoint blockade in melanoma, lung cancers, and renal 

cell carcinoma.2,3,4,5 However, immune checkpoint blockade has seen limited clinical 

benefit in PDAC thus far, and it is thought that PDACs low T cell infiltration will remain 

a challenge for using ICB alone in this tumor type. Furthermore, adoptive transfer of T 

cells engineered to express chimeric antigen receptors (CAR-T) have found success 

in other, particularly hematologic and highly immunogenic, cancers.44,45 Unfortunately, 

CAR-T therapy has also failed to meet clinical endpoints due to the difficulty of finding a 

tumor-specific antigen target present across large groups of patients. 46,47 Understanding 

the deficiencies from these therapies, it is possible that increasing a patient’s anti-tumor 

lymphocyte count with T cells that recognize a patient’s specific tumor antigens could 

overcome ICB and CAR-T therapy limitations in PDAC. For this reason, here we study 

an adoptive cell therapy (ACT) product from tumor infiltrating lymphocytes (TIL) for 

potential clinical use in future studies. 

Since the 1980’s it’s been shown that biopsy-extracted TIL can be expanded ex 

vivo in high dose IL-2, and reinfused autologously into patients to successfully eliminate 

their solid tumors.48 This form of ACT has been particularly successful in the settings 
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of metastatic melanoma, where ACT has proven the ability to reduce tumor burden 

across organ sites, including the bone and the brain, and lead to long-term durable 

responses through immune surveillance. Later on, the discovery that non-myeloablative 

lyphodepleation prior to reinfusion could significantly enhance responses, partially due 

to depleting existing Tregs, and lead to renewed interest in the field.49, 50 Furthermore, 

advances in TIL rapid expansion protocols (REP) have improved the feasibility of creating 

an infusion product quickly and from few initial TIL.51 Because of these successes, 

clinical trials of TIL therapy are currently underway in a variety of tumor types including: 

TNBC, NSCLC, ovarian, colorectal, and PDAC. 

TIL therapy is potentially beneficial for many patients, but as the field expands 

and diversifies its tumors and protocols, it is critical to understand precisely which 

populations of T cells from the patient are successfully growing in the infusion product 

and attacking the tumor post-reinfusion. 

Thus far, it appears that less differentiated T cells (such as early memory/effector 

T cells) are a beneficial population to target in TIL therapy because they persist long 

term after re-infusion.52, 53 However, TIL from early memory populations are usually 

less likely to be recognizing tumor antigen than other, more differentiated TIL in the 

microenvironment.53 Unfortunately, these TIL are often found to be more exhausted in 

the TME, potentially terminally, making them vulnerable to slower proliferation and cell 

death despite re-stimulation.54-56 Due to this conundrum, as REP protocols advance it will 

be important to rigorously recognize (at time of biopsy and afterwards) the phenotype of 

a TIL, if any, which can reactivate, recognize, expand, attack, and persist. 

The success of immune based therapies often relies on the nature of immune 

cells in the tumor to begin with. In fact, presence of TIL has been correlated with better 

prognosis in a variety of cancers, including PDAC.57,58 However, presence alone does 

not necessarily signify effect. Suppression by regulatory T cells (Tregs) or attenuation of 

cytotoxic function by entering a dysfunctional state have been identified as mechanisms 

of tumor immune escape.59,60 Conversely, TIL populations such as tissue-resident 
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memory-like T cells (T
RM

) have been identified as important for response or improved 

survival.29,61,62 These populations are often defined by a complex combination of surface 

markers and transcriptional states. T cell repertoire analysis can also provide insight, 

given that expansion of T cell clones at the tumor site can indicate an immune response 

and high-frequency clones have been found to be the tumor-reactive clones.63 To profile 

these heterogenous populations of T cells, we rely here on combined scRNA and TCR 

sequencing. 

Our goal is to characterize the T cell landscape in PDAC by profiling a large 

number of patients. Additionally, to be able to identify patients from whose tumor an 

ACT product can be successfully cultured, it is necessary to understand which T cell 

populations in the tumor the culture is derived from. To better understand the source of 

the TIL product, we track T cell clones from tumor to culture product by utilizing their T 

cell receptor sequence. 

Results 

 

Acquisition of T cell scRNAseq data 

 
 

To identify the transcriptomic landscape of states of T cells in the human 

pancreas, we performed combined, single cell RNA and TCR sequencing on the T 

cells from 7 PDAC tumors (cohort 

MDA1). Additionally, we combined 

our dataset with the T cells from 

two external pancreatic scRNAseq 

cohorts. The first of these cohorts 

(MDA2), consisted of T cells from 

26 PDAC lesions and 10 samples 
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Figure 1.01: UMAP embedding by cluster 
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external cohort (PUMCH, published in Peng et 

al) consisted of T cells from 24 PDAC samples 

and from “normal” pancreas in 11 patients 

without a PDAC diagnosis. Combining these 3 

cohorts, we obtained scRNAseq data on a total 

of 39,694 T cells from 57 PDAC, 11 uninvolved, 

and 11 normal samples. 

 

Single Cell T cell clustering 

 
 

Single cell sequencing across samples is 

known to be highly sensitive to batch effects. 

To minimize this confounder we distributed 

samples into six groups stratified by cohort 

and size and performed batch integration (see 

methods). Post-integration samples and cohorts 

were evenly intermixed in UMAP embedding 

(Figure A1.01). Clustering of the integrated data 

revealed 13 pan-sample transcriptional clusters 

of T Cells; 7 CD8 cluster, 5 CD4 clusters, and 

 

 

Figure 1.02: Top CD4 population markers 

Scaled, average expression of top marker 

genes for each of the CD4 T cell populations 

in fresh tumor/pancreas samples. 

1 cycling cluster (Figure 1.01). Differential expression analysis was performed between 

clusters within the CD4 and CD8 populations, and the clusters were annotated by top 

marker genes from this analysis (Figure 1.02, 1.05, A1.06). 

 
T cell cluster characteristics 

 
 

Many of the clusters closely match single cell T cell clusters described in literature. 

Each cluster’s transcriptional expression characteristics (Figure 1.02), purported status/ 
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function, and externally published references are described in detail below. Note that 

here “expression” refers to gene transcription, not necessarily protein expression. 

 

CD4-FOXP3 

 

 
Expressing IL2RA (CD25), CD4, several T cell checkpoints, transcription factors 

IKZF2 (Helios) and IKZF4 (Ikaros), and the authoritative marker FOXP3 (Figure A1.02), this 

population is with little doubt pro-tumor, regulatory T cells (Tregs).64, 65 This population 

not only matches populations described as Tregs in many other single cell studies, 

but also the Treg phenotype long established by immunophenotyping techniques long 

before the existence of single cell transcriptomics. Additionally, Tregs have extensively 

been confirmed to be present in PDAC and thus were expected to be found prior to this 

study.57
 

 

CD4-CXCR4 

 

 
This CD4 population exhibits several characteristics of CD4 helper T cells, 

such as expression of the granzyme GZMA and cytokine CCL5.66,67 Additionally, this 

population expresses early activation marker CD69 and lymphocyte migration marker 

CXCR4. However, low overall expression of both established Th1 and Th2 transcription 

factors TBX21 (Tbet) and GATA3 made T-helper cell subtype classification unclear 
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Figure 1.03: CD4 population marker expression 

Relative expression of population naming marker genes in the CD4 populations. Plots are colored by 

mean expression as a percent of maximum expression for each gene 
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(Figure A1.02). This is somewhat unsurprising because scRNAseq data has recently 

been challenging the simplicity of the classic Th1 and Th2 helper T cell polarization. 

Additionally, this population does not consistently match helper T cells from other 

scRNAseq tumor studies. 30, 68
 

 

CD4-CCR7 & CD8-CCR7/IL7R 

 

 
These populations express lymph node homing receptors and canonical Naïve/ 

Central Memory T cell (Tcm) markers CCR7 and SELL (L-selectin). Additionally, these 

populations both express the stemness and long-term persistence transcription 

factors TCF7 (TCF1) and LEF1 characteristic of Naïve and Tcm T cells (Figure 1.02, 

1.05). Similar CCR7/SELL/TCF7/LEF1 expressing populations have been discovered 

almost ubiquitously in single cell studies of PDAC and other tumor types. However, 

the population with this same phenotype is conflictingly described as “Naïve”, “Central 

Memory”, or “Naïve/Central Memory” across studies.30 This inconsistent nomenclature 

is likely due to the lack of definitive markers known to separate Naïve and Tcm cell states, 

other than the PTPRC isoforms (CD45RA on naïve, and CD45RO on Tcm cells) which 

normal tumor unaffected 
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Figure 1.04: Fraction PDCD1 expression by cluster and tissue 

Fraction of cells in each cluster for each tissue expressing at least 1 transcript of PDCD1. Each point is 

an individual sample. 
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are indistinguishable in sparse coverage 

scRNAseq. 

 

CD4-CXCL13 & CD8-CXCL13 

 

 
These populations closely resemble 

those described in other papers as being 

an “exhausted” and/or “dysfunctional” 

population of tumor-recognizing T cells. 

It’s notable that naming of this cluster with 

the functional description of “exhausted” is 

controversial. Unlike the classical definition 

of exhausted T cells, here and in single cell 

studies, these populations are often found to 

be transcribing cytotoxic molecules such as 

GZMB and NKG7, and are often proliferating 

when found in vivo. Additionally, these 

populations express many T cell checkpoint 

genes: CTLA4, PDCD1 (PD1), HAVCR2 

(TIM3), TNFRSF18 (GITR), LAG3, and TIGIT 

(Figure A1.05). Checkpoint expression (in 

particular PD1) is an indicator of antigen 

 

 

Figure 1.05: Top CD8 population markers 

Scaled, average expression of top marker genes 

for each of the CD8 T cell populations in fresh 

tumor/pancreas samples. 

recognition by T cells, consistent with the observation that these populations are likely 

tumor-recognizing (Figure 1.04). For this reason, a prudent, sometimes used descriptor 

for this population is “experienced T cells.”32 Unsurprisingly, scRNAseq studies have 

recently shown in other tumor types that the presence of these populations is favorable 

for a response to anti-PD1/anti-PDL1 checkpoint therapy. 

Furthermore, the scRNAseq defining characteristic of these populations, high 
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expression of chemokine and lymphocyte chemoattractant CXCL13 was concordantly 

observed to be highly expressed in these populations in this dataset. In non-malignant 

contexts, CXCL13 is characteristically expressed by CD4 T-follicular helper cells in lymph 

nodes. Considered in total, the aberrant expression of this chemokine and transcription 

factor RBPJ, and persistent cytotoxic and proliferation despite high checkpoint 

expression indicate a close resemblance to reputed dysfunctional T cell phenotypes. 

 

CD8-GZMK 

 

 
Unlike other T Cell populations, GZMK expressing CD8+ T cells have been found 

in most tumor single-cell studies and are frequent across cancer types.30 This population 

expresses genes expected in effector memory T cells, such as GZMK (Figure 1.06) and 

the transcription factor EOMES. As described in other studies, this population has some 

low expression of PDCD1 indicating previous antigen exposure. Furthermore, it lacks 

expression of perforin and granzymes other than GZMK and GZMA. This population 

is known, from experimental and single cell studies, to partially be developmentally 

related to exhausted/dysfunctional T cells in the tumor persistence setting.69,70 For this 

reason, it is sometimes describe as a “pre-exhausted” or “transitional” T cell population 

in addition or instead of its common classification as effector memory T cells. Because 
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of its likely antigen recognition and purported plasticity, this population is a desirable 

target for future T cell related therapies. 

