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ABSTRACT

BAYESIAN ADAPTIVE CLINICAL TRIAL DESIGN

Mengyi Lu, M.S.

Advisory Professors: Ying Yuan, Ph.D.

The landscape of drug development in oncology has changed from conventional chemother-

apies to molecular targeted therapies and immunotherapies, which provide innovative

therapeutic modalities for treating cancers. These novel therapeutic agents work through

mechanisms that fundamentally differ from standard chemotherapeutic agents, making

the conventional trial design paradigm inefficient and dysfunctional. Specifically, the fo-

cus of dose-finding trials has shifted from finding the maximum tolerated dose (MTD)

to the optimal biological dose (OBD), defined as the dose that optimizes the risk–benefit

tradeoff. How to accurately identify the OBD and its dosing schedule is of great im-

portance to maximize efficacy and safety of targeted therapies and immunotherapies.

The US Food and Drug Administration (FDA) Oncology Center of Excellence recently

launched Project Optimus to accelerate this paradigm shift. In addition, once the OBD

and recommended phase 2 dose (PR2D) are determined, how to effectively monitor short-

term and long-term efficacy in phase II trials, in particular basket trials, is critical for

the development of targeted therapies and immunotherapies.

In this dissertation, we propose Bayesian adaptive clinical trial designs to address

these challenges. Specifically, we propose (a) a novel Bayesian dose-finding design to find

the OBD of drug combination based on risk-benefit tradeoff, (b) a Bayesian adaptive de-

sign that simultaneously optimizes dose and schedule based on efficacy, toxicity and PK

data, and (c) a phase II basket trial design that uses Bayesian hierarchical model to bor-

v



row information across treatment arms for efficient termination of ineffective treatment

arms based on short-term and long-term endpoints. We conduct extensive simulation

studies to evaluate the operating characteristics of the proposed designs. Results show

that the proposed designs outperform existing approaches and provide robust and effi-

cient tools to accelerate the development of targeted therapies and immunotherapies.
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CHAPTER 1

Introduction

Clinical research consists of research studies or medical research performed on

humans as one step in the pharmaceutical development process. A clinical trial (or in-

terventional study) is one type of clinical study in which participants receive specific

treatment based on clinical protocols or research plans generated by investigators [1].

Clinical trials aim to evaluate the safety and effectiveness of a new investigational treat-

ment and compare it to current standard treatments. Specifically, in oncology trials,

clinical trials aim to determine whether the tumor responds to the investigational treat-

ment (e.g., tumor shrinkage) and evaluate short-term and long-term survival.

The Food and Drug Administration (FDA) defines several discrete phases in a

typical series of clinical trials [2]. After drug discovery and animal experiments, the drug

development process moves on to clinical research. Phase I clinical trials aim to evaluate

the safety of the investigational agent, which can be identified using the maximum tol-

erated dose (MTD). MTD is defined as the dose-limiting toxicity (DLT) probability of a

dose being closest to the target DLT, which refers to the highest acceptable probability

of toxicity that is closest to the target toxicity rate. Phase I trials also aim to determine

the appropriate dosage and understand how the treatment progresses inside the body.

Phase II clinical trials aim to test the effectiveness of the therapeutic agents, iden-

tify side effects, and make “go/no-go” decisions on whether to pursue further investigation

in phase III clinical studies. Phase III clinical trials aim to confirm the investigational

agent’s effectiveness, continue the monitoring of adverse reactions, and compare clinical

results to current relevant standard treatments. If the outcome of the phase III clinical
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trial is desirable, the FDA will approve the new treatment, and a large-scale phase IV

clinical trial will be conducted.

Our research focuses on early-phase (i.e., phase I and phase II) clinical trials.

1.1. Review of previous methods

Extensive statistical methods have been proposed for early-phase clinical trial

designs. There are three types of phase I clinical trial designs, based on their respec-

tive statistical foundations and implementation: algorithm-based designs, model-based

designs, and model-assisted designs.

1.1.1. Algorithm-based designs

Algorithm-based designs are widely used due to their transparency and simplicity.

The well-known 3+3 design is one example of this design type. Some extensions of

the 3+3 design include the rolling-6 design (Skolnik et al., 2008) and the accelerated

titration design (Simon et al., 1997) The 3+3 design was first introduced in the 1940s

(Dixon and Mood, 1946), followed by a pharmacological guideline that further described

the method in the 1990s . Now, 3+3 is still the most commonly used clinical trial

design. From May 31, 2019, to January 1, 2000, the 3+3 design was used in most of the

investigator-initiated phase I trials for solid tumors conducted by the Cancer Therapy

Evaluation Program (CTEP) sponsored by the National Cancer Institute (Chihara et al.,

2022). One primary reason for its ubiquity is that the 3+3 design is simple to understand

and implement, and the dose escalation/de-escalation rules are predetermined. However,

the 3+3 design is inflexible because it restricts the cohort size to either 3 or 6. The 3+3

design also has poor operating characteristics, shows poor accuracy in identifying the

MTD, and often treats patients with lower dose levels due to excessive dose-escalation

steps (Le Tourneau et al., 2009).
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1.1.2. Model-based designs

The model-based approach is a type of adaptive clinical trial design that was

proposed to improve the accuracy of algorithm-based designs. The model-based approach

uses statistical methods (e.g., the logistic model) to describe the dose–toxicity curve. One

example model-based approach is the continual reassessment method (CRM), which is a

Bayesian design that incorporates current dose outcomes as well as all information from

enrolled patients. Instead of a prespecified dose-escalation rule, the model-based design

specifies a statistical model. If the prespecified model is inappropriate, the CRM design

will assign patients to a dose level with relatively higher toxicity.

To overcome this limitation, Babb and Rogatko (Babb et al., 1998; Rogatko et al.,

2005) proposed an escalation with overdose control (EWOC) design that employs an al-

ternative Bayesian approach. The EWOC adds assessments for each patient when the

dose-limiting toxicity exceeds the MTD. Extensive studies have shown that the CRM

design outperforms the 3+3 design by demonstrating higher accuracy in identifying the

MTD and more flexibility in enrolling patients. However, the CRM design requires com-

plicated statistical modeling and complex computational implementation that clinicians

find difficult to understand, which limits the usefulness of the CRM design in practice.

Some modifications and extensions of the CRM have been proposed to simplify

the model. Neuenschwander et al. (2015) proposed a two-parameter Bayesian logistic

regression method (BLRM) to utilize escalation. Cheung and Chappell (2000) proposed

a time-to-event CRM (TITE-CRM) that considers the time-to-event endpoints for each

patient. Yin and Yuan (2009) proposed a Bayesian model that averages the CRM (BMA-

CRM) in multiple parallel CRM models with various prespecified toxicity rates. Liu et al.

(2013) developed a Bayesian data-augmentation CRM (DA-CRM) to sample model pa-
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rameters and missing data.

1.1.3. Model-assisted designs

Recently, the model-assisted approach has been developed by taking advantage of

the algorithm-based and model-based methods. Similar to the algorithm-based design,

the model-assisted design specifies rules to guide dose escalation/de-escalation before

initiating the trial. Similar to the model-based method, the model-assisted approach

uses statistical modeling (e.g., the binomial model) to derive efficient real-time decision-

making rules. For example, the modified toxicity probability interval design (mTPI)

proposed by Ji et al. (2010) uses hierarchical beta-binomial models and Bayesian statis-

tical models. The mTPI design models the probability of toxicity only at the current dose

level, and it groups the toxicity rates into three categories (i.e., overdosing, underdosing,

and proper dosing) based on the equivalence interval (Kurzrock et al., 2021). Compared

to the model-based design, the model-assisted design maintains the same accuracy in

identifying the MTD, but it is simpler to understand and implement.

Another representative model-assisted design is the Bayesian optimal interval

(BOIN) design proposed by Liu and Yuan (2015), which is a flexible, finite-sample based

approach that chooses upper and lower interval boundaries. The BOIN design compares

the observed DLT of the current dose to two fixed, predetermined dose escalation/de-

escalation boundaries. The BOIN design is more flexible and has superior operating

characteristics while offering the same transparency and simplicity as the 3+3 design.

The BOIN design is much more accurate in identifying the MTD, and it provides effec-

tive controls to assign patients to under- or over-doses.

The BOIN design is more flexible than the 3+3 design in three ways. First, it

can target any prespecified DLT rate. Second, the BOIN design has no cohort size
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requirements. Third, escalation/de-escalation decision making can occur at any time

during the trial (Yuan et al., 2016). Some modifications and extensions of the BOIN

design include the generalized BOIN design (gBOIN) proposed by Mu et al. (2019), which

incorporates the current toxicity scoring system under a unified framework. Zhou et al.

(2019). proposed a utilized BOIN design (U-BOIN) that uses a multinomial-Dirichlet

model that evaluates toxicity and efficacy simultaneously and uses the utility function to

describe the dose–efficacy tradeoff.

1.1.4. Phase II trial designs

The primary objective of phase II clinical trials is to evaluate the efficacy of the

investigational treatment and decide whether the investigational treatment is suitable

for large-scale phase III studies. Therefore, the fundamental idea of phase II clinical

trial designs is to allow early termination for futility if the treatment cannot attain the

prespecified minimum efficacy.

A wide variety of phase II clinical trial designs have been proposed. The most

well-known phase II frequentist design is Simon’s optimal two-stage design (Simon, 1989)

and its extensions (Chen, 1997; Ensign et al., 1994; Hanfelt et al., 1999; Jung et al.,

2001; Lin and Shih, 2004; Shuster, 2002). Under the Bayesian framework, some phase II

clinical trial designs include those of Tan and Machin (2002), Thall and Simon (1994),

Thall et al. (1995), Lee and Liu (2008), Johnson and Cook (2009), Wathen et al. (2008),

and Zhou et al. (2017). Compared to phase I clinical trials, phase II clinical trials are

more complicated because oncology trials require several efficacy endpoints. Examples

include binary outcomes (e.g., tumor shrinkage) and continuous outcomes (e.g., overall

survival).

Phase II clinical trial designs, such as our proposed design, commonly utilize
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futility monitoring rules to make timely and efficient decisions. These futility monitoring

rules usually focus on a single outcome (e.g., the response rate), although a single outcome

may not adequately determine the efficacy of the experimental treatment. In actual

practice, efficacy response requires more time to observe; therefore, the designers of

phase II clinical trials must also consider treatments with continuous endpoints.

1.2. Background and overview

The oncology field dramatically evolved with the introduction of precision medicine.

Cancer treatment changed from conventional chemotherapies to novel molecular targeted

therapies and immunotherapies. The main objective of early-phase clinical trials has

shifted from finding the MTD to finding the optimal biological dose (OBD), defined as

the dose that optimizes the risk–benefit tradeoff. This shift is driven by one characteristic

of targeted therapy and immunotherapy agents: Their efficacy may not increase with the

dose. Thus, the MTD may not be the dose that delivers the optimal therapeutic benefit.

To accelerate this paradigm shift, the US Food and Drug Administration (FDA)

Oncology Center of Excellence recently launched Project Optimus. The FDA’s release of

their Guidance on Benefit-Risk Assessment for New Drug and Biological Products further

confirms the stance of the regulatory authority on the importance of optimizing both the

dose and administration schedule for novel oncology drugs. Therefore, this optimization

is critical for developing novel, adaptive, early-phase clinical trial designs in molecular

targeted therapies and immunotherapies.

Sometimes, a single-agent therapy might not provide adequate therapeutic effects

for cancer treatment. With the advent of novel molecular targeted therapies and im-

munotherapies, drug combination therapy is becoming the basis for overcoming cancer

resistance and improving treatment efficacy. In addition, the commonly used sequen-
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tially outcome-adaptive dose-finding designs assume that patient outcomes are observ-

able shortly after treatment. However, non-cytotoxic therapies often have late-onset

outcomes in terms of both toxicity and efficacy. Numerous studies have been proposed,

but most designs require complicated statistical modeling, computation, and simulations

to demonstrate performance and operating characteristics. Hence, it is critical to propose

a robust and easy-to-implement Bayesian adaptive early-phase design for drug combina-

tion trials and late-onset outcomes. However, finding the OBD combination (OBDC) in

drug-combination trials is more challenging because of the increased dimensionality of

the dose-range finding.

In Chapter 2, we extend the single-agent Bayesian optimal interval phase I/II

(BOIN12) design to efficiently identify the OBDC in a drug-combination trial. Following

the decision-making rules of the BOIN12 design, we assign patients to the most appro-

priate dose combination by continuously updating the posterior distributions of toxicity

and efficacy. When the toxicity or efficacy outcomes are late-onset, we propose a time-

to-event version of the design that utilizes patients’ follow-up data for decision making.

Extensive simulation studies indicate that the proposed extensions of the BOIN12 are

more straightforward to implement than the current phase I/II drug-combination designs.

The proposed designs also have outstanding operating characteristics for determining the

OBDC, based on various trial configurations.

Given a particular dose, the schedule of administration has a profound impact

on the drug’s toxicity and efficacy profiles. The dosing schedule changes the pharma-

cokinetics (PK) of the drug. This is one fundamental reason why it also affects the

drug’s toxicity and efficacy profile. PK describes how the drug is absorbed, distributed,

metabolized, and eliminated after administration (Danhof et al., 2005). PK is inherent

to dose-schedule optimization because PK dictates how the dose and its administration
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schedule affects toxicity and efficacy. Thus, it is also critical to integrate PK data for

efficient dose-schedule optimization.

Motivated by this, in Chapter 3, we propose a Bayesian PK-integrated dose-

schedule finding (PKIDS) design to identify the optimal dose-schedule regime by in-

tegrating PK, toxicity, and efficacy data. Based on the causal pathway through which

dose and schedule affect PK—which, in turn, affects efficacy and toxicity—we model the

three endpoints jointly by first specifying a Bayesian hierarchical model for the marginal

distribution of the longitudinal dose-concentration process. Conditional on the drug con-

centration in plasma, we model toxicity and efficacy jointly as a function of the concen-

tration. We quantify the risk–benefit of regimes using utility while continuously updating

estimates of PK, toxicity, and efficacy based on interim data. Then, we make adaptive

decisions to assign new patients to appropriate dose-schedule regimes via adaptive ran-

domization. The simulation study shows that the PKIDS design has desirable operating

characteristics.

A basket trial evaluates treatment effects simultaneously in patients with different

histologic cancer types and a common biomarker signature. Though basket trials are more

resource-intensive, due to its increased efficiency relative to the traditional approach, a

series of trials investigating single histologies at a time, basket trial design is rapidly

evolving. It is necessary to develop innovative basket trial designs to monitor drug

efficacy and stop cohorts that fail to show evidence of activity as early as possible.

To meet this challenge, in chapter 4, we propose a Bayesian hierarchical monitoring

design for basket trials by incorporating both short-term endpoints and long-term end-

points. Conditional on latent subgroup indicator, we use the Bayesian hierarchical model

to borrow information across different cancer types, increasing efficiency in detecting a
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meaningful treatment effect. Extensive simulation studies illustrate that our proposed

design has favorable operating characteristics compared with current trial designs. Our

proposed Bayesian hierarchical monitoring model yields higher power to detect treat-

ment effects. Simultaneously, it can reduce the probability of early termination when the

duration of response is substantially prolonged, but no improvements in response rate.

The design and execution of a clinical trial is a complex process. Differences in

various components of the process (e.g., enrollment, eligibility criteria, clinical proce-

dures) could result in discrepancies between the findings of related studies. Potentially

exaggerated findings and findings that are contradicted in subsequent studies are not

unusual in clinical research. These uncertainties are of particular concern when highly

cited clinical studies are involved. Given the widespread impact of highly cited studies on

clinical research and practice, these studies are often regarded as models or standards in

related research. Thus, a careful statistical analysis of such studies is important because

such an analysis helps us understand the process of clinical science and helps clinical

researchers appropriately evaluate and interpret experimental findings.

In Chapter 5, we analyze 49 original, highly cited clinical studies that were subse-

quently contradicted or found to have overestimated the effects of experimental interven-

tions. This analysis is challenging because these studies are highly heterogeneous, and

the data retrieved from the corresponding publications are typically limited to summary

statistics, without patient-level information. We overcome these difficulties by basing our

analysis on test statistics within a Bayesian framework. We identify one source of the

contradictory results: the p values strongly overstated the experimental evidence. For

highly cited studies, when the p value was .05, there was a 74.4% chance of confirming

the null hypothesis. The use of a p value of .05 as the criterion for significance has caused

many spurious positive findings that were contradicted by subsequent large-scale studies.
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CHAPTER 2

Comb-BOIN12: A Bayesian Phase I/II Trial Design to

Find the Optimal Biological Dose for Drug Combination

Trials

2.1. Introduction

In early-phase clinical trials, phase I clinical trials aim to determine the maximum

tolerated dose (MTD) of the investigational agent. The purpose of phase II clinical trials

is to identify the efficacy of the investigational agent. Such traditional objectives and

procedures are designed for conventional chemotherapies, such as cytotoxic agents that

directly target tumor cells. Promising novel targeted therapy and immunotherapy (e.g.,

molecular targeted agents, biological agents) focus on the direct pathways of the immune

system. These therapies consider the mode of action and continue separately to identify

the safety and efficacy of the novel agents inappropriate for novel cancer treatment.

Instead, in the era of targeted therapy and immunotherapy, early-phase clinical trials

aim to identify the optimal biological dose (OBD), which is the dose that produces the

optimal therapeutic effect among all investigational dose levels. Therefore, researchers

usually conduct a single study that simultaneously monitors the toxicity and efficacy of

phase I/II clinical trials.

Numerous phase I/II trial designs have been proposed to determine the OBD. Zang

and Lee investigated a robust two-stage I/II trial design by incorporating toxicity and

efficacy outcomes simultaneously (Zang and Lee, 2017). Liu et al. developed a Bayesian

trial design by considering the immune response, toxicity, and efficacy outcomes based co-

incidentally on unique features of immunotherapy (Liu et al., 2018). Zhou et al. proposed
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a utility-based seamless Bayesian phase I/II trial design to determine the OBD by mod-

eling toxicity and efficacy outcomes jointly (Zhou et al., 2019). Lin and Ji investigated

a Joint i3+3 design that incorporates toxicity and efficacy outcomes to define the OBD

(Lin and Ji, 2020). Lin et al. developed a Bayesian optimal interval phase I/II (BOIN12)

design to identify the OBD using a quasi-beta-binomial method (Lin et al., 2020). How-

ever, a single agent is insufficient for actual cancer treatment. As a result, combination

therapy, which combines two or more therapeutic agents, is becoming foundational for

overcoming cancer resistance and improving treatment efficacy(Mokhtari et al., 2017).

The motivation of our design is a combination therapy that utilizes pembrolizumab

to treat multiple types of advanced solid tumors. Pembrolizumab is an immunother-

apeutic that targets and blocks the programmed cell death receptor (PD-1) immune

checkpoint with functional antitumor activity (Robert et al., 2015). In 2014, the FDA

approved pembrolizumab for the treatment of advanced melanoma patients who have a

BRAF mutation (Ascierto et al., 2012). The drug was later approved to treat several

solid tumors that indicate microsatellite instability (MSI-H) and mismatch repair defi-

ciency (Syn et al., 2017). As of 2020, the FDA has also approved pembrolizumab for the

first-line treatment of unresectable or metastatic microsatellite instability-high (MSI-H)

or mismatch repair deficient (dMMR) colorectal cancer (Food and Administration, 2020).

Although single-agent pembrolizumab showed continued benefit for patients, a

dual-type combination of pembrolizumab provides better outcomes for patients who en-

counter disease relapse as resistance develops (Robert et al., 2015). For example, pa-

tients with advanced endometrial cancer or renal cell carcinoma demonstrated promising

antitumor activity under safety dosages when treated with the targeted agent lenva-

tinib in combination with pembrolizumab (Taylor et al., 2020). However, as of De-

cember 2020, most phase I/II combination therapy trials involving pembrolizumab still
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use conventional clinical paradigms (e.g., the 3+3 design) to identify the MTD be-

fore proceeding to the cohort expansion stage (Gangadhar et al., 2015; Mitchell et al.,

2018; Kawazoe et al., 2020; Hamid et al., 2017; Smith et al., 2017; Barzi et al., 2022;

Pollack et al., 2019; Tawbi et al., 2018; Mato et al., 2018; Aggarwal et al., 2022; Powderly et al.,

2020; Johnson et al., 2018; Hirai et al., 2021).

