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Advisory Professor: Laurence Court, Ph.D.

0.1 Background

Rectal cancer is a common type of cancer. There is an acute health disparity

across the globe where a significant population of the world lack adequate access to

radiotherapy treatments which is a part of the standard of care for rectal cancers. Safe

radiotherapy treatments require specialized planning expertise and are time-consuming

and labor-intensive to produce.

0.2 Purpose:

To alleviate the health disparity and promote the safe and quality use of radio-

therapy in treating rectal cancers, the entire treatment planning process needs to be

automated. The purpose of this project is to develop automated solutions for the treat-

ment planning process of rectal cancers that would produce clinically acceptable and

high-quality plans. To achieve this goal, we first automated two common existing treat-

ment techniques, three-dimensional conformal radiation therapy (3DCRT) and volumet-

ric modulated arc therapy (VMAT), for rectal cancers, and then explored an alternative

method for creating a treatment plan using deep learning.
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0.3 Methods:

To automate the 3DCRT treatment technique, we used deep learning to predict

the shapes of field apertures for primary and boost fields based on CT and location and

the shapes of gross tumor volume (GTV) and involved lymph nodes. The results of the

predicted apertures were evaluated by a gastrointestinal (GI) radiation oncologist. We

then designed an algorithm to automate the forward-planning process with the capacity

of adding fields to homogenize the dose at the target volumes using the field-in-field

(FIF) technique. The algorithm was validated on the clinical apertures and the plans

produced were scored by a GI radiation oncologist. The field aperture prediction and the

algorithm were combined into an end-to-end process and were tested on a separate set

of patients. The resulting final plans were scored by a GI radiation oncologist for their

clinical acceptability.

To automate of VMAT treatment technique, we used deep learning models to

segment clinical target volume (CTV) and organs at risks (OARs) and automated the

inverse planning process, based on a RapidPlan model. The end-to-end process requires

only the GTV contour and a CT scan as inputs. Specifically, the segmentation mod-

els could auto-segment CTV, bowel bag, large bowel, small bowel, total bowel, femurs,

bladder, bone marrow, and female and male genitalia. All the OARs were contoured

under the guidance of and reviewed by a GI radiation oncologist. For auto-planning, the

RapidPlan model was designed for VMAT delivery with 3 arcs and validated separately

by two GI radiation oncologists. Finally, the end-to-end pipeline was evaluated on a

separate set of testing patients, and the resulting plans were scored by two GI radiation

oncologists.

Existing inverse planning methods rely on 1D information from dose volume his-

togram (DVH) values, 2D information from DVH lines, or 3D dose distributions using
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machine learning1 for plan optimizations. The project explored the possibility of using

deep learning to create 3D dose distributions directly for VMAT treatment plans. The

training data consisted of patients treated by the VMAT treatment technique in the

short-course fractionation scheme that uses 5 Gy per fraction for 5 fractions. Two deep

learning architectures were investigated for their ability to emulate clinical dose distri-

butions: 3D dense dilated U-Net (DDU-Net) and 2D conditional generative adversarial

network (cGAN). The top-performing model for each architecture was identified based

on the difference in DVH values, DVH lines, and dose distribution between the predicted

dose and the corresponding clinical plans.

0.4 Results:

For 3DCRT automation, the predicted apertures were 100%, 95%, and 87.5%

clinically acceptable for the posterior-anterior, laterals, and boost apertures, respectively.

The forward planning algorithm created wedged plans that were 85% clinically acceptable

with clinical apertures. The end-to-end workflow generated 97% clinically acceptable

plans for the separate test patients.

For the VMAT automation, CTV contours were 89% clinically acceptable without

necessary modifications and all the OAR contours were clinically acceptable without edits

except for large and small bowels. The RaidPlan model was evaluated to produce 100%

and 91% of clinically acceptable plans per two GI radiation oncologists. For the testing of

end-to-end workflow, 88% and 62% of the final plans were accepted by two GI radiation

oncologists.

For the evaluation of deep learning architectures, the top-performing model of the

DDU-Net architecture used the medium patch size and inputs of CT, planning target

volume (PTV) times prescription dose mask, CTV, PTV 10 mm expansion, and the
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external body structure. The model with inputs CT, PTV, and CTV masks performed

the best for the cGAN architecture. Both the DDU-Net and cGAN architectures could

predict 3D dose distributions that had DVH values that were statistically the same as

the clinical plans.