 

CD8-ZNF683 

 

 
This population expresses many characteristics of tissue-resident memory 

(Trm) T cells. For example, this is the only population in this data strongly expressing 

the Trm transcription factor ZNF682 (hobit) and lacked expression of T cell migration 

transcription factor KLF2 (Figure A1.03).71,72 Additionally, as expected of tissue resident T 

cells, it expresses early activation and lymphocyte adhesion marker CD69. Notably, this 

population almost completely lacked expression of popular Trm marker ITGAE (CD103, 

aEb7 integrin subunit). However, this is known to be a tissue-specific and its absence in 

PDAC is unsuspicious due to the tendency of PDACs to downregulate the aEb7 ligand 

E-cadherin.73 Furthermore, this population appears to be cytotoxic as it is transcribing 

numerous cytotoxic molecules: GNLY (granulysin), PRF1 (perforin), and GZMB. 

 

CD8-CXCR6/IL7R 

 

 
Similar to the CD8-ZNF683 population, this population expresses Trm marker 

CD69 and also expresses tissue homing receptors CXCR6 and CXCR4. Additionally, it 

expresses pro-memory related receptor IL7R, though not at levels as high as the CD8- 

CCR7/IL7R population. Otherwise this population is transcriptionally similar to the CD8- 

ZNF683 population, however lacks expression of the previously mentioned cytotoxic 

molecules suggesting that it is in an inactive state. Further suggesting this inactivity, 

the CD8-CXCR6/IL7R population expresses T cell activation-restraining RNA binding 

protein genes ZFP36 and ZFP36L2. 
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CD8-GZMB/PRF1 

 

 
Expressing high levels of cytotoxic molecules (GZMB, GNLY, PRF1, NKGZ) and 

having low to no checkpoint (CTLA4, PDCD1, LAG3) expression, this population has been 

found across tumor types and also in healthy donor peripheral blood. For this reason, it 

is usually described as a recently activate effector memory population (Temra), or less- 

precisely as “cytotoxic” or “effector” T cells. Though this population seems appealing 

for anti-tumor response, it is controversial whether it is specifically recognizing tumor 

antigen as it is not clearly associated with favorable responses to immune checkpoint 

blockade.74 Additionally, this state possibly includes a small fraction of gamma-delta T 

cells (which appear to be too few to form their own cluster) as evidenced by some TRDC 

expression in this cluster. 

 

Cycling T cells 

 

 
Expressing many cytoskeletal (ACTB, TUBB) and classical cycling cell marker 

MKI67, it is clear that these cells are undergoing the cell cycle (Figure 1.07). As this cluster 

as a whole (but not mutually in a given cell) also expresses genes otherwise exclusive 

in many of the other clusters, it is likely that “cycling” is a program layered on top of 

the cell’s ground-state population. Some single cell studies attempt to regress-out the 

cycling phenotype so as to reassign these cells to their ground state. As they are so few 

in our dataset and thus 
 

 
Figure 1.07: Top cycling population markers 

 
 

CD4 − FOXP3 

CD4 − CXCR4 

CD4 − CCR7 

CD4 − CXCL13 

CD4 − MX1 

CD8 − GZMK 

CD8 − CXCR6/IL7R 

CD8 − ZNF683 

CD8 − GZMB/PRF1 

CD8 − CXCL13 

CD8 − CCR7/IL7R 

CD8 − MX1 

Cycling 

not highly impacting 

percentages, we chose 

to refrain from doing so 

and retain them as their 

own population (as other 

Scaled, average expression of top marker genes for each of the cycling 

T cell population in fresh tumor/pancreas samples. 

studies have). 
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CD4-MX1 & CD8-MX1 

 

 
Like the “cycling” cell state, these cell states are plausibly cells from other populations 

which have been stimulated by interferon(s). They express a number of IFN inducible 

genes (IFIT1, ISG15, IFIT3, MX1) and are high in the IFN response transcription factor 

STAT1. Similar to cycling cells, individual cells in this population express marker 

genes from other populations in addition to this signature. Therefore, it is possible that 

“interferon stimulated” is a cell state seen on top of a ground-state population and not 

a true population of its own. 32
 

 

Relative Abundance of T cell populations 

 
 

All of the previously mentioned T cell populations were seen in tumor samples across 

all three cohorts at similar cohort-combined frequencies (Figure 1.08). Furthermore, when 

tumor samples were hierarchically clustered by T cell population frequency composition 

there appeared to be even mixing of the cohorts, indicating minimal cohort-specific 

frequency biases. There was, however, inter-patient frequency heterogeneity (Figure 

1.09). Though almost 

all  of  the  identified 

 
T cell populations 

were present across 

most of the patients, 

they were found in 

varying percentages. 

In particular, in tumor 

Normal/Unaffected Tumor 
 

CD4 − FOXP3 

CD4 − CXCR4 

CD4 − CCR7 

CD4 − CXCL13 

CD4 − MX1 

CD8 − GZMK 

CD8 − CXCR6/IL7R 

CD8 − ZNF683 

CD8 − GZMB/PRF1 

CD8 − CXCL13 

CD8 − CCR7/IL7R 

CD8 − MX1 

Cycling 

samples with ≥50 T cells PUMCH MDA2 MDA1 PUMCH MDA2 MDA1 

detected, the CD8- 
Figure 1.08: Combined population composition by cohort 

Frequency of each population in each tissue combining all the T cells in 

the cohort. 
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CXCL13 population was observed (at 

least 1 cell) in 43/53 PDAC samples, 

but only 7 patients had frequencies 

≥5% of their total T cell population. 

However, in 2/7 of these patients, this 

population comprised over 50% of 

the T cells. On the other hand, other 

populations were widely present 

across patient’s tumor samples. For 

instance, all tumor samples had the 

CD8-GZMK population present and 

in 50/53 patients it comprised at least 

5% of T cells detected. 

Despite these inter-patient 

differences, tumor samples 

clustered distinctly from the normal 

pancreas samples in the PUMCH 

cohort suggesting, expectedly, 

strong differences between the 

tumor and normal pancreas T cell 

microenvironment. In contrast, 

samples from “unaffected” pancreas 

tissue approximately 2cm from the 

PDAC specimen (predominantly 

from the MDA2 cohort), did not form 

a cluster of their own and instead 
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Figure 1.09: Frequencies composition by sample 

Each row is a sample. Each annotation is (from left 
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unexpected, as pancreases affected by PDACs are known to frequently also contain 

pancreatic intraepithelial neoplasia (PANINs) and therefore the microenvironment of the 

pancreas in the tumor region can be expected to resemble that of the tumor. In fact, 

it is for this reason we chose to call these samples “unaffected” instead of “normal.” 

Nevertheless, some unaffected samples appeared more similar in T cell composition to 

the truly normal pancreas samples of the PUMCH cohort. This suggests considerable 

inter-patient heterogeneity exists in pancreas tissue surrounding PDAC lesions. 

 
T cell population abundance by sample type 

 
 

Though abundance of T cell populations varied by patient, there were several 

consistent population frequency changes by sample type (i.e. tumor, unaffected, 

normal)(Figure 1.10). For instance, the CD8-CXCR6/IL7R population was significantly 

enriched in the uninvolved/normal compared to tumor samples (P < 0.001, unpaired 

wilcox test). In contrast, the tumor samples had higher frequencies of the CD8-ZNF683 

cluster (P < 0.001). As these populations respectively resemble dormant and activate 

Trm, their inverse relationship is not surprising, because activation of these cells would 

be expected to occur in the tumor in response to antigens and inflammation. 

Due to the aforementioned inter-patient heterogeneity in the unaffected and tumor 
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Figure 1.10: Frequencies composition by population and tissue 

Each row is a sample. Each annotation is (from left to right) expression population composition, sample 
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D 

 D 

samples, it is more challenging 

to obtain the statistical power 

necessary to distinguish 

differences between them in a 

patient-independent  manner. 

To rectify this, we examined the 
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10 sample pairs in the study 

which were patient matched (i.e. 

tumor/uninvolved)(Figure 1.11). 

In these matched samples, we 

U T U T U T U T 

Figure 1.11: Patient-matched population frequency 

Frequency of T cell populations in a patient’s unaffected and 

tumor tissue. Each line is a patient (n=10). 

found a significant enrichment in the CD4-FOXP3 and CD4-CXCR4 populations in the 

tumor region over the patients’ adjacent, uninvolved tissue. (P = 0.021 and P = 0.035, 

respectively. Paired Wilcox test). Additionally, the CD8-CXCR6/IL7R and CD8-GZMB/ 

PRF1 cells were observed in higher relative frequency in the uninvolved tissues versus 

their matched tumor tissues (P = 0.041 and P = 0.010, respectively). These results 

suggest that the T cell microenvironment becomes more suppressive and less cytotoxic 

as one progresses from adjacent tissue into the tumor. This finding is very much in line 

with many previous studies of PDAC where this tumor type is well known to usually have 

a T cell hostile microenvironment. 

 
Trajectory-inferred relationship between T cell populations 

 
 

T cells are known for their capacity to transition between many diverse functional 

and differentiation states. To attempt to unravel these relationships, we performed 

pseudotemporal trajectory inference in Monocle 3 (one of the few pseudotime tools 

capable of fitting highly complex relationship structures). Because CD4 and CD8 T cells 

are known to diverge as separate populations early in T cell development (before leaving 

the thymus), we performed this analysis on the CD4 and CD8 cell types separately. 
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Creating this separation is therefore 

expected to increase the fidelity of 

the predicted lineages by eliminating 

relationships inferred from cell 

programming developed in parallel 

in both of these cell types (e.g. 

false relationships inferred between 

certain CD4 and CD8 populations 

because they are both in a cytotoxic, 

memory, naïve, etc. state). 

 

CD8 trajectory analysis 

 

 

UMAP 1 
Figure 1.12: CD8 Trajectory Map 

Pseudotemporal inference of CD8 T cells using Monocle 

3. Cells are colored by population. 

 
 

For trajectory analysis we extracted non-cycling cells in the CD8 populations and 

re-embedded them utilizing the Monocle 3 best practices preprocessing workflow. We 

were pleased to find that the clusters we previously defined were robust to a different 

processing workflow and still segregated in the trajectory UMAP embedding (Figure 

1.12). Furthermore, this analysis strengthened conclusions already apparent in the 

transcriptional data. For example, the CD8-CXCR6/IL7R and CD8-ZNF683 populations 

were co-located on the same, long branch of the inferred graph with a high density 

of cells found continuously along the trajectory. This is highly suggestive of a close 

developmental lineage between these Trm resembling populations, which are normal 

and tumor-specific, respectively. 

Additionally, the trajectory was highly branching in the CD8-GZMK population, 

connecting it strongly to several other populations including CD8-GZMB/PRF1, CD8- 

CXCL13, and CD8-ZNF683. This observation is somewhat unsurprising because 

the CD8-GZMK Tem-like population is sometimes described in other studies as a 

“transitional” and therefore would be expected to be centrally located developmentally. 
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Moreover, this population has been inferred to be less terminally-differentiated/more 

plastic than the other cytotoxic populations and being connected relationally to several 

other states is consistent with this postulation. Another finding of note, is that the two 

GZMB-expressing cytotoxic CD8 populations (CD8-C4-GZMB/PRF1 and CD8-CXCL13) 

were clearly separately branching from CD8-GZMK in the analysis. Considering both 

populations express cytotoxic programming, one would expect them to be closely related 

(similar to the CD8-CXCR6/IL7R and CD8-ZNF683 relation). Instead, both populations 

exhibited terminal branches of the trajectory. With CD8-CXCL13, the terminality of the 

branch further insinuates this population’s suspected highly-differentiated status. If the 

CD8-GZMB/PRF1 exhibits the same terminal fate is unclear, but this analysis does not 

refute that conjecture. 

