Functional activation of p53 induces apoptosis in the absence of MDM2

Sohela de Rozieres, The University of Texas Graduate School of Biomedical Sciences at Houston


The p53 tumor suppressor gene product is negatively regulated by the product of its downstream target, mdm2. The mdm2 oncogene abrogates p53 transactivation function. Amplification of mdm2 occurs in 36% of human sarcomas, which often retain p53 in wild type form, suggesting that overexpression of mdm2 in tumors results in p53 inactivation. Thus, the relationship of p53 to mdm2 is important in tumorigenesis. The deletion of mdm2 in the mouse results in embryonic lethality by 5.5 days post coitum. Embryonic lethality of the mdm2 null embryos was overcome by simultaneous loss of the p53 tumor suppressor, which substantiates the importance of the negative regulatory function of MDM2 on p53 function in vivo. These data suggest that the loss of MDM2 function allowed the constitutively active p53 protein to induce either a complete G1 arrest or the p53-dependent apoptotic pathway, resulting in the death of the mdm2−/− embryos. The present study examines the hypothesis that the absence of mdm2 induces apoptosis due to p53 activation. Viability of the p53−/−mdm2−/− mice has allowed establishment of mouse embryo fibroblasts (MEFs) and a detailed examination of the properties of these cells. To introduce p53 into this system, and essentially recreate a mdm2 null cell, a temperature sensitive p53 (tsp53) point mutant (A135V) was used, which exhibits a nonfunctional, mutant conformation at 39°C and wild type, functional conformation at 32°C. Infected pools of p53−/− and p53−/−mdm2−/− MEFs with the tsp53 gene were established and single-cell clonal populations expressing tsp53 were selected. Shifting the cells from 39°C to 32°C caused p53−/−mdm2 −/− lines expressing tsp53 to undergo up to 80% apoptosis, which did not occur in the p53−/− lines expressing tsp53 nor the parental lines lacking p53 expression. Furthermore, the amount of p53 present in the clonal population determined the extent of apoptosis. Tsp53 is transcriptionally active in this system, however, it discriminates among different target promoters and does not induce the apoptosis effector targets bax or Fas/Apo1. In summary, this study indicates that the presence or absence of mdm2 is the determining factor for the ability of p53 to trigger apoptosis in this system. The loss of mdm2 promotes p53-dependent apoptosis in MEFs in a cell cycle and dose-dependent manner. p53 is differentially phosphorylated in the presence and absence of mdm2, but does not induce the apoptosis effectors, bax or Fas/ Apo1.

Subject Area

Molecular biology|Cellular biology

Recommended Citation

de Rozieres, Sohela, "Functional activation of p53 induces apoptosis in the absence of MDM2" (2001). Texas Medical Center Dissertations (via ProQuest). AAI3004452.