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Auto-segmentation in Pancreatic and Liver Radiation Therapy 

 

Cenji Yu, B.S. 

Advisory Professor: Laurence Court, Ph.D. 

Background 

Gastrointestinal cancers exhibit a high mortality rate compared to other cancer types. 

Among these, pancreatic cancer ranks as the fourth leading cause of cancer-related deaths 

worldwide. The five-year survival rate remains alarmingly low at a mere 9%. Hepatocellular 

carcinoma (HCC), another aggressive form of cancer, is rapidly becoming the primary cause 

of cancer-related deaths in the United States. The treatment of both liver cancer and 

pancreatic cancer heavily relies on a multidisciplinary approach. Innovative treatment 

strategies involving dose-escalated regimens, such as stereotactic body radiation therapy 

(SBRT), are emerging as an important pillar of the management of liver and pancreatic 

cancer. The success of these treatment modalities hinges upon the precise and standardized 

segmentation of organs-at-risk and target volumes to ensure the optimal quality of treatment 

plans. 

Methods 

We first developed an automated organs-at-risk segmentation tool for upper 

abdominal radiation therapy treatment. A dataset of 70 patients was collected and utilized as 

the training set and benchmark for our auto-segmentation tool. We employed the adaptive 
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nnU-Net architecture to develop a model ensemble capable of contouring various organs, 

including the duodenum, small bowel (ileum and jejunum), large bowel, liver, spleen, 

kidneys, and spinal cord. The performance of the segmentation tool was evaluated on 75 

patients using both contrast-enhanced and non-contrast-enhanced CT images, employing a 

five-point Likert scale assessment by five experts from three different institutions. To capture 

contours requiring major edits, we developed a distance-based quality assurance (QA) 

system. This system identified CT scans that were likely to yield suboptimal contours 

requiring time-consuming major edits. Evaluation of the QA system was conducted on 

clinical CT scans, with the clinical review score serving as the ground truth. For target 

volume segmentation, we employed transformer-based architectures, leveraging self-

supervised learning and uncertainty estimation techniques to enhance performance and allow 

for stylistic customization. A total of 3094 unlabeled CT scans from liver cancer patients, 

along with 5050 publicly available CT scans, were collected for self-supervised pretraining 

in liver tumor segmentation. The pretrained encoders were then utilized to optimize 

downstream liver tumor segmentation models, evaluating the impact of self-supervised 

learning on tumor segmentation performance. For pancreatic tumor segmentation, we 

developed an ensemble-based approach incorporating multiple segmentation styles. 

Probability thresholding was employed to generate the final segmentation, enabling 

customization according to clinicians' preferences. 

Results 

Our organs-at-risk segmentation tool achieved a clinical acceptance rate of over 90% 

for all organs except the duodenum, demonstrating its accuracy in delineation. Quantitative 

results were comparable to state-of-the-art methods, using a small but high-quality dataset. 
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The QA system achieved an AUC of 0.89 for capturing contours requiring major edits on 

randomly sampled clinical CT scans. In liver tumor segmentation, our study revealed that 

self-supervised learning demonstrated 4-5% performance improvement when diverse 

unlabeled data were used for pretraining. This finding highlights the importance of 

incorporating a wide range of data during the pretraining stage. For pancreatic tumor 

segmentation, our ensemble-based segmentation method proved highly effective. It provided 

pixel-by-pixel uncertainty estimates and allowed customization through probability 

thresholding. Our customized contours surpassed the performance of the state-of-the-art 

segmentation model, even when utilizing identical training data, pretraining techniques, and 

hyperparameters. 

Conclusion 

Our auto-segmentation system for organs-at-risk achieved high clinical acceptance 

rates in upper-abdominal radiation treatment. The accompanying QA tool effectively 

captured contours requiring major edits. Leveraging a wide range of unlabeled data in self-

supervised learning improved the performance of our transformer-based segmentation 

system. Additionally, our uncertainty-guided segmentation network allowed customization 

and identification of low-confidence regions. Our suite of auto-segmentation tools for 

pancreatic and liver cancer radiation treatment has the potential to streamline clinical 

workflows while prioritizing patient safety.  
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Chapter 1: Introduction 

Gastrointestinal (GI) cancers represent more than one-third (35%) of all cancer-related 

deaths1. Among them, liver cancer and pancreatic cancer are 4th and 7th leading cause of cancer 

mortality worldwide23. Treatment of both liver cancer and pancreatic cancer relies heavily on 

multidisciplinary approach45. Radiation therapy plays a crucial role in the multidisciplinary care 

of both diseases. In recent years, immobilization techniques and image guidance have significantly 

increased the quality of radiation treatment for these two types of cancers45. This has allowed 

clinicians to increase dose and introduce hypo-fractionated or stereotactic body radiation therapy 

(SBRT) for pancreatic and liver cancer patients. There has been increasing adoption of partial liver 

hypo-fractionated radiation therapy in the management of liver cancer. Excellent local control rates 

were observed in both hepatocellular carcinoma (HCC) and cholangiocarcinoma when treated with 

SBRT6. For pancreatic cancer, dose-escalation was shown to be effective and tolerable at doses of 

25-35 Gy in 3-5 fractions7. These dose-escalated procedures, however, are challenging due to the 

proximity of surrounding critical structures. The pancreas, for example, is surrounded by 

radiosensitive serial organs such as duodenum, large bowels, small bowels and stomach. These 

organs are often protected by max dose constraints8, leaving little margin for error in treatment 

planning. Accurate and consistent segmentations of organs-at-risk (OARs) and targets are thus 

essential to the safety of these hypo-fractionated treatments. In addition, for both pancreas and 

liver radiation treatment, at least nine OARs are required for treatment planning. These tasks are 

currently done manually by clinicians, occupying significant amount of time from their schedule9. 

Furthermore, there is a growing trend in academic centers towards adopting adaptive workflows 

for radiation therapy, aiming to achieve dose escalation to the target while minimizing damage to 

normal tissue10. Various treatment platforms now offer high-quality daily guidance images that 
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facilitate real-time adaptation. This is particularly crucial in gastrointestinal (GI) radiation 

treatment, where the movement of radiosensitive bowel structures due to peristalsis poses a 

challenge. However, implementing an adaptive workflow requires significant expert involvement 

while the patient is positioned on the treatment couch. Therefore, it is crucial to establish a fast 

and safe adaptive planning workflow that effectively utilizes the available imaging hardware. One 

of the most time-consuming steps in the adaptive workflow is contouring11, highlighting the 

importance of accurate and robust segmentation of organs-at-risk and treatment targets. Precise 

and fast segmentation serves as the fundamental basis for an effective adaptive workflow. 

Here, we propose a series of deep learning-based automation tools to streamline clinical 

radiation treatment processes. Deep learning has achieved significant progress in image 

segmentation in recent years12. Auto-segmentation tools driven by deep learning have seen fast 

adoption by clinics13–16. The U-Net17 approach is widely used for auto-segmentation due to its 

efficient feature extraction and integration at multiple scales, yielding accurate results. However, 

it requires substantial data for optimal performance. Transformer-based architectures, originally 

designed for natural language processing, have shown impressive performance in computer vision 

tasks18. However, these state-of-the-art deep learning approaches require extra consideration when 

deployed in the clinic. An auto-segmentation tool needs to first exhibit outstanding performance 

upon clinician evaluation. The end users need to be extensively involved in the development of 

the tool to ensure clinical adoption. Furthermore, patient safety is paramount in clinical workflow. 

The proposed auto-segmentation tool requires extensive safety features to prevent subpar contours 

from entering the treatment planning workflow. The quality assurance of the auto-segmentation 

tool is thus essential to ensure safe clinical deployment.  
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This project’s long-term goal is to provide accurate and robust segmentation for pancreatic 

and liver cancer radiation treatment without human intervention. Our objective is to create an auto-

segmentation system for pancreatic and liver cancer using deep learning. The rationale behind our 

objective is two-fold: 1) Physicians from our clinic on average spend three hours delineating 

structures and target volumes 2) The resulting contours are susceptible to inconsistencies9. We aim 

to develop auto-segmentation tool that can streamline clinical workflow and standardize 

contouring practice. With the advancement of image guidance techniques, the workload required 

from clinicians is trending upwards. This automation project will hopefully alleviate clinicians 

from time and effort spent on repetitive tasks and help them better focus on patient care and 

research efforts. In addition, consistent treatment planning from an automated tool can be valuable 

in standardizing academic clinical trials as well as day-to-day patient care. We hope that our 

automation tools become the central piece of the efforts to standardize patient care in both 

community and academic settings. 

Chapter 2: Specific Aims and Central Hypothesis 

2.1 Introduction 

We hypothesize that we can create a clinically robust auto-segmentation system for 

pancreatic and liver cancer radiation therapy with deep learning-based techniques that achieves 

90% physician acceptance rate. 

2.2 Specific Aims 

Specific Aim 1:  

Develop an auto-segmentation system for organs-at-risk contouring for pancreatic 

and liver cancer treatment. We will train convolutional neural networks (CNNs) to automatically 
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contour 7 OARs (duodenum, stomach, small bowel, large bowel, liver, spleen, kidney) on primary 

breath-hold CT images. We will introduce deep learning-based QA methods to detect contour 

errors to ensure patient safety. We hypothesize that CNN-based automated contouring can achieve 

90% physician acceptance rate on organs-at-risk segmentation.  

Specific Aim 2:  

Develop an auto-segmentation system for target volume delineation for pancreatic 

and liver cancer treatment to enable automatic treatment planning. We will automatically 

segment gross tumor volume (GTV) on breath-hold contrast-enhanced CT images. We 

hypothesize that CNN-based automated target volume delineation can achieve 90% physician 

acceptance rate.  

Chapter 3: Automation of Organs-at-risk Segmentation 

This chapter is based upon the following article: 

Yu C, Anakwenze CP, Zhao Y, Martin RM, Ludmir EB, S.Niedzielski J, Qureshi A, Das P, 

Holliday EB, Raldow AC, Nguyen CM, Mumme RP, Netherton TJ, Rhee DJ, Gay SS, Yang 

J, Court LE, Cardenas CE. Multi-organ segmentation of abdominal structures from non-

contrast and contrast enhanced CT images. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-

21206-3 

Permission policy of Springer Nature content: Ownership of copyright in in original research 

articles remains with the Author, and provided that, when reproducing the contribution or 

extracts from it or from the Supplementary Information, the Author acknowledges first and 

reference publication in the Journal, the Author retains the following non-exclusive rights: To 
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reproduce the contribution in whole or in part in any printed volume (book or thesis) of which 

they are the author(s). 

3.1 Introduction 

Pancreatic cancer is one of the most aggressive tumor types, as it accounts for 3% of all 

cancers in the United States, as well as 7% of all cancer-related deaths19. Radiation therapy, 

along with chemotherapy, play a vital role in local tumor control for locally advanced pancreatic 

cancer20. Radiation treatment planning for pancreatic cancer is often complex with tight dose 

constraints21. This is a consequence of the pancreas being surrounded by highly radiosensitive 

and serial organs at risk (OARs) (duodenum, stomach, and small bowel) that require maximum 

dose constraints. However, OAR delineation in pancreatic and liver cancer is time consuming22. 

At our cancer center, pancreas radiation treatment requires delineation of 8 OARs: stomach, 

duodenum, large bowel, small bowel, liver, spleen, left kidney and right kidney. The average 

time spent on OAR delineation has been shown to be over 20 minutes9. For upper abdominal 

OAR delineation, reproducibility is a major challenge. Experts often have conflicting OAR 

delineations for the same patient, especially at the gastroesophageal junction23. Delineation of 

bowel structures (duodenum, large bowel and small bowel) is also susceptible to interobserver 

variability9,24. Margins reserved for motion management25 and poor soft tissue contrast at the 

small/large bowel border26 makes establishing the ground-truth for bowel structures difficult. It 

is often found in clinical practice that normal tissues extending (~1.0 cm) beyond the superior 

and inferior extent of the planning target volume (PTV) are not contoured on slices located 

outside of these margins. This is generally true for normal tissues that have maximum dose 

objectives where the whole volume is not needed for dose optimization27, but this practice also 

introduces interobserver variability and clouds the establishment of the ground-truth. 
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Deep learning-based image segmentation has achieved expert level performance in both 

target and normal structure delineation when trained with large datasets28,29,30. It has also been 

shown to reduce contouring inconsistency in clinical trials and to provide more accurate dose 

metrics31. Among deep learning-driven approaches, U-Net derived models dominate in organ 

segmentation tasks in the abdomen32,33 where public datasets are abundant (liver, spleen and 

kidney). For serial OARs (duodenum, stomach, and small bowel) in pancreatic cancer treatment, 

a few U-Net based models were developed on private datasets and achieved better results than 

alternative approaches such as fully convolutional network-based models34. Wang et al. explored 

the multi-planar fusion approach with 2D U-Nets predicting on both axial, sagittal and coronal 

views26. Liu et al. utilized a 3D self-attention U-Net to segment the OARs in pancreatic 

radiotherapy35 and achieved state-of-the art performance. These specialized U-Net models from 

large academic institutions required extensive research expertise to develop.  In addition, these 

models required at least 80 sets of complete patient contours for training and validation alone. 