Despite the strong connectivity seen between some clusters in the embedding, 

CD8-CCR7/IL7R was relatively disjoint from the other clusters. Though Monocle 

predicted a transition between CD8-CCR7/IL7R and CD8-CXCR6/IL7R, there were 

very few cells present along the connecting branch, evidencing a tenuous attestation 

of relationship. As trajectory analysis is known to err towards false positive connections 

(after all, it is the nature of pseudotemporal analysis to try to make connections), and it 

is notoriously difficult to accurately predict the entirety of a complex lineage with these 

methods, we believe this portion of the trajectory in particular should be interpreted 

cautiously. Moreover, the CD8-MX1 population appeared to be excluded from the 

trajectory entirely. However, this supports our earlier conjecture that this phenotype is 

more of a stimulation state than a true population as one would expect a population 

which is derived from multiple others to behave erratically in trajectory analysis. 

 

CD4 trajectory analysis 

 

 
Similarly we performed trajectory analysis on the CD4 T cells (Figure 1.13). With 

fewer populations, the trajectory inferred here was considerably simpler than with the 
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UMAP 1 

Figure 1.13: CD4 Trajectory Map 

Pseudotemporal inference of CD4 T cells using Monocle 

3. Cells are colored by population. 

CD8 T cells. Here a strong relationship 

between the CD4-CXCR4 and CD4- 

CCR7 population was observed with 

high cell density along the graph. 

In addition, CD4-CXCL13 was 

connected to CD4-CXCR4, in the 

predicted trajectory curve, but with 

CD4-CCR7 and some CD4-FOXP3 

cells distributed in the connecting 

part of the graph dilute confidence in 

this result. Furthermore, though the CD4-CXCR4 population was purportedly joined to 

the CD4-FOXP3 Tregs though the CD4-MX1 cells in this analysis, the relationship was 

extremely unsupported by intermediate cells along the lineage suggesting it is another 

false positive. Supporting this conjecture, is the phenomenon that tumors are known to 

recruit natural Tregs from peripheral blood (as opposed to induce Treg formation in the 

tumor). Therefore, it is plausible that the CD4-FOXP3 does not share a recent lineage 

with the other CD4 populations in the tumor. 

 
Intra-sample co-occurrence of T cell populations 

 
 

There has long been a desire to classify tumor ecosystems by groups of co-present 

cells. To this end, we attempted to determine co-occurrence of T cell populations by 

spearman correlating the pairwise frequency of T cell populations in the tumor samples 

acrosspatients(Figure 1.14). Unsurprisingly, populationsofsimilarnaturebutdistinguished 

by CD4 and CD8 tended to be associated with each other. For example, frequency of the 

CD8-MX1 and CD4-MX1 were significantly correlated (r = 0.70, P = 8.17×10-8), signifying 

that if a patient exhibited an interferon stimulated T cell microenvironment, there was a 

tendency to see this stimulation in both the CD8 and CD4 T cells. The same observation 
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Figure 1.14: T cell population correlation frequency 

Spearman rho value for pairwise frequency of T cell populations 

between tumor samples. Stars mark Benjamini-Hotchberg 

corrected p≤0.05. 

was made of the CD8 CXCL13 

and CD4 CXCL13 populations 

(r = 0.53, P = 6.71×10-4) and 

the CD8-CCR7/IL7R and CD4- 

CCR7 populations. Furthermore, 

CD4-FOXP3 and both CXCL13 

and MX1 populations tended 

to jointly co-occur. Since IFN 

stimulation and suppressive 

and dysfunctional T cells are all 

populations expected in the case 

of persistent antigen recognition, 

it is likely that these populations together represent the nature of tumor recognition in 

PDAC. 

 
Transcriptional and clonal relationships of T cell populations 

 
 

As previously mentioned, in the samples from the MDA1 we performed single 

cell TCR sequencing from the same cells as the single cell transcriptomic data. By 

somatic gene recombination, T cells create essentially unique TCRs early in their 

development and then later proliferate upon seeing antigen. Therefore, the detection 

of a TCR in a tumor sample at a high frequency indicates a clonal expansion of that 

clonotype occurred and suggests that clonotype as being functionally involved in the 

tumor response. Here we show the frequency of each unique TCR clone present in 

the cohort (performed separately for the CD8 and CD4 populations). Concurrently, we 

labeled each clonotype by the patient in which it was observed in and by the population 

composition of the clonotype. Finally, we hierarchically clustered the clonotypes by their 

mean transcriptional profile (Figure 1.15). 
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Figure 1.15: CD8 circos plot 

From inner to outer ring: hierarchical cluster, 

patient, population composition, and frequency, 

respectively for each CD8 clonotype in the 

MDA1 cohort. 

Figure 1.16: CD4 circos plot 

From inner to outer ring: hierarchical cluster, 

patient, population composition, and frequency, 

respectively for each CD4 clonotype in the 

MDA1 cohort. 
 

This analysis revealed that several CD8 populations (CD8-GZMK, CD8-ZNF683, 

CD8-GZMB/PRF1, and CD8-CXCL13) had undergone clonal expansion, though not all 

clonotypes existing in these populations were expanded. With the exception of CD8- 

CXCL13 (which was only present frequently in sample MDA1_T05), these expansions 

were seen across patients. Furthermore, the data as displayed here suggested that 

most clonotypes (including many expanded ones) exist as a single transcriptional state. 

However, there were several instances of clonotypes whose cells existed in multiple 

states. This was particularly the case in the CD8-GZMK population, again reinforcing its 

central relationship to other clusters. In contrast to the CD8, the CD4 clonotypes were 

rarely expanded and consequently almost exclusively present as a single transcriptional 

population within a clonotype (Figure 1.16). 
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TCR expansion by cell state 
 

 

Examining expansion 

status more quantitatively, we 

summarized the likelihood of a 

cell belonging to an expanded 

TCR given its transcriptional 

population and patient. 

Unsurprisingly, this enforced 

the  observations  from  the 

 
 
 
 
 
 
 
 
 

 
Figure 1.17: Clonal T cell composition 

Percent of T cells in each patient and population with clonal 

(n≥2) and non-clonal TCRs. 

circus plots. Here, however, it is more clear that some patients saw more diverse clonal 

expansion than others (e.g. all CD8 populations present in MDA1_T05 contained at least 

half expanded cells). Furthermore, some populations were more universally expanded 

across patients, such CD8-ZNF68 which saw expansion in most patients (Figure 1.17). 

A separate quantification, Gini index (Figure A1.08), which takes into account the 

unevenness in frequency of the overall clonotype further confirmed higher clonotype 

unevenness (proxy for clonal expansion) in CD8 clonotypes vs. CD4 clonotypes across 

patients (P = 0.034, paired t-test)(Figure A1.09). 

 

TCR overlap by cell state 

 
 

To further quantify cell state diversity and similarity within clonotypes we performed 

upset analysis (similar to a multi-group Venn diagram in bar-plot form) on clonotypes 

consisting of at least 2 cells (Figure 1.18). This evaluation confirmed that expanded CD8 T 

cells clonotypes for CD8-GZMk, CD8-ZNF683, and CD8-CXCL13 most often existed with 

all cells in the same transcriptional population. Additionally, this analysis lends support 

to the conclusion from the pseudotemporal analysis. The most common population 

states to share TCR overlap were CD8-ZNF683/CD8-CXCR6/IL7R and CD8-ZNF683/ 
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CD8-GZMK all of which are 

inferred to be transcriptionally 

related in the trajectory 

analysis. Moreover, clonotypes 

containing CD8-CXCL13 cells, 

which was observed as terminal 

in trajectory analysis, was only 

observed  overlapping  with 

another population only once. 

Figure 1.18: CD8 TCR overlap by population 

The Frequency of observing expanded (n≥2) CD8 clonotypes 

with cells in various combinations of transcriptional states. 

This observation supports 

the conclusion that the CD8- 

CXCL13 cells are not recently related to the other populations. Finally, as expected, 

clonotypes containing CD8-MX1 cells were almost always seen to be overlapping other 

clusters. Though CD4 cells were rarely observed to be in expanded clonotypes, (and 

even then are less expanded than the CD8s) cells which were almost entirely consisted 

of CD4-FOXP3 and CD4-CXCR4 exclusive, non-overlapping clonotypes (Figure A1.07). 

Though this data cannot add support to the CD4-CXCR4/CD4-CCR7 relationship in 

the pseudotime analysis (because CD4-CCR7 is rarely expanded and therefore cannot 

overlap), it does suggest that the CD4-FOXP3 and CD4-CXCR4 populations are not 

recently related. 

 
Grown clusters 

 
 

Concurrently, as the tissue samples from the MDA1 cohort were processed for 

scRNAseq, a piece from each tissue was used for ex vivo TIL growth. The cultured TIL was 

then used for transcriptomic and TCR scRNAseq. These experiments resulted in 40,065 

high-quality T cells from six patients, which were then integrated and clustered (Figure 

1.19). Though the cultured TIL, as expected, was much less diverse transcriptionally than 
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the T cells from fresh tumor 

samples, there were still 

distinct transcriptomic states 

present (Figure 1.20, A1.10). 

The “grown” populations 

we found were named after 

key genes in the cluster are 

briefly described below: 

 

 

Figure 1.19: Grown T cell UMAP 

 
 

 G1-CD8-CD27 

 G1-CD8-CNLY 

 G1-CD8-ZNF683 

 G1-CD8-CCL3 

 G1-CD8-MKI67 

 G1-CD4-CD40L 

 G1-γδT-TRDC 

UMAP embedding of cultured T cells from tumor samples. Cells 

are colored by assigned transcriptional population. 

 

G1-CD8-CD27 

 

 
An activated CD8 population expressing early TCR/CD3 stimulation marker CD27 

and exhibiting the highest average expression of GZMK of the CD8 populations. 

 

G2-CD8-GNLY 

 

 
Another activated CD8 population, these cells expressed the highest levels of 

effectors GNLY GZMB, and GZMH. Additionally, this population had the highest fraction 

and level of expression of the cytotoxic lymphocyte associated gene FGFBP2. 

 

G3-CD8-ZNF683 

 

 
In contrast to the fresh tumor T cells where ZNF683 was population specific, here 

most of the CD8 populations expressed the gene. However, this population expresses 

it at the highest level. Additionally, this population expresses the Tem and cell motility 

associated gene S100A4. 
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G4-CD8-CCL3 

 

 
Yet another activated CD8 populations, in addition to expressing cytotoxic genes G4- 

CD8-CCL3 expressed high levels of T cell-recruiting chemotaxis chemokines CCL3 and 

CCL4. 

 

G4-CD8-MKI67 

 

 
This population expressed several glycolysis related genes (PGK1, GPI, etc.) suggesting. 

T cells are known to increase glycolysis activity (compared to oxidative phosphorylation 

in dormant cells) upon activation. This metabolic activity is perhaps why it appears to be 

highly proliferative, expressing MKI67. 

