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Figure 5: Effect of neutrophil elastase knockout (NE-/-) on heart function 24 h after 

therapy. A) NE as measured by quantitative PCR in hearts of wild-type and NE-/-  mice 

24 h after treatment with control phosphate-buffered saline(PBS) or 

doxorubicin(DOX); b) Representative images of neutrophils (CD11b+ Ly6G+) 24 h after 

therapy; c) Ejection Fraction (EF) and fractional shortening (FS) were quantified by 

echocardiography 24 h after therapy; d) Effect of NE knockout on cardiac vessel 

morphology 24 h after therapy. Representative images, the number of NG2+ and 

CD31+ vessels, and the frequency (%) of vessels > 100µm/hpf 24h after therapy. Data 

are presented as mean ± SEM, n = 5 each, p < 0.05, one-way ANOVA analysis with 

Tukey comparison was used to compare the groups. 
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Figure 6: Neutrophil Transmigration following doxorubicin treatment was quantified 

by Incucyte in the presence and absence of a chemoattractant, a Mann-Whitney U-

test was used to compare two groups.  
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       To evaluate the role of NE in the late stage of Dox-induced cardiotoxicity mice 

were treated with Dox for 2 weeks, and cardiac function monitored for 12 weeks. There 

was a significant decrease in EF and FS in the Dox-treated wild type mice 24 h after 

therapy that persisted over 12 weeks. In contrast, no decrease in EF or FS was seen 

in the Dox treated NE-/- mice (Figure 7a). Cardiac vascular morphology was also 

unchanged in the Dox-treated NE-/- mice (Figure 7b). The number of open vessels 

with a diameter >100µm in the NE-/- control and NE-/- Dox treated mice were not 

significantly different (Figure 7b). This data indicated that inhibiting or blocking NE 

prevented both the acute and late Dox-induced cardiac damage.  
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Figure 7: Effect of neutrophil elastase knockout (NE-/-) on heart function and cardiac 

vessel morphology 12 weeks after therapy. a) Ejection Fraction (EF) and fractional 

shortening (FS) were quantified by echocardiography and followed for 12 weeks after 

treatment with control phosphate-buffered saline (PBS) or doxorubicin (DOX) in wild-

type and NE-/- mice; b) Representative images of cardiac NG2+ and CD31+ vessels 12 

weeks after therapy and frequency (%) vessels with >100µm/hpf.  Data are presented 

as mean ± SEM, n = 5 each, p < 0.05, one-way ANOVA analysis with Tukey 

comparison was used to compare the groups. 
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       Ogura et al showed that the NE caused cardiomyocyte apoptosis in myocardial 

infarction 107.  We wanted to investigate these findings in our context of Dox-induced 

cardiotoxicity. TUNEL staining was used to identify apoptotic cells. The number of 

TUNEL cells was significantly higher in Dox treated mice as compared to NE-/- mice 

(Figure 8). We also found that the TUNEL positive cells were specific to 

cardiomyocytes as evidenced by staining with cardiac troponin (Figure 9). Additionally, 

we quantified cleaved caspase-3 levels in Dox-treated control and NE-/- mice to 

investigate the effect of decreased NE on cardiomyocyte apoptosis after Dox 

treatment. Cleaved caspase-3 protein was significantly elevated in the control Dox 

treated hearts as compared to the NE-/- Dox treated hearts (Figure 10).  
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Discussion: 

       Dox continues to be an integral part of treatment for pediatric and adolescent and 

young adult patients (AYA) with sarcoma due to the lack of new effective targeted 

therapies, including immunotherapies. Unfortunately, Dox causes acute damage to 

the heart resulting in late cardiac morbidities which range from changes in myocardial 

structure and function, to severe cardiomyopathy, valvular disease and congestive HF 

in long-term survivors. These cardiac morbidities compromise quality of life (QOL) and 

longevity and may result in a need for cardiac transplant 108,109. Indeed, Dox-induced 

cardiotoxicity is the second leading cause of death in childhood and AYA cancer 

survivors 110,111. Therefore, strategies to limit the acute heart damage caused by Dox 

are expected to result in lower cardiac morbidities, improved longevity and better QOL. 

Identifying effective interventions requires an understanding of the multiple 

mechanisms that contribute to Dox-induced cardiotoxicity 112 .  

       Here we demonstrated for the first time that Dox therapy induced the acute 

infiltration of neutrophils into the heart (as quantified by flow cytometry and 

immunofluorescence staining. This was accompanied by an acute decline in cardiac 

function, (defined by decreased in EF and FS and increased LVID), an alteration in 

cardiac vascular morphology, and a decrease in the number of cardiac vessels with 

open lumens. The increase in cardiac neutrophils did not persist.  No differences in 

neutrophil numbers in the heart were seen 4-11 weeks after therapy in Dox-treated 

versus control mice. This is in accordance with previous studies demonstrating that 

neutrophil infiltration was short lived, peaked early but dissipated at later time points 
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104. Despite the normalization of neutrophil numbers, the decreased cardiac function 

persisted for 2-12 weeks after therapy.   

