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Auto-segmentation in Pancreatic and Liver Radiation Therapy

Cenji Yu, B.S.

Advisory Professor: Laurence Court, Ph.D.

Background

Gastrointestinal cancers exhibit a high mortality rate compared to other cancer types.
Among these, pancreatic cancer ranks as the fourth leading cause of cancer-related deaths
worldwide. The five-year survival rate remains alarmingly low at a mere 9%. Hepatocellular
carcinoma (HCC), another aggressive form of cancer, is rapidly becoming the primary cause
of cancer-related deaths in the United States. The treatment of both liver cancer and
pancreatic cancer heavily relies on a multidisciplinary approach. Innovative treatment
strategies involving dose-escalated regimens, such as stereotactic body radiation therapy
(SBRT), are emerging as an important pillar of the management of liver and pancreatic
cancer. The success of these treatment modalities hinges upon the precise and standardized
segmentation of organs-at-risk and target volumes to ensure the optimal quality of treatment

plans.

Methods

We first developed an automated organs-at-risk segmentation tool for upper
abdominal radiation therapy treatment. A dataset of 70 patients was collected and utilized as

the training set and benchmark for our auto-segmentation tool. We employed the adaptive
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nnU-Net architecture to develop a model ensemble capable of contouring various organs,
including the duodenum, small bowel (ileum and jejunum), large bowel, liver, spleen,
kidneys, and spinal cord. The performance of the segmentation tool was evaluated on 75
patients using both contrast-enhanced and non-contrast-enhanced CT images, employing a
five-point Likert scale assessment by five experts from three different institutions. To capture
contours requiring major edits, we developed a distance-based quality assurance (QA)
system. This system identified CT scans that were likely to yield suboptimal contours
requiring time-consuming major edits. Evaluation of the QA system was conducted on
clinical CT scans, with the clinical review score serving as the ground truth. For target
volume segmentation, we employed transformer-based architectures, leveraging self-
supervised learning and uncertainty estimation techniques to enhance performance and allow
for stylistic customization. A total of 3094 unlabeled CT scans from liver cancer patients,
along with 5050 publicly available CT scans, were collected for self-supervised pretraining
in liver tumor segmentation. The pretrained encoders were then utilized to optimize
downstream liver tumor segmentation models, evaluating the impact of self-supervised
learning on tumor segmentation performance. For pancreatic tumor segmentation, we
developed an ensemble-based approach incorporating multiple segmentation styles.
Probability thresholding was employed to generate the final segmentation, enabling

customization according to clinicians' preferences.

Results

Our organs-at-risk segmentation tool achieved a clinical acceptance rate of over 90%
for all organs except the duodenum, demonstrating its accuracy in delineation. Quantitative

results were comparable to state-of-the-art methods, using a small but high-quality dataset.



The QA system achieved an AUC of 0.89 for capturing contours requiring major edits on
randomly sampled clinical CT scans. In liver tumor segmentation, our study revealed that
self-supervised learning demonstrated 4-5% performance improvement when diverse
unlabeled data were used for pretraining. This finding highlights the importance of
incorporating a wide range of data during the pretraining stage. For pancreatic tumor
segmentation, our ensemble-based segmentation method proved highly effective. It provided
pixel-by-pixel uncertainty estimates and allowed customization through probability
thresholding. Our customized contours surpassed the performance of the state-of-the-art
segmentation model, even when utilizing identical training data, pretraining techniques, and

hyperparameters.

Conclusion

Our auto-segmentation system for organs-at-risk achieved high clinical acceptance
rates in upper-abdominal radiation treatment. The accompanying QA tool effectively
captured contours requiring major edits. Leveraging a wide range of unlabeled data in self-
supervised learning improved the performance of our transformer-based segmentation
system. Additionally, our uncertainty-guided segmentation network allowed customization
and identification of low-confidence regions. Our suite of auto-segmentation tools for
pancreatic and liver cancer radiation treatment has the potential to streamline clinical

workflows while prioritizing patient safety.
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Chapter 1:  Introduction

Gastrointestinal (GI) cancers represent more than one-third (35%) of all cancer-related
deaths!. Among them, liver cancer and pancreatic cancer are 4" and 7" leading cause of cancer
mortality worldwide23. Treatment of both liver cancer and pancreatic cancer relies heavily on
multidisciplinary approach#>. Radiation therapy plays a crucial role in the multidisciplinary care
of both diseases. In recent years, immobilization techniques and image guidance have significantly
increased the quality of radiation treatment for these two types of cancers*>. This has allowed
clinicians to increase dose and introduce hypo-fractionated or stereotactic body radiation therapy
(SBRT) for pancreatic and liver cancer patients. There has been increasing adoption of partial liver
hypo-fractionated radiation therapy in the management of liver cancer. Excellent local control rates
were observed in both hepatocellular carcinoma (HCC) and cholangiocarcinoma when treated with
SBRT®. For pancreatic cancer, dose-escalation was shown to be effective and tolerable at doses of
25-35 Gy in 3-5 fractions?. These dose-escalated procedures, however, are challenging due to the
proximity of surrounding critical structures. The pancreas, for example, is surrounded by
radiosensitive serial organs such as duodenum, large bowels, small bowels and stomach. These
organs are often protected by max dose constraints8, leaving little margin for error in treatment
planning. Accurate and consistent segmentations of organs-at-risk (OARS) and targets are thus
essential to the safety of these hypo-fractionated treatments. In addition, for both pancreas and
liver radiation treatment, at least nine OARs are required for treatment planning. These tasks are
currently done manually by clinicians, occupying significant amount of time from their schedule®.
Furthermore, there is a growing trend in academic centers towards adopting adaptive workflows
for radiation therapy, aiming to achieve dose escalation to the target while minimizing damage to

normal tissue®®. Various treatment platforms now offer high-quality daily guidance images that



facilitate real-time adaptation. This is particularly crucial in gastrointestinal (GI) radiation
treatment, where the movement of radiosensitive bowel structures due to peristalsis poses a
challenge. However, implementing an adaptive workflow requires significant expert involvement
while the patient is positioned on the treatment couch. Therefore, it is crucial to establish a fast
and safe adaptive planning workflow that effectively utilizes the available imaging hardware. One
of the most time-consuming steps in the adaptive workflow is contouring!, highlighting the
importance of accurate and robust segmentation of organs-at-risk and treatment targets. Precise

and fast segmentation serves as the fundamental basis for an effective adaptive workflow.

Here, we propose a series of deep learning-based automation tools to streamline clinical
radiation treatment processes. Deep learning has achieved significant progress in image
segmentation in recent years!2. Auto-segmentation tools driven by deep learning have seen fast
adoption by clinics*¢, The U-Net'” approach is widely used for auto-segmentation due to its
efficient feature extraction and integration at multiple scales, yielding accurate results. However,
it requires substantial data for optimal performance. Transformer-based architectures, originally
designed for natural language processing, have shown impressive performance in computer vision
tasks'®. However, these state-of-the-art deep learning approaches require extra consideration when
deployed in the clinic. An auto-segmentation tool needs to first exhibit outstanding performance
upon clinician evaluation. The end users need to be extensively involved in the development of
the tool to ensure clinical adoption. Furthermore, patient safety is paramount in clinical workflow.
The proposed auto-segmentation tool requires extensive safety features to prevent subpar contours
from entering the treatment planning workflow. The quality assurance of the auto-segmentation

tool is thus essential to ensure safe clinical deployment.



This project’s long-term goal is to provide accurate and robust segmentation for pancreatic
and liver cancer radiation treatment without human intervention. Our objective is to create an auto-
segmentation system for pancreatic and liver cancer using deep learning. The rationale behind our
objective is two-fold: 1) Physicians from our clinic on average spend three hours delineating
structures and target volumes 2) The resulting contours are susceptible to inconsistencies®. We aim
to develop auto-segmentation tool that can streamline clinical workflow and standardize
contouring practice. With the advancement of image guidance techniques, the workload required
from clinicians is trending upwards. This automation project will hopefully alleviate clinicians
from time and effort spent on repetitive tasks and help them better focus on patient care and
research efforts. In addition, consistent treatment planning from an automated tool can be valuable
in standardizing academic clinical trials as well as day-to-day patient care. We hope that our
automation tools become the central piece of the efforts to standardize patient care in both

community and academic settings.

Chapter 2:  Specific Aims and Central Hypothesis

2.1 Introduction
We hypothesize that we can create a clinically robust auto-segmentation system for
pancreatic and liver cancer radiation therapy with deep learning-based techniques that achieves

90% physician acceptance rate.

2.2 Specific Aims

Specific Aim 1:

Develop an auto-segmentation system for organs-at-risk contouring for pancreatic

and liver cancer treatment. We will train convolutional neural networks (CNNs) to automatically
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contour 7 OARs (duodenum, stomach, small bowel, large bowel, liver, spleen, kidney) on primary
breath-hold CT images. We will introduce deep learning-based QA methods to detect contour
errors to ensure patient safety. We hypothesize that CNN-based automated contouring can achieve

90% physician acceptance rate on organs-at-risk segmentation.
Specific Aim 2:

Develop an auto-segmentation system for target volume delineation for pancreatic
and liver cancer treatment to enable automatic treatment planning. We will automatically
segment gross tumor volume (GTV) on breath-hold contrast-enhanced CT images. We
hypothesize that CNN-based automated target volume delineation can achieve 90% physician

acceptance rate.

Chapter 3:  Automation of Organs-at-risk Segmentation

This chapter is based upon the following article:

Yu C, Anakwenze CP, Zhao Y, Martin RM, Ludmir EB, S.Niedzielski J, Qureshi A, Das P,
Holliday EB, Raldow AC, Nguyen CM, Mumme RP, Netherton TJ, Rhee DJ, Gay SS, Yang
J, Court LE, Cardenas CE. Multi-organ segmentation of abdominal structures from non-
contrast and contrast enhanced CT images. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-

21206-3

Permission policy of Springer Nature content: Ownership of copyright in in original research
articles remains with the Author, and provided that, when reproducing the contribution or
extracts from it or from the Supplementary Information, the Author acknowledges first and

reference publication in the Journal, the Author retains the following non-exclusive rights: To



reproduce the contribution in whole or in part in any printed volume (book or thesis) of which

they are the author(s).

3.1 Introduction

Pancreatic cancer is one of the most aggressive tumor types, as it accounts for 3% of all
cancers in the United States, as well as 7% of all cancer-related deaths?. Radiation therapy,
along with chemotherapy, play a vital role in local tumor control for locally advanced pancreatic
cancer20, Radiation treatment planning for pancreatic cancer is often complex with tight dose
constraints21. This is a consequence of the pancreas being surrounded by highly radiosensitive
and serial organs at risk (OARs) (duodenum, stomach, and small bowel) that require maximum
dose constraints. However, OAR delineation in pancreatic and liver cancer is time consuming?22.
At our cancer center, pancreas radiation treatment requires delineation of 8 OARs: stomach,
duodenum, large bowel, small bowel, liver, spleen, left kidney and right kidney. The average
time spent on OAR delineation has been shown to be over 20 minutes®. For upper abdominal
OAR delineation, reproducibility is a major challenge. Experts often have conflicting OAR
delineations for the same patient, especially at the gastroesophageal junctionz3. Delineation of
bowel structures (duodenum, large bowel and small bowel) is also susceptible to interobserver
variability®24, Margins reserved for motion management25 and poor soft tissue contrast at the
small/large bowel border2¢ makes establishing the ground-truth for bowel structures difficult. It
is often found in clinical practice that normal tissues extending (~1.0 cm) beyond the superior
and inferior extent of the planning target volume (PTV) are not contoured on slices located
outside of these margins. This is generally true for normal tissues that have maximum dose
objectives where the whole volume is not needed for dose optimization?7, but this practice also

introduces interobserver variability and clouds the establishment of the ground-truth.



Deep learning-based image segmentation has achieved expert level performance in both
target and normal structure delineation when trained with large datasets2829:30, |t has also been
shown to reduce contouring inconsistency in clinical trials and to provide more accurate dose
metrics3. Among deep learning-driven approaches, U-Net derived models dominate in organ
segmentation tasks in the abdomen32-33 where public datasets are abundant (liver, spleen and
kidney). For serial OARs (duodenum, stomach, and small bowel) in pancreatic cancer treatment,
a few U-Net based models were developed on private datasets and achieved better results than
alternative approaches such as fully convolutional network-based models34. Wang et al. explored
the multi-planar fusion approach with 2D U-Nets predicting on both axial, sagittal and coronal
views?26, Liu et al. utilized a 3D self-attention U-Net to segment the OARS in pancreatic
radiotherapy3> and achieved state-of-the art performance. These specialized U-Net models from
large academic institutions required extensive research expertise to develop. In addition, these
models required at least 80 sets of complete patient contours for training and validation alone.
Due to aforementioned inconsistencies in the clinical contours, extensive curation by experts is
required before contours qualify for deep learning training. This expensive, time-consuming
process3¢ hinders the development and adoption of deep learning models outside of large

academic institutions.

