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A Cancer-Specific Study on the Differentially Expressed Protein-Protein Interactions 

of Fumarate Hydratase 

Sydney Lac, BSA 

Advisory Professor: Xiaobo Zhou, Ph. D. 

 

Fumarate hydratase (FH) is an enzyme used in the Krebs Cycle to convert fumarate to 

malate, and it is controlled by the FH gene. In this paper, we will investigate its role in 

Uterine Corpus Endometrial Carcinoma (UCEC) and how FH-deficient cells affect 

tumorigenesis. It is well-established that FH has been extensively studied in connection with 

renal cell carcinoma, skin and uterine leiomyomas, pheochromocytoma, and paraganglioma. 

However, we aim to construct an interaction network of significant genes related to the FH 

gene under conditions of FH deficiency in the Kreb Cycle. Creating an interactive network 

that illustrates the interconnectedness of FH's role is crucial for comprehending cellular 

adaptations when FH is deficient. Unfortunately, we have not yet found a reliable and 

accurate representation of this complex network, which has prompted us to create our own. 

For our dataset, we utilized RNAseq count data from the UCSC Xena database. We followed 

this with a differential expression gene (DEG) analysis workflow involving Limma and 

EdgeR. The significantly expressed genes were contextualized through an enrichment 

analysis called EnrichGO. Finally, we associated the significantly expressed genes with a 

transcription factor (TF). Our results have allowed us to construct a network that presents our 

findings. Most importantly, it has revealed the significant role played by the HIF3a TF in 

FH-deficient cells. While HIF3a is less understood compared to its other isoforms (HIF1a 

and HIF2a), this research contributes to bridging that knowledge gap. Our findings suggest 

that the HIF3a gene is a significantly differentially expressed gene in FH deficient patients.  
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Introduction 

Fumarate hydratase is an enzyme used in the Krebs Cycle to convert fumarate to malate. 

Uterine Corpus Endometrial Carcinoma (UCEC) is a cancer type in which FH mutations are 

notably prevalent, as reported by Goldman et al. in 2020. Notably, FH has been the subject of 

numerous studies linking it to various health conditions, including renal cell carcinoma, skin 

and uterine leiomyomas, pheochromocytoma, and paraganglioma, as documented by Fuchs 

et al. in 2023 and Toro JR et al. in 2003. These studies have explored the role of FH in 

causing or being associated with these specific diseases. Our objective is to construct an 

interaction network that highlights significant genes related to the FH gene under conditions 

of FH deficiency in the Kreb Cycle. The creation of an interactive network that portrays the 

interconnectedness of FH's role is vital for comprehending how our cells adapt when FH is 

deficient. 

Proteins are the fundamental building blocks responsible for the body's regeneration, 

communication, and the maintenance of homeostasis. To gain a deeper understanding of how 

a gene can be linked to cancer, it is essential to establish a solid foundation of basic 

interaction information. This foundation includes understanding how a gene interacts with 

and influences multiple pathways within the body. For instance, FH is known to have effects 

on the Urea cycle, DNA translation, the glucose cycle, and more, as detailed by Schmidt et 

al. in 2020. However, we have not yet found a dependable and accurate representation of this 

complex network. As a result, we are creating our own representation. 

In addition to the gene network, we will incorporate the transcription factors associated with 

those genes in the network. Transcription factors are crucial proteins involved in the 
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regulation of gene expression within cells, as discussed by Wang et al. in 2015. Their 

functions include modulating gene expression, both activation and repression, and aiding in 

cell type specificity. 

In this study, we will examine significant differentially expressed genes in UCEC patients. 

To ensure comprehensive coverage of FH, we will explore various databases available online 

to further develop the data we have acquired. Additionally, we aim to determine the most 

effective way to present our findings for user-friendliness while encompassing all relevant 

information. Upon the project's completion, we anticipate a deeper understanding of FH and 

its functions throughout the cell. The primary objective of this study is to construct and 

project a gene interaction map for fumarate hydratase, enhancing our comprehension of its 

role in the Kreb Cycle. Our hypothesis suggests that the creation of this gene interaction map 

will facilitate a clearer understanding of FH's cellular processes and how a disease state 

affects the cell. 