       The importance of neutrophils and NE in the acute Dox-induced cardiotoxicity 

process was confirmed using neutrophil-depletion techniques and NE-knockout mice. 

We confirmed that neutrophil depletion using anti-Ly6G was successful and that this 

resulted in no increase in cardiac neutrophils 24h following Dox therapy. Our data 

showed that Dox-induced acute cardiotoxicity was not seen in either neutrophil-

depleted mice or NE-/- mice. Under these conditions EF, FS, LVID(s) and vascular 

morphology were unchanged 24 h after Dox therapy. We also confirmed that the 

increase in neutrophil infiltration following Dox therapy in the NE-/- mice was not 

significantly different than that seen in wild-type mice, indicating that the absence of 

NE did not interfere with the neutrophils’ ability to migrate into the heart. Similar to our 

results, Hirche et al showed that during infection the neutrophil recruitment to sites of 

inflammation were not hindered in elastase knockout mice 113. Their data showed no 

differences in the ability of WT and NE−/− neutrophils to migrate to sites of 

inflammation.  This is in contrast to the findings of Voisin et al where impaired 

neutrophil invasion into the heart tissue was seen following ischemia/reperfusion injury 

114. The difference between our findings may be due to the fact that we are 

investigating Dox-induced cardiac damage which is not the same as damage induced 

by ischemia.  

       We have previously shown that Dox therapy acutely affected cardiac vascular 

structure, morphology and function as defined by decreased pericytes, collapsed 
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cardiac vessels, and a decrease in the number of vessels with open lumens, resulting 

in decreased cardiac diastolic and systolic blood flow 33,34 .  Neutrophil-depleted and 

NE-/- mice showed none of these acute changes in vascular structure 24h after Dox 

therapy.  We interpret this to mean that neutrophil depletion and the absence of NE 

prevented acute Dox-Induced vascular damage.  

       Cardiotoxicity is known to develop in survivors many years after treatment. We 

therefore investigated whether neutrophil depletion and NE knockout prevented the 

late Dox-induced cardiotoxicity. When we evaluated heart function 10 weeks after 

treatment was completed, we observed significant decreases in EF and FS, and an 

increase in LVID(s) in the Dox-treated mice. However, as demonstrated in the acute 

cardiotoxicity experiments, there was no change in cardiac function in the neutrophil 

depleted mice. The vascular changes also were not observed in the neutrophil- 

depleted mice. In addition, there was significant collagen deposition consistent with 

the development of cardiac fibrosis in the hearts of the Dox-treated control mice but 

not the neutrophil-depleted mice treated with Dox.  

       Taken together, these data further confirm that neutrophils contribute to the acute 

heart damage caused by Dox. This acute damage had a prolonged effect on the heart. 

Inhibiting this acute phase prevented the development of late-stage cardiotoxicity. Our 

data suggest that neutrophils contribute to both acute and late Dox-induced 

cardiotoxicity. Neutrophil depletion had no effect on macrophage infiltration following 

Dox therapy. We also demonstrated in the heart tissue that after Dox treatment Dox 

there was increased expression of CXCL1, a cytokine involved in neutrophil 
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recruitment. These results suggest a direct mechanism by which Dox induces 

neutrophil infiltration into the heart. 

       Previous reports have also shown that neutrophils are recruited to the heart 

following cardiac injury such as myocardial infarction. Here damaged cardiomyocytes 

act as DAMPs that are detected by PRRs which release cytokines such as CXCL1 

that helps recruit neutrophils 103. Furthermore, when we performed TUNEL assay on 

wild-type and NE-/- mice following Dox treatment we observed a significant number of 

apoptotic cells in hearts from the wild-type mice but not the NE-/- mice. Taken together, 

these results indicate that neutrophils through the release of NE contribute to 

cardiotoxicity and that inhibiting NE prevents this cardiotoxicity. To test the therapeutic 

potential of targeting NE we administered the NE inhibitor AZD9668 during Dox 

treatment. We found that the EF and FS did not change in mice treated with AZD9668 

and Dox and more importantly that this protection persisted for up to 12 weeks after 

the Dox treatment had been completed. These results suggest that targeting NE 

during Dox therapy may decrease acute Dox-induced cardiac damage.  

       In this study we focused on NE as we have observed higher expression levels of 

this enzyme in hearts with Dox. However, the role of other serine proteases that 

neutrophils release upon degranulation such as cathepsin G  and proteinase 3  115, 

may also contribute to Dox-induced cardiotoxicity and should be investigated. 

Additionally, we briefly monitored levels of another myeloid cell population, 

monocytes/macrophages, in hearts of Dox-treated mice after neutrophil depletion. 

Traditionally, macrophages participate in phagocytosis, chemotaxis, secretion and 
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antigen presentation for immune defense and tissue healing 116. The plastic nature of 

these cells has rendered their exact function in the cardiac microenvironment post 

heart damage unclear 117,118. Hence, a deeper look into the role of macrophages with 

further characterization of macrophages that are characterized into either 

M1(classically activated pro-inflammatory) or M2 (alternately activated anti-

inflammatory) 119,120 in Dox-induced heart damage needs to be done.  

