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2 Abstract 

Cell-free DNA Sequencing in Multiple Myeloma 

Russell M. Irwin, BS.ASNR 

Advisory Professor: Michael R. Green, PhD 

Multiple myeloma (MM) is an incurable plasma cell dyscrasia. Recent advances in 

MM therapy, including CAR-T therapy, have increased survival and shown the value of 

assessing treatment response with great sensitivity, both in acute and long-term settings. Cell-

free DNA, DNA fragments which are released into circulation as a part of normal cellular 

turnover, is a useful and dynamic biomarker in cancer patients due to the presence of 

circulating tumor DNA (ctDNA), which is readily identified using next generation 

sequencing. Here we report the analytical sensitivity, applicability, consistency, and 

prognostic ability of M5Seq, a novel hybrid capture panel designed for MM ctDNA. We 

performed in-silico validation of this panel and found high applicability (1,173/1,212 tumors 

with ≥1 variant covered, 97%, mode 6 variants covered). By sequencing serial dilutions of 

simulated cancer DNA in healthy donor DNA, we observed a limit of analytical sensitivity at 

5x10-5 and a limit of linearity at 10-4. Then, we applied this method to the matched pre-

treatment tumor and plasma samples of 10 newly diagnosed MM patients. We observed 

moderate concordance in the mutations detected in each compartment, consistent with 

existing literature. Based off these data, we applied M5Seq to plasma samples from 18 

patients undergoing anti-BCMA chimeric antigen receptor T cell therapy (CAR-T). We 

observed similar concordance in the CAR-T cohort as in the newly diagnosed patients. In 14 

evaluable patients, we observed no statistically significant decreases in variant allele fraction 
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within two days of CAR-T infusion between patients achieving a complete response or better 

within 30 days of infusion as determined by IMWG criteria, as compared to those patients 

with stable or progressing disease. Furthermore, while we observed a slight overall survival 

advantage in patients with decreased VAF from baseline, this association did not meet the 

threshold for statistical significance. 
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6 Introduction 

6.1 Multiple myeloma etiology, biology, and treatment 

Multiple myeloma (MM) is a malignancy of differentiated, mature lymphoid-derived 

plasma cells which presents most often in patients over the age of 50[1]. MM occurs at an 

age-adjusted frequency of 4.3 per 100,000 in the United States, with greater frequency in 

African Americans than other ethnic groups, and with greater frequency in men than 

women[2]. The average age of onset for MM is 66 years[3].  

MM is characterized by genetic heterogeneity, mutational burden, and high-risk 

genomic lesions including t(4;14) 14q32, del(17p) and del(13q) [4-7]; hyperdiploidies 

presenting as trisomies in odd-numbered chromosomes are also common. Plasma cells, 

having undergone multiple rounds of somatic hypermutation and class-switch recombination, 

frequently see off-target single nucleotide variants (SNVs) and indels characteristic of 

cytosine deaminase activity in B cell malignancies, such as in Bcl6, Cd19, Cd83, Pax5, and 

Bcl11[8, 9].   

Plasma cells are characteristic in that they are antibody-secreting cells, and because 

multiple myeloma tumor cells are typically derived from the same clone, they all secrete the 

same antibody. This antibody is detectable via serum protein electrophoresis and 

immunofixation and is used as a primary biomarker, known as the M (myeloma) protein[10]. 

In addition, many tumors secrete excess free light chain, disrupting the normal ratio of κ 

isotype free light chains in serum to λ free light chains. The serum free light chain (sFLC) 

ratio is also an important metric of performance[11]. 

Frontline treatment for MM is based on autologous stem cell transplant (ASCT) and 

alkylating chemotherapy, bookended by combination therapies of steroids, proteasome 
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inhibitors, and immunomodulatory agents. In the last 15 years, the introduction of novel 

therapeutics such as bortezomib and other proteasome checkpoint inhibitors has dramatically 

improved overall survival (OS) and progression-free survival (PFS) in patients who respond 

well to first-line treatments[12].  

This increased survival has exposed a weakness in the traditional histopathology- and 

protein-based definitions of complete response (CR) and stringent complete response (sCR), 

which are now inadequate for predicting survival[13]. 

6.1.1 Chimeric antigen receptor T-Cell therapy 

Another major development in MM therapy is the recent FDA approval of chimeric 

antigen receptor T-cells (CAR-T) targeting B cell maturation antigen (BCMA), ABECMA 

(idecabtagene vicleucel, ide-cel) in 2020[14] and CARVYKTI (ciltacabtagene autoleucel, 

cilta-cel) in 2022. Both treatments utilize patient-derived CD8+ T-cells transfected with 

vector coding for the second-generation chimeric antigen receptor construct, including a 

BCMA-specific short chain variable fragment (scFv), 4-1BB costimulatory domain, and 

CD3ζ signaling domain. These cells are expanded ex vivo. The patient then undergoes 

lymphodepleting chemotherapy before cell reinfusion.  

Results of the initial KarMMa trial of ide-cel indicate an 85% overall response rate 

and a 45% complete response rate. However, within six months of infusion, 40% of complete 

responders experienced a relapse, and median progression-free survival was 11.8 

months[15]. Similarly, the CARTITUDE-1 trial of cilta-cel demonstrated 97% overall 

response rate and 67% of patients achieved sCR, and 12-month PFS was 77%[16]. At this 

time, anti-BCMA CAR-T is only approved for patients with multiple-refractory MM. Due to 

the rate of relapse in CAR-T therapy, especially in ide-cel, novel strategies are necessary to 
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stratify patients by risk before CAR-T therapy and assess response kinetics 

contemporaneously with the infusion in order to predict the likelihood of relapse.  

6.2 Minimal residual disease: a cellular approach 

Disease response kinetics in the context of CAR-T therapy are difficult to assess due 

to the rapidity with which the therapy can effect a stringent complete response (sCR), defined 

by the International Myeloma Working Group (IMWG) as absence of tumor cells in a 

primary tumor sample as detected by immunofluorescence and a normal sFLC ratio. sCR is 

often achieved within one month of CAR-T infusion, indicating that the tumor is killed 

rapidly within the early days surrounding infusion. However, the actual tumor burden is 

difficult to define during this window for a number of reasons. First and foremost, blood-

based assays for assessing disease burden in MM have traditionally lacked the sensitivity to 

detect low-level disease burden at levels comparable to or exceeding the equivalent disease 

burden of a sCR. The ability of a patient to relapse after achieving sCR indicates that some 

minimal residual disease (MRD) is still present beyond the level of detection achievable via 

immunofluorescence and sFLC assays. 

MRD is a much stronger predictor of progression free and overall survival than sCR 

alone [13, 17, 18], whether detected by next-generation multicolor flow cytometry 

(MFC)[17, 19-22] or molecular methods [18, 23, 24]. Recent meta-analyses of MM studies 

have shown that compared to MRD+ patients, MRD- patients have dramatically lower hazard 

ratios regardless of disease stage, MRD measurement method and sensitivity, cytogenetic 

risk factors, disease setting (newly diagnosed vs relapse, transplant eligible vs not), and depth 

of clinical response, including achievement of CR or sCR [25]. 
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6.2.1 Multicolor flow cytometry and its use in assessing minimal residual disease 

Due to several commonalities between MM and other plasma cell dyscrasias such as 

diffuse large B-cell lymphoma and chronic lymphocytic leukemia, it is often useful to apply 

techniques developed for other cancers such as V(D)J sequencing[23] and multicolor flow 

cytometry (MFC)-based MRD detection[26, 27] to MM. MFC is the diagnostic gold standard 

for assessing immunophenotypic MRD due to its high sensitivity and applicability. Next 

generation multicolor/multiparameter flow cytometry has sensitivity on the order of 1x10-6; 

older MFC technologies retain sensitivity on the order of 1x10-4-1x10-5 [17]. Even this lower 

level of sensitivity can be used to inform treatment decisions [17], and a failure to detect 

MRD at this level of sensitivity is a strong prognosticator of OS and PFS[18, 22].  

Flow cytometry has been in use for MRD assessment in clinics for over two 

decades[26] and improvements in technique have caused sensitivity to increase from 10-4, 

using the original CD45/CD38/CD138 panel (or an alternative to CD138, up to three colors 

total), to 10-6 in some modern versions of the assay utilizing up to 10 colors. Use of MFC in 

the GEM2000 trial showed definitively the survival benefit of MRD negativity by MFC[28]. 

In agreement with early literature, Paiva et al showed that MRD negativity is a better 

predictor of PFS and OS than immunofixation or CR with sensitivity of 10-4, and posited that 

greater sensitivity might allow MFC to rival PCR-based methods. Sensitivity advances in 

MFC have allowed for comparison of benefits for various sensitivity levels: Rawstron et al 

showed that there is a comparative benefit per log reduction of sensitivity, correlating to an 

extra year, on average, of OS per log reduction[17]. MRD detection is considered a 

secondary clinical endpoint for trials, such as the PETHEMA/GEM2012/MENOS65 trial 

which has incorporated NGF as the primary MFC protocol[22]. 
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Various facilities have their own protocols and panels for MFC detection of MRD, 

which may use multiple tubes and 8-10 colors for immunophenotyping. Standard of care 

methods include the EuroFlow-based eight color, two-tube panel[29] and some ten-color 

panels[30], offering sensitivity down to 2x10-6 to 6x10-6, respectively. In general, at least 

seven colors are required to give optimal sensitivity and provide comparable results, allowing 

for standardization between facilities[31], but standardization is still a challenge and efforts 

to remedy this are ongoing[32]. Another major challenge to MFC-based MRD detection is 

the nature of the sample required. A BMB aspirate consists of living cells, so the processing 

time between aspiration time and analysis must be as short as possible to obtain the most 

comprehensive results.  

6.2.2 Tumor infiltration and extramedullary disease 

Plasma cells reside in their niche in the bone marrow but can, and frequently do, 

migrate throughout the bone marrow and through the entire lymphatic system. Myeloma cells 

can form tumors distant from the original tumor site, creating a patchy pattern in the bone 

marrow, and causing extramedullary disease in the skull, sternum, lumbar spine, and 

elsewhere.  Plasmacytomas are identified using MRI or x-ray magnetic bone imaging (MBI), 

which have been standard practice in MM diagnosis and treatment for decades[33]. The 

disappearance of plasmacytomas identified at diagnosis via MRI or MBI is included in the 

IMWG definition of complete response and strict complete response[20]. Importantly, 

however, extramedullary plasmacytomas can serve as reservoirs for relapse. 

In the last decade, 18fluorodeoxyglucose positron emission tomography/computed 

tomography (FDG-PET/CT) has been demonstrated to be an impactful tool for predicting 

survival in newly-diagnosed patients by assessing disease burden, and showed some promise 



6 

 

in predicting outcomes based on response to ASCT[34-36] and anthracycline-based 

chemotherapy[37].The identification of extramedullary lesions with high standardized uptake 

values on FDG-PET/CT correlates with worse OS, but does not correlate with M protein 

levels [38]. FDG-PET/CT evaluation can be used to target certain regions for BMB beyond 

the standard iliac crest site and is used to determine whether ASCT has been effective, and 

patients who are FDG-PET/CT negative after ASCT are known to have longer PFS and OS 

than those patients who are FDG-PET/CT positive, regardless of CR status[39]. However, 

FDG-PET/CT is not effective in identifying diffuse bone marrow involvement[40], and only 

has moderate sensitivity and specificity for detecting lesions after treatment[41]. This would 

indicate that FDG-PET/CT lacks the necessary sensitivity to detect clonal cells which 

constitute a reservoir for relapse. 