0.5 Conclusions:

We have successfully automated the clinical workflow for generating either 3DCRT

or VMAT radiotherapy plans for rectal cancer for our institution. This project showed

that the existing treatment planning techniques for rectal cancer can be automated to

generate clinically acceptable and safe plans with minimal inputs and no human inter-

vention for most patients. The project also showed that deep learning architectures can

be used for predicting dose distributions.

viii



Table of Contents

Approval Page i

Title Page i

Declaration ii

Acknowledgements iii

Abstract v

0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

0.2 Purpose: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

0.3 Methods: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

0.4 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

0.5 Conclusions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Table of Content ix

List of Figures xiv

List of Tables xviii

Acronyms xx

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

ix



1.1.1 Increasing demand globally with discussions about health disparity 1

1.1.2 LMIC tend to have late-staged diseases due to health disparity . 2

1.1.3 A systematic lack of access to radiotherapy . . . . . . . . . . . . 3

1.1.4 Summary and our proposal . . . . . . . . . . . . . . . . . . . . . 5

1.2 How can radiotherapy planning processes be automated . . . . . . . . . . 6

1.2.1 What is rectal cancer and how is it treated . . . . . . . . . . . . . 6

1.2.2 Challenges with treatment planning . . . . . . . . . . . . . . . . . 9

1.2.3 Automating the treatment planning process . . . . . . . . . . . . 10

1.3 Gap in knowledge and Summary . . . . . . . . . . . . . . . . . . . . . . 11

2 Specific Aims and Central Hypothesis 13

2.1 Central hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Specific Aim 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Specific Aim 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Specific Aim 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Summary of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Automation of 3DCRT Treatment Technique 16

3.1 Abstract: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Purpose: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Methods: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Field aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Field-in-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

x



3.3.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . 29

3.3.3 End-to-end workflow . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Field aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Field-in-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 End-to-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Automation of VMAT Treatment Technique 46

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Purpose: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Methods: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.4 Conclusions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Auto-segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Auto-planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 End-to-end evaluation . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Auto-segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Auto-planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 End-to-end evaluation . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



5 Deep learning VMAT Dose Prediction for Rectal Cancers 69

5.1 Abstract: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Purpose: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.2 Methods and Materials: . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.3 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.4 Conclusions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Methods: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Architectures and Training . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Discussion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Discussion and Concluding Remarks 101

6.1 Thesis summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Limitations and Future directions . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix 1: Automate Field-in-Field for Whole-brain 3DCRT Radio-

therapy 113

6.4 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xii



6.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6.2 FIF algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.3 FIF algorithm testing . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6.3.1 Quantitative algorithm evaluation . . . . . . . . . . . . 121

6.6.3.2 Qualitative algorithm evaluation . . . . . . . . . . . . . 122

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7.1 Quantitative algorithm evaluation . . . . . . . . . . . . . . . . . . 122

6.7.2 Qualitative algorithm evaluation . . . . . . . . . . . . . . . . . . 124

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 2: Supplementary figures for Deep learning VMAT Dose Pre-

diction 130

References 151

Vita 162

xiii



List of Figures

1.1 The pattern of the lymphatic drainage according to the tumor location.

Image reproduced with permission.40 . . . . . . . . . . . . . . . . . . . . 6

3.1 Clinical guidelines for field aperture placement . . . . . . . . . . . . . . . 21

3.2 Relationship between each model for aperture prediction . . . . . . . . . 22

3.3 A flow chart of the FIF algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Example of constructed volumes for the experimental setup in 3D confor-

mal auto-planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Examples of field aperture predictions for 3DCRT plans . . . . . . . . . . 34

3.6 Boxplots of 3DCRT plans before and after FIF optimization . . . . . . . 36

3.7 Example of automatic 3DCRT plans scored as 2 to 5 . . . . . . . . . . . 40

3.8 Hotspot sizes for plans in the end-to-end testing of 3DCRT automation . 41

4.1 Example of contours for ROIs . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Examples of testing and ground-truth contours for each structure. . . . . 59

4.3 Boxplots of dose metrics for auto plans . . . . . . . . . . . . . . . . . . . 61

4.4 Box plots of DVH values for 16 end-to-end automatic plans . . . . . . . . 63

5.1 DVH values of plans created by top-performing deep learning models based

on MDACC DVH objectives . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 DVH values of plans created by top-performing deep learning models based

on ASTRO DVH objectives . . . . . . . . . . . . . . . . . . . . . . . . . 80

xiv



5.3 DVH value differences between the predicted dose and the clinical plans

on MDACC dose objectives . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 DVH value differences between the predicted dose and the clinical plans

on ASTRO dose objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Mean DVH of clinical plans compared with plans produced by deep learn-

ing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 DVH range of clinical plans compared with plans produced by deep learn-

ing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Part 1 - Dose distribution of 5 testing patients in sagittal view . . . . . . 93