Due to aforementioned inconsistencies in the clinical contours, extensive curation by experts is 

required before contours qualify for deep learning training. This expensive, time-consuming 

process36 hinders the development and adoption of deep learning models outside of large 

academic institutions.  

 

Recently, the self-configuring nnU-Net framework37 has shown promising results in 

abdominal organ segmentation. This framework systematically configured U-Nets on the basis of 

distribution of spacings, median shape, and intensity distribution of the training CT images. The 
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framework is also exceedingly data efficient due to robust data augmentation methods. nnU-Net 

has shown promising results in abdominal organ segmentation tasks and won two of the five 

tasks in the CHAOS challenge33. This framework was thus chosen as our candidate for 

automating upper-abdominal OAR segmentation. 

 

In summary, upper abdominal OAR contouring is time-consuming and susceptible to 

variabilities. Deep learning-based auto-segmentation provides a fast and consistent alternative to 

manual contouring. However, specialized U-Nets and large datasets are deemed essential to a 

robust deep learning auto-segmentation tool according to existing literature. These requirements 

confine the development of auto-segmentation tool to large academic centers with research 

expertise.  In this study, we proposed using the streamlined nnU-Net framework to customize 

three-dimensional (3D) U-Nets that delineate eight OARs (stomach, duodenum, large bowel, 

small bowel, liver, spleen, left kidney and right kidney) simultaneously on contrast-enhanced and 

non-contrast-enhanced CT images. We hypothesized that with a small, but consistent, training 

set, the standard U-Net architecture could create clinically deployable models for upper-

abdominal OAR segmentation. This study demonstrated clinical utility of the automatically 

generated segmentations through a robust evaluation via multi-observer rating of individual 

contours on 75 abdominal CT scans as well as quantitative evaluation on 30 CT scans. Our 

approach provided an easy-to-implement, data-efficient alternative for automating the clinical 

workflow of pancreatic radiation treatment, including adaptive radiation therapy. Our method 

utilized the least amount of data to achieve clinically acceptable qualitative results and 

competitive quantitative results compared to existing literature. In addition, we examined the 

organ-by-organ segmentation performance gain as we increased the number of patients in the 
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training dataset to provide insights on the amount of data required for training robust upper 

abdominal segmentation models for clinics interested in developing their own tools. We will 

release the entire training and testing dataset on TCIA to serve as additional resources for future 

abdominal organs auto-segmentation development.   

3.2 Method 

Imaging Data  

Seventy patients were selected from patients with pancreatic cancer who were treated at 

The University of Texas MD Anderson Cancer Center from 2017 to 2020 under an IRB 

(institutional review board) approved protocol. CT images were acquired with the breath-hold 

technique on Philips Brilliance Big Bore (Philips Healthcare, Best, The Netherlands) CT 

simulators. CT scans had pixel sizes ranged from 0.98mm to 1.04 mm and slice thickness from 

1mm to 2.5mm. Patients were scanned from 5 cm above the diaphragm to the iliac crest with 

intravenous contrast injection. The clinical OAR contours included the duodenum, small bowel, 

large bowel, stomach, liver, spleen, left kidney and right kidney. 

 

Data Curation and Manual Segmentation 

The duodenum, small bowel, and large bowel were manually delineated under physician 

supervision to increase consistency in normal tissue definition for these organs. To provide 

sufficient contextual information for the 3D U-Net models, bowel structures were extended 

along the z-axis and contoured throughout the entire scan. Stomach contours were trimmed to 

eliminate motion management margins. Liver, spleen and kidney contours were edited to ensure 

anatomical accuracy. All ground truth contours were reviewed and approved by a radiation 
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oncologist. Forty sets of contours were randomly selected for training and validation. The 

remaining thirty sets of contours were reserved as the held-out test set.  

 

Data Preprocessing 

To segment all OARs simultaneously, labels were compiled into a single segmentation 

map. When organ borders overlapped, the priority of the segmentation map was duodenum, 

small bowel, stomach, large bowel, liver, spleen and kidneys. Organs with the most stringent 

dose constraints were prioritized and overwrote organs with less stringent dose constraints. All 

images were resampled to 0.98mm × 0.98mm pixel size and 2.5mm slice thickness.  

 

Model Training 

The adaptive nnU-Net framework38 was employed to customize 3D U-Nets for our 

dataset. 3D patches of image-label pairs were used for training. The patch size was 192×192×48. 

The 3D U-Net network depth was dynamically optimized by nnU-Net framework to ensure 

sufficient depth to fully utilize the large patch size. The training batch size was 2. The resulting 

U-Net architecture generated by the nnU-Net framework is shown in Figure 1.  
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Figure 1. U-Net architecture customized by the nnU-Net framework based on the training 

dataset.  

The loss function was a combination of Dice similarity coefficient (DSC) loss and cross-

entropy loss. Training and testing were done on NVIDIA Tesla V100 GPUs with 32 GB VRAM. 

Training was stopped after 1000 epochs. To fully extract features from a small data set, five-fold 

cross-validation was used among the 40-patient dataset: 32 patients were used for training, and 

eight patients were used for validation in each fold (80-20 split). Five 3D U-Net models were 

trained, and the final prediction was produced by an ensemble of all five trained models from the 

cross validation. Training time for the U-Net ensemble was 36 hours when individual models 

were trained in parallel. Inference time using the U-Net ensemble for each patient was 8 minutes 

on average.  
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To evaluate performance gains as the size of training data expanded, additional model 

ensembles were also trained on an escalating number of patients. Subsets of 10, 15, 20, 25, 30, 

and 35 patients were randomly selected. The training-validation split for each set was also 80-20, 

which was identical to the final model ensemble. These six additional 3D U-Net ensembles were 

trained under the nnU-Net framework with identical training procedures. 

 

Quantitative Evaluation 

The final model ensembles from various sizes of the training data were evaluated on the 

held-out test set of thirty patients. The performance of the model ensembles was evaluated by the 

3D DSC, 95% Hausdorff distance (HD95), and mean surface distance (MSD) between the 

predicted contours and the ground truth contours.  

 

Qualitative Evaluation 

An additional 75 patients simulated under the breath-hold protocol were randomly 

selected from the clinical database as an independent qualitative test set. Our center captures two 

non-contrast-enhanced and three to four contrast-enhanced CT images during simulation for 

patients who are suitable for CT imaging with a contrast agent. For each patient, one contrast-

enhanced and one non-contrast-enhanced CT image were randomly selected as part of the 

qualitative analysis, resulting in a total of 150 patient CT images. The automatically generated 

contours on both contrast-enhanced and non-contrast-enhanced images were visually evaluated 

and scored using a five-point Likert scale as shown in Table 1 by five radiation oncologists from 
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three institutions and two countries. Each image was scored once by a radiation oncologist; and 

each organ was scored individually.  

 

Table 1. Likert scale used by physicians to evaluate contours generated on contrast-

enhanced and non-contrast-enhanced CT images 

3.3 Results 

Quantitative Evaluation 

A summary of the quantitative evaluation (n = 30) is provided in Table 2. All 

automatically generated contours had a mean DSC value of 0.80 or higher when compared to the 

ground-truth contours. Solid organs such as liver, spleen and kidneys all achieved mean DSC 

Explanation for this study 

5  Strongly agree 
Use-as-is (i.e. clinically acceptable, and could be 

used for treatment without change)  

4  Agree 

Minor edits that are not necessary. Stylistic 

differences, but not clinically important. The 

current contours/plan are acceptable. 

3  Neither agree or disagree 

Minor edits that are necessary. Minor edits are 

those that the review judges can be made in less 

time than starting from scratch or are expected to 

have minimal effect on treatment outcome. 

2  Disagree 

Major edits. This category indicates that the 

necessary edits are required to ensure 

appropriate treatment, and sufficiently significant 

that the user would prefer to start from scratch. 

1  Strongly disagree 

Unusable. This category indicates that the quality 

of the automatically generated contours or plan 

are so bad that they are unusable. 

Likert Scale 
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values ranging from 0.96 to 0.97. Radiosensitive hollow organs such as small bowel, large bowel 

and stomach achieved mean DSC values ranging from 0.89 to 0.92. Duodenum achieved a mean 

DSC of 0.80. For distance metrics, solid organs (liver, spleen and kidneys) had mean HD95 

ranging from 2.21 to 2.51mm and mean MSD ranging from 0.61 to 1.07mm. Radiosensitive 

hollow organs (small bowel, large bowel and stomach) had mean HD95 ranging from 4.77 to 

7.77mm and mean MSD ranging from 1.23 to 1.99mm. Duodenum had a mean HD95 of 

12.34mm and mean MSD of 1.68mm.  

 

DSC boxplots of all organs were shown in Figure 2. Auto-segmentation performance had 

more variability in hollow organs compared to solid organs. Outliers from small bowel and large 

bowel auto-segmentations were often caused by misidentification of small/large bowel in inferior 

regions of CT scans outside of treatment fields. Low DSC examples of duodenum were often 

caused by disagreements at the stomach/duodenum and duodenum/jejunum borders.  

 

Organs

Mean SD Mean SD Mean SD

Duodenum 0.80 0.08 12.34 9.09 1.68 1.04

Small Bowel 0.89 0.05 7.77 8.90 1.99 2.10

Large Bowel 0.90 0.06 7.15 8.42 1.27 0.87

Stomach 0.92 0.03 4.77 2.98 1.23 0.78

Liver 0.96 0.01 3.56 1.71 1.07 0.49

Spleen 0.97 0.01 2.21 1.27 0.56 0.23

Kidney_R 0.96 0.01 2.51 1.29 0.59 0.18

Kidney_L 0.96 0.01 2.52 0.90 0.61 0.19

SpinalCord 0.76 0.15 42.52 38.62 10.57 10.49

DSC HD95 (mm) MSD(mm)
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Table 2. Mean Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and 

mean surface distance (MSD) between ground truth and prediction results from our tool 

on contrast-enhanced CT images 

 

 

Figure 2. Box and whisker plots of Dice similarity coefficient (DSC) distance between 

ground-truth and automatically generated contours by our tool on contrast-enhanced CT 

images. The central line represents the median value. The border of the box represents the 

25th and 75th percentiles. The outliers are represented by diamond markers. 

 

In order to determine if 40 patients were sufficient for optimal model performance, the mean 

DSCs for the individual organs were also examined for an escalating number of patients. The 

result was plotted in Figure 3. The mean DSC increased as the size of the training dataset 
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increased. The mean DSCs of all organs tended to converge as the number of patients 

approached 40. 

 

 

Figure 3. Mean DSC values between automatically generated contours and ground-truth 

contours increased as the number of patients in the dataset increased. The shadow 

represents the corresponding standard deviation for individual DSC values.  

 

Qualitative Evaluation 
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The results from physicians’ qualitative evaluations are shown below in Tables 3. Among 

the non-contrast-enhanced CT images, 85.3% of the duodenum contours, 92.0% of the small 

bowel contours, 93.3% of the stomach contours and more than 95% of the other organ contours 

received a score of 3 or greater, suggesting that these contours required only minor edits from 

physicians. More than 50% of the duodenum, small bowel, large bowel, and stomach contours as 

well as more than 85% of the spleen and kidney received a score of 4 or above.  

 

Table 3. Qualitative scores for contours generated on contrast-enhanced and non-contrast-

enhanced CT images of 75 randomly selected patients  

There was a small improvement in contour scores for auto-segmentations on contrast-enhanced 

CTs. 89.3% of the duodenum contours, 94.7% of the small bowel contours, and more than 95% 

of the other organ contours were scored as a 3 or greater. More than 60% of the duodenum, small 

bowel, large bowel, and stomach contours and more than 90% of the spleen and kidney scored a 

4 or greater. Examples of automatically generated contours scored as 3,4 and 5 for duodenum, 

stomach and small bowel are shown in Figure 4.  