6.2.3 Circulating tumor cells: an alternative compartment  

Circulating tumor cells (CTC) are plasma cells which are shed into the bloodstream 

and may be indicative of the primary tumor or an extramedullary tumor, and may be 

identified through MFC, PCR, or sequencing of peripheral blood mononuclear cells[42]. No 

matter which method is used, the obvious benefit to using this source is its ready availability 

and utility. Identification, isolation, and investigation of CTC can also be done by 

paramagnetic bead enrichment or microfluidic methods[43], and the genetic material from 

these cells is useful for downstream karyotypic, genetic, or genomic analysis such as PCR-

based MRD detection[43-45]. CTC are not perfectly identical to primary tumor plasma cells: 

CTC adopt a quiescent phenotype and often display genetic features consistent with 

subclonality[45, 46]. That said, there is generally good overlap between CTC and primary 

tumor plasma cells[47].  
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As a part of the PETHEMA trials, Sanoja-Flores et al showed that the failure to detect 

CTC via NGF may lead to false negatives when compared to contemporaneous BM samples, 

but may also detect extramedullary disease, and that CTC identification is an independent 

predictor of PFS with a higher hazard ratio than BM MRD positivity, suggesting that the 

detection of CTC indicates increased tumor burden and/or extramedullary disease[48], and 

corroborating their earlier report that CTC levels indicate increased risk for MGUS and 

SMM patients[49]. This is in agreement with another report that >100 CTC in a sample on 

150,000 PBMCs is an independent risk predictor[50], and a separate report that detection of 

CTC immediately before ASCT is an independent negative predictor of OS and PFS[51]. 

Taken together, the literature suggests that the presence of these cells, though somewhat rare 

outside of active disease, can serve indirect measurements of tumor burden. 

6.3 Molecular alternatives to NGF/MFC MRD detection 

The legacy alternative to MFC/NGF for MRD detection is allele-specific 

oligonucleotide quantitative PCR (ASO-qPCR), which has been validated to have 

comparable clinical significance at comparable levels of MRD detection to MFC-based 

MRD[52]. The principle of all approved ASO-qPCR and all approved NGS assays is the 

detection of clonotypic sequences in the rearranged V(D)J region of the clonal plasma cell 

genome; however, this is also a major flaw, as a minority of patients have no trackable gene 

rearrangement. NGS applicability is approximately 90%[53], while ASO-qPCR applicability 

is <80% and requires a complex workflow, including patient-specific primer design and 

manufacturing, germline Sanger sequencing, and the creation of a standard curve[54-56]. 

Digital droplet PCR (ddPCR), an evolution of qPCR, offers higher sensitivity and decreased 

workloads at the lab bench by eliminating the need for a standard curve, but still requires all 
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the other steps mentioned for ASO-qPCR. The technique has been shown to have comparable 

sensitivity and specificity to ASO-qPCR[57], and has been validated by direct comparison to 

NGS and ASO-qPCR in patients following ASCT[58].  

Separately, liquid chromatography tandem mass spectrometry (LC-MS) platforms 

have been tested for use in MRD detection with a focus on clonal M-protein detection in 

serum, based on M-protein isoforms predicted by genomic data[59]. This is an evolution of 

the traditional serum protein electrophoresis and immunofixation electrophoresis, which has 

been used to quantify serum and urine M-protein for decades. Others have proposed the use 

of MALDI-TOF MS to analyze M-protein levels and clonotypes[60, 61], and have 

demonstrated the utility of this approach despite potential interference from monoclonal 

antibody therapy; and Eveillard et al [62] showed that there was some agreement between the 

MALDI-TOF method and MFC. The MS-based approaches tend to separate into two groups: 

those using a mass-based approach, [63]; and those seeking specific clonotype sequences 

after trypsin digestion[61, 64].  The IMWG has endorsed MS as an alternative to 

immunofixation[65] and called for its inclusion in further clinical trials. One promising 

report has demonstrated the use of DNA aptamers and a photometric assay in detecting 

clonal IgG in serum at levels below the limit of IFE detection in a patient showing a 

complete response and MRD negativity (at 10-5 by MFC) who later relapsed [66]. Others 

have shown that MS can detect minimal residual disease (in the form of clonal M protein) in 

sCR[67]. Finally, a group has shown that MRD+ status by LC-MS (using the clonotypic 

approach) correlates with inferior survival, even when MRD negativity by sequencing is 

achieved[68]. While these reports are promising, comparison to other MRD detection 

techniques is needed, as MRD levels are generally concordant between MFC and NGS-based 
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techniques. Derman et al[68] showed a good degree of agreement between methodologies, 

but MS has yet to be validated as extensively as other techniques have[58, 69, 70], and the 

degree of comparability between LC-MS and established methods has not been determined. 

6.3.1 Sequencing approaches in MM: MRD, tumor heterogeneity, and clonal evolution 

In the last 15 years, the advent and decreasing cost of next-generation sequencing has 

allowed for the study of the genetic basis of several cancer types and complete, personalized, 

whole-genome sequencing. NGS of PCR-amplified, tumor-specific markers showed the 

potential for identifying MRD using NGS as a main instrument of detection in liquid tumors 

based on the ability to identify low frequency aberrant reads[71]. Because unique 

immunoglobulin gene rearrangements are characteristic of mature plasma cells, significant 

attention has been paid to next-generation sequencing of these genes and their use as 

biomarkers [72]. In addition, the evaluation of bulk DNA samples by NGS allows for the 

identification of multiple clones and subclones through the identification and frequency 

determination of multiple variants of a single gene[73, 74]. 

At present, the most widespread clinical application of NGS for MRD detection in 

MM targets immunoglobulin V(D)J sequences which are characteristic for clonal cells[21, 

23]. These systems have been commercialized as the clonoSEQ platform (Adaptive 

Biotechnologies, Seattle, WA, USA), formerly known as LymphoSIGHT™ [75, 76] and 

LymphoTRACK™ (Invivoscribe Inc., San Diego, CA, USA) systems. clonoSEQ assay is 

more common and is routinely used for MRD assessment. Briefly, the procedure calls for 

DNA extraction from bone marrow aspirate and PCR amplification of all IGH loci, including 

the IGH complete and incomplete loci. The assay is based on universal PCR primers for the 

targeted sites, with 39 total PCR cycles and requires a minimum of 500ng gDNA input per 
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sample. The amplified product is then made into a library and sequenced at a median 

coverage of 10x per input B cell. The assay requires an initial identification of the tumor 

clonotype on diagnosis (defined as a clonotype identified as >5% of reads), and the clonotype 

can then be tracked over the course of treatment[77]. LymphoTRACK, in contrast, uses 

different targets within IGH. It is designed to be done in-house by clinical labs and can be 

run on an Illumina MiSeq[69], whereas clonoSEQ is performed centrally. 

A major benefit that NGS offers over other approaches is the ability to supply 

qualitative data on mutation landscape, which in other cancers can indicate appropriate 

courses of therapy[78, 79]. NGS does have multiple applications with respect to investigating 

clonal evolution and druggable mutations, but in the context of MM MRD, the primary value 

of NGS is its ability to identify very low frequency variants in a sample. 

6.3.2 Circulating tumor DNA and its use in MM observation 

An alternative to BMB-derived material is freely circulating cell-free DNA (cfDNA). 

cfDNA is the result of normal cellular turnover as chromatin is digested by endonucleases 

during apoptosis[80]. Circulating tumor DNA (ctDNA) displays good concordance with 

primary tumors via whole exome sequencing (WES) in MM[45] and similar “liquid biopsies” 

have been tested in active MM and other types of cancer[81-86], including a liquid biopsy for 

EGFR in NSCLC which was recently FDA-approved[87].  

In MM, ctDNA-based liquid biopsy has not been extensively validated in clinical 

trials. Rather, a handful of trials have yielded conflicting data about the usefulness of liquid 

biopsy for cfDNA. Notably, three studies analyzed V(D)J sequences in cfDNA only: Oberle 

et al elected to amplify V(D)J sequences via PCR before library preparation and sequencing, 

and determined only that MM-indicating V(D)J sequences are cleared from circulation more 
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quickly than M protein[88]; this may indicate a relationship to tumor burden, but this is 

disputed by conflicting results from Manier et al[45]. Biancon et al[89] took a similar 

approach, amplifying the IGHJ gene in cfDNA. They observed several clonotypes of IGHJ 

occurred in either cfDNA or isolated plasma cells, but only 11% of the clonotypes they 

identified occurred in both. However, they observed that all tumor-associated clonotypes 

were identified in both plasma cells and cfDNA. Finally, Mazzotti et al[90] used the 

clonoSEQ platform to analyze both BM samples and cfDNA. Mazzotti’s group saw no 

correlation between MRD levels in BM and cfDNA, and saw 18 false negatives (MRD- by 

cfDNA analysis, MRD+ by BM analysis) out of 37 samples. However, it is unclear whether 

clonoSEQ is appropriate for cfDNA in MM, though it has been demonstrated in DLBCL[23].  

Rustad et al[91] presented the first reports using ddPCR in cfDNA in MM to date 

(though Drandi et al’s original method used paired BMB and peripheral blood samples[57]), 

finding that this method was able to identify mutations in the MAP kinase pathway 

consistently, and was able to track tumor burden. However, the choice of the MAP kinase 

pathway as a target limits the applicability of this approach to <50%. Li et al were able to 

replicate these results, though MRD was never explicitly addressed [92].  

Later, Vij et al used a hybrid approach, co-opting the clonoSEQ technique and using 

it on both cfDNA and FACS-sorted PBMCs, and comparing this approach to traditional 

BMB. They found good concordance between the two methods, as well as correlation 

between PBMC/serum clones and BMB-derived clones. Unique among these studies is that 

Vij et al also isolated RNA from PBMC and serum to search not only for the clone, but also 

to assess the number of clonal cells present[44].  
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A newer development in MM liquid biopsy is the use of low-pass whole genome 

sequencing (lpWGS), whereby tumor burden is calculated based on the relative magnitude of 

copy number aberrations in the sequenced sample. Pre-treatment application of DLBCL 

patients has been shown to predict risk of relapse after CAR-T therapy [93], and in MM, 

lpWGS helps define risk categories in multiple-refractory MM patients not receiving CAR-

T[94]. 

6.3.3 Hybrid capture promises high sensitivity and applicability 

In the context of both low disease burden, it may prove difficult to detect ctDNA and 

differentiate it from germline cfDNA. In addition, sheared gDNA may not be amplified 

appropriately if the locus of interest is not flanked by primer sites on both sides of the 

fragment. Both of these issues can be ameliorated through the use of hybrid capture[83, 85, 

95]. Much like whole exome sequencing (WES) enrichment, hybrid capture uses 

oligonucleotide probes to capture specific fragments for high-throughput NGS.  

