Influence of mycobacterial trehalose 6,6'-dimycolate (TDM) on macrophage responses

Jessica Jill Indrigo, The University of Texas Graduate School of Biomedical Sciences at Houston


Mycobacterium tuberculosis, the causative agent of tuberculosis, survives within macrophages by altering host cell activation and by manipulating phagosomal trafficking and acidification. Part of the success of M. tuberculosis as a major human pathogen has been attributed to its cell wall, a unique structure largely comprised of mycolic acids. Trehalose 6,6′-dimycolate (TDM) is the major glycolipid component on the surface of the mycobacterial cell wall. This study examines the contribution of TDM during mycobacterial infection of murine macrophages. Virulent M. tuberculosis was chemically depleted of surface-exposed TDM using petroleum ether extraction. Compared to their native counterparts, delipidated M. tuberculosis showed similar growth in broth culture. Bone marrow-derived macrophages (BMM) or the murine macrophage-like cell line J774A.1 were infected with delipidated M. tuberculosis, and responses were compared to cells infected with native M. tuberculosis. Delipidated M. tuberculosis demonstrated significantly decreased viability in macrophages by seven days after infection. Reconstitution of delipidated organisms with pure TDM restored viability. Infection with native M. tuberculosis led to high cellular production of cytokines (IL-1β, IL-6, IL-12, and TNF-α) and chemokines (MCP-1 and MIP-1α); infection with delipidated M. tuberculosis significantly abrogated responses. Cytokine and chemokine production were restored when delipidated organisms were reconstituted with TDM. Responses were specifically induced by TDM; all measured cytokines were elicited from macrophages incubated with TDM-coated beads, while control beads coated with bovine serum albumin (BSA) did not induce cytokine production. Visualization of mycobacterial localization in J774A.1 cells using fluorescence microscopy revealed that delipidated M. tuberculosis were significantly more likely to traffic to acidic vesicles (lysosomes) than native organisms. Reconstitution with TDM restored trafficking to non-acidic vesicles. Similarly, TDM-coated beads demonstrated significantly delayed localization to acidic vesicles compared to BSA-coated beads. In summary, the interaction of TDM with macrophages may regulate the outcome of M. tuberculosis infection by influencing cellular cytokine production and intracellular localization of organisms. This research has elucidated a novel and necessary role for TDM in survival of virulent M. tuberculosis in host macrophages during in vitro infection.

Subject Area


Recommended Citation

Indrigo, Jessica Jill, "Influence of mycobacterial trehalose 6,6'-dimycolate (TDM) on macrophage responses" (2003). Texas Medical Center Dissertations (via ProQuest). AAI3083495.