Numerous designs for drug combination trials have been proposed. Yuan and

Yin proposed a seamless phase I/II design for drug combination trials using a copula-

type regression across the two-dimensional dose–toxicity space in the phase I stage

(Yuan and Yin, 2011). Wages and Conaway developed a Bayesian adaptive phase I/II

trial design by incorporating two binary responses, toxicity, and efficacy, to assign pa-

tients the most optimal dose combination (Wages and Conaway, 2014). Cai et al. in-

vestigated a novel Bayesian phase I/II trial design to sufficiently explore untried doses

in combination trials (Cai et al., 2014). Guo and Li proposed a Bayesian dose-finding

algorithm to find the optimal dose combination without parametric model assumptions

(Guo and Li, 2015). Jimenez et al. proposed a seamless two-stage phase I/II trial design

with a late-onset efficacy endpoint (Jiménez et al., 2020).

These phase I/II dose-finding methods have greatly improved the development

of novel cancer treatments, and they have enhanced the accuracy of OBD determina-

tion. However, the designs described above are both conceptually and computationally

complex. Most designs require complex statistical model-fitting to determine the OBD,

which is both difficult to implement in practice and difficult for clinicians to understand.

To overcome these barriers and limitations of the current phase I/II drug combination

trial designs, we propose a combination Bayesian optimal interval phase I/II trial design

(Comb-BOIN12) for early-phase dose-finding in targeted therapy and immunotherapy.

We use a utility function to optimize the risk-benefit trade-offs and to ensure that our

12



proposed design is simple, accurate, and easy for clinicians to implement in practice.

As an extension of the single-agent BOIN12 design, under the Comb-BOIN12

design, patients are adaptively assigned the most appropriate dose combination by con-

tinuously updating the posterior distributions of toxicity and efficacy. Moreover, we find

one practical problem with the motivation example: Toxicity and effectiveness have a

long response time after treatment begins. With the expected accrual rate, new patients

were enrolled in the treatment even though the toxicity and efficacy outcomes of previ-

ous patients were still pending. As a result, patients were assigned to unacceptable dose

levels.

To address this issue, we also propose a time-to-event version of our design to allow

real-time decision-making in cases of late-onset toxicity and efficacy outcomes. Simulation

studies indicate that under various configurations and trial settings, our proposed Comb-

BOIN12 design is simple to implement, and it exhibits far better operating characteristics

for determining the optimal biological dose combination (OBDC) than current phase I/II

drug-combination designs.

This chapter is organized as follows: 2.2 describes the BOIN12 design and presents

our proposed Comb-BOIN12 designs. 2.3 discusses the results of our extensive simulation

studies to evaluate the operating characteristics of our proposed method. 2.4 provides

an overview and conclusion.

2.2. Method

Consider the investigation of a single-agent phase I/II trial to determine the OBD

with J dose levels, where J = 1, . . . , J . Assume YT and YE are binary outcomes that eval-

uate toxicity and efficacy, respectively. When toxicity occurs, YT = 1; otherwise, YT = 0.

Similarly, YE = 1 indicates efficacy, while YE = 0 indicates a lack of efficacy. The liter-
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ature includes many proposals to quantify the risk-benefit trade-offs (Thall and Russell,

1998; Gooley et al., 1994; Braun, 2002; Thall and Cook, 2004; Yin et al., 2006; Jin et al.,

2014; Guo and Li, 2015; Liu and Johnson, 2016).

Most conventional early-phase trial designs use complicated statistical models to

jointly account for toxicity and efficacy, which are difficult to compute. One innovation

of our method is that we use utility to quantify risk-benefit trade-offs. Following the

BOIN12 approach, we model utility directly, and we use a pseudo-likelihood approach

to obtain the posterior utility for decision-making. Given any patient in the trial, all

possible outcomes of Y are summarized as Y = {(YT = 0, YE = 1), (YT = 0, YE =

0), (YT = 1, YE = 1), (YT = 1, YE = 0)} := {(0, 1), (0, 0), (1, 1), (1, 0)}. Let pab present

the probability of outcome (YT = a, YE = b).

Utility U(YT , YE) should be elicited from clinicians to reflect the risk-benefit trade-

off that underlies their medical decisions. The most desirable outcome is (YT = 0, YE =

1), which is assigned the value of ρ01 = 100. The least desirable outcome is (YT =

1, YE = 0), which is assigned a score of ρ10 = 0. The other two outcomes are suggested

by clinicians, and they should fall between the least desirable and most desirable scores.

For example, when ρ11 < ρ00, this utility specification prioritizes efficacy above toxicity

because it is desirable to tolerate more toxicity in exchange for increased efficacy. Another

advantage of utility is that it is highly scalable and flexible. This utility approach could

easily extend beyond bivariate binary endpoints.

2.2.1. Comb-BOIN12 design

Consider a phase I/II combination trial to identify the OBDC from a set of dose

combinations J × K. Assume J doses of biological agent A, where J = 1, dots, J ; and

K doses of biological agent B, where K = 1, . . . , K are involved. Follow the same utility
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function strategy to quantify the toxicity-efficacy trade-off, the mean utility is given by

u(j, k) =
1∑

a=0

1∑
b=0

uabpab(j, k), (2.1)

By using quasi-likelihood to model u(j, k) directly, the standardized utility is sum-

marized as

u∗(j, k) = u(j, k)/100, (2.2)

where u∗(j, k) ∈ [0, 1] is a weighted average of p01(j, k), p00(j, k), p11(j, k), p10(j, k)

Under the Bayesian framework, the standard utility follows a beta distribution,

and the quasi-binomial likelihood of the observed data iss

L(D(j, k)|u∗(j, k)) ∝ (u∗(j, k))x(j,k)(1− u∗(j, k))njk−x(j,k), (2.3)

while the posterior distribution was

u∗(j, k)|D(j, k) ∼ Beta(α + x(j, k), β + njk − x(j, k)), (2.4)

where D(j, k) = (njk, y01(j, k), y00(j, k), y11(j, k), y10(j, k)), x(j, k) was the number of

“events” observed from njk patients treated at dose (j, k).

Two criteria for evaluating the various dose combinations are used to safeguard

patients from overly toxic or futile doses. Incoming patients are treated only under

admissible doses, while unacceptable doses are eliminated. Let CT and CE indicate the

cutoff probabilities, dose combinations are considered unacceptable when they satisfy the
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following criteria:

Pr(pT (j, k) > ϕT |D(j, k)) > CT (Safety),

Pr(pE(j, k) < ϕE|D(j, k)) > CE (Efficacy)

2.2.2. Dose-finding Algorithm for Comb-BOIN12 design

The rules for dose escalation or de-escalation are easy to follow and understand.

Assume that p̂T (j, k) represents the toxicity rate observed with dose combination (j, k).

Let λe and λd denote the boundaries for escalation and de-escalation adopted from the

BOIN design. Let ub represent the utility benchmark to evaluate u(j, k). Last, assume

that N∗ presents the sample cutoff, where we recommend N∗ = 6 for more desirable trial

results.

The dose-finding rule is described as follows (see Figure 2.1 for a detailed flowchart):

Stage I (i.e., run-in period)

1. The first cohort of patients is treated with the lowest dose combination (1, 1).

2. If no toxicity or efficacy outcome is observed with the current dose combination

(j, k), the next cohort of patients is treated with dose combination (j + 1, k + 1).

3. If j = k = K, the dose is increased to (j+1, K). If j = k = J , the dose is increased

to (J, k + 1).

4. Stage I is complete when either toxicity or efficacy is observed.

5. Stage II begins.

Stage II (i.e., dose-finding period)
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1. At the current dose combination (j, k), the next cohort of patients is treated based

on one of the following three evaluations:

(a) If p̂T (j, k) ≥ λd, de-escalate one dose level to (j − 1, k), (j, k − 1)

(b) If p̂T (j, k) > λe and njk ≥ N∗, the current dose is maintained: (j, k), or

(j − 1, k), (j, k − 1), whichever has the largest value of Pr(uj′k′ > ub|Dj′k′)

(c) Otherwise, the next dose combination is chosen from (j − 1, k), (j, k − 1), (j, k), (j + 1, k), (j, k + 1),

whichever exhibits the largest value of Pr(uj′k′ > ub|Dj′k′)

2. Step I is repeated until the maximum sample size is reached. The final OBD

selection is based on the following two procedures:

(a) MTD is identified as the dose level that shows an isotonically estimated toxicity

probability closest to the upper toxicity limit.

(b) The final OBDC is determined by the dose level that exhibits the highest

estimated utility among the doses that do not exceed the MTD.

Another innovation of our proposed design is that we incorporate a model-based

approach at Stage II step 2(b), to increase the accuracy of the final OBDC selection. With

the same dose-finding rule of Comb-BOIN12, we also propose a Comb-BOIN12MODEL that

uses a model-based approach to model efficacy.

2.2.3. Late-onset Outcomes

Most oncology trial designs assume that toxicity and efficacy outcomes can be

observed rapidly after treatment begins. However, one practical problem for targeted

therapy and immunotherapy is that toxicity and efficacy are always late-onset factors.

Three common late-onset developments occur during novel cancer treatment: (1) a toxi-
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city outcome is observed, but efficacy is pending; (2) efficacy is observed, but the toxicity

outcome is pending; or (3) both the toxicity and efficacy outcomes are pending. Pend-

ing outcomes challenge real-time decision-making, and newly enrolled patients could be

assigned inappropriate dosages. Therefore, we also provide a time-to-event version of

the Comb-BOIN12 design (TITE-Comb-BOIN12) by adding an approximate likelihood

method based on the follow-up time of patients who exhibit late-onset effects at the

interim analysis to impute the unobserved missing outcomes.

We assume the observed data (YT , YE) during the interim time, where YT = 1 if

a patient exhibits dose-limiting toxicity (DLT) at the interim time; otherwise, YT = 0.

Similarly, YE = 1 if a patient exhibits experimental efficacy at the interim time; otherwise,

YE = 0.

Let Yiq, q ∈ T,E denote the toxicity or efficacy outcomes for the ith patient,

where Yiq = 1 indicates toxicity or efficacy; otherwise Yiq = 0. Let ψiq indicate whether

toxicity or efficacy is pending for Yiq(ψiq = 0) or is observed for Yiq(ψiq = 1) during the

interim time. Patients are divided into four types based on the value of ψq : (ψT , ψE) =

((1, 1), (0, 1), (1, 0), (0, 0)). The quasi-number of “events” is determined by (a) the ob-

served utility of patients who have both toxicity and efficacy ascertained (xO) and (b)

the observed utility of patients for whom toxicity, efficacy, or both outcomes were pending

(xP ).
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x = xO +XP =
1

100

1∑
a=0

1∑
b=0

{uab
N∑
i=1

I(YiT = a)I(YiE = b)ψiTψiE

+ uab

N∑
i=1

I(YiT = a) Pr(yiE = b|ψiE = 0)ψiT (1− ψiE)

+ uab

N∑
i=1

Pr(YiT = a|ψiT = 0)I(YiE = b)(1− ψiT )ψiE

+ uab

N∑
i=1

Pr(YiT = a|ψiT = 0)Pr(YiE = b|ψiE = 0)(1− ψiT )(1− ψiE)}

(2.5)

When patients have at least one outcome pending, the following assumption is required.

For instance, when Yiq = 1, the time-to-event outcome tq is a uniform random variable

over (0, Aq), where Aq is the length of the assessment window for Yq. Then

Pr(Yiq = 1|ψiq = 0) =
Pr(ψiq = 0|Yiq = 1)Pr(Yiq = 1)

Pr(ψiq = 1|Yiq = 0)Pr(Yiq = 0) + Pr(ψiq = 0|Yiq = 1)Pr(Yiq = 1)

=
Pr(ψiq = 0|Yiq = 1)Pr(Yiq = 1)

Pr(ψiq = 1) + Pr(ψiq = 0|Yiq = 1)Pr(Yiq = 1)

=
πq(1− tq/Aq)

1− πqtq/Aq
=
πq(1− ωiq)

1− πqωiq

(2.6)

Where ωiq = Pr(Xiq ≤ t|Yiq = 1) is the adjusting weight for toxicity (q = T ) or efficacy

(q = E) outcomes that remain unobserved. Under the uniform assumption, ωiq = t/Aiq.

Given the observed data for N patients, Dq = {Yiq, ωiq, ψiq, i = 1, · · · , N}. Based

on the approximation 1 − ωqπq ≈ (1 − πq)
ωq , the marginal likelihood function for πq is
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given by

L(Dq|πq) =
N∏
i=0

[π
Yiq
iq (1− πiq)

1−Yiq ]ψiq(1− ωiqπiq)
(1−ψiq)

≈
N∏
i=0

[π
Yiq
iq (1− πiq)

1−Yiq ]ψiq(1− πiq)
ωiq(1−ψiq = πṽ

(1)
q
q (1− πiq)

ṽ
(0)
q +tq/Aq ,

(2.7)

During the interim time, ṽ(1)q =
∑N

i ψiq(1 − Yiq) indicates the number of patients who

experienced DLT, ṽ(0)q =
∑N

i ψiq(1− Yiq) denotes the number of patients who completed

the DLT assessment window but have no experienced DLT; and tq/Aq represents the

standard total follow up time (STFT) of patients who have pending toxicity outcomes.

The probability of toxicity and efficacy is estimated as π̂q = ṽ
(1)
q /ESS, where ESS =

ṽ
(1)
q + ṽ

(0)
q + tq/Aq. The quasi number of events x is calculated by inserting π̂q into

the expression Pr(Yiq = 1|ψiq = 0). When x can be determined, the Comb-BOIN12

and Comb-BOIN12MODEL can be applied directly to obtain the posterior of utility for

decision making. The dose-finding algorithm for hte time-to-event version follows the

same pattern as the Comb-BOIN12 design.

2.3. Simulation Studies

We conduct extensive simulations to investigate the operating characteristics of the

proposed Comb-BOIN12 and Comb-BOIN12MODEL designs under various trial settings.

We compare the results from the Comb-BOIN12 and Comb-BOIN12MODEL designs to the

copula-type model, the change-point model, and the Bayesian hierarchical model designs.

The copula-type model design, initially proposed by Yin and Yuan, is a seamless

phase I/II dose combination trial. Their design uses a copula-type regression to model

toxicity and to select acceptable preliminary doses for phase I. When phase I is com-

plete, this set of acceptable preliminary doses will move seamlessly to phase II, where

20



patients are allocated to different treatment arms based on their acceptable doses. A

novel adaptive randomization procedure is used to differentiate the treatments based on

their efficacy levels (Yuan and Yin, 2011).

Cai et al. propose a change-point model-based design (Cai et al., 2014). The run-

in period focuses on the exploration of possible dose combinations and the collection of

doses with acceptable toxicity and efficacy for further investigation in stage II. Then, a

beta-binomial model is implemented to examine the safety requirements. The trial moves

on to stage II when the highest dose combination is attained or the safety requirement

is violated. In stage II, a change-point model is used in the dose-toxicity surface, and

a logistic regression model with quadratic terms is adapted for the non-monotonic dose-

efficacy pattern. Based on the toxicity and efficacy observed in stage I, patients are

assigned an optimal dose combination by continuously updating the posterior estimation

of toxicity and efficacy.

Yada and Hamada propose a Bayesian hierarchical model design that divides phase

I/II trials into two stages. Similar to the copula-type model, the dose-escalation rule in

stage I is based on a copula-type model. In stage I, a set of acceptable preliminary

doses is selected when the maximum sample size is reached. In stage II, a Bayesian

hierarchical model is adapted to examine dose–efficacy and dose–toxicity relationships,

and patients are assigned using the Bayesian moving reference adaptive randomization

method proposed by Yin and Yuan (Yuan and Yin, 2011; Yada and Hamada, 2018).

We conducted multiple trials with varied configurations to investigate the accuracy

and reliability of five trial designs: Comb-BOIN12, Comb-BOIN12MODEL , a copula-

type model, a change-point model, and a Bayesian hierarchical model. A total of 19

scenarios with various dose–toxicity and dose–efficacy curve shapes were simulated. The
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dose–efficacy curves include a plateau shape, an umbrella shape, and a linear shape. All

trials included two biological agents: drug A and drug B.

We used the same scenarios and followed the same trial settings presented by the

Bayesian hierarchical model (Scenarios 1–9 in Table 2.1). Then, we extracted represen-

tative scenarios from the change–point model (Scenarios 10–15 in Table 2.4) and the

copula-type model (Scenarios 16–19) Table 2.5. In all designs, the trial begins with the

lowest dose level (A1, B1).

The maximum sample size of Scenarios 1–9 is 51, with a cohort size of three. We

consider four dose levels for drug A and drug B, respectively. The upper toxicity limit is

ϕT = 0.35, and the efficacy lower limit is ϕE = 0.2.

Scenarios 10–15 adopt the same dose level for drug A and drug B, but the max-

imum sample size is 45 in a cohort size of three. The highest acceptable toxicity upper

limit is ϕT = 0.3, and the acceptable efficacy lower limit is ϕE = 0.2.

Scenarios 16–19 utilize three dose levels for drug A and two for drug B. The

maximum sample size is 42 in a cohort size of three. The upper toxicity limit is ϕT = 0.33,

and the efficacy lower limit is ϕE = 0.2.

The cutoff value for toxicity monitoring is CT = 0.85 for dose (1, 1) in order

to apply more stringent safety monitoring at the starting dose. The cutoff value for

all other doses is CT = 0.95. The cutoff value for futility monitoring is CE = 0.9. The

dose-escalation and de-escalation boundaries λe and λd are derived using the default spec-

ifications ϕ1 = 0.6ϕT and ϕ2 = 1.4ϕT . To intensify the toxicity–efficacy trade-off, we use

the utility value presented in Table 2.2. For Comb-BOIN12MODEL, we employed the five-

parameter logistic model with quadratic terms to incorporate complicated dose–efficacy

22



relationships. If we assume that qjk is the probability of a response from dose combination

(j, k), the logistic model is

logit(qjk) = γ0 + γ1aj + γ2bk + γ3a
2
j + γ4b

2
k

We set prior of parameters γ0 ∼ Cauchy(0, 10), γi ∼ Cauchy(0, 2.5), and i = 1, 2, 3, 4.

We used these 19 representative scenarios to the compare operating characteristics

of the designs given various dose–efficacy and dose–toxicity relationships. In Scenarios 1,

5, and 16–19, efficacy monotonically increased with the dose for both drug A and drug

B. In Scenario 5, three dose combinations showed optimal desirability. Alternatively, in

Scenario 13, efficacy monotonically decreased with the dose for both drugs. Scenarios

4, 6, 8, 10, and 12 showed a non-monotonic dose–efficacy relationship for both drugs.

For example, in Scenario 4, the efficacy plateaued at the highest dose level, and the true

efficacy probability for drug A in Scenario 8 follows a decreasing curve. In Scenarios 2 and

11, only drug A followed a monotonic drug-efficacy pattern. However, in Scenario 7, only

drug B followed a monotonic dose–efficacy relationship. In regard to the dose–toxicity

relationship, all dose levels in Scenario 9 exceed acceptable toxicity levels. In Scenarios 10

and 14, both drugs’ dose–toxicity surfaces plateau at the highest dose level. In Scenario

19, all true toxicity probability remains the same for both drugs. In the other scenarios,

the dose–toxicity relationship monotonically increases for both drugs.

2.3.1. Simulation results

To evaluate the operating characteristics, we examine the following three perfor-

mance metrics based on 5,000 simulated trials: the probability of selecting the correct

OBDC, the percentage of patients treated with the OBDC, and the percentage of pa-

tients treated at overdose levels (i.e., toxicity rate (ϕT )). The percentage of correctly
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selected OBDCs is used to evaluate accuracy when determining the desired dose com-

bination for the trial design. The percentage of patients treated at the OBDC is used

to evaluate patient allocation. Higher percentages and higher numbers illustrate better

operating characteristics for identifying the desired dose combination. The percentage of

patients treated for overdose is used to assess the safety of the design. A lower percentage

indicates better performance of the designed trial.