 

<3 ≥3 ≥4 5 <3 ≥3 ≥4 5

Duodenum 14.7% 85.3% 50.7% 18.0% 10.7% 89.3% 60.0% 22.0%

Small bowel 8.0% 92.0% 58.7% 28.0% 5.3% 94.7% 62.7% 30.0%

Large bowel 2.7% 97.3% 62.7% 28.0% 2.7% 97.3% 69.3% 30.0%

Stomach 6.7% 93.3% 62.7% 38.0% 4.0% 96.0% 66.7% 38.0%

Liver 4.0% 96.0% 77.3% 60.0% 2.7% 97.3% 84.0% 66.0%

Spleen 1.3% 98.7% 90.7% 86.0% 1.3% 98.7% 93.3% 86.0%

Kidney left 1.3% 98.7% 90.7% 70.0% 1.3% 98.7% 94.7% 74.0%

Kidney right 2.7% 97.3% 86.7% 66.0% 1.3% 98.7% 93.3% 72.0%

Non-contrast-enhanced CT Images Contrast-enhanced CT Images
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Figure 4. Representative contours of organs scored on a Likert scale as 5, 4, and 3 (top to 

bottom) by physicians. The ground truth contours are shown as purple in all images. The 

automatically generated contours are shown as cyan in all images. The arrow indicated a 

segment of under-contoured duodenum that required minor edits. 

3.4 Discussion 

We have developed a deep-learning-based tool for accurate and robust upper-abdominal 

OAR auto-segmentation. Our tool could simultaneously segment the duodenum, large bowel, 

small bowel, stomach, liver, spleen, and kidneys. Upon evaluation, the tool performed well in 

both quantitative and qualitative assessments. These tests were conducted on randomly selected 
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held-out test patients (30 and 75 patients for quantitative and qualitative assessments, 

respectively). Our qualitative assessment was conducted by five radiation oncologists from three 

different institutions. The tool achieved acceptable performance for clinical deployment, even 

though it was trained and validated with only 40 patients. Based on the results from this study, 

we have clinically implemented this auto-contouring system in the clinic at MD Anderson 

Cancer Center. In the future, we will make this auto-contouring tool available as part of the 

Radiation Planning Assistant39 (rpa.mdanderson.org) to make this tool available to radiation 

oncology clinics in low- and middle-income countries. 

 

Deep learning-based auto-segmentation approaches typically require a large amount of 

high-quality segmented datasets to achieve optimal performance12. In clinical scenario, the 

amount of high-quality labeled images is limited40. Creating high-quality contours suitable for 

deep learning training requires significant time resources and expertise36,41. A number of self-

supervised deep learning approach were proposed by generating artificial data42,43,44, but these 

approaches required technical expertise only available at large academic centers. Our findings 

offered an affordable, easy to implement approach to create auto-segmentation tools when public 

dataset is not available. The self-adaptive nnU-Net framework provided a standardized platform 

for U-Net architectures, allowing us to customize 3D U-Net ensembles that maximized the 

performance of the U-Net architecture. The qualitative evaluation provides evidence for the 

prowess of our tool. Automatically generated contours received a Likert score of 3 or above 

required only minor edits. Physicians deemed these contours beneficial to their segmentation 

workflow. Among 75 independent test patients, over 90% of the automatically generated 

contours received a Likert score of 3 or greater on most organs. For organs with poor soft tissue 
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boundaries such as the duodenum, 89.7% of CT contours only required minor edits for clinical 

use. Our results have shown that with a dataset of 40 patients, a standard 3D U-Net architecture 

could deliver automatically generated contours suitable for clinical deployment. 

Clinical context of segmentation errors differentiated acceptable contours (Likert ≥ 4) 

from contours needed necessary minor edits (Likert = 3). Small contour errors may have 

significant clinical relevancy. For the duodenum contour scored as a 3 in Figure 4, the tool 

under-contoured a portion of the duodenum as shown by the arrow. The error shown was critical 

to patient safety because this segment of the duodenum was medially located and was close to 

the treatment target. Although most of the duodenum was properly contoured, the generated 

contour was scored as a 3 instead of a 4. The edit required from physicians, however, was 

marginal. Physicians were less concerned about absolute anatomical accuracy in other cases. For 

example, interobserver variability could be significant at the border of stomach and duodenum. 

The anatomical landmarks used to distinguish the two are subtle, often lacking a clear border. 

While the generated contour deviated drastically from the ground truth as shown in Figure 5, it 

was scored as a 4 and deemed acceptable for treatment planning by physicians. This was because 

the duodenum and stomach are often optimized to have the same maximum dose constraints 

(Dmax < 28Gy).  
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Figure 5. Representative ground-truth (left) and the automatically generated (right) 

contour of a patient’s duodenum and stomach. These contours differed significantly, but 

because the duodenum and stomach are often optimized using the same dose constraints 

(i.e. Dmax < 28Gy), the contours were scored as a 4 and deemed acceptable for treatment 

planning. 

 

Individual stylistic preferences differentiated use-as-is contours (Likert = 5) from the 

acceptable contours (Likert = 4). These stylistic preferences were the most prominent at the 

intersection of the duodenum and jejunum (contoured as part of the small bowel). The superior 

border of the fourth section of the duodenum had no visible border features on CT images. In 

Figure 6, the automatically generated contour was scored as a 4. The ground truth duodenum 

contour extended more superiorly compared to the automatically generated contour at the region 

indicated by the arrow. The varying cranial ends of duodenum contours were deemed as stylistic 

differences. The physicians were uncertain about the anatomical ground truth in the region. Since 

duodenum and small bowel were often optimized to have the same maximum dose constraints 
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(Dmax < 28Gy), physicians decided that these differences had limited impact on treatment 

planning.  

 

Figure 6. Representative ground truth (left) and the automatically generated (right) 

contours of a patient’s duodenum and small bowel (jejunum). The ground truth is 

ambiguous at the transition from duodenum to small bowel (jejunum). The deviation from 

the ground truth was deemed as a stylistic difference.  

 

Our quantitative results are comparable to those of state-of-the-art models trained with 

datasets of 80 patients or more for most organs. The DSC scores of the tool on small bowel, large 

bowel, stomach, spleen, liver, and kidney contours were within 0.01 of the current 3D state-of-

the-art model (Liu et al.) as shown in Table 4. The MSDs were also comparable or smaller than 

the 3D state-of-the-art model shown in Table 5. Our tool, however, was trained and validated 

with a much smaller dataset of 40 patients. Our approach seemed to be more data efficient 

compared to the state-of-the-art approach. As data curation process is known to be time-
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consuming and expensive, our method would allow easier development and adoption in the 

clinic.  

Studies have suggested that 3D models demand too many parameters and required a large 

training dataset45 to converge. Previous state-of-the-art approaches, such as organ-attention 2D 

deep networks with reverse connections by Wang et al., have been developed to segment 2D 

slices along axial, sagittal, and coronal views to reduce the number of trainable parameters26. 

Our tool outperformed the 2D-based multi-planar fusion approach in DSC for duodenum, small 

bowel and large bowel as shown in Table 4. We also achieved lower MSD for small bowel, large 

bowel, stomach and liver as shown in Table 5. When challenged with structures that span along 

the z-axis, 3D models were better equipped to segment these structures compared to 2D-based 

multi-planar fusion model due to its capability to capture anatomical context along the z-axis. 

Since only 40 patients were used for training and validation, our tool’s 3D approach seemed to 

be more data efficient than the 2D multi-planar fusion approach as well.  

 

Table 4. Dice similarity coefficient comparison between our tool and other state-of-the-art 

upper-abdominal auto-segmentation models 

Mean SD Mean SD Mean SD

Duodenum 0.80 0.08 0.86 0.06 0.75 9.10

Small Bowel 0.89 0.05 0.89 0.06 0.80 10.20

Large Bowel 0.90 0.06 0.91 0.03 0.83 7.40

Stomach 0.92 0.03 0.93 0.03 0.95 2.60

Liver 0.96 0.01 0.96 0.01 0.98 0.70

Spleen 0.97 0.01 NA NA 0.97 1.50

Kidney Right 0.96 0.01 0.95 0.02 0.98 2.10

Kidney Left 0.96 0.01 0.95 0.02 0.97 1.90

Ours (n=40) Liu et al. (n=80) Wang et al. (n=177)
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Table 5. Mean surface distance comparisons between our tool and other state-of-the-art 

upper-abdominal auto-segmentation models 

 

The model performance progression with increasing patient number (Figure 3) gave us a 

better perspective on why our quantitative results were comparable to state-of-the-art models. 

For challenging hollow structures such as the stomach and duodenum, the 3D U-Net models 

initially gained performance as the patient number increased. The DSC curve started converging 

as we approached 25 patients. Similar trends were observed in the large bowel and small bowel 

DSCs. While the mean DSCs converged, the standard deviations were decreasing for the 

stomach, large bowel and small bowel. Prediction results were less variable with a larger 

training/validation dataset. For solid organs such as the spleen, liver, and kidney, DSC scores 

were above 90 even with only 10 patients. This data provides insights for clinics or individuals 

that are interested in developing their individual 3D U-Net models for upper-abdominal organ 

segmentation. When faced with the task of creating auto-segmentation tools with a limited 

annotation budget, our findings might be a guideline for budget allocation.  

 

Mean (mm) SD (mm) Mean (mm) SD (mm) Mean (mm) SD (mm)

Duodenum 1.68 1.04 1.39 0.54 1.36 1.31

Small Bowel 1.99 2.10 1.99 1.08 3.01 3.35

Large Bowel 1.27 0.87 1.67 0.55 3.59 4.17

Stomach 1.23 0.78 1.77 1.19 1.68 1.55

Liver 1.07 0.49 1.45 0.80 1.23 1.52

Spleen 0.56 0.23 NA NA 0.42 0.25

Kidney Right 0.59 0.18 1.05 0.86 0.45 0.89

Kidney Left 0.61 0.19 1.06 0.79 0.30 0.30

Ours (n=40) Liu et al. (n=80) Wang et al. (n=177)
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Our tool was developed and tested on the ground truth label delineated according to our 

institution’s implementation of the RTOG guideline. While we introduced five radiation 

oncologists from three institutions to conduct qualitative evaluation, the test patients were from 

the same institution. With varying imaging protocols, image acquisition and reconstruction 

parameters, the model performance might suffer if the test patients were from various institutions 

from our experience46. In this case, small training samples might not be sufficient to guarantee 

great performance across varying patient cohorts. Further evaluation is needed to assess the 

model ensemble’s performance on different patient populations.   

For future work, automatic quality assurance of the generated contour, i.e. capturing 

clinically unusable contours, would also be a crucial addition to our automation tool. In addition, 

our center utilizes CT-on-rails image guided system for pancreatic radiation treatment. While our 

tool exhibited robust qualitative results on non-contrast-enhanced CT images, future work would 

include dose accumulation studies using automatically generated contours.  This can pave the 

way for adaptive radiation therapy in pancreatic radiation treatment.  

3.5 Conclusion 

We proposed a simple but effective approach for developing a deep learning-based 

segmentation model for upper-abdominal OAR segmentation. Using only 40 patients, we trained 

a nnU-Net model to generate automatic contours that was able to produce clinically acceptable 

results on both contrast-enhanced and non-contrast-enhanced CT images. The results of the 

presented analysis led to the clinical deployment of this tool.   
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Chapter 4: Deep Feature-based Contour Quality Assurance for Auto-segmentation 

Models 

4.1 Introduction 

Pancreatic cancer is one of the most aggressive tumor types. It is the 7th leading cause of 

cancer mortality worldwide3. Management of this type of tumor requires multidisciplinary 

collaboration47. Hypo-fractionated treatment for pancreatic cancer is becoming more popular due 

to increasing adoption of image-guidance prior to treatment7. With escalated dose per fraction, 

more organs-at-risk (OARs) are required to be delineated on the simulation CT image to 

complement the more stringent dose constraints. At our institution, contours of duodenum, large 

bowel, small bowel (ileum and jejunum), liver, spleen, kidneys and spinal cord are required for 

hypo-fractionated pancreatic cancer treatment.  

Deep learning-based auto-segmentation has dominated a variety of medical image 

segmentation challenges48. Recently, deep learning-based architectures were applied in 

delineating organs in the abdominal region9,49. These architectures achieved state-of-the-art 

performance on public datasets. Clinics are quickly adopting deep learning models for 

contouring in radiation treatment14–16. Auto-segmentation via deep learning, however, is still a 

data-driven approach. Deep learning-based techniques, therefore, are limited by models’ training 

data. Out-of-distribution examples often lead to poor performance50. For auto-segmentation tools 

deployed in a clinical setting, the capability to handle out-of-distribution patient images is 

crucial. Clinicians often encounter patients with variable anatomy caused by poor NPO (nothing 

by mouth), ascites, or prior surgical procedures. The presence of these variations frequently 

results in a decline in the performance of auto-segmentation. High performance deep learning 

models, on the other hand, are often created with well-curated datasets26,45. These datasets 
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usually do not include abnormal anatomy as they serve as poor ground truths for model training 

and validation. Therefore, capturing out-of-distribution samples and requesting human 

intervention are crucial safeguards for auto-segmentation tools deployed in clinics.  