Methods 
 

 

 

 

Figure 1: Overall Workflow 

Overall Workflow 

We initiated our study by exploring the cBioPortal database. Our primary focus was the gene 

of interest, FH, and we observed that UCEC had the highest number of mutated patients 

among cancer types. Subsequently, we retrieved the count data from the University of 
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California Santa Cruz (UCSC) Xena database. Initially, this dataset encompassed 583 

patients, but 35 were excluded due to the absence of mutations in either FH or the UCEC 

cancer type. Using the adjusted dataset, we performed a Differential Expression Gene 

Analysis (DEG) using two methods in R Studio: Limma and EdgeR. The result files obtained 

from Limma and EdgeR were filtered based on a minimum threshold for p-adjusted values 

and log2foldchange values. The differentially expressed genes (DEGenes) that passed the 

threshold were ‘significant’. Subsequently, we compared and overlapped the results from 

both methods, designating those DEGenes also as 'significant.' These significant DEGenes 

progressed to the next stage of our workflow, which involved Enrichment Analysis. We 

employed the EnrichGO method in R Studio for this analysis. EnrichGO is a Gene Ontology 

(GO) term enrichment platform that categorizes genes based on their functional attributes. 

The final step in our workflow entailed associating transcription factors (TFs) with the 

DEGenes. To achieve this, we utilized a web-based tool called ChEA3, which predicts the 

TFs associated with the inputted list of DEGenes. It employs Fisher's Exact Test to compare 

the input list of genes with its TF database to identify the closest associations. Additionally, 

we created an illustrative graphic to provide an overview of the relationship between FH, 

DEGenes, and transcription factors. 

Dataset 

This research paper was conducted computationally, and our initial step involved selecting 

the appropriate study population. We utilized the cBioPortal for Cancer Genomics tool 

(Cerami et al., 2012) to facilitate our research. In the 'Quick Search' bar, we queried for the 

FH gene, drawing data from the TCGA Pan-Cancer studies. From the bar graphic that 

cBioPortal generates, we chose the cancer type with the most amount of ‘mutated’ FH. 
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Among the informative graphics provided by cBioPortal, one particularly valuable visual 

aided in identifying the specific locations within the FH gene where mutations occurred was 

called a lollipop graph. Our criterion for the minimum number of mutated FH patients was 

set at a minimum of 10 patients. Within the UCEC cohort, there were a total of 583 patients, 

of which 21 had mutations in FH. With the appropriate cancer type selected, the next step 

was to obtain the actual gene expression RNASeq - HTSeq counts data. We sourced this data 

from the UCSC Xena database (Goldman et al., 2020). The dataset included RNAseq gene 

expression counts presented in log2(count + 1) units and was sequenced using the Illumina 

platform. The cohort under examination was the GDC (Genomic Data Commons) TCGA 

Endometrioid Cancer (UCEC) (Goldman et al., 2020), with the dataset ID designated as 

TCGA-UCEC.htseq_counts.tsv (Goldman et al., 2020). The downloaded file contained 

records for 583 female patients and a total of 60,489 identifiers (genes), each identified via 

Ensembl Gene IDs. We excluded 35 patients from the dataset due to the absence of FH 

mutations and their non-affiliation with the UCEC cancer type. Consequently, the final 

dataset comprised 548 patients in total, with 21 patients exhibiting FH mutations. The 

comparison group for this dataset consisted of patients with mutated FH versus those without 

FH mutations. 