Table 2.3 summarizes the simulation results. We only present the percentage

of selection of OBDC of the Bayesian hierarchical model due to missing details in the

simulation settings. Both the Comb-BOIN12 and Comb-BOIN12MODEL designs exhibit

overall operating characteristics that far exceed the other three methods in most cases,

especially in terms of patient allocation. For instance, in Scenario 5, both methods have

higher accuracy rates and patient allocation values when multiple OBDCs occurred. In

Scenario 6, both methods show outstanding accuracy and patient allocation performance

compared to the other three methods.

Moreover, our proposed designs are more robust and more stable than the other

five designs. Both methods produce the same patient allocations and the same number

of patients treated at risk dose levels in all scenarios. However, Comb-BOIN12MODEL

identified a higher percentage of correct OBDCs than Comb-BOIN12. Copula-type and

change-point models perform better only when the optimal dose combination is on the

edge of the two-dimensional dose combination space. For example, in Scenario 1, the

optimal dose combination is (a4, b4). Copula-type and change-point models have a higher

selection percentage, and the copula-type model has a better patient allocation in the

OBDC in Scenario 1. However, these models performed worse in the other scenarios

overall.
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Our proposed methods produce the most robust and stable performance metrics

in all scenarios. The performance of the copula-type model provides strong evidence

in favor of this conclusion. In Scenarios 1, 2, and 8, the copula-type model is more

likely to identify the correct OBDC, but an incorrect OBDC is selected in Scenario 4.

The copula-type model demonstrates the maximum optimal dose selection in Scenario

2; however, both of our proposed methods performed superior patient allocation. The

change-point model showed higher accuracy only in Scenarios 1 and 2, and it produced

lower patient allocation values in most scenarios. In addition, more patients were treated

at overdose levels. In most scenarios, the Bayesian hierarchical model was consistently

the lowest performer overall. Under the extreme circumstances of Scenario 9, all methods

will abort the trial based on established safety procedures.

2.3.2. Sensitivity analyses

We also conducted sensitivity analysis to investigate the performance of our pro-

posed designs under various utility specifications and different sample sizes.

1. Different utility specifications

We considered two cases: Case 1, where u01 = 100, u00 = 30, u11 = 70, u10 = 0 and Case

2, where u01 = 100, u00 = 20, u11 = 80, u10 = 0. Figure 2.2 shows the simulation results,

there were slight variations in (a) the percentage of correct OBDCs selected, (b) the

percentage of patients treated with the OBDC, and (c) the number of patients treated

with overdoses. However, the simulation performance remained the same. Our proposed

design is capable of adjusting the dose-assignment distribution adaptively under various

utility specifications.
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2. Different sample sizes

Figure 2.3 shows the results of the simulation (only the first four scenarios of the Comb-

BOIN12 design are presented in this section). The results show that our proposed meth-

ods exhibit relatively similar performance when the same four evaluation metrics are

used. We chose a minimum sample size of 42 and a maximum of 120. The results illus-

trate the superior performance of our proposed method when the sample size increases.

Moreover, an increased sample size increases the probability of determining the OBDC

and improves patient allocation at the OBDC. The percentage of patients treated at

overdose levels increases when the total sample size is no more than 57, then it decreases

as the sample size increases. This slight increase occurs when the maximum sample size is

relatively small because the dose space is explored more fully as the sample size increases.

This increases the probability of treating patients at overdose levels, but it is insufficient

to accurately identify excess toxicity at these dosage levels. Thus, our methods exhibit

superior operating characteristics when the sample size increases, when multiple OBDCs

occur, and under various trial configurations. Our sensitivity analysis shows that our

proposed method is reliable for practical use.

2.3.3. Late-onset Outcomes

For the TITE-Comb-BOIN12 and TITE-Comb-BOIN12MODEL designs, we exam-

ine the operating characteristics under simulation studies. The same scenario configura-

tions are used in all 19 scenarios. The accrual rate is two patients per month. We use

two toxicity and efficacy assessment windows. In the first assessment window, toxicity

and efficacy duration are one month and two months, respectively (hereafter, assessment

window 1). The second assessment window for toxicity is two months and three months

of efficacy (hereafter, assessment window 2). Likewise, the operating characteristics are

also evaluated using four performance metrics. Instead of assessing the percentage of
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patients treated with the OBDC, we consider the trial duration in order to evaluate its

efficiency. For trial duration, a lower value indicates better performance.

For both the assessment windows described above, we compared the TITE-Comb-

BOIN12 and TITE-Comb-BOIN12MODEL designs to our proposed Comb-BOIN12 de-

sign. The TITE-Comb BOIN12 and TITE-Comb-BOIN12MODEL designs produce sim-

ilar results. Figure 2.4 summarizes the simulation results. Both methods showed rel-

atively similar performance in terms of OBDC selection accuracy, patient allocation,

and the number of patients treated at overdose levels. However, TITE-Comb BOIN12

significantly outperforms Comb-BOIN12 in terms of trial duration in all scenarios.

A significant difference is indicated when the extended toxicity and efficacy assess-

ment window. For example, in assessment window 1 of Scenario 1, TITE-Comb BOIN12

requires 11.5 fewer months than Comb-BOIN12. However, in assessment window 2 of

Scenario 1, TITE-Comb BOIN 12 requires 19.3 fewer months than Comb-BOIN12. Sim-

ilar results occur when multiple OBDCs are included (Scenario 5). In the extreme case,

all dose levels are excessively toxic (Scenario 9). In Scenarios 10–19, we examine the per-

formance of TITE-Comb BOIN12 in various configurations. We obtain the same results

when we change the sample size or the toxicity limit. For example, in Scenario 13, TITE-

Comb BOIN12 required 12.5 fewer months than Comb-BOIN12 in assessment window 1

and 22.2 fewer months in assessment window 2. We also obtained the same result after

changing the doses of the biological agents’ drug A and drug B. For example, in Scenario

19, TITE-Comb BOIN12 requires 19.8 fewer months than Comb-BOIN12 in assessment

window 2, and 8 fewer months than Comb-BOIN12 in assessment window 1. Compared

to Comb-BOIN12, our time-to-event version design has similar overall accuracy and pa-

tient allocation performance, and it is more efficient when toxicity and efficacy outcomes

have longer assessment windows.
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2.4. Discussion

We propose a combination Bayesian optimal interval phase I/II trial design (Comb-

BOIN12) for novel cancer treatments in early-phase dose-finding. The essential moti-

vation of our proposed design is to overcome the conceptual and computational diffi-

culties that arise due to the non-monotonic efficacy patterns of targeted therapy and

immunotherapy in drug combination trials. We use a quasi-beta-binomial approach to

simplify clinical implementation, determine the OBDC, and factor in the risk-benefit

trade-offs that inform decision-making. One advantage of using a utility function to re-

flect the risk-benefit trade-off is its high scalability and flexibility. The utility approach

can easily extend beyond bivariate binary endpoints. The only modification required is

to expand the dimensions of the utility table to cover the outcome space. For example,

for three endpoints with r1, r2, and r3 categories, a utility table with the dimensions

r1 × r2 × r3 will cover the outcome space. We also propose a model-based version for

drug combination trials to improve accuracy when determining efficacy.

Numerous simulation studies show that our proposed designs surpass the operating

characteristics of other existing methods. Our proposed methods are more accurate when

selecting an OBDC, produce better patient allocation, and are less likely to treat patients

using excessively toxic dose combinations. Our proposed designs also excel in terms of

robustness and reliability. Our sensitivity analysis demonstrates the overall remarkable

performance of our proposed methods.

Based on these remarkable results, we recommend Comb-BOIN12 for practical use

because it is simple, robust, easy to implement, and easy to understand. In addition,

we also propose a time-to-event version of Comb-BOIN12 for use with late-onset toxicity

and efficacy outcomes. The time-to-event version allows for real-time decision-making for
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newly accrued patients by adopting an approximate likelihood approach. TITE-Comb-

BOIN12 is similar to Comb-BOIN12 in terms of OBDC accuracy, patient allocation, and

overdose control; however, TITE-Comb-BOIN12 is superior in terms of reducing trial

duration.
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Table 2.1: True probabilities of toxicity and efficacy at each dose combination of scenario
1-9. Boldface indicates the toxicity probability and efficacy probability of the optimal
biological dose combination (OBDC).

Scenario Drug A Drug B

1 2 3 4

1

1 (.05, .16) (.10, .20) (.12, .24) (.15, .35)

2 (.07, .18) (.11, .22) (.14, .28) (.17, .40)

3 (.10, .20) (.12, .26) (.15, .32) (.19, .45)

4 (.12, .23) (.15, .28) (.16, .35) (.23, .60)

2

1 (.08, .05) (.10, .20) (.12, .22) (.14, .24)

2 (.10, .10) (.12, .25) (.14, .28) (.16, .30)

3 (.12, .15) (.15, .30) (.18, .40) (.21, .32)

4 (.15, .20) (.18, .35) (.20, .60) (.30, .40)

3

1 (.10, .20) (.18, .20) (.20, .40) (.28, .42)

2 (.20, .24) (.22, .25) (.24, .55) (.50, .58)

3 (.28, .28) (.35, .30) (.48, 0.58) (.55, .62)

4 (.32, .32) (.45, .35) (.56, .62) (.60, .65)

4

1 (.08, .10) (.14, .15) (.18, .25) (.35, .55)

2 (.10, .12) (.16, .20) (.21, .30) (.42, .55)

3 (.12, .16) (.18, .26) (.24, .55) (.45, .55)

4 (.16, .20) (.20, .30) (.33, .55) (.60, .55)

5

1 (.12, .20) (.16, .25) (.18, .30) (.20, .50)

2 (.14, .25) (.18, .30) (.20, .50) (.45, .60)

3 (.18, .30) (.20, .50) (.42, .60) (.55, .66)

4 (.20, .40) (.40, .60) (.52, .65) (.60, .70)

Continued on next page
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Table 2.1 – Continued from previous page

Scenario Drug A Drug B

1 2 3 4

6

1 (.18, .20) (.20, .25) (.24, .50) (.30, .40)

2 (.20, .24) (.24, .30) (.33, .40) (.35, .35)

3 (.25, .28) (.30, .32) (.35, .35) (.42, .30)

4 (.28, .30) (.35, .35) (.40, .30) (.54, .25)

7

1 (.07, .15) (.09, .20) (.11, .20) (.13, .30)

2 (.10, .20) (.11, .25) (.14, .30) (.15, .40)

3 (.12, .25) (.13, .30) (.17, .40) (.19, .60)

4 (.14, .15) (.15, .20) (.20, .25) (.22, .40)

8

1 (.01, .20) (.05, .20) (.12, .15) (.15, .15)

2 (.03, .30) (.08, .25) (.16, .25) (.20, .20)

3 (.06, .55) (.12, .35) (.20, .30) (.26, .25)

4 (.10, .35) (.15, .25) (.23, .20) (.33, .15)

9

1 (.50, .52) (.56, .62) (.65, .70) (.68, .76)

2 (.55, .55) (.62, .66) (.70, .74) (.72, .79)

3 (.60, .58) (.67, .70) (.75, .78) (.79, .82)

4 (.62, .65) (.72, .74) (.80, .80) (.85, .85)
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Table 2.2: Utility Table

Efficacy No Efficacy
No Toxicity 100 10

Toxicity 90 0

Table 2.3: Summary of simulation for scenario 1-9

Designs 1 2 3 4 5 6 7 8 9
Percentage of correct selection of the OBDC

Comb-BOIN12 38.60 46.26 32.96 27.32 44.50 26.36 46.64 31.14 5.40
Comb-BOIN12MODEL 43.32 49.86 31.88 24.98 44.60 23.48 49.88 29.96 6.82
Copula-type model 63.42 51.80 7.36 0.00 31.16 7.12 21.30 68.52 0.20
Change-point model 53.78 41.26 14.94 11.44 28.38 16.36 40.70 28.38 2.32
Bayesian hierarchical model 42.80 39.70 16.20 19.50 34.80 17.60 21.70 36.6 n/a

Percentage of patients treated at the OBDC
Comb-BOIN12 22.78 26.38 20.55 19.97 35.37 15.19 25.70 12.92 11.50
Comb-BOIN12MODEL 22.78 26.38 20.55 19.97 35.37 15.19 25.70 12.92 11.50
Copula-type model 50.02 10.18 4.02 2.18 14.86 3.25 4.00 18.27 14.29
Change-point model 22.33 19.03 8.55 10.55 19.20 8.59 19.04 12.29 8.80

Number of patients treated at overdoses
Comb-BOIN12 0 0 9.82 7.92 14.01 4.36 0 0 51
Comb-BOIN12MODEL 0 0 9.82 7.92 14.01 4.36 0 0 51
Copula-type model 0 0 9.84 13.36 14.19 6.65 0 0 8.77
Change-point model 0 0 18.00 15.67 24.87 6.47 0 0 8.60
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Table 2.4: True probabilities of toxicity and efficacy at each dose combination of scenario
10-19. Boldface indicates the toxicity probability and efficacy probability of the optimal
biological dose combination (OBDC).

Scenario Drug A Drug B

1 2 3 4

10

1 (.02, .08) (.04, .10) (.07, .29) (.12, .42)

2 (.04, .23) (.08, .28) (.13, .42) (.18, .60)

3 (.09, .14) (.15, .14) (.18, .24) (.25, .43)

4 (.14, .10) (.25, .10) (.25, .18) (.25, .24)

11

1 (.01, .05) (.07, .22) (.12, .10) (.18, .08)

2 (.05, .12) (.12, .29) (.15, .15) (.20, .10)

3 (.10, .19) (.15, .44) (.19, .20) (.23, .18)

4 (.15, .42) (.18, .60) (.21, .38) (.25, .32)

12

1 (.05, .30) (.10, .40) (.18, .60) (.25, .37)

2 (.10, .20) (.15, .28) (.23, .37) (.42, .26)

3 (.15, .10) (.23, .14) (.42, .24) (.43, .18)

4 (.23, .05) (.42, .08) (.43, .15) (.44, .10)

13

1 (.05, .60) (.18, .37) (.26, .30) (.38, .24)

2 (.15, .37) (.26, .26) (.40, .20) (.49, .13)

3 (.25, .24) (.42, .18) (.46, .14) (.51, .10)

4 (.39, .15) (.45, .10) (.50, .08) (.55, .05)

14

1 (.09, .00) (.17, .11) (.22, .23) (.24, .11)

2 (.17, .01) (.22, .14) (.24, .26) (.25, .13)

3 (.22, .01) (.24, .23) (.25, .39) (.25, .22)

4 (.24, .06) (.25, .44) (.25, .62) (.25, .42)

Continued on next page
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Table 2.4 – Continued from previous page

Scenario Drug A Drug B

1 2 3 4

15

1 (.00, .06) (.01, .45) (.07, .63) (.24, .45)

2 (.01, .03) (.07, .32) (.23, .50) (.39, .32)

3 (.06, .00) (.22, .08) (.38, .18) (.44, .08)

4 (.21, .00) (.38, .00) (.44, .01) (.45, .00)

16
1 (.05, .10) (.15, .30) (.20, .50)

2 (.10, .20) (.15, .40) (.45, .60)

17
1 (.05, .10) (.15, .30) (.40, .50)

2 (.10, .20) (.20, .40) (.50, .55)

18
1 (.05, .10) (.10, .20) (0.15, 0.40)

2 (.10, .20) (.15, .30) (.20, .50)

19
1 (.05, .10) (.05, .20) (.05, .40)

2 (.05, .20) (.05, .30) (.05, .50)
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Table 2.5: Summary of simulation for scenario 10-19

Designs 10 11 12 13 14 15 16 17 18 19
Percentage of correct selection of the OBDC

Comb-BOIN12 38.64 38.22 40.10 71.94 34.80 40.44 43.76 31.12 47.54 53.98
Comb-BOIN12MODEL 45.18 43.36 40.10 78.48 42.24 44.92 51.28 30.98 56.72 64.72
Copula-type model 29.90 0.62 9.22 29.08 15.26 0.76 33.3 29.9 48.4 56.24
Change-point model 37.6 37.72 35.58 71.06 41.08 52.24 40.96 30.42 62.06 64.22

Number of patients treated at the OBDC
Comb-BOIN12 8.47 8.04 8.16 26.68 8.63 7.77 10.79 10.37 13.27 15.65
Comb-BOIN12MODEL 8.47 8.04 8.16 26.68 8.63 7.77 10.79 10.37 13.27 15.65
Copula-type model 9.15 0.07 4.16 9.96 1.95 3.22 6.88 9.15 10.01 11.57
Change-point model 8.08 7.96 7.16 17.23 8.03 10.55 10.46 8.83 15.11 15.50

Percentage of patients treated at the OBDC
Comb-BOIN12 18.83 17.87 18.13 59.29 19.17 17.27 25.68 24.68 31.59 37.25
Comb-BOIN12MODEL 18.83 17.87 18.13 59.29 19.17 17.27 25.68 24.68 31.59 37.25
Copula-type model 20.33 0.16 9.24 22.13 4.33 7.16 16.38 21.79 23.83 27.55
Change-point model 17.95 17.68 15.91 38.29 17.84 23.44 24.90 21.02 35.97 36.90

Number of patients treated at overdoses
Comb-BOIN12 0 0 10.08 7.34 0 10.75 8.65 14.03 0 0
Comb-BOIN12MODEL 0 0 10.08 7.34 0 10.75 8.65 14.03 0 0
Copula-type model 0 0 10.89 12.61 0 15.25 8.21 13.16 0 0
Change-point model 0 0 9.12 10.19 0 9.87 12.80 18.77 0 0
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Figure 2.1: Dose finding rule of Comb-BOIN12 design
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CHAPTER 3

A Bayesian Pharmacokinetics Integrated Phase I-II

Design to Optimize Dose-schedule Regimes∗

3.1. Introduction

In the era of molecularly targeted therapies and immunotherapies, the focus of

dose finding trials has been shifting from finding the maximum tolerated dose (MTD)

to the optimal biological dose (OBD), defined as a dose that optimizes the risk-benefit

tradeoff. The shift is driven by the characteristic of targeted and immunotherapy agents

that their efficacy may not increase with the dose, and thus the MTD may not be

the dose delivering the optimal therapeutic benefit. The US Food and Drug Admin-

istration (FDA)’s Oncology Center of Excellence recently launched Project Optimus

to accelerate this paradigm shift. The release of Guidance on Benefit-Risk Assess-

ment for New Drug and Biological Products by the FDA further confirms the stance

of the regulatory authority on the importance of optimizing the dose for novel on-

cology drugs. Many phase I-II designs have been proposed to find OBD by jointly

considering toxicity and efficacy, for example, Braun (2002), Thall and Cook (2004),

Yuan and Yin (2009), Jin et al. (2014), Liu and Johnson (2016), Takeda et al. (2018),

Zhou et al. (2019), Lin et al. (2021), among others. Yuan et al. (2016) and Yan et al.

(2018) provide comprehensive reviews on phase I-II design paradigm and methodology.

Given a dose, the schedule of administering the drug has profound impact on its

toxicity and efficacy profiles (Blomqvist et al., 1993; Gyergyay et al., 2009; Motzer et al.,

2012). For example, gemtuzumab ozogamicin was the first antibody–drug conjugate
∗Chapter 3 has been under review in Biostatistics.
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approved by the FDA for treating relapsed acute myeloid leukemia in 2000. Gemtuzumab

ozogamicin later was withdrawn from the US market in 2010 when a confirmatory trial

showed that it was associated with a greater rate of fatal toxicities versus standard-of-

care chemotherapy (Petersdorf et al., 2009; Godwin et al., 2017). In 2017, by utilizing

a different dosing schedule that improved the safety profile, gemtuzumab ozogamicin

was reapproved for relapsed/refractory acute myeloid leukemia after a phase III trial

with a fractionated dosing schedule (Jen et al., 2018). As another example, in 2006 the

FDA granted accelerated approval of dasatinib administered at 70 mg twice daily for

the treatment of chronic myelogenous leukemia with resistance or intolerance to prior

therapy. The subsequent confirmative phase III trial found that, compared to 70-mg

twice-daily dosing schedule, 100 mg once daily produced similar clinical benefits with

significantly lower incidences of key treatment-related adverse events (Shah et al., 2008).