 

In this study, we proposed a contour quality assurance approach by identifying out-of-

distribution samples. We hypothesized that CT images that are drastically different from the 

training set would lead to degradation in the clinical utility of generated contours. By comparing 

distances between deep features of the training and testing datasets, we aimed to capture out-of-

distribution patient images that were more likely to fail in the auto-segmentation workflow. We 

characterized the area under the curve (AUC) of the distance metric in detecting failed contour 

sets. Based on the AUC, we proposed an optimized threshold to flag patients that were 

unsuitable for the trained segmentation model.    
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4.2 Method 

Thirty pancreatic cancer patients who underwent radiation treatment at MD Anderson 

Cancer Center were randomly extracted from the clinical database. A clinically validated nnU-

Net model that has been deployed on more than 800 patients since 2021 was used to generate 

organs-at-risk contours on duodenum, small bowel, large bowel, stomach, liver, spleen and 

kidneys16. A radiation oncologist scored the predicted contours using a five-point Likert scale as 

identified abnormalities on the test cases. Contour sets were deemed as failed if any individual 

organ contour received a score below 3.     

Since U-Net-based segmentation networks are composed of an encoder and a decoder. 

Our distance-based quality assurance method utilized the trained encoder of the nnU-Net model. 

Inspired by Gonzalez et al.51, we first extracted deep features from the training dataset using the 

trained nnU-Net encoder. Features were sampled from the deepest layer of the trained encoder. 

Due to GPU memory constraint, training image patches of 192 × 192 × 48  were fed through 

the model. The patch extraction process and patch sizes were identical to the preprocessing 

pipeline for our trained nnU-Net model to eliminate confounding factors. In order to summarize 

features extracted from all patches of training images, we reduced their dimensionalities via 

strided average pooling operations and vectorized the resulting matrices. We then estimated the 

mean 𝜇 and covariance matrix ∑ of all extracted training patches.  A summary of this workflow 

was shown in Figure 7.     
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Figure 7. Quality assurance of deep learning auto-segmentation tool using deep features 

from the trained encoder.  

 

During the assessment of a previously unseen test patient, the image completed one 

forward pass through the trained encoder with its features extracted on a patch-by-patch basis. 

These features were also averaged pooled and vectorized. We measured the Mahalanobis 

distance, D, between the resulting test image patch feature 𝑥 to the Gaussian distribution of 

training features: 

𝐷 =   √(𝑥 −  𝜇)𝑇∑−1(𝑥 −  𝜇)  (1) 

Here, mean μ and covariance matrix ∑ were previously estimated from the training set. Each test 

image patch would be assigned with a distance. To determine if the test image was out of 

distribution against the training set, we summed all distances across the entire image volume to 

provide an overall assessment of this patient. We repeated this process for all clinically scored 

test images to assess the effectiveness of our quality assurance approach.   
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4.3 Results 

Among all test patients, eleven of the thirty test patients received a score of 1 or 2 on at 

least one organ in qualitative evaluations as shown in Table 6. These contour sets required major 

edits and were deemed as failed contours that required flagging. The Mahalanobis distance 

between test patients and training patients were shown in Figure 8. Patients likely to require 

major edits were successfully differentiated using this metric. 

 

Table 6. Qualitative evaluation scores for contours automatically generated by nnU-Net 

model ensemble on 30 test patients. Patients required major edits on at least one organ 

were identified as true positive cases for our QA approach 

 

 

Number of Patients

Major Edit (1-2) 11

Minor Edit (3) 8

Stylistic Edit or Use-as-is (4-5) 11
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Figure 8. Mahalanobis Distances Between Test Patient Images and Training Patient Image 

Distribution. Flagged patients using the optimal threshold were shown in peach color.   

  

The receiver operating characteristic (ROC) curve using the Mahalanobis distance to 

capture patients that require major edits was plotted in Figure 9. The area under curve value was 

0.89. Using the optimal threshold indicated by ROC curve that maximized true positive rate and 

minimized false negative rate, the specificity and sensitivity of flagging failed contours were 

0.91 and 0.79 respectively.

 

Figure 9. Receiver operating characteristic curve of our proposed contour QA method.  
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Our deep feature-based contour QA approach was able to successfully detect 10 out of 11 

patient contour sets that required major edits on at least one organ, using the optimal threshold 

value. A total of 14 patients were identified and flagged as shown in figure 8. Among them, 

seven patients required major edits on multiple organs. Anatomical variations that tend to 

degrade contour quality were identified by our QA approach. One patient was flagged due to the 

poor NPO status that led to contour failures as shown in Figure 10b. Another patient was flagged 

due to ascites as shown in Figure 12a. By flagging these images, the approach could provide with 

an indication of which patients may not be suitable for the deep learning segmentation model.  

 

Identifying misuse of the segmentation model on unapproved medical images was also a 

crucial component of our QA tool. At our center, we utilize both breath-hold and 4D-CT 

techniques for motion management in GI cancer. Most of our hypo-fractionated treatments are 

completed with the breath-hold technique. During the initial deployment of the abdominal OAR 

segmentation model, we considered contour generation on average CT as off-label use, as the 

model had not been validated for such images. Out of the 30 patients sampled for our test cohort, 

6 had average CT images as planning images. Our approach identified all patients with average 

CT, demonstrating its effectiveness in detecting off-label use of a deep learning model. In terms 

of contour quality, we observed acceptable segmentation performance from 2 patients, as shown 

in Figure 11.  

 

In total, four patients were identified as false positives, with two of these patients having 

average CT scans with acceptable clinical contours. The other two false positive patients were 

displayed in Figure 12. One patient had a single failed liver contour, which was missed by our 
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QA method and resulted in a false negative. Nonetheless, the remaining patients were correctly 

flagged, demonstrating the effectiveness in our contour QA approach. 
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Figure 10. Patients with multiple organ contour failures were correctly flagged with our 

QA approach. All organs required major edits except for kidneys and spinal cord on 

patient a. Duodenum, small bowel and stomach required major edits in patient b due to 

poor NPO (nothing-by-mouth) status. 

 

Figure 11. Acceptable contours falsely flagged by our contour QA approach on patients 

planned on with average CT. These patients used 4D CT as their motion management and 

are common source of off-label use of our segmentation model.  
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Figure 12. Falsely flagged patients by our contour QA approach. Patient a had ascites as 

well as metal artifacts. Patient b was planned on a non-contrast-enhanced CT due to 

contrast allergy The auto-segmentation model exhibited acceptable performance on these 

two challenging cases with varying imaging characteristics.  
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4.4 Discussion 

As deep learning-based auto-segmentation enters clinics, the quality assurance of its 

performance becomes crucial in the safe deployment of deep learning models52. These auto-

segmentation models, however, was often seen as black-box and lack interpretability12.  

Therefore, tracing and predicting failures of these models remains challenging. By extracting 

features from the deepest layers of our model, we probed the root causes of failure in deep 

learning models. In earlier work, we had noticed that DSC scores are not good indicators of 

clinical acceptability53. Here we used physician review to identify failures that were clinically 

relevant. With inputs from experts, we successfully captured out-of-distribution images that 

caused degradation in patient contour quality using deep features.  

 

We achieved excellent discrimination by using Mahalanobis distance to differentiate out-

of-distribution images that might lead to subpar segmentation performance. Existing contour QA 

approaches for deep learning auto-segmentation often require multiple models. A few studies 

have addressed the quality assurance of deep learning contours in the clinic. Isaksson et al. and 

Chen et al. aimed to predict Dice similarity coefficient between the ground truth and the 

generated contour given an image contour pair54,55. Rhee et al. proposed using independent 

segmentation models to capture failed contours56,57. These methods typically required new 

training dataset or separate models to capture failed contours and demanded expert input and are 

expensive to develop. Moreover, deep learning auto-segmentation models are subject to updates 

during their clinical lifecycle, often resulting from performance enhancement using additional 

data58 or evolving clinical contouring guidelines59. A contour QA approach that requires new 

model development would need to undergo a new cycle of training and validation for a new 
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model. In contrast, our method required no additional data collection or model training. Since the 

developers of the segmentation model are familiar with the training dataset, our approach offers 

an intuitive solution to identify patients that are less suitable for the deployed model. By only 

requiring deep features from the encoders, our method can be customized to perform QA for 

different deep learning models. This feature makes it suitable for the constantly changing 

landscape of clinical practice. Furthermore, our approach can be easily incorporated alongside 

clinically validated nnU-Net models during the contour generation process, as it only takes 30 

seconds per patient. 

 

Our distance-based contour QA approach can be sensitive to the relationship between the 

distribution of the training and testing image set. If training samples were not representative of 

images encountered during clinical operation, the test samples might consistently fall out-of-

distribution. As noted in Figure 11 and 12, models might encounter out-of-distribution images 

and still deliver clinically acceptable contours. Therefore, when models were deployed on patient 

cohort that were drastically different from the training set resulting from different imaging 

protocol, the Mahalanobis distance between training and testing images would be less indicative 

of contour quality. Our approach could generate excessive false positives in this scenario. 

Expanding the training dataset to include high-quality contours that are automatically generated 

from the segmentation model on the test cohort could potentially address this issue. In addition, 

our study was also constrained by the limited number of expert-scored contours. Organ-by-organ 

scores on complete contour sets evaluated by experts were time-consuming and expensive to 

obtain. Future work would include more patients in both training and testing cohort to show the 

prowess of our QA approach in a high-throughput environment. 
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4.5 Conclusion 

In this study, we developed a contour QA approach that can be deployed alongside a 

validated deep learning auto-segmentation tool. By extracting features from the deepest layer of 

the neural network, we sought to identify out-of-distribution test samples from the model’s 

perspective that are susceptible to contour failures. This approach can successfully identify 

patients unsuitable for the segmentation model by comparing deep features from the training set 

and the test sample. Using Mahalanobis distance as an indicator, our contour QA approach 

achieved an AUC of 0.89. Using this threshold, the specificity and sensitivity of flagging failed 

contours were 0.91 and 0.79 respectively. Our contour QA tool offered a fast and accurate 

solution for quality assurance of deep learning-based segmentation models. 
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Chapter 5: Transformer-based Liver Tumor Segmentation Driven by Self-supervised 

Learning  

5.1 Introduction 

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, 

accounting for approximately 75% of cases60. It is a major global health problem, with over 

800,000 new cases diagnosed each year and a high mortality rate61. The treatment of HCC is 

often multidisciplinary including surgery, ablation therapy and radiation therapy. With the 

advancement of image guidance techniques, stereotactic body radiation therapy (SBRT) has 

promoted radiation therapy as a more important pillar for liver cancer management62. These 

types of dose escalated radiation therapy require accurate delineation of targets to ensure patient 

safety. Gross tumor volume (GTV) segmentation is particularly important in the dose escalated 

treatment planning process. It serves as the foundation for treatment planning since other target 

volumes such as planning target volume (PTV) and planning organs-at-risk volume (PRV) were 

dependent on GTV delineation in liver SBRT treatment planning. Automating GTV delineation 

is crucial for adaptive treatment in dose-escalated radiation therapy63,64. It enables timely 

adjustments to the treatment plan based on changes in patient anatomy, ensuring accurate and 

effective radiation delivery. Furthermore, the utilization of auto-segmentation for GTV 

delineation in liver SBRT facilitates post-treatment analysis65. By collecting GTV volumes 

automatically, clinicians can more efficiently analyze treatment outcomes, such as local control 

rates and overall survival. This automated approach enables the aggregation of large datasets, 

allowing for comprehensive and statistically significant analyses of treatment response across a 

broader patient population. 
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Deep learning-based auto-segmentation has demonstrated significant potential across 

various segmentation tasks. Among the different architectures used, the U-Net17 approach has 

emerged as the most popular and widely utilized method for auto-segmentation. It consists of an 

encoder path that captures the context and spatial information from the input image, followed by 

a decoder path that reconstructs the segmented output. This architecture's unique design allows 

for the efficient extraction and integration of features at multiple scales, enabling accurate and 

detailed segmentation results. The U-Net architecture, however, requires significant amounts of 

data to achieve state-of-the-art performance. Recently, the transformer-based architecture has 

achieved state-of the-art results in a variety of computer vision tasks18. It is based on the 

transformer architecture which was originally proposed for natural language processing tasks66. 

Unlike traditional convolutional neural networks (CNNs), which are designed to process image 

data in a hierarchical and localized manner, transformer-based models can capture long-range 

dependencies and global context information, making them well-suited for tasks that require a 

more holistic understanding of the input data. In transformer-based segmentation, the model 

takes an image as input and generates a pixel-wise segmentation mask as output. The key idea is 

to use self-attention mechanisms, which enable the model to attend to different parts of the input 

image and incorporate relevant information into the segmentation process. This allows the model 

to better handle complex and variable-sized objects, as well as to deal with occlusions and 

overlapping regions. Its ability to incorporate global context and long-range dependencies has 

made it capable of adopting self-supervised learning techniques from natural language 

processing67. 