 

G6-CD4-CD40L 

 

 
The only CD4 population identified in the grown T cells, this population seems to be 

activated like the CD8 populations. It expresses CD4 T cell-associated activation genes 

CD40LG and TIMP1 and clearly expresses CD4 over CD8A and CD8B. 
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Figure 1.20: Markers of grown T cell populations 

Percent of T cells expressing and scaled average mean cluster expression for each of the cultured T cell 

states. 
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G1-CD8-CD27  

G2-CD8-GNLY  

G3-CD8-ZNF683  

G4-CD8-CCL3  

G5-CD8-MKI67  

G5-CD4-CD40L 

G5-γδT-TRDC  

G7-γδΤ-TRDC 

 

 
Though rare in the fresh tumor samples, there was a distinct γδ T cell population in 

the grown TIL, indicating their ability to be expanded by the culturing process. Only 

this population expressed the γδ T Cell TCR gene TRDC. Furthermore, it showed high 

expression of both GZMB and GZMK and γδ T Cell related marker KLRB1. 

 
As expected, a large fraction of the cultured TIL were cycling cells. In order to 

make use of these cells, we re-classified cycling cells to the established non-cycling 

profile as described in the methods. Furthermore, by design, the cultured TIL was largely 

composed of activated CD8 T cells, though effector CD4 and γδ T cells still persisted, 

albeit at lower fractions. 

 
TCR analysis in Grown clusters 

 
 

Similar to the CD8 cells in the fresh samples, clonotypes in the cultured TIL 

existed in a variety of TCR expanded and unexpanded states. Nevertheless, many of 

the clonotypes in the grown 

samples saw high degrees of 

clonal expansion as that is the 

goal of the culture. 

However, unlike in the fresh 

samples, highly frequent 

clonotypes in the grown samples 

tended to exist as a mix of 

transcriptional populations. This 

was further solidified by the high 

degree of TCR overlap between 

Figure 1.21: TCR overlap in grown populations 

The Frequency of observing expanded (n≥2) clonotypes with 

cells in various combinations of transcriptional states. 
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the grown CD8 clusters (Figure 1.21). In contrast to the CD8 clusters, the G6-CD4- 

CD40L cluster tended to not contain expanded T cells and, expectedly, did not contain 

clonotypes highly overlapping with the CD8 populations. Overall, this suggests that 

the CD4 population, though possibly activated, is persisting much more so than it is 

proliferating. 

 

T cell populations expanded by TIL culture 

 
 

For several decades, the cellular-based cancer immunotherapy field has been 

trying to identify and select the best T cell subtypes to provide the most efficacious 

adoptive cell therapy. To this end, we attempted to distinguish which populations from 

the fresh tumor samples the T cells in the grown culture product originated from. To do 

so, we relied on tracing the TCR sequence between the fresh and grown samples, and 

then examining their transcriptional populations (Figure 1.22). This revealed that the 

majority of clonotypes present in the fresh tumor were not present in the T cell culture. 

MDA1_T01 (398) 
fresh grown 

 

 
 

MDA1_T01 (162) 
fresh grown 

MDA1_T02 (21) 
fresh grown 

 

 

MDA1_T02 (11) 
fresh grown 

MDA1_T03 (98) 
fresh grown 

 

 
 

MDA1_T03 (41) 
fresh grown 

MDA1_T04 (600) 
fresh grown 

 

 
 

MDA1_T04 (130) 
fresh grown 

MDA1_T05 (275) 
fresh grown 

 

 
 

MDA1_T05 (208) 
fresh grown 

MDA1_T07 (302) 
fresh grown 

 

 

MDA1_T06 (63) 
fresh grown 

 

      

Figure 1.22: Cell state transition from fresh to grown 

Clonotype consensus transcriptional state in the fresh compared to its state in the TIL culture product. 
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Figure 1.23: Change in clonotype frequency 

 
 
 
 
 
 

 
CD8 - GZMK 
CD8 - CXCR6/IL7R 
CD8 - ZNF683 
CD8 - GZMB/PRF1 
CD8 - CXCL13 
CD8 - CCR7/IL7R 
CD8 - MX1 

Of the fresh 

clonotypes that did 

grow in culture, they 

matched clonotypes 

coming from any of the 

CD8 populations in the 

fresh tumor, and which 

one    predominated 

varied   predominantly 

Change in frequency of clonotypes from the fresh tumor biopsy into the 

grown ACT product. Clonotypes are colored by consensus population 

state in the fresh. 

by patient. This is 

suggestive that the TIL 

culture method used is 

highly effective in growing T cells from a variety of cell states. Furthermore, for the CD8 

populations, the state a clonotype was found as in the grown product seemingly had little 

to do with its apparent state in the fresh tumor, again suggests strong reprogramming 

ability. In contrast, the CD4 population in the grown was found to match TCRs nearly 

entirely from the CD4-CXCR4. Notably, none of the TCRs found in Treg clusters in 

the PDAC tumor were observed in the cultured samples. This is a fortunate result, as 

expansion of pro-tumor T cells is not a therapeutically desirable outcome. 

Though presence in the TIL culture was not highly based on CD8 fresh cluster 

status, there was fresh population dependence for clonotype frequency changes (Figure 

1.23). For example, clonotypes whose frequency in the grown samples increased over 

their frequency in the fresh (indicating stimulation/proliferation) were enriched for CD8- 

GZMK population clonotypes. Once more, this enforces the potential role for this 

population as transitional/plastic. Conversely, clonotypes still present in the culture but 

at a diminished frequency compared to the tumor tended to be from the CD8-CXCL13 

population. Due to these results it is unsurprising that, at the gene level, GZMK and 

NKG7 were overexpressed in CD8 clonotypes that ended up expanding in frequency, 
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whereas CXCL13 was the most overexpressed gene in clonotypes whose frequency 

reduced. Once more, this indicated that though the CD8-CXCL13 populations may be 

tumor recognizing they perhaps have a reduced ability to expand and may be more 

terminally differentiated as previously suggested. 

Discussion 

 

Here, we collected one of the largest scRNAseq studies of pancreas-related T 

cells to define the T cell populations present in PDAC and uninvolved/normal pancreas 

tissue samples. Based on these data, and concurrent TCR clonotyping in the same 

cells, we present a model for the organizational relationship and potential developmental 

relationship of PDAC TIL as well as their unrestricted expansion into each component 

population of the ex vivo culture. 

It is notable that though PDACs are often described as immunologically “cold” 

and “hostile”, we show in this study a variety of activated and memory T cell states 

present across patients. 75, 76 Additionally, many of these states have been reported in 

single cell T cell studies from other cancers such as melanoma, triple-negative breast 

cancer, non-small cell lung cancer, colorectal cancer, and liver cancer. 

Of particular interest is the CD8-GZMK cluster. Shown in our data and that of 

other studies, it is purported to be related to several cytotoxic and memory populations. 

This suggests it may have the ability to be stimulated to multiple cell states, a tempting 

characteristic for targeting immune based therapies. Likewise, its relationship to 

dysfunctional CD8-CXCL13, but lack of extensive exhaustion-associated checkpoint 

expression further suggests its characterization in other studies as “pre-dysfunctional.” 

If this is indeed the case, it could prove a tempting and possibly tumor recognizing 

population which could be targeted before it becomes dysfunctional. 

Another interesting population identified here is the Trm-like CD8-ZNF683. 

Interestingly, this population in our study did not express the classic, but not universal, 

Trm integrin ITGAE (CD103) or, as has been reported, have high expression of checkpoint 



30  

markers. It was however, highly associated with tumor presence whereas non-tumor 

samples contained a similar Trm-like population instead CD8-CXCR6/IL7R. These two 

clusters were related by transcriptionally similarity and TCR sharing suggesting the 

CD8-CXCR6/IL7R transitioned to the CD8-ZNF683 during tumor formation. With the 

transcriptional phenotype of these populations suggesting long-term tumor residence 

and other studies implicating tumor-recognizing Trm in ICB response, understanding 

how to stimulate these populations in PDAC could prove useful. 

Furthermore, the CD8-CXCL13 population found in this study has been shown 

in others to be the most predictive of response to ICB and is likely the responding 

population.77 However, it expresses a large number of checkpoints leaving it susceptible 

to further dysfunction in vivo. Nevertheless, we have shown here that this population 

can still be stimulated, though its proliferative ability upon stimulation seems to be 

less prolific than its pre-dysfunctional sister the CD8-GZMK population. Studying this 

population with the goal of increasing its proliferative capacity in mind, could improve 

upon available T cell therapies. 

Finally, this study exemplifies the ability of ACT culture to re-program a variety of 

T cells. We have shown here its ability to stimulate a variety of cytotoxic and memory T 

cells states, though at different efficiencies. Furthermore, it appears to avoid expanding 

detrimental populations such as CD4-FOXP3 and thus assisting in overcoming issues 

of pro- and anti-tumor T cell balance in tumors. We hope that future studies can build 

upon these results to better target T cell populations of interest in PDAC. 

Methods 

 

Patient sample accrual 

 
 

After providing written informed consent, seven patients with primary pancreatic 

ductal adenocarcinoma underwent surgical resection (Supplementary Table 1). Patients 

are referred to by their de-identified number. Tissue from surgical resections was used 
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under protocols (PA 15-0176 and PA17-0793) approved by the Institutional Review Board 

of The University of Texas MD Anderson Cancer Center. For the MDA1 and MDA2 data 

sets, tissue from normal pancreas is referred to as “uninvolved” because it came from 

PDAC patients. For the PUMCH data set, tissue from control pancreases is referred to 

as “normal” because it came from patients without malignant pancreatic tumors. 

 
Sample preparation for sequencing 

 
 

Fresh tumor samples were cut into 1-3 mm3 fragments and disaggregated using 

a Medimachine (BD Biosciences, Franklin Lakes, NJ) to create a single-cell suspension 

according to manufacturer’s instructions. After disaggregation, CD3+ T cells were isolated 

for sequencing via magnetic bead separation using the EasySep Release Human CD3 

Positive Selection Kit (StemCell Technologies, Vancouver, Canada) according to the 

manufacturer’s instructions. For cultured TIL, previously cryopreserved samples were 

thawed, washed with 1× PBS, and resuspended at 1×106 cells/mL. 

 
TIL culture reagents 

 
 

A purified, human IgG4 monoclonal antibody (mAb) against human CD137/4- 

1BB, Urelumab (663513), was kindly provided by Bristol-Myers Squibb (New York, 

NY). Human recombinant interleukin-2 (IL-2) (Proleukin) was generously provided by 

Prometheus Therapeutics & Diagnostics (San Diego, CA). GMP-grade soluble anti-CD3 

antibody (OKT3 clone) was obtained from Miltenyi Biotec (Bergisch Gladbach, Germany). 

 
Expansion of TIL from tumor samples 

 
 

Fresh tumor samples were cut into 1-3 mm3 fragments, and five fragments were 

placed in G-Rex10 flasks (Wilson Wolf, Saint Paul, MN) containing 20 mL of TIL culture 
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media (TIL-CM: RPMI-1640 with GlutaMAX [Gibco/Invitrogen], 1× Pen-Strep [Gibco/ 

Invitrogen], 50 µM 2-mercaptoethanol [Gibco/Invitrogen], 20 μg/mL gentamicin [Gibco/ 

Invitrogen], and 1 mM sodium pyruvate [Gibco/Invitrogen]) with 6000 IU/mL IL-2, 10 µg/ 

mL 4-1BB mAb, and 30 ng/mL anti-CD3 (OKT3) as previously described. Four to five 

days after culture initiation, 20 mL of additional TIL-CM with 6000 IU/mL IL-2 was added 

for a total volume of 40 mL. Half-media changes were done every 3-4 days with fresh 

TIL-CM containing 6000 IU/mL IL-2 for up to 35 days or until the cells formed a thick 

layer completely covering the bottom of the flask. The cell suspensions were collected 

and cryopreserved in FBS plus 10% DMSO. 

