A systematic analysis of INO80 in DNA replication

Karina Beatriz Falbo, The University of Texas Graduate School of Biomedical Sciences at Houston

Abstract

ATP-dependent chromatin remodeling has been shown to be critical for transcription and DNA repair. However, the involvement of ATP-dependent chromatin remodeling in DNA replication remains poorly defined. Interestingly, we found that the INO80 chromatin-remodeling complex is directly involved in the DNA damage tolerance pathways activated during DNA replication. DNA damage tolerance is important for genomic stability and is controlled by formation of either mono-ubiquitinated or multi-ubiquitinated PCNA, which respectively induce error prone or error-free replication bypass of the lesions. In addition, homologous recombination (HR) mediated by the Rad51 pathway is also involved in the DNA damage tolerance pathways. We found that INO80 is specifically recruited to replication origins during S phase in a genome-wide fashion. In addition, DNA combing analysis shows INO80 is required for the resumption of replication at stalled forks induced by methyl methane-sulfonate (MMS). Mechanistically, we find that INO80 is required for PCNA ubiquitination as well as for Rad51 mediated processing of replication forks after MMS treatment. Furthermore, chromatin immunoprecipitation at specific ARSs indicates INO80 is necessary for Rad18 and Rad51 recruitment to replication forks after MMS treatment. Moreover, 2D gel analysis shows INO80 is necessary to process Rad51 mediated intermediates at impeded replication forks. In conclusion, our findings establish a novel role of a chromatin-remodeling complex in DNA damage tolerance pathways and suggest that chromatin remodeling is fundamentally important to ensure faithful replication of DNA and genome stability in eukaryotes.

Subject Area

Molecular biology|Genetics|Medicine

Recommended Citation

Falbo, Karina Beatriz, "A systematic analysis of INO80 in DNA replication" (2009). Texas Medical Center Dissertations (via ProQuest). AAI3376908.
https://digitalcommons.library.tmc.edu/dissertations/AAI3376908

Share

COinS