Self-supervised learning addresses the limitations of traditional supervised learning 

methods that require extensive annotated data, which can be expensive to obtain. In contrast to 
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supervised learning, self-supervised learning leverages the intrinsic information present in 

unlabeled data to learn meaningful representations without the need for explicit annotations68. In 

the context of medical image segmentation, self-supervised learning methods aim to train models 

by predicting image properties or generating informative surrogate tasks that indirectly facilitate 

segmentation. By utilizing these surrogate tasks, the model can acquire robust and discriminative 

features, which can subsequently be applied to accurately segment medical images. One 

commonly employed approach in self-supervised learning is the use of pretext tasks69. These 

tasks involve generating auxiliary labels or transformations from the unlabeled data, such as 

image rotations, translations, or predicting missing parts of an image. By training the model to 

solve these pretext tasks, it learns to capture relevant contextual information and underlying 

structures within the data, which can be advantageous for subsequent segmentation tasks.   

In this study, our aim was to investigate the influence of pretraining on segmentation 

performance in transformer-based auto-segmentation for liver tumors. Specifically, we employed 

the Swin-UNETR architecture70, which combines an encoder-decoder design similar to U-Net 

with the Swin-transformer as the encoder and a CNN-based decoder. The utilization of the 

hierarchical Swin-transformer allowed for both local accuracy and self-supervised training. To 

evaluate the impact of self-supervised pretraining on transformer-based auto-segmentation, we 

curated a new set of unlabeled CT images tailored for liver tumor segmentation. Our objective 

was to examine whether utilizing an in-domain pretraining dataset can improve the performance 

of the downstream segmentation model. 

5.2 Method 

A comprehensive dataset comprising a total of 3093 CT scans was gathered of liver 

cancer patients treated at MD Anderson Cancer Center between the years 2011 and 2022. The 
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dataset encompassed portal-venous phase contrast-enhanced simulation scans and non-contrast-

enhanced image guidance scans. Our unique motion management protocol involving CT-on-rails 

enabled the acquisition of a substantial number of unlabeled CT scans tailored for the pretraining 

of the liver tumor segmentation model. In addition, a publicly available dataset consisting of 

5050 CT scans was collected to serve as a benchmark for the pretraining process. This 

supplementary dataset encompassed CT scans from various anatomical regions, including the 

head, neck, chest, abdomen, and pelvis. To ensure standardization and comparability, 95% of 

both datasets were allocated for training purposes, while the remaining 5% was set aside for 

validation. Prior to training, all CT scans underwent preprocessing steps, which involved 

intensity value clipping within the range of -1000 to 1000, followed by renormalization. 

Furthermore, the scans were resampled to achieve an isotropic voxel size of 1.0x1.0x1.0 mm. 

Subsequently, patches measuring 96x96x96 were extracted from the non-air regions of the CT 

scans, serving as the training input. 

During the pre-training process, we optimized the Swin-transformer encoder by 

employing various proxy tasks for self-supervised representation learning. The main objective 

was to encode ROI-aware information of the human body. Inspired by previous studies on 

context reconstruction and contrastive encoding, we incorporated three proxy tasks. Firstly, we 

applied the cutout augmentation technique to randomly mask out ROIs in the sub-volume, 

compelling the model to regenerate the original patch. Secondly, we predicted the angle 

categories representing the rotation of the input sub-volume. Additionally, we leveraged self-

supervised contrastive coding to enhance representation learning. This involved maximizing the 

mutual information between positive pairs (augmented samples from the same sub-volume) 

while minimizing it between negative pairs (views from different sub-volumes). The overall 
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training process involved minimizing the total loss function, which encompassed masked volume 

inpainting, 3D image rotation, and contrastive coding as the key objectives in pre-training the 

Swin-transformer encoder70. The Swin-transformer encoder was trained on an A100 GPU. The 

training process utilized a learning rate of 1e-4, which was decayed by a factor of 1e-5. A batch 

size of 4 was used in pre-training. The model was trained for a total of 450,000 iterations of the 

training process. The training duration for the pretraining phase was approximately 303 hours. 

In the final training phase, we utilized the scans and segmentations from the liver task of 

the Medical Segmentation Decathlon Challenge48. The dataset consisted of 130 contrast-

enhanced CT images acquired from a cohort of patients diagnosed with primary cancers, 

specifically colorectal, breast, and lung cancers, as well as metastatic liver disease originating 

from these primary cancers. To assess the performance of our model, we randomly selected 30 

scans as the independent test set. From the remaining 100 scans, we performed random sampling 

to create multiple training and validation sets. Specifically, we randomly selected subsets of 20, 

50, and 100 scans, which were then divided into an 80:20 ratio for training and validation, 

respectively. The same training/validation split was maintained during the training of the final 

liver tumor segmentation models to ensure a fair comparison. For preprocessing, each CT scan 

was resampled to an isotropic voxel size of 1.0 x 1.0 x 1.0 mm. From these resampled scans, we 

extracted patches with dimensions of 96 x 96 x 96, which served as the input for our model. To 

enhance the variability and robustness of the training data, we employed extensive data 

augmentation techniques, including random flipping, rotation, intensity scaling, and shifting. The 

training process was conducted on an A100 GPU for a total of 5000 epochs. Three different 

training configurations were explored: training from scratch, training with an encoder pretrained 

on the public CT dataset comprising 5050 CT scans, and training with an encoder pretrained the 
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private MDA dataset specific to liver cancer patients, consisting of 3094 CT scans. To ensure a 

fair comparison, we maintained identical hyperparameters across all configurations using the 

reported configuration in Tang.et al70. which achieved competitive results at the Medical 

Segmentation Decathlon48. The learning rate was set to 1e-5, and the batch size was set to 2. The 

Dice Similarity Coefficient (DSC) scores between the ground truth and the generated contours 

for both liver and tumor segmentation were measured to evaluate the performance of different 

training strategies. 

5.3 Results 

The quantitative evaluation of the Swin-UNETR segmentation model, trained with 

different pretraining configurations, is presented in Table 7. When trained with 20 patients, the 

encoder pretrained with the public unlabeled dataset achieved the best performance in liver 

segmentation. However, training from scratch yielded the best mean DSC scores for liver tumor 

segmentation. Upon closer analysis in Figure 13, we found that the encoder pretrained with liver 

cancer patients achieved the highest median DSC. Additionally, this configuration exhibited the 

narrowest range between the 25th and 75th percentiles of all DSC scores, coinciding with the 

smallest standard deviation among the three configurations. In the case of training with 50 

patients, training the model from scratch demonstrated superior mean DSC performance in liver 

segmentation, while the encoder pretrained with the public dataset yielded the best mean DSC 

results for liver tumor segmentation. The encoder pretrained with liver cancer patients produced 

the highest median DSC. The utilization of pretraining led to improved segmentation outcomes 

for liver tumors when trained with 50 patients. However, this performance enhancement was not 

sustained when the training and validation set was expanded to include 100 patients. In this 

scenario, training the model from scratch exhibited the best performance in both liver and liver 
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tumor segmentation tasks, as indicated by the mean DSC. Furthermore, the public pretrained 

weight exhibited a narrower range between the 25th and 75th percentiles, while training from 

scratch yielded the highest median DSC.

 

Table 7. DSC scores between ground truth and contours generated by Swin-UNETR liver 

segmentation models using different pretraining strategies 

  

Patient No. Structure

DSC Std DSC Std DSC Std

Tumor 0.354 0.270 0.370 0.286 0.381 0.297

Liver 0.921 0.074 0.913 0.066 0.920 0.083

Tumor 0.468 0.313 0.474 0.295 0.407 0.310

Liver 0.934 0.081 0.940 0.046 0.940 0.037

Tumor 0.509 0.300 0.549 0.290 0.576 0.281

Liver 0.950 0.035 0.948 0.039 0.951 0.035

20

50

100

Liver Pretraining Public Pretraining Train from Scratch 
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Figure 13. Boxplots of DSC scores between ground truth and contours generated by Swin-

UNETR liver segmentation models using different pretraining strategies.  
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The qualitative assessment revealed impressive performance from all Swin-UNETR 

models in challenging cases. As depicted in Figure 14, we observed excellent tumor 

segmentation quality, particularly when the contrast timing was optimal, even in scenarios with a 

high number of tumors present. Although a few small lesions were missed, the overall 

performance remained respectable even when a small training set of patients was utilized. For 

tumors with ideal contrast, the impact of pretraining strategies was deemed minimal as all 

models managed to segment the majority number of lesions.  

 

Figure 14. Generated tumor contours of Swin-UNETR models using different pretraining 

strategies and training dataset size for patients with multiple lesions. All models achieved 

respectable performance partially due to excellent contrast between tumor and liver 

parenchyma.  
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Figure 15 demonstrated a steady improvement in model performance as the number of 

available training patients increased. Initially, all models displayed hesitancy in segmenting 

tumors along the posterior inferior end of the liver when trained with a small dataset. Models 

optimized with pretraining exhibited an even more cautious approach in segmenting tumors, 

although their performance improved as the number of patients increased. The models' 

tendencies to under-segment uncertain regions resulted in reduced variations, indicated by a 

smaller range between the 25th and 75th percentile DSC scores. However, these models also 

yielded lower overall DSC scores when compared to models trained from scratch. The encoder 

pretrained with liver cancer patients did not exhibit superior performance compared to its 

counterpart pretrained with a public dataset. In fact, it performed worse than the model trained 

from scratch. These findings indicated that domain-specific pretraining data did not enhance, but 

rather deteriorated model performance for the task of liver tumor segmentation. This result 

highlighted the importance of proper model initialization prior to training.  
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Figure 15. Generated tumor contours of Swin-UNETR models on portal venous phase CT 

images using different pretraining strategies and training dataset size. The segmentation 

quality increased as the dataset size increased. Encoder pretraining exhibited more 

conservative behavior for the lesion along the posterior inferior end of the liver.    

 

5.4 Discussion 

Deep learning-based auto-segmentation has emerged as the predominant approach for 

medical image segmentation, offering substantial advancements in accuracy and efficiency. The 

fundamental advantage of CNN-based architectures, such as U-Net17, V-Net71, or DeepLab72, 

lies in their exceptional capacity to capture spatial dependencies and hierarchical representations. 
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Through multiple layers of convolution and pooling operations, these networks extract intricate 

features at varying scales, enabling them to capture fine-grained details and contextual 

information necessary for precise segmentation. 

However, the success of CNN-based auto-segmentation heavily relies on the availability 

of large-scale annotated medical image datasets12. The scarcity of annotated medical image 

datasets poses a limitation on the generalizability of the models. Moreover, the variability in 

imaging protocols across different institutions can degrade model performance73, particularly 

when models are optimized on publicly available datasets. Therefore, it is imperative to develop 

effective approaches that leverage unlabeled or weakly labeled data through self-supervised or 

semi-supervised learning techniques, which hold promise in mitigating these challenges. 

With the emergence of transformer-based auto-segmentation approaches as a viable 

alternative in computer vision, self-supervised learning has gained significant attention in the 

field of medical image segmentation. Unlike their CNN counterparts, transformers are not 

limited by their receptive fields74, enabling transformer-based encoders to reconstruct 

representations from corrupted image volumes. This capability provides transformers with an 

inherent advantage in various pretext tasks for self-supervised learning. By combining 

transformers with self-supervised learning, models can capture intrinsic patterns and structures in 

unlabeled data, allowing them to extract meaningful representations that can greatly benefit 

subsequent segmentation tasks75. This approach not only reduces the reliance on annotated data 

but also allows for the discovery of complex patterns and relationships derived from a much 

larger number of patients that may not be readily apparent in limited labeled datasets. 



50 
 

In this study, we aimed to investigate the impact of different pretraining datasets on the 

segmentation performance of our final model. The selection of the unlabeled data used for self-

supervised pretraining plays a crucial role in shaping the segmentation model's capabilities. We 

curated a liver cancer CT dataset consisting of 3094 CT scans, specifically focusing on the 

anatomical structure and pathology relevant to the segmentation task, namely the liver and liver 

tumors. The intention behind this tailored dataset was to enable the pretrained model to acquire 

task-specific knowledge that could enhance the segmentation performance in the target domain. 

In contrast, the publicly available dataset, comprising 5050 CT scans, encompassed a broader 

spectrum of anatomies and pathologies. These datasets have been widely adopted for pretraining 

purposes in various medical imaging tasks. By comparing the performance of the model 

pretrained on our private liver cancer CT dataset with that of the model pretrained on the 

publicly available dataset, we can evaluate the benefits of tailored vs. generic pretraining data. 

This analysis sheds light on the extent to which task-specific knowledge acquired from a curated 

dataset can outperform the broader knowledge gained from a more diverse dataset. 

