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ABSTRACT 

 

CORTICAL REPRESENTATION OF LEARNING SOCIAL INTERACTIONS IN 

FREELY MOVING NON-HUMAN PRIMATES  

Melissa C. Franch 

Advisory Professor: Valentin Dragoi, Ph.D. 

The motivation and capacity to be social is necessary for human survival. Successful 

learning of complex, prosocial behavior stems from the ability to perceive and respond to visual 

cues, such as the body language and facial expressions, from others in our environment. This 

dependence on visual information to guide social interaction is especially true for humans and 

non-human primates. Although recent studies in primate neurophysiology discovered neurons 

that can encode socially relevant variables, like reward and social actions, the underlying neural 

mechanisms of learning advanced social concepts, such as cooperation, are not well understood. 

Further, previous work has identified brain structures that are activated when restrained subjects 

passively view other agents in-person or socially interacting animals in videos, but examining 

how the brain processes social signals originating from interacting conspecifics in real time to 

initiate goal-directed behavior has not been explored – until now.  

Limitations include the lack of a suitable framework to study how social cognition emerges 

in real time, and a lack of a neural population level approach to record from multiple brain regions 

simultaneously while animals perform naturalistic tasks. To this end, we developed a novel 

paradigm that combines behavioral monitoring with wireless eye tracking and neural recordings 

to study how pairs of freely moving, interacting macaques use visually-guided signals to learn 

social cooperation for food reward. By recording from visual (V4) and prefrontal (dorsolateral 

prefrontal cortex; dlPFC) brain regions simultaneously, I examined how visual representations 

relevant for social interactions are communicated from sensory to executive areas that encode 

reward and decision making.  
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During learning, animals improve coordination of their actions and likelihood of 

cooperating, and they cooperate more quickly. Notably, animals become more likely to cooperate 

after viewing a social cue, such as the reward or partner monkey. As social learning occurs, V4 

and dlPFC refine the representation of viewing the reward or partner monkey by distributing 

socially-relevant information among neurons within each area. Additionally, dlPFC improves 

encoding of each animal’s decision to cooperate, especially when social cues are viewed, 

highlighting the importance of visual monitoring to determine actions of oneself and predict or 

even influence other’s actions in the creation of purposeful social behavior. Finally, learning 

social events increases the coordinated spiking between visual and prefrontal cortical neurons, 

with coordinated V4-dlPFC cells contributing more to encoding of social variables within each 

area. These results are the first to demonstrate how the visual-frontal cortical network prioritizes 

relevant sensory information to facilitate learning social interactions while freely moving 

macaques interact in a naturalistic environment. 
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CHAPTER 1: INTRODUCTION 

1.1 Social behavior in primates 

Social interactions are essential for the well-being and survival of humans, non-human 

primates (NHPs), and other animals. Indeed, when we reflect on life’s moments, our fondest 

memories often do not occur in isolation. Throughout life, we socially interact through play, 

cooperation, competition, friendship, mating, caring for young, and helping and leading others – 

just to name a few.  Social interactions require the perception and integration of social cues 

through a complex cognition process (i.e. social cognition) that involves attention, memory, 

motivation, and empathy (Fernández et al., 2018; Wallace & Hofmann, 2021). Social cues in our 

environment such as context, features, and expressions of faces and bodies enable us to infer 

the identity, emotional status, and hidden thoughts of others, as well as to predict their potential 

actions (i.e. theory of mind) (BARON-COHEN & CROSS, 1992; Emery, 2000; Jamali et al., 

2021). These computations guide decisions for appropriate behavioral responses, facilitating 

successful social interaction and engagement. 

The correct functioning of the social cognition system has profound implications for 

human health. Impairments in social behavior are a common feature of many neuropsychiatric 

disorders, such as autism and depression (Association, 2013). Worldwide, there are as many as 

450 million people suffering from a neuropsychiatric disorder, with devastating impacts for 

individuals and communities (Winsky et al., 2008). With a better understanding of how different 

brain regions mediate social interaction, targeted, individualized therapies for affected individuals 

could be implemented. For example, when behavioral therapy or medications fail, alternative 

forms of treatment involving brain stimulation and/or implants to a specific brain area are 

considered (Wickelgren, 2018). Thus, to develop more effective behavioral and neural strategies 

aimed at ameliorating social deficits, it is necessary to characterize the underlying mechanisms 

that support social behavior. 
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Both innate and learned social behavior is extremely complex and contingent, involving 

the perception and monitoring of self and others’ actions to determine context-appropriate and 

productive responses. Specifically, cooperation - an advanced social concept critical for the 

evolution of intelligence - requires two or more agents to work together towards a common goal 

and thus relies heavily on perceiving social cues, such as the body language and expressions of 

the partner, and even the reward for cooperating. Although there is evidence for deep homologies 

in neuroanatomy and social behaviors across vertebrates (O’Connell & Hofmann, 2012), most 

visually-guided, strategic social behaviors are unique to primates (Platt et al., 2016). Social 

interactions, especially cooperative ones (Mendres & FB, 2000; Mesterton-gibbons & Dugatkin, 

1997), are essential to the survival of humans (Strang & Park, 2017) and non-human primate 

(NHP) groups (Schulke et al., 2010; Silk et al., 2009, 2010), and typically involve complex 

cognitive processing (Tremblay et al., 2017). Rhesus macaques, a well-studied species of NHP, 

exhibit social behaviors similar to humans. They live in large, hierarchical groups (Noonan et al., 

2014), displaying cohabitation, cooperation (Silk et al., 2009; Visco-Comandini et al., 2015), and 

competition (Maestripieri & Georgiev, 2016), and strategically acquire social information from 

facial expressions and eyes (Emery et al., 1997; Mosher et al., 2014). In addition, the primate 

brain is specialized to acquire information about conspecifics, indicating that particular 

information is valuable to the individual (Sliwa & Freiwald, 2017). This sensitivity to social bonds 

and the well-being of others that humans and NHPs share makes rhesus macaques an ideal 

model to study social behavior.  

1.2 Neural processing of social information 

Recent studies have investigated the neural mechanisms of social interactions in variety 

of mammals - from humans and NHPs to mice and bats - finding a ‘self and other’ encoding of 

social variables, such as reward value (Aquino et al., 2020; Chang et al., 2013; Grabenhorst et 

al., 2019; Noritake et al., 2018), actions (Falcone et al., 2016; Haroush & Williams, 2015; Jamali 

et al., 2021; Rose et al., 2021), agent identity (Báez-Mendoza et al., 2021; Rose et al., 2021), 



 3 

and social rank (Kingsbury et al., 2019; Li et al., 2022; Padilla-Coreano et al., 2022) within many 

different brain regions. Indeed, cognition arises from dynamic interactions in neural networks 

distributed across the whole brain in addition to localized neural populations. However, only a 

few brain areas have been studied with single cell recordings during cooperation specifically 

(Haroush & Williams, 2015; Ong et al., 2020), limiting the amount of collected neural information 

from one part of the social pathway. Specifically, Haroush and Williams discovered neurons in 

the anterior cingulate cortex that predict another individual’s unknown actions during cooperation 

(Haroush & Williams, 2015). Additionally, Song Ong and colleagues discovered neurons in the 

medial superior temporal sulcus that selectively signaled rewards obtained by cooperation (Song 

Ong et al., 2018). This research remains the only experimental evidence to examine the neural 

basis of cooperation in NHPs with single cell resolution, therefore our understanding of the neural 

computations underlying cooperation is limited. Furthermore, these experiments used traditional 

paradigms where animals were restrained, performing unnaturalistic tasks and viewing synthetic 

stimuli on monitors, so the neural mechanisms underlying the role of viewing relevant cues in the 

organic emergence of social decisions remain unknown. 

Given the importance of viewing socially-relevant cues during social interactions, 

previous NHP work identified brain regions that are activated when viewing other agents in-

person or socially interacting animals in videos (Dal Monte et al., 2022; Mosher et al., 2014; Sliwa 

& Freiwald, 2017). Notably, these studies found neurons in the amygdala and prefrontal cortical 

regions that respond selectively to fixations on the eyes of others and mutual eye contact, and 

can discriminate between social and nonsocial objects (Dal Monte et al., 2022; Mosher et al., 

2014). Similar to the work summarized in the above paragraph, these data were examined from 

stationary animals performing passive or unnaturalistic tasks (Dal Monte et al., 2022; Mosher et 

al., 2014; Sliwa & Freiwald, 2017) with animals viewing social visual stimuli (i.e. images of  

monkey faces or videos of monkeys interacting) on monitors and not in real life (Mosher et al., 

2014; Sliwa & Freiwald, 2017). Certainly, examining how the brain processes continuous “real-
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world” social visual inputs from an interacting conspecific to initiate goal-directed behavior has 

not yet been explored – until now.  

Social learning is a broad term that refers to any form of learning via social context 

including observing, imitating, and interacting with others. During observational and imitation 

learning, an individual observes and even mimics actions from another agent to acquire 

knowledge (Cross, 2012; Laland & Rendell, 2010). Previous work has shown observational 

learning is facilitated by the mirror neuron system, a network of neurons in premotor and parietal 

cortex that become active both when an individual performs an action and when they observe 

someone else performing the same action (Fogassi & Ferrari, 2011; Rozzi et al., 2008). The 

mirror neuron system is thought to be important for imitation, empathy, and understanding the 

actions and intentions of others (i.e. – learning from others) (Ramsey et al., 2021). Notably, in 

both humans and macaques, the dorsolateral prefrontal cortex (dlPFC) plays a role in social 

learning, imitation, and decision-making (Burke et al., 2010; Falcone et al., 2016; Feng et al., 

2021; Gariépy et al., 2014; Suzuki et al., 2012; Yoshida et al., 2010). 

However, learning of complex social behaviors like cooperation also requires interactive 

learning which involves the exchange of reciprocal social signals and information flow between 

two or more interacting agents (i.e. – learning with others) (Ramsey et al., 2021; Rogoff et al., 

2001). Despite the critical role of social cognition in the process of social learning, neural 

mechanisms that facilitate interactive learning such as cooperation have yet to be explored. 

Specifically, identifying neural computations that support the perception and exchange of social 

stimuli will reveal how sensory information is used to predict and/or influence the actions of others 

during goal-directed, interactive learning. Two brain regions that could support such operations 

are V4 and dlPFC, given their roles in processing visual information and action planning. Cortical 

area V4 is an intermediate visual area, encoding complex objects and visual features (Gallant et 

al., 1998; Kim et al., 2019; Kobatake & Tanaka, 1994; Pasupathy & Connor, 1999; Schein & 

Desimone, 1990), and dlPFC is an executive region that encodes the goals of self and other 

(Falcone et al., 2016; Tanji & Hoshi, 2008), and is involved in tracking the decisions of others 
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during social learning (Gariépy et al., 2014; Suzuki et al., 2012). Additionally, dlPFC is 

downstream from V4 and integrates informational content and behavioral relevance of visual 

stimuli in perceptual decision-making (Heekeren et al., 2004; E. K. Miller et al., 1996; E. K. Miller 

& Cohen, 2001; Rainer et al., 1998; Rainer & Miller, 2000; Rao et al., 1997). Finally, sensory, 

task, choice, and attention related information is communicated  between these areas (Brincat 

et al., 2018; Gregoriou et al., 2014; Siegel et al., 2015; Tremblay et al., 2015). Certainly, V4 and 

dlPFC emerge as relevant brain areas to record neural activity to understand how visual 

information is transformed and communicated across the cortical hierarchy to inform social 

decisions during learning cooperation.  

1.3 Approaches to examine ecologically relevant social stimuli and behavior 

Despite the clear importance of social cognition and learning of advanced social 

concepts, the underlying neural mechanisms are not well understood. One of the major 

limitations preventing this understanding is the lack of a suitable framework that would allow us 

to study how social cognition emerges in real time and how it influences brain networks. Indeed, 

most of our knowledge of social cognition originates from studies performed (i) in restrained 

animals engaged in simple tasks involving the movement of the eyes or touching a computer 

screen while recording neuronal responses (Chang et al., 2013; Dal Monte et al., 2022; Haroush 

& Williams, 2015; Mosher et al., 2014; Noritake et al., 2018; Ong et al., 2020) or (ii) by observing 

freely moving animals exhibiting social cognition in a naturalistic environment without attempting 

to record neural activity (Brosnan & de Waal, 2014; Brosnan & De Waal, 2003; Fletcher, 2008; 

Mendres & FB, 2000; Silk, 2009). 

Previous approaches to understanding the neural network mechanisms of social 

cognition were limited for several reasons. First, social interactions span a wide range, from pairs 

of animals engaged in mating, grooming, and social communication to groups of animals 

engaged in complex cooperative interactions, such as collective foraging, in large open-field 

environments. What these interactions have in common is that animals are freely moving to 
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produce naturalistic, and often complex, patterns of behavior underpinning social interactions. 

Unfortunately, because of technical limitations, neural recordings in freely moving animals 

coupled with advanced behavioral monitoring have been extremely rare until now. Importantly, 

in those rare situations when neural responses were compared in restrained vs. unrestrained 

and naturalistic conditions, they were found to exhibit marked differences. For instance, the 

responses of visual cortical neurons were stronger, sparser, and more selective when stimuli 

were natural and animals were moving (Niell & Stryker, 2010; Tang et al., 2018; Vinck et al., 

2015; Vinje & Gallant, 2000; Walker et al., 2019). Additionally, the same prefrontal cortical 

neurons generated different responses to vocalizations that were produced from a restrained or 

unrestrained animal during naturalistic communication (Jovanovic et al., 2022; McMahon et al., 

2015). Third, merely rewarding restrained animals in non-effortful body-restrained tasks fails to 

generate the same (necessary) behaviors that more effortful tasks do, such as needing to make 

dozens of partner-coordinated responses in each trial (van Wolkenten et al., 2007). Hence, 

previous studies in non-effortful tasks were unlikely to address the full complexity and the most 

important aspects of social interactions. 

Despite a cost of experimental control, recent work emphasizes the importance of 

studying the neurobiology of social interactions in more ecologically valid and naturalistic 

environments (Fan et al., 2021; C. T. Miller et al., 2022; Wallace & Hofmann, 2021). 