       In summary our results show that neutrophils contribute to Dox-induced cardiac 

damage, through the release of NE leading to vascular damage and decreased heart 

function that persist many weeks after therapy completion. This is the first study of its 

kind to demonstrate that neutrophils and neutrophil elastase are involved in Dox-

induced cardiotoxicity. In our study we made clear that Dox was causing cardiac cell 

death. This cardiac cell death in turn induced the upregulation of chemotactic 

cytokines such as CXCL-1 as part of the inflammatory process that is triggered 

following cardiotoxicity. This upregulation then led to neutrophil migration into the 

damaged heart tissue contributing to additional damage amplifying cardiotoxicity. It is 

not our contention that Dox does not control or induce NE directly. Rather that the 

tissue damage induced by Dox leads to the initiation of the inflammatory process that 

involves neutrophils. When neutrophils migrate into the damaged tissue, NE is 

released, and it is this released NE that causes further cardiac damage. Our results 

showing that a NE inhibitor mitigates Dox-induced cardiotoxicity supports this 

hypothesis. In pre-clinical models in rats, NE inhibitors ablated the ischemia-induced 

myocardial damage and coronary endothelial dysfunction 61. Furthermore in clinical 

trials, NE inhibitors have been used to treat cystic fibrosis and chronic obstructive 
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pulmonary disease and have been found to be safe and well tolerated and effective in 

curbing the excess inflammatory response 121,122. AZD9668 in particular, has been 

used in clinical trials for patients with chronic obstructive airway disease and was 

found to have no significant toxicity while showing promising therapeutic potential in 

early phase studies 123. In our cardiotoxicity mouse model, AZD9668 was well 

tolerated and effective in inhibiting Dox-induced cardiac damage and in preserving 

heart function after Dox therapy. This is a significant finding with translational potential 

to decrease the incidence and degree of cardiomyopathies in CCS, which in turn will 

impact both QOL and patient longevity, as cardiac disease is the second leading 

cause of death in these individuals 124.  Our data supports consideration for the 

inclusion of a NE inhibitor with Dox with the goal of preventing Dox-induced acute and 

late cardiotoxicity in survivors. NE inhibitors may decrease the acute inflammatory 

response induced by Dox preventing cardiomyocyte apoptosis and the late fibrosis 

that develops.  

Conclusion: 

       In conclusion we found that neutrophils play an important role in Dox-induced 

cardiotoxicity through release of neutrophil elastase. Our finds suggest a new 

treatment approach for mitigating this damage during Dox treatment.  
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Chapter Four: Global Discussion  

 

 Introduction 

       We have demonstrated the importance of neutrophils in Doxorubicin (Dox)-

induced cardiotoxicity and a possible therapeutic intervention targeting neutrophils. 

However, there are several other questions that arise from this. The roles of 

macrophages need to be examined in greater detail. Monocytes/macrophages act in 

tandem with neutrophils when it comes to immune responses to tissue injury. We have 

generated some preliminary data regarding macrophages in Dox-induced 

cardiotoxicity that will be discussed below. 

        Furthermore, we have shown that release of neutrophil elastase and its blockage 

has an ameliorative effect. Probing the other serine proteases released from the 

azurophilic granules will provide a more thorough understanding of how neutrophils 

contribute to Dox-induced cardiotoxicity. Additionally, neutrophils also release reactive 

oxygen species (ROS) as a mechanism for microbial killing and formation of neutrophil 

extracellular traps (NETs). This could be another avenue for exploration. Additionally, 

blocking neutrophil elastase in a tumor bearing mouse model would be important to 

determine whether AZD9668 affects efficacy of anti-tumor action of Dox. 

      While cardiomyocytes form the main component of heart there are other cells that 

play important roles in development and response to tissue injury. One such cell 

population is cardiac fibroblasts. Previous studies have identified this population to be 

vital in the third phase of cardiac remodeling post injury. However, there are other 
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studies that have found them to be crucial mediators of innate immune response in 

heart. The role of cardiac fibroblasts in Dox-induced cardiotoxicity hasn’t been 

examined in great detail. This would be a promising target to look at in future 

experiments to further delineate the innate immune response in heart.  

Neutrophil Elastase inhibition in a tumor bearing mouse model 

        In our study we examined the effects of a pharmacological inhibitor of NE on 

Dox-induced cardiotoxicity in a non-tumor bearing mouse model. In a future study this 

would need to be studied in a tumor bearing mouse model to examine if the NE 

inhibitor has any effect on the efficacy of Dox in its anti-tumor action. Our hypothesis 

is that AZD9668 would have no effect on Dox’s anti-tumor action due to differences in 

mechanism of action of both drugs. Dox acts on tumors by i) intercalation of DNA 

strands, ii) topoisomerase suppression and iii) generation of free radical species. In 

contrast AZD9668 acts by binding the active site of enzyme and in particular the 

catalytic triad of S195, D57 and H102(serine, aspartate and histidine) 125. 