The utilization of encoder weights generated from our specific in-domain liver cancer 

dataset did not result in superior performance in terms of mean DSC compared to pretrained 

weights optimized with publicly available CT scans from diverse anatomical regions, such as the 

head, neck, chest, abdomen, and pelvis. In models trained with 25 and 50 patients, the model 

pretrained with liver cancer patients exhibited the highest median DSC. This meant the 

distribution of DSC scores for this configuration was skewed towards higher values. 

Furthermore, both pretrained models exhibited a more conservative segmentation style during 

qualitative evaluation when encountering regions of uncertainty as shown in figure 15. This 
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tendency towards under-segmentation had a detrimental effect on the quantitative results of 

tumor segmentation, leading to inferior performance overall.  

However, both pretrained models demonstrated impressive performance in tumor 

segmentation when the training set consisted of 50 patients. This particular training data size 

appears to be an optimal point for self-supervised pretraining to enhance the performance of the 

baseline model. Existing literature has also reported diminishing performance gains from self-

supervised pretraining as the training set grows larger. Our study corroborated these findings, as 

the model trained from scratch achieved the best performance when all 100 patients were 

included in the training set. On the other hand, consistently, the pretrained models exhibited the 

smallest range between the 25th and 75th percentile DSC scores as shown in Figure 13. This 

observation further supported our qualitative observation that pretrained models exhibit less 

variability in the generated contours during qualitative evaluation. Adequate pretraining allowed 

the encoder to assimilate more data, resulting in more cautious models.  

The utilization of liver cancer patients for pretraining did not yield noticeable benefits in 

liver tumor segmentation. Despite achieving the highest median Dice Similarity Coefficient 

(DSC) scores for both the 25 and 50 patient datasets, our liver cancer pretrained weights 

exhibited inferior performance overall compared to the publicly pretrained weights. The liver 

tumor segmentation model derived from the liver cancer pretrained weights did not exhibit 

enhanced robustness, even though the pretraining dataset was abundant and closely aligned with 

the downstream task. This unexpected finding could be attributed to two potential causes. Firstly, 

the model initialized with liver cancer pretrained weights might have suffered from overfitting. 

Given the similarity within the dataset (identical pathology, similar imaging protocol), the model 

might have acquired suboptimal representations due to the homogeneity of the dataset. In the 
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context of self-supervised learning in medical imaging, the objective is to construct a wholistic 

representation of cross-sectional anatomy. Hence, the more diverse the pretraining dataset, the 

higher the likelihood of achieving generalizability in the model encoder. However, 

generalizability was essential when the downstream task was drastically different from the 

pretraining population. It was surprising to observe that a homogeneous dataset failed to 

contribute to the model's ability to generalize effectively in an in-domain downstream 

segmentation task (liver cancer patients to liver tumor segmentation). The relationship between 

representation construction through self-supervised learning and downstream segmentation 

turned out to be more intricate than anticipated. 

This led us to consider the second potential cause for the decline in performance. While 

we were able to monitor the validation loss during pretraining, there was no direct indication of 

how well it would translate to the downstream task of liver tumor segmentation. Assessing the 

training and data quality of pretraining was challenging until after the completion of training for 

the downstream segmentation model. Since the accomplishment of meta-tasks in self-supervised 

learning only had theoretical correlations with improved performance in the downstream model, 

real-time evaluation of pretraining quality prior to final testing was difficult. Even though we 

selected the pretrain weights with the lowest validation loss, there was no guarantee that this 

particular set of weights would yield the best results in the downstream liver tumor segmentation 

task. In addition, a number of hyperparameter combinations led to instability in training and the 

encoder failed to converge. Our final pretrained encoder was selected from a limited number of 

candidates based on validation loss and might have not been the best optimized option. Hence, 

we suspected that we were unable to fully extract the potential of our liver cancer dataset due to 

suboptimal pretraining. 
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Therefore, to ensure the efficacy of the pretrained model, it is essential to include 

variations and complexities representative of the target segmentation task within the pretraining 

dataset. This enables the model to acquire robust and discriminative features that exhibit 

effective generalization capabilities when applied to new data. Moreover, the quality of training 

during the pretraining stage demonstrated considerable variation. The process required extensive 

expert input to stabilize the training and avoid potential performance degradation. Proper 

handling of the training process is essential to ensure optimal model performance and prevent 

any adverse effects. These findings underscore the significance of diverse dataset selection and 

optimized training procedures in achieving superior performance in self-supervised learning-

enhanced auto-segmentation. A meticulous approach that incorporates representative variations 

and expert-guided training strategies is crucial for maximizing the effectiveness and 

generalizability of pretrained models in medical image segmentation tasks. 

In contrast, training the segmentation model from scratch yielded satisfactory 

segmentation performance and often surpassed the performance of both pretrained encoders in 

terms of mean DSC. These results indicated that while self-supervised pretraining shows 

potential, its effectiveness in enhancing performance can be variable. Merely conducting self-

supervised training does not guarantee improved performance. The successful utilization of 

pretrained encoders relies on careful tuning not only of the pretrained encoder itself but also of 

the downstream segmentation model. Proper initialization and parameter optimization are critical 

for achieving optimal performance. Neglecting these aspects can lead to performance 

degradation rather than improvement. Careful attention should be given to ensure appropriate 

initialization and effective parameter tuning to maximize the benefits of self-supervised 

pretraining in the context of medical image segmentation. 
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5.5 Conclusion 

Self-supervised pretraining with unlabeled data holds significant potential for enhancing 

medical image segmentation. The utilization of large and diverse datasets, including both 

publicly available and private datasets, enables models to acquire valuable representations that 

contribute to improved segmentation performance. However, the success of self-supervised 

pretraining relies on meticulous selection of the pretraining dataset and careful tuning of the 

encoder and the segmentation model. In this study, we utilized a large private unlabeled liver 

cancer CT dataset to pretrain our Swin-transformer encoder for liver tumor segmentation. We 

found that our unique dataset combined with self-supervised learning technique failed to enhance 

our segmentation results. We recommend a diverse and large unlabeled dataset for self-

supervised pretraining instead of a domain specific dataset. In addition, training from scratch is 

also a viable option when sufficient labelled data are available. We hope that our work can 

contribute to the understanding of self-supervised learning in the field of medical image 

segmentation. 
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Chapter 6: Uncertainty-guided Pancreatic Tumor Auto-segmentation with Tversky 

Ensemble 

6.1 Introduction 

Pancreatic cancer remains a significant challenge in modern oncology, projected to 

become the second leading cause of death in the United States by 203076. To optimize the 

management of this deadly disease, a multi-disciplinary approach is commonly employed, with 

radiation therapy serving as a critical component. However, standard doses of radiation therapy 

have been found to be inadequate for effective tumor control in pancreatic cancer patients77. 

Consequently, dose escalation has emerged as a prevailing strategy for treating inoperable 

locally advanced pancreatic cancer after systemic chemotherapy47. To implement these treatment 

modalities successfully, accurate identification of the pancreatic tumor is essential. 

Unfortunately, pancreatic tumors remain notoriously difficult to differentiate from the 

surrounding parenchyma, even for experienced clinicians. Currently, the clinical workflow in 

radiation therapy of pancreatic cancer involves contouring the tumor on the portal-venous phase 

of the contrast-enhanced CT scans. Given the significant level of inherent uncertainty, clinical 

notes are often necessary to achieve the desired level of accuracy in tumor contouring.  

In recent years, deep learning-based auto-segmentation has emerged as the preferred 

method for biomedical image segmentation, owing to its remarkable performance in a broad 

spectrum of applications. Notably, the U-Net architecture and its variants have demonstrated 

exceptional efficacy in diverse image segmentation tasks. More recently, transformer-based 

architectures have gained considerable attention in computer vision tasks, with vision 

transformers (ViTs) exhibiting state-of-the-art performance in image classification18. In the 
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context of medical image segmentation, transformer-based architectures combined with self-

supervision training techniques have shown superior results compared to U-Net in the medical 

segmentation decathlon70. Although deep learning-based approaches have shown remarkable 

performance, they often suffer from a tendency towards overconfidence in probability 

estimation73. This can be particularly challenging in segmentation tasks where ground truths are 

uncertain, as in the case of pancreas tumor segmentation. While segmentations are typically 

derived from probability maps, these maps often do not accurately reflect the true probability 

distribution. 

To achieve real-world probability estimates using deep learning models, calibration is 

necessary to ensure the predicted probability map is accurate. Calibration techniques such as 

Monte-Carlo dropout78 and test-time augmentation79 are widely used to generate accurate 

uncertainty estimates in tandem with the segmentation results, which enables users to obtain 

interpretable outcomes. Another promising approach to address overconfidence in deep learning 

models is the use of deep ensembles80. This study highlights that models trained with different 

configurations can reach their conclusions in distinct ways. By averaging the output probability 

of high-performance segmentation models within an ensemble, a more robust probability map 

can be generated that reflects the consensus of expert models. Notably, calibration results are 

more precise when model configurations diverge80. Incorporating a diverse set of model 

configurations within an ensemble for segmentation can not only provide accurate uncertainty 

estimation but also enhance the model's segmentation performance. 

In this study, we employed the state-of-the-art transformer-based architecture Swin-

UNETR to perform pancreatic tumor segmentation70. Traditional segmentation methods with 

discrete output encounter challenges in cases where the ground truth is uncertain. To tackle this 
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problem, we incorporated Tversky losses81 to generate models with different contouring styles, 

which were developed to accommodate stylistic differences from different experts. By 

incorporating different segmentation styles, we constructed a deep ensemble with varying 

segmentation tendencies to create a calibrated probability map for pancreas tumor segmentation. 

This probability map enabled us to generate segmentations that align with physician needs 

through thresholding. Moreover, we could mitigate segmentation errors by eliminating regions 

with high uncertainty via thresholding.  

6.2 Method 

Our study included a total of 282 portal-venous phase CT scans from the pancreas task of 

the Medical Segmentation Decathlon48. Both pancreatic masses (cyst or tumor) and parenchyma 

were delineated. To create an independent test set, 30 patients were randomly selected. The 

remaining 252 patients were divided into a training set (80%) and a validation set (20%). To 

fully leverage the entire training set, we utilized five-fold cross validation. The CT images were 

clipped from -87 to 199 HU and resampled isotropically at 1.0mm x 1.0mm x 1.0mm. Given that 

the Swin-UNETR architecture is 3D-based, we cropped images into 96 x 96 x 96 patches with an 

overlap of 50%. Additionally, data augmentation strategies such as random flip, rotation, 

intensity scaling, and shifting with varying probabilities were employed. The training of the 

model was conducted on a single A100 GPU for a total of 5000 epochs with a learning rate of 

1𝑒−4 and a batch size of 2. Each member of the ensemble required 151 hours to complete 

training. In order to ensure a fair comparison with the state-of-the-art Swin-UNETR models in 

the pancreas task, the preprocessing pipeline and hyperparameters were kept identical as reported 

in Tang et al.49. This was done to eliminate any potential confounding factors that could 

influence the performance comparison. 
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To integrate various segmentation styles into our ensemble, we utilized the Tversky loss 

layer during our training process. The baseline ensemble of Swin-UNETR models aims to 

minimize the Dice similarity coefficient during training, which assigns equal weight to false 

positives (FP) and false negatives (FN): 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
  

Tversky index, on the other hand, allows us to weigh FP and FN: 

𝑇𝐼 =  
𝑇𝑃

𝑇𝑃 + 𝛼𝐹𝑁 + 𝛽𝐹𝑃
 

Here, α and β (α+β=1) controls the magnitude of the penalties for FN and FP. Through 

manipulating the Tversky index hyperparameters, we can customize the segmentation tendencies 

of our models. Models with an α greater than 0.5 have a tendency to under-segment as they 

penalize false negatives more heavily. Conversely, models with an α less than 0.5 tend to over-

segment as they prioritize false positives. However, optimal and well-balanced segmentation is 

still maximally rewarded regardless of these tendencies.  

Utilizing the Tversky loss, we can regulate each model's segmentation tendencies to 

imitate the contouring styles of multiple experts. To create a Tversky ensemble, we assigned 

unique α values to each of the five members. The ensemble was trained with α values of 0.1, 0.3, 

0.5, 0.7, and 0.9, respectively. The introduction of distinct training-validation folds for each 

member introduced both data and stylistic variations into the ensemble, leading to improved 

uncertainty estimation. 
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The model's predictions were generated using sliding windows with a 50% overlap, and 

the mean probability of all members in the Tversky ensemble was utilized. The calibrated 

probability map for tumor prediction was directly extracted from the inference results. 

Probability thresholding was applied to produce the final segmentation, and for quantitative 

evaluations against the ground truths, we extracted eleven final segmentations by varying the 

threshold values ranging from 0.05 to 0.9 on the probability map. 