Technological advancements now enable the wireless recording of oculomotor and neural 

signals simultaneously with behavioral monitoring. While traditional restrained-animal paradigms 

provided the first steps towards understanding the neural basis of social cognition, designing 

experiments where behavioral diversity is permitted and not divorced from the dynamic context 

in which it naturally occurs is necessary to further understand the operation of neural circuits 

underlying social behavior (Fan et al., 2021; C. T. Miller et al., 2022). 
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1.4 The present study – overview, aims, and hypotheses 

A fundamental goal in neuroscience has been to identify and understand neural 

computations that support natural behavior, such as social interaction. Research in the past 

decade discovered representations of social variables, including reward value (Aquino et al., 

2020; Chang et al., 2013; Grabenhorst et al., 2019; Noritake et al., 2018), actions (Falcone et al., 

2016; Haroush & Williams, 2015; Jamali et al., 2021; Rose et al., 2021), agent identity (Báez-

Mendoza et al., 2021; Rose et al., 2021), and social rank (Kingsbury et al., 2019; Li et al., 2022; 

Padilla-Coreano et al., 2022), across many brain regions. However, they did not attempt to 

examine the neural processes that mediate the emergence of visually-guided social decision 

making during the learning of cooperation. Studies examining the neural underpinnings of social 

behavior have typically been performed with stationary animals performing passive or unnatural 

tasks using synthetic stimuli. Technical limitations have prevented the simultaneous recording of 

neural signals and visual cues from freely viewing and moving agents during social interactions. 

Indeed, understanding how neurons in the brain represent learning of complex and 

effortful behaviors like cooperation has been challenging. This inspired me to investigate two 

important but unresolved questions in social neuroscience: 1) What are the behaviors and neural 

computations that promote cooperation, and 2) how do these behavioral and neural features 

change over time during learning to cooperate? Social interactions, including cooperation, rely 

heavily on visualizing social cues from the environment, such as the reward for cooperating and 

the partner’s actions. In this study, to examine which social cues are encoded during learning 

cooperation and how they influence decision-making, I simultaneously record eye-tracking and 

neural population activity from a cortical network incorporating two regions - one that processes 

visual features (midlevel visual cortex, V4) and an executive region that processes social 

information (dlPFC). Critically, despite a cost of experimental control, recent work encourages 

an experimental paradigm shift to examine the neurobiology of social interactions in more 

ecologically valid and naturalistic environments (Fan et al., 2021; C. T. Miller et al., 2022; Wallace 
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& Hofmann, 2021). Here, the Dragoi lab and I acknowledged this call and created an ethologically 

relevant experimental regime for investigating neural mechanisms of learning cooperation in 

freely moving and behaving non-human primates. Our experiments are categorized as Level 4 

out of 5 on the naturalism scale (1-5, from less to most naturalistic) as they include real-life social 

stimuli in a laboratory environment (Fan et al., 2021).  

Harnessing the flexible and dynamic power of wireless neural and eye tracking recordings 

combined with markerless behavioral tracking (Mathis et al., 2018), I examine how macaque 

dyads learn to cooperate for a food reward, identify the visual cues used to guide decision-

making, and discover their representations in a visual-social cortical pathway in the primate brain.  

My working hypothesis is learning social interactions will induce changes in 1) the encoding of 

social variables such as visual-social cues and choice within areas and 2) spike timing 

coordination between areas. These experiments can identify behavioral strategies used in social 

cooperation and will elucidate the functional role of visual and frontal brain areas, revealing new 

and alternative targets for therapies to improve social dysfunction in individuals with a variety of 

neuropsychiatric disorders. Overall, this research will contribute to understanding visuo-frontal 

cortical circuits that enable flexible, social behavior in an increasingly social world. 

Chapter 1 (current chapter): provides background information about social behavior, 

social learning, the brain regions that support social cognition, and approaches used to 

answer questions about social behavior. These topics are referred to in the latter chapters 

of this dissertation. 

Chapter 2 | Aim 1: Identifies changes in animals’ actions and viewing behaviors during 

learning social cooperation.  

Chapter 3 | Aim 2: Identifies neural correlates of learning social cooperation within each 

cortical area, including how social events are encoded and how individual neurons 

contribute to encoding of social events during learning cooperation.  
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Chapter 4 | Aim 3: Examines how learning social cooperation changes neural 

interactions between cortical areas. 

Chapter 5: Summarizes the results from chapters 2-4 and considers these findings in the 

context of current research. It examines the constraints of the experiments and evaluates 

applicability of the findings to the wider community. 

CHAPTER 2: VIEWING SOCIAL CUES DRIVES COOPERATION DURING 
LEARNING 

2.1 Background 

Rhesus macaques cooperate for food acquisition in natural and laboratory environments 

(Mendres & FB, 2000; Mesterton-gibbons & Dugatkin, 1997; Molesti & Majolo, 2016; Silk, 2009; 

Visco-Comandini et al., 2015). The neural correlates of the decision to cooperate or defect in 

NHPs has previously been studied using game theory in economics, including the prisoner’s 

dilemma (Haroush & Williams, 2015), and variants of the chicken game (Ong et al., 2020).   In 

these experiments, animals were restrained and viewed synthetic stimuli on a monitor to 

determine when to cooperate. Therefore, our understanding of how social actions are guided by 

sensory information in a continuous, unrestrained social environment remains woefully lacking.  

Animals exchange multiple sensory modalities, especially visual cues, to determine 

whether to explore, mate, compete, or cooperate with a conspecific. For example, primates, 

including rhesus macaques, spend much of their time looking at other individuals, especially at 

their faces and eyes (Emery, 2000; Nahm et al., 1997). This attention directed at the eyes often 

seems to be used to assess where an individual is looking, and many primate species will 

spontaneously orient to where other individuals are looking (Emery et al., 1997). Despite the 

clear role of behavioral cues in social interactions, few visual neurobiological studies focus on 

how socially relevant stimuli and stimulus features are processed by the brain. Furthermore, how 

animals’ actions and viewing behaviors develop and change while learning cooperation has 

never been studied. Therefore, I use our lab’s innovative and comprehensive approach to 



 10 

investigate eye tracking and behavioral development from two monkeys while they learn to 

cooperate.  

2.2 Methods 

2.2.1 Animals 

All experiments were performed under protocols approved by The University of Texas at Houston 

Animal Care and Use Committee (AWC) and the Institutional Animal Care and Use Committee 

(IACUC) for the University of Texas Health Science Center at Houston (UTHealth). Four adult 

male rhesus monkeys (Macaca mulatta; selfM1: 10 kg, 11 years old; partM1: 12 kg, 10 years old; 

selfM2: 14 kg, 12 years old; partM2: 12 kg, 16 years old) were used in the experiments. 

2.2.2 Social cooperation task 

Two unique and familiar pairs of macaques learned to cooperate for food reward across 

weeks. Due to macaque’s natural social hierarchy, each pair consisted of a subordinate (“self”) 

and dominant monkey (“partner”). Animals cooperated in an arena, separated by a clear divider, 

so they could visually, but not physically, interact. The cooperation arena measured 7’ x 4 x 3’ 

(LxWxH) and was constructed out of pvc piping, plastic, and plexiglass. Each monkey could 

freely move around his side and each monkey had his own push button. At the start of a trial, 

perceivable but remote pellets dispensed in animal’s respective trays, and animals could 

cooperate at any time by simultaneously pushing and holding individual buttons which moved 

their trays, delivering reward to each animal (Fig. 1). A trial begins when pellets dispense and 

ends when the trays reach the animals. Animals were acclimated to the arena and button before 

beginning social learning experiments. Buttons in the arena were strategically placed next to the 

clear divider so that monkeys could easily see each other’s actions. 

Each animal’s tray contained his own amount of food reward (banana flavored pellet; not 

accessible by the other monkey), and the trays moved together at the same speed while animals 
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were simultaneously pressing. If one monkey stops pressing, trays stop at their location on the 

track, and continue moving forward only when both monkeys began pressing again. We labeled 

‘intertrial interval’ the 20 s period consisting of a 10 s pause after a trial ends, followed by tray 

movement back to pellet dispensers (~5 s) and another 5 s pause before the next trial begins. 

Trial durations ranged from 10 seconds to 30 minutes, depending on how long it took for animals 

to cooperate. 

A session, recorded once per day, included 100-130 trials where animals cooperated for 

one or three pellets each. I recorded 18 learning sessions from monkey pair 1 and 17 sessions 

from monkey pair 2. As animals performed the experiment, button pressing was recorded from 

each monkey. Simultaneously, neural and eye tracking data were wirelessly recorded from the 

subordinate (“self”) monkey (Fig.1). 

 

 

Figure 1. Social cooperation task. Two animals learn to cooperate for food. Behaviors were recorded 
from both animals; eye tracking and neural data recorded from self-monkey. Reward trays are positioned 
outside the arena. Macaque and graphics were created with BioRender.com 
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2.2.3 Opaque Divider Experiments 

After learning cooperation sessions, I recorded opaque divider control sessions where animals 

completed the cooperation task with an opaque divider separating them, so animals could no 

longer see each other, but could still hear and smell one another. The opaque divider was a thin 

(6 mm thickness) piece of plexiglass that was painted in dark gray and cut to the correct 

dimensions to slide into the arena over the clear plexiglass that already divided the animals (Fig. 

2). The side of the plexiglass near the buttons was designed to protrude out of the arena to 

ensure animals could not see each other pressing. Animals were aware the other animal was 

present as they could hear and smell each other, and they were brought into the experiment 

room together. I recorded 3 control sessions with the opaque divider from monkey pair 1 and 5 

from monkey pair 2. Opaque divider sessions had the same number of trials with the same trial 

structure as regular learning cooperation experiments.  

2.2.4 Cross-correlation of animals’ pushes 

Cross correlograms (CCGs) in Figure 5 were computed using animals’ button push sequences 

occurring across a trial, represented as a series of zeros and ones in 100 ms time bins. For each 

cooperation trial within a session, push series for each monkey (sequences were of equal length) 

 

 

Figure 2. Opaque divider experimental setup. Two animals cooperate for food with an 
opaque divider between them, which prevents them from seeing each other. 
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were cross-correlated using the xcorr function in Matlab 2020b. Coeff normalization was used 

which normalizes the sequence so that the autocorrelations at zero lag equal 1. The cross-

correlations were averaged across trials to create a session cross-correlogram, as plotted in 

Figure 5B. The maximum value, or peak, of each session’s CCG is plotted as the mean 

coordination for that session, as shown in Figure 5C. The time lag at which the peak occurred in 

each session is the push lag, shown in Figure 5B, right. Another “shuffled” analysis was 

performed for comparison, in which the push sequences derived for each monkey were shuffled 

randomly in time, for each trial. Trial cross-correlations between animal’s shuffled pushes were 

calculated and then averaged across trials to create a session CCG of shuffled presses, as 

shown in Figure 5B. As with the actual CCGs, the peak of each session’s shuffled CCG is plotted 

as the mean coordination for that session and shown in Figure 5C. 

2.2.5 Conditional Probability 

For each trial within a session, we computed the conditional probability of cooperating for the self 

and partner monkey respectively using the equations:  

𝑃(𝑆𝑒𝑙𝑓|𝑃𝑎𝑟𝑡) =
𝑃(𝑆𝑒𝑙𝑓 𝑎𝑛𝑑 𝑃𝑎𝑟𝑡)

𝑃(𝑃𝑎𝑟𝑡)
   and   𝑃(𝑃𝑎𝑟𝑡|𝑆𝑒𝑙𝑓) =

𝑃(𝑆𝑒𝑙𝑓 𝑎𝑛𝑑 𝑃𝑎𝑟𝑡)

𝑃(𝑆𝑒𝑙𝑓)
 

Where P(self|part) is the probability of the self monkey pushing given that his partner is pushing, 

and P(self and Part) is the probability of the self and partner monkey pushing at the same time 

(P(self)*P(partner)). The probabilities were derived from button push sequences for each monkey 

that were represented as a time series of zeros and ones in 100 ms bins. Conditional probabilities 

were averaged across trials within a session to create the values plotted in Figure 6A.  

2.2.6 Wireless eye tracking and fixations 

We used a custom wireless eye tracker (ISCAN, Inc.) to measure pupil position and 

diameter from self-monkey during experiments. The portable wireless eye tracker mounted 

dorsally, right above the animal’s head, consisted of an eye mirror, eye camera for detecting 
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pupil size and eye position, and scene camera, situated above the eye camera (see also Milton 

et al., 2020), that records animal’s field of view (Fig. 3A). All data was recorded at 30 Hz. To train 

animals to wear the device without damaging it, its 3D geometry was modeled (Sketchup Pro), 

and dummies were 3D printed and fitted with eye mirrors. To properly position the eye tracker 

and dummies relative to the eye, custom adapters were designed and 3D printed to attach 

directly to the animal’s headpost and serve as an anchor point for the eye tracker. These adapters 

were designed to interface with the headpost, without touching the animal directly, to minimize 

discomfort, and reduce the likelihood of the device being tampered with. These dummy eye 

trackers were worn by animals for several mock recording sessions to adjust them to wearing 

the device. Once the animals grew accustomed to wearing the dummy and stopped touching it 

altogether, the real device was used.  

 

Before each experiment, the eye tracker was secured on the animal and we performed a 

calibration procedure (‘point-of-regard’ calibration) while the animal was head-fixed, which 

mapped the eye position data to the matrix of the head-mounted scene camera (Fig. 3B). 

Animals were trained to view 5 calibration points within the field of view of the scene camera 

 

Figure 3. Wireless eye tracking. (A) Wireless eye tracker and components. Lower left: 
image from the eye camera showing tracking of animal’s pupil size and eye movements. (B) 
Eye tracking calibration procedure. As the animal views five points on a monitor, this 
information is entered into the program (ISCAN Inc.), which projects a crosshair indicating the 
animal’s point of gaze onto scene camera frames. (C) Using the equation in B, pixel space of 
the scene camera is converted to degrees to identify when objects in the scene camera 
frames are within the receptive fields of neurons. In this example, the animal’s shoulder and 
upper arm are within receptive fields, which will be important for results in Chapter 4. 
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(640x480 pixel space of a scene camera frame maps to 35x28°, LxH), including a center 

calibration point and 4 outer points, positioned at ±8 to ±10 deg with respect to the center (we 

chose the distance between the animal’s eye and calibration monitor based on the approximate 

range of eye-stimulus distances during free viewing, which was 70 cm). As the animal viewed 

each point, the eye calibration software synchronizes the eye movement data with the image 

frames recorded by the scene camera. After calibration, the animal’s center of gaze is displayed 

on each scene camera frame in real time as a crosshair (Fig. 3C and Fig. 8A). If the animal 

looks outside the field of view of the scene camera frames, gaze location is not detected, and 

the crosshair will not appear on the scene camera frames. When this occurs, eye position data 

is reflected as zero (Fig. 4A). Therefore, only scene camera frames that included a crosshair 

were used in analysis, which mostly occurred (60-85%, Fig. 4C). We used the horizontal and 

vertical coordinates of the pupil to compute eye velocity. To extract fixations, we used velocity-

threshold identification to determine the conservative velocity threshold that best separated the 

bimodal distribution of eye velocities in a session (Salvucci & Goldberg, 2000). A fixation was 

defined as a minimum 100 ms period when the eye velocity remained below this threshold (Fig. 