Several studies have used hybrid capture to identify mutations and track disease 

progression in several other cancers, including breast cancer[83], lung cancer[78, 83, 96], 

and diffuse large B-cell lymphoma (DLBCL) [81, 86, 97] which has many parallels with 

MM. First published in 2014, CaPP-Seq (Cancer Personalized Profiling via Sequencing) was 

proposed as a method to identify somatic mutations and copy number aberrations in non-

small cell lung cancer (NSCLC) patients. Newman et al applied an iterative algorithm to a 

large cohort of NSCLC tumor genomes and exomes, aiming to identify “selectors” which 

would find the greatest number of somatic mutations and fusion breakpoints at the shortest 

probe length. The group then optimized the probes on an independent NSCLC tumor cohort, 

and in testing patient samples, observed maximal sensitivity of 85% and maximal specificity 
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of 96%, with improvements as the disease progressed from stage I onwards. In addition, 

owing to the difficulty of biopsy in NSCLC and the confounding effects of radiotherapy on 

PET-CT, the authors used CaPP-Seq as a surrogate for tumor burden[96]. Working from the 

same lab as Newman, Scherer et al demonstrated high sensitivity in DLBCL and identified 

sequences predictive of relapse [23]. The technology is marketed under license using the 

Roche Avenio branding. Using a CaPP-Seq schema generalized for multiple cancers, Clark et 

al would use a similar hybrid capture design, along with unique molecular identifiers (UMI) 

in cfDNA and associated solid tumors, identifying disease evidence at sensitivities over 80% 

at a mutant allele frequency <0.25% with 100% positive predictive value, and compared 

favorably to established PCR methods[83].  

In MM, hybrid capture-based schemes have been used to investigate cfDNA during 

active disease, but not to investigate MRD specifically[85, 98, 99]. Three investigations 

separately attempted to identify known oncogenes and IGH loci via hybrid capture, then use 

deep sequencing to identify mutants, translocations, and copy number aberrations. The 

studies all vary in DNA source, sample input, and targets, and among these, the target size 

and input are likely the most important. Common regions include member genes of the MAP 

kinase pathway and IGH. Theoretically, larger panels which target many loci would have 

greater sensitivity than smaller ones. However, there is an upper limit, as Manier et al’s WES 

approach only identified 20-30 genes which were useful in analysis. The sensitivity of the 

hybrid capture approach has not been evaluated in minimal residual disease in MM, as all of 

the above assays were evaluated in active disease. Though each shows high sensitivity, the 

ability to detect minimal residual disease using hybrid capture may depend on more than just 

identifying canonical mutations. 
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6.4 Challenges and future directions 

6.4.1 Technical and comparative challenges 

The ability to define and detect residual disease at sensitivity levels >10-5 have given 

the myeloma community a much better understanding of the depth of response achieved by 

existing and novel therapies, the increasing depth of response driven by modern therapies has 

led to their becoming frontline strategies. Technical challenges for each approach are well-

documented, but some universal challenges remain.  

MFC is the gold standard in cancer treatment due to its near-universal applicability 

and sensitivity, but it is not without its drawbacks. All bone marrow-based assays require 

poorly tolerated and inefficient bone marrow biopsies (BMB)[100]. BMB are uncomfortable 

and invasive for patients and have a failure rate of up to 25% due to hemodilution[100]. 

Tumor heterogeneity is frequent in MM and a single BMB could miss some of the 

heterogeneity of the tumor[6]; this can be remedied somewhat via sequencing approaches or 

targeted biopsies (based on imaging) [45, 101], but the patchy nature of MM tumor 

infiltration in the medulla, as well as the presence of extramedullary disease, means that blind 

BM aspiration alone is an imperfect sampling strategy[102]. Finally, rapidly proliferating 

tumors may not be detected in the semiannual or annual intervals used for BMB and MFC 

analysis until they become clinically apparent, by which point the value of MRD detection is 

moot.  

A common theme in MRD research, especially in myeloma, is that a negative result 

in one MRD testing modality does not necessarily predict whether a patient is truly “cured,” 

or even whether they will test positive for MRD by another modality. The various MRD 
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assessment techniques have varying sensitivities, interrogate different compartments, and an 

MRD- result often only indicates that the time before relapse is prolonged. 

A variety of groups have attempted to measure MRD in different ways, and MRD 

measurement is not standardized in methods or reporting. While ddPCR, NGS, and MFC 

have all been shown to be roughly comparable[58], efforts to standardize MRD reporting 

have only come to fruition in the last few years[102], so older studies must be compared in 

light of their differences in design and methodology.  

Sensitivity of both MFC and NGS have increased to the point that sensitivity is 

ultimately bound by sample input: for example, an input of 106 cells into NGF analysis can 

reasonably be expected to have a sensitivity of 10-6, and the same is roughly true (though not 

entirely) for NGS-based approaches[103]. Though the sensitivity of NGS approaches is 

comparable to, or surpassing, that of NGF, increased sensitivity comes with its own technical 

challenges, not least of which the necessary input material to achieve greater sensitivity: due 

to the statistical “rule of three,” to achieve a 10-7 sensitivity using NGF, 3x107 bone marrow 

cells would be necessary[104, 105]. For a complex NGS assay involving hybrid capture and 

NGS, library preparation and multiplexing each require subsampling steps. Assuming  

sufficient read depth, the probability of detecting target molecules in a healthy background is 

determined by Poisson probability distributions, and this probability decreases based on the 

number of subsampling steps[106]. NGS approaches are also limited by PCR-induced bias 

and the error rate of the sequencing platform used. Finally, a common practice in NGS-based 

approaches is sample multiplexing, which can produce cross-contamination and index 

hopping, leading to false positives[107].  While multiplexing, subsampling, and unnecessary 

PCR cycles could be avoided or mitigated, this has the potential to make each assay 
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extravagantly expensive. Some researchers have suggested that NGS assays be performed in 

triplicate, further adding to the cost of these techniques[56]. Pushing to 10-7 or deeper may 

not be possible with current technology or even particularly informative unless that level of 

response can be shown to have a survival advantage over detection at 10-6, the current limit. 

While increasing sensitivity of MRD assays may be worthwhile, a more important challenge 

may simply be to have a greater proportion of patients achieve sustained MRD negativity 

after therapy. In this light, MRD outcome may be highly useful as a secondary endpoint for 

clinical trials in MM. 

6.4.2 Minimizing sequencing error 

Error is inevitable when using NGS, and although modern sequencers have improved 

error rates compared to previous generations, error rates on the order of 1x10-4 bases read are 

standard when sequencing at great depth [108]. Furthermore, PCR misincorporation errors 

can occur at rates ranging from 1.5x10-4 (Taq) to 5.3x10-7 (high-fidelity Q5 

polymerase)[109]. To mitigate sources of sequencing and polymerase errors, multiple error 

suppression methods have been proposed.  

Molecular barcoding, first proposed by Miner et al [110], is the process of 

introducing a degenerate nucleotide tag sequence to each input DNA molecule during library 

construction, which allows sequenced molecules to be identified as authentic sequences, 

duplicates (thus allowing quantitation of duplicates), and further allows the identification of 

errors within individual molecules [111, 112]. Use of these nucleotide barcodes, or unique 

molecular identifiers (UMIs) allowed improvement of error detection by requiring the 

identification of “super-mutants,” mutants present on ≥95% of reads of a single molecule 

family. This approach improved the accuracy of NGS-based analysis of very low-frequency 
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mutation rates in human germline DNA and other sources, showing substantial decreases in 

variant allele frequencies identified by these modalities[112]. 

Duplex sequencing, an extension of these ideas, incorporates dual UMIs, one unique 

tag on each end of the insert molecule, and requires in silico matching of the sequenced 

strands into read families to confirm the authenticity of variants present on both strands, as 

opposed to polymerase errors introduced at any point, even the initial amplification step. 

Drawing on earlier approaches, this method generates a single strand consensus sequence 

(SSCS) from each strand of the original molecule, and then reconciles the SSCS from both 

strand families into a dual strand consensus sequence (DSCS) for the insert molecule. As 

such, variants only recognized on the read family for one strand can be classified as 

polymerase errors, as are any variants identified in any smaller portion of the reads for one 

strand[113]. One drawback of Duplex sequencing, however, is that reconciling SSCS to 

DSCS is difficult, and the majority of reads are not able to be reconciled into DSCS. As a 

result, it is impractical and uneconomical to sequence samples to a duplex depth (depth of a 

locus covered by DSCS-reconciled reads) to an equivalent SSCS depth[114]. 

Additional efforts to improve sequencing accuracy include in silico error suppression 

methods, predicated on the fact that sequencing errors are stereotypic, and the predominant 

class of errors (G→T transversions, C→T and G→A transitions) are the result of oxidative 

damage during enzymatic and hybridization reactions. Furthermore, the possibility of a given 

base being a false mutation can be judged against the probability of finding a similar 

mutation in the same locus in a panel of healthy controls, allowing greater confidence in true 

variant calls when a panel of normal samples is included in the analysis[115]. Another novel 
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strategy to detect variants accurately at low frequencies is to specifically look for phased 

mutants, i.e. two specific variants in short succession on a molecule[116] 

6.5 Utilizing highly sensitive methods of assessing disease burden for prognostication 

of disease course 

While the correlation between various genetic factors and disease outcome has been 

understood for decades, and while sequencing studies in the past fifteen years have 

elucidated the effects of specific mutations, using these data in real-time to observe and 

potentially predict therapy response is a fledgling field. The relative invasiveness of the main 

MRD detection methods suggest that assays relying on the bone marrow compartment are 

not ideal for providing useful data in dynamic treatment settings. However, many schema 

relying on peripheral blood have demonstrated prognostic ability, both in MM and in other B 

cell malignancies.  

This discussion is particularly relevant in the context of chimeric antigen receptor T 

cell therapy (CAR-T), which has a unique response profile. As described above, CAR-T 

therapy causes durable responses in roughly half of patients, while the other half experience 

disease progression within months of infusion. Combined with the significant turnaround 

time of six weeks to manufacture autologous CAR-T cells and the significant expenses 

involved in the therapy, the ability to predict which patients would respond well to CAR-T 

therapy could guide treatment decisions, thereby preventing a waste of time and resources. 

On the other hand, the novel nature of CAR-T treatment, combined with extensive inpatient 

time surrounding treatment, makes CAR-T therapy an excellent subject for comprehensive 

and rigorous study. 
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Analysis of sFLC and immunofixation of immunoglobulins surrounding CAR-T 

therapy indicates that the change from baseline M protein level presents as a rapid decline 

over the first month before plateauing and eventually rising if the patient relapses, consistent 

with responses of this biomarker to traditional therapy [117]. In addition, outside the CAR-T 

context, Manier et al [45] show that disease burden assessed by cfDNA low-pass WGS 

correlates with M protein levels and disease burden. Data demonstrating the utility of the LC-

MS approach described earlier in the context of CAR-T therapy are not available, but could 

provide a promising avenue to utilize liquid biopsies in dynamic treatment settings. 

In the context of diffuse large B cell lymphoma, our group has shown the ability of 

CaPP-Seq to discriminate patients into “responders” and “nonresponders” on the basis of a 

five-fold decrease in variant allele frequency in ctDNA within seven days post-infusion of 

anti-CD19 Axicabtagene ciloleucel (Axi-cel)[118]. To our knowledge, this study is unique in 

that it investigates disease burden in a very short duration after transfusion, whereas the 

majority of studies of CAR-T therapy for lymphoid malignancies do not examine disease 

responses for at least one month after infusion, when response and MRD status are evaluated. 