This led to the FDA granting full approval in 2009 with a modified label of 100 mg

once daily. These examples demonstrate the importance of optimizing both dose and

administration schedule to achieve the optimal risk-benefit profile.

A number of dose-schedule finding designs have been proposed. Braun et al.

(2007) developed a time-to-event model and design to find the maximum tolerated dose-

schedule for cytotoxic agents, based on dose limiting toxicity. Zhang and Braun (2013)

extended that method to incorporate adaptive variations to dose-schedule assignments

within patients as the trial progresses. Thall et al. (2007) developed a Bayesian phase

I-II design to find the optimal dose-schedule (ODS) regime based on a utility that quan-

tifies the toxicity-efficacy tradeoff. Li et al. (2008) introduced a phase I-II dose-schedule

finding design that jointly models toxicity and efficacy using Bayesian hierarchical model.

Guo et al. (2016) modeled toxicity and efficacy jointly as a trinary endpoint and devel-

oped a Bayesian phase I-II design to identify ODS. Cunanan and Koopmeiners (2017)
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presented a two-stage, Bayesian phase I-II trial design to optimize the schedule of ther-

apeutic cancer vaccines based on toxicity and immune response.

A fundamental reason that dosing schedule affects the toxicity and efficacy profiles

of a drug is that it changes the pharmacokinetics (PK) of the drug. PK is a branch

of pharmacology and an indispensable component of drug discovery and development

(Danhof et al., 2005). PK describes what the body does to a drug after administration

through the mechanisms of absorption, distribution, metabolism, and elimination. PK

is innate to dose-schedule optimization, as the effects of the dose and its administration

schedule on toxicity and efficacy is executed by PK. Thus, it is of intrinsic interest

and importance to integrate PK data for efficient dose-schedule optimization. Most

existing dose-schedule finding designs, however, largely ignore PK data. Günhan et al.

(2020) employed a PK model to describe the DLT event process, but it considers only

toxicity, ignoring efficacy endpoints, and thus is not suitable to find ODS for targeted and

immune therapies. Without considering the schedule, a number of dose finding designs

have been proposed to utilize PK data to achieve more efficient dose finding, including

Piantadosi and Liu (1996), Whitehead et al. (2007), Ursino et al. (2017), Günhan et al.

(2021), among other.

In this paper, we propose a Bayesian PK integrated dose-schedule finding (PKIDS)

design to identify ODS by integrating PK, toxicity, and efficacy data. Based on the

causal pathway, we jointly model these three endpoints by first specifying a Bayesian

hierarchical model for the marginal distribution of the longitudinal dose-concentration

process. Conditional on the concentration of the drug in plasma, we jointly model toxicity

and efficacy as a function of the concentration. We continuously update the estimates of

PK, toxicity, and efficacy based on interim data, and we make adaptive decisions to assign

new patients to appropriate dose-schedule regimes via adaptive randomization. The

42



simulation study shows that the PKIDS design has desirable operating characteristics.

Our research is motivated by a trial to establish the optimal dose-schedule regime

for a novel agent targeting the yes-associated protein (YAP) in patients with advanced

solid tumors. YAP is a downstream target of the Hippo pathway, a key signaling pathway

involved in the regulation of organ size (Tumaneng et al., 2012) and playing a role in

tumorigenesis (Lee et al., 2010). Five doses (80, 200, 400, 600, and 900 mg) and two

administration schedules (administer the dose every 4 days for a total of 7 times, or

administer the dose in half every 2 days for a total of 14 times, for a 28-day treatment

cycle) will be studied. Toxicity will be scored as a binary endpoint using NCI Common

Terminology Criteria for Adverse Events version 5.0. Efficacy will be scored as a binary

endpoint (response/no response) using Response Evaluation Criteria in Solid Tumors

(RECIST) version 1.1. Collection of samples to assess the plasma concentration of the

drug will be collected at pre-dose and 1, 2, 2.5, 3, 4, 6, and 8 hours from the start of

infusion.

This paper is organized as follows. 3.2 proposes the joint probability model for

PK, toxicity and efficacy data. Section 3.3 describes the utility approach to quantifying

the toxicity-efficacy tradeoff, and the dose-schedule finding algorithm based on the utility.

Section 3.4 presents simulation studies and the operating characteristics of the proposed

PKIDS design. Conclusions and discussions are provided in Section 3.5.

3.2. Methods

Consider a trial aiming to identify the ODS from a set of prespecified J ×K dose-

schedule pairs (dj, sk), j = 1, · · · , J , k = 1, · · · , K. Let YT denote the binary toxicity

outcome, with YT = 1 indicating toxicity (or severe adverse events), and YE denote the

binary efficacy outcome, with YE = 1 indicating favorable response. Depending on the
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trial, YE can be tumor response or biological activity of the drug measured by biomarkers,

e.g., pharmacodynamic (PD) endpoint or other surrogate efficacy endpoint. Let Z denote

the PK endpoint, representing the plasma concentration of the drug, which is measured

longitudinally. The outcome used for dose-schedule finding in our design is a trivariate

mixture of longitudinal and scalar endpoints (Z, YT , YE). In contrast, most existing dose-

schedule finding designs are either based on YT or (YT , YE) that are scalar. To the best

of our knowledge, this is the first dose-schedule finding design that considers such a

longitudinal-scalar trivariate mixture data structure. Adaptive decisions of the PKIDS

design (e.g., dose-schedule assignment and selection) are based on the relationship of

(Z, YT , YE) as a function of (dj, sk).

Another innovation of our method is the incorporation of the knowledge of the

causal path among (Z, YT , YE) to guide the modeling strategy. As shown in Figure 2.1,

the effects of (dj, sk) on the therapeutic outcomes (YT , YE) are mediated by the plasma

concentration of the drug in the body (i.e., Z). This motivates us to factorize the joint

distribution of (Z, YT , YE) as

[Z, YT , YE|dj, sk] = [Z|d, s][YT , YE|Z, dj, sk] (3.1)

In what follows, we first describe the marginal model for [Z|dj, sk], followed by the

conditional model of (YT , YE), given Z.

3.2.1. PK Model

Suppose patient i receives d[i] with schedule s[i] = (mi, τi), under which a fractional

dose di/mi is administered every τi hours for a total of mi times, where d[i] ∈ d1, · · · , dJ

and s[i] ∈ s1, · · · , sK . Let Zil ≡ Z(til) denote the observed (plasma) concentration

of the drug for patient i at the lth time point, til, l = 1, · · · , L. We assume a one-
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compartment model with first-order absorption and first-order elimination, characterized

by three PK parameters: absorption rate ka, elimination rate ke, and compartment

volume V (Davidian and Gallant, 1992; Jones and Rowland-Yeo, 2013). This model as-

sumes that the rate of drug absorption from the gut is proportional to the amount of drug

in the gut with proportionality constant ka, and the rate of elimination from the plasma

compartment is proportional to the amount of drug in the plasma compartment with

proportionality constant ke. The compartment volume V is a proportionality constant,

relating the total drug in the plasma compartment to the concentration in that compart-

ment. To facilitate model specification, we reparameterize (ka, ke, V ) as (ϕ, ψ, δ), where

ϕ = log ka, ψ = log(keV ) and δ = log V , so that the support of the parameters is the

whole real line, where keV is often known as the clearance parameter in pharmacology.

Following Wakefield (1996) andMeibohm and Derendorf (1997), we employ a three-

level Bayesian hierarchical model to describe the relationship between Z(til) and (d[i], s[i]).

Let i index the ith patient specific PK parameters. The first level of the model hierarchy

specifies the patient-level relationship between Z(tij) and (d[i], s[i]):

logZ(til) = log f(tij|ϕi, ψi, δi, d[i], s[i]) + εil (3.2)

f(tij|ϕi, ψi, δi, d[i], s[i])

=
exp(ϕi)F

d[i]
mi

exp(δi + ϕi)− exp(ψi)

{
exp(− exp(ψi − δi)t)

1− exp(− exp(ψi − δi))τi

− exp(− exp(ϕi)t)

1− exp(− exp(ϕi))τi

} (3.3)

where εil is independent and identically distributed, following the normal distribution

N(0, σ2), and F is bioavailability, presenting the fraction of the administered dose that

reaches the measurement site. F typically is assumed to be known or estimated from

external data. We here assume bioavailability F as unity, which is standard practice
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when no reasonable value for F is available. The specification of patient-specific PK

parameters (i.e., ϕi, ψi, δi) acknowledges the heterogeneity across patients. In practice,

there is often little data available in the absorption phase immediately after the drug

administration, making it difficult to estimate patient-specific absorption parameter ϕi.

Therefore, we assume that ϕi is the same for all individuals, i.e., ϕi = ϕ.

The second-level hierarchy specifies the distribution of patient-specific PK param-

eters to relate them to population PK parameters. Since ϕ is assumed to be the same

across patients, we here only need to consider ψi and δi, modeled as follows:

(
ψi

δi

)
∼ N

((
µ1

µ2

)
,Σ =

(
σ2
1 0

0 σ2
2

))
, (3.4)

where exp(µ1) and exp(µ2) are the population clearance parameter and compartment

volume, respectively.

The third-level hierarchy specifies the prior of the model parameters, including σ2,

ϕ, µ1, µ2 and Σ. We adopt a vague prior for σ2, µ1, µ2, and Σ as follows:

σ2 ∼ IG(0.001, 0.001), µ1 ∼ N(0, 103), µ2 ∼ N(0, 103) (3.5)

Σ ∼ IW

((
0.01 0

0 0.01

)
, 2

)
, (3.6)

where IG(a, b) denotes inverse gamma distribution with shape parameter a and scale

parameter b, and IW (Q, ν) denotes an inverse Wishart distribution with scale matrix Q

and ν degrees of freedom. The specification of prior for ϕ needs more consideration, as in
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practice ka > ke. To reflect this constraint, we assign ϕ a truncated normal distribution,

ϕ ∼ N(µϕ, σ
2
ϕ)I
(
ϕ > max

i
(ϕi − δi)

)
(3.7)

where I(·) is the indicator function, and µϕ and σ2
ϕ are hyperparameters. As described

previously, data contain limited information on ϕ, and a conventional noninformative

prior with a large variance often leads to unstable posterior inference. Therefore, we

adopt a weakly informative prior, determined as follows: elicit a plausible range of ka

from subject matter experts, say [Lka, Uka], and choose the values of µϕ and σ2
ϕ such that

95% of the prior density fall within [Lka, Uka].

The PK model describes the concentration of the drug over time. A standard

summary measure to summarize the cumulative exposure of the drug over time is the

area under the curve (AUC). Under the proposed model, the population average AUC

at (dj, sk) is given by

AUCjk =

∫ T

0

f(t|ϕ, µ1, µ2, dj, sk)dt (3.8)

where T = miτi is the duration of drug administration, and f(t|ϕ, µ1, µ2, dj, sk) is the

concentration curve evaluated at the population PK parameters, given by

f(t|ϕ, µ1, µ2, dj, sk)

=
exp(ϕ)F

dj
mk

(exp(µ2 + ϕ)− exp(µ1))

{
exp(− exp(µ1 − µ2)t)

1− exp(− exp(µ1 − µ2)τk)

− exp(− exp(ϕ)t)

1− exp(− exp(ϕ)τk)

} (3.9)

AUC is not the only choice. When appropriate, other commonly used PK statistics

include the maximum concentration (Cmax) and half-life time t1/2, can also be included

in the regression model described below to quantify the effects of the plasma concentration
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of the drug on clinical endpoints.

3.2.2. Toxicity and Efficacy Model

This section specifies the distribution of [YT , YE|Z, dj, sk]. Conditional on Z, let

pE,jk and pT,jk denote the probability of efficacy and the probability of toxicity, re-

spectively, for the dose-schedule pair (dj, sk), i.e., pE,jk = Pr(YE = 1|dj, sk, Z) and

pT,jk = Pr(YT = 1|dj, sk, Z). We assume YE and YT marginally follow a logistic model

logit(pE,jk) = α0 + α1AUCjk

logit(pT,jk) = β0 + β1AUCjk

(3.10)

where α0, α1, β0 and β1 are regression parameters. In this model, we assume that the

effect of (dj, sk) on YT and YE are fully mediated by the cumulative exposure of the drug.

That is, (dj, sk) together affects the concentration of the drug in the body, which in turn

results in clinical responses such as toxicity and efficacy. In contrast, almost all existing

dose-schedule finding methods regard dj and sk as two independent covariates in their

models, without accounting for the close interplay between dj and sk and the underlying

causal path. When appropriate, Cmax and other PK measures can also be included as

covariates in the model.

In the above model, we assume that both toxicity and efficacy increases with the

exposure (e.g., AUC). However, as the PK model (3) allows the exposure to plateau with

the dose d, the efficacy model above somewhat accommodates the case that efficacy YE

plateaus with d. Nevertheless, when appropriate, a plateaued logistic model (Cai et al.,

2014) such as logit(pE,jk/ϱ) = β0 + β1AUCjk can be used, where ϱ represents where the

exposure-efficacy curve plateaus.

Given the marginal model, we model the joint distribution of (YE, YT ) using the
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Gumbel model as follows:

πa,b(j, k) = Pr(YE,jk = a, YT,jk = b)

= pE,jk(1− pE,jk)
1−apT,jk(1− pT,jk)

1−b

+ (−1)a+bpE,jk(1− pE,jk)pT,jk(1− pT,jk)
exp(γ)− 1

exp(γ) + 1

(3.11)

where a, b ∈ (0, 1), and γ ≥ 0 is the association parameter, introducing the correlation

between YT and YE.

To specify the prior distribution for the parameters that appear in [YT , YE|Z, dj, sk],

we take the regularized weakly informative prior approach (Gelman et al., 2008; Guo and Yuan,

2017), such that the resulting prior is vague enough to cover the plausible values of the

parameter, but not too vague as to cause stability issues due to sparse data of early phase

trials. Under logistic model, a change of 5 on the logit scale moves the probability of

the outcome variable from 0.05 to 0.89 or from 0.5 to 0.99, which covers the plausible

range of the effect size of a covariate on toxicity and efficacy probabilities. Therefore, we

scale the input variables (i.e., AUCjk) to have mean 0 and standard deviation (SD) 0.5,

and assign α1 and β1 an independent normal prior N(0, 2.52), such that a change in any

of these covariates from one SD below the mean to one SD above the mean most likely

results in a difference of less than 5 (i.e., 2 SD of the prior) on the logit scale.

To set a prior for α0 and β0, we elicit from clinicians the upper limit for toxicity

rate p̄T and the lower limit for efficacy rate p
E
, then we assign prior α0 ∼ N(α̂0, α̂

2
0)

and β0 ∼ N(β̂0, β̂
2
0), with α̂0 = logit−1(p

E
) and β̂0 = logit−1(p̄T ) respectively, with a

coefficient of variation = 1, which are spread out enough to cover the range of pE,jk and

pT,jk in practice. We assign γ a uniform prior γ ∼ Unif(0, 2) to cover the practically

realistic range of the correlation between YE and YT .
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3.2.3. Likelihood and Posterior

Suppose that n subjects have been treated in the trial, the observed data are

D = {(Z(tij1), · · · , Z(tijL), YE,i, YT,i), i = 1, · · · , n}. Let θ denote the collection of model

parameters. The likelihood of D is given by

Ljk(D|θ) =
n∏
i=1

{
Lijk(Y

E
ijk, Y

T
ijk|α, β, φ)× Lijk(Zijk|ϕ, ψi, µ, σ, σ2)

}
=

n∏
i=1

{
{πijk00 }(1−Y

E
ijk)(1−Y

T
ijk){πijk10 }Y

E
ijk(1−Y

T
ijk){πijk01 }1−Y

E
ijkY

T
ijk{πijk11 }Y

E
ijkY

T
ijk

×2π|Σ|−1/2 exp

{
−1

2

T∑
t=1

(logZijkt − log f(ψi, t))
2

σ2
− 1

2
(ψi − µ)TΣ−1(ψi − µ)

}}
(3.12)

Let π(θ) denote the prior distribution of θ; the posterior distribution of θ is given

by π(θ|D) ∝ L(D|θ)π(θ). We sample this posterior distribution using Gibbs’ sampler

based on the adaptive rejection metropolis sampling (ARMS) algorithm (Gilks et al.,

1995).

3.3. Dose-Schedule Finding Algorithm

3.3.1. Desirability of Dose-schedule

For each individual endpoint YE and YT , the evaluation of the desirability of a

dose-schedule regime is straightforward. We prefer a regime that has low toxicity and

high efficacy. However, when we consider YE and YT simultaneously, we need to consider

the risk-benefit tradeoffs, as physicians routinely do in almost all medical decisions when

selecting a treatment for a patient. A convenient tool to formalize such a process is to

use a utility function U(YE, YT ) to map the bivariate outcomes into a single index to

measure the desirability of a regime in terms of the risk-benefit tradeoffs. This approach
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has been used in previous trial designs, see for example Houede et al. (2010), Thall et al.

(2013), Guo and Yuan (2017), Murray et al. (2018), Liu et al. (2018) Lin et al. (2021),

among others.

Utility U(YE, YT ) should be elicited from clinicians to reflect the risk-benefit trade-

off underlying their medical decisions, which can be done using the following procedure:

a) Assign the least desirable outcome (YE, YT ) = (0, 1) the lowest utility score of

ρ01 = 0, and the most desirable outcome (YE, YT ) = (1, 0) the highest utility score

of ρ10 = 100. This sets up the scale of the score system.

b) Ask the clinician to use these two utilities as a reference to assign each of (YE, YT ) =

(0, 0) and (1, 1) a score between 0 and 100 to reflect their clinical desirability. Table

3.1 shows the utility elicited for the solid tumors trial, with ρ00 = 35 and ρ11 = 60.

As ρ11 > ρ00, this utility specification gives efficacy higher priority than toxicity,

i.e., it is desirable to tolerate more toxicity in exchange of efficacy.

Then, the desirability or (mean) utility of (dj, sk) is given by

Ujk =
∑

a,b∈(0,1)

ρabπab(j, k), (3.13)

which can be estimated based on interim data D by

Ûjk =
∑

a,b∈(0,1)

ρabE(πab(j, k)|D) (3.14)

In our experience, clinicians quickly understand what the utilities mean and provide

values for uab, a, b ∈ (0, 1), since the values reflect the actual clinical practice. After

completing this process, simulation should be performed to evaluate the operating char-
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acteristics of the design and reviewed with clinicians. In some cases, the simulation

results may motivate modification of some of the numerical utility values to better re-

flect clinical decisions. One possible criticism for using the utility values is that they

require subjective input. However, we are inclined to view this as a strength, rather

than a weakness. The process of specifying the utility requires clinicians to carefully con-

sider the potential risks and benefits of the treatment that underlie their clinical decision

making in a more formal way and incorporate that into the trial. The specification of

the utility allows researchers to perform simulation to formally evaluate the impact of a

specific risk-benefit tradeoff criteria on the operating characteristics of the design, rather

than making a leap of faith that the implicit risk-benefit tradeoff criteria underlying clin-

ical decisions would lead to desirable operating characteristics. More importantly, based

on the simulation results, researchers could further calibrate the design to incorporate

additional clinical considerations and better achieve trial objectives. In addition, many

studies (Guo and Yuan, 2017; Liu et al., 2018; Zhou et al., 2019; Lin et al., 2021), as well

as the sensitivity analysis described later, show that the adaptive dose-finding designs

are generally not sensitive to the numerical values of the utility, as long as it reflects a

similar trend.

Another advantage of utility is that it is highly scalable and flexible. The utility

approach can easily extend beyond bivariate binary endpoints. The only modification is

to expand the dimension of the utility table (e.g., Table 1) to cover the outcome space. For

example, for three endpoints with r1, r2, and r3 categories, a r1× r2× r3 utility table will

cover the outcome space. The utility is flexible in that it contains some commonly used

tradeoff criteria as a specifical case. Zhou et al. (2019) and Lin et al. (2021) proved that

for the bivariate binary case, when setting u10 + u01 = 100, the utility function approach

is equivalent to the tradeoff based on the marginal toxicity and efficacy probability, e.g.,
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pE,jk − wpT,jk, where w is a weight presenting toxicity and efficacy tradeoff.