Differential Expression Gene Analysis 

Utilizing the dataset described in the previous paragraph, we employed two R packages in R 

Studio: Limma and EdgeR. Limma, short for 'linear models for microarray data,' is an 

R/Bioconductor software package renowned for its utility (Ritchie et al., 2015). We opted for 

Limma due to its popularity in differential gene expression workflows and its frequent 

application within our research laboratory. Limma operates by interpreting experimental 
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values collectively, as opposed to isolating individual comparisons, such as between mutated 

and normal patients (Phipson et al., 2016). This method employs a statistical model known as 

parametric empirical Bayes, which effectively leverages the relationships between genes to 

control for residual variances (Law et al., 2014). Limma requires two input files: CountData, 

which includes gene names and sample IDs, and ColumnData, which consists of sample IDs 

and patient status (mutated or non-mutated). It's essential for the order of patients to be 

consistent in both files. Limma features its own normalization function called 'voom,' which 

is seamlessly integrated into the workflow (Law et al., 2014). The results file generated by 

Limma was subdivided into up and down-regulated genes. Up-regulated genes were defined 

by a Log2FoldChange greater than 1.58 and a p-value less than 0.05, while down-regulated 

genes were characterized by a Log2FoldChange less than -1.58 and a p-value less than 0.05. 

The exported file from Limma encompasses specific column headers, including logFC, 

AveExpr, t, P.Value, adj.P.Val, and B. Table 1 offers a concise summary of the significance 

of each of these headers. 

Table 1: Limma Export File Headers (Ritchie et al., 2015) 

Header Meaning 

logFC 
Log2fold; gives the value of the contrast between 2 or more 

experimental conditions 

AveExpr 
Gives the average log2FC expression level for that gene across all the 

arrays and channels in the experiment 

t Is the moderated t-statistic 

P.Value Is the associated p-value 

Adj.P.Val Is the p-value adjusted for multiple testing 

B Is the log-odds that the gene is differentially expressed. 
 

The subsequent tool in our analysis was EdgeR (Empirical Analysis of Digital Gene 

Expression Data), another Bioconductor software package that we applied within R Studio 

(Robinson et al., 2010). EdgeR employs the Exact Test as its statistical framework to aid in 
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identifying differentially expressed genes. While Limma utilizes the 'voom' function for 

normalization, EdgeR relies on the Trimmed Mean of M values (TMM) for this purpose 

(Robinson & Oshlack, 2010). EdgeR utilizes the same input files as Limma, namely 

CountData and ColData. Additionally, the cutoff criteria for identifying up-regulated and 

down-regulated genes remain consistent (Log2FoldChange > 1.58 and p-value < 0.05). The 

exported file from EdgeR comprises column headers such as logFC, logCPM, PValue, and 

FDR. A concise summary of the significance of each of these column headers is provided in 

Table 2. 

Table 2: EdgeR Export File Headers (Chen et al., 2016) 

Header Meaning 

logFC Log2FC between the groups 

logCPM The average log2 counts per million 

PValue The listed p-value 

FDR Adjusted p-value 
 

The subsequent step involved the intersection of differentially expressed genes derived from 

Limma and EdgeR in R Studio. This intersection was performed to demonstrate the 

consistency of results between both tools and to ensure the inclusion of the most significantly 

differentially expressed genes from each. The process began by segregating up-regulated and 

down-regulated genes from the result files of both Limma and EdgeR. The 'intersect' 

command in R Studio was employed to compare up-regulated genes from Limma and 

EdgeR, followed by a similar comparison for down-regulated genes. Once these comparisons 

were completed, all intersected genes were consolidated into a single file. With this final file 

containing commonly identified DEGenes from both methods, we generated a heatmap to 

visually represent the data and observe any evident clustering. Additionally, this intersected 

genes file served as the foundation for the subsequent step: enrichment analysis. 
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Enrichment Analysis 

For the enrichment analysis, we utilized the 'clusterProfiler' package in R Studio. 