5.8 Part 2 - Dose distribution of 5 testing patients in sagittal view . . . . . . 94

5.9 Part 3 - Dose distribution of 3 testing patients in sagittal view . . . . . . 95

5.10 Part 1 - Dose distribution of 5 testing patients in axial view . . . . . . . 96

5.11 Part 2 - Dose distribution of 5 testing patients in axial view . . . . . . . 97

5.12 Part 3 - Dose distribution of 3 testing patients in axial view . . . . . . . 98

6.1 Examples of landmark-based apertures . . . . . . . . . . . . . . . . . . . 118

6.2 The workflow for the FIF automation process for WBRT . . . . . . . . . 119

6.3 The box plots of dose metrics for before and after FIF on WBRT plans . 122

6.4 The distribution of DVH for OARs before and after FIF program for

WBRT plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Examples of dose distributions for automatic WBRT plans . . . . . . . . 126

6.6 DVH values of plans created by DDU-Net models using small patches

based on MDACC DVH objectives . . . . . . . . . . . . . . . . . . . . . 131

6.7 DVH value differences between the predicted dose and the dose from clin-

ical plan using MDACC dose objectives . . . . . . . . . . . . . . . . . . . 132

6.8 DVH values of plans created by DDU-Net models using medium patches

based on MDACC DVH objectives . . . . . . . . . . . . . . . . . . . . . 133

xv



6.9 DVH value differences between the predicted dose and the dose from clin-

ical plan using MDACC dose objectives . . . . . . . . . . . . . . . . . . . 134

6.10 DVH values of plans created by DDU-Net models using small patches

based on ASTRO consensus DVH objectives . . . . . . . . . . . . . . . . 135

6.11 DVH value differences between the predicted dose and the dose from clin-

ical plan using ASTRO dose objectives. . . . . . . . . . . . . . . . . . . . 136

6.12 DVH values of plans created by DDU-Net models using medium patches

based on ASTRO consensus DVH objectives . . . . . . . . . . . . . . . . 137

6.13 DVH value differences between the predicted dose and the dose from clin-

ical plan using ASTRO dose objectives . . . . . . . . . . . . . . . . . . . 138

6.14 DVH values of plans created by cGANmodels using different loss functions

based on MDACC DVH objectives . . . . . . . . . . . . . . . . . . . . . 139

6.15 DVH value differences between the predicted dose and the dose from clin-

ical plan using MDACC dose objectives . . . . . . . . . . . . . . . . . . . 140

6.16 DVH values of plans created by cGANmodels using different loss functions

based on ASTRO consensus DVH objectives . . . . . . . . . . . . . . . . 141

6.17 DVH value differences between the predicted dose and the dose from clin-

ical plan using ASTRO dose objectives . . . . . . . . . . . . . . . . . . . 142

6.18 Panel 1 - DVH values of plans created by cGAN models using various

input channels based on MDACC DVH objectives . . . . . . . . . . . . . 143

6.19 Panel 2 - DVH values of plans created by cGAN models using various

input channels based on MDACC DVH objectives . . . . . . . . . . . . . 144

6.20 Panel 1 - The DVH value differences between the predicted dose and the

dose from clinical plan using MDACC dose objectives . . . . . . . . . . . 145

6.21 Panel 2 - The DVH value differences between the predicted dose and the

dose from clinical plan using MDACC dose objectives . . . . . . . . . . . 146

xvi



6.22 Panel 1 - DVH values of plans created by cGAN models using various

channels based on ASTRO consensus DVH objectives . . . . . . . . . . . 147

6.23 Panel 2 - DVH values of plans created by cGAN models using various

channels based on ASTRO consensus DVH objectives . . . . . . . . . . . 148

6.24 Panel 1 - The DVH value differences between the predicted dose and the

dose from clinical plan using ASTRO dose objectives . . . . . . . . . . . 149

6.25 Panel 2 - The DVH value differences between the predicted dose and the

dose from clinical plan using ASTRO dose objectives . . . . . . . . . . . 150

xvii



List of Tables

3.1 The number of patients, training, validation and testing split for each field. 22

3.2 The 5-point scale of evaluating the quality of predicted field apertures,

ROIs, and plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The average metrics results for field aperture prediction. . . . . . . . . . 32

3.4 The results of physician reviews and scoring for each aperture field. . . . 35

3.5 The median, mean, and standard deviation of various parameters assessed

for each setting tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 The number of plans per score based on physician review and the percent-

age clinical acceptability for each configuration with different wedges and

hotspot percentages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 The result of physician review for end-to-end testing including the number

of plans per score based on physician review and the percentage clinical

acceptability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Auto-segmentation results. Mean and standard deviation of Dice sim-

ilarity coefficient, mean surface distance, Hausdorff distance, and 95%

Hausdorff distance for each structure (CTV, N = 35; OARs, N = 6). . . 56

4.2 Physician scoring of auto-segmentation results for each ROI (CTV, N =

35; OARs, N = 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Physician scoring for each auto-plan for validating the RapidPlan model

(N = 34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xviii



4.4 Physician scoring of each end-to-end plan and the predicted CTVs associ-

ated with the plans (N = 16). . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Various configurations experimented for each architecture. The inputs

were CT with different ROI masks. Masks contains values of 1 or 0 ex-

cept for PTV*2500 where the masks had values 2500 and 0. PTV10 mm

and PTV5mm were the masks of PTV with 10 mm or 5 mm expansions.