To safeguard from treating patients at a toxic or futile regime, we define the

admissible dose-schedule set A as the dose-schedules satisfying the following safety and

efficacy criteria:

(Safety) Pr(pT,jk < p̄T |D) > p∗T

(Efficacy) Pr(pE,jk > p
E
|D) > p∗E

(3.15)

where (p∗T , p
∗
E) are the probability cutoffs calibrated by simulation, e.g., p∗T = p∗E = 0.05.

In the trial, only regimes in A can be used to treat patients.

3.3.2. Dose-Schedule Finding Algorithm

Suppose patients are treated sequentially in cohorts of size g, with the maximum

sample size of R cohorts, i.e., Nmax = Rg. Our sequential dose-schedule finding algorithm

is defined as follows:

Step 1: Equally randomize the first Kg patients to (d1, s1), (d1, s2), · · · , (d1, sK), such that

one cohort of patients are treated at the lowest dose for each schedule k = 1, · · · , K.

Step 2: Suppose r cohorts of patients have been treated, r = K, · · · , R. Let dj∗k denote the

highest tried dose under schedule sk, and define the dose-schedule exploration set

H = {(dj, sk); Pr(pT,j∗kk < p̄T |D) > p∗s & j∗k < J}, where p∗S is a probability cutoff.

H represents the set of dose-schedules, for which the highest tried dose is sufficiently

safe such that the exploration of the next higher dose is warranted. Based on interim

data D, determine the admissible dose-schedule set A and exploration set H. If A

is empty, terminate the trial and declare no ODS; otherwise, assign the (i + 1)th

cohort as follows:
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a) If H is not empty, randomize the (i+1)th cohort to dose-schedules in H with

the probability proportional to their desirability, given by

λ =
Û(dj∗k , sk)∑
H Û(dj∗k+1, sk)

, (dj∗k , sk) ∈ H (3.16)

b) If H is empty, randomize the (i+1)th cohort to dose-schedules in A with the

probability proportional to their desirability, given by

λ =
Û(dj, sk)∑
A Û(dj, sk)

, (dj, sk) ∈ A (3.17)

Step 3: Repeat Step 2 until the maximum sample size Nmax is reached or the trial is early

terminated due to toxicity and/or futility. In the case that the trial is not early

terminated, select ODS as the dose-schedule with the highest utility in A.

Similar to many optimization problems, a challenge of finding ODS is that the

sequential dose-finding process is often stuck at local optimal, leading to low accuracy

to identify the true optimal dose (Yuan et al., 2017). This issue is of particular concern

for dose-schedule finding because the sequential searching process in a two-dimensional

space is substantially more likely to be stuck at local optimal. We address this issue

by two measurements. The first one is to prioritize Step 2(a) over 2(b) to encourage

dose exploration, given that regimes are sufficiently safe as ensured by H. The second

measurement is to use adaptive randomization in Step 2(b) and 2(c) to provide addi-

tional freedom to explore the dose-schedule space, while accounting for patient benefit

by assigning patients to more desirable regimes with higher probabilities. Yuan et al.

(2017, Chapter 11 ) described the important role of adaptive randomization as an effi-

cient tool to balance the exploration-versus-exploitation conflict in early phase clinical
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trials. During the trial, we do not allow for skipping any untried dose in any schedule.

When appropriate, equal randomization can also be used to simplify the logistics of trial

conduct (Zhou et al., 2019).

3.4. Simulations

3.4.1. Simulation Setting

Following the advanced solid tumors trial, we considered five doses and two sched-

ules, resulting in 10 dose-schedule regimes. The maximum sample Nmax = 40, treated

in cohorts of size 2. The upper limit of the toxicity rate p̄T = 0.3, and the lower limit

of the efficacy rate p
E

= 0.3. The utility elicited from clinicians is displayed in Table

1. We compared the PKIDS design with its counterpart that ignores the PK data. We

denote the latter as the EffTox design to highlight that it makes the decision of patient

allocation and ODS selection based on (YE, YT ). In the EffTox design, marginal toxicity

and efficacy probabilities are modeled as

logit(pE,jk) = α0k + α1dj + γ1sk + ξ1(dj × sk)

logit(pT,jk) = β0k + β1dj + γ2sk + ξ2(dj × sk)

(3.18)

where the schedule effect is captured by schedule-specific intercepts α0k and β0k. The

joint distribution of (YE, YT ) follows the same Gumbel model as the PKIDS design.

The EffTox design uses the same decision rule and dose-schedule finding algorithm as

the PKIDS design to assign patients and determine the ODS. We choose the EffTox

design for comparison because other existing designs define ODS with different decision

rules, making the comparison difficult to interpret. Actually, the EffTox design may be

viewed a modification of the design of Thall et al. (2007), by using the same decision

rule as the PKIDS design, to facilitate a more meaningful comparison. We examined the

operating characteristics of the PKIDS design, in comparison with the EffTox design,
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under six scenarios with different locations of ODS, see Table 3.2. Figure 3.2 depicts the

dose-toxicity, efficacy, and utility curves for the six scenarios. Under each scenario, we

simulated 1000 trials.

3.4.2. Simulation Results

Table 3.3 and Table 3.4 provides the simulation results, including the selection

percentage and the average numbers of patients treated at each dose-schedule based on

1000 simulated trials. Overall, PKIDS outperforms EffTox in most scenarios with a

higher percentage of correct selection (PCS) of the ODS, and more patients allocated to

the ODS.

In scenario 1, the ODS is (d1, s1). The PCS of PKIDS is 72.5%. In contrast, the

PCS of EffTox is 61.0%. On average, PKID allocates 5.9 more patients to the ODS than

EffTox. In scenario 2, the ODS is (d3, s1). PKIDS and EffTox has similar PCS, and

the latter allocates slightly (1.6 on average) more patients to the ODS. Scenario 3 has

(d3, s2) as the ODS. PKIDS outperforms EffTox with higher PCS (51.6% versus 32.0%)

and more patients allocated to the ODS (9.8 versus 8.34). In scenario 4, the ODS is

(d4, s2) with the highest utility of 53.81. This scenario is more challenging as one of its

neighbor regimes (d4, s1) has a competitive utility of 49.47. The PCS of PKIDS is 56.0%,

higher than that of EffTox (52.0%). In scenario 5, where (d5, s1) is the ODS, PKIDS

outperforms EffTox with higher PCS (42.1% versus 6.0%). In scenario 6, the ODS is the

highest dose-schedule (d5, s2). The PCS of PKIDS is 82.0%, whereas that of EffTox is

52.0%.

3.4.3. Sensitivity Analysis

We assessed the sensitivity of the PKIDS design to the specification of utility. We

considered an alternative utility specification (see Table 3.4), which assigns a higher score

of ρ11 = 75 to (YE, YT ) = (1, 1), compared to the utility used in the main simulation (see
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Table 3.1). As shown in Figure 3.5, results are similar between the two specifications of

the utility, suggesting that the PKIDS design is not sensitive to the specification of the

utility. Such robustness is also observed in previous dose-finding studies using the utility

approach (Guo and Yuan, 2017; Liu et al., 2018; Zhou et al., 2019; Lin et al., 2021). One

main reason for such robustness is that the primary objective of using utility here is to

rank the desirability of regimes for assigning patients and selecting ODS, not to focus on

estimation and interpretation of the absolute value of the utility itself. As long as the

rank is similar, which is generally robust to small estimation differences, the design will

yield similar operating characteristics.

3.5. Discussion

We have proposed a Bayesian phase I-II trial design to optimize dose-schedule

regimes based on the risk-benefit tradeoff. A main contribution of the proposed PKIDS

design is to integrate PK data and modelling into dose-schedule optimization. This

approach is not only well aligned with the biological and causal pathway underlying the

effect of dose-schedule on toxicity and efficacy, but it also improves the accuracy of the

dose-schedule finding as shown in the simulation study. The PKIDS design bridges dose-

finding with pharmacology; two fields with limited interactions, despite being inherently

related. There has been increasing interest and push to integrate these two fields for

better decision making and drug optimization from both the clinical community (Ratain,

2014) and regulatory authorities (Mirat et al., 2021).

The PKIDS design can be extended in various ways. For example, we here con-

sider binary toxicity and efficacy endpoints. Extension to continuous or time-to-event

points are of interest for some trials based on these types of endpoints. In addition,

PKIDS assumes that the endpoints are quickly observed to make adaptive dose-schedule

assignment decisions. This assumption typically holds for PK endpoints, but may not
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hold for toxicity and efficacy endpoints. Various methods for handling late-onset end-

points, e.g., Bayesian data augmentation (Liu et al., 2013; Jin et al., 2014), imputation

(Yuan et al., 2018), weighting method (Cheung and Chappell, 2000), time-to-event ap-

proach (Yuan and Yin, 2009), and the approximated-likelihood approach (Lin and Yuan,

2019), can be used to address this issue. It also is of interest to incorporate patient char-

acteristics (e.g., age, gender, and biomarkers) to PK, efficacy, and toxicity models to

achieve precision medicine. This is more complicated than simply adding patient charac-

teristics as covariates in the model. The implication is that by doing so, ODS will depend

on individual patient characteristics. This demands a large sample size in order to find

each patient’s individual ODS. Of greater concern is the logistical challenge to determine

how to implement the design in practice, and eventually deploy it to clinical use when

the drug is effective.
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Table 3.1: Utility for each possible toxicity and efficacy outcomes

Efficacy

Toxicity Yes (YE = 1) No (YE = 0)
No(YT = 0) 100 35
Yes(YT = 1) 60 0
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Table 3.2: Six scenarios considered in simulation. Boldface indicates the efficacy proba-
bility, toxicity probability, and mean utility of the optimal dose-schedule (ODS) regime.

Schedule

Dose Pr(YE = 1) Pr(YT = 1) Utility

Scenario 1 1 2 1 2 1 2

1 0.32 0.34 0.05 0.17 53.95 50.79

2 0.38 0.43 0.27 0.34 49.63 50.19

3 0.47 0.50 0.50 0.70 46.73 41.13

4 0.53 0.56 0.80 0.87 39.24 38.45

5 0.58 0.60 0.93 0.95 37.42 37.87

Scenario 2

1 0.13 0.17 0.06 0.10 41.30 42.44

2 0.22 0.28 0.16 0.21 43.47 45.48

3 0.40 0.43 0.25 0.40 51.65 47.95

4 0.46 0.48 0.50 0.60 46.11 43.62

5 0.50 0.52 0.70 0.80 41.13 38.63

Scenario 3

1 0.05 0.10 0.10 0.12 34.72 37.22

2 0.15 0.21 0.15 0.20 39.35 41.38

3 0.28 0.45 0.24 0.26 44.38 54.45

4 0.48 0.52 0.50 0.65 47.36 44.23

5 0.55 0.57 0.80 0.90 40.46 37.93

Scenario 4

1 0.05 0.10 0.01 0.02 37.90 40.79

2 0.15 0.17 0.04 0.07 43.31 43.52

3 0.22 0.28 0.10 0.14 45.65 48.04

4 0.36 0.43 0.24 0.26 49.47 53.18

5 0.44 0.47 0.50 0.55 44.86 44.87

Continued on next page
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Table 3.2 – Continued from previous page

Schedule

Dose Pr(YE = 1) Pr(YT = 1) Utility

Scenario 5

1 0.05 0.08 0.01 0.02 37.9 39.49

2 0.11 0.14 0.03 0.05 41.08 42.30

3 0.17 0.22 0.08 0.12 43.16 44.93

4 0.27 0.32 0.16 0.20 46.67 48.40

5 0.45 0.50 0.24 0.60 55.21 44.86

Scenario 6

1 0.01 0.02 0.01 0.02 35.30 35.60

2 0.04 0.05 0.03 0.05 36.54 36.48

3 0.07 0.10 0.07 0.09 37.07 38.29

4 0.14 0.25 0.12 0.15 39.79 45.76

5 0.35 0.45 0.20 0.25 50.32 54.83
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Table 3.3: Selection percentage and average percentage of patients treated at each dose-
schedule. The optimal dose-schedule is in boldface.

PKIDS EffTox

Average number Average number

Dose Selection %%% of patients Selection %%% of patients

Scenario 1 1 2 1 2 1 2 1 2

1 72.5% 11.4% 20.2 3.9 61.0% 19.0% 14.3 10.3

2 6.8% 5.9% 3.2 4.0 10.0% 1.0% 5.0 2.2

3 1.2% 0.4% 2.4 2.2 3.0% 2.0% 2.2 2.0

4 0.0% 0.0% 6.5 1.5 0.0% 0.0% 1.5 1.2

5 0.0% 0.9% 0.4 0.2 1.0% 0.0% 0.3 0.4

Scenario 2 1 2 1 2 1 2 1 2

1 8.0% 4.0% 4.3 2.9 0.0% 9.0% 2.0 5.8

2 7.0% 14.0% 3.9 5.4 0.0% 20.0% 2.1 5.9

3 39.0% 15.0% 8.0 5.0 40.0% 12.0% 9.6 5.3

4 2.0% 2.0% 3.1 2.4 5.0% 4.0% 2.1 2.7

5 0.0% 0.0% 1.8 1.4 2.0% 0.0% 1.1 1.6

Scenario 3 1 2 1 2 1 2 1 2

1 0.5% 0.3% 2.4 2.0 0.0% 7.0% 2.0 5.4

2 0.8% 1.1% 2.5 2.6 0.0% 22.0% 1.9 7.1

3 15.4% 51.6% 5.6 9.8 4.0% 32.0% 2.6 8.3

4 12.2% 4.1% 4.6 2.7 0.0% 0.0% 1.8 1.9

5 0.0% 0.0% 1.6 1.2 0.0% 0.0% 0.5 1.0

Scenario 4 1 2 1 2 1 2 1 2

1 1.0% 1.0% 2.1 2.0 0.0% 0.0% 2.0 2.4

2 0.0% 0.0% 2.0 2.1 0.0% 1.0% 2.0 2.4

3 2.0% 3.0% 2.7 3.3 0.0% 11.0% 2.1 4.9

4 12.0% 56.0% 5.5 9.2 7.0% 52.0% 3.2 9.9

5 17.0% 3.0% 6.9 3.4 1.0% 22.0% 2.6 8.1

Scenario 5 1 2 1 2 1 2 1 2

1 0.0% 0.1% 2.1 2.0 0.0% 1.0% 2.0 2.3

2 0.0% 0.0% 2.0 2.0 0.0% 1.0% 2.0 2.3

Continued on next page
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Table 3.3 – Continued from previous page

PKIDS EffTox

Average number Average number

Dose Selection %%% of patients Selection %%% of patients

3 0.0% 0.3% 2.1 2.2 0.0% 5.0% 2.0 4.2

4 1.9% 25.3% 3.0 5.8 6.0% 56.0% 2.9 10.3

5 42.1% 23.5% 8.5 9.3 6.0% 9.0% 3.5 6.5

Scenario 6 1 2 1 2 1 2 1 2

1 0.0% 0.0% 2.0 2.0 0.0% 0.0% 2.0 2.0

2 0.0% 0.0% 2.0 2.0 0.0% 0.0% 2.0 2.0

3 0.0% 0.0% 2.0 2.0 0.0% 0.0% 2.0 2.0

4 0.0% 0.0% 2.0 2.0 0.0% 1.0% 2.0 2.1

5 4.0% 82.0% 2.4 18.9 44.0% 52.0% 10.5 13.0
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Table 3.4: Utility for each possible toxicity and efficacy outcomes

Efficacy

Toxicity Yes (YE = 1) No (YE = 0)
No(YT = 0) 100 40
Yes(YT = 1) 75 0

Figure 3.1: Casual path that the effects of dose-schedule pair (dj, sk) on clinical outcomes
(YT , YE) are mediated by the plasma concentration Z of the drug.
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Figure 3.2: Dose finding algorithm of the PKIDS design
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Figure 3.3: Dose-toxicity, efficacy, and utility curves under 1-3 scenarios.

66



0.0

0.1

0.2

0.3

0.4

0.5

0

10

20

30

40

50

1 2 3 4 5
Doses

P
ro

ba
bi

lit
ie

s

U
tility

Scenario 4 − Schedule 1

0.0

0.1

0.2

0.3

0.4

0.5

0

10

20

30

40

50

1 2 3 4 5
Doses

P
ro

ba
bi

lit
ie

s

U
tility

Scenario 4 − Schedule 2

0.0

0.2

0.4

0

20

40

1 2 3 4 5
Doses

P
ro

ba
bi

lit
ie

s

U
tility

Scenario 5 − Schedule 1

0.0

0.2

0.4

0.6

0

20

40

60

1 2 3 4 5
Doses

P
ro

ba
bi

lit
ie

s

U
tility

Scenario 5 − Schedule 2

0.0

0.1

0.2

0.3

0.4

0.5

0

10

20

30

40

50

1 2 3 4 5
Doses

P
ro

ba
bi

lit
ie

s

U
tility

Scenario 6 − Schedule 1

0.0

0.1

0.2

0.3

0.4

0.5

0

10

20

30

40

50

1 2 3 4 5
Doses

P
ro

ba
bi

lit
ie

s

U
tility

Scenario 6 − Schedule 2

Efficacy Toxicity Utility

Figure 3.4: Dose-toxicity, efficacy, and utility curves under 4-6 scenarios.
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Figure 3.5: Sensitivity simulation results with an alternative utility.
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CHAPTER 4

Bayesian Hierarchical Monitoring Design for Basket

Trials

4.1. Introduction

With the rise in importance and interest in precision medicine, the basket trial

has become a commonly-used trial design, a notable example is in phase II oncology

trials (Wen et al., 2022; Friedman et al., 2022; Sherry et al., 2022; Subbiah et al., 2022;

Fakih et al., 2022; Gupta et al., 2022; Bedard et al., 2022; How et al., 2021; Patel et al.,

2021; Hahn et al., 2021). A basket trial investigates various patient populations with mul-

tiple tumor types treated under the same matched therapy; importantly, the cohorts (or

baskets) in this design have a common biomarker signature (West, 2017; Friedman et al.,

2015; Janiaud et al., 2019). Basket trials have the potential to increase the opportunities

of registries for patients with rare cancers and potentially reduce the sample size within

each basket relative to the equivalent collection of single histology trials by utilizing in-

formation across different cohorts. Additionally, simultaneous sub-studies of multiple

tumor types may also accelerate drug development (Redig and Jänne, 2015; Berry, 2015;

Garralda et al., 2019). However, conducting a basket trial is more resource-intensive

than a trial of a single histology, as multiple cohorts are recruited and more patients are

enrolled. Therefore, it is critical to develop innovative, yet reliable, basket trial designs

to monitor drug efficacy and stop cohorts that fail to show evidence of activity as early

as possible.

A particular area of interest in phase II clinical trials is efficacy monitoring, as

about 75% of phase II trials fail to achieve a pre-specified minimum level of efficacy
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(Thomas et al., 2021). Predetermined monitoring rules can avoid assigning a large num-

ber of patients to an inferior treatment. Several trial designs on efficacy monitoring

have been proposed, however, most are only applicable to single-arm trials. The work

by Simon (1989) proposed the first (frequentist) interim-monitoring design for phase II

trials. Thall and Simon (1994) proposed a similar Bayesian design, which has inspired a

series of extensions in the area of Bayesian phase II trials (see for example Thall et al.

(1995); Cai et al. (2014); Zhou et al. (2017); Guo and Liu (2020)). However, these ap-

proaches are only applied in scenarios of single-arm trials, which is not applicable to

basket trials.

