RICHARD DOUGLAS HENKEL, The University of Texas Graduate School of Biomedical Sciences at Houston


The goal of this study was to investigate the properties of human acid (alpha)-glucosidase with respect to: (i) the molecular heterogeneity of the enzyme and (ii) the synthesis, post-translational modification, and transport of acid (alpha)-glucosidase in human fibroblasts. The initial phase of these investigations involved the purification of acid (alpha)-glucosidase from the human liver. Human hepatic acid (alpha)-glucosidase was characterized by isoelectric focusing and native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Four distinct charge forms of hepatic acid (alpha)-glucosidase were separated by chromatofocusing and characterized individually. Charge heterogeneity was demonstrated to result from differences in the polypeptide components of each charge form. The second aspect of this research focused on the biosynthesis and the intracellular processing and transport of acid (alpha)-glucosidase in human fibroblasts. These experiments were accomplished by immune precipitation of the biosynthetic intermediates of acid (alpha)-glucosidase from radioactively labeled fibroblasts with polyclonal and monoclonal antibodies raised against human hepatic acid (alpha)-glucosidase. The immune precipitated biosynthetic forms of acid (alpha)-glucosidase were analyzed by SDS-PAGE and autoradiography. The pulse-chase experiments demonstrated the existence of several transient, high molecular weight precursors of acid (alpha)-glucosidase. These precursors were demonstrated to be intermediates of acid (alpha)-glucosidase at different stages of transport and processing in the Golgi apparatus. Other experiments were performed to examine the role of co-translational glycosylation of acid (alpha)-glucosidase in the transport and processing of precursors of this enzyme. A specific immunological assay for detecting acid (alpha)-glucosidase was developed using the monoclonal antibodies described above. This method was modified to increase the sensitivity of the assay by utilization of the biotin-avidin amplification system. This method was demonstrated to be more sensitive for detecting human acid (alpha)-glucosidase than the currently used biochemical assay for acid (alpha)-glucosidase activity. It was also demonstrated that the biotin-avidin immunoassay could discriminate between normal and acid (alpha)-glucosidase deficient fibroblasts, thus providing an alternative approach to detecting this inborn error in metabolism. (Abstract shortened with permission of author.)

Subject Area


Recommended Citation

HENKEL, RICHARD DOUGLAS, "CHARACTERIZATION OF HUMAN ACID ALPHA-GLUCOSIDASE" (1985). Texas Medical Center Dissertations (via ProQuest). AAI8516514.