Recently, the self-configuring nnU-Net framework37 has shown promising results in
abdominal organ segmentation. This framework systematically configured U-Nets on the basis of

distribution of spacings, median shape, and intensity distribution of the training CT images. The



framework is also exceedingly data efficient due to robust data augmentation methods. nnU-Net
has shown promising results in abdominal organ segmentation tasks and won two of the five
tasks in the CHAOS challenge33. This framework was thus chosen as our candidate for

automating upper-abdominal OAR segmentation.

In summary, upper abdominal OAR contouring is time-consuming and susceptible to
variabilities. Deep learning-based auto-segmentation provides a fast and consistent alternative to
manual contouring. However, specialized U-Nets and large datasets are deemed essential to a
robust deep learning auto-segmentation tool according to existing literature. These requirements
confine the development of auto-segmentation tool to large academic centers with research
expertise. In this study, we proposed using the streamlined nnU-Net framework to customize
three-dimensional (3D) U-Nets that delineate eight OARs (stomach, duodenum, large bowel,
small bowel, liver, spleen, left kidney and right kidney) simultaneously on contrast-enhanced and
non-contrast-enhanced CT images. We hypothesized that with a small, but consistent, training
set, the standard U-Net architecture could create clinically deployable models for upper-
abdominal OAR segmentation. This study demonstrated clinical utility of the automatically
generated segmentations through a robust evaluation via multi-observer rating of individual
contours on 75 abdominal CT scans as well as quantitative evaluation on 30 CT scans. Our
approach provided an easy-to-implement, data-efficient alternative for automating the clinical
workflow of pancreatic radiation treatment, including adaptive radiation therapy. Our method
utilized the least amount of data to achieve clinically acceptable qualitative results and
competitive quantitative results compared to existing literature. In addition, we examined the

organ-by-organ segmentation performance gain as we increased the number of patients in the



training dataset to provide insights on the amount of data required for training robust upper
abdominal segmentation models for clinics interested in developing their own tools. We will
release the entire training and testing dataset on TCIA to serve as additional resources for future

abdominal organs auto-segmentation development.

3.2 Method

Imaging Data

Seventy patients were selected from patients with pancreatic cancer who were treated at
The University of Texas MD Anderson Cancer Center from 2017 to 2020 under an IRB
(institutional review board) approved protocol. CT images were acquired with the breath-hold
technique on Philips Brilliance Big Bore (Philips Healthcare, Best, The Netherlands) CT
simulators. CT scans had pixel sizes ranged from 0.98mm to 1.04 mm and slice thickness from
1mm to 2.5mm. Patients were scanned from 5 cm above the diaphragm to the iliac crest with
intravenous contrast injection. The clinical OAR contours included the duodenum, small bowel,

large bowel, stomach, liver, spleen, left kidney and right kidney.

Data Curation and Manual Segmentation

The duodenum, small bowel, and large bowel were manually delineated under physician
supervision to increase consistency in normal tissue definition for these organs. To provide
sufficient contextual information for the 3D U-Net models, bowel structures were extended
along the z-axis and contoured throughout the entire scan. Stomach contours were trimmed to
eliminate motion management margins. Liver, spleen and kidney contours were edited to ensure

anatomical accuracy. All ground truth contours were reviewed and approved by a radiation



oncologist. Forty sets of contours were randomly selected for training and validation. The

remaining thirty sets of contours were reserved as the held-out test set.

Data Preprocessing

To segment all OARs simultaneously, labels were compiled into a single segmentation
map. When organ borders overlapped, the priority of the segmentation map was duodenum,
small bowel, stomach, large bowel, liver, spleen and kidneys. Organs with the most stringent
dose constraints were prioritized and overwrote organs with less stringent dose constraints. All

images were resampled to 0.98mm x 0.98mm pixel size and 2.5mm slice thickness.

Model Training

The adaptive nnU-Net framework38 was employed to customize 3D U-Nets for our
dataset. 3D patches of image-label pairs were used for training. The patch size was 192x192x48.
The 3D U-Net network depth was dynamically optimized by nnU-Net framework to ensure
sufficient depth to fully utilize the large patch size. The training batch size was 2. The resulting

U-Net architecture generated by the nnU-Net framework is shown in Figure 1.
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on average.

cross-validation was used among the 40-patient dataset: 32 patients were used for training, and

eight patients were used for validation in each fold (80-20 split). Five 3D U-Net models were

cross validation. Training time for the U-Net ensemble was 36 hours when individual models

Figure 1. U-Net architecture customized by the nnU-Net framework based on the training

The loss function was a combination of Dice similarity coefficient (DSC) loss and cross-

entropy loss. Training and testing were done on NVIDIA Tesla V100 GPUs with 32 GB VRAM.

Training was stopped after 1000 epochs. To fully extract features from a small data set, five-fold

trained, and the final prediction was produced by an ensemble of all five trained models from the

were trained in parallel. Inference time using the U-Net ensemble for each patient was 8 minutes
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To evaluate performance gains as the size of training data expanded, additional model
ensembles were also trained on an escalating number of patients. Subsets of 10, 15, 20, 25, 30,
and 35 patients were randomly selected. The training-validation split for each set was also 80-20,
which was identical to the final model ensemble. These six additional 3D U-Net ensembles were

trained under the nnU-Net framework with identical training procedures.

Quantitative Evaluation

The final model ensembles from various sizes of the training data were evaluated on the
held-out test set of thirty patients. The performance of the model ensembles was evaluated by the
3D DSC, 95% Hausdorff distance (HD95), and mean surface distance (MSD) between the

predicted contours and the ground truth contours.

Qualitative Evaluation

An additional 75 patients simulated under the breath-hold protocol were randomly
selected from the clinical database as an independent qualitative test set. Our center captures two
non-contrast-enhanced and three to four contrast-enhanced CT images during simulation for
patients who are suitable for CT imaging with a contrast agent. For each patient, one contrast-
enhanced and one non-contrast-enhanced CT image were randomly selected as part of the
qualitative analysis, resulting in a total of 150 patient CT images. The automatically generated
contours on both contrast-enhanced and non-contrast-enhanced images were visually evaluated

and scored using a five-point Likert scale as shown in Table 1 by five radiation oncologists from
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three institutions and two countries. Each image was scored once by a radiation oncologist; and

each organ was scored individually.

Likert Scale Explanation for this study

Use-as-is (i.e. clinically acceptable, and could be

5 Strongly agree used for treatment without change)

Minor edits that are not necessary. Stylistic
4 Agree differences, but not clinically important. The
current contours/plan are acceptable.

Minor edits that are necessary. Minor edits are
those that the review judges can be made in less
time than starting from scratch or are expected to
have minimal effect on treatment outcome.

3 Neither agree or disagree

Major edits. This category indicates that the
necessary edits are required to ensure
appropriate treatment, and sufficiently significant
that the user would prefer to start from scratch.

2 Disagree

Unusable. This category indicates that the quality
1 Strongly disagree of the automatically generated contours or plan
are so bad that they are unusable.

Table 1. Likert scale used by physicians to evaluate contours generated on contrast-

enhanced and non-contrast-enhanced CT images

3.3 Results

Quantitative Evaluation

A summary of the quantitative evaluation (n = 30) is provided in Table 2. All
automatically generated contours had a mean DSC value of 0.80 or higher when compared to the

ground-truth contours. Solid organs such as liver, spleen and kidneys all achieved mean DSC

12



values ranging from 0.96 to 0.97. Radiosensitive hollow organs such as small bowel, large bowel
and stomach achieved mean DSC values ranging from 0.89 to 0.92. Duodenum achieved a mean
DSC of 0.80. For distance metrics, solid organs (liver, spleen and kidneys) had mean HD95
ranging from 2.21 to 2.51mm and mean MSD ranging from 0.61 to 1.07mm. Radiosensitive
hollow organs (small bowel, large bowel and stomach) had mean HD95 ranging from 4.77 to
7.77mm and mean MSD ranging from 1.23 to 1.99mm. Duodenum had a mean HD95 of

12.34mm and mean MSD of 1.68mm.

DSC boxplots of all organs were shown in Figure 2. Auto-segmentation performance had
more variability in hollow organs compared to solid organs. Outliers from small bowel and large
bowel auto-segmentations were often caused by misidentification of small/large bowel in inferior
regions of CT scans outside of treatment fields. Low DSC examples of duodenum were often

caused by disagreements at the stomach/duodenum and duodenum/jejunum borders.

Organs DSC HD95 (mm) MSD(mm)
Mean SD Mean SD Mean SD

Duodenum 0.80 0.08 12.34 9.09 1.68 1.04
Small Bowel 0.89 0.05 7.77 8.90 1.99 2.10
Large Bowel 0.90 0.06 7.15 8.42 1.27 0.87
Stomach 0.92 0.03 4.77 2.98 1.23 0.78
Liver 0.96 0.01 3.56 1.71 1.07 0.49
Spleen 0.97 0.01 2.21 1.27 0.56 0.23
Kidney R 0.96 0.01 2.51 1.29 0.59 0.18
Kidney_L 0.96 0.01 2.52 0.90 0.61 0.19
SpinalCord 0.76 0.15 42.52 38.62 10.57 10.49
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Table 2. Mean Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and
mean surface distance (MSD) between ground truth and prediction results from our tool

on contrast-enhanced CT images
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Figure 2. Box and whisker plots of Dice similarity coefficient (DSC) distance between
ground-truth and automatically generated contours by our tool on contrast-enhanced CT
images. The central line represents the median value. The border of the box represents the

25th and 75th percentiles. The outliers are represented by diamond markers.

In order to determine if 40 patients were sufficient for optimal model performance, the mean
DSCs for the individual organs were also examined for an escalating number of patients. The

result was plotted in Figure 3. The mean DSC increased as the size of the training dataset
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increased. The mean DSCs of all organs tended to converge as the number of patients

approached 40.
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Figure 3. Mean DSC values between automatically generated contours and ground-truth

contours increased as the number of patients in the dataset increased. The shadow

represents the corresponding standard deviation for individual DSC values.

Qualitative Evaluation
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The results from physicians’ qualitative evaluations are shown below in Tables 3. Among
the non-contrast-enhanced CT images, 85.3% of the duodenum contours, 92.0% of the small
bowel contours, 93.3% of the stomach contours and more than 95% of the other organ contours
received a score of 3 or greater, suggesting that these contours required only minor edits from
physicians. More than 50% of the duodenum, small bowel, large bowel, and stomach contours as

well as more than 85% of the spleen and kidney received a score of 4 or above.

Non-contrast-enhanced CT Images Contrast-enhanced CT Images

<3 23 24 5 <3 23 24 5
Duodenum | 14.7% 85.3% 50.7% 18.0% 10.7% 89.3% 60.0% 22.0%
Small bowel | 8.0% 92.0% 58.7% 28.0% 5.3% 94.7% 62.7% 30.0%
Large bowel | 2.7% 97.3% 62.7% 28.0% 2.7% 97.3% 69.3% 30.0%
Stomach 6.7% 93.3% 62.7% 38.0% 4.0% 96.0% 66.7% 38.0%
Liver 4.0% 96.0% 77.3% 60.0% 2.7% 97.3% 84.0% 66.0%
Spleen 1.3% 98.7% 90.7% 86.0% 1.3% 98.7% 93.3% 86.0%
Kidney left 1.3% 98.7% 90.7% 70.0% 1.3% 98.7% 94.7% 74.0%
Kidney right | 2.7% 97.3% 86.7% 66.0% 1.3% 98.7% 93.3% 72.0%

Table 3. Qualitative scores for contours generated on contrast-enhanced and non-contrast-

enhanced CT images of 75 randomly selected patients

There was a small improvement in contour scores for auto-segmentations on contrast-enhanced
CTs. 89.3% of the duodenum contours, 94.7% of the small bowel contours, and more than 95%
of the other organ contours were scored as a 3 or greater. More than 60% of the duodenum, small
bowel, large bowel, and stomach contours and more than 90% of the spleen and kidney scored a
4 or greater. Examples of automatically generated contours scored as 3,4 and 5 for duodenum,

stomach and small bowel are shown in Figure 4.
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Scored as 4 Scored as 5

Scored as 3

Duodenum Stomach Small Bowel

Figure 4. Representative contours of organs scored on a Likert scale as 5, 4, and 3 (top to
bottom) by physicians. The ground truth contours are shown as purple in all images. The
automatically generated contours are shown as cyan in all images. The arrow indicated a

segment of under-contoured duodenum that required minor edits.