6.3 Results 

Table 8 presents the quantitative results of all the thresholded contours. Our findings 

indicated that thresholding the probability maps with a value of 0.05 yielded the highest Dice 

similarity coefficient (DSC) results, while contours thresholded with a probability value of 0.5 

exhibited the lowest distance metric. Employing a less stringent probability threshold resulted in 

improved DSC values at the expense of increased variability in the generated contours, as 

reflected by the increasing distance metrics. 

 

Mean SD Mean SD Mean SD

0.05 0.47 0.33 14.43 14.19 4.92 9.54

0.1 0.46 0.33 14.80 14.45 4.93 9.57

0.2 0.45 0.33 14.94 14.63 4.95 9.62

0.3 0.44 0.34 15.38 15.91 5.65 10.64

0.4 0.44 0.34 15.55 16.05 5.61 10.46

0.5 0.43 0.34 14.03 10.98 4.07 6.13

0.6 0.42 0.34 14.11 10.99 4.09 6.12

0.7 0.41 0.34 14.16 11.03 4.10 6.11

0.8 0.40 0.33 14.29 11.07 4.11 6.10

0.9 0.39 0.33 14.52 11.11 4.11 6.08

Best 0.47 0.33 12.70 9.96 3.24 4.58

Swin-UNETR 0.43 0.34 13.40 10.08 3.83 4.12

DSC HD95 (mm) MSD(mm)
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Table 8. Contours created with varying thresholds of the probability map. Best results 

were created from selecting the contours with the lowest HD95 for each individual case. 

The Swin-UNETR results were from a 5fcv Swin-UNETR ensemble trained with DSC loss. 

The same data preprocessing and hyperparameter configuration won the pancreas task of 

the Medical Segmentation Decathlon.   

In the clinical workflow, contours were thresholded in real-time, enabling physicians to 

select contours that align with their preferred stylistic preferences. To mimic the human-in-the-

loop adaptation process, we selected the contours with the lowest 95th percentile Hausdorff 

distance (HD95) among the eleven probability thresholds from each patient for final quantitative 

evaluation. Our final quantitative results surpassed those of the Swin-UNETR configuration, 

which achieved state-of-the-art results in the pancreas task of the Medical Segmentation 

Decathlon challenge. The boxplots of the quantitative results were shown in Figure 16. 

  

Figure 16. Quantitative results of automatically generated contours compared to ground 

truths. Contours were generated by thresholding the probability map with a variety of 
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values (0.05 and 0.9 as shown) and the contour with the lowest HD95 were chosen to serve 

as the best contour to compare against the Swin-UNETR ensemble.  

We observed that our method achieved higher DSC scores while maintaining relatively 

low distance metrics across all thresholded contours. By mimicking expert input and selecting 

the contour with the lowest HD95 value, we obtained more competitive distance metric results 

compared to Swin-UNETR. Moreover, the mean and median DSC values remained competitive 

when the contours were selected by the lowest HD95 distance. These findings highlighted the 

effectiveness of incorporating customization into the auto-segmentation pipeline. 

 

Figure 17. The trend of segmentation quality as thresholding value increases was shown in 

boxplots. The DSC scores between generated contours and ground truths decreased and 

the distance metric increased.  

Upon closer examination of the segmentation performance with varying thresholding 

values, we observed a surprising trend. When employing an overly cautious segmentation 
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approach (high probability threshold), as depicted in Figure 17, the generated contours exhibited 

lower DSC scores, as anticipated. However, we also observed that this conservative contouring 

strategy led to poorer distance-based results. In contrast, an over-segmentation style yielded 

more favorable quantitative outcomes in both DSC and distance metrics in pancreatic tumor 

segmentation. 

   

 

6.4 Discussion 

Contouring pancreatic tumors on contrast-enhanced CT images is a challenging task, 

even for experienced radiologists. The hypodense areas on CT images often fail to capture all of 

the diseased areas, as experts tend to include areas that cannot be identified by imaging features 

alone when delineating tumors. This process introduces inter-observer variability since the 

imaging features at the tumor borders are faint82. Thus, this segmentation task requires high 

sensitivity and low specificity, as well as options for customization to accommodate clinician 

preferences. In deep learning-based auto-segmentation, uncertain ground truths can pose 

significant challenges for models to learn and validate due to the inherent variability in the 

training data83. Moreover, the inconsistent anatomical context provided by the training contours 

can hinder model convergence, further complicating the task. 

In our study, we proposed an approach to address segmentation tasks with uncertain 

ground truths by utilizing ensemble-based uncertainty estimation techniques. Deep ensembles 

have demonstrated remarkable performance in uncertainty estimation tasks, and greater 

variability within the ensemble has been observed to improve the calibration of the pixelwise 
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probability map80. To introduce human-like variability and incorporate multiple segmentation 

styles into the consensus probability estimation, we employed the Tversky loss function to fine 

tune the contouring style of each individual model81. In addition to using different data folds, we 

tuned the Tversky hyperparameters to generate models with varying segmentation tendencies. 

This enabled the creation of multiple segmentations from a well-calibrated probability map that 

can be adjusted to the physician's preferences as shown in Figure 18. Our approach yielded 

superior quantitative results compared to the Swin-UNETR ensemble, which was trained and 

tested on the same dataset with identical cross-validation data folds. Both the Tversky ensemble 

and the Swin-UNETR ensemble were trained using the preprocessing and hyperparameters 

reported by the ensemble that achieved state-of-the-art performance in the pancreas task of the 

Medical Segmentation Decathlon. 

 

Figure 18: A sample probability map generated by Tversky ensemble. Final segmentations 

were derived from thresholding the probability map. On this CT slice, the probability map 

perfectly reflected the tumor volume while providing pixelwise uncertainty estimation. 

The Dice similarity coefficient (DSC) results showed consistent improvement with lower 

probability thresholds as shown in figure 17. Upon qualitative observation, we found that the 

model consistently under-segmented the tumor compared to the ground truth. While the 
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generated segmentations captured the hypodense regions in the CT images, they failed to 

extrapolate to the surrounding diseased areas that were less prominent to the human eye. By 

lowering the probability threshold, the generated contours became more aggressive in delineating 

the uncertain regions at the tumor border. This resulted in a greater overlap with the ground 

truths labeled by experts, as depicted in figure 19, leading to improved quantitative performance. 

Selecting the contours based on the lowest HD95 distance further improved the distance metrics 

without compromising the DSC. By optimizing the thresholding strategy on a patient-by-patient 

basis, we retained aggressive segmentations that incorporated uncertain regions while 

eliminating erroneous regions with low confidence. In the clinical workflow, physicians could 

threshold the probability map in real-time to accommodate their preferences. Our approach 

offered a promising option for generating an accurate tumor segmentation on the contrast-

enhanced CT in a timely manner. 
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Figure 19: Deep learning models often suffered from under-segmentation of pancreatic 

tumors at the tumor border. Our Tversky ensemble allowed for the application of a more 

lenient thresholding, leading to better quantitative results. 

While over-segmentation was preferred in pancreatic tumor segmentation due to the 

inherent uncertainty at tumor borders, incorporating low probability regions was not without its 

drawbacks. When lenient thresholding was applied, the ensemble could falsely identify tumors 

from benign anatomy, as illustrated in figure 20. This occurrence was common in auto-

segmentation since pancreatic tumors often displayed low contrast compared to the surrounding 

tissue. False positives were frequently observed due to the presence of hypodense regions 

throughout the CT scans. In our post-processing step, we retained the largest connected 

component of the predicted contours, which could result in falsely labeled low probability 

regions becoming the larger connected component and leading to poor quantitative results. This 

perturbation to the distance metrics occurred when increasing the threshold from 0.4 to 0.5. 

However, the calibrated probability map offered an opportunity to detect some mis-contoured 

cases based on uncertainty estimates. Clinicians could visually identify regions with low 

confidence. If the initial probability map was found to be erroneous, they had the ability to 

eliminate falsely identified tumor regions by increasing the probability threshold, as 

demonstrated in figure 20. This feature allowed the model to maintain an aggressive approach in 

most cases to ensure optimal results, while producing accurate contours after human intervention 

when the Tversky ensemble was uncertain.  
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Figure 20: False positive regions eliminated via probability thresholding based on 

uncertainty context provided by Tversky ensemble.  

Based on our observation that over-segmentation tendencies yielded contours that were 

closer to the ground truth, we aimed to investigate the feasibility of creating an over-segmenting 

ensemble through manipulation of the Tversky hyperparameters. We selected a Tversky α value 

of 1.0 to construct an ensemble that maximally rewarded over-segmentation. To ensure fairness 

in our comparative analysis, we again utilized identical data split, preprocessing techniques, and 

hyperparameters outlined by the state-of-the-art Swin-UNETR ensemble. We trained the over-

segmenting ensemble using 5-fold cross-validation, specifically emphasizing over-segmentation 

characteristics with the largest α value possible. The resulting over-segmenting ensemble only 

achieved an average DSC of 0.40. This performance deterioration underscored the significance 

of the diversity introduced by the varying Tversky hyperparameters. It substantiated the crucial 

role of a well-calibrated probability map in achieving accurate segmentation. Directly tuning the 

model towards the desired behavior did not yield improvements in segmentation quality. By 

incorporating diverse segmentation tendencies within the Tversky ensemble, we successfully 

generated a probability map that was better calibrated. Consequently, this advancement 

facilitated more precise segmentation and offered opportunities for stylistic customization in our 

results. 
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Our proposed approach still required human intervention for the final contouring. This 

was due to the existing challenges in segmenting pancreatic tumors with deep learning 

approaches. The state-of-the-art approach achieved an average DSC of 0.43 in our test set, 

indicating that expert input remained necessary for achieving optimal plan quality in 

segmentation workflows. Despite outperforming the state-of-the-art model ensemble using 

identical preprocessing and hyperparameters, our tool was not yet capable of fully automating 

the segmentation of pancreatic tumors. Additionally, our post-processing pipeline, which 

retained the largest component, might introduce unintended variabilities when using low 

probability thresholds for aggressive contouring at the tumor border. Therefore, caution is 

advised when conducting thresholding to avoid compromising the accuracy and quality of the 

final segmentation results. 

6.5 Conclusion 

In this study, we employed an ensemble-based uncertainty estimation technique to 

facilitate the segmentation of pancreatic tumors. Given the inherent ambiguity of ground truth 

delineation, we adapted the Tversky loss function to account for a variety of contouring styles 

and generate a consensus probability map that can be fine-tuned by clinicians in line with their 

preferences, following model inference. By utilizing the same network architecture, data 

preprocessing pipeline, hyperparameters, and ensembling strategy as the state-of-the-art model, 

our approach outperformed its Swin-UNETR counterpart in the pancreatic tumor segmentation 

task of the Medical Segmentation Decathlon. Furthermore, our method provides pixel-wise 

uncertainty estimation, which enables clinicians to generate contours with greater confidence. 

We are optimistic that our Tversky ensembles can serve as an accurate and dependable solution 

for pancreatic tumor segmentation.  



68 
 

Chapter 7: Discussion 

In this project, we aimed to develop automated segmentation tools for pancreatic and 

liver cancer radiation treatment. Manual segmentation, which is time-consuming, subjective, and 

susceptible to variability among observers, has been the conventional protocol prior to radiation 

treatment planning. However, recent advancements in deep learning-based auto-segmentation 

have demonstrated exceptional results across various medical segmentation challenges. By 

integrating deep learning into the treatment planning workflow, we can streamline and 

standardize clinical practices.  

Throughout the development of various initial segmentation models, we observed that 

data quality played a pivotal role in determining the clinical performance of deep learning-based 

auto-segmentation tools. Consequently, our focus shifted towards curating a unique dataset 

specifically tailored to our contouring practice. We meticulously contoured the organs-at-risk on 

contrast-enhanced CT scans from a cohort of 70 patients. The compilation of this dataset served 

a dual purpose: it served as both the training set for our segmentation models and as a benchmark 

for evaluating their performance. Through U-Net-based segmentation architectures, we obtained 

exceptional quantitative and qualitative results from this carefully curated dataset. These 

outcomes have substantiated our hypothesis that, with a high-quality training set, a total of 40 

patients would suffice to construct a robust and reliable auto-segmentation tool. This finding 

underscores the importance of data quality in facilitating the development of accurate and 

effective segmentation models. We decided to make these expertly reviewed data publicly 

available, with the aim of facilitating the development of new auto-segmentation models for 

clinics worldwide. To the best of our knowledge, this is the first highly-curated dataset 
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encompassing both small and large bowel segmentation, as it necessitated expert input for 

accurate delineation. 

Since its implementation in 2021, our nnU-Net-based organs-at-risk segmentation tool 

has been widely utilized in our clinic, providing contour generation for more than 800 patients. 