Specifically, within the clusterProfiler package, we employed the enrichGO library to 

conduct the enrichment analysis. This powerful tool draws upon data from the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases (Yu et 

al., 2012). The Gene Ontology categorizes the input gene list into three distinct annotations: 

molecular functions (MF), biological processes (BP), and cellular components (CC) 

(Ashburner et al., 2000). As elucidated by Balakrishnan et al. (2013), MF encompasses 

elemental activities such as catalysis or binding, BP refers to processes specific to the 

functioning of living units like cells or tissues, and CC relates to the cellular location where a 

gene product is situated. The 'EnrichGO' method effectively controls for a high false 

discovery rate by estimating q-values as well(Yu et al., 2012). These q-values are included in 

the results file exported from R Studio. 

 

The input for enrichGO consisted of the DEGenes derived from both the intersected 

Limma/EdgeR results and the EdgeR only workflow, using the gene symbols instead of 

Ensembl IDs. The annotation package that enrichGO accessed is known as 'org.Hs.eg.db' (Yu 

et al., 2012). After running enrichGO, the output file contains information about the category 

to which the gene(s) were assigned and the corresponding descriptive term for the GO term. 

In Table 3, you can find a summary of the headers for the exported enrichGO file.  

 

Table 3: EnrichGO Export File Headers (T Wu et al., 2021) 

Header Meaning 

Ontology 
The enrichment term that helps to categorize the ID into functional 

characteristics (BP, CC, MF) 

ID Unique identifier for Gene Ontology 
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Description Describes the ID 

GeneRatio Ratio of input genes that are annotated in a term 

BgRatio Ratio of all genes that are annotated in this term 

pvalue The stated p-value 

p.adjust Adjusted p-value 

qvalue q-value cutoff on enrichment tests to be significant 

geneID 
These are names of the genes part of the ID from the input list of 

DEGenes 

Count The number of genes in that geneID; Count = geneID 
 

Associating Transcription Factors (TFs) 

Associating transcription factors is a crucial step as these proteins are responsible for 

regulating the differentially expressed genes. We employed ChEA3 to carry out this step in 

the workflow. ChEA3, short for ChIP-X Enrichment Analysis 3, ranks TFs based on the 

input list we submitted (Keenan et al., 2019). The tool draws information from a database 

that includes TF-gene co-expression from RNAseq studies, TF-target associations from 

ChIPseq experiments, and TF-gene co-occurrences from crowd-sourced gene lists (Keenan et 

al., 2019). In this phase of the workflow, we utilized the DEGenes obtained from edgeR and 

input them into the ChEA3 web tool. The website populated and ranked the TF it believes is 

most associated with the input DEGenes. Moreover, it provides links to relevant websites and 

information about that TF for user convenience. We selected the top-ranked TF and exported 

the overlapping genes. Using this list, we compared it with the genes in the GO terms file to 

determine the pathway in which that TF is involved. With the DEGene, TF, and GO 

term/pathway, we established network connections between FH and the DEGene. A concise 

summary of the significance of each of these column headers is provided in Table 4. 

 

Table 4: ChEA3 Export File Headers (Keenan et al., 2019) 

Header Meaning 

Query Name The name of the query that the user inputs 

Rank Ranks the top TF based on Score 
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TF Transcription Factor 

Score Indicates relevancy to the TF 

Library Pre-generated TF-target gene set libraries 

Overlapping 

Genes 
The genes that appear linked to the TF based on the input list 

Results 

Differential Expression Gene Analysis 

After running Limma, we identified 151 up-regulated genes and 99 down-regulated genes. 

Subsequently, running EdgeR revealed 116 up-regulated genes and 836 down-regulated 

genes. Upon overlapping the results from Limma and EdgeR, we found 29 overlapping up-

regulated genes and 68 overlapping down-regulated genes. A summary of these results is 

presented in Table 5. It's worth noting that the cut-off for all DEGenes across all methods 

was a log2FoldChange greater than or less than 1.58 and an adjusted p-value less than 0.05. 