External was the mask for the external structure. The top performing

models for each architecture were bolded. . . . . . . . . . . . . . . . . . 75

5.2 The mean, median and standard deviation (STD) of mean squared error

between dose from clinical plans and predicted dose from each model. . . 85

5.3 The mean, median and standard deviation (STD) of mean absolute error

as a percentage of prescription dose between dose from clinical plans and

predicted dose from each model. . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Summary of major limitations, future work and the relevance to each study.106

6.2 Quantitative results of dose metrics for the original plans and the auto-

matic FIF plans related to the eyes, lenses, and brain structure. . . . . . 123

6.3 Results of the physician review of 17 automatically produced WBRT plans

using a five-point scale before and after renormalization . . . . . . . . . . 125

xix



Acronyms

Symbols

3DCRT three-dimensional conformal radiation therapy. v–viii, 8, 10, 12–15, 17, 19, 20,

22, 25, 44, 45, 101, 102, 108, 109, 111, 112

A

AAPM American Association of Physicists in Medicine. 74

AP anterior-posterior. 19, 30, 43

API Application Programming Interfaces. 25

B

BEV beam’s eye view. 24, 27, 28, 116, 119

BstLT left boost lateral. 21

BstRT right boost lateral. 21

C

cGAN conditional generative adversarial network. vii, viii, 70, 73, 74, 77, 81, 89, 92–95,

98–100, 104

CNN convolutional neural network. 13, 14, 19, 22, 49, 67, 98, 103

xx



CRC colorectal cancer. 1–3

CT computed tomography. 8, 9, 14, 20, 118, 129

CTV clinical target volume. vi–viii, 46, 47, 49, 50, 52–55, 57, 58, 60–62, 65–67, 70, 73,

77, 81, 89, 92, 103, 104, 108–110

D

DDU-Net dense dilated U-Net. vii, viii, 70, 72–74, 77, 81, 89, 92–95, 98–100, 104

DICOM digital imaging and communications in medicine. 25, 26, 102

DL deep learning. 17, 32, 42, 128

DRR digitally reconstructed radiograph. 17, 21–23, 42

DSC dice similarity coefficient. 24, 42, 47, 53, 57, 67

DVH dose volume histogram. vi–viii, 49, 54, 62, 67, 70–72, 77, 81, 83, 84, 89, 92, 95–100,

104, 114

F

FIF field-in-field. vi, 14, 15, 17, 18, 20, 24–26, 29, 30, 32, 38, 39, 41–45, 102, 109, 114,

115, 117–124, 126–129

G

GAN generative adversarial network. 14, 72, 74, 77

GI gastrointestinal. vi, vii, 6, 14, 20, 24, 47, 52–55, 103

GTV gross tumor volume. vi, 17, 19–23, 32, 42, 43, 46, 52, 53, 55, 60, 65, 66, 73, 89,

103

xxi



GTVn involved lymph nodes. 19–23, 32, 42, 53, 55, 60, 65

H

HD Hausdorff distance. 24, 33, 42, 47, 53, 57

HD95 95th percentile Hausdorff distance. 24, 33, 53, 57

HDI human development index. 1–3

I

IAEA International Atomic Energy Agency. 4

IMRT intensity modulated radiation therapy. 8, 98

K

KBP knowledge-based planning. 10, 11, 15, 47, 49, 53

L

LMIC low and middle income countries. 2–5, 11, 12, 72

LT left primary lateral. 21, 30

M

MLC multi-leaf collimator. 24–27, 29–31, 35, 42, 108, 109, 120

MSD mean surface distances. 24, 33, 42, 53, 57

MU monitor unit. 26, 27, 121

O

xxii



OAR organs at risk. vi, vii, 8–10, 27, 28, 47–55, 60, 62, 66, 70, 73, 77, 89, 99, 103, 110,

112, 116

P

PA posterior-anterior. 17, 21–23, 30, 33, 35

pROI pseudo-ROI. 30, 32, 38, 39, 41

PTV planning target volume. vii, viii, 24, 30, 39, 54, 61, 62, 70, 73, 77, 81, 89, 92, 94,

