Mechanisms of HER2/ neu proto-oncogene overexpression in breast cancer cells

Susan Jean Miller, The University of Texas Graduate School of Biomedical Sciences at Houston


Overexpression and amplification of HER2/neu have been documented in many primary tumors, most notably in breast. Not only do approximately 30% of breast cancer patients carry tumors that overexpress the gene, but those that do generally have shorter overall and disease-free survival times than patients with tumors expressing low levels of HER2/neu. Thus, overexpression of HER2/neu plays an important role in the pathogenesis of breast cancer. We have examined the mechanisms that result in HER2/neu overexpression in breast cancer by using, as a model system, established breast cancer cell lines that express much higher levels of HER2/neu mRNA than normal breast tissue while maintaining a near normal HER2/neu gene copy number. Nuclear run-on experiments indicate that the breast cancer cell lines MDA-MB453, BT483, and BT474 have an increased HER2/neu gene transcription rate. By using HER2/neu promoter-CAT constructs, we have found that the enhanced HER2/neu transcription rate in MDA-MB453 cells is due to activation of the gene in trans, while the enhanced transcription rate in BT483 cells is due to activation of the gene in either trans or cis. In BT474 cells, transcriptional upregulation is primarily due to gene amplification. Since the levels of increased transcription are not as high as the levels of HER2/neu mRNA in any of these three lines, post-transcriptional deregulation that increases HER2/neu expression must also be functioning in these cells. The half-life of HER2/neu mRNA was measured and found to be equivalent in these lines as in a control. Thus, the post-transcriptional deregulation is not increased stability of the HER2/neu transcript. Much work has been performed in characterizing the altered trans-acting factor involved in increased HER2/neu transcription in MDA-MB453 cells. Using promoter deletion constructs linked to a reporter gene, the region responsive to this factor was localized in the rat neu promoter. When human HER2/neu promoter constructs were used, the homologous sequence in the human promoter was identified. Furthermore, a number of protein/DNA complexes are detected when these promoter regions are used in gel mobility shift assays. UV-crosslinking experiments indicate DNA-binding proteins of roughly 110 kDa, 70 kDa, and 35 kDa are capable of interacting with the human promoter element.

Subject Area

Molecular biology

Recommended Citation

Miller, Susan Jean, "Mechanisms of HER2/ neu proto-oncogene overexpression in breast cancer cells" (1994). Texas Medical Center Dissertations (via ProQuest). AAI9434631.