3.4  Discussion

We have developed a deep-learning-based tool for accurate and robust upper-abdominal
OAR auto-segmentation. Our tool could simultaneously segment the duodenum, large bowel,
small bowel, stomach, liver, spleen, and kidneys. Upon evaluation, the tool performed well in

both quantitative and qualitative assessments. These tests were conducted on randomly selected
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held-out test patients (30 and 75 patients for quantitative and qualitative assessments,
respectively). Our qualitative assessment was conducted by five radiation oncologists from three
different institutions. The tool achieved acceptable performance for clinical deployment, even
though it was trained and validated with only 40 patients. Based on the results from this study,
we have clinically implemented this auto-contouring system in the clinic at MD Anderson
Cancer Center. In the future, we will make this auto-contouring tool available as part of the
Radiation Planning Assistant39 (rpa.mdanderson.org) to make this tool available to radiation

oncology clinics in low- and middle-income countries.

Deep learning-based auto-segmentation approaches typically require a large amount of
high-quality segmented datasets to achieve optimal performance?2. In clinical scenario, the
amount of high-quality labeled images is limited49. Creating high-quality contours suitable for
deep learning training requires significant time resources and expertise3¢-41, A number of self-
supervised deep learning approach were proposed by generating artificial data*24344, but these
approaches required technical expertise only available at large academic centers. Our findings
offered an affordable, easy to implement approach to create auto-segmentation tools when public
dataset is not available. The self-adaptive nnU-Net framework provided a standardized platform
for U-Net architectures, allowing us to customize 3D U-Net ensembles that maximized the
performance of the U-Net architecture. The qualitative evaluation provides evidence for the
prowess of our tool. Automatically generated contours received a Likert score of 3 or above
required only minor edits. Physicians deemed these contours beneficial to their segmentation
workflow. Among 75 independent test patients, over 90% of the automatically generated

contours received a Likert score of 3 or greater on most organs. For organs with poor soft tissue
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boundaries such as the duodenum, 89.7% of CT contours only required minor edits for clinical
use. Our results have shown that with a dataset of 40 patients, a standard 3D U-Net architecture

could deliver automatically generated contours suitable for clinical deployment.

Clinical context of segmentation errors differentiated acceptable contours (Likert > 4)
from contours needed necessary minor edits (Likert = 3). Small contour errors may have
significant clinical relevancy. For the duodenum contour scored as a 3 in Figure 4, the tool
under-contoured a portion of the duodenum as shown by the arrow. The error shown was critical
to patient safety because this segment of the duodenum was medially located and was close to
the treatment target. Although most of the duodenum was properly contoured, the generated
contour was scored as a 3 instead of a 4. The edit required from physicians, however, was
marginal. Physicians were less concerned about absolute anatomical accuracy in other cases. For
example, interobserver variability could be significant at the border of stomach and duodenum.
The anatomical landmarks used to distinguish the two are subtle, often lacking a clear border.
While the generated contour deviated drastically from the ground truth as shown in Figure 5, it
was scored as a 4 and deemed acceptable for treatment planning by physicians. This was because
the duodenum and stomach are often optimized to have the same maximum dose constraints

(Drmax < 28GY).
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Ground Truth Prediction

Figure 5. Representative ground-truth (left) and the automatically generated (right)
contour of a patient’s duodenum and stomach. These contours differed significantly, but
because the duodenum and stomach are often optimized using the same dose constraints
(i.e. Dmax < 28Gy), the contours were scored as a 4 and deemed acceptable for treatment

planning.

Individual stylistic preferences differentiated use-as-is contours (Likert = 5) from the
acceptable contours (Likert = 4). These stylistic preferences were the most prominent at the
intersection of the duodenum and jejunum (contoured as part of the small bowel). The superior
border of the fourth section of the duodenum had no visible border features on CT images. In
Figure 6, the automatically generated contour was scored as a 4. The ground truth duodenum
contour extended more superiorly compared to the automatically generated contour at the region
indicated by the arrow. The varying cranial ends of duodenum contours were deemed as stylistic
differences. The physicians were uncertain about the anatomical ground truth in the region. Since

duodenum and small bowel were often optimized to have the same maximum dose constraints
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(Dmax < 28Gy), physicians decided that these differences had limited impact on treatment

planning.

Ground Truth Prediction

Figure 6. Representative ground truth (left) and the automatically generated (right)
contours of a patient’s duodenum and small bowel (jejunum). The ground truth is
ambiguous at the transition from duodenum to small bowel (jejunum). The deviation from

the ground truth was deemed as a stylistic difference.

Our quantitative results are comparable to those of state-of-the-art models trained with
datasets of 80 patients or more for most organs. The DSC scores of the tool on small bowel, large
bowel, stomach, spleen, liver, and kidney contours were within 0.01 of the current 3D state-of-
the-art model (Liu et al.) as shown in Table 4. The MSDs were also comparable or smaller than
the 3D state-of-the-art model shown in Table 5. Our tool, however, was trained and validated
with a much smaller dataset of 40 patients. Our approach seemed to be more data efficient

compared to the state-of-the-art approach. As data curation process is known to be time-
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consuming and expensive, our method would allow easier development and adoption in the

clinic.

Studies have suggested that 3D models demand too many parameters and required a large
training dataset*> to converge. Previous state-of-the-art approaches, such as organ-attention 2D
deep networks with reverse connections by Wang et al., have been developed to segment 2D
slices along axial, sagittal, and coronal views to reduce the number of trainable parameters2e.
Our tool outperformed the 2D-based multi-planar fusion approach in DSC for duodenum, small
bowel and large bowel as shown in Table 4. We also achieved lower MSD for small bowel, large
bowel, stomach and liver as shown in Table 5. When challenged with structures that span along
the z-axis, 3D models were better equipped to segment these structures compared to 2D-based
multi-planar fusion model due to its capability to capture anatomical context along the z-axis.
Since only 40 patients were used for training and validation, our tool’s 3D approach seemed to

be more data efficient than the 2D multi-planar fusion approach as well.

Ours (n=40) Liu et al. (n=80) Wang et al. (n=177)

Mean SD Mean SD Mean SD

Duodenum 0.80 0.08 0.86 0.06 0.75 9.10
Small Bowel 0.89 0.05 0.89 0.06 0.80 10.20
Large Bowel 0.90 0.06 0.91 0.03 0.83 7.40
Stomach 0.92 0.03 0.93 0.03 0.95 2.60
Liver 0.96 0.01 0.96 0.01 0.98 0.70
Spleen 0.97 0.01 NA NA 0.97 1.50
Kidney Right 0.96 0.01 0.95 0.02 0.98 2.10
Kidney Left 0.96 0.01 0.95 0.02 0.97 1.90

Table 4. Dice similarity coefficient comparison between our tool and other state-of-the-art

upper-abdominal auto-segmentation models
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Ours (n=40) Liu et al. (n=80) Wang et al. (n=177)
Mean (mm) SD (mm) Mean (mm) SD (mm) Mean (mm) SD (mm)

Duodenum 1.68 1.04 1.39 0.54 1.36 1.31
Small Bowel 1.99 2.10 1.99 1.08 3.01 3.35
Large Bowel 1.27 0.87 1.67 0.55 3.59 4.17
Stomach 1.23 0.78 1.77 1.19 1.68 1.55
Liver 1.07 0.49 1.45 0.80 1.23 1.52
Spleen 0.56 0.23 NA NA 0.42 0.25
Kidney Right 0.59 0.18 1.05 0.86 0.45 0.89
Kidney Left 0.61 0.19 1.06 0.79 0.30 0.30

Table 5. Mean surface distance comparisons between our tool and other state-of-the-art

upper-abdominal auto-segmentation models

The model performance progression with increasing patient number (Figure 3) gave us a
better perspective on why our quantitative results were comparable to state-of-the-art models.
For challenging hollow structures such as the stomach and duodenum, the 3D U-Net models
initially gained performance as the patient number increased. The DSC curve started converging
as we approached 25 patients. Similar trends were observed in the large bowel and small bowel
DSCs. While the mean DSCs converged, the standard deviations were decreasing for the
stomach, large bowel and small bowel. Prediction results were less variable with a larger
training/validation dataset. For solid organs such as the spleen, liver, and kidney, DSC scores
were above 90 even with only 10 patients. This data provides insights for clinics or individuals
that are interested in developing their individual 3D U-Net models for upper-abdominal organ
segmentation. When faced with the task of creating auto-segmentation tools with a limited

annotation budget, our findings might be a guideline for budget allocation.
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Our tool was developed and tested on the ground truth label delineated according to our
institution’s implementation of the RTOG guideline. While we introduced five radiation
oncologists from three institutions to conduct qualitative evaluation, the test patients were from
the same institution. With varying imaging protocols, image acquisition and reconstruction
parameters, the model performance might suffer if the test patients were from various institutions
from our experience*¢. In this case, small training samples might not be sufficient to guarantee
great performance across varying patient cohorts. Further evaluation is needed to assess the

model ensemble’s performance on different patient populations.

For future work, automatic quality assurance of the generated contour, i.e. capturing
clinically unusable contours, would also be a crucial addition to our automation tool. In addition,
our center utilizes CT-on-rails image guided system for pancreatic radiation treatment. While our
tool exhibited robust qualitative results on non-contrast-enhanced CT images, future work would
include dose accumulation studies using automatically generated contours. This can pave the

way for adaptive radiation therapy in pancreatic radiation treatment.

3.5  Conclusion

We proposed a simple but effective approach for developing a deep learning-based
segmentation model for upper-abdominal OAR segmentation. Using only 40 patients, we trained
a nnU-Net model to generate automatic contours that was able to produce clinically acceptable
results on both contrast-enhanced and non-contrast-enhanced CT images. The results of the

presented analysis led to the clinical deployment of this tool.
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Chapter 4:  Deep Feature-based Contour Quality Assurance for Auto-segmentation

Models

4.1 Introduction

Pancreatic cancer is one of the most aggressive tumor types. It is the 7" leading cause of
cancer mortality worldwide®. Management of this type of tumor requires multidisciplinary
collaboration*’. Hypo-fractionated treatment for pancreatic cancer is becoming more popular due
to increasing adoption of image-guidance prior to treatment?. With escalated dose per fraction,
more organs-at-risk (OARS) are required to be delineated on the simulation CT image to
complement the more stringent dose constraints. At our institution, contours of duodenum, large
bowel, small bowel (ileum and jejunum), liver, spleen, kidneys and spinal cord are required for
hypo-fractionated pancreatic cancer treatment.

Deep learning-based auto-segmentation has dominated a variety of medical image
segmentation challenges*. Recently, deep learning-based architectures were applied in
delineating organs in the abdominal region®*°. These architectures achieved state-of-the-art
performance on public datasets. Clinics are quickly adopting deep learning models for
contouring in radiation treatment'#-1®, Auto-segmentation via deep learning, however, is still a
data-driven approach. Deep learning-based techniques, therefore, are limited by models’ training
data. Out-of-distribution examples often lead to poor performance®. For auto-segmentation tools
deployed in a clinical setting, the capability to handle out-of-distribution patient images is
crucial. Clinicians often encounter patients with variable anatomy caused by poor NPO (nothing
by mouth), ascites, or prior surgical procedures. The presence of these variations frequently
results in a decline in the performance of auto-segmentation. High performance deep learning

models, on the other hand, are often created with well-curated datasets?®*°. These datasets
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usually do not include abnormal anatomy as they serve as poor ground truths for model training
and validation. Therefore, capturing out-of-distribution samples and requesting human

intervention are crucial safeguards for auto-segmentation tools deployed in clinics.

In this study, we proposed a contour quality assurance approach by identifying out-of-
distribution samples. We hypothesized that CT images that are drastically different from the
training set would lead to degradation in the clinical utility of generated contours. By comparing
distances between deep features of the training and testing datasets, we aimed to capture out-of-
distribution patient images that were more likely to fail in the auto-segmentation workflow. We
characterized the area under the curve (AUC) of the distance metric in detecting failed contour
sets. Based on the AUC, we proposed an optimized threshold to flag patients that were

unsuitable for the trained segmentation model.
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4.2 Method

Thirty pancreatic cancer patients who underwent radiation treatment at MD Anderson
Cancer Center were randomly extracted from the clinical database. A clinically validated nnU-
Net model that has been deployed on more than 800 patients since 2021 was used to generate
organs-at-risk contours on duodenum, small bowel, large bowel, stomach, liver, spleen and
kidneys®®. A radiation oncologist scored the predicted contours using a five-point Likert scale as
identified abnormalities on the test cases. Contour sets were deemed as failed if any individual

organ contour received a score below 3.