95, 99, 110

R

RHD region of high dose. 30

ROI regions of interest. 26, 71, 74

RT right primary lateral. 21, 30

RTDOSE radiotherapy dose. 26

RTPLAN radiotherapy plan. 26

RTSTRUCT radiotherapy structure set. 26

Rx prescription dose. 24, 27–29, 32, 43, 120, 123, 126

S

SD standard deviation. 57

T

TPS treatment planning system. 25–27, 29, 31, 32, 40, 45

V

xxiii



VMAT volumetric modulated arc therapy. v–viii, 8, 10, 12–15, 46–49, 53, 66, 68–70,

72, 73, 94, 96, 100, 101, 104, 108–110, 112

W

WBRT whole-brain radiotherapy. 15, 102, 114–118, 121, 127–129

xxiv



Chapter 1

Introduction

1.1 Background and Motivation

This section will establish the background and the motivation for the project. I

will explain how prevalent rectal cancer is and the health disparity experienced by a

significant portion of the world’s population. The goal and the concept of the project

will also be introduced.

1.1.1 Increasing demand globally with discussions about

health disparity

Colorectal cancer (CRC) are the second leading cause of cancer death and ranked

third in terms of incidences.2 There are more than 730,000 incidences and 339,000 deaths

of rectal cancers each year globally.2

CRC is considered a marker of the socioeconomic development of a country.3 CRC

has the strongest association with the human development index (HDI) of a country out
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of major cancer types.3 The incidence rates quadrupled in countries with high or very

high HDI compared to countries with low or medium HDI. However, the variations in

mortality rate were less than three-fold.2 This is because the fatality in countries with low

or medium HDI is higher. As countries undergo transitions in socioeconomic development,

the incidence rates steadily increase.2 For countries where the incidence rates have been

historically low but increasing, this can be attributed to westernized dietary changes with

higher intakes of animal products and decreased intakes of fibers, increasing sedentary

lifestyles, and higher rates of obesity.4–6 Additionally adoption of widespread colonoscopy

screening for the removal of precancerous polyps in transitioned countries allowed more

incidences of rectal cancers to be detected causing the incidences rate to be higher and

mortality rates to decrease compared with transitioning countries.7,8 Additionally the

screening enabled the individual transitioned country to have the overall incidence rates

decline over time. For example, the overall incidence rates of CRC in the United States

have declined over the past several decades.9 However the expenses of implementing and

maintaining a population-wide colonoscopy screening program are immense rendering it

unfeasible and unjustifiable for most low and middle income countriess (LMICs) to realize

such decreasing trends.2,10,11 Therefore, the disparity in the burden of CRC globally is

currently wide and projected to widen in the coming years.12

1.1.2 LMIC tend to have late-staged diseases due to health

disparity

More nuanced health disparity exists within countries based on access to screening

and care. In high-income countries, including the United States, Canada, Denmark, and

6 other countries, even though there is a decline in overall incidence rates, there is a

significant increase in incidence rates in early-onset of CRC, largely driven by tumors

located in distal colon and rectum, with patients diagnosed earlier than 50 years of
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age.2,9,12–14 The higher increases in early-onset CRC are observed in regional and distant

diseases compared to localized diseases, indicating many of the patients with early-onset

rectal cancer are diagnosed with later staged cancers.9,13 National societies in the United

States have revised guidelines to recommend starting colonoscopy screening at age of

45 years old instead of the previously recommended 50 years of age as a response to

the trends and allowing the younger population to obtain access to screening.9,15–17 In

LMICs, patients often present with more advanced staged rectal cancers.18,19 In South

Africa, approximately 25% to 35% of patients present with metastatic rectal cancers

with more patients diagnosed with a late-staged tumor in the public sector compared

with the private sector.20–22 The late diagnosis is associated with the age of diagnosis

being closer to the age at death, particularly in the socioeconomically disadvantaged

black population in South Africa.23 These findings are consistent with results from a

study concluding a positive association between socioeconomic status with rectal cancer

treatment outcomes in Los Angeles County.24 Even though Oman and Saudi Arabia

have high HDI, public awareness about CRC is low and both countries have yet to

implement screening programs.25 A study from a single center in Oman reported more

than 70% of patients present with rectal cancers with stage III or above.26 This finding

was consistent with reports from Egypt showing 78.6% of patients present with stages

II and III diseases27, and Saudi Arabia showing 68% of patients present with involved

lymph nodes and distant metastases28,29.

