Pharmacological characterization of nipecotic acid ethyl ester: A novel cholinergic muscarinic agonist

Stevin Howard Zorn, The University of Texas Graduate School of Biomedical Sciences at Houston


The aim of this dissertation was to examine the hypothesis that (R)-nipecotic acid ethyl ester ((R)-NAEE) is a cholinergic agonist that is selective for a particular subclass (M$\sb1$ or M$\sb2$) of muscarinic receptors. Ligand binding studies indicated that like cholinergic agonists (R)-NAEE selectively interacts with rat heart (M$\sb2$) and brain (M$\sb1$) muscarinic binding sites. Physiological studies revealed that unlike cholinergic agonists (R)-NAEE stimulated only those responses coupled to M$\sb2$ muscarinic receptors (acid secretion, negative inotropic response, smooth muscle contraction). Moreover, in rat brain (R)-NAEE differentiated between M$\sb2$ receptors negatively coupled to adenylate cyclase activity and M$\sb1$ receptors mediating PI turnover, being a weak competitive antagonist at these latter sites. In isolated rat gastric mucosal cells (R)-NAEE also differentiated between two M$\sb2$ coupled responses where it potentiated acid secretion but could not stimulate PI turnover. Atropine, a selective antimuscarinic agent, competitively antagonized all agonist effects of (R)-NAEE. Unlike (R)-NAEE, the muscarinic agonist arecoline, which is structurally similar to (R)-NAEE, stimulates both M$\sb1$ and M$\sb2$ receptors. Structure activity studies revealed that saturation of the piperidine ring and the length of the ester side chain of (R)-NAEE are the most important determinants for both M$\sb2$ efficacy and selectivity. The results of this dissertation establish that (R)-NAEE is a cholinergic muscarinic receptor agonist that displays greater efficacy at M$\sb2$ than at M$\sb1$ receptors, being a weak antagonist at the M$\sb1$ site. With such selectivity, (R)-NAEE may be regarded as a prototype for a unique class of cholinergic muscarinic M$\sb2$ receptor agonists. Because of these unique properties, (R)-NAEE should be useful in the further characterization of muscarinic receptors, and could lead to the development of a new class of therapeutic agents.

Subject Area


Recommended Citation

Zorn, Stevin Howard, "Pharmacological characterization of nipecotic acid ethyl ester: A novel cholinergic muscarinic agonist" (1987). Texas Medical Center Dissertations (via ProQuest). AAI9016674.