Since U-Net-based segmentation networks are composed of an encoder and a decoder.
Our distance-based quality assurance method utilized the trained encoder of the nnU-Net model.
Inspired by Gonzalez et al.>!, we first extracted deep features from the training dataset using the
trained nnU-Net encoder. Features were sampled from the deepest layer of the trained encoder.
Due to GPU memory constraint, training image patches of 192 x 192 x 48 were fed through
the model. The patch extraction process and patch sizes were identical to the preprocessing
pipeline for our trained nnU-Net model to eliminate confounding factors. In order to summarize
features extracted from all patches of training images, we reduced their dimensionalities via
strided average pooling operations and vectorized the resulting matrices. We then estimated the
mean p and covariance matrix Y of all extracted training patches. A summary of this workflow

was shown in Figure 7.
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Figure 7. Quality assurance of deep learning auto-segmentation tool using deep features

from the trained encoder.

During the assessment of a previously unseen test patient, the image completed one
forward pass through the trained encoder with its features extracted on a patch-by-patch basis.
These features were also averaged pooled and vectorized. We measured the Mahalanobis
distance, D, between the resulting test image patch feature x to the Gaussian distribution of

training features:

D= Jx— Wy (x—w 1)

Here, mean p and covariance matrix ), were previously estimated from the training set. Each test

image patch would be assigned with a distance. To determine if the test image was out of

distribution against the training set, we summed all distances across the entire image volume to

provide an overall assessment of this patient. We repeated this process for all clinically scored

test images to assess the effectiveness of our quality assurance approach.
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4.3 Results

Among all test patients, eleven of the thirty test patients received a score of 1 or 2 on at

least one organ in qualitative evaluations as shown in Table 6. These contour sets required major

edits and were deemed as failed contours that required flagging. The Mahalanobis distance
between test patients and training patients were shown in Figure 8. Patients likely to require
major edits were successfully differentiated using this metric.

INumber of Patients

Major Edit (1-2) 11
Minor Edit (3) 8
Stylistic Edit or Use-as-is (4-5) 11

Table 6. Qualitative evaluation scores for contours automatically generated by nnU-Net
model ensemble on 30 test patients. Patients required major edits on at least one organ

were identified as true positive cases for our QA approach
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Figure 8. Mahalanobis Distances Between Test Patient Images and Training Patient Image

Distribution. Flagged patients using the optimal threshold were shown in peach color.

The receiver operating characteristic (ROC) curve using the Mahalanobis distance to
capture patients that require major edits was plotted in Figure 9. The area under curve value was
0.89. Using the optimal threshold indicated by ROC curve that maximized true positive rate and
minimized false negative rate, the specificity and sensitivity of flagging failed contours were

0.91 and 0.79 respectively.
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Figure 9. Receiver operating characteristic curve of our proposed contour QA method.
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Our deep feature-based contour QA approach was able to successfully detect 10 out of 11
patient contour sets that required major edits on at least one organ, using the optimal threshold
value. A total of 14 patients were identified and flagged as shown in figure 8. Among them,
seven patients required major edits on multiple organs. Anatomical variations that tend to
degrade contour quality were identified by our QA approach. One patient was flagged due to the
poor NPO status that led to contour failures as shown in Figure 10b. Another patient was flagged
due to ascites as shown in Figure 12a. By flagging these images, the approach could provide with

an indication of which patients may not be suitable for the deep learning segmentation model.

Identifying misuse of the segmentation model on unapproved medical images was also a
crucial component of our QA tool. At our center, we utilize both breath-hold and 4D-CT
techniques for motion management in GI cancer. Most of our hypo-fractionated treatments are
completed with the breath-hold technique. During the initial deployment of the abdominal OAR
segmentation model, we considered contour generation on average CT as off-label use, as the
model had not been validated for such images. Out of the 30 patients sampled for our test cohort,
6 had average CT images as planning images. Our approach identified all patients with average
CT, demonstrating its effectiveness in detecting off-label use of a deep learning model. In terms
of contour quality, we observed acceptable segmentation performance from 2 patients, as shown

in Figure 11.

In total, four patients were identified as false positives, with two of these patients having
average CT scans with acceptable clinical contours. The other two false positive patients were

displayed in Figure 12. One patient had a single failed liver contour, which was missed by our
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QA method and resulted in a false negative. Nonetheless, the remaining patients were correctly

flagged, demonstrating the effectiveness in our contour QA approach.
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Figure 10. Patients with multiple organ contour failures were correctly flagged with our
QA approach. All organs required major edits except for kidneys and spinal cord on
patient a. Duodenum, small bowel and stomach required major edits in patient b due to

poor NPO (nothing-by-mouth) status.

Figure 11. Acceptable contours falsely flagged by our contour QA approach on patients
planned on with average CT. These patients used 4D CT as their motion management and

are common source of off-label use of our segmentation model.
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Figure 12. Falsely flagged patients by our contour QA approach. Patient a had ascites as
well as metal artifacts. Patient b was planned on a non-contrast-enhanced CT due to
contrast allergy The auto-segmentation model exhibited acceptable performance on these

two challenging cases with varying imaging characteristics.
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4.4  Discussion

As deep learning-based auto-segmentation enters clinics, the quality assurance of its
performance becomes crucial in the safe deployment of deep learning models®?. These auto-
segmentation models, however, was often seen as black-box and lack interpretability*?.
Therefore, tracing and predicting failures of these models remains challenging. By extracting
features from the deepest layers of our model, we probed the root causes of failure in deep
learning models. In earlier work, we had noticed that DSC scores are not good indicators of
clinical acceptability®®. Here we used physician review to identify failures that were clinically
relevant. With inputs from experts, we successfully captured out-of-distribution images that

caused degradation in patient contour quality using deep features.

We achieved excellent discrimination by using Mahalanobis distance to differentiate out-
of-distribution images that might lead to subpar segmentation performance. Existing contour QA
approaches for deep learning auto-segmentation often require multiple models. A few studies
have addressed the quality assurance of deep learning contours in the clinic. Isaksson et al. and
Chen et al. aimed to predict Dice similarity coefficient between the ground truth and the
generated contour given an image contour pair°*>®. Rhee et al. proposed using independent
segmentation models to capture failed contours®®>". These methods typically required new
training dataset or separate models to capture failed contours and demanded expert input and are
expensive to develop. Moreover, deep learning auto-segmentation models are subject to updates
during their clinical lifecycle, often resulting from performance enhancement using additional
data® or evolving clinical contouring guidelines®. A contour QA approach that requires new

model development would need to undergo a new cycle of training and validation for a new

35



model. In contrast, our method required no additional data collection or model training. Since the
developers of the segmentation model are familiar with the training dataset, our approach offers
an intuitive solution to identify patients that are less suitable for the deployed model. By only
requiring deep features from the encoders, our method can be customized to perform QA for
different deep learning models. This feature makes it suitable for the constantly changing
landscape of clinical practice. Furthermore, our approach can be easily incorporated alongside
clinically validated nnU-Net models during the contour generation process, as it only takes 30

seconds per patient.

Our distance-based contour QA approach can be sensitive to the relationship between the
distribution of the training and testing image set. If training samples were not representative of
images encountered during clinical operation, the test samples might consistently fall out-of-
distribution. As noted in Figure 11 and 12, models might encounter out-of-distribution images
and still deliver clinically acceptable contours. Therefore, when models were deployed on patient
cohort that were drastically different from the training set resulting from different imaging
protocol, the Mahalanobis distance between training and testing images would be less indicative
of contour quality. Our approach could generate excessive false positives in this scenario.
Expanding the training dataset to include high-quality contours that are automatically generated
from the segmentation model on the test cohort could potentially address this issue. In addition,
our study was also constrained by the limited number of expert-scored contours. Organ-by-organ
scores on complete contour sets evaluated by experts were time-consuming and expensive to
obtain. Future work would include more patients in both training and testing cohort to show the

prowess of our QA approach in a high-throughput environment.
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45 Conclusion

In this study, we developed a contour QA approach that can be deployed alongside a
validated deep learning auto-segmentation tool. By extracting features from the deepest layer of
the neural network, we sought to identify out-of-distribution test samples from the model’s
perspective that are susceptible to contour failures. This approach can successfully identify
patients unsuitable for the segmentation model by comparing deep features from the training set
and the test sample. Using Mahalanobis distance as an indicator, our contour QA approach
achieved an AUC of 0.89. Using this threshold, the specificity and sensitivity of flagging failed
contours were 0.91 and 0.79 respectively. Our contour QA tool offered a fast and accurate

solution for quality assurance of deep learning-based segmentation models.
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Chapter 5:  Transformer-based Liver Tumor Segmentation Driven by Self-supervised

Learning

51 Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
accounting for approximately 75% of cases®. It is a major global health problem, with over
800,000 new cases diagnosed each year and a high mortality rate®. The treatment of HCC is
often multidisciplinary including surgery, ablation therapy and radiation therapy. With the
advancement of image guidance techniques, stereotactic body radiation therapy (SBRT) has

promoted radiation therapy as a more important pillar for liver cancer management®2. These

types of dose escalated radiation therapy require accurate delineation of targets to ensure patient

safety. Gross tumor volume (GTV) segmentation is particularly important in the dose escalated

treatment planning process. It serves as the foundation for treatment planning since other target

volumes such as planning target volume (PTV) and planning organs-at-risk volume (PRV) were

dependent on GTV delineation in liver SBRT treatment planning. Automating GTV delineation

is crucial for adaptive treatment in dose-escalated radiation therapy®*%*. It enables timely
adjustments to the treatment plan based on changes in patient anatomy, ensuring accurate and
effective radiation delivery. Furthermore, the utilization of auto-segmentation for GTV

delineation in liver SBRT facilitates post-treatment analysis®®. By collecting GTV volumes

automatically, clinicians can more efficiently analyze treatment outcomes, such as local control

rates and overall survival. This automated approach enables the aggregation of large datasets,

allowing for comprehensive and statistically significant analyses of treatment response across a

broader patient population.
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Deep learning-based auto-segmentation has demonstrated significant potential across
various segmentation tasks. Among the different architectures used, the U-Net'’ approach has
emerged as the most popular and widely utilized method for auto-segmentation. It consists of an
encoder path that captures the context and spatial information from the input image, followed by
a decoder path that reconstructs the segmented output. This architecture's unique design allows
for the efficient extraction and integration of features at multiple scales, enabling accurate and
detailed segmentation results. The U-Net architecture, however, requires significant amounts of
data to achieve state-of-the-art performance. Recently, the transformer-based architecture has
achieved state-of the-art results in a variety of computer vision tasks*®. It is based on the
transformer architecture which was originally proposed for natural language processing tasks®.
Unlike traditional convolutional neural networks (CNNs), which are designed to process image
data in a hierarchical and localized manner, transformer-based models can capture long-range
dependencies and global context information, making them well-suited for tasks that require a
more holistic understanding of the input data. In transformer-based segmentation, the model
takes an image as input and generates a pixel-wise segmentation mask as output. The key idea is
to use self-attention mechanisms, which enable the model to attend to different parts of the input
image and incorporate relevant information into the segmentation process. This allows the model
to better handle complex and variable-sized objects, as well as to deal with occlusions and
overlapping regions. Its ability to incorporate global context and long-range dependencies has
made it capable of adopting self-supervised learning techniques from natural language

processing®’.

Self-supervised learning addresses the limitations of traditional supervised learning

methods that require extensive annotated data, which can be expensive to obtain. In contrast to
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supervised learning, self-supervised learning leverages the intrinsic information present in
unlabeled data to learn meaningful representations without the need for explicit annotations®. In
the context of medical image segmentation, self-supervised learning methods aim to train models
by predicting image properties or generating informative surrogate tasks that indirectly facilitate
segmentation. By utilizing these surrogate tasks, the model can acquire robust and discriminative
features, which can subsequently be applied to accurately segment medical images. One
commonly employed approach in self-supervised learning is the use of pretext tasks®. These
tasks involve generating auxiliary labels or transformations from the unlabeled data, such as
image rotations, translations, or predicting missing parts of an image. By training the model to
solve these pretext tasks, it learns to capture relevant contextual information and underlying

structures within the data, which can be advantageous for subsequent segmentation tasks.