The exceptional performance of the nnU-Net played a significant role in the success of this auto-

segmentation tool. However, another crucial factor contributing to its success was the extensive 

collaboration between our team and the clinical department. The training dataset was 

recontoured under the guidance of our department's experienced physicians, resulting in 

generated contours that closely aligned with their stylistic preferences. Moreover, the clinical 

validation of our tool involved the active participation of experts from our institution, further 

ensuring its accuracy and reliability. This comprehensive collaboration and the involvement of 

domain experts have been instrumental in the seamless deployment of our organs-at-risk 

segmentation tool. 

Our comprehensive qualitative evaluation, encompassing both contrast-enhanced and 

non-contrast CT images from a cohort of 75 patients, provided us with valuable insights into the 

clinical adoption of deep learning auto-segmentation techniques. While the majority of our 

generated contours demonstrated clinical acceptability, it is noteworthy that certain contours 

required major edits. These contours would need to be flagged prior to entering the treatment 

planning phase. Moreover, physicians identified a notable portion of contours that exhibited 

stylistic deviations from their preferences, indicating the need for further integration of diverse 

contouring styles into auto-segmentation models. Such integration is crucial to enhance clinician 

satisfaction and optimize the overall performance of the segmentation tool. 
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In order to address the patients requiring major edits, we implemented a quality assurance 

tool designed to identify out-of-distribution patients that could potentially degrade the 

performance of the segmentation process. This tool proved particularly effective due to the fact 

that our training dataset was sourced internally from our institution. The imaging protocol, 

including contrast timing and motion management, employed in the training CT images 

remained relatively consistent with the CT images used in the deployment of the model. 

Consequently, the detection of out-of-distribution samples was highly successful in 

distinguishing patients likely to exhibit poor segmentation performance. This approach 

contributed to the overall robustness and reliability of our segmentation models, enhancing their 

clinical utility.  

Other contour quality assurance approaches were also considered. Our lab had experience 

in using a secondary contouring system to detect erroneous contours56. We considered using 

other deep learning architectures to serve as the secondary contouring system. However, the 

performance of our secondary contouring system was inferior to the nnU-Net as shown in table 

9, 10 and 11. Using an inferior model as the secondary contouring system to capture failure 

contours could lead to a large number of false positives since contour differences were most 

likely caused by the failure of the secondary system. This posed an issue for structures prone to 

contouring errors such as the bowel structures. The transformer-based segmentation methods 

significantly underperformed at these structures. However, the development of the secondary 

contouring system for OARs led to the utilization of transformers in the target segmentation 

component of the project.  
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Table 9. Mean Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and 

mean surface distance (MSD) between ground truth and prediction results from nnU-Net 

on contrast-enhanced CT images 

 

  

Table 10. Mean Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and 

mean surface distance (MSD) between ground truth and prediction results from Swin-

UNETR on contrast-enhanced CT images 

Organs

Mean SD Mean SD Mean SD

Duodenum 0.80 0.08 12.34 9.09 1.68 1.04

Small Bowel 0.89 0.05 7.77 8.90 1.99 2.10

Large Bowel 0.90 0.06 7.15 8.42 1.27 0.87

Stomach 0.92 0.03 4.77 2.98 1.23 0.78

Liver 0.96 0.01 3.56 1.71 1.07 0.49

Spleen 0.97 0.01 2.21 1.27 0.56 0.23

Kidney_R 0.96 0.01 2.51 1.29 0.59 0.18

Kidney_L 0.96 0.01 2.52 0.90 0.61 0.19

SpinalCord 0.76 0.15 42.52 38.62 10.57 10.49

DSC HD95 (mm) MSD(mm)

Organs

Mean SD Mean SD Mean SD

Duodenum 0.76 0.11 13.16 9.47 2.24 2.07

Small Bowel 0.85 0.07 10.42 8.64 2.62 1.87

Large Bowel 0.87 0.06 11.34 9.83 2.00 1.47

Stomach 0.90 0.04 6.45 4.46 1.62 1.06

Liver 0.96 0.01 7.29 19.09 1.86 4.19

Spleen 0.96 0.02 2.82 2.52 0.96 1.13

Kidney_R 0.96 0.01 2.69 1.64 0.63 0.24

Kidney_L 0.95 0.02 2.95 1.76 0.75 0.41

DSC HD95 (mm) MSD(mm)
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Table 11. Mean Dice similarity coefficient (DSC) between ground truth and prediction 

results from UNETR with different configurations on contrast-enhanced CT images 

In order to address diverse stylistic preferences in target volume contouring, our objective 

was to incorporate a broader spectrum of contouring styles into the process. It was observed that 

stylistic disagreements were more prevalent in the definition of target volumes compared to the 

contouring of organs-at-risk82,84.84 The adoption of automated target volume generation using 

auto-segmentation techniques in clinical practice has been hindered by variations in stylistic 

preferences among clinicians, resulting in a lack of trust in the accuracy and reliability of the 

automated system. In order to mitigate these concerns, we employed the Tversky loss function to 

regulate the segmentation tendencies of deep learning models. By adjusting the hyperparameters 

of the Tversky loss layer, we could control the level of under-segmentation or over-segmentation 

of the tumor, thus providing flexibility in contouring preferences. Building upon the Swin-

UNETR model ensemble, we created multiple models with varying Tversky hyperparameters. 

This ensemble of models enabled the incorporation of diverse stylistic preferences, resulting in a 
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calibrated probability map through consensus. By applying a threshold to the probability map, 

clinicians were able to identify contours that best aligned with their preferred contouring styles.  

As we transitioned to target segmentation tasks, specifically the delineation of gross 

tumor volumes (GTVs), we observed that transformer-based segmentation networks had attained 

remarkable performance in various tumor segmentation challenges4984. Encouraged by these 

advancements, we opted to also employ the Swin-UNETR architecture for liver tumor 

segmentation. Leveraging our unique simulation protocols and motion management techniques, 

we acquired a substantial number of unlabeled abdominal images, which served as ideal 

candidates for self-supervised learning approaches facilitated by transformer-based architectures. 

During the development of liver GTV segmentation, we noted that while self-supervised learning 

had achieved state-of-the-art performance in diverse segmentation tasks, its successful 

deployment required intervention in both its training and pretraining. The choice of data used for 

pretraining had a significant impact on the final results, as it could potentially degrade the 

performance compared to training from scratch. Moreover, careful hyperparameter tuning of 

both the pretraining and training stages played a critical role in optimizing the network's 

performance. Our findings underscored the importance of thoughtful data selection for 

pretraining, as well as the careful tuning of hyperparameters during training, in order to 

maximize the performance and applicability of transformer-based networks in the field of 

medical image segmentation. 

Throughout this comprehensive segmentation study, we underscored the essential 

contribution of multidisciplinary expert inputs in the development and deployment of auto-

segmentation tools. The construction of a suitable dataset for deep learning development 

necessitated the integration of expert knowledge derived from medical training. Furthermore, the 
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effective handling of deep learning algorithms demanded substantial expertise in hyperparameter 

tuning. In the context of supervised learning, our findings consistently demonstrated that the 

nnU-Net showcased exceptional performance as an out-of-the-box solution. It provided medical 

professionals with a reliable framework to leverage their domain knowledge while yielding 

reliable results. Therefore, for clinical deployment, the nnU-Net remains a dependable choice to 

extract robust performance from diverse datasets.  

As the complexity of the models increased, expertise in deep learning development 

became crucial for achieving optimal performance through exhaustive model tuning. Particularly 

when encoder pretraining was employed in transformer-based architectures, evaluating the 

training quality became a convoluted process. The recorded validation loss on the validation 

dataset provided a preliminary indication of the training status. However, unlike the validation 

loss of a segmentation network, these losses did not necessarily correlate with optimal 

performance in the downstream segmentation task. Consequently, selecting the most suitable 

pretrained encoder for downstream segmentation necessitated a trial-and-error approach as 

shown in our study. We also observed that the results of self-supervised pretraining were highly 

sensitive to hyperparameter settings. Careful selection of batch size, learning rate, and learning 

rate decay played a pivotal role in ensuring stable training. Hyperparameter settings beyond the 

acceptable range, such as larger batch size or higher learning rate, often resulted in overfitting 

and yielded suboptimal pretrained encoders and led to poor performance of the downstream 

segmentation model. Tuning the downstream segmentation model also involved a significant 

amount of trial and error. Transformer-based architectures encountered challenges during 

pancreas and liver tumor segmentation, as they suffered from gradient collapsing, leading to 

premature termination of the training process. Additionally, the memory consumption of 
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transformer-based architectures fluctuated depending on the combination of software being 

utilized, which posed limitations due to GPU memory size. Overcoming these issues required 

expert intervention and implementation in clinical settings could prove challenging. While 

transformer-based architectures provided an opportunity to leverage unlabeled data, their 

development necessitated substantial expertise in deep learning. The intricate process of model 

tuning, addressing gradient collapsing, and memory management required the input of 

experienced deep learning developers. 

A unique aspect of our segmentation project was the topic of quality assurance. Quality 

assurance plays a vital role in clinical systems. In the context of auto-segmentation, we would 

like to prevent erroneous contours from entering treatment planning or treatment delivery.  In 

this regard, careful consideration was given to the model's ability to forecast its confidence or 

lack of confidence on unseen samples, a task essential for reliable performance. Our proposed 

QA approach for OARs focused on using out-of-distribution50 detection as a means of quality 

assurance, assuming that substantial deviations from encountered samples would lead to 

performance degradation73. However, this assumption presented challenges in clinical practice. 

Firstly, as clinical practices evolve, the data distribution encountered by the model may shift 

away from the training set85, resulting in a high number of false positives and potential disregard 

of alarms by clinicians. Secondly, deep learning models have demonstrated remarkable tolerance 

to domain shifts, enabling our segmentation model to generate clinically acceptable results even 

in the presence of challenging cases involving ascites or out-of-field artifacts. Consequently, 

distribution-based quality assurance systems may trigger false alarms in such scenarios. We also 

investigated the application of uncertainty-based quality assurance systems78,80. The main 

advantage of such systems lies in their ability to provide pixel-wise uncertainty estimates. With 
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our Tversky ensemble, we were able to generate expressive probability map with a relatively 

small ensemble. However, we observed that these approaches typically required substantial 

calibration efforts to achieve reliable uncertainty estimation. Furthermore, the resulting 

uncertainty maps often exhibited a sharp probability gradient, resulting in more binary outcomes 

and reduced interpretability. Apart from ensemble-based techniques, these approaches often 

generate a large amount of data to perform uncertainty estimation. This poses challenge for 

clinical implementation. As the adoption of deep learning-based automation increases in clinical 

settings, the integration of quality assurance systems becomes crucial and warrants further 

investigation. 

For future work, we believe that the field of medical image segmentation is entering a 

transformative phase. The availability of an unprecedented number of public datasets makes it 

considerably easier to develop models using existing out-of-the-box solutions such as nnUNet. 

Tools like TotalSegmenter86 have demonstrated remarkable capability in accurately segmenting 

nearly all normal anatomical structures within the human body. By using a combination of public 

dataset and a small amount of private dataset, we would be able segment organs-at-risk and 

tumors with greater confidence. As these models continue to improve in performance, we 

anticipate increased adoption in clinical settings and a corresponding rise in throughput of auto-

segmentation tools. Thus, it is crucial for us to remain vigilant against automation bias. Ensuring 

the quality assurance of the latest models remains an important and ongoing challenge for 

researchers worldwide. As automation progresses, clinicians would expect auto-segmentation 

suites to exhibit enhanced robustness. As developers, it is our responsibility to prioritize patient 

safety when designing these automation tools.  
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Chapter 8: Conclusion 

In conclusion, our auto-segmentation system for organs-at-risk has demonstrated 

remarkable success in the context of upper-abdominal radiation treatment. Its high clinical 

acceptance rates indicate its reliability and accuracy in delineating critical structures. 

Furthermore, the accompanying QA tool has proven to be effective in identifying and capturing 

contours that require significant edits, enhancing the overall quality of the segmentation process. 

By leveraging a diverse range of unlabeled data in our self-supervised learning approach, 

we have significantly improved the performance of our transformer-based segmentation system. 

This highlights the importance of incorporating a wide variety of data sources during the 

pretraining stage, allowing our model to learn robust and comprehensive representations of the 

target organs. Moreover, our uncertainty-guided segmentation network has provided valuable 

capabilities in terms of customization and identification of low-confidence regions. This feature 

allows clinicians to have better control over the segmentation process and make informed 

decisions based on the level of certainty in specific areas, ultimately leading to more precise and 

tailored treatment plans. 

Overall, our suite of auto-segmentation tools for pancreatic and liver cancer radiation 

treatment holds great promise for streamlining clinical workflows and ensuring patient safety. 

With their impressive performance, these tools have the potential to revolutionize the field by 

providing efficient and accurate segmentation results, enabling clinicians to deliver targeted and 

personalized treatments while optimizing outcomes for cancer patients. 
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