 

Single-cell RNA/TCR sequencing 

 
 

Single-cell capture and library construction was performed with the 10x Genomics 

Chromium Single Cell 5’ kits v.1.0 (product codes 1000014, 1000020, and 1000151) 

with TCR enrichment (1000005) according to the manufacturer’s instructions. Briefly, 

cells were loaded into the Chromium Single Cell Chip A for a recovery target of 10,000 

cells. Reverse transcription was performed on a BioRad T100 thermal cycler, and the 

barcoded cDNA was purified with Dynabeads (Thermo Fisher Scientific, 37002D) prior 

to 14 cycles of cDNA amplification. Of this transcriptome cDNA, 2 µL was used for TCR 

enrichment and subsequent TCR library construction. Per the manufacturer’s protocol, 

up to 50 ng (or 20 µL) of transcriptome cDNA was used for single-cell library construction. 

Transcriptome libraries were sequenced on a HiSeq 400 (Read 1, 26 cycles; Index 1, 8 

cycles; Read 2, 91 cycles), and TCR libraries were pooled and sequenced 150 cycles 

paired-end on a MiSeq (Illumina). For transcriptome libraries, median sequencing depth 

for each sample was targeted for a median of 30,000 reads/cell; for TCR libraries, 1,000 

reads/cell. Read counts can be found in Supplementary Table 2. 
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Single-cell data processing and filtering 

 
 

The 10x Genomics Cell Ranger pipeline (v. 3.1.0) was used to demultiplex and 

generate unique molecular identifier (UMI) matrices for all samples in the MDA1 cohort. 

UMI matrices for the MDA2 and PUMCH cohorts were also generated from the provided 

FASTQ files using this version of the Cell Ranger pipeline. The UMI data were then 

processed in R (v.3.5.3) using the Seurat package (V.3). Cells with more than 6000 genes, 

fewer than 200 genes, greater than 20% UMI in mitochondrial genes, or a UMI:gene 

ratio greater than 10 or less than 1.3 were filtered. To filter out non–T cells from the data 

sets, all samples were combined, the top 5000 variable genes were reduced to 50 top 

principal components and clustered using Seurat’s SNN clustering function. Clusters 

with significant average expression (Wilcoxon test) of CD3 genes (i.e., T cells) were then 

extracted for further analysis. This gene selection, principal component analysis, and 

clustering step was performed once more to further remove clusters not expressing 

CD3 genes. 

 
Data integration, dimension reduction 

 
 

To account for library chemistry, and other possible unknown differences between 

cohorts, the T cells were integrated employing the methods as described in https:// 

satijalab.org/seurat/v3.0/integration.html. Briefly, the top 5000 variable features were 

selected with TCR variable genes (“^TR[ABGD][VDJ]”) excluded. These genes were used 

to compute 20 “anchors” with the FindIntegrationAnchors function, and subsequently 

“integrated” with IntegrateData to produce a batch-corrected data set. The first 30 

principal components of the integrated expression data were used for subsequent 

UMAP embedding. 
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CD4/CD8 classification, clustering, and marker identification 

 
 

T cells with detectable expression of either CD4 or CD8 genes were assigned 

to their respective clusters. The first 30 principal components (excluding these genes) 

from a randomly selected training set of 75% of these cells were used to train a random 

forest classifier (RandomForest package in R) for CD4+ vs. CD8+ T cells. The remaining 

25% were used as a validation set. This classifier was then used to classify T cells with 

no detectable CD4 or CD8 expression (likely due to gene dropout) as either CD4+ or 

CD8+ T cells and then further clustered separately. After CD4/CD8 classification and 

separation, the top 3000 variable features were re-selected for each group and principal 

components were computed. The top 30 principal components were used to perform 

clustering with Seurat’s FindNeighbors and FindClusters functions. Top marker genes 

for each cluster were identified with Seurat’s FindAllMarkers function, and P values were 

determined by the Wilcoxon test. 

 
Pseudotime trajectory analysis 

 
Pseudotime analysis was performed on cells in the CD4 and CD8 populations separately using Monocle 
3 (version 0.2.2.0; https://github.com/cole-trapnell-lab/monocle3). Expression data were UMAP embedded 
using the Monocle function “reduce_dimension” with the default parameters. The trajectory graph was 
inferred with the function “learn_graph” with the minimal branch length set to 15 and close_loop = FALSE. 
The CD4 and the CD8 trajectories were rooted in the clusters CD4-CCR7 and CD8-CCR7/IL7R, respectively. 

 

Re-assignment in cycling cultured cells 

 
 
Due to the (intentional) highly proliferating state of the cultured T cell samples, a large 

fraction of the T cells formed a cluster of cycling cells. Non-cycling cell clusters were 
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used to train a random forest classifier (similar to CD4/CD8 classification in the fresh T 

cells), which was used to re-classify cycling cells to the most similar non-cycling cluster. 

 
TCR analysis and clonotype re-assignment 

 
 

TCR calls on the single-cell TCR sequencing data were performed with the “cellranger 

vdj” function of the Cell Ranger software suite (v.3.1.0). Cells with only a TCR alpha 

or beta chain detectable whose TCR nucleotide sequence exactly matched that of 

another clonotype with both the alpha and beta chain detectable were re-assigned to 

that clonotype. 
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Chapter 2: The effects of radiotherapy on the tumor 

microenvironment in hormone receptor positive 

breast cancer 

 
Introduction 

 

Radiotherapy is a widely used and highly effective treatment for most early-stage 

tumors, yet much of the biology underpinning its success or failure is rarely studied with 

the context of a functioning, in vivo tumor microenvironment (TME). Ionizing radiation 

directly kills malignant and tumor microenvironment cells alike through the induction 

of various forms of DNA damage. The subsequent cell death instigates the release of 

DAMPS and cytokines, reprogramming the tumor microenvironment, and potentiating 

immune-mediated tumor cell killing. 78,79 Radiotherapy induced interferon expression 

in tumor cells promotes professional antigen presenting cell activation, encouraging 

CD8 T cell infiltration and activation.80, 81 Additionally, irradiation is known to increase 

MHC class I expression and alter the expressed antigen repertoire on tumor cells.82 

For these reasons, there is appreciable interest in exploiting radiotherapy to induce a 

tumor microenvironment suitable for effective immune checkpoint blockade therapy, 

in otherwise immune-cold tumors, such as hormone receptor (HR) positive breast 

cancers.76
 

However, despite this potential immune stimulatory role, radiotherapy induced 

inflammation is also known to induce pro-tumor function. Inflammatory and IFN signaling 

often results in upregulation of pro-survival pathways in tumor cells, and increased 

expression of PD-L1. 83-85 Cytotoxic T cell response is additionally dampened by the 

increased tumor infiltration of regulatory T cells (Treg) and myeloid derived suppressor 

cells (MDSCs) in response to prolonged inflammation and antigenicity.86
 

Additionally, the polarity of the radiation induced pro- and anti- tumor 
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scRNAseq 

scTCRseq 

scDNAseq 

microenvironment response is likely influenced by innate tumor characters, as well as 

dose and duration of therapy. Because of these complexities, it has become increasingly 

important to study radiation response in patients while using clinically feasible dose 

regimens and timeframes. Here we use single cell sequencing to examine the tumor and 

microenvironment response to radiotherapy in 20 HR+ breast tumors. 

Furthermore, intratumoral heterogeneity presents a major challenge to treatment 

response prediction as tumors may contain multiple genomic subpopulations with varying 

sensitivity to therapies, including radiotherapy.87-90 In fact, resistant populations of cells 

pre-existing in the tumor are often responsible for therapy resistance and recurrence.36, 

37, 40, 91, 92 However, though presenting a major clinical challenge, intratumoral genomic 

heterogeneity can be utilized to delineate the genomic evolution of subpopulations in 

tumors and better understand their relationships and growth dynamics. 

In the past decade, the advent of single cell genomics has afforded unparalleled 

ability to resolve intratumoral heterogeneity, and in particular copy number heterogeneity 

in aneuploid tumor cells. Aneuploidy in tumor cells has long been observable by 

karyotyping, genomic hybridization array, and bulk next generation sequencing. 

However, sequencing 

of DNA copy number 

aberrations in single tumor 

cells, originally by tedious 

degenerate oligonucleotide- 

primed  PCR,  has  led 

to  major  advances  in 
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Figure 2.00: Study Overview 

Design and sample acquisition for HR+ breast radiotherapy study. 

work utilizes a modern, high-throughput single-cell acoustic tagmentation method 

(ACT)94 to profile copynumber profiles in HR+ breast tumors and observe how they 

respond to radiotherapy. 
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Results 

 

Single Cell Characterization Before and After Radiotherapy 

 
 

We conducted a window of opportunity study in early-stage hormone receptor 

positive breast cancer patients (Figure 2.00). In brief, 7 days before surgical resection, 

radiotherapy-naïve patients were subjected to a preoperative boost radiotherapy in 1 

fraction at 7.5gy or 5 fractions at 2 gy. Tumor material was collected via biopsy just prior 

to (±2 days) radiotherapy and from surgical resection. On 11 pairs of these samples, 

we disassociated the tumor and performed scRNAseq with matched scTCRseq. 

Additionally, on 8 of these pairs we performed scDNA copy number profiling on nuclear 

suspensions from the digests. 
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Figure 2.01: Changes in T cell populations with radiotherapy 

Difference between post treatment and pre-treatment of T cell populations as a fraction of all immune 

cells for each patient. Star indicated p<0.05 
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Changes in T cell populations with therapy 

 
 

Sub-clustering of the T lymphocytes from the pre- and post-treatment samples 

(n=22) revealed eight 8 CD8 and seven CD4 subpopulations, as well as gamma-delta 

T cells, NK cells, and a cycling lymphocyte population (Figure A2.10). Many of these 

subpopulations displayed marker genes of previously described single-cell defined T 

cell populations (Figure A2.07) and all populations were present in multiple patients and 

before/after treatment, albeit in varying frequencies. Notably, the CD4:CCR7 population, 

which is usually described as being naive and/or central memory-like, considerably 

increased in frequency with treatment to compose almost half of the post-treatment 

T cells present between patients (Figure 2.01). IHC confirmed a significant treatment- 

induced increase of CD4+CD3+ intra-tumor T cell density across patients (Figure 

A2.08). Patient-level changes of CD4 populations of the subset of these patients with 

single cell analysis, revealed that the changes in CD4 fraction was repeatedly driven 

by the CD4:CCR7 fraction and not large increases in Treg (CD4:FOXP3, CD4:LAG3) 

populations (Fig 2D). Additionally, some patients (6/11) saw small increases in T cell 

fraction of the corresponding CD8:CCR7 population of T cells (Figure A2.09). 

Across patients, fractions of most granzyme-producing populations (CD4:GNLY, 

NK Cells, CD8:GZMK, CD8:FCGR3A, CD8:CXCL13) decreased with therapy. However, 

one cytokine-producing cytotoxic population CD8:CCL4 increased in overall fraction 

among T cells with treatment. Of note, unlike the CD8:GZMK CD8:FCGR3A populations, 

the CD8:CCL4 expressed T cell effector genes TNF and IFNG, implying that this 

population exists in an early-reactivation state. 