In this study, our aim was to investigate the influence of pretraining on segmentation
performance in transformer-based auto-segmentation for liver tumors. Specifically, we employed
the Swin-UNETR architecture’®, which combines an encoder-decoder design similar to U-Net
with the Swin-transformer as the encoder and a CNN-based decoder. The utilization of the
hierarchical Swin-transformer allowed for both local accuracy and self-supervised training. To
evaluate the impact of self-supervised pretraining on transformer-based auto-segmentation, we
curated a new set of unlabeled CT images tailored for liver tumor segmentation. Our objective
was to examine whether utilizing an in-domain pretraining dataset can improve the performance

of the downstream segmentation model.

5.2 Method
A comprehensive dataset comprising a total of 3093 CT scans was gathered of liver
cancer patients treated at MD Anderson Cancer Center between the years 2011 and 2022. The

40



dataset encompassed portal-venous phase contrast-enhanced simulation scans and non-contrast-
enhanced image guidance scans. Our unique motion management protocol involving CT-on-rails
enabled the acquisition of a substantial number of unlabeled CT scans tailored for the pretraining
of the liver tumor segmentation model. In addition, a publicly available dataset consisting of
5050 CT scans was collected to serve as a benchmark for the pretraining process. This
supplementary dataset encompassed CT scans from various anatomical regions, including the
head, neck, chest, abdomen, and pelvis. To ensure standardization and comparability, 95% of
both datasets were allocated for training purposes, while the remaining 5% was set aside for
validation. Prior to training, all CT scans underwent preprocessing steps, which involved
intensity value clipping within the range of -1000 to 1000, followed by renormalization.
Furthermore, the scans were resampled to achieve an isotropic voxel size of 1.0x1.0x1.0 mm.
Subsequently, patches measuring 96x96x96 were extracted from the non-air regions of the CT

scans, serving as the training input.

During the pre-training process, we optimized the Swin-transformer encoder by
employing various proxy tasks for self-supervised representation learning. The main objective
was to encode ROI-aware information of the human body. Inspired by previous studies on
context reconstruction and contrastive encoding, we incorporated three proxy tasks. Firstly, we
applied the cutout augmentation technique to randomly mask out ROIs in the sub-volume,
compelling the model to regenerate the original patch. Secondly, we predicted the angle
categories representing the rotation of the input sub-volume. Additionally, we leveraged self-
supervised contrastive coding to enhance representation learning. This involved maximizing the
mutual information between positive pairs (augmented samples from the same sub-volume)

while minimizing it between negative pairs (views from different sub-volumes). The overall
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training process involved minimizing the total loss function, which encompassed masked volume
inpainting, 3D image rotation, and contrastive coding as the key objectives in pre-training the
Swin-transformer encoder’®. The Swin-transformer encoder was trained on an A100 GPU. The
training process utilized a learning rate of 1e-4, which was decayed by a factor of 1le-5. A batch
size of 4 was used in pre-training. The model was trained for a total of 450,000 iterations of the

training process. The training duration for the pretraining phase was approximately 303 hours.

In the final training phase, we utilized the scans and segmentations from the liver task of
the Medical Segmentation Decathlon Challenge*®. The dataset consisted of 130 contrast-
enhanced CT images acquired from a cohort of patients diagnosed with primary cancers,
specifically colorectal, breast, and lung cancers, as well as metastatic liver disease originating
from these primary cancers. To assess the performance of our model, we randomly selected 30
scans as the independent test set. From the remaining 100 scans, we performed random sampling
to create multiple training and validation sets. Specifically, we randomly selected subsets of 20,
50, and 100 scans, which were then divided into an 80:20 ratio for training and validation,
respectively. The same training/validation split was maintained during the training of the final
liver tumor segmentation models to ensure a fair comparison. For preprocessing, each CT scan
was resampled to an isotropic voxel size of 1.0 x 1.0 x 1.0 mm. From these resampled scans, we
extracted patches with dimensions of 96 x 96 x 96, which served as the input for our model. To
enhance the variability and robustness of the training data, we employed extensive data
augmentation techniques, including random flipping, rotation, intensity scaling, and shifting. The
training process was conducted on an A100 GPU for a total of 5000 epochs. Three different
training configurations were explored: training from scratch, training with an encoder pretrained

on the public CT dataset comprising 5050 CT scans, and training with an encoder pretrained the
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private MDA dataset specific to liver cancer patients, consisting of 3094 CT scans. To ensure a
fair comparison, we maintained identical hyperparameters across all configurations using the
reported configuration in Tang.et al’®. which achieved competitive results at the Medical
Segmentation Decathlon®®, The learning rate was set to 1e-5, and the batch size was set to 2. The
Dice Similarity Coefficient (DSC) scores between the ground truth and the generated contours
for both liver and tumor segmentation were measured to evaluate the performance of different

training strategies.

53  Results

The quantitative evaluation of the Swin-UNETR segmentation model, trained with
different pretraining configurations, is presented in Table 7. When trained with 20 patients, the
encoder pretrained with the public unlabeled dataset achieved the best performance in liver
segmentation. However, training from scratch yielded the best mean DSC scores for liver tumor
segmentation. Upon closer analysis in Figure 13, we found that the encoder pretrained with liver
cancer patients achieved the highest median DSC. Additionally, this configuration exhibited the
narrowest range between the 25th and 75th percentiles of all DSC scores, coinciding with the
smallest standard deviation among the three configurations. In the case of training with 50
patients, training the model from scratch demonstrated superior mean DSC performance in liver
segmentation, while the encoder pretrained with the public dataset yielded the best mean DSC
results for liver tumor segmentation. The encoder pretrained with liver cancer patients produced
the highest median DSC. The utilization of pretraining led to improved segmentation outcomes
for liver tumors when trained with 50 patients. However, this performance enhancement was not
sustained when the training and validation set was expanded to include 100 patients. In this

scenario, training the model from scratch exhibited the best performance in both liver and liver
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tumor segmentation tasks, as indicated by the mean DSC. Furthermore, the public pretrained

weight exhibited a narrower range between the 25th and 75th percentiles, while training from

scratch yielded the highest median DSC.

Patient No.|Structure Liver Pretraining Public Pretraining  Train from Scratch
DSC Std DSC Std DSC Std

20 Tumor 0.354 0.270 0.370 0.286 0.381 0.297
Liver 0.921 0.074 0.913 0.066 0.920 0.083

50 Tumor 0.468 0.313 0.474 0.295 0.407 0.310
Liver 0.934 0.081 0.940 0.046 0.940 0.037

100 Tumor 0.509 0.300 0.549 0.290 0.576 0.281
Liver 0.950 0.035 0.948 0.039 0.951 0.035

Table 7. DSC scores between ground truth and contours generated by Swin-UNETR liver

segmentation models using different pretraining strategies
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Figure 13. Boxplots of DSC scores between ground truth and contours generated by Swin-

UNETR liver segmentation models using different pretraining strategies.
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The qualitative assessment revealed impressive performance from all Swin-UNETR
models in challenging cases. As depicted in Figure 14, we observed excellent tumor
segmentation quality, particularly when the contrast timing was optimal, even in scenarios with a
high number of tumors present. Although a few small lesions were missed, the overall
performance remained respectable even when a small training set of patients was utilized. For
tumors with ideal contrast, the impact of pretraining strategies was deemed minimal as all

models managed to segment the majority number of lesions.

Ground Truth Liver Pretrain Public Pretrain Training from Scratch

20 Patients

50 Patients

100 Patients

Figure 14. Generated tumor contours of Swin-UNETR models using different pretraining
strategies and training dataset size for patients with multiple lesions. All models achieved
respectable performance partially due to excellent contrast between tumor and liver

parenchyma.
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Figure 15 demonstrated a steady improvement in model performance as the number of
available training patients increased. Initially, all models displayed hesitancy in segmenting
tumors along the posterior inferior end of the liver when trained with a small dataset. Models
optimized with pretraining exhibited an even more cautious approach in segmenting tumors,
although their performance improved as the number of patients increased. The models'
tendencies to under-segment uncertain regions resulted in reduced variations, indicated by a

smaller range between the 25th and 75th percentile DSC scores. However, these models also

yielded lower overall DSC scores when compared to models trained from scratch. The encoder

pretrained with liver cancer patients did not exhibit superior performance compared to its

counterpart pretrained with a public dataset. In fact, it performed worse than the model trained

from scratch. These findings indicated that domain-specific pretraining data did not enhance, but

rather deteriorated model performance for the task of liver tumor segmentation. This result

highlighted the importance of proper model initialization prior to training.
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Ground Truth Liver Pretrain Public Pretrain Training from Scratch

20 Patients

50 Patients

100 Patients

Figure 15. Generated tumor contours of Swin-UNETR models on portal venous phase CT
images using different pretraining strategies and training dataset size. The segmentation
guality increased as the dataset size increased. Encoder pretraining exhibited more

conservative behavior for the lesion along the posterior inferior end of the liver.

5.4  Discussion

Deep learning-based auto-segmentation has emerged as the predominant approach for
medical image segmentation, offering substantial advancements in accuracy and efficiency. The
fundamental advantage of CNN-based architectures, such as U-Net!’, V-Net, or DeepLab’?,

lies in their exceptional capacity to capture spatial dependencies and hierarchical representations.

48



Through multiple layers of convolution and pooling operations, these networks extract intricate
features at varying scales, enabling them to capture fine-grained details and contextual

information necessary for precise segmentation.

However, the success of CNN-based auto-segmentation heavily relies on the availability
of large-scale annotated medical image datasets'?. The scarcity of annotated medical image
datasets poses a limitation on the generalizability of the models. Moreover, the variability in
imaging protocols across different institutions can degrade model performance’, particularly
when models are optimized on publicly available datasets. Therefore, it is imperative to develop
effective approaches that leverage unlabeled or weakly labeled data through self-supervised or

semi-supervised learning techniques, which hold promise in mitigating these challenges.

With the emergence of transformer-based auto-segmentation approaches as a viable
alternative in computer vision, self-supervised learning has gained significant attention in the
field of medical image segmentation. Unlike their CNN counterparts, transformers are not
limited by their receptive fields’, enabling transformer-based encoders to reconstruct
representations from corrupted image volumes. This capability provides transformers with an
inherent advantage in various pretext tasks for self-supervised learning. By combining
transformers with self-supervised learning, models can capture intrinsic patterns and structures in
unlabeled data, allowing them to extract meaningful representations that can greatly benefit
subsequent segmentation tasks’®. This approach not only reduces the reliance on annotated data
but also allows for the discovery of complex patterns and relationships derived from a much

larger number of patients that may not be readily apparent in limited labeled datasets.
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In this study, we aimed to investigate the impact of different pretraining datasets on the
segmentation performance of our final model. The selection of the unlabeled data used for self-
supervised pretraining plays a crucial role in shaping the segmentation model's capabilities. We
curated a liver cancer CT dataset consisting of 3094 CT scans, specifically focusing on the
anatomical structure and pathology relevant to the segmentation task, namely the liver and liver
tumors. The intention behind this tailored dataset was to enable the pretrained model to acquire
task-specific knowledge that could enhance the segmentation performance in the target domain.
In contrast, the publicly available dataset, comprising 5050 CT scans, encompassed a broader
spectrum of anatomies and pathologies. These datasets have been widely adopted for pretraining
purposes in various medical imaging tasks. By comparing the performance of the model
pretrained on our private liver cancer CT dataset with that of the model pretrained on the
publicly available dataset, we can evaluate the benefits of tailored vs. generic pretraining data.
This analysis sheds light on the extent to which task-specific knowledge acquired from a curated

dataset can outperform the broader knowledge gained from a more diverse dataset.

The utilization of encoder weights generated from our specific in-domain liver cancer
dataset did not result in superior performance in terms of mean DSC compared to pretrained
weights optimized with publicly available CT scans from diverse anatomical regions, such as the
head, neck, chest, abdomen, and pelvis. In models trained with 25 and 50 patients, the model
pretrained with liver cancer patients exhibited the highest median DSC. This meant the
distribution of DSC scores for this configuration was skewed towards higher values.
Furthermore, both pretrained models exhibited a more conservative segmentation style during

qualitative evaluation when encountering regions of uncertainty as shown in figure 15. This
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tendency towards under-segmentation had a detrimental effect on the quantitative results of

tumor segmentation, leading to inferior performance overall.