The primary objective of basket trials is to evaluate if a novel treatment has suf-

ficient efficacy in multiple baskets for further large confirmatory studies. The analysis

strategy for basket trials is different from that of single-arm trials because we are investi-

gating multiple histologies simultaneously. One strategy is pooled analysis combining all

data across baskets, i.e. assuming homogeneity across baskets. However, this approach

often fails when the treatment effect is heterogeneous across different cancer types. Al-

ternatively, if the treatment effect is expected to be heterogeneous a priori, a stratified

analysis can be performed separately in each basket. Due to limited sample size in each

basket, this independent analysis often lacks sufficient power to detect the treatment

effect. There are multiple possible methods for sharing information across baskets to po-

tentially increase power. Cunanan et al. (2017) proposed an efficient frequentist design

for phase II basket trials, which consider each basket as an independent Simon (1989)

design, but combines baskets at the interim decision if two or more baskets appear to

have homogeneous and beneficial response rates. Bayesian designs can share informa-

tion across baskets using Bayesian model averaging (Simon et al., 2016; Psioda et al.,

2021) or Bayesian Hierarchical Models (BHMs; Thall et al. (2003); Berry et al. (2013);
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Neuenschwander et al. (2016); Liu et al. (2017); Chu and Yuan (2018)). However, we are

interested in the setting with both a short-term endpoint and long-term endpoint, and

none of the aforementioned work considers sharing information across baskets for trial

designs with both short-term and long-term endpoints. This is important because it is

possible that the short-term endpoint shows no effect from a novel treatment, while the

long-term endpoint shows a meaningful improvement, however a candidate treatment for

a particular histology may be ended early for futility due to the short-term outcome. Our

proposed design is to use a BHM to effectively share information among baskets and use

both short-term and long-term endpoints to yield valid results from interim-monitoring

in phase II clinical trials.

Our research is motivated by the first FDA-approved histology-agnostic molecu-

larly targeted therapy for Tropomyosin receptor kinases (TRK) fusion-positive cancers.

TRK fusion was founded in 17 different cancers, including common cancers (breast,

melanoma, lung cancer, etc.) and rare tumors such as secretory breast carcinoma and in-

fantile fibrosarcoma (Vaishnavi et al., 2015; Drilon et al., 2018). The experimental drug

Larotrectinib, a TRK inhibitor, has a high response rate in solid tumors that harbor

TRK fusion and is well-tolerated among adults, adolescents, and pediatrics. Our moti-

vating study includes three single-arm clinical trials: a phase I adult (LOXO-TRK-14001;

NCT02122913), phase I-II children (SCOUT; NCT02637687), and a phase II basket trial

involving adults and adolescents (NAVIGATE; NCT02576431) (Food and Association,

2018; Chen and Chi, 2018; Drilon et al., 2018). All of the aforementioned studies aim to

investigate the efficacy and safety of Larotrectinib. The primary endpoint is the short-

term endpoint, objective response rate (ORR), assessed by independent review using

RECIST (Response Evaluation Criteria in Solid Tumors). The secondary (long-term)

endpoint is the duration of response (DOR), defined as the time from the start date
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of the initial response to the date of disease progression or death. The response rate

was 81%, the median DOR was 35.2 months, and the longest DOR was 44.2 months

(Hong et al., 2020). Therefore, target agents with long duration are worth further in-

vestigation. However, in most studies, investigators would terminate the trial due to

prolonged DOR but no improvement in the response rate.

To overcome the limitations of current studies, we propose a BHM design for

basket trials to monitor the efficacy of the investigational drug by incorporating both

short-term endpoints (i.e., ORRs) and long-term endpoints (i.e., DORs). Our proposed

design aims to avoid early terminations due to futility when the DOR is substantially

prolonged with no improvement in the ORR. Two hierarchical levels are involved in the

monitoring rule based on the short-term and long-term endpoints. Level II monitoring

is triggered only if the stopping boundary for level I is reached. The trial will end due

to futility if both levels reach their respective stopping boundaries.

Conditional on the latent variables, information borrowing can be conducted using

a BHM. To our knowledge, no existing monitoring design for basket trials monitors both

short-term and long-term endpoints. Simulation studies illustrate that our proposed

design is easy to implement. And, under ideal conditions, our design can avoid early

terminations for futility when an otherwise effective treatment involves a substantially

prolonged DOR.

This chapter is organized as follows: Section 4.2 proposes the BHM design. Section

4.3 describes our proposed trial design. Section 4.4 presents simulation studies and the

operating characteristics of the proposed design. Section 4.5 concludes.
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4.2. Method

4.2.1. Objective response rate (ORR)

Consider patients sequentially entering a basket trial to investigate a targeted

therapy in k different cancer types with matching tumor histology, biomarker, or gene

expression. Objective response rate (ORR) is the primary endpoint and the basket trial

aims to evaluate whether the ORR of the targeted therapy is clinically meaningful in

each cancer type. This yields the following hypotheses:

H0k : pk ≤ q0 vs. H1k : pk ≥ q1 for k = 1, . . . , K,

where pk represents the objective response rate of the kth cancer type,k = 1, . . . , K. q0

denotes the unacceptable response rate and q1 is the desired response rate, q1 > q0.

Assume patients receive a fixed follow-up period to evaluate the treatment re-

sponses and nk patients with the kth cancer type are enrolled. Xk denotes the number

of patients with responses in the kth cancer type, following a binomial distribution,

Xk ∼ Binomial(pk, nk).

Let Zk denote the latent cluster membership indicator, which will cluster cancer

type k into groups with either high-response to treatment (Zk = 1), or low response to

treatment (Zk = 0). Conditionally on Zk, we assume that the treatment response rate

pk follows the following BHM,

logit(pk)|Zk ∼ N(µ0,Zk
, σ2

0,Zk
)

µ0,Zk=1 ∼ N(logit(q1), C2
01), µ0,Zk=0 ∼ N(logit(q0), C2

00),

σ2
0,Zk

∼ IG(a0, b0)

(4.1)
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where N(·) denotes a normal distribution and IG(·) denotes an inverse-gamma distribu-

tion. The parameters µ0,Zk
and σ2

0,Zk
represent the center of shrinkage and the borrowing

strength respectively. Following our latent clustering, µ0,Zk=1 is the center for high-

response cluster, while µ0,Zk=0 is the center for low-response cluster. Each of C2
00, C2

01,

a0 and b0 are fixed hyperparameters that must be prespecified.

Because Zk is a latent variable, and therefore never observed, the estimation of its

value is joint with the other model parameters. We specify that Zk follows a Bernoulli

distribution

Zk ∼ Ber(ψk), (4.2)

where ψk denotes the probability that the kth cancer type has a high response rate and

the prior of ψk is set as Beta(α0, β0), where α0 and β0 are fixed hyperparameters.

4.2.2. Duration of response (DOR)

Let tki denote the duration of response for the ith monitored population (or re-

sponder) in the kth cancer type, and assume it follows an exponential distribution,

tki ∼ Exp(λk). (4.3)

A key innovation of our design is to include the effectiveness of DOR (the long-term

response) in each cancer type. We assume

H0k :
log 2

λk
≤ r0 vs. H1k :

log 2

λk
≥ r1 for k = 1, . . . , K,

where r0 is an unacceptable level of median DOR and r1 is a desired level of median

DOR.

Similarly to our modeling of the short-term response ORR, let Wk denote the
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latent cluster membership indicators, where Wk = 1 denotes that the kth cancer type

has a long duration of response to the treatment and Wk = 0 denotes a short duration

of response. Conditionally on Wk, we apply the following BHM to borrow information

within the long and short DOR clusters, respectively.

log(λk)|Wk ∼ N(µ1,Wk
, σ2

1,Wk
)

µ1,Wk=1 ∼ N

(
log

log 2

r1
, C2

11

)
, µ1,Wk=0 ∼ N

(
log

log 2

r0
, C2

10

)
σ2
1,Wk

∼ IG(a1, b1)

(4.4)

where N(·) denotes a normal distribution and IG(·) denotes an inverse-gamma distribu-

tion. As in the case of the model for the short-term outcome, µ1,Zk
and σ2

1,Zk
represent

the center of shrinkage and the borrowing strength, and µ1,Zk=1 is the center for high-

response cluster while µ1,Zk=0 is the center for low-response cluster. C2
10, C2

11, a1 and b1

are all fixed hyperparameters which must be prespecified.

For latent variable Wk, we assume that Wk follows a Bernoulli distribution:

Wk ∼ Ber(ωk), (4.5)

where parameter ωk is the probability that the kth cancer type has a long duration of

response and the prior of ωk is set as Beta(α1, β1).

4.3. Trial design

In this section we develop Bayesian hierarchical monitoring rules for early stop-

ping decision making. Up to the monitoring time, data from all enrolled patients are

incorporated in level I monitoring, i.e. monitoring on the short-term outcome. Level II

(the long-term outcome) monitoring is triggered only if the stopping rule of level I is
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reached. The trial is terminated only if the stopping rules of both level I and level II

monitoring are reached.

In the level I monitoring stage, the minimal clinical improvement δ is specified by

clinicians based on historical information. If the response rate of the treatment is greater

than q0 + δ, then the treatment is considered worth further investigation

Pr(pk > q0 + δ|Data) > φ,

where the tuning parameter φ is the cut-off between 0 and 1. If the response rate satisfied

the monitor criterion in level I, patients will continue to enroll without triggering level

II monitoring. Otherwise, level II monitoring is executed for further evaluation.

In the level II monitoring stage, evaluation of DOR based on data from the re-

spective responders is considered. Assuming mk represents the number of responders in

the kth group and Nk denotes the maximum sample size, the level 2 monitoring criterion

is

Pr

(
log 2

λ
> r0|Data

)
>

(
mk

Nk

)η
,

where the tuning parameter η is the cut-off between 0 and 1. If the level II monitoring

rule is satisfied, patients can continue to enroll in the treatment. Otherwise, the trial is

terminated for futility. In order to produce satisfactory operating characteristics, tuning

parameters φ and η must be calibrated to control type I error rate and probability of

early termination in a desired range.
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4.4. Simulation

4.4.1. Simulation design

We conduct numerical simulation studies to evaluate the operating characteris-

tics of the proposed BHM design for basket trials. Motivated by the clinical trials of

Larotrectinib for TRK fusion–positive cancers described in the previous section, we set

the primary endpoint as the ORR and the secondary endpoint as the DOR. Our main

hypothesis is

H0k : pk ≤ 0.5 versus H1k : pk ≥ 0.7 for k = 1, . . . , K,

where the null response rate is 0.5, and the response rate that is deemed promising is 0.7.

As to the DOR of the responders, a median of 20 months offers only minimal benefit to

patients, while a median of 35 months confers sufficient benefit to patients.

The interim analysis follows the same trial design pattern. Level II monitoring

is triggered if the ORR of the kth cancer type reaches the level I monitoring stopping

boundary. If the level II monitoring rule is satisfied, patient enrollment continues. Oth-

erwise, the trial is terminated for futility. Let us assume that the investigation treatment

involves a group of patients that includes five cancer types. The maximum sample size

for each cancer type is 40, and the interim analysis is conducted when the first 20 patients

complete the response assessment. The trial continues to enroll patients until all patients

complete the response assessment. Some key hyperparameters are set as follows:

C01 = C00 =
logit(q1)− logit(q0)

6
, (4.6)

C11 = C10 =
log(log(2)/r0)− log(log(2)/r1)

6
, (4.7)
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which means the priors for average treatment effects of two clusters are nearly non-

overlapping. In terms of the variance of treatment effects within each cluster, σ2
0,Zk

and

σ2
1,Wk

follow an inverse-gamma distribution IG(0.1, 0.1) given the limited sample size and

number of subgroups. The hyperparameters ψk and ωk are set to follow a non-informative

prior Beta(1, 1), which suggests an unbiased clustering of each cancer type.

We compare our proposed Bayesian hierarchical monitoring design with inde-

pendent design and BHM design. The independent design models response rate of

each cancer type independently by using a beta-binomial model for ORR, (i.e.,pk ∼

beta(1, 1)). A Gamma-Exponential model is used in the DOR with a conjugate prior

λk ∼ Gamma(0.001, 0.001). The BHM design uses a traditional BHM model to borrow

information directly from each cancer type.

For the ORR,

logit(pk) ∼ N(µ0, σ
2
0)

µ0 ∼ N(logit(
qo + q1

2
), 10−6)

σ2
0 ∼ IG(0.1, 0.1)

(4.8)

For the DOR,

log(λk) ∼ N(µ1, σ
2
1)

µ1 ∼ N(log
log2

(r0 + r1)/2
, 10−6)

σ2
1 ∼ IG(0.1, 0.1)

(4.9)

We employed the same interim stopping rule in all the three designs to ensure they are

comparable. The global null scenario is that the ORR and median DOR for all cancer

types are 0.5 and 20 months, respectively. We calibrate the cutoffs δ and η of three
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designs to ensure the type I error rate of about 0.05 for each cohort. The results of the

calibrations are shown in Table 4.1.

Table 4.2 shows 12 different scenarios. In scenarios 1-4, the ORR and median

DOR are the same across five cancer types. We established four conditions for true values

of the ORR and the median DOR. These conditions comprise a full combination of an

ORR that is either low or high and a DOR that is either short or prolonged. For Scenarios

5–8, the DOR remains constant, but the ORR is heterogeneous across cancer types. In

these scenarios, the number of cohorts with high response rates decreases from 4 to 1,

while the number of cohorts with low response rates increases from 1 to 4. The profile of

the ORRs in Scenarios 9–12 is identical to their profile in Scenarios 5–8. The difference

is that, at this time, cohorts with high response rates also exhibit longer median DORs.

The results for each scenario are based on 10,000 simulations.

4.4.2. Simulation results

Figure 4.1 shows the percentage of rejecting H0k of different cancer types under

different scenarios. Table 4.3 summarizes simulation results. For cancer types with a true

response rate of 0.5 or lower, the percentage of rejecting the null hypothesis equals the

type I error rate. In addition, the probability of rejecting the null hypothesis corresponds

to power when the true response rate is 0.7 or higher.

It is evident that regardless of the method is used, when the investigational drug

does prolong the DOR, allowing for additional monitoring of the DORs of responders

in the interim analysis can increase the power to detect a desirable treatment effect on

the ORR. For instance, Scenario 4 versus Scenario 3, groups with high response rates

in Scenarios 9–12 versus the corresponding groups in Scenarios 5–8. On the other hand,

type I error rates are only slightly inflated when the ORR is undesirable, but the DOR is
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prolonged, and this is still an acceptable level in phase II exploratory trials. For example,

Scenario 2 versus Scenario 1, groups with low response rates in Scenarios 9–12 versus the

corresponding groups in Scenarios 5–8. When the DOR is prolonged, the probability of

terminating the trial decreases in the interim analysis, along with the expected sample

size.

Compared to the independent design and the BHM design, our proposed design

yields substantially more power to detect the treatment effect on the ORR when all five

cohorts are homogeneous (Scenarios 3 and 4). Our proposed method performs at a level

between the independent design and the BHM. When the cancer types are heterogeneous

(Scenarios 5–12), our proposed design outperforms the BHM and independent designs.

The BHM design fails to control the type I error rate. For instance, in Scenarios 5 and 9,

the type I error rate is substantially inflated to over 25% for cancer type 1. In Scenarios

8 and 12, the BHM design has less power to detect the treatment effect. However,

there is no serious type I error inflation or reduced power (Scenarios 8 and 12) in our

proposed design because we consider two classification levels. The type I error rate that

corresponds to cancer type 1 in Scenarios 5 and 9 falls between 10% and 15%, while other

indication-specific type I error rates are kept below 10%.

4.4.3. Sensitivity Analysis

We also study the sensitivity of the BHM design with respect to the distribution

of DORs. We evaluate the performance of the BHM design when the true distribution

of DORs follows a Weibull or log-logistic distribution rather than the exponential dis-

tribution with a constant hazard shown in Section 4.2. We set the shape parameters

for the Weibull distribution at 0.5 and 3 to generate decreasing and increasing hazards,

respectively. For the log-logistic distribution, we set the shape parameter at 6 to gen-

erate a hump-shaped hazard. Figure 4.2 shows the hazard function of the exponential
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distribution, two Weibull distributions and the log-logistic distribution when all median

DORs are 20 months.

Figure4.3 shows the sensitivity analysis results based on the assumption that the

shape parameters of the Weibull and log-logistic distributions are identical for all can-

cer types across all cancer types. Different true distributions of DORs produce different

results. The use of exponential distributions in our proposed method could improve the

probability of rejecting the null hypothesis when the true distribution of DORs follows a

Weibull distribution with a shape parameter of 0.5. However, exponential distributions

could reduce the probability of rejecting the null hypothesis when they follow a Weibull

distribution with a shape parameter of 3 or a log-logistic distribution with a shape pa-

rameter of 6. The main reason for this difference is that the gaps between the median

DOR and the mean DOR differ for those four distributions. For example, when the me-

dian DOR is 20, we set the means of the exponential distribution: Weibull distributions

with shape parameters of 0.5 and 3; and log-logistic distributions of 28.85, 36.89, 20.18,

and 5.24 months, respectively.

The use of exponential distributions in the model underestimates the hazard and

leads to an overestimated median DOR when the true distribution of DORs follows a

Weibull distribution with a shape parameter of 0.5. On the other hand, when the true

distribution of DORs follows a log-logistic distribution, or follows a Weibull distribu-

tion with a shape parameter of 3, using the exponential distribution in the model will

overestimate the hazard and lead to an underestimated median DOR.

According to the results of the sensitivity analysis, the use of exponential dis-

tributions is relatively robust in the scenarios we designed. The degree of type I error

inflation and power reduction is limited. However, such results also reveal the risk that
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our proposed method might misspecify the parameter model and thus render level II

monitoring useless. Before practical clinical application, the appropriate parameter dis-

tribution must be carefully selected based on clinicians’ previous clinical study data and

advice.

4.5. Discussion

We propose a Bayesian hierarchical monitoring (BHM) design for basket trials to

evaluate the treatment effects of novel immunotherapy and targeted therapy in cancer

treatment. The main contribution of our proposed design is that it reduces the probability

of early trial termination when substantial prolonged DORs arise. On the other hand, our

proposed design enables investigators to evaluate treatment effects more comprehensively

using multiple endpoints.

One innovation of our proposed design is that it incorporates short-term and

long-term endpoints by evaluating the binary outcome (e.g., the ORR) in level I and by

assessing the time-to-event outcome (e.g., the DOR) in level II. Level II monitoring is

triggered if the stopping boundary in level I monitoring is reached. Otherwise, patient

enrollment continues. The trial is terminated for futility if both level I and level II satisfy

the stopping rules.

Another innovation of our proposed design is that it uses latent variables and

the BHM approach to borrow information adaptively across cancer types (or baskets) in

basket trials. In addition, information is sparse and limited at the beginning of the trial

due to long follow-up periods. To overcome this challenge, we use a monotonic increase

function for responders, so the trial is not terminated accidentally.

Simulation studies show that our proposed method has characteristics that far

exceed the BHM and independent design. Our BHM design controls the type I error
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rate more effectively, and it offers more power to detect treatment effects. It is well

monitored, with both short- and long-term efficacy outcomes. It also accommodates

toxicity outcomes, and it can be extended to encompass additional monitoring rules.