1.1.3 A systematic lack of access to radiotherapy

More advanced disease presentation requires multi-disciplinary and more lines of

treatments including surgery, chemotherapy, and radiotherapy. The standard of care for

locally advanced rectal cancers includes neoadjuvant radiotherapy.30 As the incidences

continuously increase in the future, the demand for radiotherapy treatment of rectal
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cancers is also on the rise. Lack of access to any one of the therapy options in the multi-

disciplinary approach of care would indicate less than optimal treatment outcomes.24

However, there is a systematic lack of access to radiotherapy in LMICs both in

terms of equipment and human resources. Approximately 98% of radiation therapy cen-

ters worldwide are in high-income or upper-middle-income countries.31 As of March 2020,

only 28 countries of 54 countries in Africa have access to external beam radiotherapy.32

However half of the megavoltage units including both linear accelerators and Cobalt-

60 units for delivering external beam radiotherapy were located in two countries Egypt

and South Africa. The increases in the burden of cancer in the past years have largely

outpaced the increases in machine availability in Africa. Only 2.7% of patients with can-

cers were additionally covered by the increases in the megavoltage units between 2012

and 2020.32 In addition, the access to specialized human resources, such as radiation

oncologists, medical physicists, dosimetrists, machine engineers, and therapists, for im-

plementing and maintaining safe radiotherapy programs is equally important and lacking

in LMICs. Using the most optimistic assumptions to estimate the number of radiation

oncologists needed to provide sufficient access to radiotherapy care in 2030 would result in

a constant deficit of 8900 in 2030 regardless of infrastructure investments.31 A reduction

in the length of training may alleviate the deficit but could potentially cause concerns

with the quality and safety of treatments. In terms of staffing for medical physicists,

International Atomic Energy Agency (IAEA) has provided ways to calculate medical

physicists’ staffing needs globally based on the number of patients (one medical physicist

per 400 patients), or the number of radiotherapy equipment (1.7 medical physicists per

linear accelerator), or using more sophisticated activity-based calculations.33 However,

regardless of the method used for calculation, the staffing levels in LMICs are currently

insufficient and will remain this way in the foreseeable future. A study in 2014 showed

that the world needed additional 9915 medical physicists by the time of 2020.34 Another

study estimated that more than 58,950 medical physicists would be required by 2035
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globally.35 These numbers have not been realized by the time of writing which is the

year 2023. Studies from Zambia in 2020 showed that the growth of medical physicists

was below the recommended level and the deficits would continue for at least the next

10 years.36 Many centers in LMICs, such as Nepal, or Nigeria, share the same experience

and the need to more than double the existing medical physicists workforce to adequately

manage their existing workload and service their patient populations.36–38 There were

numerous challenges in increasing the number of qualified medical physicists. The lack of

recognition, gloomy job prospects, demanding workload, and more attractive competing

offers caused the retention rate of MP to be low and high turnovers.36

1.1.4 Summary and our proposal

To summarize, the demand for radiotherapy treatments for cancers is increasing

worldwide, while access to care remains to be a major challenge for most of the world’s

population, especially those who live in LMICs. Unfortunately, both the infrastructure

and the staffing levels in LMICs can not keep pace with this growing demand, exacerbat-

ing the issues. Although significant efforts have been made globally to address the issue

with staffing levels using collaborative distance training programs31,39, these endeavors

require time to be effective, and they are unlikely to promptly alleviate staff shortages.

In this thesis project, we propose a practical solution to this problem of staffing

shortages by leveraging computer automation and deep learning to improve the efficiency

and quality of radiotherapy care for rectal cancers. By automating labor-intensive and

time-consuming tasks, such as contouring and treatment planning, medical workers like

radiation oncologists and medical physicists can focus on more complex cases and imple-

ment advanced technologies. They can also devote more time to education and building

the capacity for the next generation of healthcare workers, eventually for the benefit of

future patients.
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1.2 How can radiotherapy planning processes be automated

This section provides a detailed overview of the treatment planning process for

rectal cancers, highlighting why this process is a suitable candidate for automation and

how automation can improve the accuracy and efficiency of this process. This section

will also discuss tools and techniques used for automation, and the gap in knowledge that

this project fills.