However, both pretrained models demonstrated impressive performance in tumor
segmentation when the training set consisted of 50 patients. This particular training data size
appears to be an optimal point for self-supervised pretraining to enhance the performance of the
baseline model. Existing literature has also reported diminishing performance gains from self-
supervised pretraining as the training set grows larger. Our study corroborated these findings, as
the model trained from scratch achieved the best performance when all 100 patients were
included in the training set. On the other hand, consistently, the pretrained models exhibited the
smallest range between the 25th and 75th percentile DSC scores as shown in Figure 13. This
observation further supported our qualitative observation that pretrained models exhibit less
variability in the generated contours during qualitative evaluation. Adequate pretraining allowed

the encoder to assimilate more data, resulting in more cautious models.

The utilization of liver cancer patients for pretraining did not yield noticeable benefits in
liver tumor segmentation. Despite achieving the highest median Dice Similarity Coefficient
(DSC) scores for both the 25 and 50 patient datasets, our liver cancer pretrained weights
exhibited inferior performance overall compared to the publicly pretrained weights. The liver
tumor segmentation model derived from the liver cancer pretrained weights did not exhibit
enhanced robustness, even though the pretraining dataset was abundant and closely aligned with
the downstream task. This unexpected finding could be attributed to two potential causes. Firstly,
the model initialized with liver cancer pretrained weights might have suffered from overfitting.
Given the similarity within the dataset (identical pathology, similar imaging protocol), the model
might have acquired suboptimal representations due to the homogeneity of the dataset. In the
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context of self-supervised learning in medical imaging, the objective is to construct a wholistic
representation of cross-sectional anatomy. Hence, the more diverse the pretraining dataset, the
higher the likelihood of achieving generalizability in the model encoder. However,
generalizability was essential when the downstream task was drastically different from the
pretraining population. It was surprising to observe that a homogeneous dataset failed to
contribute to the model's ability to generalize effectively in an in-domain downstream
segmentation task (liver cancer patients to liver tumor segmentation). The relationship between
representation construction through self-supervised learning and downstream segmentation

turned out to be more intricate than anticipated.

This led us to consider the second potential cause for the decline in performance. While
we were able to monitor the validation loss during pretraining, there was no direct indication of
how well it would translate to the downstream task of liver tumor segmentation. Assessing the
training and data quality of pretraining was challenging until after the completion of training for
the downstream segmentation model. Since the accomplishment of meta-tasks in self-supervised
learning only had theoretical correlations with improved performance in the downstream model,
real-time evaluation of pretraining quality prior to final testing was difficult. Even though we
selected the pretrain weights with the lowest validation loss, there was no guarantee that this
particular set of weights would yield the best results in the downstream liver tumor segmentation
task. In addition, a number of hyperparameter combinations led to instability in training and the
encoder failed to converge. Our final pretrained encoder was selected from a limited number of
candidates based on validation loss and might have not been the best optimized option. Hence,
we suspected that we were unable to fully extract the potential of our liver cancer dataset due to

suboptimal pretraining.
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Therefore, to ensure the efficacy of the pretrained model, it is essential to include
variations and complexities representative of the target segmentation task within the pretraining
dataset. This enables the model to acquire robust and discriminative features that exhibit
effective generalization capabilities when applied to new data. Moreover, the quality of training
during the pretraining stage demonstrated considerable variation. The process required extensive
expert input to stabilize the training and avoid potential performance degradation. Proper
handling of the training process is essential to ensure optimal model performance and prevent
any adverse effects. These findings underscore the significance of diverse dataset selection and
optimized training procedures in achieving superior performance in self-supervised learning-
enhanced auto-segmentation. A meticulous approach that incorporates representative variations
and expert-guided training strategies is crucial for maximizing the effectiveness and

generalizability of pretrained models in medical image segmentation tasks.

In contrast, training the segmentation model from scratch yielded satisfactory
segmentation performance and often surpassed the performance of both pretrained encoders in
terms of mean DSC. These results indicated that while self-supervised pretraining shows
potential, its effectiveness in enhancing performance can be variable. Merely conducting self-
supervised training does not guarantee improved performance. The successful utilization of
pretrained encoders relies on careful tuning not only of the pretrained encoder itself but also of
the downstream segmentation model. Proper initialization and parameter optimization are critical
for achieving optimal performance. Neglecting these aspects can lead to performance
degradation rather than improvement. Careful attention should be given to ensure appropriate
initialization and effective parameter tuning to maximize the benefits of self-supervised

pretraining in the context of medical image segmentation.
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55  Conclusion

Self-supervised pretraining with unlabeled data holds significant potential for enhancing
medical image segmentation. The utilization of large and diverse datasets, including both
publicly available and private datasets, enables models to acquire valuable representations that
contribute to improved segmentation performance. However, the success of self-supervised
pretraining relies on meticulous selection of the pretraining dataset and careful tuning of the
encoder and the segmentation model. In this study, we utilized a large private unlabeled liver
cancer CT dataset to pretrain our Swin-transformer encoder for liver tumor segmentation. We
found that our unique dataset combined with self-supervised learning technique failed to enhance
our segmentation results. We recommend a diverse and large unlabeled dataset for self-
supervised pretraining instead of a domain specific dataset. In addition, training from scratch is
also a viable option when sufficient labelled data are available. We hope that our work can
contribute to the understanding of self-supervised learning in the field of medical image

segmentation.
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Chapter 6:  Uncertainty-guided Pancreatic Tumor Auto-segmentation with Tversky

Ensemble

6.1 Introduction

Pancreatic cancer remains a significant challenge in modern oncology, projected to
become the second leading cause of death in the United States by 203076, To optimize the
management of this deadly disease, a multi-disciplinary approach is commonly employed, with
radiation therapy serving as a critical component. However, standard doses of radiation therapy
have been found to be inadequate for effective tumor control in pancreatic cancer patients’”.
Consequently, dose escalation has emerged as a prevailing strategy for treating inoperable
locally advanced pancreatic cancer after systemic chemotherapy’. To implement these treatment
modalities successfully, accurate identification of the pancreatic tumor is essential.
Unfortunately, pancreatic tumors remain notoriously difficult to differentiate from the
surrounding parenchyma, even for experienced clinicians. Currently, the clinical workflow in
radiation therapy of pancreatic cancer involves contouring the tumor on the portal-venous phase
of the contrast-enhanced CT scans. Given the significant level of inherent uncertainty, clinical

notes are often necessary to achieve the desired level of accuracy in tumor contouring.

In recent years, deep learning-based auto-segmentation has emerged as the preferred
method for biomedical image segmentation, owing to its remarkable performance in a broad
spectrum of applications. Notably, the U-Net architecture and its variants have demonstrated
exceptional efficacy in diverse image segmentation tasks. More recently, transformer-based
architectures have gained considerable attention in computer vision tasks, with vision

transformers (ViTs) exhibiting state-of-the-art performance in image classification®®, In the
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context of medical image segmentation, transformer-based architectures combined with self-
supervision training techniques have shown superior results compared to U-Net in the medical
segmentation decathlon’. Although deep learning-based approaches have shown remarkable
performance, they often suffer from a tendency towards overconfidence in probability
estimation’®. This can be particularly challenging in segmentation tasks where ground truths are
uncertain, as in the case of pancreas tumor segmentation. While segmentations are typically
derived from probability maps, these maps often do not accurately reflect the true probability

distribution.

To achieve real-world probability estimates using deep learning models, calibration is
necessary to ensure the predicted probability map is accurate. Calibration techniques such as
Monte-Carlo dropout’® and test-time augmentation’® are widely used to generate accurate
uncertainty estimates in tandem with the segmentation results, which enables users to obtain
interpretable outcomes. Another promising approach to address overconfidence in deep learning
models is the use of deep ensembles®. This study highlights that models trained with different
configurations can reach their conclusions in distinct ways. By averaging the output probability
of high-performance segmentation models within an ensemble, a more robust probability map
can be generated that reflects the consensus of expert models. Notably, calibration results are
more precise when model configurations diverge®. Incorporating a diverse set of model
configurations within an ensemble for segmentation can not only provide accurate uncertainty

estimation but also enhance the model's segmentation performance.

In this study, we employed the state-of-the-art transformer-based architecture Swin-
UNETR to perform pancreatic tumor segmentation’®. Traditional segmentation methods with
discrete output encounter challenges in cases where the ground truth is uncertain. To tackle this

56



problem, we incorporated Tversky losses®! to generate models with different contouring styles,
which were developed to accommodate stylistic differences from different experts. By
incorporating different segmentation styles, we constructed a deep ensemble with varying
segmentation tendencies to create a calibrated probability map for pancreas tumor segmentation.
This probability map enabled us to generate segmentations that align with physician needs
through thresholding. Moreover, we could mitigate segmentation errors by eliminating regions

with high uncertainty via thresholding.

6.2  Method

Our study included a total of 282 portal-venous phase CT scans from the pancreas task of
the Medical Segmentation Decathlon®®. Both pancreatic masses (cyst or tumor) and parenchyma
were delineated. To create an independent test set, 30 patients were randomly selected. The
remaining 252 patients were divided into a training set (80%) and a validation set (20%). To
fully leverage the entire training set, we utilized five-fold cross validation. The CT images were
clipped from -87 to 199 HU and resampled isotropically at 1.0mm x 1.0mm x 1.0mm. Given that
the Swin-UNETR architecture is 3D-based, we cropped images into 96 x 96 x 96 patches with an
overlap of 50%. Additionally, data augmentation strategies such as random flip, rotation,
intensity scaling, and shifting with varying probabilities were employed. The training of the
model was conducted on a single A100 GPU for a total of 5000 epochs with a learning rate of
1e~* and a batch size of 2. Each member of the ensemble required 151 hours to complete
training. In order to ensure a fair comparison with the state-of-the-art Swin-UNETR models in
the pancreas task, the preprocessing pipeline and hyperparameters were kept identical as reported
in Tang et al.*. This was done to eliminate any potential confounding factors that could

influence the performance comparison.
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To integrate various segmentation styles into our ensemble, we utilized the Tversky loss
layer during our training process. The baseline ensemble of Swin-UNETR models aims to
minimize the Dice similarity coefficient during training, which assigns equal weight to false

positives (FP) and false negatives (FN):

2TP

DSC= Py FN ¥ FP

Tversky index, on the other hand, allows us to weigh FP and FN:

_ TP
" TP+ aFN + BFP

TI

Here, o and B (o-+f=1) controls the magnitude of the penalties for FN and FP. Through
manipulating the Tversky index hyperparameters, we can customize the segmentation tendencies
of our models. Models with an o greater than 0.5 have a tendency to under-segment as they
penalize false negatives more heavily. Conversely, models with an a less than 0.5 tend to over-
segment as they prioritize false positives. However, optimal and well-balanced segmentation is

still maximally rewarded regardless of these tendencies.

Utilizing the Tversky loss, we can regulate each model's segmentation tendencies to
imitate the contouring styles of multiple experts. To create a Tversky ensemble, we assigned
unique o values to each of the five members. The ensemble was trained with a values of 0.1, 0.3,
0.5, 0.7, and 0.9, respectively. The introduction of distinct training-validation folds for each
member introduced both data and stylistic variations into the ensemble, leading to improved

uncertainty estimation.
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The model's predictions were generated using sliding windows with a 50% overlap, and

the mean probability of all members in the Tversky ensemble was utilized. The calibrated
probability map for tumor prediction was directly extracted from the inference results.
Probability thresholding was applied to produce the final segmentation, and for quantitative
evaluations against the ground truths, we extracted eleven final segmentations by varying the

threshold values ranging from 0.05 to 0.9 on the probability map.

6.3 Results

Table 8 presents the quantitative results of all the thresholded contours. Our findings
indicated that thresholding the probability maps with a value of 0.05 yielded the highest Dice

similarity coefficient (DSC) results, while contours thresholded with a probability value of 0.5

exhibited the lowest distance metric. Employing a less stringent probability threshold resulted in

improved DSC values at the expense of increased variability in the generated contours, as

reflected by the increasing distance metrics.

HD95 (mm) MSD(mm)
Mean SD Mean SD Mean SD
0.05 0.47 0.33 14.43 14.19 4,92 9.54
0.1 0.46 0.33 14.80 14.45 493 9.57
0.2 0.45 0.33 14.94 14.63 4,95 9.62
0.3 0.44 0.34 15.38 15.91 5.65 10.64
0.4 0.44 0.34 15.55 16.05 5.61 10.46
0.5 0.43 0.34 14.03 10.98 4.07 6.13
0.6 0.42 0.34 14.11 10.99 4.09 6.12
0.7 0.41 0.34 14.16 11.03 4.10 6.11
0.8 0.40 0.33 14.29 11.07 411 6.10
0.9 0.39 0.33 14.52 11.11 411 6.08
Best 0.47 0.33 12.70 9.96 3.24 4.58
Swin-UNETR] 0.43 0.34 13.40 10.08 3.83 4.12
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Table 8. Contours created with varying thresholds of the probability map. Best results
were created from selecting the contours with the lowest HD95 for each individual case.
The Swin-UNETR results were from a 5fcv Swin-UNETR ensemble trained with DSC loss.
The same data preprocessing and hyperparameter configuration won the pancreas task of

the Medical Segmentation Decathlon.