4A). Most (70%) of fixations were 200 ms duration or less (Fig. 4E).  

2.2.7 Behavioral tracking 

I captured a top-down, or overhead, video of the animals during the experiments using COSOOS 

CCTV LED home surveillance security camera. We recorded overhead and scene camera 

(wireless eye tracker) videos using the CORENTSC DVR (I.O. Industries). This DVR recorded 

videos at 30 frames/second and sent pulses to the Blackrock Cerebus neural recording system 

for every captured frame from each camera, as well as the start and end of video recording. I 

used the timestamps of these pulses to synchronize overhead video frames to neural and 

behavioral data. Due to imperfect transmission of wireless eye tracking data, frames were 

sometimes dropped from the recording. Therefore, to verify the timestamp of each scene camera 

frame, I used a custom object character recognition software (developed by Sudha Yellapantula, 



 16 

PhD) to automatically read the timestamp listed on each scene camera frame and align with 

neural data. Using DeepLabCut, we trained a network to automatically label relevant objects in 

the frames, such as the crosshair (animal’s point of gaze), reward dispensers and trays, each 

animal’s button, and various body parts of the partner monkey including eyes, head, ears, nose, 

shoulders, limbs, chest, back, face, paws, and butt (Fig. 3C and 4B). The DeepLabCut output 

included the location coordinates of all the objects found in the frames. Therefore, I used 

coordinates of the crosshair and objects to compute proximity and identify when the animal 

viewed (fixated on) them. 

 

Figure 4. Viewing statistics. (A) Raw traces of eye x and y coordinates, and pupil 
diameter recorded with the wireless eye tracker. The zero values at 1 second are due 
to a blink, while the zero values of x and y coordinates at 7 seconds was due to the 
animal viewing an object located out of the field of view captured by the scene camera. 
(B) The total amount of objects that DeepLabCut labeled in the scene camera frames 
from one session, sorted from most to least present. (C) The session-averaged 
percentage of scene camera frames out of the total recorded that contained the 
crosshair for each monkey. (D) Histogram of fixation durations from one representative 
session that consisted of 12,378 fixations. 70% of the fixations were 200 ms duration or 
less. 
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2.2.8 Markov Model 

To explore interactions between fixation and push events, we used a Markov Model to estimate 

the transitional probabilities between social events as they occurred in a sequence across a trial, 

using the function, hmmestimate in Matlab2020b. Sequences consisted of 4 events/states: view 

reward, view partner, self-push and partner push, resulting in 16 event pairs and transitional 

probabilities. We only included trials where all 4 events occurred, which was on average, 40% of 

trials per session. For each event pair, transitional probabilities were averaged across trials for a 

session mean transitional probability, as seen in Fig. 9A.  

2.2.9 Statistics 

To assess systematic changes in behavioral and neural metric performance, or learning, I report 

the P-value from simple linear regression and Pearson’s correlation coefficient to report the 

strength and direction of linear relationship. The percent increase or decrease of behavioral 

metrics was calculated by the percent change equation, 𝐶 =  
x2−x1

x1
  , where C is the relative 

change, x1 was the value from session 1, and x2 is the value from the last session. Changes 

were then averaged across events or monkeys. When comparing two paired distributions, I used 

the two-sided Wilcoxon signed-rank test and for comparing two unpaired distributions, I used the 

Wilcoxon rank sum test. I chose these tests rather than parametric tests, such as the t-test, for 

their greater statistical power (lower type I and type II errors) when data are not normally 

distributed.  
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2.3 Results 

2.3.1 Animals learn to cooperate  

To quantify changes in cooperation performance over time, I analyzed features of both 

animals’ actions, such as the coordination of their push onset and duration, the conditional 

probability of cooperating, and the delay to cooperate. The choice to cooperate, or the animal’s 

response, is the moment the animal pushes and holds its button. Cross-correlation analysis 

between the button pushes of each monkey (see Methods) in each session revealed that their 

actions are coordinated and not random (Fig. 5B, left: shuffling push times resulted in near zero 

coincident pushing, red plot). In the first session, for each animal pair, cross-correlograms 

peaked at 0.6 coincidences, i.e., animals pushed together for 60% of the session, and increased 

to 80-90% coincident pushing in the last session (Fig. 5B, left: blue and gray plots).  Indeed, 

animals learned to cooperate by significantly reducing the amount of time between each of their 

 

Figure 5. Action coordination improves during learning. (A) Example voltage traces of 
each animal’s button push activity from Pair 1. A line increase to 1 indicates a monkey began 
pushing. (B) Left: example cross-correlograms of Pair 1’s button pushes from the first and last 
session, using actual and shuffled data. Self-monkey lead cooperation more often in early 
sessions, as the maximum number of coincident pushes occurs at positive time lag (2 sec). 
Right: session average time lag between pushes when maximum coincident pushes occur. 
Pair 1 P = 0.03 and r = -0.5; pair 2 P = 0.02 and r = -0.5, linear regression with Pearson 
correlation. (C) Session average maximum number of coincident pushes (i.e.: peaks) from 
cross-correlograms computed with actual and shuffled push data. Pair 1 P= 0.001 and r = 0.7; 
pair 2 P = 0.008 and r = 0.7. All P values are from linear regression and r is Pearson correlation 
coefficient. On all plots, center line is mean with shaded SEM. *P < 0.05, **P < 0.01, ***P < 
0.001.  
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pushes (Fig. 5B: right, all Ps < 0.05, linear regression), thereby improving response coordination 

across sessions (Fig. 5B-C, all Ps < 0.01, linear regression).  

Additionally, for each monkey, I computed the probability to cooperate given that the other 

monkey is pushing. Conditional probability exhibited a mean 54% increase across sessions, thus 

reflecting learning cooperation (Fig. 6A, P < 0.001, linear regression). Finally, the delay to 

cooperate, or amount of time it takes for a monkey to respond from trial start, decreased by 93% 

across sessions, suggesting that animals’ motivation to cooperate increases during learning (Fig. 

6B, P < 0.05, linear regression). Overall, this demonstrates that animals learned to cooperate 

across sessions by improving their action coordination, conditional probability, and reaction 

times. 

 

Figure 6. Conditional probability to cooperate and motivation improves during 
learning. (A) Session average conditional probability to cooperate for each monkey. Pair 1 P 
= 0.0004, r = 0.7 and P = 6.02e-6, r = 0.8; pair 2 P = 0.001, r =0.7 and P = 0.0004 and r = 0.8, 
self and partner respectively. (B) Session average delay to cooperate, or response time, for 
each monkey. Pair 1 P = 0.01, r = -0.6 and P = 0.001, r = -0.6; pair 2 P = 0.01, r = -0.6 and P 
= 0.006, r = -0.6, self and partner respectively. All P values are from linear regression and r is 
Pearson correlation coefficient. On all plots, center line is mean with shaded SEM. *P < 0.05, 
**P < 0.01, ***P < 0.001.  
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2.3.2 Viewing the other monkey improves cooperation 

In order to examine how the ability for animals to view each other affects cooperation, I 

completed opaque divider control experiments at the end of learning cooperation sessions in 

each monkey pair. The first opaque divider session completely confused the animals as they did 

not even attempt to push after reward dispensed. On the first trial for each animal pair, I had to 

prompt them. Animals did eventually figure out how to complete trials together without being able 

to see each other by using the ‘click’ sound of the button when it is pressed. Sometimes one 

monkey would push down on the button many times to signal his partner to push. Occasionally, 

one monkey would tap his paw on the divider to get his partner’s attention. While macaques do 

vocalize, they did not produce vocalizations during these experiments and did not appear to use 

vocalizations to coordinate behavior.  

To measure differences in cooperation behavior between the opaque divider (‘without 

viewing’) and learning (‘with viewing’) session conditions, I calculated the amount of time 

between each animal’s pushes on every trial as well as the delay to cooperate, or the amount of 

 

 

Figure 7. Disrupting viewing impairs cooperation. (A) Average amount of time between 
self and partner monkey presses during learning (‘with viewing’) sessions and control 
sessions with the opaque divider (‘without viewing’). Times were pooled across sessions (n 
= 8 sessions for each condition) and averaged across monkeys. P = 2.30e-08, Wilcoxon rank 
sum test. (B) Average delay to cooperate, or time for both monkeys to be pressing from the 
start of a trial, during learning (‘with viewing’) sessions and control sessions with the opaque 
divider (‘without viewing’). Times were pooled across sessions (n = 8 sessions for each 
condition) and averaged across monkeys. P = 4.64e-08, Wilcoxon rank sum test. 
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time it took for both monkeys to be pushing together from the trial start. I used 3 learning sessions 

from pair 1 and 5 sessions from pair 2 to match the number of recorded control sessions in each 

pair. As expected, I found that animals exhibit more time in between pressing and are therefore 

less coordinated in control sessions (Fig. 7A, P < 0.001, Wilcoxon rank sum test). Additionally, 

animals take longer to cooperate during the control sessions when they can’t see each other 

(Fig. 7B, P < 0.001, Wilcoxon rank sum test). These results suggest that visualization of the other 

monkey and his actions improve social cooperation.  

2.3.3 Animals fixate on the reward and partner monkey the most before cooperation 

To determine which objects were salient for cooperation, I computed the fixation rate on each 

object during the cooperation trial and during the intertrial interval (objects and fixations shown 

in Fig. 8A). Fixation rates on the reward system (pellet and pellet dispenser) and partner monkey 

were significantly higher during the trial, particularly before cooperation, when both monkeys 

begin pushing, than during the intertrial period (Fig. 8B, P < 0.01, Wilcoxon signed-rank test). 

Therefore, fixations on the reward system (“view reward”) and partner monkey (“view partner”) 

constitute ‘social cues.’ Eye movement analysis revealed behavioral patterns where, at the 

beginning of a trial, the monkey typically views the reward followed by a push while frequently 

looking at his partner before partner’s push (Fig. 8C). This led me to wonder if the relationship 

between events was changing across sessions during learning. 
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Figure 8. Identification of social cues. (A) Left: Fixations, highlighted in yellow, are periods 
when eye velocity remained below threshold (dashed line) for at least 100ms. Right: Scene 
camera images of objects the animal viewed, labeled with DeepLabCut (colored dots). Yellow 
cross represents self-monkey’s point of gaze. (B) Histograms of session mean fixation rates for 
each object computed during the trial (before cooperation) and the inter-trial interval. Asterisks 
represent significance of Wilcoxon signed-rank test, only where fixations rates were higher during 
cooperation compared to inter-trial period. Pair 1 P = 0.0002, 0.0002, 0.13, 0.002, and 0.0002; 
pair 2 P = 0.005, 0.0004, 0.95, 0.001, and 0.7 for fixation rates on objects listed left to right. (C) 
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The sequence of action and viewing events that occur during cooperation across a random 
subset of trials within a session. 

2.3.4 Animals become more likely to cooperate after viewing a social cue  

To examine whether the relationship between social cues and actions changes during learning, 

I used a Hidden Markov Model to compute the probability of transitioning from one social event, 

or state, to another. Remarkably, the transitional probabilities between visually driven event pairs, 

but not action driven ones, significantly increased across sessions while learning to cooperate 

(Fig. 9A, all P < 0.01, linear regression). The lowest transitional probabilities (0.1) occurred 

between two actions (self-push to partner-push), indicating that monkeys cannot simply push 

their button to motivate the other monkey to cooperate (Fig. 9). Instead, there were high 

transitional probabilities (0.6 - 0.9) for event pairs where fixations on a social cue occurred before 

or after a push (i.e., view partner to self-push or self-push to view partner), thus demonstrating 

the importance of viewing social cues to promote cooperation (Fig. 9A). Indeed, I found a mean 

220% increase in transitional probabilities for event pairs beginning with viewing social cues (Fig. 

9A, top row, all Ps < 0.01). These analyses reveal that across sessions, animals become more 

likely to cooperate after viewing social cues, indicating that fixations on social cues drive 

cooperation during learning. 
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Figure 9. Relationship between action and viewing behaviors while learning to cooperate. 
(A) Markov Model transitional probabilities for example event pairs that begin with a viewing 
event (top row) or action event (bottom row). Top row: P = 0.0008, P = 0.0008, P = 0.003, P = 
0.003, and all r = 0.7; Bottom row: P = 0.84, 0.9, 0.01, and 0.2; r = 0.6 (partner push to view 
partner), from left to right, linear regression and Pearson correlation. Four plots, two on each row, 
came from each monkey pair. (B) Markov Model transitional probabilities averaged across both 
monkey pairs for all event pairs. *P < 0.05, **P < 0.01, ***P < 0.001. 
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2.4 Discussion 

Here, I sought to identify the specific volitional behaviors between two animals that elicit 

cooperation. To accomplish this, I focused my study on a crucial period in the task: analyzing 

action and fixation events occurring between the start of a trial and the moment of cooperation 

(when both animals begin pushing). For the first time, wireless eye tracking and the permission 

of spontaneous behavior revealed how viewing social cues subserves learning to cooperate in 

freely moving NHPs. Indeed, a sole cooperating animal could have continuously pushed his 

button to elicit cooperation from his partner, but this is not the case. Instead, animals increase 

viewing and attention on social cues - the reward or their partner - to promote desired behavior 

over time, leading to improved action coordination between animals and reaction times, and thus 

learning of cooperation.  

I always recorded eye tracking from the subordinate monkey, therefore, an interesting 

question for future studies is exploring whether social cue identity depends on social rank - are 

the important visual cues for the dominant, partner monkey also fixations on the reward system 

and his partner? One would expect a difference in social cue identity between social rank, as 

subordinate animals tend to pay more attention to others and can influence prosocial behavior in 

dominant partners (Gachomba et al., 2022; Ghazanfar & Santos, 2004; Kingsbury et al., 2019). 