 

Table 5: Summarizing DEGene Analysis 

Method Up-regulated Genes 
Down-regulated 

Genes 
Total DEGenes 

Limma only 151 99 250 

EdgeR only 116 836 952 

Intersected method 29 68 97 
 

We also created a heatmap from the intersected genes file (Figure 2). From the intersected 

genes file, we were able to move on to the next step which was enrichment analysis. 
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Figure 2: Heatmap of Intersected Differentially Expressed Genes 
 

Enrichment Analysis 

For the enrichment analysis we ran both the intersected DEGenes and the EdgeR only 

DEGenes. The intersected DEGenes enrichGO analysis had only 20 GO terms and all being 

in the BP category. The EdgeR DEGenes analysis had 228 GO term entries ranging across all 

3 categories of GO terms.  
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This GO term chart represents, 

by color, the 3 categories: BP, 

CC, and MF. Figure 3 are the 

results from enrichGO using the 

intersected DEGenes. This 

graphic was created by SRPlot 

as well. 

 
Figure 3: GO terms of Intersected DEGenes 

This GO term chart represents, 

by color, the 3 categories: BP, 

CC, and MF. Figure 4 are the 

results from enrichGO using 

EdgeR DEGenes. This graphic 

was created using SRPlot. 

 
Figure 4: GO terms of EdgeR DEGenes 
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Associating Transcription Factors (TFs) 

These are the top 10 transcription factors that exhibit the highest associations with the EdgeR 

DEGenes used as input in the web tool. The headers in Table 6 are explained in the methods 

section under 'Associating Transcription Factors (TFs)' in Table 4. The exported file from 

ChEA3 lists all 130 overlapping genes for each TF, providing detailed information instead of 

just numerical representation as seen in Table 6. Additionally, the web tool provides links to 

websites that explain the functions of the transcription factors and offers visualization tools 

to aid in result interpretation.  

 

Table 6: Top 10 TF from ChEA3 Results from EdgeR DEGenes 

Rank TF Score Library 
Overlapping 

Genes 

1 CCDC17 2.5 ARCHS4 Coexpression,3;GTEx Coexpression,2 130 

2 ZNF474 3.667 
ARCHS4 Coexpression,1;Enrichr 

Queries,7;GTEx Coexpression,3 
136 

3 NEUROD4 25.67 
ARCHS4 Coexpression,50;Enrichr 

Queries,1;GTEx Coexpression,26 
87 

4 SCRT1 30.5 ARCHS4 Coexpression,49;Enrichr Queries,12 56 

5 PEG3 31.5 
ARCHS4 Coexpression,27;GTEx 

Coexpression,36 
58 

6 LHX5 35.33 
ARCHS4 Coexpression,45;Enrichr 

Queries,8;GTEx Coexpression,53 
79 

7 INSM1 47.33 
ARCHS4 Coexpression,15;Enrichr 

Queries,104;GTEx Coexpression,23 
72 

8 POU3F3 47.67 
ARCHS4 Coexpression,29;Enrichr 

Queries,83;GTEx Coexpression,31 
72 

9 SOX1 52.33 
ARCHS4 Coexpression,125;Enrichr 

Queries,24;GTEx Coexpression,8 
76 

10 DACH2 53 
ARCHS4 Coexpression,53;Enrichr 

Queries,71;GTEx Coexpression,35 
64 
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Discussion 

The choice to incorporate both Limma and EdgeR into our differential gene analysis 

workflow was driven by their respective advantages and disadvantages. EdgeR proves 

especially well-suited for RNAseq data, which aligns with our dataset. Moreover, it excels 

even when working with a small sample size (Robinson et al., 2010). In contrast, Limma 

offers a broad spectrum of analyses, including linear modeling and batch effect correction. 

Our dataset remained relatively uncomplicated, involving only a comparison between 

mutated and non-mutated groups, with a limited number of mutated patients (21 in total). 