Last, while our simulation is based on an oncological basket trial, but our design is also

effective for use in basket trials for other diseases.
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Table 4.1: Cutoffs of three designs

Independent BHM Proposed
δ 0.898 0.868 0.891
η 0.030 0.035 0.028
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Table 4.2: Scenarios of different cancer types

Scenario Outcome Cancer Type
1 2 3 4 5

1 ORR 0.5 0.5 0.5 0.5 0.5
DOR 20 20 20 20 20

2 ORR 0.5 0.5 0.5 0.5 0.5
DOR 35 35 35 35 35

3 ORR 0.7 0.7 0.7 0.7 0.7
DOR 20 20 20 20 20

4 ORR 0.7 0.7 0.7 0.7 0.7
DOR 35 35 35 35 35

5 ORR 0.5 0.7 0.7 0.7 0.7
DOR 20 20 20 20 20

6 ORR 0.5 0.5 0.7 0.7 0.7
DOR 20 20 20 20 20

7 ORR 0.5 0.5 0.5 0.7 0.7
DOR 20 20 20 20 20

8 ORR 0.5 0.5 0.5 0.5 0.7
DOR 20 20 20 20 20

9 ORR 0.5 0.7 0.7 0.7 0.7
DOR 20 35 35 35 35

10 ORR 0.5 0.5 0.7 0.7 0.7
DOR 20 20 35 35 35

11 ORR 0.5 0.5 0.5 0.7 0.7
DOR 20 20 20 35 35

12 ORR 0.5 0.5 0.5 0.5 0.7
DOR 20 20 20 20 35
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Table 4.3: Simulation results of the BHM, independent, and Bayesian hierarchical mon-
itoring designs

Scenario Design Results of different cancer types

1 2 3 4 5

1

Independent
% reject 5.0 5.0 5.0 4.9 5.1

% stop 83.2 82.0 82.1 83.1 82.6

BHM
% reject 4.9 5.3 5.2 4.8 4.8

% stop 88.2 87.0 87.9 88.2 87.8

Proposed
% reject 4.9 5.2 5.1 5.0 4.9

% stop 86.9 86.0 86.6 87.1 86.7

2

Independent
% reject 6.5 6.5 6.5 6.3 6.5

% stop 38.7 38.2 38.3 38.7 39.9

BHM
% reject 8.8 8.8 8.9 8.3 8.5

% stop 26.7 26.5 26.1 26.1 27.2

Proposed
% reject 7.5 7.5 7.6 7.3 7.5

% stop 36.2 36.2 36.0 36.5 37.6

3

Independent
% reject 74.6 73.9 74.6 74.8 73.4

% stop 22.3 22.4 21.9 21.6 22.8

BHM
% reject 93.6 93.0 93.5 93.8 93.4

% stop 7.2 7.8 7.4 6.9 7.4

Proposed
% reject 82.8 82.5 83.2 83.4 82.3

% stop 18.8 19.0 18.4 17.9 19.4

4

Independent
% reject 82.7 82.1 82.6 82.5 81.8

% stop 9.3 9.8 9.5 9.0 9.9

BHM
% reject 97.6 97.2 97.4 97.5 97.2

% stop 1.9 2.2 2.1 2.0 2.1

Proposed
% reject 91.5 91.0 91.3 91.7 90.8

% stop 6.8 7.2 7.0 6.6 7.3

Continued on next page
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Table 4.3 – Continued from previous page

Scenario Design Results of different cancer types

1 2 3 4 5

5

Independent
% reject 4.8 73.7 74.7 74.7 73.9

% stop 83.0 22.4 21.9 21.6 22.8

BHM
% reject 25.8 88.6 89.2 89.3 88.6

% stop 63.3 12.1 11.3 11.3 11.8

Proposed
% reject 12.5 77.7 78.1 78.3 77.4

% stop 80.2 21.6 21.5 21.0 22.3

6

Independent
% reject 4.8 5.0 74.6 75.8 73.6

% stop 83.0 82.0 21.9 21.6 22.8

BHM
% reject 18.8 18.2 83.7 84.0 83.7

% stop 70.9 71.0 16.4 16.1 16.6

Proposed
% reject 8.1 8.7 76.6 76.8 75.7

% stop 83.4 82.7 22.1 21.8 22.9

7

Independent
% reject 4.8 5.1 5.0 74.8 73.9

% stop 83.0 82.0 82.1 21.6 22.8

BHM
% reject 13.3 13.6 13.4 77.3 76.3

% stop 77.2 76.9 77.0 22.2 23.4

Proposed
% reject 7 7.5 7.5 75.5 74.5

% stop 84.3 83.3 83.5 23 24.2

8

Independent
% reject 4.6 5.2 4.8 4.5 73.6

% stop 83.0 82.0 82.1 83.1 22.8

BHM
% reject 8.4 9.1 9.4 8.9 65.7

% stop 83.0 81.9 82.2 82.8 32.9

Proposed
% reject 6.1 7.0 6.8 6.2 68.8

% stop 85.0 83.9 84.2 85.1 29.1

Continued on next page

87



Table 4.3 – Continued from previous page

Scenario Design Results of different cancer types

1 2 3 4 5

9

Independent
% reject 4.7 82.1 82.4 82.9 82.3

% stop 83.0 9.8 9.5 9.0 9.9

BHM
% reject 27.9 94.7 94.9 95.2 94.8

% stop 55.8 4.1 3.9 3.6 3.8

Proposed
% reject 14.1 87.5 87.7 88.1 87.3

% stop 77.7 8.9 8.8 8.3 8.9

10

Independent
% reject 4.9 5.0 82.4 83.0 82.3

% stop 83.0 82.0 9.5 9.0 9.9

BHM
% reject 20.3 19.7 91.4 92.0 91.8

% stop 66.0 65.8 6.2 6.0 6.2

Proposed
% reject 8.8 9.1 86.3 86.8 86.1

% stop 81.6 80.5 9.4 9.0 9.7

11

Independent
% reject 4.7 5.0 5.1 82.9 82.1

% stop 83.0 82.0 82.1 9.0 9.9

BHM
% reject 14.1 14.6 14.3 87.7 86.9

% stop 74.1 73.9 73.1 9.1 9.6

Proposed
% reject 7.1 7.6 7.7 85.7 84.7

% stop 83.0 81.9 82.0 9.9 10.9

12

Independent
% reject 4.7 5.3 4.6 4.6 82.1

% stop 83.0 82.0 82.1 83.1 9.9

BHM
% reject 9.1 9.7 10.0 9.5 78.6

% stop 81.4 80.4 80.4 81.0 15.3

Proposed
% reject 6.5 7.3 7.0 6.5 80.4

% stop 84.2 83.2 83.4 84.4 13.4
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Figure 4.1: percentage of rejecting H0 of different cancer types under different scenarios
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Figure 4.2: Hazard functions of DOR under the exponential (red curve), Weibull (black
curve for decreasing hazard; green curve for increasing hazards), and log-logistic distri-
butions (blue curve)
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Figure 4.3: Results of the sensitivity analysis under 12 scenarios. The 4 bars from left
to right represent the Weibull distribution with a decreasing hazard, the exponential
distribution with a constant hazard, the Weibull distribution with an increasing hazard,
and the log-logistic distribution with a hump-shaped hazard.
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CHAPTER 5

Why There Are So Many Contradicted or Exaggerated

Findings in Highly Cited Clinical Research?∗

5.1. Introduction

Potentially exaggerated findings, and those contradicted in subsequent studies,

are not unusual in clinical research (Benson and Hartz, 2000; Cappelleri et al., 1996;

Ioannidis, 2005a,b; LeLorier et al., 1997). The uncertainties that arise are of particular

concern when highly-cited clinical studies are involved, because of their great impact

on clinical research and practice. Ioannidis (2005a) investigated 49 highly-cited original

clinical research studies, each associated with more than 1000 citations, published from

1990 to 2003 in one of three major medical journals (New England Journal of Medicine,

JAMA, or Lancet) or in a high-impact medical specialty journal. Of the 49 studies

meeting the specified criteria, 45 had claimed positive findings—that the experimental

intervention was effective. Findings of efficacy among 32% of those studies were con-

tradicted in subsequent studies, or were shown to have potentially overestimated the

efficacy of the experimental intervention. Another 44% of the studies had findings of

efficacy that were later replicated, and 24% remained largely unchallenged during that

publication period. Nonrandomized studies generally performed worse than randomized

studies. The findings of a positive effect or the size of the effect reported in five out

of six highly-cited nonrandomized studies were later contradicted or found to have been

overestimated. However, randomized controlled trials (RCTs), generally considered the
∗Chapter 5 is based upon "Lu, M., Liu, S. and Yuan, Y. (2022) Why There Are So Many Con-

tradicted or Exaggerated Findings in Highly Cited Clinical Research? Contemporary Clinical Trials.",
available online at: https://doi.org/10.1016/j.cct.2022.106782.
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gold standard when evaluating the efficacy of clinical intervention, also suffered from a

high percentage of contradiction in findings, with the published reports from 9 out of 39

RCTs contradicted by subsequent studies or found to have potentially overestimated the

size of the effect. These results are of concern because of the rigorous standards often

used to design and conduct such studies.

Given the widespread impact of highly-cited studies on clinical research, it is of

great interest to understand the cause of such discrepancies. Ioannidis (2005a,b) identified

characteristics that determine the probability of a research claim being true, including

study power and bias, the number of other studies investigating the same question, and

the ratio of true to no relationship found among the relationships probed in each scientific

field. Specifically, a research finding is less likely to be true when the studies conducted

in a field are smaller; when effect sizes are smaller; when there is a greater number of

hypothesis testing; when there is greater flexibility in study designs; when there is a

greater financial or other interest and related prejudice; and when more research teams

are involved in a scientific field in chase of statistical significance.

The objective of this article is to conduct a statistical analysis of the highly-cited

original clinical studies identified by Ioannidis (2005a) in order to understand the reasons

for such high percentages of contradictory research findings. Highly-cited studies are often

regarded as models or standards in the related research field, thus a careful analysis of

such studies will provide insight into the process of clinical science and will help clinical

researchers to appropriately evaluate and interpret experimental findings. Pinpointing

the complete cause of contradictory or overestimated findings is a difficult challenge

and would involve every component of clinical research, including study design, patient

recruitment, trial conduct, data collection, data analysis, interpretation of the results, and

publication of the findings. We will focus on the statistical analysis, particularly issues
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related to the use of p values when testing the statistical hypothesis. Each of the highly-

cited studies used p values to determine if the findings were statistically significant, i.e.,

if the p value was less than 0.05, the researchers claimed the experimental intervention

to be superior to the control. In analyzing these studies, we demonstrated that p values

strongly overstated the evidence of efficacy contained in the data: when p value equals

0.05, there is still 74.4% chance that the null hypothesis is true. This caused researchers to

mistakenly conclude positive results (i.e., the false positive), which were then contradicted

by subsequent large-scale studies that were statistically more powerful. For detailed

theoretical perspectives of the pitfalls inherent in the use of p values in formal test

procedures, see the work of Berger and Delampady (1987); Berger and Sellke (1987);

Berger (2003); Goodman (1999a,b); Johnson (2013, 2019).

Our goal to statistically analyze the highly-cited studies in a meta-analysis is chal-

lenging. First, the data that can be retrieved from the published papers are very limited,

as most studies only reported the sample size, effect size, p value and test statistics.

Second, unlike traditional meta-analysis, which combines data from the same or similar

scientific question, the highly-cited papers embraced a variety of medical questions and

diseases. Such questions ranged from the effects of statins in the prevention of cardio-

vascular disease to tamoxifen for the prevention of breast cancer. Third, the researchers

used different testing procedures to compare the new treatment with the standard treat-

ment. To overcome these challenges, we based our analysis on test statistics, along the

line of Johnson (2005) and Yuan and Johnson (2008). Test statistics can often be viewed

as a condensed form of data and are reported in almost all studies. In addition, the

distributions of test statistics are often known under the null hypothesis and are readily

described under the alternative hypothesis. This greatly simplifies data modeling and

converting p values to the posterior probability of hypotheses.
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The rest of the paper is organized as follows. In section 5.2, we describe data

extraction from the highly-cited clinical studies, and provide our analysis of the extracted

data based on test statistics. Our findings appear in Section 5.3. We conclude with a

brief discussion in Section 5.4.

5.2. Methods

5.2.1. Data Extraction

Ioannidis (2005a) identified 49 original highly-cited clinical studies according to

the following criteria: each paper had received more than 1000 citations according to the

index of the Institute for Scientific Information, and had been published between 1990 and

2003 in one of the three general medical journals with the highest impact (New England

Journal of Medicine, JAMA, or Lancet) or in a medical specialty journal with an impact

factor exceeding 7.0. (See Ioannidis (2005a), for further details.) Of the 49 original

clinical research studies meeting the stated criteria, 42 were RCTs, 4 were prospective

cohort studies, 2 were case series, and 1 was prospective case-control study (Note that

Ioannidis (2005a) reported 43 RCTs, however, one of them (Ridker et al., 1997) actually

was not RCT but a prospective case-control study). Since RCTs are considered the gold

standard in evaluating the efficacy of clinical interventions, and are generally of better

quality than observational studies, our analysis focused on the 42 highly-cited RCTs.

We abstracted data from the 42 highly-cited RCTs, including the sample size,

number of events, p values, and the test statistic used to test the primary hypothesis

(i.e., whether the experimental intervention was more effective than the control). We

found that the p value for the primary hypothesis was often the first one that appeared

in the abstract. Some papers provided the confidence interval and did not report the

p values. In such cases, we calculated the p value based on the reported confidence
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interval. Knowing the type of test statistic and associated p values, we could easily

derive the value of the test statistics. For example, if a study employed the two-group

logrank test to obtain a p value of 0.03, then the test statistic was χ2 distributed with

one degree of freedom under the null hypothesis, and its value was 4.71. The sample size

we extracted was the "effective" sample size used in the primary hypothesis testing. This

sample size might not have been the number of patients recruited in the study due to

missing data or partial comparison. For example, the study ACTG019 (Volberding et al.,

1990) compared low- and high-dose treatment groups with a control group. The main

conclusion of the study was that the high dose of the treatment was effective. In that

example, the effective sample size was the number of subjects in the high-dose group

and the control group. During data extraction, we excluded three studies from our

analysis due to unclear definitions of test statistics. We also excluded four RCTs with

negative findings since these they actually refuted the findings of previous studies that

had reported positive results (Ioannidis, 2005a), and thus may be treated as subsequent

studies rather than original clinical research. Our final analysis was based on 35 highly-

cited RCTs, which are listed in Table 5.1.

The 35 RCTs meeting our criteria all claimed positive findings. Of them, 25 had

been followed by a larger study or by a published meta-analysis. Those 25 studies are

listed under "contradicted or exaggerated studies" and "replicated studies" in Table 1

to indicate whether their findings agreed or disagreed with those of subsequent studies.

The 10 highly-cited RCTs for which subsequent studies had not been reported are listed

in Table 1 as "unchallenged studies." Subsequent RCTs usually have much larger sample

sizes, and thus greater statistical power compared to original RCTs. Figure 5.1 depicts

the relative sample sizes of original and subsequent studies. In 22 out of 25 subsequent

studies, the samples sizes were at least three times as large as those of the original
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studies. The smallest and the mean sample size of the subsequent studies were 2,440 and

21,444, respectively. Given such large sample sizes, the findings of subsequent studies

may be reliable; therefore, we assume that their conclusions on the effectiveness of the

experimental interventions were correct. Then the 35 RCTs can be divided into three

groups according to the “true" status of the experimental interventions: 7 RCTs for which

the experimental intervention was not more effective than the control, 18 RCTs for which

the experimental intervention was more effective than the control, and 10 RCTs for which

we did not know whether the experimental intervention or the control was more effective.

Most of the studies we analyzed used a time-to-event primary endpoint, and one of

a variety of testing procedures (or test statistics) to test the efficacy of the experimental

intervention. The majority of the RCTs used a logrank test or a Cox model to test

the difference in hazards between participants given the experimental intervention and

participants in the control group. Since the score of a test based on the Cox model

is equivalent to that of a logrank test (Kleinbaum and Klein, 2012), we approximately

treated tests based on the Cox model as logrank tests when deriving the distribution of

the test statistics. The other RCTs ignored the time-to-event nature of the data , and

treated the outcome as a binary variable in the form of a 2 × 2 table, then compared

the percentage of events in the control group with that in the experimental intervention

group using a binomial test, chi-squared test, or Fisher’s exact test. Since all the studies

had moderate-to-large sample sizes, such tests are approximately equivalent, and we refer

to them as binomial-type tests. Hence, the test statistics used in the 35 RCTs can be

roughly divided into two groups: 28 RCTs with logrank-type test statistics and 7 RCTs

with binomial-type test statistics.
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5.2.2. Model

Our statistical strategy was to model the test statistics. To proceed, we assumed

the following experimental mechanism for generating test statistics for the highly-cited

original RCTs:

(a) Physicians draw an experimental treatment i. With probability π, the treatment i is

not different from the standard treatment (the null hypothesisH0); with probability

1 − π, the treatment i is different from the standard treatment (the alternative

hypothesis H1).

(b) An RCT is performed to generate a test statistic Xi or a p value.

(c) If the p value is less than 0.05, or equivalently Xi > ci where ci is the critical value

corresponding to a p value of 0.05, the H0 is rejected, and results of the RCT are

published.

The experimental model shown above is a highly simplified, hypothetic model. It

is not necessarily correct, but may provide a reasonable approximation to the actual pro-

cess of research and publication of highly-cited studies. Our experimental model assumes

a simple publication selection model: only studies reaching statistical significance (i.e.,

p value < 0.05) are published. This censoring model was proposed by Lane and Dunlap

(1978) and Hedges (1984) to correct the publication selection bias in meta-analysis. It has

been further generalized to allow the conditional probability of selection to depend on the

p value calculated for the study by Hedges (1992), Iyengar and Greenhouse (1988), and

Dear and Begg (1992). The simple censoring selection model may not be appropriate for

general publications since major journals do publish results from non-significant studies

sometimes, but it is adequate for our purpose of modeling the highly-cited studies. As
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noted by Ioannidis (2005a), highly-cited articles are a select sample with overrepesenta-

tion of positive findings since positive results are more likely to draw public attention

and excite further scientific investigation and debate. In particular, the 35 RTCs we

examined all reported significant results.

The primary endpoints of the 35 highly-cited RCTs were time-to-event in nature

(e.g., time-to-remission, time-to-recurrence). For study i, let λ0i denote the baseline

hazard of the control group. A natural choice of hazard for the intervention group is of

a proportional hazard form λ1i = eθiλ0i, where θi is the logarithm of the hazard ratio

between the intervention and the control group. To account for the heterogeneity among

RCTs due to different research subjects, study populations, and many other factors, we

allowed study-specific effect size θi to vary across studies. The test of interest of the RCTs

may be expressed as H0 : θi = 0 and H1 : θi ̸= 0. We considered two-sided alternatives

since all RCTs we investigated had conducted two-sided tests.

To convert test statistics (or p values) to posterior probabilities of H0 (or Bayes

factors), we first needed to derive the marginal distribution of test statistic Xi under

H0 and H1. One advantage of modeling the test statistic is that its distribution is

easily derived under H0 and H1. Under H0, Xi usually follows a known distribution

f0i(Xi), typically the standard normal distribution or a χ2 distribution with a known

degree of freedom, depending on the type of test statistic. Under H1, Xi often follows

a noncentral distribution in the same family as f0i(Xi). Let p1i(Xi|δ(θi)) denote this

noncentral distribution with a noncentrality parameter δ(θi), which is a function of θi.

Under the Bayesian framework, we needed to assign a prior distribution for the parameter

θi and integrate it out to obtain the marginal distribution of Xi. Let p(θi|τ) denote the

prior density of θi, indexed by a parameter τ , then the marginal distribution of Xi under
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H1 is given by

f1i(Xi|τ) =
∫
p1i(Xi|δ(θi))p(θi|τ) dθi. (5.1)

As we discussed in Section 2.1, two classes of tests were used in the 35 RCTs to

compare the efficacy of the experimental interventions with that of the controls. Logrank-

type tests were used in 28 RCTs and binomial-type tests were used in seven RCTs. For

the logrank test, the distribution ofXi underH0 is χ2
1, a χ2 distribution with one degree of

freedom. Under H1, Xi follows a noncentral χ2 distribution with one degree of freedom

and the noncentrality parameter 1
4
diθ

2
i , where di is the total number of events in the

study. Following Johnson (2005), we assumed prior density of θi of the form,

p(θ2i |τ) ∼ τχ2
1, (5.2)

where τ is the scale parameter which determines both the location and dispersion of the

effect size θi under the alternative hypothesis. Then it can be shown that the marginal

distribution of Xi, f1i(Xi|τ), is (1 + 1
4
diτ)χ

2
1.

Seven studies ignored the time-to-event nature of the data, and treated the out-

come as a binary variable in the form of a 2×2 table. The percentages of events in

the control group and the experimental intervention group were then compared using a

binomial-type test. The binomial test statistic Xbin
i is often defined as

Xbin
i =

p̂2 − p̂1
{[p̂1(1− p̂1) + p̂2(1− p̂2)]/n}1/2

where p̂1 and p̂2 are observed percentages of events in the control group and the experi-

mental intervention group. To convert the binomial test statistics to the same scale as the

logrank test statistics, we defined Y bin
i = (Xbin

i )2 and derived the marginal distributions

100



of Y bin
i instead. Under H0, Y bin

i follows χ2
1 since Xbin

i follows the standard normal distri-

bution. Under H1, it can be shown that Y bin
i follows a noncentral chi-squared distribution

with one degree of freedom and the noncentrality parameter

δ(θi) =
n(pe

θi

1 − p1)
2

p1(1− p1) + pe
θi

1 (1− pe
θi

1 )

Applying the prior (5.2) and integrating out θi as (5.1), we obtained the marginal dis-

tribution of Y bin
i under H1. This marginal distribution does not have a closed form, but

can be easily evaluated by numerical integration methods such as Gaussian quadratures.