Macrophages 

       Our results showed that neutrophils play an important role in Dox-induced 

cardiotoxicity. While these cells are one of the first to infiltrate into infected or damaged 

tissue, macrophages also have been shown to play a key role in the acute innate 

immune response. Neutrophils have been shown to peak on day 1 post myocardial 

infarction 126, however monocytes aggregate over days. This accumulation occurs in 

two waves: first Ly6Chi monocytes (days 1–4 post-MI) and then Ly6Clo monocytes 

(days 4–7) 126.  
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      Ly6Chi monocytes give rise to cardiac macrophages which proliferate and 

replenish cardiac resident macrophages lost after myocardial infarction (MI). Cardiac 

macrophages release inflammatory mediators promoting local inflammation such as 

proteases, reactive oxygen species and inflammatory cytokines like TNFα. These 

macrophages are needed for debris clearance and infarct healing.  Ly6Chi monocytes 

while being crucial to infarct healing can also be detrimental due to excess production 

of inflammatory mediators 73. In the second reparative phase that takes place 3 days 

after MI the Ly6Chi monocytes differentiate to reparative macrophages that produce 

TGFβ, VEGF and IL-10. The release of these factors induces collagen production by 

myofibroblasts 127. Excessive collagen deposition however is detrimental and can lead 

to fibrosis and compromised heart function due to stiffening of cardiac muscle.  

        In mice undergoing depletion of macrophages by chlodronate liposomes post 

myocardial injury it was observed that there was a reduced removal of necrotic cells, 

impaired neovascularization and increase in infarct size. This in turn led to increased 

mortality in macrophage depleted mice 128.  

ROS 

       From literature it is known that Dox induces ROS production which can result in 

tissue damage. NADPH oxidase, cytochrome P-450 reductase and xanthine oxidase 

transform Dox in the form of quinone to semiquinone via one electron reduction of the 

quinone moiety in ring C within mitochodria 129. The semiquinone regenerates back to 

parental quinone by reacting with oxygen generating superoxide anion further 

converting to other ROS species. It is this redox recycling that amplifies production of 

free radical species. Endothelial  nitric oxide synthase also affects Dox-induced ROS 
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production 130. Furthermore, the amount of antioxidant enzymes in cardiac tissue such 

as superoxide dismutase and catalase is lower than in other organs making the heart 

more susceptible to damage from ROS 131. Dox also binds to cardiolipin, a 

phospholipid component of heart mitochodrial inner membrane 132. Dox is also 

retained in the cardiac cells as doxorubicinol.  In cancer patients receiving Dox 

treatment there is  a decrease in glutathione suggesting a reduction in antioxidant 

status 133. 

      ROS has also been implicated in modulation of several cellular hypertrophic 

pathways including  tyrosine kinases (Src and focal adhesion kinase), protein kinase 

C (PKC), mitogen activated protein kinases (MAPK; ERK1/2, p38, and JNK), 

calcineurin, PI3K/Akt, and NF-κB 134. ROS was also seen to activate apoptosis signal-

regulating kinase 1, this stimulates p38 and JNK MAPK and NF-κB pathways 135.  

Other serine proteases 

       In our study AZD9668 is specific for neutrophil elastase (NE), but does not inhibit 

proteinase 3 or cathepsin G.  We demonstrate the importance of NE in Dox-induced 

cardiotoxicity; however, it would also be important to examine the roles of both serine 

proteases in Dox-induced cardiotoxicity.  

Cathepsin G 

       Another serine protease from the azurophilic granules is cathepsin G. Similar to 

neutrophil elastase, cathepsin G has pro-inflammatory properties that play a role in 

degradation of extracellular matrix (ECM) components, as well as being a 

chemoattractant for leukocytes such as T-cells. It also plays a role in tissue 



79 
 

remodeling. Additionally, Cathepsin G has been observed to activate the matrix 

metalloproteinase MMP-2 which can induce apoptosis 136. Cathepsin G has also been 

found to mediate the regulation of the chemokine RANTES (Regulated upon 

Activation, Normal T-cell Expressed and Secreted) which are associated with the 

severity of coronary artery disease 137. Additionally, cathepsin G activity also leads to 

the generation of angiotensin II which induces the expression of the monocyte 

chemoattractant protein-1 (MCP-1) that triggers a profibrotic response by TGF-β1 

leading to cardiac fibrosis. Cathepsin G through TGFβ1 formation has also been 

observed to initiate calcification of the aortic valve. In human stenotic aortic valve 

cathepsin G has been found to be significantly elevated and is associated with 

formation of atheroma of carotid artery 138.  