Although the monkeys’ ability to view each other was obstructed in control experiments, 

animals were still able to complete cooperation trials and receive reward. This occurred because, 

while visual information did improve their performance, is it not the only sensory information 

required for or exchanged during social interactions. For instance, future studies should acquire 

comprehensive behavioral repertoires from interacting animals to determine exact sequences of 

behaviors, including viewing, gestures/movements, and vocalizations exchanged between 

agents that produce social interactions such as cooperating, grooming, or fighting.  

Notably, I discovered how one monkey’s viewing behavior can influence actions of either 

animal to promote cooperation. Viewing the partner monkey or reward could elicit cooperation 
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from the self or partner monkey (Fig. 9). Indeed, behavioral findings support the notion that 

viewing social cues is important for social monitoring, such as observing task goals and state of 

the partner, but also for social predicting, such as predicting when the partner monkey will 

cooperate, to determine contingent responses and learn cooperation, especially in primate 

species.  

CHAPTER 3: POPULATION ENCODING OF SOCIAL EVENTS DURING 
LEARNING 

3.1 Background 

Although social behavior relies heavily on viewing social cues, neural mechanisms of learning 

visually guided social interaction are not well known. Previous work has examined neural 

representations of social variables like reward, facial expressions, and choice in multiple brain 

regions involved in mentalizing, vicarious reinforcement, empathy, reward processing, and face 

perception (Chang et al., 2013; Dal Monte et al., 2022; Fogassi & Ferrari, 2011; Mosher et al., 

2014; Noritake et al., 2018; Ong et al., 2020; Sliwa & Freiwald, 2017). Despite these efforts, 

neural activity was not recorded simultaneously from visual and/or executive brain regions during 

goal-directed behavior where animals could freely generate social decisions based on 

environmental cues in real time. Therefore, neural computations that underly perception and 

integration of sensory cues to support social decisions and learning of social interactions remain 

unknown. To address this gap in knowledge, I record from cortical areas involved in processing 

visual and social information, V4 and dlPFC. The dlPFC is part of an extensive, interconnected 

prefrontal network involved in social interactions and learning (Burke et al., 2010; Feng et al., 

2021; Gariépy et al., 2014; Suzuki et al., 2012), action planning (Falcone et al., 2016; Yamagata 

et al., 2012), and perception of visual information (Haile et al., 2019; Rainer et al., 1998). V4 is a 

well-studied, midlevel visual area that encodes natural images (Okazawa et al., 2015) and a 

variety of visual features (Kim et al., 2019; Kobatake & Tanaka, 1994; Pasupathy & Connor, 

1999; Schein & Desimone, 1990). I investigate my hypothesis by examining the neural encoding 
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of fixations on social cues and self-and-other decisions in V4 and dlFPC during learning 

cooperation.  

3.2 Methods 

3.2.1 Wireless electrophysiology  

I chronically and simultaneously recorded from populations of neurons in mid-level visual 

cortex (area V4) and dorsolateral prefrontal cortex (area dlPFC) of the “self” animal, as these are 

key areas involved in processing complex visual features (Haile et al., 2019; Kim et al., 2019; 

Kobatake & Tanaka, 1994; Pasupathy & Connor, 1999, 2002; Russ & Leopold, 2015; Schein & 

Desimone, 1990; Viswanathan & Nieder, 2013; Wang et al., 2015) and planning social actions 

(Falcone et al., 2016; Gariépy et al., 2014; Stone et al., 1998; Tanji & Hoshi, 2008). In each 

monkey (n = 2), I used Utah arrays to stably record from the same neural population (averaging 

136 units/session in M1 and 150 units/session in M2, including single and multi-units; M1: 34 V4 

cells, 102 dlPFC cells; M2: 104 V4 cells, 46 dlPFC cells) across multiple sessions (Dickey et al., 

2009) (Fig. 10 and Fig. 12). 

After acclimatization and behavioral training (described in previous section), animals were 

implanted with a 64-channel dual Utah array in the left hemisphere dlPFC (anterior of the arcuate 

sulcus and dorsal of the principal sulcus), left V4 (ventrally anterior to lunate sulcus and posterior 

to superior temporal sulcus), and a pedestal on the caudal skull (Blackrock Microsystems). I used 

Brainsight, a neuronavigational system, and animal’s MRIs to determine the location for V4 and 

dlPFC craniotomies (Rogue Research). During surgery, visual identification of arcuate and 

principal sulci guided precise implantation of arrays into the dlPFC, and visual identification of 

the lunate and superior temporal sulci supported array placement in area V4. The dura was 

sutured over each array and two reference wires were placed above the dura mater and under 

the bone flap. Bone flaps from craniotomies were secured over the arrays using titanium bridges 

and screws. After the implant, the electrical contacts on the pedestal were always protected using 
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a plastic cap except during the experiment. Following array implantation, animals had a 3-week 

recovery period before recording from the arrays.  

 

 

To record the activity of neurons while minimizing interference with the animal’s behavior, 

I used a lightweight, rechargeable battery-powered device (Cereplex-W, Blackrock 

Microsystems) that communicates wirelessly with a central amplifier and digital processor 

(Cerebus Neural signal processor, Blackrock Microsystems). First, the monkey was head-fixed, 

the protective cap of the array’s pedestal was removed, and the wireless transmitter was screwed 

to the pedestal. The neural activity was recorded in the head-fixed position for 10 minutes to 

ensure the quality of the signal before releasing the monkey in the experimental arena. The arena 

was surrounded by eight antennas. Spikes from each brain area were recorded simultaneously 

at 30 kHz and detected online (Cerebus neural signal processor, Blackrock Microsystems) using 

a manually selected upper and lower threshold on the amplitude of the recorded signal in each 

channel. This thresholding was also helpful to eliminate noise from the animal chewing. I also 

eliminated noise using the software’s automatic thresholding which was ±6.25 times the standard 

deviation of the raw signal. The on-site digitization in the wireless device showed lower noise 

 

Figure 10. Wireless neural recording methods. Recording equipment. Two, 64-channel 
Utah arrays (gold squares) are attached to a pedestal. Red arrows represent the feedforward 
and feedback processing of information between areas. The wireless transmitter connects 
to the pedestal and transmits neural data recorded from each array. 
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than common wired head-stages. The remaining noise from the animal’s movements and muscle 

activity was removed offline using the automatic algorithms in Offline Sorter (Plexon Inc.). Briefly, 

this was done by removing the outliers (outlier threshold = 4-5 standard deviations) in a 3-

dimensional space that was formed by the first three principal components of the spike 

waveforms. Then, the principal components were used to sort single units using the k-means 

clustering algorithm. Each signal was then automatically evaluated and manually checked as 

multi or single unit using several criteria: consistent spike waveforms, waveform shape (slope, 

amplitude, trough-to-peak), and exponentially decaying ISI histogram with no ISI shorter than the 

refractory period (1 ms). The analyses here used all single and multiunit activity.  

3.2.2 Receptive field mapping  

I identified receptive fields (RFs) of recorded neurons in a head-fixed task where the 

animal was trained to maintain fixation during stimulus presentation on a monitor. Neural activity 

was recorded and thresholded using a wired head-stage and recording system, alike the 

methods described above in wireless electrophysiology (Cerebus Neural signal processor, 

Blackrock Microsystems). I divided the right visual field into a 3 × 3 grid consisting of nine squares 

with each square covering 8° × 8° of visual space. The entire grid covered 24° × 24° of visual 

space. Each of the nine squares was further subdivided into a 6 × 6 grid. In each trial, one of the 

nine squares was randomly chosen, and the RF mapping stimuli were presented at each of the 

36 locations in a random order. The RF mapping stimuli consisted of a reverse correlation movie 

with red, blue, green, and white patches (~1.33° each). A complete RF session is composed of 

10 presentations of the RF mapping stimuli in each of the nine squares forming the 3 × 3 grid. I 

averaged the responses over multiple presentations to generate 
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RF heatmaps and corresponding receptive field plots (as shown in Fig. 11B). Since recorded 

units remained stable across days, RF mapping was done prior to starting learning sessions, and 

performed once every month during recordings.  

Similar to the behavioral tracking methods in chapter 2 (2.2.7), I trained a network in 

DeepLabCut, an markerless pose estimation software, to automatically label relevant objects in 

the frames, such as the crosshair, reward dispensers and trays, each animal’s button, and 

various body parts of the partner monkey including eyes, head, ears, nose, shoulders, limbs, 

chest, back, face, paws, and butt (Fig. 4B and 11A). The DeepLabCut output included the 

location coordinates of all the objects found in the frames. Therefore, I used a degree-to-pixel 

conversion and the coordinates from the crosshair and object labels to identify which objects 

were in the receptive fields of the neurons in any given frame during a fixation (Fig. 11 and 3B, 

5° = 90x80 pixels, based on the equation 𝑇𝑎𝑛∅ = 𝑑 ÷ 𝑥, where 𝑑 is the measured length and 

 
 
Figure 11. Identification of stimuli within neurons’ receptive fields. (A) Using the 
equation in Fig. 3B, pixel space of the scene camera is converted to degrees to identify when 
objects in the scene camera frames are within the receptive fields of neurons. In this 
example, the animal’s shoulder and upper arm are within receptive fields. (B) Left: 
Overlapping receptive fields (RF) of V4 and dlPFC neurons, identified in head-fixed 
recordings. V4 RF sizes: 4-6 deg; dlPFC RF sizes: 6-13 deg. Red square represents the 
point of fixation. Right: Scene camera images, measuring 35 x 28 degrees (LxH), where 
social cues were within receptive fields of recorded neurons during a fixation. 
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height of the scene camera frame when viewing from distance 𝑥). Finally, to compute body, torso, 

and limb velocity (movement) of the animal, as shown in Figures 21-22, I used DeepLabCut to 

label body parts of the self-monkey in the overhead camera frames. Head movements included 

labels from the center of the head, snout, and each ear. Limb movement was computed from the 

shoulder, elbow, and paw labels. Torso movement was calculated from the animal’s upper and 

mid back labels.  

3.2.3 Identifying stable units across sessions 

I used principal component analysis (PCA) of waveforms from each session to identify 

consistent waveforms across sessions. First, we performed PCA on a matrix of 100 samples of 

waveforms of single and multi-units from every session using the pca function in Matlab 2020b. 

Then, for each session, I used the first 7 components of the principal component coefficients to 

compute the Mahalanobis distance (MD) between distributions of all waveforms for each 

combination of cell pairs within that session. Mahalanobis distance between two objects in a 

multi-dimensional vector space quantifies the similarity between their features as measured by 

their vector components. It takes into account the covariance along each dimension 

(Mahalanobis, n.d.). MD between two clusters of spike waveforms A and B belonging to a pair of 

neurons in 7-dimensional vector space was computed using the following formula: 

𝑀𝐷 =  √((𝐴 − 𝐵)𝑇𝑉−1(𝐴 − 𝐵))  , 

where T represents the transpose operation and V-1 is the inverse of the covariance matrix, and 

A and B are the first 7 components of the principal component coefficients for each neuron in the 

pair. Importantly, because this analysis was performed among cell pairs within a session, this 

distribution reflects the Mahalanobis distances for distinct, individual cells. I combined the 

distances across sessions to create one distribution and used this to identify a waveform 

threshold, which was the 5th percentile of the distribution. Therefore, Mahalanobis distances 
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between waveforms of cell pairs that are less than the threshold reflect waveform distributions 

that belong to the same neuron.  

Then, for each channel (electrode), I computed MD using PCA waveform coefficients 

from all the neurons identified on that channel across all sessions. Some channels recorded 2 

units each day, while others did not record any isolated SUA or MUA activity. 96 electrodes were 

recorded from each subject’s brain, however, electrodes without single or multi units for at least 

10 (i.e. half) of the learning sessions were not used in the analysis. Analysis included 90 total 

electrodes from M1 and 86 total electrodes from M2. MD values that were less than the threshold 

represented stable units, and cell pairs whose MD was above threshold indicated that the same 

 

Figure 12. Neural population stability. (A) Example electrode channels from one monkey 
showing waveforms from a single unit recorded on that channel across sessions. Each 
waveform represents the average waveform of that unit from one session, with session one 
plotted in a dark color and increasing in transparency across sessions. The unstable unit 
shows a channel with waveforms that represent stable MUA (Black) and unstable SUA (red), 
as the single unit was only present for 4 out of the 18 sessions. (B) The number of stable cells 
divided by the total number of cells is the percentage of stable units in each area for each 
monkey. In monkey 1, 81% of recorded units (508/620 neurons) in V4 and 74% of recorded 
units in dlPFC (1362/1837 neurons) were consistent across sessions. In monkey 2, 84% of 
recorded units in V4 (1489/1773 neurons) and 70% of recorded units in dlPFC (560/794 
neurons) were consistent. (C) For each brain region, the percentage of cells out of the total 
recorded per session (M1: 34 V4 cells, 102 dlPFC cells; M2: 104 V4 cells, 46 dlPFC cells) 
that exhibited a statistically significant change in firing rate from baseline (intertrial interval 
firing rate) during social events (as shown in Fig. 3E but plotted across sessions for each 
monkey). For each cell, P < 0.01 Wilcoxon signed-rank test with FDR correction. The 
percentage of responding cells does not systematically change across sessions. 
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neuron was not recorded across both days/sessions. Channels with stable units and a channel 

with stable MUA but unstable SUA are show in Figure 12A. The number of stable cells divided 

by the total number of cells is the percentage of stable units in each area for each monkey, as 

shown in Figure 12B. In monkey 1, 81% of recorded units (508/620) in V4 and 74% of recorded 

units in dlPFC (1362/1837) were consistent across sessions. In monkey 2, 84% of recorded units 

in V4 (1489/1773) and 70% of recorded units in dlPFC (560/794) were consistent (Fig 12B). 

Overall, my analysis yields results comparable to other electrophysiological studies with Utah 

array recordings who also found that chronically implanted Utah arrays typically record from the 

same neurons across days and months (Dickey et al., 2009; Fernandez-Leon et al., 2015; Luo 

& Maunsell, 2018).  

3.2.4 Neural firing rate and response 

I identified four salient events for cooperation: fixations on the reward, fixations on the 

partner monkey, self-pushes, and partner pushes. On average, there were 826 fixations on the 

reward, 936 fixations on the partner, 116 self-pushes, and 43 partner pushes per session for 

each animal pair. To determine if a cell was significantly responding to one or more of these 

events, I compared the firing rate in a baseline period (intertrial time, specifically 4.5 seconds 

before trial start) to the event onset using a Wilcoxon signed-rank test followed by FDR 

correction. Specifically, for each neuron I calculated its firing rate (20 ms bins) occurring 130 ms 

after fixation onset that accounted for visual delay (60 ms for V4 neurons and 80 ms for dlPFC). 