1.2.1 What is rectal cancer and how is it treated

Figure 1.1: The pattern of the lymphatic drainage according to the tumor location. Image reproduced with
permission.40

Rectum is the distal 15 cm of the GI tract measured from the anal verge to the

rectosigmoid junction. Rectum can be divided into three sections – upper, middle, and
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lower, each 5 cm in length. The location of the tumor is important because it affects the

lymphatic nodes drainage and thus the treatment management. As shown in Figure 1.1 If

the tumor is located on the upper third of the rectum, the lymphatic drainage includes the

superior rectal artery, presacral, and sigmoidal lymph nodes. If the tumor is located in the

lower third of the rectum, the lymphatic drains to the middle rectal arteries and internal

iliac nodes. If the tumor extends to below the dentate line which is located within the

anal canal, the inguinal nodes and the femoral lymph nodes are at risk. Once the tumor

extends to below the dentate line, the tumor is considered anal cancer. Anal cancers

are treated differently from rectal cancers; thus, we are not including tumors below the

dentate line in this study. Additionally, external iliac nodes are involved if the tumor is

staged for T4 or gross adenopathy.41–43 The treatment management of the T4 tumors

is highly individualized and the inclusions of the external iliac and inguinal nodes are

conditionally recommended.30 Therefore, in this project, we focused the efforts on locally

advanced rectal cancers with no external iliac or inguinal lymph nodes involvements.

Preoperative radiation therapy is the standard of care for treating all locally ad-

vanced rectal cancers, especially rectal cancers staged II-III.30 Radiation therapy is a

cancer therapy for using high doses of ionizing radiation to kill cancer cells. Because

radiation can kill all cells, not just cancer cells, it is critical to precisely and accurately

direct radiation to the tumor while minimizing damage to the surrounding healthy tis-

sues or organs. To achieve this focused delivery of radiation within millimeter accuracy,

the size and the locations of tumors must be identified with respect to the frame of the

reference from the radiation machine such as linear accelerators. Radiation treatments

usually are completed across days to weeks, where patients receive a fraction of the treat-

ment per visit. By localizing and replicating the same tumor location with respect to

the radiation machine, we can ensure precise and accurate delivery of radiation across

different days of visits. Moreover, radiation machines offer flexible machine parameters

in terms of angles of radiation incidence, the shapes of radiation field, the energy, and
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the machine outputs. These machine parameters can be arranged to better focus radia-

tion on tumor volumes while minimizing radiation damage to normal tissues. Due to the

unique shapes and geometry of patients, these machine parameters have to be individu-

ally identified for each patient. The entire process of identifying the size and the location

of tumors, to the machine parameters is called treatment planning. Specifically, the size

and location of tumors and the surrounding healthy tissues are identified in computed

tomography (CT) scans via contouring of these relevant structures. The arrangement of

machine parameters is called the planning process.

There are two radiation treatment techniques often used for rectal cancers, 3DCRT

and VMAT which is a form of intensity modulated radiation therapy (IMRT). The

3DCRT technique typically uses a three-field, or sometimes a four-field, geometry to

irradiate the tumor volume. The shape of each field is determined based on the location

and the size of the tumor volume, as well as the patient’s bony landmarks. Then beam

weights are optimized to achieve desirable dose distributions, and additional approaches

such as adding wedges or field-in-field may be used to homogenize the dose distribution

within the target volume and eliminate excessive hot spots appearing in the posterior

section of the body.

Compared with the 3DCRT technique, the VMAT technique is more conformal

and has the potential to reduce radiation-associated side effects to surrounding normal

tissues. VMAT uses an inverse planning strategy in which the optimization algorithm

determines the shapes and relative weights of radiation beams based on a series of dose

objectives, rather than using the pre-determined beam shape and weights as with the

3DCRT technique. During a VMAT treatment, the shape of the beam continuously

changes while the beam is always on with varying intensity, resulting in a plan with a

conformal dose to the tumor volume while minimizing the dose to the OARs.
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1.2.2 Challenges with treatment planning

Treatment planning is complex, labor-intensive, highly time-consuming, and re-

quires specialized personnel. Each CT scan consists of more than a hundred of CT 2D

images that must be contoured to identify relevant structures including both the tumor

volumes and the surrounding OARs. Studies have reported that this process can take up

to 2.7 hours of expert physician time for head and neck contouring,44,45 38 minutes for

pelvic volumes46, and more than 20 minutes for lung volumes47. This process requires

a deep understanding of human anatomy, and most importantly the location and the

extent of diseases. Radiation oncologists typically perform this task.

The planning process is equally challenging, requiring masterful arrangements of

beam parameters to balance maximizing tumor control and minimizing radiation to nor-

mal tissues.48 These two competing objectives are highly dependent on patient anatomy,

and the benefits and risks and burdens must be carefully assessed for each patient. The

treatment planning process is typically performed by dosimetrists and medical physicists

who are trained to understand the effects of machine parameters on the quality of plans.