In the clinical workflow, contours were thresholded in real-time, enabling physicians to
select contours that align with their preferred stylistic preferences. To mimic the human-in-the-
loop adaptation process, we selected the contours with the lowest 95th percentile Hausdorff
distance (HD95) among the eleven probability thresholds from each patient for final quantitative
evaluation. Our final quantitative results surpassed those of the Swin-UNETR configuration,
which achieved state-of-the-art results in the pancreas task of the Medical Segmentation

Decathlon challenge. The boxplots of the quantitative results were shown in Figure 16.
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Figure 16. Quantitative results of automatically generated contours compared to ground

truths. Contours were generated by thresholding the probability map with a variety of
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values (0.05 and 0.9 as shown) and the contour with the lowest HD95 were chosen to serve

as the best contour to compare against the Swin-UNETR ensemble.

We observed that our method achieved higher DSC scores while maintaining relatively
low distance metrics across all thresholded contours. By mimicking expert input and selecting
the contour with the lowest HD95 value, we obtained more competitive distance metric results
compared to Swin-UNETR. Moreover, the mean and median DSC values remained competitive
when the contours were selected by the lowest HD95 distance. These findings highlighted the

effectiveness of incorporating customization into the auto-segmentation pipeline.

Dice Hausdorff Distance 95 Avg. Surface Distance
- o __ 1 ¢
35 31 3 M : : H
0.8 301
20 4
= =
E 25 E
0.6 = @
w g £ 15
5 = o
[w] i 201 po)
w1 n [m]
8 £ 8
0 0.4 S 151 £ 10 1
g =]
2 “
o
* 10] Z
0.2 5 |
5.
0.0 |
ol 0

>050 >0.60 >0.70 >0.80 >0.90 >050 >0.60 >0.70 >0.80 >0.90 >0.50 >0.60 >0.70 >0.80 >0.90

Figure 17. The trend of segmentation quality as thresholding value increases was shown in
boxplots. The DSC scores between generated contours and ground truths decreased and

the distance metric increased.

Upon closer examination of the segmentation performance with varying thresholding

values, we observed a surprising trend. When employing an overly cautious segmentation
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approach (high probability threshold), as depicted in Figure 17, the generated contours exhibited
lower DSC scores, as anticipated. However, we also observed that this conservative contouring
strategy led to poorer distance-based results. In contrast, an over-segmentation style yielded
more favorable quantitative outcomes in both DSC and distance metrics in pancreatic tumor

segmentation.

6.4  Discussion

Contouring pancreatic tumors on contrast-enhanced CT images is a challenging task,
even for experienced radiologists. The hypodense areas on CT images often fail to capture all of
the diseased areas, as experts tend to include areas that cannot be identified by imaging features
alone when delineating tumors. This process introduces inter-observer variability since the
imaging features at the tumor borders are faint®2. Thus, this segmentation task requires high
sensitivity and low specificity, as well as options for customization to accommaodate clinician
preferences. In deep learning-based auto-segmentation, uncertain ground truths can pose
significant challenges for models to learn and validate due to the inherent variability in the
training data®®. Moreover, the inconsistent anatomical context provided by the training contours

can hinder model convergence, further complicating the task.

In our study, we proposed an approach to address segmentation tasks with uncertain
ground truths by utilizing ensemble-based uncertainty estimation techniques. Deep ensembles
have demonstrated remarkable performance in uncertainty estimation tasks, and greater

variability within the ensemble has been observed to improve the calibration of the pixelwise
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probability map®. To introduce human-like variability and incorporate multiple segmentation
styles into the consensus probability estimation, we employed the Tversky loss function to fine
tune the contouring style of each individual model®. In addition to using different data folds, we
tuned the Tversky hyperparameters to generate models with varying segmentation tendencies.
This enabled the creation of multiple segmentations from a well-calibrated probability map that
can be adjusted to the physician's preferences as shown in Figure 18. Our approach yielded
superior quantitative results compared to the Swin-UNETR ensemble, which was trained and
tested on the same dataset with identical cross-validation data folds. Both the Tversky ensemble
and the Swin-UNETR ensemble were trained using the preprocessing and hyperparameters
reported by the ensemble that achieved state-of-the-art performance in the pancreas task of the

Medical Segmentation Decathlon.

Ground Truth

Probability Map

Zoom In

AJlligeqold

Figure 18: A sample probability map generated by Tversky ensemble. Final segmentations
were derived from thresholding the probability map. On this CT slice, the probability map

perfectly reflected the tumor volume while providing pixelwise uncertainty estimation.

The Dice similarity coefficient (DSC) results showed consistent improvement with lower
probability thresholds as shown in figure 17. Upon qualitative observation, we found that the

model consistently under-segmented the tumor compared to the ground truth. While the
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generated segmentations captured the hypodense regions in the CT images, they failed to
extrapolate to the surrounding diseased areas that were less prominent to the human eye. By
lowering the probability threshold, the generated contours became more aggressive in delineati
the uncertain regions at the tumor border. This resulted in a greater overlap with the ground

truths labeled by experts, as depicted in figure 19, leading to improved quantitative performanc

ng

€.

Selecting the contours based on the lowest HD95 distance further improved the distance metrics

without compromising the DSC. By optimizing the thresholding strategy on a patient-by-patient

basis, we retained aggressive segmentations that incorporated uncertain regions while
eliminating erroneous regions with low confidence. In the clinical workflow, physicians could
threshold the probability map in real-time to accommodate their preferences. Our approach
offered a promising option for generating an accurate tumor segmentation on the contrast-

enhanced CT in a timely manner.
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Figure 19: Deep learning models often suffered from under-segmentation of pancreatic
tumors at the tumor border. Our Tversky ensemble allowed for the application of a more

lenient thresholding, leading to better quantitative results.

While over-segmentation was preferred in pancreatic tumor segmentation due to the
inherent uncertainty at tumor borders, incorporating low probability regions was not without its
drawbacks. When lenient thresholding was applied, the ensemble could falsely identify tumors
from benign anatomy, as illustrated in figure 20. This occurrence was common in auto-
segmentation since pancreatic tumors often displayed low contrast compared to the surrounding
tissue. False positives were frequently observed due to the presence of hypodense regions
throughout the CT scans. In our post-processing step, we retained the largest connected
component of the predicted contours, which could result in falsely labeled low probability
regions becoming the larger connected component and leading to poor quantitative results. This
perturbation to the distance metrics occurred when increasing the threshold from 0.4 to 0.5.
However, the calibrated probability map offered an opportunity to detect some mis-contoured
cases based on uncertainty estimates. Clinicians could visually identify regions with low
confidence. If the initial probability map was found to be erroneous, they had the ability to
eliminate falsely identified tumor regions by increasing the probability threshold, as
demonstrated in figure 20. This feature allowed the model to maintain an aggressive approach in
most cases to ensure optimal results, while producing accurate contours after human intervention

when the Tversky ensemble was uncertain.
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Ground Truth Low Threshold

Probability Map High Threshold

Figure 20: False positive regions eliminated via probability thresholding based on

uncertainty context provided by Tversky ensemble.

Based on our observation that over-segmentation tendencies yielded contours that were
closer to the ground truth, we aimed to investigate the feasibility of creating an over-segmenting
ensemble through manipulation of the Tversky hyperparameters. We selected a Tversky a value
of 1.0 to construct an ensemble that maximally rewarded over-segmentation. To ensure fairness
in our comparative analysis, we again utilized identical data split, preprocessing techniques, and
hyperparameters outlined by the state-of-the-art Swin-UNETR ensemble. We trained the over-
segmenting ensemble using 5-fold cross-validation, specifically emphasizing over-segmentation
characteristics with the largest o value possible. The resulting over-segmenting ensemble only
achieved an average DSC of 0.40. This performance deterioration underscored the significance
of the diversity introduced by the varying Tversky hyperparameters. It substantiated the crucial
role of a well-calibrated probability map in achieving accurate segmentation. Directly tuning the
model towards the desired behavior did not yield improvements in segmentation quality. By
incorporating diverse segmentation tendencies within the Tversky ensemble, we successfully
generated a probability map that was better calibrated. Consequently, this advancement
facilitated more precise segmentation and offered opportunities for stylistic customization in our

results.
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Our proposed approach still required human intervention for the final contouring. This
was due to the existing challenges in segmenting pancreatic tumors with deep learning
approaches. The state-of-the-art approach achieved an average DSC of 0.43 in our test set,
indicating that expert input remained necessary for achieving optimal plan quality in
segmentation workflows. Despite outperforming the state-of-the-art model ensemble using
identical preprocessing and hyperparameters, our tool was not yet capable of fully automating
the segmentation of pancreatic tumors. Additionally, our post-processing pipeline, which
retained the largest component, might introduce unintended variabilities when using low
probability thresholds for aggressive contouring at the tumor border. Therefore, caution is
advised when conducting thresholding to avoid compromising the accuracy and quality of the

final segmentation results.

6.5  Conclusion

In this study, we employed an ensemble-based uncertainty estimation technique to
facilitate the segmentation of pancreatic tumors. Given the inherent ambiguity of ground truth
delineation, we adapted the Tversky loss function to account for a variety of contouring styles
and generate a consensus probability map that can be fine-tuned by clinicians in line with their
preferences, following model inference. By utilizing the same network architecture, data
preprocessing pipeline, hyperparameters, and ensembling strategy as the state-of-the-art model,
our approach outperformed its Swin-UNETR counterpart in the pancreatic tumor segmentation
task of the Medical Segmentation Decathlon. Furthermore, our method provides pixel-wise
uncertainty estimation, which enables clinicians to generate contours with greater confidence.
We are optimistic that our Tversky ensembles can serve as an accurate and dependable solution

for pancreatic tumor segmentation.
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Chapter 7:  Discussion

In this project, we aimed to develop automated segmentation tools for pancreatic and
liver cancer radiation treatment. Manual segmentation, which is time-consuming, subjective, and
susceptible to variability among observers, has been the conventional protocol prior to radiation
treatment planning. However, recent advancements in deep learning-based auto-segmentation
have demonstrated exceptional results across various medical segmentation challenges. By
integrating deep learning into the treatment planning workflow, we can streamline and

standardize clinical practices.

Throughout the development of various initial segmentation models, we observed that
data quality played a pivotal role in determining the clinical performance of deep learning-based
auto-segmentation tools. Consequently, our focus shifted towards curating a unique dataset
specifically tailored to our contouring practice. We meticulously contoured the organs-at-risk on
contrast-enhanced CT scans from a cohort of 70 patients. The compilation of this dataset served
a dual purpose: it served as both the training set for our segmentation models and as a benchmark
for evaluating their performance. Through U-Net-based segmentation architectures, we obtained
exceptional quantitative and qualitative results from this carefully curated dataset. These
outcomes have substantiated our hypothesis that, with a high-quality training set, a total of 40
patients would suffice to construct a robust and reliable auto-segmentation tool. This finding
underscores the importance of data quality in facilitating the development of accurate and
effective segmentation models. We decided to make these expertly reviewed data publicly
available, with the aim of facilitating the development of new auto-segmentation models for

clinics worldwide. To the best of our knowledge, this is the first highly-curated dataset
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encompassing both small and large bowel segmentation, as it necessitated expert input for

accurate delineation.

Since its implementation in 2021, our nnU-Net-based organs-at-risk segmentation tool
has been widely utilized in our clinic, providing contour generation for more than 800 patients.
The exceptional performance of the nnU-Net played a significant role in the success of this auto-
segmentation tool. However, another crucial factor contributing to its success was the extensive
collaboration between our team and the clinical department. The training dataset was
recontoured under the guidance of our department's experienced physicians, resulting in
generated contours that closely aligned with their stylistic preferences. Moreover, the clinical
validation of our tool involved the active participation of experts from our institution, further
ensuring its accuracy and reliability. This comprehensive collaboration and the involvement of
domain experts have been instrumental in the seamless deployment of our organs-at-risk

segmentation tool.