I chose this window as the fixation response period since most of the fixations were 100 – 200 

ms in duration (Fig. 4D). For self and partner push, I chose 1000 ms before push onset as the 

response period since firing rates began to significantly increase during this time. For partner 

pushes on ‘partner lead’ trials only (Fig. 13A), I used 500 ms before and 500 ms after the push, 

since the self-monkey viewed him after this push (Fig. 13A, also trays were not moving as self-

monkey was not pushing yet on these types of observations). Neural activity occurring between 

the moment trays began moving and the end of a trial was never used in any analysis in this 
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study. For each neuron, response firing rates were compared to baseline firing rates that were 

computed across the same duration as social event responses (130 ms for fixations and 1000 

ms for pushes). The percentage of neurons responding to social events did not systematically 

differ across sessions (Fig. 12C).  

3.2.5 Support vector machine decoder 

I used a support vector machine decoder (Bishop, n.d.) with a linear kernel to determine 

whether the population firing rates in V4 or dlPFC carry information about visual stimuli and/or 

decision-making (Fig. 16-20). Specifically, I computed the mean firing rates of each neuron in 

the population for the response period (described above) in each observation of fixations or 

pushes (multiple observations of any social event could occur within one trial), and then classified 

binary labels specifying the event (for example, fixations on reward were class one, fixations on 

partner were class two) from neural responses. For each session, the number of fixations or 

pushes were always balanced across classes. Random selections of class observations were 

repeated for 100 permutations, giving the average classification accuracy over 1000 test splits 

of the data, for each session. To train and test the model, I used a 10-fold cross-validation. Briefly, 

the data was split into 10 subsets and in each iteration the training consisted of a different 90% 

subset of the data and the testing was done with the remaining 10% of the data. I utilized the 

default hyperparameters as defined in fitcsvm, MATLAB 2020b. Decoder performance was 

calculated as the percentage of correctly classified test trials. In each session and iteration, I 

trained a separate decoder with randomly shuffled class labels. The performance of the shuffled 

decoder was used as a null hypothesis for the statistical test of decoder performance (Fig. 16-

20). For improved data visualization in Fig. 16-18, I plotted the shuffle-corrected decoder 

accuracy (actual – shuffled decoder performance), but learning trends remain even when only 

the actual decoder accuracy is evaluated. 

For Figure 16A-C analyses, 14 sessions were analyzed from pair 2 due to an inadequate 

number of fixations on the stimuli in 3 out of the 17 sessions. Similarly, for Figure 16B, only 16 
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sessions were included in the analysis because Monkey 1 did not fixate on self-button during 2 

sessions. Sessions with less than 30 fixations were not included in any neural analyses. For the 

analysis in Figure 20C, the number of observations for each class matched for “with cue” and 

“without cue” to enable fair comparison of decoder performance across conditions. In each 

session, for comparing feature weights across sessions (Fig. 19) and of correlated and non-

correlated V4 and dlPFC neurons (Fig. 26), I first normalized weights across the entire population 

of neurons, using the equation below where Wo is the current cell weight divided by the square 

root of the sum of all the squared weights in the population (Koren, 2021). Finally, the absolute 

values of weights were averaged across neurons within each session for each monkey, then 

combined to create the distributions seen in Fig. 26. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 =
Wo

√𝑊12 + 𝑊22 +  𝑊𝑛2. .
 

3.2.6 Solo-and-social control experiments 

Solo-and-social control experiments occurred after learning experiments and included 

periods of solo trials where self-monkey was alone in the arena, pellets dispensed only in his 

tray, and he pushed his button to deliver reward. Another monkey was brought into the room for 

social trials and social periods behaved as the usual task. Solo-and-social sessions included 60 

solo and 60 social trials, conducted in blocks to control for changes in neural recording quality 

within a session: 30 social trials – 60 solo trials – 30 social trials were performed, and this 

sequence of trial types alternated from day to day. 

3.2.7 Statistics 

To assess systematic changes in behavioral and neural metric performance, or learning, I report 

the P-value from simple linear regression and Pearson’s correlation coefficient to report the 

strength and direction of linear relationship. The percent increase or decrease of behavioral and 

neural metrics was calculated by the percent change equation, 𝐶 =  
x2−x1

x1
  , where C is the relative 
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change, x1 was the value from session 1, and x2 is the value from the last session. Changes 

were then averaged across events or monkeys. For comparing two paired groups such as a cell’s 

firing rate during an event and baseline period, I used the two-sided Wilcoxon signed-rank test. 

I chose this test rather than parametric tests, such as the t-test, for its greater statistical power 

(lower type I and type II errors) when data are not normally distributed. When multiple groups of 

data were tested, I used the False Discovery Rate multiple comparisons correction (Benjamini & 

Hochberg, 1995) whose implementation is a standard function in Matlab. When comparing two 

unpaired distributions, I used the Wilcoxon rank sum test.  

3.3 Results 

3.3.1 Single cells respond to social cues and actions 

I investigated the relationship between neural signals and social events leading to 

cooperation by analyzing the neural responses between the start of the trial and cooperation 

onset when both animals begin pushing. I identified fixations on social cues and non-social 

objects (i.e., monkey’s buttons or arena floor) within the receptive fields of the recorded neurons 

(Fig. 11B and Methods). Neurons in both cortical areas significantly increased firing rates in 

response to fixations on social cues compared to baseline measured during the intertrial interval 

(Fig. 14-15, P < 0.01, Wilcoxon signed-rank test with False Discovery Rate, FDR, correction). A 

distinct feature of ‘social brain’ areas is the ability to process information about one’s self and 

other (Haroush & Williams, 2015; Jamali et al., 2021; Kingsbury et al., 2019; Ong et al., 2020; 

Padilla-Coreano et al., 2022; Rose et al., 2021). I explored this feature by identifying self and 

partner monkey pushes, or decisions to cooperate, that occurred separately in time (> 1 s from 

each other, Fig. 13A). Importantly, I hypothesized that self-monkey’s neurons process allocentric 

information during partner choice, since he views the partner during most of partner’s pushes, 

but not during his  
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own push (Fig. 13B). I find that self-monkey typically fixates on the reward before his own 

push and fixates on the partner monkey before partner pushes (Fig. 13B). Over time, the 

self-monkey increased viewing of social cues (reward or partner) before pushing, 

indicating that viewing social cues informs decision-making as learning emerges (Fig. 

13C, P < 0.05, linear regression).  

 
 
Figure 13. Viewing behavior during pushing. (A) Self and partner pushes consisted of 
push types that occurred in their respective outlined boxes. ‘Partner only’ pushes rarely 
occurred and were not used in analysis. For total number of pushes, see Methods 3.2.4: 
Neural firing rate and response. (B) The distribution of the number fixations on each object 
that occurred before (1000 ms pre) self and partner (1000 ms pre 500 ms post) pushes in 
each session. There are more fixations on the partner monkey before the partner pushes 
than self, and there are more fixations on the reward before the self-monkey pushes than 
partner. Pair 1 P Values: 0.005 and 5.79e-5, Pair 2 P values:0.03 and 0.003, Wilcoxon rank 
sum test, *P < 0.05, **P < 0.01, ***P < 0.001. (C) For each animal pair, the percentage of 
self and partner pushes where fixations on the partner and/or reward system occurred within 
1000 ms of choice in each session. Pair 1 P = 0.0003, r = 0.7 and P = 0.03, r = 0.5; pair 2 P 
= 0.0005, r = 0.8 and P = 0.06, r = 0.4, self and partner choice respectively, linear regression 
and Pearson correlation. 
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Indeed, 70% of dlPFC units increased their firing rate during each animal’s push 

relative to baseline, with responses beginning 1000 ms before push onset (Fig. 14B and 

Fig. 15A, P < 0.01, Wilcoxon signed-rank test with FDR correction). Notably, a majority 

of dlPFC cells responded to both self and partner’s choice (66%), and reward and partner 

fixations (43%) as opposed to just one or the other (Fig. 15B-C). Overall, dlPFC neurons 

 
 
Figure 14. Neural responses to social events. (A) Raster plot of spiking activity from M1 
self-monkey’s V4 (units 1-35) and dlPFC (units 36-140) cells across one trial.  (B) Peri-event 
time histogram and raster examples of four distinct V4 and dlPFC cells responding to each 
social event. Dashed lines represent event onset and gray shaded box represents the 
response period used in all further analyses (also see Methods). Center line is mean firing 
rate averaged across the number of observations of each event with shaded SEM. 
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responded to both fixations and choice (Fig. 15A, left, all P < 0.01 Wilcoxon signed-rank 

test with FDR correction), with 55% of dlPFC neurons exhibiting mixed selectivity (Fig. 

15A, right). While a fraction of V4 neurons (28%) exhibited a change in firing rate around 

push time, the great majority responded to fixations on social cues (36 and 52%, fixations 

on reward and partner respectively). In contrast to dlPFC, most units in V4 responded 

only to fixations; 22% of V4 neurons exhibited mixed selectivity and most V4 neurons 

responded to partner monkey fixations (Fig. 15A and C). My results indicate that these 

mixed selectivity neurons, especially in dlPFC, may support the behavioral diversity 

observed in such a naturalistic and cognitively demanding social environment (Fusi et al., 

2016; Parthasarathy et al., 2017; Rigotti et al., 2013).  
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3.3.2 Neural encoding of social cues and decisions improves during learning 

Next, I examined the ability of neural populations to encode social cues and animals’ 

choice to cooperate during learning. A support vector machine (SVM) classifier with 10-fold 

cross-validation was trained to decode fixations on social cues and cooperation choices from 

single observations (see Methods 3.2.5). Fixations on the reward system and partner monkey 

were accurately decoded from the population response in each area. Decoding accuracy for 

social cues in each area increased on average by 328% during learning (Fig. 16A, all P < 0.01, 

 
 
Figure 15. Mixed selectivity in V4 and dlPFC. (A) Left: for each area, the percentage of 
cells out of the total recorded (M1: 34 V4 cells, 102 dlPFC cells; M2: 104 V4 cells, 46 dlPFC 
cells) that exhibit a significant change in firing rate from baseline (intertrial interval firing rate) 
during social events, averaged across sessions and monkeys. For each cell, P < 0.01 
Wilcoxon signed-rank test with FDR correction. Right: for each area, the percentage of 
neurons out of the total recorded that responded only to choice (self and/or partner), only to 
fixations (reward and/or partner), both fixations and choice (“mixed’), or none at all (“other”). 
(B) PSTH from an example dlPFC unit that shows an increase in firing rate before both the 
self-monkey and partner monkey pushes. Bottom: pie chart reflecting the percentage of 
push-modulated dlPFC units that respond only to self-push, only to partner push, or to both 
(“mixed”). Percentages averaged across sessions and monkeys. M1: 102 total dlPFC cells, 
73 are push responsive; M2: 46 total dlPFC cells, 41 are push responsive. (C) Pie chart 
reflecting the percentage of fixation-modulated V4 and dlPFC units that respond only to 
reward fixations, only to partner fixations, or to both (“mixed”). Percentages averaged across 
sessions and monkeys. M1: 73 dlPFC cells and 20 V4 cells are fixation responsive;  M2: 30 
dlPFC and 80 V4 cells are fixation responsive.  
 



 41 

linear regression). In contrast, while non-social objects, such as fixations on self-monkey’s button 

and random floor objects, could be reliably decoded from V4 and dlPFC activity, decoder 

performance did not improve across sessions (Fig. 16B). Thus, during learning cooperation both 

V4 and dlPFC selectively improve the encoding of visual features of social objects (e.g., reward 

system and partner), but not that of other objects. Furthermore, dlPFC neurons accurately 

discriminated between social and non-social object categories as decoder performance 

significantly improved by 228% during learning (Fig. 16C, all P < 0.01, linear regression). Thus, 

dlPFC representations of social visual cues as well as their distinction from non-social cues 

strengthen while animals learn to cooperate (Fig. 16C).  
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Figure 16. Encoding of social cues in V4 and dlPFC. (A) Decoding accuracy for fixations 
on the reward system and partner monkey. Decoders were trained and tested using 10-fold 
cross validation where chance is 50%, or 0% shuffle-corrected (dashed lines). M1: P = 0.006, 
r = 0.6 and 2.31 x 10-5, r = 0.8; M2: P = 3.01 x 10-5 and 0.004, V4 and dlPFC respectively, 
linear regression and Pearson correlation. Plots display shuffle-corrected mean prediction 
accuracy on test observations (±SEM) (B) Decoding performance for fixations on two non-
social objects. Session number does not predict accuracy. M1: P = 0.26 and 0.41; M2: P = 
0.18 and 0.52, V4 and dlPFC respectively, linear regression. (C) Decoding performance for 
object categories: fixations on social cues and non-social cues. M1: P = 0.08 and P = 0.0001, 
r = 0.8; M2: P = 0.3 and P = 0.001, r = 0.8 for V4 and dlPFC accuracy respectively, linear 
regression and Pearson correlation. 
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I further examined whether neural populations encode each monkey’s decisions to 

cooperate. By decoding population activity before a push, I found that in V4, choice events can 

be decoded only in a small number of sessions (Fig. 17). In contrast, in dlPFC decoding 

performance increased on average by 5,320% while animals learned to cooperate (Fig. 17, all P 

< 0.01, linear regression).  

 

Importantly, I found that self-monkey viewed different social cues during self and partner pushes 

(Fig. 13B), so I examined whether neural activity during pushing reflected decision-making or 

changes in visual input. To investigate this, I decoded each animal’s choice to cooperate during 

two scenarios: 1) pushes with preceding (within 1000-ms) fixations on social cues (reward 

system or partner), and 2) pushes without preceding fixations on social cues. Events in scenario 

1 were balanced to match those in scenario 2 (see Methods). In both V4 and dlPFC, decoder 

performance for choice was significantly reduced by 65% and 24% respectively, when pushes 

with preceding fixations on social cues were excluded (Fig. 18, gray, P < 0.001, Wilcoxon signed-

rank). However, in dlPFC, the choice to cooperate could be reliably decoded and decoder 

 
 
Figure 17. Encoding of choice in V4 and dlPFC. Decoding performance for each animal’s 
choice to cooperate. M1: P = 0.54 and P = 0.003, r = 0.7; M2: P = 0.1 and P = 0.002, r = 0.7 
for V4 and dlPFC accuracy respectively, linear regression and Pearson correlation. 
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accuracy remained correlated with learning (Fig. 18, bottom row, all P < 0.05, linear regression). 