       Additional studies have shown that cathepsin G triggers a chemotactic response 

in absence of myocardial injury. Cathepsin G treated hearts showed increase ECM 

degradation. Cathepsin G also induced increase in activity of elastase and chymase 

which led to activation of cytokines/chemokines that amplify leukocyte migration to 

heart at the time of injury. This induces a cycle with excess neutrophil degranulation 

and inhibition of tissue repair 139. This same study also demonstrated the mechanisms 

by which cathepsin G provokes the pro-inflammatory response. By inducing cleavage 

of IL-1β and IL-18, cathepsin G activates STAT3 and NF-κB signaling pathways to 

initiate an inflammatory response 140. Intracardiac administration of cathepsin G in rats 

led to early changes in left ventricular (LV) remodeling with a decrease in LV wall 

thickness. These rats also had significant ECM degradation and MMP activity. This 

study also found that treatment with cathepsin G resulted in more myocyte apoptosis 
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139. These studies have explored the role of cathepsin G with respect to heart diseases 

but not Dox-induced cardiotoxicity. Hence it would be important to study this serine 

protease in the context of Dox-induced cardiotoxicity. 

Proteinase-3 

       Proteinase-3 is a 29 kDa serine proteinase that is present in azurophilic granules 

of neutrophils. It is also present in other specific granules, secretory vesicles and cell 

surface. Following translocation to the cell membrane this proteinase is secreted into 

extracellular medium by activated neutrophils 141,142. Proteinase-3 is identified by a 

highly conserved catalytic triad (His57, Asp102 and Ser195; using chymotrypsinogen 

numbering) 143. It is initially an inactive precursor that undergoes a two-stage post-

translational modification and becomes active. Proteinase-3 can act in both an 

intracellular and extracellular manner. Proteinase-3 has many functions such as 

degrading ECM proteins including fibronectin, type IV collagen and laminin 144. 

Additionally, it also has a defensive immune role by regulating a number of cellular 

processes and can cleave protein to antibacterial peptides and activate pro-

inflammatory cytokines 145.  

       Several studies have shown a relationship between proteinase-3 and plaque 

stabilization in atherosclerotic cardiovascular disease. Proteinase-3 mediates a 

chronic inflammatory state by activation of TNF and IL1β 146, activation of proteinase-

activated receptor 2 and phospholipase C that can lead to translocation of NF-κβ 147. 

Proteinase-3 has been shown to activate pro-apoptotic signaling of endothelial cells 

through multiple pathways: ERK, KNK and p38 MAPK 64,67.  
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Cardiac Fibroblasts 

       Cardiac fibroblasts form a major part of the cell population in heart. Studies in 

rates showed that the heart comprised of 70% myocytes and 30% non-myocytes. 

Another study in murine hearts showed that 45% of cells are non-myocytes with a vast 

majority being fibroblasts 148. In human hearts the numbers vary. Some reports found 

the proportion of fibroblasts to be in the 20-60% range 149. The reason for this disparity 

in determining the percentage of fibroblasts is due to the lack of specific markers. 

        Some of the molecular markers that have been used to identify fibroblasts 

include: discoidin receptor 2(DDR2) which can label fibroblasts but not endothelium, 

smooth muscle or myocytes. However, not all fibroblasts are DDR2+. Another marker 

used to label fibroblasts is Thymocyte 1 (CD90). However, this receptor is also 

expressed by immune cells, pericytes and endothelium. Vimentin, an intermediate 

filament is also used as a marker for fibroblasts, however it has also been shown to 

be expressed on endothelial cells. Fibroblast specific protein 1(FSP1) is considered a 

reliable fibroblast marker. However recent findings have shown that it also labels a 

subset of immune and endothelial cells 150. For activated fibroblasts αSMA is the most 

commonly used marker for activated fibroblasts. Another marker for activated 

fibroblasts is periostin as it is expressed developmentally by cardiac fibroblasts but 

not by adult fibroblasts 151. Platelet-derived growth factor receptor α(PDGFRα) was 

another marker that was used to identify fibroblasts as it appears to be involved in 

formation of CF from the epicardium 152.  

       The main function of cardiac fibroblasts is to synthesize the collagen rich ECM 

network, especially during myocardial remodeling post injury.  When fibroblasts react 
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to injury, they transition from a quiescent state to an activated state called 

myofibroblasts. This transition post injury is shown to be mediated by multiple 

mechanisms including growth factor release in the myocardial environment such as 

the cytokines TNFα, TGFβ, PDGFs, cytokines like IL-1, IL-10 and renin angiotensin 

system (RAS) proteins. RAS are produced by macrophages and stimulate cardiac 

fibrosis by TGFβ signaling pathway. Incorporation of α-SMA into stress fibers is a 

characteristic of the myofibroblasts. TGFβ leads to promotion of α-SMA transcription 

in fibroblasts by the Smad3 signaling cascade. Active TGFβ can also activate 

downstream signaling pathways in the absence of Smad signaling. In fact both Smad-

dependent and non-Smad pathways have been seen to cause up-regulation of α-SMA 

and ECM protein 153. Myofibroblasts have two functions post injury such as that 

caused by MI: secreting ECM protein to replace damaged myocardium and to 

stimulate infarct contraction and produce factors to regulate inflammatory response 

154. Some of the ECM proteins that myofibroblasts express include but are not limited 

to Type I, III, IV, V and VI collagen, glycoproteins, proteoglycans including fibronectin, 

laminin and tenascin 155. Excessive deposition of collagen causes development of 

cardiac fibrosis. 
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Figure 12 Graphical Summary 
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Chapter Five: Future Directions with preliminary results 

As discussed in the previous chapter there are several future steps that will further our 

understanding of the innate immune system in Dox-induced cardiotoxicity. This 

chapter will report our findings from preliminary experiments done. Here we look into 

the role of macrophages, ROS and cardiac fibroblasts in Dox-induced cardiotoxicity. 