In practice, we do not know the value of p1, but it can be estimated by p̂1.

With marginal distributions of Xi under H0 and H1 in hand, we derived the

likelihood for the test statistics reported in each RCT. As described in the previous

section, we divided the 35 highly-cited RCTs into three groups: 7 RCTs for which H0

was true, 18 RCTs for which H1 was true, and 10 RCTs for which we did not know the

true status of H0 and H1. We denoted these three groups by G0, G1 and G2, respectively.

Under the above experimental mechanism and assumptions, the likelihood contributed

by the RCTs for which H0 was true, i.e., xi ∈ G0, is given by

Pr(xi, H0|publish) =
Pr(xi, H0, publish)

Pr(publish)

=
Pr(H0)Pr(xi|H0)Pr(publish|xi, H0)

Pr(H0)Pr(publish|H0) + Pr(H1)Pr(publish|H1)

=
πf0i(xi)Pr(xi > c|xi, H0)

Pr(H0)Pr(Xi > c|H0) + Pr(H1)Pr(Xi > c|H1)

=
πf0i(xi)

0.05π + (1− π)[1− F1i(c|τ)]

where F1i(·) is the cumulative density function of a random variable with density f1i(·).

In a similar manner, it can be shown that the likelihood for the RCTs for which H1 was
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true, i.e., xi ∈ G1, is given by

Pr(xi, H1|publish) =
(1− π)f1i(xi|τ)

0.05π + (1− π)[1− F1i(c|τ)]

For studies that did not indicate the true status of the hypothesis (i.e., xi ∈ G2), the

likelihood was

Pr(xi|publish) = Pr(H0)Pr(xi|publish,H0) + Pr(H1)Pr(xi|publish,H1)

= Pr(H0)
Pr(xi|H0)Pr(publish|xi, H0)

Pr(publish|H0)
+ Pr(H1)

Pr(xi|H1)Pr(publish|xi, H1)

Pr(publish|H1)

= π
f0i(xi)

0.05
+ (1− π)

f1i(xi|τ)
1− F1i(c|τ)

.

Therefore, the likelihood of the test statistics x = {x1, · · · , x35} from the 35 RCTs is

given by

L(x|publish) =
∏
xi∈G0

Pr(xi, H0|publish)
∏
xi∈G1

Pr(xi, H1|publish)
∏
xi∈G2

Pr(xi|publish)

=

∏
xi∈G0

πf0i(xi)
∏

xi∈G1

(1− π)f1i(xi|τ)∏
xi∈G0,G1

[0.05π + (1− π)(1− F1i(xi|τ))]
∏
xi∈G2

[
π
f0i(xi)

0.05
+ (1− π)

f1i(xi|τ)
1− F1i(c|τ)

]

Based on this likelihood and assigning appropriate priors to parameters π and τ , we

obtained the posterior estimates of π and τ using the Markov chain Monte Carlo method.

Then, given a value of test statistics t, the probability that H0 was true was obtained by

Bayes’ theorem, as follows:

Pr(H0|t) =
Pr(H0)Pr(t|H0)

Pr(H0)Pr(t|H0) + Pr(H1)Pr(t|H1)

=
πf0(t|τ)

πf0(t) + (1− π)f1(t|τ)
(5.3)
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5.2.3. Prior Specification and Estimation

We assigned independent noninformative prior distributions to the model param-

eters, as follows:

Pr(τ) ∝ 1/τ,

Pr(π) ∼ unif(0, 1)

The joint posterior distribution of {τ, π} is given by

Pr(τ, π|x) ∝ Pr(τ)Pr(π)L(x|publish),

which can be sampled using the Metropolis-Hastings algorithm. Specifically, let (τ (t), π(t))

denote the tth posterior draws of the parameters. At the t + 1 iteration, we generated

candidate draws of τ and π, say (τt, πt), from the following proposal densities,

Pr(log(τt)) ∼ N(log(τ (t)), 0.7)

Pr(logit(πt)) ∼ N(logit(π(t)), 0.7)

where N(a, b) denotes a normal distribution with mean a and standard deviation b. The

standard deviations of the proposal densities were chosen to yield reasonable Metropolis-

Hastings jump distance and acceptance rate. The (t+1)th posterior draw (τ (t+1), π(t+1))

takes a value as follows,

(τ (t+1), π(t+1)) =

{
(τt, πt) with probability ρ

(τ (t), π(t)) with probability 1− ρ
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where

ρ = min

{
πt(1− πt)Pr(τt, πt|x)

π(t)(1− π(t))Pr(τ (t), π(t)|x)
, 1

}
We used 2000 iterations as burn in and 10000 iterations to obtain posterior draws. We

monitored the convergence of the Markov chain by inspecting the trace plot.

5.3. Results

Table 1 shows p values, types of test statistics, and sample sizes for the 35 RCTs.

We display the p values in Figure 5.2. An immediate observation was that contradicted

or exaggerated studies tended to have larger p values than replicated studies. In partic-

ular, 4 out of 7 contradicted or exaggerated studies reported p values larger than 0.01,

compared with 1 out of 18 for the replicated studies. This result is reasonable since in

an informal sense, p values measure evidence against the null hypothesis. The smaller

p values suggest more evidence of effectiveness. The replicated studies have stronger

evidence of superiority of the experimental intervention than the contradicted or exag-

gerated studies. However, the problem is that, according to the current practice of using

a p value of 0.05 as a measure of significance, the positive findings of 35 RCTs are all

statistically significant, then why are such high percentages of these findings later con-

tradicted or deemed to have been exaggerated? This naturally raises questions: Is the p

value a sensible measure of evidence of the null hypothesis? Is 0.05 a reasonable cutoff

for significance?

Actually, the p value greatly overstates the evidence contained in the data. Figure

5.3 shows trace plots and posterior distributions of τ and π, suggesting that the Markov

chains in our analysis are well mixed and have reasonably converged. The posterior

means for τ and π are 0.166 and 0.819, with 95% credible intervals (CI) of (0.074, 0.324)

and (0.681, 0.911), respectively. By plugging the posterior draws of π and τ into (5.3),
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we can obtain the posterior distribution of H0 for any given value of the test statistic (or

p value). Figure 5.4 depicts the relationship between p values and the probability that

the H0 is true. This plot is based on logrank tests with 388 events, the mean number

of events for the 35 highly-cited RCTs. Surprisingly, when the p value is equal to 0.05,

there is a 74.4% (95% CI = (0.560, 0.883)) chance that the null is true. If the p value

equals 0.01, 0.001, and 0.0005, the chance that the null is true is 43.9%, 9.8% and 5.6%,

respectively, with 95% CI = (0.264, 0.664), (0.050, 0.210), and (0.028, 0.126). Clearly,

using a p value of 0.05 as the criterion for significance causes an excessive number of

studies to mistakenly claim positive findings (i.e., a high false positive rate), which are

then contradicted by subsequent large-scale studies. That is one of the statistical reasons

why there are so many contradictory findings among the highly-cited studies.

However, we want to emphasize that the highly-cited RCTs is a highly selected

sample from clinical research, and our hypothetic model is approximated and highly

simplified. Our primary objective is to provide a preliminary explanation why there are

so many contradicted results in highly cited studies. The results based on the highly-cited

studies may not be directly applicable to general clinical research. For example, the high-

cited RCTs we analyzed all reported significant studies, but medical journals also publish

insignificant results sometimes. To model general clinical research, the model need to be

extended to account for that fact. Nevertheless, Berger and Sellke (1987) showed that in

general p values overstate the experimental evidence, and the actual evidence against a

null can differ by an order of magnitude from the p value.

5.4. Discussion

Clinical trial design and conduct is a very complex process, and differences in

various components of the process, such as differences in enrollment, eligibility criteria,

clinical procedures, and many others, could cause discrepancies between the findings of
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related studies. From a statistical point of view, our data analysis reveals an important

reason for such discrepancies: p values strongly overstate the experimental evidence, and

many findings reported as statistically significant based on p values are not significant

at all. Using p values does not provide any protection for consumers of classic statistical

testing methods. One common misconception about p values is that a p value of 0.05

represents a only 5% chance that the null is true, and thus stands for strong evidence of

effectiveness. However, based on our analysis, for highly-cited studies, when the p value

was equal to 0.05, there was a 74.4% chance that the null is true. Consequently, the rote

use of a p value of 0.05 as the criterion of significance strongly overstates the evidence

and may lead to serious consequences.

Our findings are consistent with the American Statistical Association (ASA) State-

ment on Statistical Significance and P-Values (Wasserstein and Lazar, 2016). Figure 5.4

shows that the p value indeed provides a measure of the compatibility of the data with

a specified statistical model. As noted by ASA Statement, “the smaller the p-value, the

greater the statistical incompatibility of the data with the null hypothesis, if the un-

derlying assumptions used to calculate the p-value hold. This incompatibility can be

interpreted as casting doubt on or providing evidence against the null hypothesis or the

underlying assumptions." At the same time, our results also highlight that p values do

not measure the probability that the studied hypothesis is true, and by itself, a p value

does not provide a good measure of evidence regarding a model or hypothesis, as empha-

sized by the ASA Statement. For example, a p value near 0.05 offers only weak evidence

against the null hypothesis. One major contribution of this paper is that our results

provide real-world data evidence to support ASA Statement with high-impact clinical

studies.

One simple way to improve the reproducibility of clinical studies (or to decrease
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the false positive rate) may be to use a smaller p value, such as 0.001 or less to claim

significant results, as advocated by Johnson (2019). Such a small p value can be achieved

either under a large effect size with a moderate sample size or a moderate effect size

with a large sample size. Given the reality of limited resources, many studies of small

or moderate sample sizes do not afford enough sample size to detect a moderate effect

size with such a small p value. Under such circumstances we should be cautious in our

interpretation of the results. For example, we may choose to be conservative and retain

certain reservations when accepting a conclusion with a p value of 0.01. The question then

is, how conservative should we be? This exposes another pitfall of the p value: it does

not provide a definite measure of the strength of evidence. In medical journals, we may

conclude that a p value of 0.02 is (marginally) significant and 0.002 is highly significant,

but these numbers do not tell us the difference between 0.02 and 0.002 quantitatively in

terms of the evidence of effectiveness, i.e., a p value of 0.002 does not represent 10 times

the level of evidence to support the alternative hypothesis compared to a p value of 0.02.

(For further discussion of the use of p values in medical research, see, for example, the

work of Goodman (1999a) and Goodman (1999b).)

A systematic and better approach to improve the reproducibility is to use the

posterior probability of the hypotheses (the Bayes factor) to report experimental results,

since it provides a more precise and objective measure of evidence contained in the data

than p values. This will effectively decrease the false positive rate caused by the use of

a p value of 0.05 as the criterion of significance. In addition, the posterior probability of

the hypotheses has an intuitive interpretation, for example, a posterior probability of 0.3

for the alternative hypothesis means that there is a 30% chance that the alternative is

true based on the current experiment, and a posterior probability of 0.6 represents two

times that level of evidence. Wasserstein and Lazar (2016) provide more guidance and
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discussion on the use of p value and how to improve the reproducibility of studies.
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Figure 5.1: The ratio of sample sizes for 25 subsequent studies against corresponding
original highly-cited controlled clinical trials. Crosses denote the contradicted studies,
and circles denote the replicated studies.

110



●

●

●

●

●

●

●

Studies

p−
va

lu
e

10
−9

10
−7

10
−5

10
−3

0.
00

1
0.

01
0.

05

● Contradicted studies
Replicated studies
Unchallenged studies

Figure 5.2: Logarithm of p values for 35 highly-cited controlled clinical trials, including
7 contradicted studies, 18 replicated studies and 10 unchallenged studies.

111



0 2000 4000 6000 8000 10000

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5

(a)

lo
g(

ta
u)

(b)

Tau

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 2000 4000 6000 8000 10000

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(c)

lo
g(

P
i0

/(
1 

−
 P

i0
))

(d)

Pi

0.6 0.7 0.8 0.9

Figure 5.3: Analysis of the test statistics. (a) Trace plot of 10000 posterior draws of
τ ; (b) Posterior distribution of τ ; (c) Trace plot of 10000 posterior draws of π; and (d)
Posterior distribution of π.

112



0.0001 0.0002 0.0005 0.0010 0.0020 0.0050 0.0100 0.0200 0.0500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p values

P
r(
H
0)

Figure 5.4: Probability that the null hypothesis is true under various p values, assuming
the logrank test statistics and the 388 total number of events.

113



CHAPTER 6

Conclusion and future work

6.1. Conclusion

This dissertation focuses on early-phase adaptive clinical trial designs, especially

under a Bayesian framework. We propose three novel, robust, and efficient Bayesian

adaptive clinical trial designs that overcome the shortcomings of early-phase clinical trial

designs in terms of dose-finding, dose-scheduling, and basket trial design.

Chapter 2 focuses on a seamless phase I/II dose-finding clinical trial design. The

proposed Bayesian phase I/II trial design can efficiently identify the OBDC in a drug

combination trial. When the toxicity or efficacy outcomes are late-onset, the time-to-

event version of the design can utilize patients’ follow-up data for decision making. We

assign patients to the most appropriate dose combination by continuously updating the

posterior distributions of toxicity and efficacy. When the toxicity or efficacy outcomes

are late-onset, we propose a time-to-event version of the design that utilizes patients’

follow-up data for decision making. Extensive simulation studies indicate that the pro-

posed extensions of the BOIN12 are more straightforward to implement than the current

phase I/II drug-combination designs. Various trial configurations show that the proposed

designs also have outstanding operating characteristics for determining the OBDC.

Chapter 3 focuses on a phase I-II dose-schedule finding clinical trial design. A

drug’s administration schedule profoundly impacts its toxicity and efficacy profiles by

changing its PK. PK is an inherent and indispensable component of dose-schedule op-

timization. The proposed Bayesian PK-integrated phase I-II design to optimize dose-

schedule finding regimes identifies the optimal dose-schedule regime by integrating PK,
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toxicity, and efficacy data. Based on the causal pathway through which dose and dose

schedule affect PK, which in turn affects efficacy and toxicity, we model the three end-

points jointly by first specifying a Bayesian hierarchical model for the marginal distribu-

tion of the longitudinal dose-concentration process. Conditional on the drug concentra-

tion in plasma, we model toxicity and efficacy jointly as a function of the concentration.

We quantify the risk–benefit tradeoff of regimes using utility (while continuously updat-

ing estimates of PK, toxicity, and effectiveness based on interim data), and we make

adaptive decisions to assign new patients to appropriate dose-schedule regimes via adap-

tive randomization. The simulation study shows that the PKIDS design has desirable

operating characteristics. It currently considers only binary toxicity and efficacy end-

points, but future studies could evaluate its extension to continuous or time-to-event

endpoints. The PKIDS design also assumes that these endpoints are quickly observed.

Chapter 4 focuses on phase II basket trials with monitoring rules. The proposed

Bayesian hierarchical monitoring design for basket trials reduces the probability of early

termination when the DOR is substantially prolonged with no improvement in the re-

sponse rate. The Bayesian hierarchical monitoring design includes two hierarchical levels:

the short-term binary endpoint (ORR) and the long-term time-to-event endpoint (DOR).

Conditional on latent subgroup indicators, we use the Bayesian hierarchical model to bor-

row information across different cancer types. Extensive simulation studies illustrate that

our proposed design has outstanding operating characteristics compared to current trial

designs. Our Bayesian hierarchical monitoring model yields higher power to detect treat-

ment effects, and ideally, it can reduce the probability of early termination when the

DOR is substantially prolonged with no improvements in the response rate.

Chapter 5 examines the reasons for the considerable number of contradicted or

exaggerated findings in highly cited clinical research. Often, the outcomes of different
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clinical studies of the same intervention contradict each other. We analyze a number of

original, highly cited clinical studies that were later contradicted or were found to have

overestimated the effects of experimental interventions by basing their analysis on test

statistics within a Bayesian framework. We identify one source of contradictory results:

the p values strongly overstated the experimental evidence. For highly cited studies,

when the p value was .05, there was a 74.4% chance of confirming the null hypothesis.

The use of a p value of .05 as the criterion for significance has caused many spurious

positive findings that were later contradicted by large-scale studies.

Oncology therapies have developed dramatically as our knowledge of biomarkers

and tumor biology increases. The concept of precision medicine is an important tool for

defeating cancer methodically and systematically by focusing on matching the specific

information of molecular mutation tumors to the most effective and accurate treatments.

Compared to standard chemotherapeutic agents, novel therapeutic agents take longer to

show clinical benefits such as tumor size reduction, transient pseudo progression, long-

lasting partial response, or stable disease.

Clinical trial designs are critical in oncology drug development and treatment

paradigms. Novel clinical trial designs accompany the introduction of precision medicine,

and new treatment paradigms have rendered conventional dose-finding clinical trial de-

signs inefficient and dysfunctional. By addressing the logistical and conceptual difficul-

ties of existing clinical trial designs, our proposed design is also easy for clinicians to

understand and implement. Our proposed novel methods perfectly embody the concept

of precision medicine, which seeks to avoid a “one-size-fits-all” approach that ignores

patient-specific characteristics.
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6.2. Future work

Many unsettled issues and questions are still worth addressing in early-phase clin-

ical trial designs.

In this dissertation, we only focus on novel therapies, such as targeted therapies

and immunotherapies. However, an increasing number of treatments involving two or

more therapies in cancer treatment are developed. For example, pembrolizumab plus

chemotherapy for metastatic non–small-cell lung cancer (Gandhi et al., 2018) or advanced

triple-negative breast cancer(Cortes et al., 2022). Results show that these novel therapies

plus chemotherapies can significantly prolong the survival rate and provide a greater

reduction of adverse events. Therefore, considering two or more treatments is one of the

future directions for this dissertation.

R Shiny is a software platform commonly used to facilitate the use and understand-

ing of adaptive clinical trial design methods. Many applications have been developed for

clinicians and people who want to explore the performance of clinical trial designs but

cannot understand the complicate statistically modeling. Facilitating, user-friendly, and

easy-to-use Shiny web applications are another future work for this dissertation so that

the users can explore the design by inputting the design parameters.

In chapter 2, our Comb-BOIN 12 design considers only two-drug combinations, but

in actual practice, three or more drug combinations are also common in cancer treatment.

One future research is to conduct three or more drug combination designs. One limitation

of our design is that we only consider the homogeneity of patients. However, in actual

practice, patients will have different sensitivities to the immune checkpoint inhibitors.

Another interesting future direction is to assess patient heterogeneity.
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Chapter 3 focuses on developing a dose-schedule finding design by integrating PK

data. PK describes how the body does to the drug, whereas pharmacodynamic (PD)

describes how the drug does to the body (Meibohm and Derendorf, 1997). Therefore,

considering and integrating PD data for developing a dose-schedule finding design is one

of the future directions of this study. Integrating PK/PD modeling and the differences

between PK and PD data is also an interesting future direction of dose-schedule finding

design. Here, in chapter 3, we assume each patient has PK data. However, in actual

practice, examining PK/PD for each patient is costly and prolonged. Therefore, other

covariates such as gender, age, and body mass index (BMI) can also be considered in fu-

ture studies. Chemotherapies and immunotherapies have different mechanisms of action

in the body. Since more cancer treatments focus on more than one therapy, It is also

worth consideration in future studies.

Chapter 4 focused on short-term and long-term endpoints under novel cancer

treatments, such as immunotherapies. A monitoring rule for combination therapies,

such as immunotherapies plus chemotherapy, is worth considering in future studies. We

only consider ORR as the primary endpoint and DOR as the secondary endpoint in

chapter 4. However, in actual practice, ORR and DOR are not the only endpoints to

assess the treatment effect. Monitoring multiple endpoints are also worth considering in

future studies. In some trials, ORR and DOR are assumed to be equally crucial since

short and long-term endpoints always correlate. An interesting future work includes

jointly modeling and estimating the distribution of short and long-term endpoints in

simultaneous monitoring. Here in chapter 4, we consider a phase II basket trial. However,

the umbrella trial is also worth considering. An umbrella trial is also a novel adaptive trial

design incorporating precision medicine into clinical trials, considering multiple treatment

arms within one trial. Future open questions include monitoring rules for umbrella trials.
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