This demonstrates that dlPFC encodes each animal’s decision to cooperate and that viewing 

social cues during decision-making improves choice encoding. In contrast, V4 decoder 

performance was close to chance when button pushes preceded by fixations on social cues were 

removed from the analysis, suggesting that V4 activity before choice mostly represents viewing 

social cues and not decision-making (Fig. 18). Altogether, this demonstrates that improved 

encoding of egocentric (self) and allocentric (partner) choice in dlPFC, but not V4, correlates with 

learning cooperation.  

 

 
 
Figure 18. Viewing social cues improves choice encoding. Left: Decoding performance 
for each animal’s choice using self and partner pushes that always had preceding fixations 
on either social cue within 1000 ms of push (navy and gold) compared to pushes that did not 
have fixations on social cues (gray). V4: M1 P = 0.48 and P = 0.4; M2 P = 0.49 and P = 0.71, 
V4 accuracy with and without social cues respectively, linear regression. dlPFC: M1 P = 
0.0002, r = 0.8 and P = 0.02, r = 0.5; M2 P = 0.008, r = 0.6 and P = 0.02, r = 0.6 for dlPFC 
accuracy with and without social cues respectively, linear regression and Pearson 
correlation. Right: Decoding accuracy for choice averaged across both monkeys during with 
and without social cue conditions. V4 P = 7.44e-7 and dlPFC P = 3.46e-6, Wilcoxon signed-
rank test. 
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3.3.3 Cells contribute more equally to encoding of social events during learning 

Given the improvement in decoding performance for social events, I wondered if neuronal 

weights were increasing during learning.  In linear SVM decoding models, as I’ve applied here, 

weights are assigned to each neuron and represent a neuron’s contribution to the decision 

boundary for separating one decoded event from another (i.e. – self and partner choice, reward 

and partner stimuli). The sign (+ or -) of the weight indicates which class/event the neuron is most 

representing. Additionally, the higher the magnitude of the weight, the more important that neuron 

is for classification. I first normalized the weights of all neurons within a session (see Methods 

3.2.5). Since within each animal, data was recorded from nearly the same neural population 

across sessions (including single and multi-units; M1: 34 V4 cells, 102 dlPFC cells; M2: 104 V4 

cells, 46 dlPFC cells), I then compared the absolute value of weight distributions across sessions 

during learning (Koren, 2021).  

Surprisingly, weight values did not increase, but rather, the variance, kurtosis, and 

skewedness of weight distributions decreased across sessions for decoding models that showed 

improved decoding performance (Fig. 19). This finding was consistent across brain areas and 

learning models from each monkey (Fig. 19D). Importantly, decreasing variance, kurtosis, 

skewedness, or maximum value of weights was not observed in models where decoding 

performance did not improve, such as non-social cues (Fig. 19B). The decrease in these weight 

metrics suggests that, during learning, information about social events is distributed more evenly 

across the population, such that a few neurons are no longer contributing most of the information, 

as seen in earlier, ‘naïve’, sessions (Fig. 19A). The decrease in weight variance corresponded 

to a decrease in the maximum value of weights across sessions, supporting the idea that learning 

distributes information across neurons (Fig. 19C).  
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Figure 19. Learning distributes information among neurons. (A) Distribution of neurons’ 
weights from the SVM model for decoding social cues for the first session and last session (V4 
from Monkey 2, 98 and 102 neurons in first and last session respectively.  dlPFC from Monkey 
1, 90 and 101 neurons in first and last session respectively). Histogram of weights with normal 
distribution fit is plotted. (B) For each brain area, the variance of weight distributions (absolute 
valued) for each session from SVM models decoding social or non-social cues, as seen in Fig. 
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16A-B. V4 (average 104 cells/session) from M2 and PFC (average 102 cells/session) from M1. 
V4 social cues variance, P = 0.01, r = -0.63, and PFC social cues variance, P = 1.67e-5, r = -
0.83, linear regression and Pearson correlation. (C) For each brain area, the maximum weight 
value (absolute valued) from each session in SVM models decoding social or non-social cues. 
V4 social cues maximum weight, P = 0.002, r = -0.74 and PFC social cues maximum weight, P 
= 0.004, r = -0.64, linear regression and Pearson correlation. (D) Summary of decoding models 
that exhibit decreased variance, kurtosis, skewedness, or maximum value of weights for each 
brain area and monkey. For each decoding model, the P value, represented in shades of teal 
color, reflects linear regression of each weight metric with session number, as shown in B and 
C. The value in each box is Pearson correlation coefficient from correlating session number and 
weight metric. Learning models are SVM models where classification accuracy increased, such 
as decoding social cues. Significant decrease of these decoding weight metrics is associated 
with learning models exclusively.  

3.3.4 Social context influences self-action 

I considered whether dlPFC activity before button pushing during cooperation reflected 

the animal’s decision to cooperate (i.e., pushing with social intention) or simply his decision to 

push the button. To investigate this, I recorded 9 additional sessions using ‘solo blocks’ whereby 

the self-monkey completed sets of ‘cooperation’ trials entirely by himself (see Methods 3.2.6). 

Solo blocks were interspersed with regular cooperation blocks conducted in two animals. Overall, 

the percentage of dlPFC cells that responded before push did not differ between contexts when 

compared to baseline activity (session averaged intertrial activity, Fig. 20B: bar plot, both 88%. 

all P < 0.01, Wilcoxon signed rank with FDR correction). However, social context did modulate a 

cell’s firing rate before pushing, affecting 25% of recorded neurons. (Fig. 20A-B, P < 0.01, 

Wilcoxon rank sum test). Strikingly, I discovered a gain modulation effect of social context, where 

61% of modulated dlPFC neurons exhibited higher firing rates before pushing during the solo 

context than social (Fig. 20B: pie chart, n = 10 neurons/session). Furthermore, the type of trial – 

solo or social – could be decoded from the pre-push neural population activity of all dlPFC units 

(n = 40 units/session, Fig. 4C). These findings in dlPFC suggest that social context affects neural 

representation of action and confirms the activity examined in Figures 17-18 reflects the self-

monkey’s decision to cooperate. 
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3.3.5 Neural activity is minimally correlated with animal’s body and eye movements 

dlPFC is one of the many interconnected regions of the prefrontal cortex, which receives 

convergence of multiple, more modular systems, such as sensory cortices, to plan actions 

(Fuster, 2000; Fuster & Bressler, 2015). The decision to cooperate in dlPFC is at a higher 

 

 
Figure 20. Effects of social context on self-action. (A) Social and solo trial schematic with 
peri-event time histogram for a dlPFC cell that exhibits a significant change in firing rate 
between solo and social conditions (B) Mean percentage of cells (n ~ 40 cells/session from 
9 sessions) responding significantly to self-choice in each condition when compared to 
baseline and compared across conditions (context difference), P < 0.01 Wilcoxon signed-
rank test with FDR correction and Wilcoxon rank sum test for context difference. Pie chart: 
session averaged percentage of modulated (context difference) cells that exhibit significantly 
higher firing rates before self-choice during solo or social condition. (C) Actual and shuffled 
decoding performance for solo and social trials using dlPFC activity occurring 1000 ms 
before self-choice, averaged across sessions, P = 0.004, Wilcoxon signed-rank test. Dashed 
line represents chance. SEM is represented with error bars or shading. *P < 0.05, **P < 0.01, 
***P < 0.001.  
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hierarchical level than the execution of the motor action (i.e., button pushing), although both are 

parts of control, generally speaking (Botvinick, 2007; Fine & Hayden, 2022; Fuster, 2000). 

Therefore, it is expected that dlPFC orchestrates goal-directed actions and is not without 

premotor representations. Indeed, a recent study shows that dlPFC neurons are modulated by 

both task variables and uninstructed movements, but that this mixed selectivity does not hinder 

the ability to decode variables of interest (Tremblay et al., 2022). Movement driven activity is 

mostly orthogonal to task-driven activity, preventing movements from contaminating the neural 

representation of task-relevant variables (Stringer et al., 2019). 

 However, because motor variables such as head, body, and eye movement and pupil 

size during pushes may influence neuronal activity in cortex (Musall et al., 2019; Talluri et al., 

2022; Tremblay et al., 2022), I quantified the correlation between these movements and neural 

activity in V4 and dlPFC. Consistent with our previous work and that of others (Shahidi et al., 

2022; Talluri et al., 2022), I found only a small percentage of V4 and dlPFC neurons whose 

activity was correlated with movements or pupil size during pushing (Fig. 21, all metrics < 12% 

of correlated neurons (n = 1157 neurons), Pearson correlation P < 0.01).  Additionally, neural 

activity in V4 and dlPFC during fixations was only minimally associated with the animal’s head 

and body movements (Fig. 22). With these findings, I confirm that the population activity 

examined in Figures 16-28 (chapters 3 and 4) represents task-relevant variables such as visual 

social cues and social decisions. 
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Figure 21. Neural activity correlations with oculomotor and body movements during 

pushing. (A) Pupil size and eye velocity, averaged across sessions and animals, that 

occurred before (1000 ms pre) the self and partner monkey pushes. There is no significance 

difference in pupil size and eye velocity between animal’s choices, Wilcoxon rank sum test, 

P > 0.05. (B) The distribution of Pearson correlation coefficients from the correlation of V4 

and dlPFC neuron’s firing rates with pupil size and eye velocity occurring before (1000 ms 

pre) self and partner pushes. N = 1157 neurons from eight sessions across two animals. 

Percent significant represents neurons with a significant correlation coefficient, P < 0.01. (C) 

Self-monkey’s head movement occurring 1000 ms before self or partner monkey pushes, 

averaged across six sessions from two monkeys. M1 and m2 represent the mean movement 

for each choice type. Significance between groups was assessed using Wilcoxon rank sum 

test. *P < 0.05, **P < 0.01, ***P < 0.001.  Below - The distribution of Pearson correlation 

coefficients from the correlation of V4 and dlPFC neuron’s firing rates with head movement 

occurring 1000 ms before self and partner pushes. N = 900 neurons from six sessions across 

two animals. Percent significant represents neurons with a significant correlation coefficient, 

P < 0.01. (D) The same as in C but shows histograms of neural firing rate correlations with 

limb movement. (E) The same as in C but displaying neural firing rate correlations with torso 

movement.  
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Figure 22. Neural activity correlations with body movements during fixations on social 
cues. (A) Left - Self-monkey’s head movement occurring 200 ms after onset of fixations on 
the reward and partner monkey, averaged across six sessions from two monkeys. M1 and 
m2 represent the mean movement for each fixation type. Diff is the difference between the 
means. Significance between groups was assessed using Wilcoxon rank sum test. *P < 0.05, 
**P < 0.01, ***P < 0.001. Right - the distribution of Pearson correlation coefficients from the 
correlation of V4 and dlPFC neuron’s firing rates with head movement occurring 200 ms after 
fixations on the reward system and partner monkey. N = 900 neurons from six sessions 
across two animals. Percent significant represents neurons with a significant coefficient, P < 
0.01. (B) The same as in A, left but for limb movement. (C) The same as in A, left but for 
torso movement. While there is a significant difference in torso movement across reward and 
partner fixations, the magnitude of the difference is less than 2%. 
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3.4 Discussion 

I found single cell and population representations of viewing social cues in each brain 

area. Specifically, during learning, V4 and dlPFC population encoding of social cues (fixations 

on reward and partner) improved across sessions, but did not improve for other, non-social 

objects (fixations on self-button and random objects). Since the objects within these social and 

non-social categories have distinct visual features, improvement in decoding performance is 

most likely related to an improvement in V4 and dlPFC ensemble representation of social visual 

features exclusively, as non-social objects can be decoded but performance does not correlate 

with learning behavior. While V4 has been previously shown to process visual information, such 

as object shape, color, and texture (Kim et al., 2019; Kobatake & Tanaka, 1994; Schein & 

Desimone, 1990), my findings reveal that V4 encoding of visual features in a 3D, goal-directed, 

social environment is modulated by feature salience, particularly social relevance, inviting further 

investigation of V4 in social cognition research.  

Likewise, these findings in dlPFC further previous work demonstrating dlPFC’s ability to 

represent visual features beyond spatial information, such as categories of visual stimuli (i.e. – 

numerosity) and object identity (Rao et al., 1997; Viswanathan & Nieder, 2013; Wallis & Miller, 

2003; Wutz et al., 2018). Indeed, dlPFC not only improved discrimination for social cues but also 

for social and non-social categories, which complements a recent study showing neurons in other 

prefrontal regions (dorsomedial prefrontal cortex, anterior cingulate cortex, and orbitofrontal 

cortex) prioritize social discriminability between viewing faces and other objects during free 

viewing with another monkey (Dal Monte et al., 2022). Social gaze interaction is important for 

social behavior and whether V4 and dlPFC are modulated by the gaze of others remains to be 

discovered, as I did not record eye tracking data from the partner monkey. Interestingly, decoding 

accuracy for predicting social and non-social cues was consistently higher in dlPFC than V4. I 

suspect this is because dlPFC receives and integrates many sensory modalities (E. K. Miller & 

Cohen, 2001; Wang et al., 2015), enabling better prediction of incoming stimuli. Therefore, future 
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studies could explore how prefrontal and sensory cortices support tactile, auditory, vocal, and 

visual communication during learning of social interactions.   

Neural processing of allocentric information is essential for social learning. In primates 

especially, evidence gathered from visually monitoring of other agents is used to determine 

actions of oneself and predict other’s actions. The temporal fluidity and spontaneous behavior in 

this ethologically relevant experiment enabled the examination of neural mechanisms underlying 

self and other decisions in V4 and dlPFC during learning to cooperate. The period preceding 

push is most likely when animals are forming the decision to cooperate. Importantly, animals 

increase viewing of social cues before pushing during learning, and monkeys exhibited a diversity 

of viewing and push sequences before cooperating across trials and sessions (Fig. 8-9, and Fig. 

13). This allowed examination of neural population activity during both independent and 

overlapping events (i.e. – pushes with or without fixations on social cues). I explored encoding 

of the egocentric (self-monkey) and allocentric (partner monkey) decision to cooperate by using 

self and partner pushes that occurred separately from other events, such as the start of the trial 

(to avoid relation to reward), and the other animal’s push (Fig. 13A). Critically, these isolated 

partner pushes occurred during moments when the self-monkey was likely to be thinking and 

mentalizing about the partner, as evidenced by fixations on the partner during these times (Fig. 