Consistent with the subpopulation changes described above, gene expression 

changes across all T cells and patients revealed lower overall expression of cytotoxic 

genes (GZMH, GZMB, GNLY), but higher expression of Naive/Tcm gene (CCR7) and 

genes associated with tissue-homing and retention (CXCR4, CD69) (Figure A2.11). 

GSEA analysis confirmed that overall the T cell microenvironment was enriched for 
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Naive/Memory T cell gene expression post-treatment (Figure A2.12). 

 

 
Changes in myeloid populations with radiotherapy 

 
 

Further clustering of the myeloid population indicated six monocyte/macrophage 

populations (Figure 2.02). Among these, Macrophage:CD52 appeared to be the most 

recently infiltrating, expressing monocyte tissue-homing gene CD36 and having low 

antigen presentation. (Figure A2.14) However, all cells in this population belonged 

predominantly to only one patient in the cohort. Additionally, four of the subpopulations 

(Macrophage:CPB1, Macrophage:CCL18, Macrophage:CXCL10, Macrophage:CXCL3) 

were relatively high in expression of class II antigen presenting genes (CD74, HLA-DR, 

HLA-DP) but expressed distinct cytokine profiles (Figure A2.14). Furthermore, a small 

TAM-like population of macrophages expressing M2-like TAM markers (SIGLEC15, 

MMP9) was detected. 

The single cell data indicated that the frequency of macrophages in the tumor 

microenvironment increased markedly with radiotherapy (Figure A2.06). Vectra and 

traditional IHC analysis further confirmed that CD68+ cells significantly increased in both 

frequency and density with treatment (Figure A2.16). Though the specific subpopulation 

nature of the macrophage response to treatment was heterogeneous across patients, 

almost all patients (9/11) saw an increase in a HLA-II presenting subpopulation (Figure 
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Figure 2.02: UMAP of macrophages 
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A2.17). Correspondingly, most 

patients (8/11) saw an increase 

in total expression of HLA-II 

presenting genes in their complete 

myeloid fraction of cells (Figure 

A2.18). Overall, this analysis 

indicates  that  this  radiotherapy 

regime  increases  not  only  the 
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frequency of macrophages, but 

also the degree of class II antigen 

presentation of macrophages in 

the TME a week after radiotherapy. 

Figure 2.03: Genes expression changes in tumor cells 

Average expression pre-treatment (left column) and post- 

treatment (right column) of genes upregulated in tumor cells 

across patients after radiotherapy. 

 

Cellular response to radiation in tumor cells 

 
 

Ten of the 11 patients with single cell data, possessed patient-specific epithelial 

(EPCAM expressing) clusters where pre- and post- treatment cells remained co-located 

by patient more so than timepoint in UMAP embedding (Figure A2.02, A2.03). We 

assumed these clusters to be tumor cells, and confirmed that they were purportedly 

aneuploid by running the single cell RNA aneuploidy classification tool CopyKat (Fig 

A2.04). Extracting these cells, we classified these apparent malignant cells by cell cycle 

status. Surprisingly, there was no significant difference in cell cycle classification post 

therapy, with this result being confirmed by Ki67 staining (Figure A2.20). 

Despite large expression differences in tumor cells between patients, many 

genes were shared in differential expression across patients in relation to therapy (Figure 

2.03). Among these were the multi-faceted tumor-promoting nuclear receptor NR4A1 

and anti-apoptotic BCL2 family member MCL1. Additionally, despite inter-patient 

heterogeneity in tumor cell gene expression response, patient-independent GSEA 
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analysis of genes differentially 

expressed in response to 

treatment converged on 

several common pathways 

(Figure 2.04). This included 

upregulation of several 

immune-related gene sets 

including  TNF,  IL18  and 
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NFKB signaling. Furthermore, 

across patients, we observed 

an increased enrichment in 

Figure 2.04: GSEA cancer hallmarks 

Enrichment by patient for cancer hallmark pathways in tumor cells 

post treatment. 

hypoxia-related genes and subsequent downregulation in oxidative phosphorylation 

gene enrichment. 

Furthermore, we examined the transcriptional expression of several key breast 

cancer-related receptors in the tumor cells. Notably, in over half of the patients ERBB2 

(HER2) expression increased transcriptionally with therapy. However, there was no 

difference in receptor status at the protein level with all the patients remaining HER2 

negative. Nonetheless, increased ERBB2 is ominously suggestive of cells poised to 

acquire a more resistant phenotype in the future. 

 

Clonal selection of DNA copy number sub clones 

 
 

We performed single cell DNA copy number analysis on nuclear suspensions from 

8 paired tumor samples pre- and post- radiotherapy. Though all samples exhibited 

aneuploid tumor cells, the number of distinct aneuploid profiles observed varied by 

patient (Figure A2.22). Within each patient, we compared the fraction of each aneuploid 

population pre- and post- treatment. In four of these patients, we observed drastic 

changes in subpopulation frequency post-treatment (Figure A2.23). Furthermore, 
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this observation corresponded to overall frequency 

changes of genomic regions when comparing all of 

the cells from each sample combined. Based on these 

results, we here unto describe these patients as “high 

selection” and speculate that these patients’ tumor 

were more sensitive to radiotherapy. Notably, in the 

tumors exhibiting selection with therapy, the regions 

and genes selected were specific to each patient. 

The remaining 4 patients exhibited smaller clonal 

frequency changes which were no greater than those 

that would be observed by chance (Figure 2.05). 

However, these patients also did not exhibit large 

changes in frequency in any genomic regions with 

treatment and thus were labels as “low selection”. 

Radiotherapy and DNA damage 

Radiotherapy induces cell death by primarily inducing 

double strand breaks in DNA. Furthermore, it generates 

reactive oxygen species which can additionally induce 

single strand breaks. For this reason we expected to see 

tumor cells after therapy expressing genes enriched for 

DNA damage response and repair signature. Despite 

scoring tumor cells for dozens of related signatures we 

saw no pattern in these pathways changing with therapy, 

perhaps indicating at this timepoint any DNA damage 

from therapy has already been resolved (Figure A2.21). 

Additionally, IHC revealed no increases in γH2AX foci 

after treatment. However, γH2AX is known for being 

an early responder to DNA damage from radiation and 
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therapy. Though two patients had 
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Figure 2.06: Number of copynumber breakpoints 
Number of breakpoints between segments in single cell 

copynubmer data. 

just rare before therapy. Additionally, we examined individual single cells for evidence 
of potential double strand breaks by surrogate of copy-number breakpoints (Figure 

2.06). Because it can take several cells to define a population and this analysis is on an 

individual cell level, we suspected it would be powerful at detaching radiation induced 

copy number damage. Surprisingly, we found that there was no significant increase in 

high-breakpoint cells with therapy. This is suggestive of that either radiotherapy at these 

dosages did not induce DNA damage resulting in copy number changes, or that any cell 

with aneuploidy induced by therapy were rare and therefore not detected. 

Clonal selection and the TME 
To distinguish between characteristics of high- and low-selection tumors we 

performed differential expression analysis on the pre-treatment tumor cells from each of 

the selection groups. Despite the small number of samples in each cohort, this analysis 

revealed a surprising number of genes whose overall (Figure A2.24). Additionally, these 

cohorts shared gene expression patterns in their post-treatment tumor cells. 

Gene set enrichment analysis was performed on the median average expression 
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Figure 2.07: Immune fraction post-treatment 

Post-treatment fraction of tumor, stromal, and immune 

cells colored by high and low patient DNA selection. 

of gene expression between cohorts 

pre-treatment. The high-selection 

cohort was enriched for canonical 

estrogen related pathways, 

unsurprisingly because estrogen 

receptor, ESR1 was among the top 

DE genes. This is suggestive of the 

high-selection cohort being more 

Luminal A-like. On the other hand, the 

low selection cohort was enriched for several genes related to interferon signaling, most 

notably the interferon-induced transcription factor STAT1 (Figure A2.27). Consequently, 

it was enriched for canonical interferon-related pathways (Figure A2.25). 

To better understand the broader implications of our high-selection and low- 

selection cohorts, we scored our pre-treatment tumor cells for a 45-gene Interferon- 

Related DNA Damage Resistance Score (IRDS, from Weishelbaum et al. 2008) found to 

be predictive of clinically favorable outcomes after radiotherapy. We found that median 

expression in tumor cells of the IRDS gene signature score perfectly separated our 

genomic selection cohorts, a separation unlikely to occur by change (p = 0.028) (Figure 

A2.26). Low selection patients scored higher for the signature, further indicating their 

likely radioresistance. 

Though no particular immune sub-population was associated with a patient’s 

genomic selection cohort, low-selection patients had significantly (p=0.041) higher 

fractions of immune cells and conversely lower (p=0.18) fractions of tumor cells in their 

tumors post-radiotherapy (Figure 2.07). 

Discussion 

 

Here we examine transcriptional changes in breast tumors and their 

microenvironment 7 days after radiotherapy. Notably, this is one of the first single cell 
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studies examining radiation response in patients. Based on this data, we’ve identified 

a CD4 central memory/naïve like T cell infiltration to be increased at this timepoint. 

Frequency of a similar, single cell defined population has already been shown to be 

predictive of favorable response to anti-PDL1+chemotherapy in a small breast cancer 

cohort.32 Additionally, we saw treatment-related increases in fraction of an activated, 

IFNG/TNF-expressing CD8 T cell population suggestive of renewed anti-tumor T cell 

response. Additionally, this population was expressing high levels of inflammatory 

cytokine CCL4, likely directing the aforementioned CD4 T cell infiltration. Furthermore, 

this cytokine is known to attract inflammatory myeloid populations, such as dendritic 

cells, to the tumor and its presence is known to be associated with favorable outcomes 

in several tumor types. 95-97
 

In contrast, existing cytotoxic gene expressing T cell populations were often 

depleted with therapy (Figure A2.13). This includes the CD8 – CXCL13 population 

which, though only highly present in one patient at the outset, has been shown to be 

the CD8 population most predictive for response to anti-PDL1 and anti-PD1 therapy in 

breast cancer.98 However, it has been shown that in the long term, the T cell populations 

sustaining the anti-tumor T cell response to ICB were not highly-present in the tumor 

beforehand.99 Therefore, the long term effects of depleting and replacing this population 

are unclear. 

In addition to changes in the T cell composition, we saw a notable increase in 

myeloid cell infiltration with therapy. Overall, class II antigen presentation across the 

macrophage compartment was elevated, indicating a favorable environment for T cell 

response. However, conflictingly, the population of macrophages which increased with 

therapy for most patients expressed CX3CR1, which on macrophages is associated 

with T cell suppression, and unfavorable response to anti-PD1. In contrast, there was 

no overall increase in inflammatory CXCL9/10 expressing macrophages indicating 

that they are potentially unnecessary for the observed T cell attraction. All together 

increases in antigen presentation and T cell activation despite a large suppressive 
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macrophage presence is difficult to make sense of on its own, suggesting observations 

at later timepoints are needed. In addition, this result suggests that ablating CXC3CR1 

macrophages would likely increase T cell response further, when combined with 

radiotherapy. 

Further complicating interpretation of the macrophage response were the 

heterogenous changes observed in only a few patients. For example, only 2/11 patients 

saw increases of macrophages expressing CCL18, a cytokine known in several cancers 

to promote angiogenesis and metastasis.100-103 On the other hand, 2/11 patients saw 

increases of CXCL2, CXCL3, and CCL4 transcribing macrophages. This is the expected 

phenotype of an IL-1 stimulated macrophage, implying that IL-1 signaling is sometimes 

involved in the radiation induced inflammatory response. This inter-patient heterogeneity 

suggests that the macrophage response to radiotherapy is highly multi-faceted and that 

larger studies are needed to further understand it. 