Macrophages 

       The exact role of macrophages in Dox-induced cardiotoxicity is not clear. We 

observed an elevation in macrophage and monocytes in neutrophil depleted mice 

treated for two weeks with Doxorubicin. In order to further delineate the importance of 

macrophages in Dox-induced cardiotoxicity or mouse model we depleted 

macrophages prior to Dox therapy using chlodronate liposomes. We first confirmed 

depletion by quantifying and comparing macrophages (CD11b+ F4/80+) in heart tissue 

48 hrs post depletion. We confirmed the depletion of macrophages in heart tissue of 

chlodronate liposome treated group. Dox treatment was then initiated in the control 

and macrophage depleted mice for 2 weeks. Depletion of macrophages was repeated 

every 3 days during the course of treatment. Twenty-four hours following completion 

of Dox treatment performed echocardiographic measurements to assess heart 

function to assess acute toxicity. Echocardiographic measurements were repeated at 

2-week intervals, up to 8 weeks after Dox treatment to monitor heart function.  

       Similar to control mice there was a significant decrease in EF and FS in the 

macrophage depleted mice 24 h after Dox therapy. This decrease in heart function 

persisted and was still evident 8 weeks after Dox treatment (Figure 12). This is in 
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contrast to our results with neutrophil depletion where there was no evidence of Dox-

induced cardiotoxicity either acutely or 12 weeks post therapy. This indicates that 

neutrophils are the critical cells that cause damage post Dox treatment. Delineating 

the exact role of macrophages in Dox-induced cardiotoxicity would be key to 

understanding the innate immune environment in heart post Dox treatment. 

 

Figure 13: Monocytes and Macrophages in Dox-induced cardiotoxicity.  Ejection 

fraction (EF) and fractional shortening (FS) were quantified by echocardiography up 

to 8 weeks after therapy. Data are presented as mean ± SEM, n = 5 each, p < 0.05, 

one-way ANOVA analysis with Tukey comparison was used to compare the groups. 
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ROS 

We investigated ROS levels during and after Dox treatment by measuring the intensity 

of Dichlorofluorescein dye using flow cytometry. While no increase was seen 6 hrs 

post Dox, we observed a significant increase in circulating ROS levels 24 hrs after 1 

dose of Dox. This increase did not persist at the 1-week timepoint. The increase in 

ROS was also seen 24 hrs after dose 4 of Dox indicating that this is a consistent acute 

response to Dox therapy (Figure 13).  

       Since ROS is generated by neutrophils and can augment the generation of 

neutrophil extracellular traps and pro-inflammatory cytokines 156, further investigation 

into ROS levels in our neutrophil depleted mice would help understand the relationship 

between ROS and neutrophils in Dox-induced cardiotoxicity. 

 

 

Figure 14: ROS analysis in blood post Dox treatment. ROS analysis was done 

measuring Dichlorofluorescein dye by flow cytometry at different time points after 

treatment. Data are presented as mean ± SEM, n=5 each, *p<0.05, a Mann-Whitney 

U-test was used to compare two groups. 
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Cardiac Fibroblasts 

       In the context of Dox-induced cardiotoxicity we did a preliminary investigation on 

the effects of Dox on cardiac fibroblasts. We first isolated primary fibroblasts from 

mouse hearts and then treated these fibroblasts with Dox for 24 hrs. We then collected 

the cells and isolated RNA and then analyzed cytokines and chemokines associated 

with immune cell recruitment and inflammation by qPCR. We found a significant 

increase in CXCL-1 and Granulocyte macrophage colony-stimulating factor (GM-

CSF) (Figure 14). CXCL-1 is a strong neutrophil chemoattractant. Reports have also 

indicated that CXCL1 may aggravate cardiac fibrosis by a pro-inflammatory effect 157. 

Additionally in CXCR2 (receptor for CXCL1) knockout mice where TGFβ1 and p-Smad 

2/3 were suppressed, it was found that α-SMA levels were decreased suggesting that 

CXCL1 may be mediating cardiac fibrosis though TGF-Smad2/3 signaling pathway 

158. GM-CSF promotes myeloid cell development and maturation 159. In studies of 

Kawasaki disease, a pediatric heart disease that is characterized by cardiac 

inflammation and infiltration of neutrophils and monocytes, it was found that cardiac 

fibroblasts were a major source of GM-CSF. Additionally, GM-CSF was found to drive 

cardiac inflammation as it functioned as a pro-inflammatory cytokine. It was found to 

be rapidly and selectively expressed in the heart during initial disease progression and 

switched on inflammatory gene profile of resident macrophages160.  