13B). For instance, if self-monkey is the only monkey pushing and holding his button, he might 

be anticipating when the partner will also cooperate, especially right before the partner pushes, 

explaining why allocentric information is encoded in dlPFC during this time. dlPFC population 

encoding of egocentric and allocentric choice significantly improved during learning, even when 

pushes with immediate (occurring within one sec of push) preceding fixations on social cues 

were removed from analysis, emphasizing the important and persistent role of dlPFC in social 

choice during learning. This finding contributes to previous work describing dlPFC’s contribution 

to social action planning and goal-directed behavior (Falcone et al., 2016; Tanji & Hoshi, 2008; 

Yamagata et al., 2012).  
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Notably, dlPFC decoding performance and learning trend for choice that excluded 

preceding fixations on social cues was significantly lower than model performance that included 

preceding fixations on social cues, suggesting that, while dlPFC does not depend on viewing 

social cues for planning or predicting self and other decisions, the additional visual information 

does improve neural representation of social decisions in dlPFC. Indeed, this finding supports a 

possible role for dlPFC in mentalization and theory of mind, as the self-monkey could have been 

thinking about the partner monkey without looking directly at him around these critical decision 

periods. Moreover, my analysis did not include time points when the mirror neuron system would 

have been activated and influencing dlPFC activity, such as during post-push periods when self-

monkey observed partner monkey pushing his button (i.e. during other-action execution). This 

invites further investigation of the role of mirror neuron regions in social learning (di Pellegrino et 

al., 1992; Fogassi & Ferrari, 2011; Rozzi et al., 2008).  As expected, V4 did not encode self and 

other decisions, as decoding performance for choice decreased to near chance levels when 

pushes with fixations on social cues were removed from analysis. In other words, when 

accounting for changes in visual input, choice events could not be decoded in V4.  

Overall, V4 and dlPFC neurons isolate and process socially pertinent visual information 

that is used to improve coding of social decisions in dlPFC. These computations highlight the 

importance of visual monitoring to determine actions of oneself and predict or even influence 

other’s actions in the creation of purposeful social behavior. Additionally, I examined how 

neurons within V4 and dlPFC populations represent social variables during learning by analyzing 

features of neural weight distributions across sessions. Decoding models for social events that 

exhibit increased performance were characterized by a decrease in the variance, kurtosis, and 

skewedness of neuronal weight distributions during learning (Fig. 19). The maximum value of 

weights also decreased across sessions exclusively in learning models. The decrease in these 

metrics suggests that, during learning, information about social events is distributed more evenly 

across the population, such that a few neurons are no longer contributing most of the information, 

as seen in the first few sessions before information is learned. Certainly, once relevant 
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information is learned, it would be beneficial for learned information to be represented among a 

group of neurons and not restricted to only a few neurons. 

 The distribution of information among neurons and improved encoding of social cues 

and choice in V4 and dlPFC during learning is likely gated by dopaminergic signaling from the 

mesocortical limbic pathway (Stalter et al., 2020). D1 and D2 dopaminergic receptors are 

expressed in V4 and dlPFC neurons (Lidow et al., 1991), with prefrontal cortex receiving direct 

projections from dopaminergic neurons in the midbrain (Björklund & Dunnett, 2007; Williams & 

Goldman-Rakic, 1998). Activation of these dopaminergic receptors in prefrontal cortex have been 

shown to control neural responses to visual stimuli in V4 (Noudoost & Moore, 2011) and enhance 

sensory sensitivity of dlPFC neurons (Stalter et al., 2020).  As social stimuli, such as the partner 

monkey, become more rewarding during learning, this could increase dopamine levels in cortex 

to improve neural encoding of social variables – a framework that should be explored in future 

studies. Collectively, the findings in this chapter provide mechanistic insights into how neural 

systems encode and process social information during learning cooperation. 

 

CHAPTER 4: SPIKE TIMING COORDINATION BETWEEN BRAIN REGIONS 
DURING SOCIAL LEARNING 

4.1 Background 

In addition to the individual roles of V4 and dlPFC, studies outlining their cytoarchitecture show 

that both areas share indirect neuronal projections via parietal and temporal areas (Gregoriou et 

al., 2014; Kolster et al., 2014; Saleem et al., 2014; Ungerleider et al., 2008). These multisynaptic 

connections facilitate the feedforward processing of information from V4 to dlPFC, with V4 

encoding mostly visual features that integrate in dlPFC to make decisions and plan actions 

(Brincat et al., 2018; Choi et al., 2018; Siegel et al., 2015). Additionally, V4 receives feedback 

modulation from dlPFC, such as attention (Gregoriou et al., 2014), task-related information, and 

choice signals (Choi et al., 2018; Siegel et al., 2015). Although we know that temporal 
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coordination of neuronal spiking activity supports signal transmission and behavior, the neural 

interactions between V4 and dlPFC during social behavior remains unknown. I expect that the 

back-and-forth relay of electrical signals, or spike timing coordination, between V4 and dlPFC 

during socially relevant events should support social learning. Therefore, I will use simultaneous 

neural recordings during learning social cooperation experiments to understand neural 

interactions within and between V4 and dlPFC. This analysis will determine whether, in addition to 

patterns and covariance of neurons’ firing rates as observed in chapter 4, spike timing coordination between 

neurons can also contribute to learning social interactions. 

4.2 Methods 

4.2.1 Cross-correlation of neuronal pairs 

Cross correlograms (CCGs) in Figure 23 were computed by sliding the spike trains of each cell 

pair and counting coincident spikes within 1 ms time bins for each social event and pair of 

neurons (within and between areas) using the xcorr function in Matlab 2020b. Cross-correlations 

were normalized by the geometric mean spike rate, and corrected for stimulus-induced 

correlations by subtracting an all-way shuffle predictor (Bair et al., 2001; Pojoga et al., 2020). I 

computed CCGs using spiking activity that occurred 800 ms before choice or random events and 

200 ms after fixation onset with visual delay (see section 3.2.4 Neural firing rate and response). 

For cross-correlation of v4-dlPFC responses to fixations, I used an 80 ms visual delay. A CCG 

was considered significant if the peak (occurring within -6 to +6 ms lag interval for within area 

and ±15-60 ms lag interval between areas) exceeded 4.5 times the standard deviations of the 

noise (tail) level occurring ± 60 ms from the peak range during non-fixation events and ± 25 ms 

from the peak range for fixation events. Mean coordination values for each session are the 

average of the CCG peaks of all significant cell pairs. For random events, I used times from the 

inter-trial period and, for random fixations, I used fixations on objects that were not social cues. 

Within a session, the number of random observations matched those of the social event. 
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4.2.2 SVM weight normalization 

In each session, for comparing feature weights of correlated and non-correlated V4 and dlPFC 

neurons (Fig. 26), I first normalized weights across the entire population of neurons, using the 

equation below where Wo is the current cell weight divided by the square root of the sum of all 

the squared weights in the population (Koren, 2021).  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 =
Wo

√𝑊12 + 𝑊22 +  𝑊𝑛2. .
 

Finally, the absolute values of weights were averaged across neurons within each session for 

each monkey, then combined to create the distributions seen in Fig. 26. For each brain area, I 

used the weights from SVM models for decoding social cues or each animal’s choice to 

cooperate. 

4.2.3 Statistics 

To assess systematic changes in behavioral and neural metric performance, or learning, I report 

the P-value from simple linear regression and Pearson’s correlation coefficient to report the 

strength and direction of linear relationship. The percent increase or decrease of behavioral and 

neural metrics was calculated by the percent change equation, 𝐶 =  
x2−x1

x1
  , where C is the relative 

change, x1 was the value from session 1, and x2 is the value from the last session. Changes 

were then averaged across events or monkeys. For comparing two paired groups such as a cell’s 

firing rate during an event and baseline period, I used the two-sided Wilcoxon signed-rank test. 

I chose this test rather than parametric tests, such as the t-test, for its greater statistical power 

(lower type I and type II errors) when data are not normally distributed. When multiple groups of 

data were tested, I used the False Discovery Rate multiple comparisons correction (Benjamini & 

Hochberg, 1995) whose implementation is a standard function in Matlab. When comparing two 

unpaired distributions, I used the Wilcoxon rank sum test.  
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4.3 Results 

4.3.1 Spiking coordination within and between areas improves during learning  

Temporal coordination of neuronal spiking within and between cortical areas is believed 

to be correlated with signal transmission (45). I computed spike time correlations between pairs 

of cells in V4, dlPFC, and across areas. Only significant cross-correlograms (CCGs) were used 

in the analysis (the peak of shuffle-corrected CCGs was > 4.5 standard deviation of the tails (46), 

see Methods). To account for the delay of information transmission within and between areas, I 

only analyzed within-area CCGs (average of 668 cell pairs/session) that peaked at ±0-6 ms time 

lag, and inter-areal CCGs (average of 45 cell pairs/session) that peaked at ±15-60 ms lag (Fig. 

23).  

 

The mean coordination and average of significant cell pair maximum coincident spikes 

(CCG peaks) significantly increased across sessions during social events (Fig. 24). Within V4, 

 

 
 
Figure 23. Cross-correlograms of neuronal pairs within and between brain regions. 
(A) Example cross-correlograms (CCGs) of V4-dlPFC cell pairs during two of the four social 
events, averaged across observations. (B) Example CCGs of V4-dlPFC cell pairs during two 
of the four social events. CCGs were computed with 1 ms time bins during neural response 
periods for each event, displayed in Figure 14B. 
 
  



 59 

pairwise synchrony increased by 114% across sessions during fixations on social cues, but not 

before choice events. In dlPFC, synchronized spiking increased on average by 137% during 

fixations on social cues and self-choice, but not during partner choice. As animals learned to 

cooperate, coordination between V4 and dlPFC increased by 160% for all social events except 

partner choice (Fig. 24). Importantly, both within and between areas, coordination during 

fixations on random floor objects or random time periods (e.g., inter-trial interval) did not change 

across sessions, indicating that increased coordination exclusively correlates with learning of 

social events (Fig. 24).  
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Figure 24. Spike timing coordination for social and non-social events. (A) Top row: Mean 
coordination plotted across sessions for each social event in V4, dlPFC, and between areas (V4: 
P = 0.001, r = 0.7; P = 0.01, r = 0.6; P = 0.09 and P = 0.8.  PFC: P = 5.68e-6, r = 0.9; P = 0.003, 
r = 0.7; P = 1.25 x 10-4, r = 0.7 and P = 0.07.  V4-dlPFC: P = 2.89 x 10-4, r = 0.8; P = 0.01, r = 
0.6; P = 9.93 x 10-4, r = 0.7 and P = 0.27. Linear regression with Pearson’s correlation coefficient 
for view reward, view partner, and self-push events, respectively). Bottom row: Mean 
coordination during fixations on random objects and during random events (inter-trial period) for 
V4, dlPFC and inter-areal cell pairs. V4: P =0.4 and 0.7; PFC: P = 0.4 and 0.09; V4-dlPFC: P = 
0.4 and 0.1, for random event and fixations, respectively. (B) Top row: Mean coordination plotted 
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across sessions for each social event in V4, dlPFC, and between brain areas (V4: P = 0.03, r = 
0.6; P = 0.005, r = 0.7; P = 0.1 and P = 0.2.  PFC: P = 0.008, r = 0.7; P = 0.003, r = 0.8; P = 
0.002, r = 0.7 and P = 0.44.  V4-dlPFC: P = 0.02, r = 0.6; P = 0.006, r = 0.7; P = 0.01, r = 0.6 and 
P = 0.48. Linear regression with Pearson’s correlation coefficient for view reward, view partner, 
self-push and partner push events respectively). For ‘view reward’ and ‘view partner’ events, only 
14 sessions were analyzed due to an inadequate number of fixations on the stimuli in 3 out of 
the 17 sessions. Sessions with less than 30 fixations were not included in the analysis. Bottom 
row: Mean spike timing coordination during fixations on random objects and during random 
events (intertrial period, 4.5 seconds before trial start) for V4, dlPFC, and inter-areal cell pairs. 
V4: P =0.03 and 0.9; PFC: P = 0.53 and 0.45; V4-dlPFC: P = 0.01 and 0.14, for random events 
and random fixations, respectively. Significant P values correspond to decreasing trends. 
 

Additionally, while significant V4-dlPFC pairs exhibited maximum coincident spiking at 

both positive (V4 leads) and negative time lags (dlPFC leads) during social events, there were 

consistently more inter-areal cell pairs with positive time lags (Fig. 25). This indicates that 

information between V4 and dlPFC during social cooperation is typically communicated in a 

feedforward direction (Fig. 25), consistent with my finding that social cues are used to guide 

animals’ decision to cooperate (Fig. 9). The number of cell pairs with negative and positive time 

lags, or therefore directionality of information, did not systematically change across sessions.  

 

 

 
 
Figure 25. V4-dlPFC interactions are mostly feedforward. Histograms of time lag values 
of CCG peaks between all significantly correlated V4-dlPFC cell pairs across sessions and 
monkeys, for each social event. 
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4.3.2 Coordinated cells contribute more to encoding of social events 

Finally, I asked whether the V4 and dlPFC cells that were coordinated in their spike timing would 

also exhibit improved encoding of social variables. Notably, significantly correlated pairs of V4-

dlPFC neurons contributed more to the encoding of social events in each brain area, as their 

normalized weight values from decoding models for social cues and choice were significantly 

higher than the weights of the remaining population of cells (Fig. 26A, Wilcoxon signed-rank test, 

P < 0.01). In V4, this result applied for the encoding of social cues but not choice, whereas in 

dlPFC it applied for all events except partner choice (Fig. 26A). Taken together, we propose a 

general mechanism for learning social interactions, whereby increased spike timing coordination 

between areas V4 and dlPFC during social events leads to improved encoding and distributed 

representation of social variables within each area (Fig. 26B). 
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Figure 26. Social learning mechanisms in primate cortex. (A) Probability density plots of 
decoder weights of V4 and dlPFC neurons significantly correlated during each social event. 
Weights were averaged across neurons within each session for each monkey, then combined. 
V4 from left to right: P = 6.48 x 10-4, P = 6.38 10-4, P = 0.33, P = 0.24; PFC: P = 0.002, P = 0.001, 
P = 7.41 x 10-4, P = 0.14, Wilcoxon signed-rank comparing weight distributions of correlated and 
non-correlated neurons. (B) Cartoon of social learning model: increased inter-area spike timing 
coordination improves the encoding of social variables to mediate learning social interaction. 