This data overall reveals that though hormone receptor positive breast cancer 

is generally considered an immunologically “cold” tumor, radiotherapy clearly can still 

induce significant changes in the tumor microenvironment. In contrast, in tumor cells we 

did not observe the changes with therapy that one might expect. We saw no evidence, 

at the transcriptional level, of increased HLA-I antigen presenting genes on irradiated 

tumor cells. This suggests that therapy at this dose and timepoint is not increasing the 

amount of antigen presented by tumor cells. 

Additionally, we saw no evidence of DNA damage or its response in the tumor cells 

other than perhaps increases in NFKB signaling. We did however observe transcriptional 

changes in tumor cells similar across patients, suggesting a consistent molecular 

response to radiotherapy at this timepoint, despite patient-specific transcriptional and 

genetic backgrounds. Nevertheless, it is difficult at this timepoint to determine if the 

radiation induced transcriptional response in tumor cells is pro- or anti-tumor. Some 

of the genes in the signature, such as the anti-apoptotic MCL1, have clear pro survival 

functions. Others genes, such as NFKB inhibitor NFKBIA, are markedly hostile to cell 
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survival. Additionally several genes in the gene set, such as EGR1 and NR4A1, have 

paradoxically been described as both tumor promoting and suppressing in different 

contexts.104-106,107, 108 Therefore, it is not definitive at this timepoint whether the signaling 

induced in the tumor will later result in cell death, or successful escape from it. Longer 

timed observations are likely necessary to determine this. 

Methods 

 

Sample preparation for single cell sequencing 

 
 
Tissue from fine needle aspirates and surgical dissections were minced by scalpel and 

digested in DMEM with Collagenase A and trypsin for 1hr at 37˚C. The resulting single 

cell suspension was passed through a 40µM filter and red blood cells were lysed. The 

resulting cell pellet was washed in PBS and frozen in FBS with 10% DMSO. Samples 

were then thawed for scRNA sequencing preparation and washed in PBS with 5% BSA. 

Any cells in the suspension remaining after scRNA loading were lysed in NST buffer with 

DAPI to form nuclear suspension for scDNA sequencing. 

 
Single cell RNA and TCR sequencing 

 
High throughput single cell RNA sequencing was performed with the 10X Genomics 

Chromium platform’s 5’ v.1.0 kits (product codes 1000014, 1000020, and 1000151) 

with TCR enrichment 410 (1000005) according to the manufacturer’s protocol. Briefly, a 

recovery target of 10,000 cells were loaded into the Chromium Single Cell Chip A, and 

the emulsion was reverse transcribed on a BioRad T100 thermal cycler. The samples 

were then purified with Dynabeads (Thermo Fisher Scientific, 37002D) and the cDNA 

was amplified in 24 PCR cycles. Of this amplified cDNA product, 2µL was used to 

perform TCR enrichment. TCR libraries were only constructed on samples with a visible 

amplification trace of the expected size. Up to 50 ng (or 20 μL) of the transcriptome cDNA 
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was used for library construction per the manufacturer’s instructions, and the barcoded 

sample libraries were then pooled for sequencing. The single cell transcriptome library 

pools Transcriptome libraries were sequenced on an Illumina Novoseq 6000 (Read 1, 

26 cycles; Index 1, 8 cycles; Read 2, 91 cycles), to a median targeted sequencing depth 

of 30,000 read pairs/cell. Pooled TCR libraries were sequenced 150 cycle paired-end on 

an Illumina Miseq to a targeted depth of 1,000 read pairs/cell. 

 
Single cell RNA data processing 

 
 
Single Cell transcriptome files were demultiplexed, aligned to the human genome 

(GRCh38), and processed into gene count using 10X Genomic’s Cell Ranger pipeline 

version 3.1.0. Unfiltered count matrices were analyzed in R version 3.6.2 and the package 

DropletUtils (v 1.6.1) with default values was used to detect barcodes containing cells. 

The resulting cells were then processed using the Seurat package (v 3.2.2) and filtered 

for quality under the following constraints: percent mitochondrial UMI < 20%, percent 

ribosomal UMI < 40%, number of UMI > 200, number of UMI < 40000, number of genes 

< 7500. Samples were scaled with the SCTansform function using the top 3000 most 

variable genes, and regressing for percent mitochondrial UMI. PCA was performed 

on the scaled values and the top 30 PC’s were used for UMAP embedding and SNN 

clustering (with resolution parameter 0.4). High-level cell types were then labeled based 

on the cluster’s top differentially expressed genes by Wilcox test. Major cell types were 

then separated for further subtype clustering. 

 

Single cell RNA TCR analysis 

 
 
Single cell TCR sequences were called using version 3.1.0 of “cellranger vdj” in the 

Cellranger software suite. Clonotypes with only an alpha or a beta chain called were re- 

assigned to a clonotype from the same patient with, in this priority, an identical beta or 
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alpha cdr3 nucleotide sequence. 

 

 
Single cell copy number sequencing 

 
 
Single cell copynumber sequencing was performed using direct tagmentation as 

previously described in Minussi et al., 2021. Briefly, single nuclei suspensions were 

created in NST buffer with DAPI and single nuclei were sorted into 384 well plates 

using a BD FACS Melody. The nuclei were then lysed, tagmented, and amplified with 

barcoded primers in 16 PCR cycles with a labcyte ECHO 525 acoustic liquid handler. 

 
Single Cell Copy Number Data Processing and Filtering 

 
 
Single cell copy number data was demultiplexed and aligned to hg38. Single cell data 

was then processed using best practices of the CopyKit package in R. Briefly, reads were 

binned to a genome scaffold with, on average 200kb bins and each bin’s count ratio 

was calculated relative to the mean bin count ratio. Cells were then marked for filtering 

with the function filterCells and correlation threshold set to 0.8. Cells were additionally 

marked as Normal/Tumor based on aneuploidy with the function findNormalCells. Cells 

were segmented using circular binary segmentation and segment integer values were 

calculated using scQuantum via CopyKit’s calcIntegers. 

 

Copy Number subclone clustering and analysis 

 
 

Aneuploid cells were clustered by combining cells from both timepoints within a patient 

and using the k parameter from FindSuggestedK, were clustered using findClusters. 

Consensus profiles were then generated from the median integer copy number value 

for the cluster’s segments. Timescape plots were generated using the bioconductor 

package cellscape, using trees inferred from copykit’s runConsensusPhylo. 
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Future directions 

Both of the studies mentioned in this dissertation, though extensive, were largely 

observational and generated numerous avenues to pursue for future study. Notably, we 

have defined T cell populations present in PDACs at the transcriptional level. However, 

isolation of these populations at the surface protein level is often necessary for functional 

studies and potential clinical assays and products. Nevertheless, finding robust surface 

protein markers for transcriptionally defined cell populations is non-trivial, and likely will 

entail extensive trial and error. One extensive strategy to do such, could entail repeating 

the scRNAseq of T cells from additional PDAC samples, but with an added step of 

profiling a large panel of DNA-barcoded antibodies in the same single cells (i.e. CITE- 

seq). For at least the more frequent populations, these experiments could possibly 

identify transcriptomic expression cluster specific, and/or predictive TIL therapy 

persisting, surface protein markers which could later be validated in smaller FACS 

panels. Utilizing this strategy to be able to separate distinct, single-cell defined T cell 

populations could prove beneficial not only for designing future TIL product strategies. 

Moreover, isolating highly specific transcriptional states of T cells could prove beneficial 

for functional research experiments, such as identifying cytokines and checkpoints to 

assist in stimulating and repressing specific populations or development tracts. 

Furthermore, we have hypothesized the developmental relationship 

between these cell states from observational data, but we have not proven experimentally 

their relationship. Theoretically, it is possible with single cell DNA barcoding methods 

to track individual population’s development proactively. Assuming a particular 

transcriptional state could be isolated (as described above), barcoded populations 

could be introduced into mouse models to more directly trace development. However, 

the applicability of these experiments would be dependent on not only the ability to 

isolate specific populations, but also to mimic the human tumor microenvironment to 

direct the same population development. In the context of a TIL product, by barcoding 

prior to REP, this strategy could be utilized to answer the question: which specific 



104  

transcriptional states are responsible for expansion within a given clonotype? Though, 

in this study we use TCR to track expression states through REP, most but not all cells 

within a clonotype begin in the same expression state. Re-barcoding could minimize 

this potential confounder. 

Additionally, though we have traced which cell populations persist in the 

ACT product, we have not yet traced which, if any, transcriptional states from the ACT 

product persist and mount an anti-tumor response when infused back into patients. 

Future studies could perform the same scRNAseq/scTCRseq strategy to observe which 

clonotypes from the TIL product are observed long-term in PBMCs, and potentially the 

tumor for patients treated with the therapy and profile their expression states. 

Secondly, the radiotherapy study, described in this dissertation was 

intended as an observational hypothesis generating study and as such has several 

future directions. To start with, we only examined the TME in a single post-radiotherapy 

timepoint. Because of this, we likely missed some of the early cellular response to 

therapy such as initial cell death and DNA damage repair. To elucidate mechanisms of 

these processes in patients at these dosages, future studies should consider observing 

an earlier timepoint (such as 1 day) after radiotherapy, if feasible. Additionally, cell 

death and DNA damage response are often protein-based pathways changing through 

phosphorylation, and not necessarily transcriptional signaling. As such, protein-based 

analyses should be proactively planned alongside transcriptional ones for future studies. 

Additionally, perhaps in a cohort more amenable to serial biopsy, 

longitudinal data with clearer treatment response metrics would better determine the 

genomic selection characteristics of therapy. Though we saw genomic selection in 

some patients a week after radiotherapy, it is unclear if the remaining populations which 

seem innately insensitive would persist long-term or are exhibiting delayed cell death 

compared to more sensitive clones. Delineating this is likely only possible in a longer 

timeframe study. Alternatively, though unlikely, should any of the patients in this study 

exhibit disease recurrence their tumor cells could be compared genomically to their 
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tumor cells at other timepoints to infer relation. Furthermore, a timepoint two to three 

weeks after therapy may be better to measure levels of T cell response to the tumor. 

Though we observed naive/early memory and early activated T cells in the tumor one 

week post therapy, it’s unclear at this point if these populations would lead to tumor 

clearance (possibly with the help of a checkpoint inhibitor) or will become exhausted and 

contribute to long-term inflammation and tumor progression. Examining this warrants 

future studies in mouse models where Tcell populations can be tracked by serial biopsy 

or strategically times sacrificing. 

Along this tract, the myeloid cell changes seen in patients presents 

numerous possibilities for enhancing the effects of radiotherapy. Almost all patients 

in this study saw an increase in inflammatory and tumor-promoting myeloid cells with 

therapy. This suggests that, similar as to described previously for T cell populations, 

the myeloid populations found in breast tumors should be isolated and further studies 

outside of patients. By understanding how these populations are stimulated, inhibited, 

and developmentally related, it could be possible to identify targets which assist myeloid 

cells with enhancing T cell response without promoting tumor development. In closing, 

both of these studies have generated numerous avenues for future functional and 

translational research. 