However, given that ide-cel CAR-T cells expand to their maximum number during the first 

week of therapy before slowly declining over several months[15], it is possible that tumor 

burden may regress within the first week of therapy[Martinez], consistent with Deng et al’s 

study of DLBCL. 



20 

 

7 Justification, hypotheses, and aims 

Chimeric antigen receptor T cell therapy is a novel adoptive cell therapy which shows 

considerable promise in multiple myeloma and leads to rapid shrinking of the tumor within 

one month of infusion[14]. CAR-T numbers peak within one week of infusion[15], but the 

most sensitive methods of detecting residual tumor cells (Minimal Residual Disease, MRD), 

methods which are prognostic in nature[13, 17, 18]. are not able to monitor disease burden in 

such a dynamic timeframe owing to their reliance on poorly-tolerated bone marrow biopsies. 

An attractive alternative to bone marrow biopsies presents itself in cell-free DNA (cfDNA) 

which is shed into the bloodstream by apoptotic cells throughout the body. Circulating tumor 

DNA (ctDNA) displays good concordance with whole exome sequencing (WES) in MM[45] 

and similar “liquid biopsies” have been tested in active MM and other types of cancer[81-

87]. A unique challenge of detecting low disease burden in cfDNA is the expected low copy 

number of ctDNA, but this may be ameliorated through the use of hybrid capture[83, 85, 95], 

which uses oligonucleotide probes to capture specific fragments for enrichment before high-

throughput NGS. We have designed a custom hybrid capture probe panel and intend to apply 

it to serial cfDNA samples of patients receiving CAR-T therapy in order to test results 

demonstrated by Deng et al[118], who showed that a fivefold decrease in variant allele 

frequency, as determined by ctDNA capture sequencing, within seven days of CAR-T 

infusion was predictive of treatment response in diffuse large B cell lymphoma (DLBCL). 

The central hypothesis is that our approach, using cfDNA, hybrid capture, and deep 

sequencing, which we refer to as M5Seq (myeloma molecular residual disease monitoring by 

massively parallel mutation sequencing), will have sensitivity equivalent to or exceeding 
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standard of care MRD measurement techniques. Furthermore, we hypothesize that the 

sequencing data which results will be useful for predicting outcomes. 

The specific aims of this project are: 

7.1 Aim 1: Determine the limit of detection and limit of linearity of the M5Seq assay  

Next generation sequencing, using advanced digital error suppression and molecular 

barcodes, is able to identify and quantitate ultra-low frequency variants in genomic and cell-

free DNA, including the identification of ultra-low frequency tumor-derived variants when 

using custom hybrid capture panels[96], at allele frequencies of 0.01% and lower. Similarly, 

standard of care MRD assays frequently achieve this level of sensitivity [29, 75]. I 

hypothesize that M5Seq will be able to detect variants with similar sensitivity to existing 

methods, and that it will retain linearity down to its limit of analytical sensitivity. In order to 

demonstrate the limit of sensitivity of M5Seq, spike-in libraries consisting of serial dilutions 

of tumor-derived DNA in healthy DNA will be captured and sequenced, and the variant 

allele frequency for individual variants will be plotted down the dilution series to a lower 

limit of 10-6. To eliminate the influence of confounding variants, a panel of healthy cfDNA 

controls will be captured and sequenced, and variants identified in more than 1 normal 

sample will be filtered. In addition, population-level variants identified in the ExAC browser 

above a population allele fraction of 1% will be filtered. 

7.2 Aim 2: Investigate the informative and prognostic abilities of M5Seq in patients 

receiving standard of care treatment.  

Exome sequencing demonstrates strong concordance between cfDNA and tumor 

gDNA in lymphoid malignancies[23, 86, 96] including MM[45]. Furthermore, ctDNA 
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sequencing is predictive of outcomes in DLBCL, including in the days following CAR-T 

therapy[23, 97, 118]. I hypothesize that when utilizing M5Seq, variants called in bone 

marrow and contemporaneous samples will demonstrate good concordance. I further 

hypothesize that change in VAF within two to seven days after CAR-T infusion will be 

predictive of outcomes. First, we intend to sequence matched, contemporaneous pre-

treatment cfDNA and bone marrow samples taken from treatment-naïve MM patients to 

demonstrate inter-compartment concordance and applicability of ctDNA sequencing as an 

indirect indicator of tumor burden. Second, we intend to evaluate changes in VAF over the 

seven days after CAR-T infusion and determine whether these changes are correlative with 

IMWG-defined response at D+30 or survival. 

The successful accomplishment of Aim 1 will allow for accurate quantitation of low-

frequency, tumor-derived variants and establish the analytical sensitivity of the assay when 

compared to MRD assays. The successful accomplishment of Aim 2 will demonstrate the 

clinical and prognostic abilities of M5Seq, providing better information to clinicians and 

scientists as CAR-T therapy in MM evolves.  
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8 Methodology 
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Figure 1: Schematic of methodology employed 

The sample processing workflow for all samples consisted of six discrete steps (fig.1, 

from top left following arrows). DNA was extracted from patient plasma and primary tumor 

samples, and the extracted DNA was assessed for quality in order to determine which 

timepoints to assess, when possible. Sequencing libraries were constructed from these DNA 

samples, and the libraries were enriched using hybrid capture. Captured libraries were 

sequenced and the resulting data were analyzed using a publicly available bioinformatics 

process. 

8.1 Sample acquisition and sources 

Clinical samples were acquired from two different sources: first, a standard-of-care 

clinical specimen collection protocol (PA19-0436) for newly-diagnosed MM patients 

(“NDMM cohort”) receiving bortezomib, lenalidomide, and dexamethasone therapy (VRd) 

and an autologous stem cell transplant. Of these, 11 patients were identified as being 

candidates for analysis due to the presence of multiple induction samples and post-transplant 

samples, and of these, one bone marrow-derived library failed QC. Second, 

relapsed/refractory MM (RRMM) patients receiving ABECMA (idecabtagene vicleucel, 

Bristol Myers Squibb, referred to herein as “ABECMA protocol” or “ABECMA cohort”) 

anti-B Cell Maturation Antigen CAR-T therapy (n=19).  

8.2 Spike-in experiments 

Genomic DNA (gDNA) from peripheral mononuclear blood cells (PBMC, from MD 

Anderson Cancer Center blood bank) and cell lines U266 and H929 (American Type Culture 

Collection) was extracted using the Qiagen Blood Spin mini Kit according to manufacturer’s 
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protocol and quantified using Qubit 3.0 fluorometry (ThermoFisher Scientific). DNA was 

sonicated to 150bp using a Covaris M platform, and the sonicated product was diluted to 

50ng/μL. The following samples were prepared for library prep, using 1/10 serial dilutions 

(see table 1 for DNA input and expected allele fractions). Positive controls contained only 

cell line (U266 or H929) DNA, processed as described; negative controls contained only 

PBMC DNA, again processed as described. Each library had an input of 1500ng of DNA, as 

quantified before shearing per manufacturer directions, and suspended in 30µL of ultrapure 

water. 

Table 1: Experimental design of spike-ins 

Variant Allele Freq. 
log10 Cell Line DNA (ng) PBMC DNA (ng) 

1 (Positive Control) 0 1500 0 

0.1 -1 150 1350 

0.01 -2 15 1485 

0.001 -3 1.5 1498.5 

0.0001 -4 0.15 1499.85 

0.00001 -5 0.0015 1499.985 

0.000001 -6 0.00015 1499.9985 

0 (Negative Control) NA 0 1500 

 

8.3 Nucleic acid extraction 

In accordance with the MD Anderson Cancer Center clinical specimen protocol 

PA19-0436, 10mL blood samples were collected from patients at diagnosis of MM and twice 

centrifuged to obtain plasma. 

10mL blood samples were collected from patients receiving ide-cel on the following 

schedule. Samples were twice centrifuged to obtain plasma.  

• At apheresis for CAR-T manufacture 
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• Days -5, 0, +1, +4, +7, +14, +21 +28 from CAR-T infusion (±2 days for each timepoint 

before 14 days, then ±3 days for subsequent timepoints) 

• Every 30 days after infusion until discontinuation or withdrawal, up to 120 days 

In addition, 16 banked plasma samples from the MD Anderson Cancer Center blood 

bank were thawed and aliquoted into 15mL tubes. All researchers were blind to the identity 

or clinical characteristics of the normal samples, which contributed to the Panel of Normals 

(PoN). 

cfDNA was extracted from plasma using the QIAGEN Circulating Nucleic Acid kit 

(QIAGEN, Hilden, DE) according to manufacturer’s protocol and eluted in 35μL PCR-grade 

water. Eluent was then quantitated using the Qubit 3.0 and Qubit High Sensitivity reagents, 

and analyzed using Agilent Tapestation D1000 to assess quality and purity of cfDNA. 

Bone marrow samples were processed by the MD Anderson Cancer Center 

Lymphoma Tissue Bank and viably cryopreserved. These samples, containing over one 

million cells each, were spun down and washed twice in phosphate-buffered saline before 

resuspension in Qiagen RLT Plus buffer. Bulk nucleic acids were extracted using the Qiagen 

Allprep kit. DNA was quantitated using the Qubit 3.0 with Qubit High Sensitivity reagents 

before shearing using the Covaris M platform.  

8.4 Library construction, hybrid capture, and sequencing 

The samples then underwent library construction using Twinstrand library and 

capture kits (Twinstrand Biosciences, Seattle, WA), using dual index universal molecular 

identifier stubby indexing adapters (UDI). All library preparation was carried out in 96 well 

plates to limit variability. End repair and A-tailing was performed in a thermocycler (20℃ 
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for 30min, then 65℃ for 30 minutes), followed by UDI adapter ligation for one hour at 20℃ 

in a thermocycler. The ligated product was bound to a 0.8x suspension of SPRI beads and 

cleaned using 70% ethanol to remove adapter dimers and enzymes from the ligation reaction 

before resuspension in low-TE buffer. The product was conditioned using Twinstrand 

Library Conditioning Mix by incubation at 37℃ for one hour. The product was then 

amplified using PCR (10 cycles) and cleaned with a 1.0x ratio of SPRI beads. Final libraries 

were analyzed via Agilent Tapestation to check for quality, fragment size, and purity. 1μL of 

library was diluted 1/10 and used for QC, then stored for low-passage whole genome 

sequencing (lpWGS).  

The first of two overnight hybridization reactions was conducted using a custom 

probe set at 65℃. The hybridization mixture incubated for no less than 14 hours (and up to 

20) with biotinylated probes before being transferred onto washed streptavidin beads and 

incubating for another 45 minutes to capture hybridized molecules on the beads. Washes 

occurred at room temperature, following manufacturer protocols. Captured libraries were 

amplified by PCR (16 cycles) and cleaned with a 1.0x ratio of SPRI beads before quantitation 

and QC.  

The second overnight hybridization proceeded the same as the first hybridization, 

except that the incubation temperature was 62℃, again in keeping with manufacturer 

protocol. Captured libraries were amplified using PCR (6 cycles) and cleaned with a 1.0x 

ratio of SPRI beads before final quantitation and QC. Captured libraries were stored in low-

TE buffer in 96 well plates at -20℃.  