4.4 Discussion 

Associative learning of social signals relies on successive transformations of sensory 

inputs within local and long-range cortical networks (Brincat et al., 2018; Haruno & Kawato, 2006; 

Siegel et al., 2015). These data support that enhanced communication, or coordinated spiking, 
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between visual and prefrontal cortical areas mediates learning social interactions. Specifically, 

although V4-V4 coordination did not increase during learning when aligned to self-choice, 

coordination between pairs of V4-dlPFC cells did increase, and coordination consistently 

improved within and between areas following fixations on social cues, indicating that visual and 

decision information is communicated. Surprisingly, an increase in spiking coordination was not 

observed either within dlPFC or between V4-dlPFC before partner-choice, suggesting that dlPFC 

codes the prediction of other’s behavior in mean firing rates but not spike timing coordination. I 

expect that increased coordination occurs between dlPFC and other cortical areas around 

allocentric events during learning and should be explored. Candidate areas, given their reciprocal 

connections to dlPFC and/or role in processing allocentric information, include the orbitofrontal 

cortex, dorsomedial prefrontal cortex, anterior cingulate cortex, and superior temporal sulcus (Dal 

Monte et al., 2022; Haroush & Williams, 2015; Moessnang et al., 2017; Ong et al., 2020).  

Additionally, while some significantly correlated inter-areal cell pairs exhibited maximum 

coordination at negative lag, meaning dlPFC spiked first, most cell pairs exhibited maximum 

coordination at positive lag, meaning V4 cells spiked first, suggesting a mostly feedforward 

processing of information throughout learning. For any social event, the directionality of spiking 

coordination did not consistently change across sessions (i.e. – increasing pairs with positive or 

negative lag was not observed during learning).  

Notably, for each brain area, spike timing coordination results correlated with that of 

neural encoding for social events. For example, V4 ensembles did not encode choice and 

likewise did not exhibit increased coordination for either self or partner choice, however, V4 

improved encoding of social cues and also exhibited increased synchronized spiking after 

fixations on social cues during learning. Strikingly, I found that significantly correlated V4-dlPFC 

neurons contribute more to the encoding of social cues within V4, and social cues and egocentric 

choice in dlPFC, as reflected by their increased weights in classification models compared to 

neurons that did not significantly correlate with a cell in the other brain region.  
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These findings led to my development of a social learning mechanism whereby an 

increase in coordinated spiking between visuo-frontal circuits leads to improved encoding of 

social events within each area. This theory is consistent with sensorimotor associative learning 

circuit models where coincident activity between brain regions during task-relevant stimulus-

response events permits Hebbian plasticity at the cortico-cortical synapses that correspond to 

the associations (Makino et al., 2016). For example, in my experiments, monkeys learn the 

association between viewing certain cues and cooperating (fixating on the reward or partner can 

cause either monkey to push, receiving reward), and learn that pushing and holding the buttons 

together leads to reward. As learning occurs, animals increase viewing of social cues before 

pushing (Fig.13), so increased spiking coordination between V4 and dlPFC during these times 

could elicit synaptic changes between neurons within each area (Hedrick et al., 2022), thus 

improving encoding of sensory and/or decision-making signals within each region, resulting in 

the improved motor output that I observed via decreased reaction times and increased action 

coordination across sessions. The increased magnitude of coordinated spiking between V4 and 

dlPFC is likely influenced by reward prediction error or causal association signals from 

dopaminergic neurons in the ventral tegmental area, as cortico-striatal synapses are a site of 

plasticity during associative learning and could strengthen specific feedforward sensory input 

synapses from V4 to dlPFC neurons involved in social decisions (Jeong et al., 2022; Law & Gold, 

2009; Makino et al., 2016; Pasupathy & Miller, 2005; Schultz, 1998; Xiong et al., 2015).  

 

CHAPTER 5: DISCUSSION 

5.1 Summary of findings  

“The eyes of men converse as much as their tongues, with the advantage that the ocular dialect 

needs no dictionary, but is understood all the world over.”  

- Ralph Waldo Emerson, 1876 
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Essentially, vision is the social language of primates.  

 

Social interaction, especially cooperation, requires interpretation and exchange of 

sensory information, including relevant visual cues, among interacting agents. However, it has 

long been unclear how visual information is encoded and passed on to executive areas to guide 

social decisions and learning cooperation behavior. My results reveal that across sessions, 

animals learn to cooperate by improving the coordination of their actions and reaction times. 

Further, animals become more likely to cooperate after viewing social cues. This is supported by 

the increase in coordinated spiking between visual and prefrontal cortical neurons during learning 

to cooperate, which was associated with improved accuracy of neural populations to encode 

social cues and the decision to cooperate. This provides the first evidence for the role of visual 

cortex in encoding of socially relevant information. Somewhat surprisingly, dlPFC neurons 

outperformed those in V4 in their ability to discriminate between multiple visual social cues, such 

as fixations on reward and partner, and those on social and non-socially relevant information. 

This is likely due to the fact that dlPFC receives and integrates diverse sensory modalities (E. K. 

Miller & Cohen, 2001; Wang et al., 2015), which may enable a better prediction of highly-

dimensional incoming stimuli.  Overall, V4 and dlPFC neurons prioritize socially pertinent visual 

information that is used to improve coding of social decisions in dlPFC. These computations 

highlight the importance of visual monitoring to determine actions of oneself and predict or even 

influence other’s actions in the creation of purposeful social behavior.  

Here, I propose a social cooperation learning model whereby an increase in coordinated 

spiking between feedforward visuo-frontal circuits during social viewing improves the coding of 

social events and distributes their representation in each area (Fig. 27). This model is supported 

by the finding that, remarkably, the strongest coupled neurons across areas were those that 

contributed the most to the encoding of social events. Furthermore, early during learning, a select 

number of cells contributed most to social interactions compared to the rest of the population. 

However, as learning progressed, the information about social and decision-making signals 
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became more evenly distributed across the neural population. Essentially, inter-areal neurons 

that fire together, wire together (Hebb, 1949; Shatz, 1992), to distribute and contribute social 

information among intra-areal neurons. This is consistent with sensorimotor associative learning 

models in which Hebbian plasticity may occur during coincident responses between brain areas 

during task-relevant stimulus-response events (Makino et al., 2016; Xu et al., 2012). As learning 

progresses, animals increase viewing of social cues before deciding to cooperate (Fig. 13). Thus, 

increased spiking coordination between V4 and dlPFC during viewing social cues could elicit 

synaptic changes between neurons within each area (Hedrick et al., 2022). Subsequently, the 

improved encoding of sensory and decision-making signals within each cortical area may 

underlie the improved motor output observed via decreased reaction times and increased action 

coordination across sessions (Fig. 5-6).  

Finally, by allowing animals to move freely during social cooperation, this study 

represents a pioneering move toward examining the neural underpinnings of naturalistic behavior 

in a free-roaming setting. While this paradigm shift has long been suggested (Dell et al., 2014; 

Ghazanfar & Santos, 2004; Wallace & Hofmann, 2021), recent advances in low-power, high-

throughput electrophysiological devices coupled with wireless behavioral monitoring and large-

scale computing (Fernandez-Leon et al., 2015; Milton et al., 2020; Shahidi et al., 2022) made 

this research feasible only now. Critical to this work is simultaneous use of wireless neural and 

eye tracking recordings to examine how visual events and social cues guide the decision to 

cooperate. Analyzing the relationship between the behavioral repertoires of each freely 

interacting agent allowed me to uncover the neural computations involving prioritization of social 

visual cues that were essential to social learning. Thus, vision may be the social language of 

primates likely governing learning of various social activities, such as grooming, play, and 

collective foraging. A shift toward more natural behavior in which multi-sensory information is 

recorded wirelessly in conjunction with large-scale population recordings will be essential for 

understanding neural mechanisms of social cognition (Fan et al., 2021; C. T. Miller et al., 2022). 

Collectively, my findings reveal a visuo-frontal cortical network representation of learning visually 
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driven cooperation in the primate brain, inspiring research that promotes holistic understanding 

of how multiple brain areas guide social interactions in our increasingly social world.  

 

 

 
 
Figure 27. Social learning summary. In early sessions when the animals were naïve to 
cooperation, the timing of spiking activity between areas was not coordinated during social 
events and a few neurons encoded most of the social information relative to the rest of the 
population. As learning progresses, mostly feedforward spike timing coordination improves 
between regions during social events and subsequently, information is more evenly 
distributed among neurons, correlating with improved encoding of social events within each 
area. V4 improves encoding of social visual cues whereas dlPFC improves encoding of 
social visual cues and decisions of self and other.  
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5.2 Limitations and future directions 

While this innovative approach combining wireless eye tracking and neural recordings 

provides discovery of neural computations that subserve leaning of voluntary social behavior, 

every study has its limitations. Probably the most apparent limitation is that I did not perform 

combined neural and eye tracking recordings from both monkeys simultaneously. When my 

experiments began in 2017, it was not technologically possible to accomplish this feat. However, 

the technology exists today and future studies in social cognition should examine the neural 

correlates of interacting agents simultaneously. This would be particularly valuable in the context 

of social learning and in order to study teacher-learner interactions where both agents are 

concurrently engaged in the learning process – observing, imitating, and learning from and with 

each other (De Felice et al., 2022; Gariépy et al., 2014). One could examine the neural 

mechanisms underlying gaze information from each agent prior to vocal communication or action 

exchange between agents. Cognitive research of such an interactive process would contribute 

valuable information to social neuroscience. 

A central dogma in neuroscience is that dopaminergic projections from the ventral 

tegmental area to limbic regions including the prefrontal cortex mediate learning by modulating 

synaptic plasticity through reinforcement and prediction error (Diaconescu et al., 2017; Schultz, 

1998) or causal associative signaling (Jeong et al., 2022) . Therefore, it would be beneficial to 

measure dopamine levels in cortex during social learning. One way this could be done is through 

fast-scan cyclic voltammetry (FCSV), which is a technique that uses a carbon fiber electrode to 

measure changes in dopamine concentrations in a behaving animal in real time (Venton & Cao, 

2020). FCSV could be paired with chronic electrophysiological recordings to measure changes 

in dopamine and neural activity, respectively, in any brain region. Analyzing dopamine levels and 

neural activity simultaneously during social learning would inform whether changes in dopamine 

correlate with changes in the neural population and network representations I observed here. 
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Although primates rely heavily on visual cues during social behavior, social interactions 

are extremely complex and involve multisensory integration. Future research should investigate 

how other sensory cues, such as odors, vocalizations, and touch (Contestabile et al., 2021; 

Froesel et al., 2022; Jovanovic et al., 2022; Martin et al., 2023) , complement visual information 

to guide neural computations underlying social decisions. Additionally, most primates live in 

groups and exhibit a social hierarchy (Noonan et al., 2014; Schulke et al., 2010). Therefore, 

features such as social identity, rank, and familiarity likely influence social decisions and sensory 

cues exchanged amongst individuals (Gachomba et al., 2022; Ghazanfar & Santos, 2004). A 

study examining neural processing of these multimodal cues and social relationships could 

identify whether certain behaviors are salient or irrelevant for specific types of social interactions. 

For instance, investigating the neural basis of multisensory events that constitute distinct social 

behaviors such as grooming and fighting/competition would elucidate neural mechanisms that 

facilitate integration of sensory cues and social status to support social competence. Overall, 

combined multiplexed behavioral and neural recordings from a network of brain regions during 

rich, naturalistic social behavior will enable a more wholistic understanding of social cognition. 

Such knowledge could potentially provide novel behavioral or neural strategies for interacting 

with others during different social roles (i.e. - parenting vs. professional leadership) and for 

improving neuropsychiatric disorders.  

5.3 Clinical applications 

Elucidating the correct functioning of the social cognition system has profound 

implications for human health. Understanding the neural basis of social interactions can help us 

comprehend the complex behaviors and emotions that underlie our social relationships. 

Unfortunately, persistent deficits in social interaction and communication characterize many 

neuropsychiatric disorders, especially ASD, schizophrenia, and depression, affecting millions of 

people worldwide (Association, 2013; Winsky et al., 2008). Importantly, the findings from this 

study contribute to our limited knowledge about the neural computations underlying advanced 
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forms of learning social interaction, such as cooperation. The discoveries described here can 

have significant consequences for human health and well-being, including improved treatments 

for psychiatric disorders and enhanced social functioning in everyday life. 

First, this work exposes how two cortical brain regions process and respond to real, three-

dimensional, social stimuli, such as viewing another conspecific and the reward for performing a 

social action (cooperating) in a naturalistic, free roaming environment. This research revealed 

that neural population encoding within each region and spiking coordination between brain 

regions during viewing social, but not non-social, stimuli improved while animals learned to 

cooperate and social stimuli became more salient. Therefore, such selective improvement in 

neural encoding of social stimuli indicates this visual information is valuable during social 

behavior. With this knowledge, wireless eye tracking methods like those used here can be 

employed for individuals with social dysfunction to promote viewing of salient social information. 

Indeed, closed-loop therapeutic activities could be incorporated into daily behavior where an 

individual receives a local food/juice reward for viewing salient social information, such as 

viewing the person who is speaking or even fixating on the lips or eyes of others when engaging 

in social interaction. Such a real-time, feedback driven system would help individuals associate 

social stimuli as rewarding, improving healthy development of social interactions. 

 In addition to informing behavioral therapies, this research furthers development of neural 

enhancement of social behavior, which would be especially helpful for individuals with severe 

social deficits. For example, when behavioral therapy or medications fail, alternative forms of 

treatment involving brain stimulation and/or implants to a specific brain area are considered (Qiu 

et al., 2021; Wickelgren, 2018). This work demonstrates how, unlike the role of the mirror neuron 

system which engages during action observation and execution (Fogassi & Ferrari, 2011; Rozzi 

et al., 2008), dlPFC is involved in predicting another agent’s action as well as planning an 

individual’s own action. This finding motivates dlPFC as a potential target for neurotherapy. 

Moreover, this work informs studies using neurofeedback to train individuals with autism to 



 72 

interpret social cues, which have shown promising results in improving an individual’s social 

functioning and reducing disadvantageous symptoms (Datko et al., 2018; Friedrich et al., 2015).  

Lastly, this research can help us develop better tools for enhancing our social skills and 

improving our everyday functioning. Social skills are essential for success in both personal and 

professional contexts. The neural basis of viewing social information discovered from this work 

informs the development of interventions to improve our social skills, such as training programs 

to improve social cognition or virtual reality simulations to enhance social communication. These 

interventions can have practical applications in various settings, such as schools, workplaces, 

and mental health clinics, helping individuals to improve their social interactions and overall 

quality of life. 
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