• 
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Figure A1.01: UMAP by cohort 

UMAP embedding of all T cells colored by cohort 

PUMCH 

MDA2 

MDA1 

 
 

 

CD4 - MX1 
 

CD4 - CXCL13 

CD4 - CCR7 

CD4 - CXCR4 

CD4 - FOXP3 

 
 
 

Figure A1.02: CD4 transcription factors 

Average and percent expression of top transcription factors for each CD4 cluster 
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Figure A1.03: CD8 transcription factors 

Average and percent expression of top transcription factors for each CD8 cluster 
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Figure A1.04: T cell genes 
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Figure A1.05: Checkpoint genes 

Expression of known tumor checkpoint genes by T cell population 
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Figure A1.06: Single cell heatmap 

Heatmap of top markers of each population. Each column is a single cell. 
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Figure A1.07: CD4 TCR overlap 

Overlap of expression states for expanded (n≥2) clonotypes. 
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Figure A1.08: Gini index by cluster 

Gini inequality of clonotype count for each patient’s T cells in each population containing at least 5 cells. 
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Figure A1.09: Gini index CD4/CD8 

Gini index combining CD4 and CD8 

populations for each patient. 
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Figure A1.10: Grown single cell heatmap 

Top marker genes of each of the grown clusters. Each population was randomly down-sampled to ≤1000 

cells for plotting. 
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Figure A2.01: UMAP by major cluster 

UMAP embedding of all cells labeled by major cell 

type. 

Figure A2.02: UMAP by patient 

UMAP embedding of all cells labeled by patient. 
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Figure A2.03: UMAP by timepoint 

UMAP embedding of all cells labeled by timepoint 

in respect to radiotherapy. 

Figure A2.04: UMAP by inferred ploidy 

UMAP embedding of all cells labeled by ploidy status 

as predicted by Copykat. 
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Figure A2.05: Frequency of major clusters 

Frequency of major cell types for each patient before (left bars) and after (right bars) radiotherapy. 
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Figure A2.06: Frequency of major immune clusters 

Frequency of major immune cell types for each patient before (left bars) and after (right bars) radiotherapy. 
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Figure A2.07: T cell marker heatmap 

Average, scaled expression of top T cell markers for 

each cluster. 
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Figure A2.08: CD4 density 

CD4+ T cell density of the tumor area pre and 

post radiotherapy, measured by IHC. 
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Figure A2.09: T cell cluster frequency 

Frequency of T cell populations before and after therapy by patient. 
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Figure A2.10: T cell cluster UMAP 
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Left: UMAP embedding of all T cells pre (left) and post (right) radiotherapy. Right: Frequency of patient- 

combined T cell frequencies. 
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Figure A2.11: Change in T cell genes 

Average gene expression changes of T cells with 

radiotherapy. 

Figure A2.12: T cell GSEA 

GSEA of Top T cell pathways enriched in T cells with 

radiotherapy. 
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Figure A2.13: TCR presence 

Number of T cell clonotypes present pre/post radiotherapy only, or at both 

timepoints. 
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Figure A2.14: Top macrophage marker heatmap 

Average scaled gene expression of top macrophage population 

markers. 
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Figure A2.15: Change in myeloid populations 

Change in frequency of myeloid populations with therapy. 
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Figure A2.16: Change in macrophage frequency 

Change in CD68+ cells as measured by scRNAseq (left), 

vectra (center), IHC (right). 
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Figure A2.17: Frequency of macrophage populations 

Frequency of macrophage populations as a fraction of all immune cells. 
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Figure A2.18: HLA class II expression 

Expression score of myeloid cells for a signature of HLA II genes. 
 

ESR1 
3 

PGR 
3 

 
 

2 2 

 
 

1 1 

 
 

0 0 

 
ERBB2 AR 

3 3 

 
 

2 2 

 
 

1 1 

 
 

0 0 

 

Figure A2.19: Tumor receptor expression 

Tumor expression of applicable breast cancer 

receptor genes in tumor cells before (blue,left) and 

after (yellow,right) radiotherapy. 
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Figure A2.20: Tumor KI67 

Percent of KI67 positive tumor cells by single cell analysis and IHC. 

* 
H

L
A

 C
la

s
s
 I

I 
E

x
p
re

s
s
io

n
 

E
x
p
re

s
s
io

n
 L

e
v
e
l 

E
x
p
re

s
s
io

n
 L

e
v
e
l 

P
e

rc
e

n
t 

K
I6

7
+

 



 

 
 
 

 
 

E_RECOGNITION_IN_GG_NER 
S_AND_LIGATION_IN_GG_NER 
NING_REPLICATION_COMPLEX 
E_EXCISION_REPAIR_GG_NER 
UCLEOTIDE_EXCISION_REPAIR 

_STRAND_BREAK_RESPONSE 
E_EXCISION_REPAIR_TC_NER 
UBLE_STRAND_BREAK_ENDS 

TOME_DNA_DAMAGE_BYPASS 
GOUS_RECOMBINATION_HRR 
DNA_DAMAGE_CHECKPOINTS 
TCH_BASE_EXCISION_REPAIR 

KYNG_DNA_DAMAGE_DN 
ION_OF_DNA_REPAIR_GENES 
MAGE_BY_GAMMA_RADIATION 
OMOLOGY_DIRECTED_REPAIR 

REACTOME_DNA_REPAIR 
BLE_STRAND_BREAK_REPAIR 
_IN_DNA_DAMAGE_RESPONSE 
4NQO_OR_GAMMA_RADIATION 

K_MEIOTIC_AND_DNA_REPAIR 
ONSE_ONLY_ATM_DEPENDENT 

KYNG_DNA_DAMAGE_UP 
T_STRAND_ANNEALING_SDSA 
NG_AND_STRAND_EXCHANGE 
LE_STRAND_ANNEALING_SSA 

E_DISEASES_OF_DNA_REPAIR 
R_THROUGH_MMEJ_ALT_NHEJ 
_OF_BASE_EXCISION_REPAIR 

RAND_SYNTHESIS_INITIATION 
ONSE_AND_REPAIR_PROTEINS 
LLULAR_RESPONSE_VIA_ATM 

FFMANN_DNA_REPAIR_GENES 
AGGING_STRAND_SYNTHESIS 
E_DNA_STRAND_ELONGATION 
R_PATHWAYS_FULL_NETWORK 
A_DAMAGE_BY_4NQO_OR_UV 
EGG_BASE_EXCISION_REPAIR 

WP_BASE_EXCISION_REPAIR 
OME_BASE_EXCISION_REPAIR 

_OF_MISMATCH_REPAIR_MMR 
OF_DNA_DAMAGE_RESPONSE 
WP_DNA_DAMAGE_RESPONSE 
ESS_INDUCED_SENESCENCE 
_DNA_DAMAGE_CHECKPOINT 
_GAMMA_AND_UV_RADIATION 

ME_DNA_DAMAGE_REVERSAL 
YNG_DNA_DAMAGE_BY_4NQO 
TCH_BASE_EXCISION_REPAIR 
STRAND_OF_THE_TELOMERE 
WP_DNA_MISMATCH_REPAIR 
STRAND_OF_THE_TELOMERE 
REPAIR_AP_SITE_FORMATION 
UCLEOTIDE_EXCISION_REPAIR 
UCLEOTIDE_EXCISION_REPAIR 
KYNG_DNA_DAMAGE_BY_UV 

LOGOUS_END_JOINING_NHEJ 
A_DOUBLE_STRAND_BREAKS 
AGGING_STRAND_SYNTHESIS 

S_ON_THE_LAGGING_STRAND 
MOLOGOUS_RECOMBINATION 
MOLOGOUS_RECOMBINATION 

KEGG_MISMATCH_REPAIR 
EACTOME_MISMATCH_REPAIR 
HOMOLOGOUS_END_JOINING 
HOMOLOGOUS_END_JOINING 

AND_RESPONSE_TO_IMATINIB 
A_DAMAGE_RESPONSE_TP53 B

C
R

0
4
_
p
re

 

B
C

R
0
3
_
p
re

 

B
C

R
1
5
_
p
re

 

B
C

R
0
5
_
p
re

 

B
C

R
1
3
_
p
re

 

B
C

R
0
1
_
p
re

 

B
C

R
1
8
_
p
re

 

B
C

R
2
0
_
p
re

 

B
C

R
0
6
_
p
re

 

B
C

R
0
9
_
p
re

 

B
C

R
0
4
_
p
o
s
t 

B
C

R
0
3
_
p
o
s
t 

m
a
trix

_
3
9
 

0
.2

 

0
.1

 

0
 

−
0
.1

 

−
0
.2

 

B
C

R
1
5
_
p
o
s
t 

B
C

R
0
5
_
p
o
s
t 

B
C

R
1
3
_
p
o
s
t 

B
C

R
0
1
_
p
o
s
t 

B
C

R
1
8
_
p
o
s
t 

B
C

R
2
0
_
p
o
s
t 

B
C

R
0
6
_
p
o
s
t 

B
C

R
0
9
_
p
o
s
t 

F
ig

u
re

 A
2
.2

1
: D

N
A

 d
a

m
a
g

e
 p

a
th

w
a
y
s
 

A
v
e
ra

g
e

 s
c
o
re

 fo
r e

a
c
h

 p
a
tie

n
t fo

r a
ll D

N
A

 d
a
m

a
g
e

 a
n

d
 re

p
a

ir re
la

te
d

 s
ig

n
a
tu

re
 fro

m
 m

s
ig

d
b
. 

67
 



68  

 

 
 
 
 

Figure A2.22: Single cell copynubmer profiles 
Pre-treatment single cell copynumber profiles for all patients and all clusters. 



69  

 
 

clusters 

c01 

c02 

c03 

c04 
c05 
c06 
c07 
c08 
c09 

 

copy 

number 

1 

2 
3 

4 

B
C

R
2
0

 
U

M
A

P
_

2
 

B
C

R
1
8

 
U

M
A

P
_

2
 

B
C

R
0
9

 
U

M
A

P
_

2
 

 
 

 
 
 
 
 

UMAP_1 

 

 
 
 

UMAP_1 

 

 

 

UMAP_1 

 

UMAP_1 

 

 
 
 

UMAP_1 

 

UMAP_1 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

c10 
c11 
c12 
c13 
c14 
c15 
c16 
c17 

 
 
 
 
 
 

5 
6 

7 
8 

 

PRE POST 

 

PRE POST 

 

PRE POST 

 

PRE POST 

 

PRE POST 

 

PRE POST 

 

 
 

 
 

 

UMAP_1 

 

 

 

 

UMAP_1 

 
 
 
 
 
 
 
 
 
 
 

Genomic Coordinates 

 

c08 
c09 
c10 
c11 
c12 
c13 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

c08 
c09 
c10 
c11 
c12 
c13 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

PRE POST 

 

PRE POST 

Figure A2.23: Single cell copynumber changes 

UMAP embedding of single cell copy number clusters colored by timepoint and annotated bu cluster 

(left). Integer-scaled single cell copynumber consensus profiles (center) and their frequency changes 

by timepoint (right). Top four patients represent the high-selection group. Bottom for represent the low- 

selection group. 
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Figure A2.25: Selection group GSEA 

Top canonical and cancer hallmark pathways from 

GSEA of pre-treatment genes between high and low 

selection patients. 

Figure A2.24: Selection group expression differences 
Average expression of top genes differentially expressed 

pre (blue) and post (gold) treatment between tumor cells 

of the high- and low-selection groups. 
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Figure A2.26: IRDS signature 

Box plot of distribution of single, pre-treatment tumor cell’s scores for the 45 gene IRDS signature. 
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Figure A2.27: IRDS marker genes 

Expression of top IRDS marker genes in pre- 

treatment tumor cells. 
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