It is quite clear that cardiac fibroblasts play a major role in heart diseases. Hence, a 

deeper investigation into the role of these cells in Dox-induced cardiotoxicity is 

warranted based on the preliminary data and previous studies in heart diseases. 
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Figure 15: Evaluation of cytokines in cardiac fibroblasts. Expression levels of CXCL-

1 and GM-CSF were evaluated using qPCR analysis. Data are presented as mean ± 

SEM, n=4 each, *p<0.05, a Mann-Whitney U-test was used to compare two groups. 
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Chapter Six: Methodology 

This chapter is based upon “Bhagat A, Shrestha P, Jeyabal P, Peng Z, Watowich 

SS, Kleinerman ES. Doxorubicin-induced cardiotoxicity is mediated by neutrophils 

through release of neutrophil elastase. Front Oncol. 2022 Aug 10; 12:947604” as a 

part of CC-BY Creative Commons attribution license.  

Materials and Methods: 

Mice:   Our juvenile cardiotoxicity mouse model was used to determine the role of 

neutrophils in Dox-induced cardiotoxicity 33,34. As Dox-induced cardiotoxicity has 

been shown to be increased in females, female 4-6 weeks old C57BL/6 mice were 

acquired from Experimental Radiation Oncology at MD Anderson Cancer Center 

(Houston, TX, USA). Female 4-6 weeks old Balb/c mice were acquired from Charles 

River Laboratory, Frederick. NE-deficient mice (NE-/-) of C57BL/6 background were 

kindly provided by Dr Stephanie Watowich. All mice were maintained in a pathogen-

free animal facility and used in accordance with IACUC approved protocols.  All 

experiments were performed in mice on Balb/c background, except for experiments 

involving neutrophil elastase, for which C57BL/6 mice were used. 

Echocardiography: Anaesthetized mice were assessed for cardiac function using 

transthoracic echocardiography (Vevo 3100 echocardiography with a 40MHz linear 

signal transducer and 550D probe; VisualSonics, Toronto, CA). M-mode short axis 

images were recorded at the level of the papillary muscles. The left ventricular (LV) 

muscle was bisected to obtain the optimal M-Mode(multimodal) selection. For each 

mouse, at least five B-mode and five M-mode images were recorded. All images 
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were saved for analysis. Conventional echocardiographic measurements of the left 

ventricular function included ejection fraction (EF), fractional shortening (FS), end-

diastolic dimension (LVID(d)), end-systolic dimension (LVID(s)), and anterior and 

posterior wall thickness. For long axis B-mode measurements, the endocardium was 

traced beginning from the mitral valve and excluding the papillary muscle. EF and 

FS were calculated by Vevo Lab software and is expressed as change from baseline 

measurement that is taken before Dox treatment.  

Neutrophil depletion: InVivoPlus anti-mouse Ly6G(IA8) (Bioxcell BP) antibody was 

used to deplete neutrophils. On days 2 and 9 of the experiment, anti-mouse Ly6G 

(500 µg) was administered intra-peritoneally. To confirm successful depletion blood 

samples were collected via retro-orbital bleeding. The red blood cells were lysed 

using ACK lysis buffer and subsequently washed with phosphate-buffered saline 

(PBS). The subsequent single cell suspension was incubated in PBS containing anti-

mouse Ghost Violet Dye 510 (Tonbo Biosciences 13-0870) for 15-30 min at 4°C to 

identify dead cells. This was followed by incubation in PBS with 2% FBS (FACS 

buffer) containing FcR block for 10 minutes at 4°C. Subsequently, samples were 

stained with fluorescently conjugated antibodies against murine cell surface markers 

for 90 min at 4°C using the following reagents:  anti-mouse CD45 PECy7 (Tonbo 

Biosciences), anti-mouse Ly6G FITC (BioLegend) and anti-mouse CD11b APC-

Cy7(BioLegend). Stained single-cell suspensions were analyzed on a BD LSR 

Fortessa (BD Biosciences). Data analysis was performed using FlowJo v10 software 

(FlowJo, Ashland, OR, USA)  
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Administration of Doxorubicin in vivo: Doxorubicin from TEVA/Actavis(2mg/mL) 

was resuspended in PBS to make up to a total volume of 100 µL at a dosage of 

2.5mg/kg. Resuspended Doxorubicin was administered to the mice intravenously via 

the tail vein twice a week for 2 weeks on days 4, 6, 11 and 13 as previously 

described33,34. 