Following manufacturer recommendation for achieving maximum mean duplex 

depth, samples were sequenced according to the following scheme: 
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 # Paired End Reads = 1.08x106 x DNA input (ng) x Conversion Factor 

Such that 1.08x106 is a panel-specific requirement, and the conversion factor is an 

integer n=1 for sheared gDNA and n=3 for cell-free DNA. So, for example, bone marrow 

samples with 250ng input would call for: 

 # PE reads = 1.08x106 x 250ng x 1 = 270 million reads 

And a cfDNA sample with 50ng input would require: 

 # PE reads = 1.08x106 x 50ng x 3 = 162 million reads 

Samples were pooled proportional to the number of reads required and sequenced on 

S4 lanes on an Illumina NovaSeq system, using paired-end 100bp reads.  

8.5 Capture panel design 

An initial capture panel design was created using hg19 according to the method 

described by Newman[96] based on MM exomes publicly available in the Multiple Myeloma 

Research Foundation CoMMpass database (Green lab, unpublished data). This panel, 

MM_M4, was then significantly redesigned and modified. First, MM_M4 was lifted over 

using the UCSC Genome Browser to hg38. Each existing probe was analyzed for secondary 

structure and number of BLAST hits. Probes with ΔG°>-15 for RNA folding, and probes 

with >5 BLAST hits, length of >70bp, and >80% similarity were eligible for removal from 

the panel. Genes in these categories typically consisted of somatic hypermutation targets and 

Ig genes, respectively.  

At this point, the decision was made to salvage these regions when possible, as the 

mutational signature of MM does include several SHM targets and a clonotypic peptide 

sequence. Regions to be probed were identified by selecting the 500 most-commonly 

mutated genes and noncoding regions in the MM genome [119]. The exon start and stop 
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locations in hg38 were pulled for each region and compiled. These short regions were tiled 

and QC’d as described in the previous paragraph. Preference for salvage was given to known 

oncogenes such as BRAF, KRAS, NRAS, and MYD88. The final panel, manufactured as 

pan00309 (M5Seq) was manufactured by Twinstrand Biosciences and covered 186kb. 

8.6 Sequence data analysis and VFC calculation 

The bioinformatics analysis used for this process is the CAPP_SEQ_pipeline, 

publicly available on GitHub (https://github.com/Green-Lab-

MDACC/CAPP_SEQ_pipeline). FASTQ R1 and R2 read files were checked for quality 

using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and then 

converted to unaligned BAM files using the fgbio FastqToBam package 

(http://fulcrumgenomics.github.io/fgbio/). UMIs were extracted using the fgbio 

ExtractUmisFromBam package, and the reads were then converted to interleaved FASTQ 

files using the Picard SamToFastq (https://github.com/broadinstitute/picard) and aligned to 

the hg38 genome using BWA (http://bio-bwa.sourceforge.net/bwa.shtml) and Picard 

MergeBamAlignment packages. Reads were then grouped by UMI using fgbio 

GroupReadsByUmi and, depending on whether duplex consensus reads were required or not, 

were called using fgbio CallDuplexConsensusReads or CallMolecularConsensusReads (for 

single strand consensus), with a minimum of 2 matched reads to be called. The data were 

then again converted to interleaved FASTQ as described above. Reads were filtered for 

quality and consensus using fgbio FilterConsensusReads and clipped using fgbio ClipBam. 

Variants were called using GATK HaplotypeCaller and Mutect2 

(https://gatk.broadinstitute.org/hc/en-us). Final reads were enumerated using bcftools, and 

data were filtered such that only variants with depth greater than 100 were considered for 

https://gatk.broadinstitute.org/hc/en-us
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further analysis. In addition, variants previously identified in the Panel of Normals 

(previously called using DSCS) are filtered at this stage.  At this stage, variant allele 

frequency (VAF) is quantitated for every called variant. 

The Panel of Normals (PoN, n=15) were processed first and variants were called 

irrespective of variant allele frequency (VAF) or known population allele frequency (PAF), 

using DSCS. All variants present in more than one member of the cohort (equivalent PAF = 

6.67%) were filtered from subsequent samples. In addition, all called variants are annotated 

with PAF as listed in the ExAC database[120] by SeattleSeq[121] and any called variants 

with PAF >1% are filtered from further analysis. SeattleSeq also annotated SNPs in the 

dbSNP database[122] and variants identified as being repeats using the repeatMasker 

function; these annotated variants were also filtered from analysis.  

Spike-in series were screened as described above. Variants were called using DSCS 

in the U266+ and H929+ samples and using SSCS for all subsequent samples. The VAF of 

filtered variants identified in the positive control (U266+ and H929+, see Table 1) and not in 

U266- were plotted against the expected allele fraction (EAF), the dividend of the observed 

VAF (oVAF) in U266+ and the dilution factor.  

Calibration timepoint samples (i.e. samples taken contemporaneously before therapy 

intervention, either via VRd or pre-CAR-T lymphodepletion) were processed using both the 

DSCS pipeline in order to call variants with low probability of being sequencing or 

polymerase errors, and using the SSCS pipeline for comparison. Longitudinal samples, 

however, are processed on the SSCS pipeline, with special attention paid to the variants 

defined by the calibration sample’s DCSC data.  
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After filtering, final sequencing data were processed in Excel, including Variant 

Allele Frequency Fold Change (VFC), the quotient of the average filtered VAF at a given 

timepoint over the D+0 average filtered VAF. Survival analysis was performed, and hazard 

ratios were calculated, in Graphpad Prism 9. Graphics were generated using Python’s Plotly 

package, Graphpad Prism 9, or Excel. Statistical analyses were performed in Graphpad Prism 

9. 

 

  



32 

 

9 Results 

9.1 M5Seq panel validation in-silico 

The redesigned capture panel was tested in silico to assess the applicability of the 

M5Seq panel to the initial 1,212-tumor design and validation cohorts used to design the 

MM_M4 panel. Called variants from each tumor which were located in the regions mapped 

by the probes were counted as detected variants.  

Of the 1,212 tumors, 1,173 tumors contained mutations covered by the M5Seq panel 

(96.8% applicability rate). 315/1,212 tumors had 1-5 mutations covered (26.0%), 383/1,212 

tumors had 6-10 mutations covered (31.6%), 399/1,212 tumors had 11-25 mutations covered 

(32.9%), and 76/1,212 tumors had >25 mutations covered (6.3%)(fig.2b). The greatest 

number of mutations identified in one tumor was 317.  The mode of the data was 6 mutations 

covered per tumor, and the median was 9 mutations covered per tumor (fig.2a).  

 

Figure 2: Distribution of mutations directed by M5Seq in silico A) Distribution of captured 

variants in testing and validation cohorts of the M5Seq panel. B) Percentage of tumors in 

testing and validation cohorts with a given range of mutations captured by M5Seq.  

 

 



33 

 

9.2 Analytical sensitivity of M5Seq assay 

Figure 3: Results of spike-in experiments A) observed vs expected variant allele frequencies 

(oVAF vs eVAF) for spike-in experiments using the U266 cell line and counting single 

strand-supported variants which were originally confirmed via duplex sequencing in the 

calibration sample. B) oVAF vs eVAF for spike-in experiments using the H929 cell line and 

counting single strand-supported variants which were originally confirmed via duplex 

sequencing in the calibration sample. C) oVAF vs eVAF for spike-in experiments using the 

U266 cell line and only using duplex sequencing for all libraries. D) oVAF vs eVAF for 

spike-in experiments using the H929 cell line and only using duplex sequencing for all 
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libraries. E) Comparison of sequencing depth in U266 spike-in libraries when using single 

strand consensus sequencing vs duplex consensus sequencing. 

 

Spike-in experiments were conducted using the U266 and H929 cell lines. Observed 

allele fraction (oVAF) were plotted against expected allele fraction (EAF), as calculated 

using the method in the Methods section. Briefly, for each variant in the U266+ library which 

was not filtered out, the VAF of the variant was calculated by dividing the number of variant 

reads by the number of total reads at the locus (oVAF). The oVAF in the U266+ library was 

then divided by the dilution factor to compute EAF for each variant. This was plotted against 

the oVAF for the corresponding variant.  

When using DSCS support, the U266 spike-in series demonstrated a limit of 

sensitivity at 2x10-4 and remained linear on a logarithmic scale down the dilution series to an 

EAF of 2x10-4 (fig.3c) When using SSCS support, the U266 spike-in series demonstrated a 

limit of sensitivity at 3x10-5 and a limit of linearity at an EAF of 10-4 (fig.3a) 

When using DSCS support, the H929 spike-in series demonstrated a limit of 

sensitivity of 10-4 and remained linear on a logarithmic scale down the dilution series to an 

EAF of 10-4 (fig.3d) When using SSCS support, the H929 spike-in series demonstrated a 

limit of sensitivity of 3x10-5 and a limit of linearity at an EAF of 10-4 (fig.3b).  
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9.3 Newly Diagnosed Multiple Myeloma (NDMM) cohort 

9.3.1 NDMM patients, samples, and calibration timepoints 

11 newly diagnosed MM patients, having all three of a calibration bone marrow 

sample, contemporaneous plasma sample, and longitudinal plasma samples for response 

assessment were considered for analysis here. Patients began physician-ordered frontline 

therapy after collection of samples. Of the 11 patients, one (MM0008) had their calibration 

bone marrow library fail sequencing QC. A total of 10 patients are analyzed here. 
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9.3.2 Inter-compartment comparison of variants identified in NDMM samples 

 

Figure 4: Inter-compartment concordance in NDMM cohort A) Number of duplex consensus 

variants called in bone marrow, cfDNA, and in both compartments in the NDMM cohort. B) 

Number of bone marrow variants clearing stringent filters for germline variants and number 

of these variants enumerated in cfDNA. 

 

Comparison of pre-treatment variants called in DSCS between bone marrow and 

cfDNA compartments in this cohort indicates a median of 4 variants called in bone marrow 
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(range 1-10) and a median of 9 variants called in cfDNA (range 4-39). The median number 

of concordant variants was 2 (range 0-9). The median concordance, or percentage of variants 

identified in both compartments, was 21% (range 0%-90%). Of the 10 patients, MM0015 had 

the greatest mutational burden with 39 total variants identified, whereas MM0018 had the 

lowest mutational burden with only 5 total variants identified (fig.4a) 

Comparison of SSCS-called variants in cfDNA to DSCS-calibrated BM variants 

indicates that a minority of the BM-calibrated variants are recovered in cfDNA. While all 

three filtered, calibrated bone marrow variants were recovered in the cfDNA of patient 

MM0031, none of the two bone marrow variants were recovered for MM0014. For patient 

MM0012, despite having 51 filtered variants calibrated, only six were recovered in cfDNA 

(fig.4b).  