Due to the complex nature of the treatment planning processes, manual treat-

ment planning inherently introduces variations. For the contouring process, studies have

reported both inter- and intra-observer variabilities across a variety of cancer types such

as head and neck44, anal49, cervix50, breast51, and rectal52 cancers. The variabilities

in contouring between different observers were substantial, with the structure overlaps

as low as 10%.51 These variations result in significant dosimetric differences in the final

plans.53 For the planning process, while complex mathematical algorithms exist to opti-

mize for and calculate dose distributions, it is still critical to undergo trials and errors

by adjusting the objectives and weightings to achieve desirable dose distributions. This

process can be time-consuming and highly dependent on planner expertise and years of

experience.54 Suboptimal planning can lead to increased risks of normal tissue toxicities
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and cause complications after radiotherapy treatments.55 This problem is more acute for

clinics that lack highly trained and experienced planners. Adopting automation, in these

cases, is not just a matter of improving efficiency but also a means to enhance consistency

and safety of radiotherapy treatments.

1.2.3 Automating the treatment planning process

Fortunately, the treatment planning process is highly algorithmic and computer

algorithms can be used to automate many if not all aspects of the treatment planning pro-

cess, including contouring, beam arrangements, dose calculation, and plan optimization.

Many efforts have been devoted to automating the contouring and treatment planning

processes for different cancer types.48,56

For contouring, the introduction of deep learning to medical image segmentation

tasks accelerated applications of auto-segmentation algorithms to radiotherapy treatment

planning, particularly in auto-contouring of OARs and target volumes for different cancer

types, including head and neck, cervix, breast, whole brain, and rectal cancers.56 Auto-

contouring of structures addresses the challenges of reducing inter- and intra-observer

variabilities in the contouring process. Auto-contouring tools have become commercially

available through many vendors including RaySearch, Limbus AI, and RADformation.

For planning, efforts have been devoted to automating both the 3DCRT and

VMAT treatment planning techniques.57 Many studies have implemented the automation

of 3DCRT using heuristic rules mimicking manual planning processes for sites including

the whole brain58, cervix59, and breast60. Knowledge-based planning (KBP) is typically

used for automating VMAT technique. KBP uses retrospective treatment plans and

statistical algorithms to optimize treatment plans for each patient based on geometric

information of patient anatomy such as location and size of tumors and OARs.48 KBP

10



solutions have been offered commercially, for example, RapidPlan from Eclipse is one

of the products. Research has shown that plans produced by KBP are non-inferior to

manual plans.61

There are many benefits of automating the treatment planning processes. Firstly,

with automation, the time it takes to obtain a treatment plan is greatly reduced.57,62 Sec-

ondly, the process can be more streamlined, such that fewer variations can be introduced

to the treatment planning process, allowing plans to be more consistent and potentially

high quality.61 Third, automation accelerates consistency and standardization across dif-

ferent institutions, allowing clinics with low resources able to produce high-quality treat-

ment plans. Lastly, more time and resources can be freed up for specialized personnel to

spend their time in education and more complex cases.

1.3 Gap in knowledge and Summary

It is important to note that even with great advances in deep learning and

knowledge-based treatment planning techniques, physician evaluations and refinements

may still be necessary to ensure that the plans are optimized for individual patients, and

benefits and risks of the dose distribution are justified, and meet patients’ unique needs.

Current literature is limited in investigating a robust end-to-end solution for rectal can-

cers that includes physician evaluations at each step of the process and the end for the

entire solution to ensure clinical acceptability. The project seeks to answer the ques-

tion that whether automated segmentation and planning are accurate enough to be used

independently as a part of an end-to-end solution without any user interventions. Addi-

tionally, currently none of the commercially available vendors venturing into LMICs to

support clinics in low-resourced settings. As a part of the Radiation Planning Assistant63,

the tools developed in this project will be offered to partner hospitals in LMICs free of
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charge.

The project automates the treatment planning process for both techniques of

radiation treatment for rectal cancer, including 3DCRT and VMAT, with extensive and

rigorous evaluations of the final plans, to investigate the clinical acceptability of the final

plans, and the feasibility of automating the entire treatment planning process for rectal

cancers without user interventions. The automated tools introduced in this project do

not simply accelerate the treatment planning processes by making a “one-size-fits-all”

solution for all patients. Instead, they expedite the process of creating patient-specific

plans. In addition to developing automated treatment planning processes, the project

further investigated the potential of using deep learning to predict dose distributions. By

leveraging deep learning-predicted dose to guide the creation of final treatment plans, it

may be possible to determine dose more efficiently than relying on machine learning or

statistical-based KBP methods, which are often limited by commercial products.

In summary, our research aims to provide a practical and innovative solution to

the challenge of delivering accessible, safe, and high-quality radiotherapy care in LMICs.

The automation of the treatment planning process holds great promise for improving the

efficiency and effectiveness of rectal cancer treatment and potentially many other cancer

types. By using artificial intelligence, specifically deep learning, alongside a patient-

centered approach to planning, we hope to make a significant positive impact on the

lives of many underserved cancer patients worldwide.
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