Our comprehensive qualitative evaluation, encompassing both contrast-enhanced and
non-contrast CT images from a cohort of 75 patients, provided us with valuable insights into the
clinical adoption of deep learning auto-segmentation techniques. While the majority of our
generated contours demonstrated clinical acceptability, it is noteworthy that certain contours
required major edits. These contours would need to be flagged prior to entering the treatment
planning phase. Moreover, physicians identified a notable portion of contours that exhibited
stylistic deviations from their preferences, indicating the need for further integration of diverse
contouring styles into auto-segmentation models. Such integration is crucial to enhance clinician

satisfaction and optimize the overall performance of the segmentation tool.
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In order to address the patients requiring major edits, we implemented a quality assurance
tool designed to identify out-of-distribution patients that could potentially degrade the
performance of the segmentation process. This tool proved particularly effective due to the fact
that our training dataset was sourced internally from our institution. The imaging protocol,
including contrast timing and motion management, employed in the training CT images
remained relatively consistent with the CT images used in the deployment of the model.
Consequently, the detection of out-of-distribution samples was highly successful in
distinguishing patients likely to exhibit poor segmentation performance. This approach
contributed to the overall robustness and reliability of our segmentation models, enhancing their

clinical utility.

Other contour quality assurance approaches were also considered. Our lab had experience
in using a secondary contouring system to detect erroneous contours®®. We considered using
other deep learning architectures to serve as the secondary contouring system. However, the
performance of our secondary contouring system was inferior to the nnU-Net as shown in table
9, 10 and 11. Using an inferior model as the secondary contouring system to capture failure
contours could lead to a large number of false positives since contour differences were most
likely caused by the failure of the secondary system. This posed an issue for structures prone to
contouring errors such as the bowel structures. The transformer-based segmentation methods
significantly underperformed at these structures. However, the development of the secondary
contouring system for OARs led to the utilization of transformers in the target segmentation

component of the project.

70



Organs DSC HD95 (mm) MSD(mm)
Mean SD Mean SD Mean SD

Duodenum 0.80 0.08 12.34 9.09 1.68 1.04
Small Bowel 0.89 0.05 7.77 8.90 1.99 2.10
Large Bowel 0.90 0.06 7.15 8.42 1.27 0.87
Stomach 0.92 0.03 4.77 2.98 1.23 0.78
Liver 0.96 0.01 3.56 1.71 1.07 0.49
Spleen 0.97 0.01 2.21 1.27 0.56 0.23
Kidney_ R 0.96 0.01 2.51 1.29 0.59 0.18
Kidney_ L 0.96 0.01 2.52 0.90 0.61 0.19
SpinalCord 0.76 0.15 42.52 38.62 10.57 10.49

Table 9. Mean Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and
mean surface distance (MSD) between ground truth and prediction results from nnU-Net

on contrast-enhanced CT images

Organs DSC HD95 (mm) MSD(mm)
Mean SD Mean SD Mean SD
Duodenum 0.76 0.11 13.16 9.47 2.24 2.07
Small Bowel 0.85 0.07 10.42 8.64 2.62 1.87
Large Bowel 0.87 0.06 11.34 9.83 2.00 1.47
Stomach 0.90 0.04 6.45 4.46 1.62 1.06
Liver 0.96 0.01 7.29 19.09 1.86 4.19
Spleen 0.96 0.02 2.82 2.52 0.96 1.13
Kidney R 0.96 0.01 2.69 1.64 0.63 0.24
Kidney_L 0.95 0.02 2.95 1.76 0.75 0.41

Table 10. Mean Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and
mean surface distance (MSD) between ground truth and prediction results from Swin-

UNETR on contrast-enhanced CT images
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Organs DSC HD95 MSD
Mean Std Mean Std Mean Std
Duodenum 0.73 0.10 12.91 7.01 2.45 1.58
Small Bowel] 0.82 0.08 14.68 8.58 3.62 2.17
Large Bowel] 0.83 0.08 17.37 13.52 3.98 3.06
Stomach 0.86 0.08 9.61 8.87 2.42 2.47
Liver 0.96 0.03 7.62 20.32 2.30 6.02
Spleen 0.96 0.02 3.85 5.06 0.93 1.19
Kidney R 0.96 0.02 2.86 1.81 0.72 0.47
Kidney L 0.95 0.02 4.25 6.74 0.96 1.32
SpinalCord 0.75 0.14 42.82 37.15 10.50 9.81

Table 11. Mean Dice similarity coefficient (DSC) between ground truth and prediction

results from UNETR with different configurations on contrast-enhanced CT images

In order to address diverse stylistic preferences in target volume contouring, our objective
was to incorporate a broader spectrum of contouring styles into the process. It was observed that
stylistic disagreements were more prevalent in the definition of target volumes compared to the
contouring of organs-at-risk®84.84 The adoption of automated target volume generation using
auto-segmentation techniques in clinical practice has been hindered by variations in stylistic
preferences among clinicians, resulting in a lack of trust in the accuracy and reliability of the
automated system. In order to mitigate these concerns, we employed the Tversky loss function to
regulate the segmentation tendencies of deep learning models. By adjusting the hyperparameters
of the Tversky loss layer, we could control the level of under-segmentation or over-segmentation
of the tumor, thus providing flexibility in contouring preferences. Building upon the Swin-
UNETR model ensemble, we created multiple models with varying Tversky hyperparameters.

This ensemble of models enabled the incorporation of diverse stylistic preferences, resulting in a
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calibrated probability map through consensus. By applying a threshold to the probability map,

clinicians were able to identify contours that best aligned with their preferred contouring styles.

As we transitioned to target segmentation tasks, specifically the delineation of gross
tumor volumes (GTVs), we observed that transformer-based segmentation networks had attained
remarkable performance in various tumor segmentation challenges*®®. Encouraged by these
advancements, we opted to also employ the Swin-UNETR architecture for liver tumor
segmentation. Leveraging our unique simulation protocols and motion management techniques,
we acquired a substantial number of unlabeled abdominal images, which served as ideal
candidates for self-supervised learning approaches facilitated by transformer-based architectures.
During the development of liver GTV segmentation, we noted that while self-supervised learning
had achieved state-of-the-art performance in diverse segmentation tasks, its successful
deployment required intervention in both its training and pretraining. The choice of data used for
pretraining had a significant impact on the final results, as it could potentially degrade the
performance compared to training from scratch. Moreover, careful hyperparameter tuning of
both the pretraining and training stages played a critical role in optimizing the network's
performance. Our findings underscored the importance of thoughtful data selection for
pretraining, as well as the careful tuning of hyperparameters during training, in order to
maximize the performance and applicability of transformer-based networks in the field of

medical image segmentation.

Throughout this comprehensive segmentation study, we underscored the essential
contribution of multidisciplinary expert inputs in the development and deployment of auto-
segmentation tools. The construction of a suitable dataset for deep learning development

necessitated the integration of expert knowledge derived from medical training. Furthermore, the
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effective handling of deep learning algorithms demanded substantial expertise in hyperparameter
tuning. In the context of supervised learning, our findings consistently demonstrated that the
nnU-Net showcased exceptional performance as an out-of-the-box solution. It provided medical
professionals with a reliable framework to leverage their domain knowledge while yielding
reliable results. Therefore, for clinical deployment, the nnU-Net remains a dependable choice to

extract robust performance from diverse datasets.

As the complexity of the models increased, expertise in deep learning development
became crucial for achieving optimal performance through exhaustive model tuning. Particularly
when encoder pretraining was employed in transformer-based architectures, evaluating the
training quality became a convoluted process. The recorded validation loss on the validation
dataset provided a preliminary indication of the training status. However, unlike the validation
loss of a segmentation network, these losses did not necessarily correlate with optimal
performance in the downstream segmentation task. Consequently, selecting the most suitable
pretrained encoder for downstream segmentation necessitated a trial-and-error approach as
shown in our study. We also observed that the results of self-supervised pretraining were highly
sensitive to hyperparameter settings. Careful selection of batch size, learning rate, and learning
rate decay played a pivotal role in ensuring stable training. Hyperparameter settings beyond the
acceptable range, such as larger batch size or higher learning rate, often resulted in overfitting
and yielded suboptimal pretrained encoders and led to poor performance of the downstream
segmentation model. Tuning the downstream segmentation model also involved a significant
amount of trial and error. Transformer-based architectures encountered challenges during
pancreas and liver tumor segmentation, as they suffered from gradient collapsing, leading to

premature termination of the training process. Additionally, the memory consumption of
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transformer-based architectures fluctuated depending on the combination of software being
utilized, which posed limitations due to GPU memory size. Overcoming these issues required
expert intervention and implementation in clinical settings could prove challenging. While
transformer-based architectures provided an opportunity to leverage unlabeled data, their
development necessitated substantial expertise in deep learning. The intricate process of model
tuning, addressing gradient collapsing, and memory management required the input of

experienced deep learning developers.

A unique aspect of our segmentation project was the topic of quality assurance. Quality
assurance plays a vital role in clinical systems. In the context of auto-segmentation, we would
like to prevent erroneous contours from entering treatment planning or treatment delivery. In
this regard, careful consideration was given to the model's ability to forecast its confidence or
lack of confidence on unseen samples, a task essential for reliable performance. Our proposed
QA approach for OARs focused on using out-of-distribution® detection as a means of quality
assurance, assuming that substantial deviations from encountered samples would lead to
performance degradation’. However, this assumption presented challenges in clinical practice.
Firstly, as clinical practices evolve, the data distribution encountered by the model may shift
away from the training set®, resulting in a high number of false positives and potential disregard
of alarms by clinicians. Secondly, deep learning models have demonstrated remarkable tolerance
to domain shifts, enabling our segmentation model to generate clinically acceptable results even
in the presence of challenging cases involving ascites or out-of-field artifacts. Consequently,
distribution-based quality assurance systems may trigger false alarms in such scenarios. We also
investigated the application of uncertainty-based quality assurance systems’8. The main

advantage of such systems lies in their ability to provide pixel-wise uncertainty estimates. With
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our Tversky ensemble, we were able to generate expressive probability map with a relatively
small ensemble. However, we observed that these approaches typically required substantial
calibration efforts to achieve reliable uncertainty estimation. Furthermore, the resulting
uncertainty maps often exhibited a sharp probability gradient, resulting in more binary outcomes
and reduced interpretability. Apart from ensemble-based techniques, these approaches often
generate a large amount of data to perform uncertainty estimation. This poses challenge for
clinical implementation. As the adoption of deep learning-based automation increases in clinical
settings, the integration of quality assurance systems becomes crucial and warrants further

investigation.

For future work, we believe that the field of medical image segmentation is entering a
transformative phase. The availability of an unprecedented number of public datasets makes it
considerably easier to develop models using existing out-of-the-box solutions such as nnUNet.
Tools like TotalSegmenter® have demonstrated remarkable capability in accurately segmenting
nearly all normal anatomical structures within the human body. By using a combination of public
dataset and a small amount of private dataset, we would be able segment organs-at-risk and
tumors with greater confidence. As these models continue to improve in performance, we
anticipate increased adoption in clinical settings and a corresponding rise in throughput of auto-
segmentation tools. Thus, it is crucial for us to remain vigilant against automation bias. Ensuring
the quality assurance of the latest models remains an important and ongoing challenge for
researchers worldwide. As automation progresses, clinicians would expect auto-segmentation
suites to exhibit enhanced robustness. As developers, it is our responsibility to prioritize patient

safety when designing these automation tools.
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Chapter 8:  Conclusion

In conclusion, our auto-segmentation system for organs-at-risk has demonstrated
remarkable success in the context of upper-abdominal radiation treatment. Its high clinical
acceptance rates indicate its reliability and accuracy in delineating critical structures.
Furthermore, the accompanying QA tool has proven to be effective in identifying and capturing

contours that require significant edits, enhancing the overall quality of the segmentation process.

By leveraging a diverse range of unlabeled data in our self-supervised learning approach,
we have significantly improved the performance of our transformer-based segmentation system.
This highlights the importance of incorporating a wide variety of data sources during the
pretraining stage, allowing our model to learn robust and comprehensive representations of the
target organs. Moreover, our uncertainty-guided segmentation network has provided valuable
capabilities in terms of customization and identification of low-confidence regions. This feature
allows clinicians to have better control over the segmentation process and make informed
decisions based on the level of certainty in specific areas, ultimately leading to more precise and

tailored treatment plans.

Overall, our suite of auto-segmentation tools for pancreatic and liver cancer radiation
treatment holds great promise for streamlining clinical workflows and ensuring patient safety.
With their impressive performance, these tools have the potential to revolutionize the field by
providing efficient and accurate segmentation results, enabling clinicians to deliver targeted and

personalized treatments while optimizing outcomes for cancer patients.
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