Variants identified in the calibration timepoints consisted predominantly of somatic 

hypermutation targets such as BTG2, BCL6, BCL2, and DTX1, of which multiple variants per 

gene were detected in every pre-treatment PA19 sample. Other frequent SHM variants 

identified were CXCR4, and PAX5. At least one variant in the IRF4 oncogene was identified 

all but one sample (MM0021_001, a bone marrow sample), but other oncogenes were 

detected at much lower rates: TRAF3 variants were detected in a majority of patients, while 

IRF8 and TP53 variants were only detected in a minority, and a BRAF variant was identified 

in a single sample, the cfDNA sample MM0019_002, and not confirmed in the matching 

bone marrow sample MM0019_001 (fig.5a). The panel did not detect variants of known MM 

oncogenes NRAS, FAM46C, or DIS3. 
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Figure 5: Comparison of calibration timepoints of NDMM and ABECMA cohorts A) 

Frequency of variants identified for selected genes in the NDMM cohort. B) Frequency of 

variants identified for selected genes in the ABECMA cohort. C) Comparison of variants 

identified in bone marrow of both cohorts. D) Comparison of the number of stringently 

filtered variants enumerated in cfDNA at calibration from both cohorts. E) Average VAF, 

measured using duplex consensus sequencing, at the calibration timepoint in both cohorts. F) 

Average VAF of enumerated variants in cfDNA at the calibration timepoint. 
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9.4 ABECMA 

9.4.1 ABECMA patients, samples, and overall outcomes 

Also included in analysis were 19 patients receiving idecabtagene vicleucel anti-

BCMA chimeric antigen receptor T cell therapy. These patients were enrolled in a separate 

clinical trial (table 2). 

Table 2: Characteristics of ABECMA cohort 

Sex, % (n) 37% Female (7) 

63% Male (12) 

Notable previous therapies BCMA therapy: 21% (4) 

IL-15: 5% (1) 

Day 30 IMWG Response (Progressive 

Disease (PD), Stable Disease/Marginal 

Response (SD/MR), Partial Response (PR), 

Very Good Partial Response (VGPR), 

Complete Response (CR), Stringent 

Complete Response (sCR) 

Deceased: 1 

PD: 1 

SD/MR: 4 

PR: 1 

VGPR: 2 

CR: 1 

sCR: 6 

No infusion: 3 

Day 30 MRD Status (EuroFlow method) Positive: 4 

Negative: 10 

Deceased:1 

No infusion: 3 

Unknown: 1 

3 Month Response PD: 0 

SD/MR: 0 

PR: 1 

VGPR: 1 

CR: 0 

sCR: 5 

Deceased:7 

Unknown: 5 

3 Month MRD Status Positive: 1 

Negative: 2 

Deceased: 7 

Unknown: 9 

 



41 

 

Of the 19 evaluable patients, 11 died as of 27Apr2022, including two (AB14 and 

AB16) who died before receiving their infusions; as such, their pre-treatment samples are 

included in analysis of inter-sample concordance, but longitudinal analysis is not possible. 

The causes of death, when reported, were myeloma and/or related complications (3), 

cytokine release syndrome (1), and COVID-19-related acute respiratory distress syndrome 

(1). The median survival after infusion was 195 days. One patient, AB17, received an 

infusion but did not provide a calibration BM sample; this patient is not one of the 19 

analyzed. Four patients received previous anti-BCMA therapy before receiving CAR-T 

infusion. Of the four, two have died. Of the two, one death was attributed to COVID-19 

ARDS, while the other cause of death was unreported.  

The clinical courses of two patients, AB11 and AB13, are notable. AB11 received 

their CAR-T infusion and experienced grade 5 cytokine release syndrome (CRS), 

hemophagocytic lymphohistiocytosis (HLH), and a systemic bacterial infection. The final 

sample from AB11 was collected on D+7 and was captured and sequenced. AB11 died on 

D+14 due to complications; MM was not listed as a cause of death. Due to the unique clinical 

outcome, and also owing to the abnormally high cfDNA yields from her plasma samples, the 

patient will be analyzed separately when appropriate. Patient AB13 received their infusion 

and was diagnosed with stable disease per IMWG criteria at her one-month follow-up. AB13 

died of COVID-19-related acute respiratory distress syndrome 42 days after infusion; as 

such, this patient will be censored from survival analysis as well; however, the change in 

VAF over time is still useful with respect to their D+30 response.  

9.4.2 Inter-compartment concordance of variants identified in ABECMA samples 
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Figure 6: Inter-compartment concordance in ABECMA cohort A) Number of duplex 

consensus variants called in bone marrow, cfDNA, and in both compartments in the NDMM 

cohort. B) Number of bone marrow variants clearing stringent filters for germline variants 

and number of these variants enumerated in cfDNA at multiple timepoints, including at 

calibration (contemporaneous with bone marrow aspiration), D+0, +2, and +7 of CAR-T 

infusion.  
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Comparison of pre-treatment variants called in DSCS between bone marrow and 

cfDNA compartments in this cohort indicates a median of 19.5 variants (range 8-42) called in 

bone marrow and 36 variants (range 3-81) called in cfDNA, of which a median 11 variants 

(range 2-31) were identified in both compartments. The median concordance, or the 

percentage of variants identified in both compartments from the total number of variants, was 

29% (range 6%-61%). Of the 18 patients evaluable for inter-compartmental concordance, 

AB03 had the lowest mutational burden with 19 total variants, whereas AB16 had the highest 

mutational burden with 86 variants identified (fig.6a) 

The number of traceable variants over time is relatively stable and provides useful 

information about the accuracy of VFC calculations. In all cases, the number of variants 

calibrated in BM is much greater than the number of these variants subsequently recovered in 

cfDNA at any timepoint, from as high as 14 variants from AB11 to as few as zero in AB06, 

who was disqualified from longitudinal analysis for this reason (fig.6b, Table 3)  

The ABECMA cohort saw a high number of cfDNA mutations relative to gDNA 

mutations, including in SHM targets BTG2, BCL6, and CXCR4. However, oncogenes were 

represented in this cohort, including TP53, MYC, and KRAS (fig.5b). 

  



44 

 

Table 3: Number of BM-DSCS-confirmed cfDNA variants available to track over time 

Patient Calibration 

cfDNA 

D+0 

cfDNA 

D+2 

cfDNA 

D+7 

cfDNA 

AB_01 3 2 2 4 

AB_02 5 4 3 5 

AB_03 2 6 5 3 

AB_04 6 2 2 3 

AB_05 8 7 8 8 

AB_06 2 0 2 3 

AB_07 2 2 4 3 

AB_08 15 7 14 8 

AB_09 3 2 3 2 

AB_11 14 14 11 7 

AB_12 7 4 5 0 

AB_13 2 1 1 1 

AB_14 6 NS NS NS 

AB_15 3 2 0 0 

AB_16 12 NS NS NS 

AB_18 11 10 10 11 

AB_19 8 NS 11 9 

AB_20 5 NS NS NS 

NS= No sample collected 

 

9.4.3 Calibration timepoint comparisons between NDMM and ABECMA cohorts 

The variants identified in both cohorts differ with respect to the relative representation of 

oncogenes compared to SHM targets: in particular, the greater representation of MYC, 

TRAF3, and TP53 mutations in the ABECMA cohort illustrates this difference, while both 

cohorts still have high representation of SHM targets such as BTG2 and BCL6 (fig.5a and 

5b). The ABECMA cohort has more DSCS-confirmed variants detected in bone marrow at 

the calibration timepoint (though the relationship is not statistically significant, p >0.05, 

fig.5c), and more of these variants detected using SSCS enumeration in cfDNA (p <0.05, fig. 

5d). The VAF of DSCS-calibrated bone marrow variants is much higher in the PA19 cohort 

than in the Abecma cohort (p<0.01, fig.5e), but there is no significant difference between the 

VAF of those variants enumerated in cfDNA (fig.5f).  



45 

 

9.4.4 Longitudinal and outcome analysis of ABECMA patients 

Due to the recency of CAR-T infusions and median overall survival, long-term 

outcomes cannot be evaluated. Instead, the major outcome evaluated here is Day 30 IMWG 

response, dichotomized as Complete Response (CR) or better (stringent Complete Response, 

sCR); and worse (Very Good Partial Response, VGPR; Partial Response, PR; Stable Disease, 

SD; and Progressive Disease, PD)[20]. In addition, as the median overall survival was 

reached, analysis on the basis of survival is included here. 

Table 4: VAF and VFC for all patients 

Patient 

Identifier 

Day 0 

VAF 

Day 2 

VAF 

Day 7 

VAF 

VAF 

Fold 

Change 

(VFC), 

D+2, 

D+0 

VAF 

Fold 

Change 

(VFC), 

D+7, 

D+0 

Survival 

(days) 

D+30 

IMWG 

Outcome 

AB01 0.21323 0.22192 0.11577 1.041 0.543 Alive SD/MR 

AB02 0.08248 0.11388 0.06229 1.381 0.755 59 SD/MR 

AB03 0.00279 0.00531 0.00156 1.900 0.556 140 VGPR 

AB04 0.00183 0.00088 0.00168 0.479 0.916 195 sCR 

AB05 0.00308 0.01267 0.00798 4.122 2.594 Alive sCR 

AB06 FTIC 0.00012 0.00043 NE NE 59 PR 

AB07 0.00072 0.00049 0.00087 0.681 1.211 128 sCR 

AB08 0.01848 0.00812 0.01436 0.439 0.777 Alive sCR 

AB09 0.24753 0.12196 0.01667 0.493 0.067 Alive sCR 

AB10 

NS-QC 

(BM 

failed 

QC) 

NE NE NE NE 90 SD/MR 

AB11 0.03554 0.05377 0.10480 1.513 2.949 

14, death 

due to 

CAR-T 

toxicity 

N/A 

AB12 0.21306 0.17222 NS-QC 0.808 NE Alive sCR 
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AB13 0.00187 0.00884 0.00115 4.731 0.614 

42, death 

not MM-

related 

SD/MR 

AB14 

No 

infusion, 

deceased 

N/A N/A N/A N/A Unknown N/A 

AB15 
0.00054 

 
FTIC, 0 

FTIC, 

0 
0 0 28 PD 

AB16 

No 

infusion, 

deceased 

N/A N/A N/A N/A Unknown N/A 

AB18 0.02815 0.06998 0.15016 2.146 4.111 Alive CR 

AB19 NS 0.09732 
 

0.12312 NE NE Alive VGPR 

FTIC= Failed to identify calibration BM variants 

NS-QC= No sample, sequencing QC failed 

NS= no sample provided 

NE= not evaluable 
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Figure 7: Variant fold change for selected patients A) Variant fold change (VFC) for patient 

AB01, who had marginal response at D+30. B) VFC for patient AB05, who had a stringent 

complete response at D+30. C) VFC for patient AB08, who had a stringent complete 

response at D+30. D) VFC for patient AB09, who had a stringent complete response at 

D+30. E) VFC for patient AB11, who experienced fatal complications after infusion and died 

at D+14. F) cfDNA yields per mL of plasma from AB11, who experienced a major spike in 

cfDNA shedding after infusion. G) VFC for all patients, color-coded by their clinical 

response at D+30.  
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9.4.5 AB01, initial SD/MR improving to VGPR by 6 months 

Patient AB01 received their infusion in August 2021 and had stable disease (SD/MR) 

at the D+30 follow-up but was MRD-. By the 3 month follow-up, their assessment improved 

to a partial response (PR), and by 6 months, to a VGPR with durable survival (still alive at 

last update). Their VFC rose slightly to 1.041 (median VFC) at D+2 but decreased to 0.543 

by D+7 (fig.7a). 

9.4.6 AB05, long-term sCR, elevated VFC 

Patient AB05 received their infusion in September 2021 and achieved sCR and MRD- 

by D+30 follow-up, which was sustained out to 6 months after infusion with durable 

response. Their VFC rose to 4.122 at D+2 and declined slightly to 2.594 by D+7 (fig.7b). 