Furthermore, Limma's original design caters more towards microarray data analysis rather 

than RNAseq data (Ritchie et al., 2015). The two tools also differ in their normalization 

methods and approaches to enhance statistical power (Ritchie et al., 2015). However, they 

share several similarities, including built-in quality control techniques, the use of 

standardized statistical methods, and their affiliation with the Bioconductor Project in R 

Studio. Running both analyses has provided us with a deeper comprehension of the DEGenes 

associated with FH, in line with the common practice among researchers who explore 

different analyses for various facets of their study. Notably, Limma yielded fewer DEGenes 

compared to EdgeR, possibly due to EdgeR's ExactTest being better suited to handle small 

sample sizes. Since EdgeR produced a more extensive list of DEGenes, we also subjected 

these genes to the enrichment analysis. The criteria for determining the significance of 

DEGenes remained consistent between both analyses. We employed a Log2FoldChange 

threshold of 1.58, a threshold used throughout our laboratory and by other researchers 

following similar workflows (Duan et al., 2022). That also facilitated the inclusion of more 

genes in the final list, broadening our exploration of potential connections to FH. Of the 
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DEGenes from the EdgeR list, the down-regulated genes has a lot more results compared to 

the up-regulated genes. This could be because when FH is mutated, there is a decrease in 

mitochondrial respiration. This means that there are many genes that are not functioning 

properly, some of which are not functioning at all (Schmidt et al., 2020a). After running both 

programs, we conducted an intersection analysis on the DEGenes to identify common genes 

between Limma and EdgeR. This cross-validation step aimed to ensure the attainment of the 

most reliable results. Out of all the DEGenes, only 97 exhibited overlap between Limma and 

EdgeR. The intersected genes, as well as the DEGenes list from EdgeR, were subsequently 

used for the enrichment analysis. The usage of two distinct files for the enrichment analysis 

allowed us to compare the similarities and disparities in the results. 

For the enrichment analysis, we opted to use EnrichGO from the 'clusterProfiler' package in 

R Studio (T Wu et al., 2021). In this analysis, we conducted a comparative assessment 

between the intersected DEGenes and the results solely from the EdgeR DEG workflow. This 

approach was chosen because the EdgeR workflow yielded more DEGenes (compared to 

Limma), and the final results file generated from the EdgeR-only workflow closely aligned 

with our gene of interest. 

 

As part of the EnrichGO workflow, the mapping of gene names to 'EntrezID' is conducted. 

However, there isn't always a 100% match between the input list of DEGenes and this was 

true for both of our datasets. Initially, we ran the intersected DEGenes, and the program 

indicated that 21% of the DEGenes failed to map to the 'EntrezIDs.' We set the p-value cutoff 

at 0.05, and the q-value cutoff at 0.1. The default q-value in EnrichGO is 0.2, but we tested 

both 0.1 and 0.2, and in the end, applying a filter of p.adjust < 0.05 produced the same 
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results. Only 20 GO terms were identified from the intersected DEGenes, all within the 

'molecular functions' ontology. Many of these GO terms were related to gated channels, 

galanin receptor binding, and oxidase activity. 

 

Next, we analyzed the EdgeR DEGenes, where 18% failed to map to the EntrezIDs. The 

parameters and cutoffs for the EdgeR analysis matched those of the intersected genes 

analysis. We identified 228 GO terms, which were distributed as follows: 113 biological 

processes (BP), 49 cellular components (CC), and 66 molecular functions (MF). We created 

a barplot representing the top 10 categories based on 'Count,' depicted in Figure 5." 

 

 

Figure 5: Top 10 Categories in EdgeR 
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Figure 6: Oncogenic signalling mediated via aKGDDs inhibition in FH-deficient cells 

(Schmidt et al., 2020) 

 

 

Based on Figure 5 and the results of the enrichment analysis, these findings suggest that FH 

is associated with numerous GO terms related to channel activity and transporter complexes. 

For instance, as shown in Figure 6 (Schmidt et al., 2020), pyruvate enters the mitochondria 

via the 'voltage-dependent anion channel,' which, within the Gene Ontology, falls under the 

'channel activity' parent term (McCommis & Finck, 2015). We proceeded to compare the GO 

terms between the two runs.  

