Involvement of lipocalin 2 in leukemia and breast cancer

Tian Ding, The University of Texas Graduate School of Biomedical Sciences at Houston


Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.

Subject Area

Biostatistics|Genetics|Cellular biology|Medicine

Recommended Citation

Ding, Tian, "Involvement of lipocalin 2 in leukemia and breast cancer" (2009). Texas Medical Center Dissertations (via ProQuest). AAI3358126.