9.4.7 AB08, long-term sCR, depressed VFC 

Patient AB08, who had previously received another anti-BCMA therapy, received 

their infusion in September 2021 and achieved sCR and MRD-by D+30 follow-up, which 

was sustained out to 6 months after infusion with durable response. Their VFC declined to 

0.439 at D+2 before rising slightly to 0.777 by D+7 (fig.7d). 

9.4.8 AB09, long-term sCR, depressed VFC 

Patient AB09 received their infusion in September 2021 and achieved sCR and MRD- 

by D+30 follow-up, which was sustained to 6 months after infusion. Their VFC declined to 

0.493 at D+2 and 0.067 at D+7 (fig.7d). 
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9.4.9 AB11, CRS/HLH/Infection, steadily increasing VFC 

Patient AB11 received their infusion in September 2021 and experienced major 

toxicity, autoimmune complications, and infection. They died on D+14 after infusion. The 

VFC was 1.513 at D+2 and 2.949 at D+7 (fig.7e) 

AB11 was unique among their peers in that cfDNA shedding was substantially higher 

than in the remainder of the cohort, potentially due to the side effects of the CAR-T therapy 

and associated conditions (fig.7f); however, the VFC steadily rises over time. 

9.4.10 Summary of VFC across patients 

There is no statistically significant difference between the D+2 VFC in those patients 

achieving CR or better as opposed to those who did not (Mann-Whitney test, P=0.1490), nor 

was there a difference in the D+7 VFC between these groups (Mann-Whitney test, P=0.3290) 

(fig.8b).  
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9.4.11 Correspondence between VAF change and outcomes 

Figure 8: Outcome and survival comparisons with VFC A) Waterfall plot of VFC at D+2, 

coded by clinical response at D+30. B) VFC for each patient, coded by clinical response at 

D+30. C) Survival of patients receiving Ide-cel in this cohort. D) Survival of patients in the 

ABECMA cohort, divided by VFC at D+2.  

 

Evaluable patients were divided into groups based on their VFC at D+2 was greater 

than or equal to the median VFC or not. Of those patients with ≥Median VFC (n=7), one 

experienced a D+30 CR, one SCR, one VGPR, three SD/MR, and one patient, AB11, was 

deceased. Of those with <Median VFC (n=6), five experienced sCR and one experienced 
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progressive disease (fig.8a). There was no statistically significant difference in the outcomes 

of these two groups (Fisher’s exact test, P=0.1026).  

As described above, two patients (AB11 and AB13) are censored from survival 

analysis due to their deaths not being related to MM. The difference in survival between 

those patients with ≥Median VFC and <Median VFC is not statistically significant (Log-rank 

P=0.1574, fig.8d).  
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10 Discussion 

10.1 Design and performance of M5Seq 

Revision of the MM_M4 panel to M5Seq was performed in order to port the new 

panel to hg38 for manufacture by Twinstrand Biosciences. In working with specialists at 

Twinstrand, several regions of the panel were identified which had a high number of off-

target BLAST hits, a high ΔG° of folding, or highly repetitive sequences. Designing probes 

for this region proved problematic because off-target capture was likely to occur and variants 

were likely to be spurious true variants, i.e. irrelevant to the tumor. Many of these regions 

were removed, including several IGH, IGL, and IGK loci which may have revealed a relevant 

tumor clonotype.  

Revision of the MM_M4 hybrid capture panel led to a meaningful decrease in 

applicability in silico: while the MM_M4 panel had 99.41% applicability, and 90% of tumors 

had at least 10 variants detected, the M5Seq panel had 97% applicability and 71% of tumors 

had at least 10 variants detected. However, relative decrease in off-target sequencing, 

combined with higher on-target rates resulting from the Twinstrand capture protocol, may 

have mitigated this problem, though this has not been experimentally validated. Analysis of 

the NDMM samples indicates that true mutation coverage of the panel is much higher 

(fig.4a), and every patient in both cohorts shown here had more than the in silico mode of 6 

variants identified in their bone marrow and called by DSCS. This may be due to increased 

sequencing depth used for the tumors investigated here compared to the WGS-identified 

variants in the CoMMpass databse and the higher specificity of sequencing resulting from 

hybrid capture. 
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10.1.1 Trade-offs of sequencing depth and breadth  

There is an inherent trade-off between sequencing breadth and depth: the tumors in 

the CoMMpass database were sequenced using broad whole genome sequencing or exome 

sequencing (WES) with sequencing depth one to two orders of magnitude less than the 

sequencing depth employed in this study. The resulting difference in sensitivity means that in 

a library with, for example, 200x mean depth should not expect to reliably see rare variants 

with oVAF < 5x10-3, whereas in spike-in libraries with 25,000x mean depth, variants with 

oVAF < 5x10-5 were observed. While exome sequencing should identify variants in a larger 

selection of the genome, by tiling specifically for regions with high frequency of variants, the 

CaPP-Seq method preserves as many of the identified variants as possible while ignoring 

regions where variants are infrequent and likely immaterial to the disease. The additional 

benefit of the additional depth used in targeted sequencing is the ability to detect changes of 

VAF over several orders of magnitude, whereas WES is not able to detect low levels of 

disease with the same amount of sequencing, as observed by Manier et al[45], who use WES 

in active disease only.  

10.1.2 Analytical sensitivity 

Sensitivity of a sequencing assay is a function of multiple factors, including 

sequencing depth, library complexity, and sequencing error rates. Average sequencing depth 

is the number of reads covering a certain location in the genome and corresponds to the 

divisor in a calculation of the frequency of a variant, i.e. number of total reads confirming a 

variant divided by total depth at that variant. The probability of detecting a variant is given 

by the Poisson distribution, which predicts the likelihood of detecting multiple discrete 

events. If the true VAF of a variant is greater than the inverse of sequencing depth, then the 
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probability of detecting the variant is 1; however, if the true VAF of a variant is less than the 

sequencing depth, then the probability of detecting it is less than 1 and again predicted using 

a Poisson distribution. However, the probability of detecting each variant is additive, so 

while the probability of detecting one variant might be very low, if multiple variants are 

present, the probability of detecting any variant (and therefore disease burden) is determined 

by the frequency of each variant and the number of total variants. Therefore, at low levels of 

disease burden, the detection of some variants is certain, but the total number of variants 

detected decreases substantially, and the detection a given variant is stochastic. By 

sequencing relatively few loci at great depth, we demonstrated an ability to detect variants 

using SSCS at an observed VAF of 5x10-5, thus increasing the probability of detecting 

variants which are present at lower frequency than the depth of sequencing in other 

experiments. As a result, we detect variants at EAF<10-5 but no less than oVAF=5x10-5, and 

these variants are not consistent from dilution series to dilution series, though all are detected 

in the calibration sample. In order to detect variants at greater depth consistently, sequencing 

depth would need to be increased, and this would likely also improve linearity of the assay as 

the oVAF of a low-frequency variant approaches that of its EAF. 

Common to all experiments is sequencer and polymerase error: while Illumina 

sequencers have error rates on the order of 0.01% (10-4)[108], sequencing in excess of 3x108 

bases per sample, as was the case with each spike-in library, means that 104 sequencing 

errors will be generated. Additional variant reads will be generated due to polymerase error 

during the PCR required for library preparation. The polymerase error rate for the enzyme 

used in all the experiments reported here is on the order of 10-5-10-6 bases incorporated[109], 

adding further sources of error in the library prep. As demonstrated by the SSCS vs DSCS 
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comparisons in the spike-ins, NDMM, and ABECMA pre-treatment comparisons, PCR and 

sequencing errors are largely mitigated by DSCS calibration without affecting sensitivity.  

Another major factor affecting analytical sensitivity is library complexity, defined as 

the number of unique molecules in a sequencing library. Library complexity is the result of 

two factors: total DNA input and conversion rate, or the percentage of molecules successfully 

converted to library. Using the Twinstrand library preparation protocol, library conversion is 

10% for sonicated genomic DNA as used in spike-ins and bone marrow samples, and 30% 

for cfDNA; as such, more sequencing reads are required to sequence cfDNA samples to the 

same depth as sonicated gDNA samples. In turn, the best way to increase library complexity 

is to increase sample DNA input whenever possible. The samples sequenced here were 

limited to a maximum of 250ng sonicated gDNA, 100ng cfDNA for pre-treatment samples, 

and 50ng for longitudinal samples; however, this limit was infrequently achieved, especially 

in NDMM pre-treatment samples when disease burden and cfDNA shedding was low. In 

instances where cfDNA shedding is high, while libraries can be made from >1500ng DNA, 

sequencing costs to achieve necessary depth rapidly cause sequencing to become 

uneconomical. In sum, the limiting factor of the sensitivity of the assay is DNA input, as 

demonstrated by the spike-in experiments: by using 1500ng DNA input, we sequenced 

500,000 haploid genome equivalents to an average depth of ~20,000x. In contrast, 100ng 

cfDNA input is equivalent to 33,000 haploid genome equivalents at 10,000x depth, and low-

input samples of 30ng are equivalent to 10,000 haploid genome equivalents at 5,000x depth.  

Here, we sought to strike a balance between economy of sequencing, sequencing depth, and 

library complexity.  
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As shown in figure 3c and 3d, calling variants using DSCS in all spike-in libraries is 

insufficient to detect low frequency variants at less than 10-4. This is due to the 

considerations listed above, chiefly that when using DSCS variant calling, a failure to 

reconcile paired reverse complement strands leads to a loss of average variant depth and 

resulting loss of sensitivity (fig.3e). However, this is rescued by calling variants in the 

calibration sample in duplex to mitigate sequencing error, thus contributing confidence to 

variant calls, and then only requiring single strand support for the variant in successive 

samples, as shown in figures 3a and 3b. Due to the increased variant depth when using SSCS, 

variants are called at VAF as low as 5x10-5. Analysis when using SSCS exclusively, even for 

calibration, does lead to a great deal of expected genomic noise which confounds data 

analysis.  

As shown in figures 3a and 3b, linearity on a logarithmic scale is lost at an EAF of 

10-4 for both the U266 and H929 spike-ins. Loss of linearity indicates that a variant’s OAF, if 

quantitated at <10-4 indicates that the true VAF is <10-4 but cannot be accurately quantified. 

This is similar to a common result in ASO-qPCR MRD assays, which may return a result of 

“Positive, Non-Quantifiable” (PNQ). A PNQ result is still useful for detecting low-level 

disease and molecular response. 

Due to the combination of loss of linearity at 10-4, limit of sensitivity of 5x10-5, and 

practical considerations such as library complexity, the limit of sensitivity of the assay in 

clinical practice is likely less than demonstrated here, and therefore may not accurately 

measure MRD at the limit of sensitivity demonstrated by clonoSEQ or MFC-based assays. 

However, this analysis has specifically excluded plasma samples that are contemporaneous 

with MRD measurements: in particular, at D+28/D+30 from CAR-T infusion for the 
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ABECMA cohort. As the majority of patients were MRD- at D+30 (Table #1), it may be 

informative to interrogate these samples for VFC at the D+30 timepoint, as was done by 

Deng et al[118], especially since several MRD- patients relapsed after D+30. However, 

given the small sample size, it is possible that this cohort would not be informative. More 

investigation, including a mature cohort with multiple long-term survivors, is needed to 

investigate the true utility of this assay for MRD detection purposes. 