Collection of Heart Sections: On day 14, 24h after the last dose of doxorubicin 

mice were euthanized and hearts were removed and split into two sections. One 

section was stored at -80°C (the optimal cutting temperature medium) to generate 

slides for immunofluorescence staining. The other section was chopped into small 

pieces (~2 mm) with a razor. Heart pieces were incubated in 2 mL Hanks’ Balanced 

Salt solution (HBSS). Type 2 collagenase (Worthington) was added at a dilution of 

1:10 to the heart pieces in HBSS and incubated for 30 min in a shaking incubator at 

37°C and 125 RPM. Digested cell suspensions were passed through 70 µm mesh 

filters; cells were subsequently washed with PBS. Following the wash, red blood 

cells were digested using ACK lysis buffer and then washed again with PBS in 

preparation for antibody staining.  

Immune Profiling by antibody staining and flow cytometry: Single-cell 

suspensions were incubated in PBS containing anti-mouse Ghost Violet Dye 510 

(Tonbo Biosciences) for 15-30 min at 4°C to identify dead cells. This is followed by 

incubation in PBS buffer with 2% FBS (FACS buffer) containing FcR block for 10 min 

at 4°C. The samples were then stained for 90 min at 4°C with the following 

antibodies against murine cell surface markers: anti-mouse CD45 PECy7 (Tonbo 

Biosciences), anti-mouse Ly6G FITC (BioLegend), anti-mouse F4/80 APC 
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(eBioscience), anti-mouse CD11b APC-Cy7(BioLegend), anti-mouse Ly6C 

PerCP/Cy5.5(BioLegend). The stained single-cell suspensions were then analyzed 

using a BD LSR Fortessa (BD Biosciences). Data analysis was performed using 

FlowJo v10 software (FlowJo, Ashland, OR, USA). 

Real-Time PCR: Quantitative real-time reverse transcription polymerase chain 

reaction (RT–PCR) was conducted to verify the changes in mRNA expressions. 

Extraction of the total RNA from cardiac tissues was performed utilizing the TRIzol 

(Invitrogen, MO, USA) reagent. The list of the primer sequences used in the study: 

mouse CXCL-1:(Forward:5’- ACCCGCTCGCTTCTCTGT-3), (Reverse: 5’- 

AAGGGAGCTTCAGGGTCAAG-3).  

Immunofluorescence staining: Frozen heart sections were fixed with acetone and 

then incubated with anti-mouse Ly6G antibody (Abcam), anti-mouse CD31 (BD 

Pharmingen) and anti-mouse NG2 (Santa Cruz Biotech. Fluorescence microscopy 

(Leica Microsystems) was used to analyze the slides. At least five different 

microscopy fields from different heart samples were examined using SimplePCI 6.0 

software (Hamamatsu), and the average expression was quantified to determine 

relative expression. 

Masson Trichrome stain: Heart sections from mice were embedded in paraffin and 

then fixed in Bouin’s solution. Following fixation, sections were stained using the 

Sigma-Aldrich Trichrome Stain kit (Procedure No: - HT15), and images of stained 

slides taken using the Hamamatsu Nanozoomer. At least five different fields from 

different heart samples were analyzed using Leica Microsystems software (LAS X), 

and the average expression was quantified to determine relative expression.  
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Bone Marrow derived neutrophils: Femur and tibia from 4 to 6-week-old C57BL/6 

control mice and NE-/- mice were collected and flushed with RPMI 1640 with 10% 

FBS and 1% penicillin/streptomycin. Histopaque 1119 and 1077 were used to create 

a density gradient to separate neutrophils from other immune cells. Purity of 

neutrophils was verified using flow cytometry.  

Neutrophil Trans-well Migration Assay: The neutrophils were stained with CFSE 

(0.5 µM) dye and added to a 3 µm trans-well filter placed over the wells for 2 h. 

Transmigration was observed using an Incucyte system. Fluorescent intensity was 

quantified using Incucyte System S3 software. A chemoattractant for neutrophils: 

WKYMVm (conc: 100 nM) was used. 

TUNEL assay: Apoptotic cells were assessed using TUNEL staining with a 

DeadEnd Fluorometric TUNEL system (Promega) according to manufacturer’s 

instructions. Slides were fixed in 4% formaldehyde and then sections were incubated 

in TdT reaction mix for 1 h at 37o C in the dark. Slides were then rinsed thrice with 

PBS and observed under a fluorescence microscope. The number of apoptotic cells 

was determined by counting the cells that were positive for both green fluorescence 

and DAPI using ImageJ analysis software.  

Western blotting: Isolated hearts were homogenized, and the protein lysates 

obtained were run on a 7.5% polyacrylamide gel. The primary antibodies used for 

blotting included: cleaved caspase-3, caspase-3 and GAPDH (Cell Signaling 

Technology). Chemiluminescence was detected using ChemiDoc System (BioRad).  
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NE Inhibitor Treatment: Mice were injected with AZD9668 intraperitoneally twice a 

day(100mg/kg) for the duration of Dox treatment161 . 

Statistics: Prism 8 software (GraphPad Software, San Diego, CA, USA) was used 

to perform statistical analyses.  Data are shown as mean ± the standard error of the 

mean. An unpaired, two-tailed t test or Mann-Whitney test was used to compare two 

groups. A one-way ANOVA with Tukey comparison was performed to compare more 

than two groups. Differences were considered significant when p<0.05. 
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