 

We found that there were 5 overlapping molecular function (MF) GO terms in the intersected 

DEGenes list. These 5 overlapping MF GO terms were related to gated channels, galanin 

receptor binding, and oxidase activity, which is also associated with the 'channel activity' 

term from the EdgeR-only run. Both of these connections further support the idea that our 

DEGene analysis and enrichment analysis were rigorous and generated pertinent results 
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related to FH. It also indicates that the intersection of genes from the DEGene Analysis step, 

as opposed to using only the EdgeR results, was beneficial. These two distinct methodologies 

yielded similar results in the end.  

 

Another tool that we tried but did not use the results from was Ingenuity Pathway Analysis 

from Qiagen (IPA). We were able to use the trial version of IPA but that limited our ability to 

the functions of IPA and we were only given two weeks to use the tool. The time frame was 

too small to learn everything about the tool and we were only allowed to export a certain 

number of files. These hinderances eventually prevented us from running and learning the 

full extent of the program.  

 

Next, we proceeded to associate the transcription factors (TFs) related to the DEGenes. The 

purpose of associating the TFs with the DEGenes was to help create a diagram illustrating 

the relationship between FH, the DEGene, and the transcription factor. The ChEA3 webtool 

successfully linked all the DEGenes from the EdgeR analysis to their respective TFs. 

Likewise, we ran the intersected DEGenes through ChEA3 and obtained their results.  

 

However, when we input the entire list of DEGenes into ChEA3, it alone did not provide 

significant insights for our research. Instead, upon reviewing other research papers related to 

FH, we became intrigued by the gene family associated with hypoxia-inducible factors (HIF) 

(Scagliola et al., 2019). According to Scagliola et al., 2019, 'FH loss-driven tumorigenesis 

has been associated with HIF-1a stabilization.' This piqued our interest to determine if the 

HIF gene was among the DEGenes in our analysis. In the EdgeR DEGene analysis, HIF3a 
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was identified as a down-regulated DEGene. Although HIF3a did not appear in the 

EnrichGO analysis, it might be linked to the 'cytoplasmic region' depicted in Figure 5 since 

HIF primarily resides and functions in the cytoplasm. 

 

The absence of HIF3a from the EnrichGO analysis could be attributed to its limited research 

compared to its other isoforms, HIF1a and HIF2a (Ravenna et al., 2016). HIF1a and HIF2a 

have been extensively documented in terms of their functions, downstream effects, and their 

associations with various diseases. While HIF3a and HIF1a did come up in the results from 

ChEA3, the HIF3a gene itself was not in the ‘overlapping genes’ column. This means that 

although the HIF3a gene was a DEGene in EdgeR, it was not considered significant in the 

ChEA3 webtool to be linked to the HIF3a TF. Figure 7 reflects our findings from DEGenes 

analysis and ChEA3 TF analysis. ABCA13 was one of the top genes associated with the top 

TF from ChEA3. MAGEA4 had the largest absolute value of log2FC in DEGene EdgeR 

analysis. KRT79 had the largest absolute value log2FC in the combined DEGene analysis. 

MAEL was the only gene that was present in the DEGene EdgeR analysis and the BioGRID 

website (Oughtred et al., 2020). 
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Figure 7: FH Interaction Map 
 

Conclusion 

The purpose of this research paper was to gain a better understanding of Fumarate Hydratase 

and its impact on the Kreb Cycle when it is deficient. Following our differential gene 

analysis, enrichment analysis, and the association of transcription factors (TFs), our research 

suggests that the loss of FH has a downstream effect on the HIF3a TF and its corresponding 

gene, HIF3a. Notably, in line with other scholarly articles, we found that relatively little is 

known about the HIF3a gene. This knowledge gap presents an intriguing avenue for future 

research opportunities.  

 

Legend: 

Dark Blue: Gene of interest (FH) 

Blue: DEGene 

Green: Transcription Factor 
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