10.2 Applications 

10.2.1 Variant filtering in the absence of a matched normal sample 

Like any NGS assay, hybrid capture assays are challenged by the need to ascertain 

what is a germline variant and what is a tumor-derived variant. The CaPP-Seq method and its 

iterations typically requires the use of a matched normal sample for every patient as a part of 

the calibration step in order to remove germline variants: the normal sample, usually PBMC, 

is sequenced at less depth than the clinical sample in order to identify obvious germline 

variants. While this is the standard practice for CaPP-Seq assays, it has two weaknesses: first, 

removing only biallelic and heterozygous variants may leave behind low-frequency germline 

variants and off-target non-tumor SHM variants, which when included in VAF calculations 

may skew VAF calculations as the tumor-derived VAF changes over time; alternately, 

inclusion of low-frequency variants in blacklists may cause true tumor variants to be 

blacklisted. Another alternative which minimizes sequencing cost is to perform low-pass 

whole genome sequencing (lpWGS) in order to estimate tumor purity, and therefore 

establishing a VAF threshold based on the tumor purity. 
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These experiments did not use a matched normal sample, so analysis is, strictly 

speaking, ignorant of germline variants. The stringent filtering strategy used here involved 

using multiple compendia of population-level mutational databases to eliminate common 

variants and repetitive elements, and the average VAF in patient samples is reflective of this: 

the average VAF for each patient is >0.1 (table 3). However, it is likely that several true 

tumor-derived variants were lost in this filtering step, potentially negatively affecting the 

utility of this assay by blunting its sensitivity to detect VAF changes.  

This is particularly apparent when comparing the DSCS and SSCS consensus pre-

treatment comparisons of both cohorts, as there is not a substantive increase in concordant 

variants by using SSCS in many cases, and in fact, the median concordance decreases (29% 

in DSCS vs 14% with SSCS in the ABECMA cohort), and slightly fewer variants are called 

in the SSCS data than in the DSCS data (median 45.5 vs 38.5). This suggests that the plan of 

tracking SSCS-confirmed variants calibrated in DSCS BM may not achieve the increased 

sensitivity and applicability, as approximated by number of SSCS-supported, DSCS-BM 

calibrated variants. However, this problem may be attributed to the filtering step, as analyses 

which do not use the dbSNP and repeatMasker annotations, but which do use PAF and the 

PoN, do not suffer from this issue. For M5Seq to be incorporated into a clinical setting, this 

process will need major refinement. Alternatives to the dbSNP and repeatMasker steps 

include using a matched normal sample with a conservative VAF cutoff (e.g., blacklist 

anything with VAF>0.4), or limiting analysis in the absence of a normal sample to variants 

below a VAF “cap” above which threshold variants are not included in longitudinal analysis. 

This may be done directly through analysis of the pre-treatment BM captured library, or 
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indirectly via lpWGS and tumor fraction estimation of the pre-capture library for the same 

sample.  

10.2.2 Inter-sample concordance and implications of low concordance 

Concordance between the pre-treatment NDMM sample compartments, using DSCS, 

was generally fair. All tumors presented more variants than the average number of variants 

detected in the in silico validation cohort (11.89), but the median concordance was <25%, 

and the resulting low number of concordant variants decreases the probability of detecting 

low disease burden. For instance, at a given VAF, MM0018 and MM0012 have a lower 

probability of detecting variants than do MM0015 and MM0031 due to the difference in 

concordant variants. Moreover, the inability to detect concordant variants in the cfDNA of 

two patients (MM0014 and MM0019) using DSCS indicates the limitations of this approach, 

as no mutations could be followed longitudinally with high confidence in these patients. 

However, the benefit of switching to SSCS confirmation of calibrated variants is not 

clear in this cohort as was anticipated. The SSCS data indicate a preponderance of variants in 

all samples, but concordance does not improve overall, and while MM0018 is rescued (5 

concordant variants, as opposed to 0 in the DSCS comparison), MM0014 still has no 

concordant variants and, uniquely, MM0018 loses their concordance. 

Taken together, this approach demonstrates the limitations of this approach when 

stringently filtering variants, as concordance is low and likely true tumor variants are 

blacklisted from analysis. 
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10.2.3 Challenges of subsampling in M5Seq 

cfDNA sequencing is an attempt to reproduce the local features of a primary tumor in a 

global compartment- as such, a subsample is being taken which may not perfectly represent 

the primary tumor, as we and others show. If we assume, for instance, that an average plasma 

sample from a 10mL blood tube contains 50ng of DNA (at 10ng cfDNA/mL plasma), then 

we are sampling roughly 7,600 haploid genome equivalents from a total of nearly 3.8 million 

genome equivalents, a proportion of 1/500. Variant molecules which are not present at a 

frequency of greater than 3/500 (due to the “rule of three” in Poisson sampling) have a 

chance of being sampled of <1. From there, the molecules must be extracted from the plasma 

and turned into library molecules, which has efficiency of <50%. From there, it must be 

captured and sequenced. In this light, increased cfDNA input into library construction is the 

factor which has the greatest impact on the ability to detect rare variants, and this may come 

from higher cfDNA burden in plasma or from multiple blood tubes. While subsampling is 

unavoidable, hybrid capture maximizes the probability of detecting tumor-derived molecules 

if they make it through these multiple subsampling steps.  

10.3 Applications in CAR-T therapy 

10.3.1 Inter-compartment concordance in CAR-T patients has not been studied 

Consistent with the analysis of NDMM samples, concordance between pre-treatment 

cfDNA and bone marrow samples is low, with fewer than 30% of variants identified in both 

pre-treatment compartments using DSCS. This is an improvement compared to PA19 

samples, and is likely due to the greater mutational burden. While more variants are called, 

on average, in the ABECMA cohort, the lack of concordance is consistent with the PA19 
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samples. Unlike the PA19 samples, however, is the reliability of the SSCS data. 

Nevertheless, concordance actually decreases overall, and fewer variants are called overall. 

This further challenges the idea that SSCS confirmation of DSCS-calibrated variants 

increases sensitivity. While there is still high confidence that the concordant variants called 

are true variants which can be followed over time, it is again likely that true tumor variants 

are being blacklisted in this analysis. 

10.3.2 VFC may predict outcomes within 2/7 days 

These experiments identified trends between VFC at D+2 and IMWG response at 

D+30; however, these trends did not rise to the level of statistical significance. Indeed, while 

the majority of CR patients had a decrease in VFC by D+2, this trend was not stastically 

significant. Concerningly, in multiple instances patients (AB05 and AB18) achieved sCR 

and, in the case of AB05 (AB18 only received infusion in January 2022), experienced 

prolonged survival despite an elevated VCF at both D+2 and D+7. These data indicate that 

M5Seq alone cannot prognosticate survival given the limitations of this study; however, 

additional experimentation may be warranted to demonstrate the efficacy of M5Seq. Patients 

AB05 and AB18 demonstrate a paradoxical “spike” in VAF at D+2, which has been 

documented in literature previously, though not in the context of CAR-T therapy- to our 

knowledge, this represents the first observation of a ctDNA spike in CAR-T therapy. In 

myeloma, the spike has been observed 3-5 days following standard chemotherapy, but 

investigators found it to be inconsistent when using captured sequencing[123]. The presence 

of the spike has been suggested [124] to be demonstrative of sustained anti-tumor activity of 

the therapeutic agent over the days following treatment, but the fact that the spike is only 

present in a minority of cases suggests that this is not the whole story. Moreover, in the 
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context of short-term response, this needs to be adequately controlled for and understood 

when assessing short term response. 

10.3.3 Clinical application of M5Seq 

Here, we demonstrated that M5Seq has sufficient analytical sensitivity and 

applicability to detect low-frequency variants but may lack the prognostic power necessary to 

accurately predict response to CAR-T therapy through the use of ctDNA, hybrid capture, and 

massively parallel sequencing. However, the small sample size available may justify further 

study to see whether statistical significance is hindered by the number of patients. While 

assays exist for MM which use liquid biopsies, and/or hybrid capture and massively parallel 

sequencing, these assays are primarily designed for detection of MRD, and no such assays 

are designed for use in a dynamic treatment environment.  

Given sensitivity, specificity, applicability, and qualified ability of M5Seq to 

prognosticate outcomes, M5Seq may provide some clinical utility to investigators in 

assessing CAR-T response in MM. Given the recent approval and improvements in outcomes 

in cilta-cel patients compared to ide-cel patients, M5Seq may identify changes in molecular 

response between the two treatment groups, which in turn may establish the superiority of 

one therapy over another. In addition, the efficacy of CAR-T therapy advocates for its use in 

treatment settings less advanced than relapsed/refractory MM, and molecular response may 

play a greater role in predicting outcomes in that treatment setting.   

10.4 Future Directions 

While ctDNA is a promising avenue for investigating response to MM therapy in a 

dynamic range, the biological reality of lymphoid malignancies is complex and may be better 
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served using a multimodal approach. Deng et al integrated molecular response data with 

single-cell transcriptomic and immunologic features of axicabtagene ciloleucel (axi-cel) 

infusion products, finding that the molecular response corresponded to the fraction of 

exhausted CD8+ T cells in the infusion product, thus suggesting that the efficacy of axi-cel 

therapy can be influenced by the health of the T-cell repertoire at apheresis, and limited 

tumor biopsies supported these results. Similarly, the data reported here are one element of a 

larger project investigating responses to ide-cel, both in bone marrow and in cfDNA. Work is 

underway to assess single-cell transcriptomic and immunologic features of the primary 

tumors sequenced here in order to similarly integrate these data and better understand how 

and why ide-cel fails.  

Another promising avenue for this project is the integration of low-pass whole 

genome sequencing (lpWGS). lpWGS identifies high-level chromosomal defects such as 

deletions and hyperdiploidies at low cost due to the low sequencing coverage required, and 

the magnitude of these defects is indicative of disease burden in MM[45]. Moreover, our 

group demonstrated recently that in DLBCL, lpWGS carries prognostic value and is able to 

stratify patients on risk of relapse after axi-cel based on pre-infusion cfDNA samples[93]. 

Sequencing pre-infusion cfDNA in this manner may further the idea that cfDNA is 

prognostic for CAR-T response. In addition, the lpWGS results from bone marrow can be 

used to estimate tumor purity, which can then be used to determine a VAF cutoff for filtering 

non-tumor variants when applying M5Seq to the same tumors. Using the same protocols used 

here, lpWGS libraries may be generated without any extra work, as a diluted aliquot of 

library taken for QC before capture contains sufficient DNA to perform lpWGS. 
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It is notable that the median OS in this cohort underachieves when compared to the 

KarMMa trial cohorts which engendered FDA approval of ide-cel (fig.8c)[14, 15]. This 

cohort may have failed to perfectly represent patients receiving ide-cel, and as new patients 

continue to receive ide-cel, continuous evaluation of survival and molecular response may 

display improved survival and better prognostic ability. In short, the use of M5Seq in broader 

patient cohorts may reveal greater utility. Furthermore, promising results from the 

CARTITUDE trials and recent FDA approval of anti-BCMA ciltacabtagene autoleucel (cilta-

cel) provide a treatment which may be studied in comparison and competition with ide-cel, 

and utilizing M5Seq to assess molecular response can contribute to comparative studies of 

the two myeloma CAR-T products.  
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